-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
361 lines (318 loc) · 17.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import logging
from re import template
import numpy as np
from collections import defaultdict
import torch
from torch.utils.data import DataLoader, RandomSampler
from transformers import BertTokenizer
import config
import data_loader
from model import GlobalPointerRe
from utils.common_utils import set_seed, set_logger, read_json, fine_grade_tokenize
from utils.train_utils import load_model_and_parallel, build_optimizer_and_scheduler, save_model
from utils.metric_utils import calculate_metric_relation, get_p_r_f
from tensorboardX import SummaryWriter
args = config.Args().get_parser()
set_seed(args.seed)
logger = logging.getLogger(__name__)
if args.use_tensorboard == "True":
writer = SummaryWriter(log_dir='./tensorboard')
class BertForRe:
def __init__(self, args, train_loader, dev_loader, test_loader, id2tag, tag2id, model, device):
self.train_loader = train_loader
self.dev_loader = dev_loader
self.test_loader = test_loader
self.args = args
self.id2tag = id2tag
self.tag2id = tag2id
self.model = model
self.device = device
if train_loader is not None:
self.t_total = len(self.train_loader) * args.train_epochs
self.optimizer, self.scheduler = build_optimizer_and_scheduler(args, model, self.t_total)
def train(self):
# Train
global_step = 0
self.model.zero_grad()
eval_steps = args.eval_steps #每多少个step打印损失及进行验证
best_f1 = 0.0
for epoch in range(self.args.train_epochs):
for step, batch_data in enumerate(self.train_loader):
self.model.train()
for batch in batch_data[:-1]:
batch = batch.to(self.device)
# batch_token_ids, attention_mask, token_type_ids, batch_head_labels, batch_tail_labels, batch_entity_ids
all_loss = self.model(batch_data[0], batch_data[1], batch_data[2], batch_data[3], batch_data[4], batch_data[5])
loss = all_loss['loss']
entity_loss = all_loss['entity_loss']
head_loss = all_loss['head_loss']
tail_loss = all_loss['tail_loss']
# loss.backward(loss.clone().detach())
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.model.zero_grad()
logger.info('【train】 epoch:{} {}/{} loss:{:.4f} entity_loss:{:.4f} head_loss:{:.4f} tail_loss:{:.4f}'.format(
epoch, global_step, self.t_total, loss.item(), entity_loss.item(), head_loss.item(), tail_loss.item()))
global_step += 1
if self.args.use_tensorboard == "True":
writer.add_scalar('data/loss', loss.item(), global_step)
if global_step % eval_steps == 0:
precision, recall, f1_score = self.dev()
logger.info('[eval] precision={:.4f} recall={:.4f} f1_score={:.4f}'.format(precision, recall, f1_score))
if f1_score > best_f1:
save_model(self.args, self.model, model_name, global_step)
best_f1 = f1_score
def dev(self):
self.model.eval()
spos = []
true_spos = []
subjects = []
objects = []
all_examples = []
with torch.no_grad():
for eval_step, dev_batch_data in enumerate(dev_loader):
for dev_batch in dev_batch_data[:-1]:
dev_batch = dev_batch.to(device)
entity_output, head_output, tail_output = model(dev_batch_data[0], dev_batch_data[1], dev_batch_data[2])
cur_batch_size = dev_batch_data[0].shape[0]
dev_examples = dev_batch_data[-1]
true_spos += [i[1] for i in dev_examples]
all_examples += [i[0] for i in dev_examples]
# torch.Size([8, 2, 256, 256]) torch.Size([8, 49, 256, 256]) torch.Size([8, 49, 256, 256])
# print(entity_output.shape, head_output.shape, tail_output.shape)
for i in range(cur_batch_size):
example = dev_examples[i][0]
l = len(example)
subject = []
object = []
subject_ids = []
object_ids = []
spo = []
single_entity_output = entity_output[i, ...]
single_head_output = head_output[i, ...]
single_tail_output = tail_output[i, ...]
single_head_output = single_head_output[:, 1:l+1:, 1:l+1]
single_tail_output = single_tail_output[:, 1:l+1:, 1:l+1]
subject_entity_outpout = single_entity_output[:1, 1:l+1:, 1:l+1].squeeze()
object_entity_output = single_entity_output[1:, 1:l+1:, 1:l+1].squeeze()
# 注意这里阈值为什么是0
subject_entity_outpout = np.where(subject_entity_outpout.cpu().numpy() > 0)
object_entity_output = np.where(object_entity_output.cpu().numpy() > 0)
for m,n in zip(*subject_entity_outpout):
subject_ids.append((m, n))
for m,n in zip(*object_entity_output):
object_ids.append((m, n))
for sh, st in subject_ids:
for oh, ot in object_ids:
# print(example[sh:st+1], example[oh:ot+1])
# print(np.where(single_head_output[:, sh, oh].cpu().numpy() > 0))
# print(np.where(single_tail_output[:, st, ot].cpu().numpy() > 0))
subj = example[sh:st+1]
obj = example[oh:ot+1]
subject.append(subj)
object.append(obj)
re1 = np.where(single_head_output[:, sh, oh].cpu().numpy() > 0)[0]
re2 = np.where(single_tail_output[:, st, ot].cpu().numpy() > 0)[0]
res = set(re1) & set(re2)
for r in res:
spo.append((subj, self.id2tag[r], obj))
subjects.append(subject)
objects.append(object)
spos.append(spo)
tp, fp, fn = calculate_metric_relation(spos, true_spos)
p, r, f1 = get_p_r_f(tp, fp, fn)
return p, r, f1
def test(self, model_path):
model = GlobalPointerRe(self.args)
model, device = load_model_and_parallel(model, self.args.gpu_ids, model_path)
model.eval()
spos = []
true_spos = []
subjects = []
objects = []
all_examples = []
with torch.no_grad():
for eval_step, dev_batch_data in enumerate(dev_loader):
for dev_batch in dev_batch_data[:-1]:
dev_batch = dev_batch.to(device)
entity_output, head_output, tail_output = model(dev_batch_data[0], dev_batch_data[1], dev_batch_data[2])
cur_batch_size = dev_batch_data[0].shape[0]
dev_examples = dev_batch_data[-1]
true_spos += [i[1] for i in dev_examples]
all_examples += [i[0] for i in dev_examples]
# torch.Size([8, 2, 256, 256]) torch.Size([8, 49, 256, 256]) torch.Size([8, 49, 256, 256])
# print(entity_output.shape, head_output.shape, tail_output.shape)
for i in range(cur_batch_size):
example = dev_examples[i][0]
l = len(example)
subject = []
object = []
subject_ids = []
object_ids = []
spo = []
single_entity_output = entity_output[i, ...]
single_head_output = head_output[i, ...]
single_tail_output = tail_output[i, ...]
single_head_output = single_head_output[:, 1:l+1:, 1:l+1]
single_tail_output = single_tail_output[:, 1:l+1:, 1:l+1]
subject_entity_outpout = single_entity_output[:1, 1:l+1:, 1:l+1].squeeze()
object_entity_output = single_entity_output[1:, 1:l+1:, 1:l+1].squeeze()
# 注意这里阈值为什么是0
subject_entity_outpout = np.where(subject_entity_outpout.cpu().numpy() > 0)
object_entity_output = np.where(object_entity_output.cpu().numpy() > 0)
for m,n in zip(*subject_entity_outpout):
subject_ids.append((m, n))
for m,n in zip(*object_entity_output):
object_ids.append((m, n))
for sh, st in subject_ids:
for oh, ot in object_ids:
# print(example[sh:st+1], example[oh:ot+1])
# print(np.where(single_head_output[:, sh, oh].cpu().numpy() > 0))
# print(np.where(single_tail_output[:, st, ot].cpu().numpy() > 0))
subj = example[sh:st+1]
obj = example[oh:ot+1]
subject.append(subj)
object.append(obj)
re1 = np.where(single_head_output[:, sh, oh].cpu().numpy() > 0)[0]
re2 = np.where(single_tail_output[:, st, ot].cpu().numpy() > 0)[0]
res = set(re1) & set(re2)
for r in res:
spo.append((subj, self.id2tag[r], obj))
subjects.append(subject)
objects.append(object)
spos.append(spo)
# for i, (m, n, ex) in enumerate(zip(spos, true_spos, all_examples)):
# if i <= 10:
# print(ex)
# print(m, n)
# print('='*100)
# print(len(all_examples))
# print(len(true_spos))
# print(len(spos))
tp, fp, fn = calculate_metric_relation(spos, true_spos)
p, r, f1 = get_p_r_f(tp, fp, fn)
print("========metric========")
print("precision:{} recall:{} f1:{}".format(p, r, f1))
return p, r, f1
def predict(self, raw_text, model, tokenizer):
model.eval()
with torch.no_grad():
tokens = [i for i in raw_text]
if len(tokens) > self.args.max_seq_len - 2:
tokens = tokens[:self.args.max_seq_len - 2]
tokens = ['[CLS]'] + tokens + ['[SEP]']
token_ids = tokenizer.convert_tokens_to_ids(tokens)
attention_masks = [1] * len(token_ids)
token_type_ids = [0] * len(token_ids)
if len(token_ids) < self.args.max_seq_len:
token_ids = token_ids + [0] * (self.args.max_seq_len - len(tokens))
attention_masks = attention_masks + [0] * (self.args.max_seq_len - len(tokens))
token_type_ids = token_type_ids + [0] * (self.args.max_seq_len - len(tokens))
assert len(token_ids) == self.args.max_seq_len
assert len(attention_masks) == self.args.max_seq_len
assert len(token_type_ids) == self.args.max_seq_len
token_ids = torch.from_numpy(np.array(token_ids)).unsqueeze(0).to(self.device)
attention_masks = torch.from_numpy(np.array(attention_masks, dtype=np.uint8)).unsqueeze(0).to(self.device)
token_type_ids = torch.from_numpy(np.array(token_type_ids)).unsqueeze(0).to(self.device)
entity_output, head_output, tail_output = model(token_ids, attention_masks, token_type_ids)
cur_batch_size = entity_output.shape[0]
spos = []
subjects = []
objects = []
# print(entity_output.shape, head_output.shape, tail_output.shape)
for i in range(cur_batch_size):
example = raw_text
l = len(example)
subject = []
object = []
subject_ids = []
object_ids = []
spo = []
single_entity_output = entity_output[i, ...]
single_head_output = head_output[i, ...]
single_tail_output = tail_output[i, ...]
single_head_output = single_head_output[:, 1:l+1:, 1:l+1]
single_tail_output = single_tail_output[:, 1:l+1:, 1:l+1]
subject_entity_outpout = single_entity_output[:1, 1:l+1:, 1:l+1].squeeze()
object_entity_output = single_entity_output[1:, 1:l+1:, 1:l+1].squeeze()
# 注意这里阈值为什么是0
subject_entity_outpout = np.where(subject_entity_outpout.cpu().numpy() > 0)
object_entity_output = np.where(object_entity_output.cpu().numpy() > 0)
for m,n in zip(*subject_entity_outpout):
subject_ids.append((m, n))
for m,n in zip(*object_entity_output):
object_ids.append((m, n))
for sh, st in subject_ids:
for oh, ot in object_ids:
# print(example[sh:st+1], example[oh:ot+1])
# print(np.where(single_head_output[:, sh, oh].cpu().numpy() > 0))
# print(np.where(single_tail_output[:, st, ot].cpu().numpy() > 0))
subj = example[sh:st+1]
obj = example[oh:ot+1]
subject.append(subj)
object.append(obj)
re1 = np.where(single_head_output[:, sh, oh].cpu().numpy() > 0)[0]
re2 = np.where(single_tail_output[:, st, ot].cpu().numpy() > 0)[0]
res = set(re1) & set(re2)
for r in res:
spo.append((subj, self.id2tag[r], obj))
subjects.append(subject)
objects.append(object)
spos.append(spo)
print("文本:", raw_text)
print('主体:', [list(set(i)) for i in subjects])
print('客体:', [list(set(i)) for i in objects])
print('关系:', spos)
print("="*100)
if __name__ == '__main__':
data_name = 'ske'
model_name = 'bert'
set_logger(os.path.join(args.log_dir, '{}.log'.format(model_name)))
if data_name == "ske":
args.data_dir = './data/ske'
data_path = os.path.join(args.data_dir, 'raw_data')
label_list = read_json(os.path.join(args.data_dir, 'mid_data'), 'predicates')
tag2id = {}
id2tag = {}
for k,v in enumerate(label_list):
tag2id[v] = k
id2tag[k] = v
logger.info(args)
max_seq_len = args.max_seq_len
tokenizer = BertTokenizer.from_pretrained('model_hub/chinese-bert-wwm-ext/vocab.txt')
model = GlobalPointerRe(args)
model, device = load_model_and_parallel(model, args.gpu_ids)
collate = data_loader.Collate(max_len=max_seq_len, tag2id=tag2id, device=device, tokenizer=tokenizer)
train_dataset = data_loader.MyDataset(file_path=os.path.join(data_path, 'train_data.json'),
tokenizer=tokenizer,
max_len=max_seq_len)
train_loader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate.collate_fn)
dev_dataset = data_loader.MyDataset(file_path=os.path.join(data_path, 'dev_data.json'),
tokenizer=tokenizer,
max_len=max_seq_len)
dev_dataset = dev_dataset[:args.use_dev_num]
dev_loader = DataLoader(dev_dataset, batch_size=args.eval_batch_size, shuffle=False, collate_fn=collate.collate_fn)
bertForNer = BertForRe(args, train_loader, dev_loader, dev_loader, id2tag, tag2id, model, device)
# bertForNer.train()
model_path = './checkpoints/bert/model.pt'.format(model_name)
bertForNer.test(model_path)
texts = [
'查尔斯·阿兰基斯(Charles Aránguiz),1989年4月17日出生于智利圣地亚哥,智利职业足球运动员,司职中场,效力于德国足球甲级联赛勒沃库森足球俱乐部',
'《离开》是由张宇谱曲,演唱',
'《愤怒的唐僧》由北京吴意波影视文化工作室与优酷电视剧频道联合制作,故事以喜剧元素为主,讲述唐僧与佛祖打牌,得罪了佛祖,被踢下人间再渡九九八十一难的故事',
'李治即位后,萧淑妃受宠,王皇后为了排挤萧淑妃,答应李治让身在感业寺的武则天续起头发,重新纳入后宫',
'《工业4.0》是2015年机械工业出版社出版的图书,作者是(德)阿尔冯斯·波特霍夫,恩斯特·安德雷亚斯·哈特曼',
'周佛海被捕入狱之后,其妻杨淑慧散尽家产请蒋介石枪下留人,于是周佛海从死刑变为无期,不过此人或许作恶多端,改判没多久便病逝于监狱,据悉是心脏病发作',
'《李烈钧自述》是2011年11月1日人民日报出版社出版的图书,作者是李烈钧',
'除演艺事业外,李冰冰热心公益,发起并亲自参与多项环保慈善活动,积极投身其中,身体力行担起了回馈社会的责任于02年出演《少年包青天》,进入大家视线',
'马志舟,1907年出生,陕西三原人,汉族,中国共产党,任红四团第一连连长,1933年逝世',
'斑刺莺是雀形目、剌嘴莺科的一种动物,分布于澳大利亚和新西兰,包括澳大利亚、新西兰、塔斯马尼亚及其附近的岛屿',
'《课本上学不到的生物学2》是2013年上海科技教育出版社出版的图书',
]
model = GlobalPointerRe(args)
model, device = load_model_and_parallel(model, args.gpu_ids, model_path)
for text in texts:
bertForNer.predict(text, model, tokenizer)