-
Notifications
You must be signed in to change notification settings - Fork 3
/
violin_plot.R
190 lines (132 loc) · 4.78 KB
/
violin_plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Based on the vioplot package but modified to be more visually customizable.
library(sm)
vioplot <- function(x,range=1.5,h=NULL,ylim=NULL,names=NULL, horizontal=FALSE,
col="magenta", border="black", lty=1, lwd=1, rectCol="black", colMed="white", pchMed=19, at, add=FALSE, wex=1,
drawRect=TRUE, las=1, xaxt=TRUE, yaxt=TRUE)
{
# process multiple datas
datas <- x
n <- length(datas)
if(missing(at)) at <- 1:n
# pass 1
#
# - calculate base range
# - estimate density
#
# setup parameters for density estimation
upper <- vector(mode="numeric",length=n)
lower <- vector(mode="numeric",length=n)
q1 <- vector(mode="numeric",length=n)
q3 <- vector(mode="numeric",length=n)
med <- vector(mode="numeric",length=n)
base <- vector(mode="list",length=n)
height <- vector(mode="list",length=n)
baserange <- c(Inf,-Inf)
# global args for sm.density function-call
args <- list(display="none")
if (!(is.null(h)))
args <- c(args, h=h)
for(i in 1:n) {
data<-datas[[i]]
# calculate plot parameters
# 1- and 3-quantile, median, IQR, upper- and lower-adjacent
data.min <- min(data)
data.max <- max(data)
q1[i]<-quantile(data,0.25)
q3[i]<-quantile(data,0.75)
med[i]<-median(data)
iqd <- q3[i]-q1[i]
upper[i] <- min( q3[i] + range*iqd, data.max )
lower[i] <- max( q1[i] - range*iqd, data.min )
# strategy:
# xmin = min(lower, data.min))
# ymax = max(upper, data.max))
#
est.xlim <- c( min(lower[i], data.min), max(upper[i], data.max) )
# estimate density curve
smout <- do.call("sm.density", c( list(data, xlim=est.xlim), args ) )
# calculate stretch factor
#
# the plots density heights is defined in range 0.0 ... 0.5
# we scale maximum estimated point to 0.4 per data
#
hscale <- 0.4/max(smout$estimate) * wex
# add density curve x,y pair to lists
base[[i]] <- smout$eval.points
height[[i]] <- smout$estimate * hscale
# calculate min,max base ranges
t <- range(base[[i]])
baserange[1] <- min(baserange[1],t[1])
baserange[2] <- max(baserange[2],t[2])
}
# pass 2
#
# - plot graphics
# setup parameters for plot
if(!add){
xlim <- if(n==1)
at + c(-.5, .5)
else
range(at) + min(diff(at))/2 * c(-1,1)
if (is.null(ylim)) {
ylim <- baserange
}
}
if (is.null(names)) {
label <- 1:n
} else {
label <- names
}
boxwidth <- 0.05 * wex
# setup plot
if(!add)
plot.new()
if(!horizontal) {
if(!add){
plot.window(xlim = xlim, ylim = ylim)
if (yaxt) {axis(2)}
if (xaxt) {axis(1,at = at, label=label, las=las )}
}
box()
# Add 5 June 2018 - Tallulah Andrews
# data-specific colours
col_vec <- rep(col, times=ceiling(n/length(col)))
for(i in 1:n) {
# plot left/right density curve
polygon( c(at[i]-height[[i]], rev(at[i]+height[[i]])),
c(base[[i]], rev(base[[i]])),
col = col[i], border=border, lty=lty, lwd=lwd)
if(drawRect){
# plot IQR
lines( at[c( i, i)], c(lower[i], upper[i]) ,lwd=lwd, lty=lty)
# plot 50% KI box
rect( at[i]-boxwidth/2, q1[i], at[i]+boxwidth/2, q3[i], col=rectCol)
# plot median point
points( at[i], med[i], pch=pchMed, col=colMed )
}
}
}
else {
if(!add){
plot.window(xlim = ylim, ylim = xlim)
if(xaxt) {axis(1)}
if(yaxt) {axis(2,at = at, label=label, las=las )}
}
box()
for(i in 1:n) {
# plot left/right density curve
polygon( c(base[[i]], rev(base[[i]])),
c(at[i]-height[[i]], rev(at[i]+height[[i]])),
col = col, border=border, lty=lty, lwd=lwd)
if(drawRect){
# plot IQR
lines( c(lower[i], upper[i]), at[c(i,i)] ,lwd=lwd, lty=lty)
# plot 50% KI box
rect( q1[i], at[i]-boxwidth/2, q3[i], at[i]+boxwidth/2, col=rectCol)
# plot median point
points( med[i], at[i], pch=pchMed, col=colMed )
}
}
}
invisible (list( upper=upper, lower=lower, median=med, q1=q1, q3=q3))
}