-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExp.thy
90 lines (66 loc) · 2.75 KB
/
Exp.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
theory Exp
imports Main
begin
fun option_bind :: "'a option \<Rightarrow> ( 'a \<Rightarrow> 'b option ) \<Rightarrow> 'b option" where
"option_bind None _ = None" |
"option_bind ( Some a ) f = f a"
definition option_sum :: "int option \<Rightarrow> int option \<Rightarrow> int option" where
"(option_sum Mx My) = option_bind Mx (\<lambda>x . option_bind My (\<lambda> y . Some (x+y) ))"
lemma [simp]: "option_sum (Some x) (Some y) = Some (x + y)"
apply ( simp add: option_sum_def )
done
definition option_mul :: "int option \<Rightarrow> int option \<Rightarrow> int option" where
"(option_mul Mx My) = option_bind Mx (\<lambda>x . option_bind My (\<lambda> y . Some (x*y) ))"
lemma [simp]: "option_mul (Some x) (Some y) = Some (x * y)"
apply ( simp add: option_mul_def )
done
datatype 'a exp =
Var 'a |
Cst int |
Add "'a exp" "'a exp" |
Mul "'a exp" "'a exp"
fun eval :: "'a exp \<Rightarrow> ('a \<Rightarrow> int option) \<Rightarrow> int option" where
"eval ( Var i ) v = ( v i )" |
"eval ( Cst x ) v = Some x" |
"eval ( Add e0 e1 ) v = option_sum ( eval e0 v ) ( eval e1 v )" |
"eval ( Mul e0 e1 ) v = option_mul ( eval e0 v ) ( eval e1 v )"
value "( Mult ( Add ( Var 0 ) ( Cst 0 ) ) Cst 3 )"
value "\<lambda> x. ( if x=0 then Some 2 else None )"
value "(eval
( Mult ( Add ( Var 0 ) ( Cst 0 ) ) Cst 3 )
(\<lambda> x. ( if x=0 then Some 3 else None )))"
fun evalp :: "int list \<Rightarrow> int \<Rightarrow> int" where
"evalp [] _ = 0" |
"evalp (c0 # cs) x = c0 + x * ( evalp cs x )"
fun sump :: "int list \<Rightarrow> int list \<Rightarrow> int list" where
"sump [] l1 = l1" |
"sump l0 [] = l0" |
"sump (x#xs) (y#ys) = (x+y) # ( sump xs ys )"
lemma [simp]: "evalp (sump xs ys ) n = evalp xs n + evalp ys n"
apply ( induction xs ys rule: sump.induct )
apply ( auto simp add: algebra_simps)
done
fun cmulp :: "int \<Rightarrow> int list \<Rightarrow> int list" where
"cmulp c [] = []" |
"cmulp c (p # ps) = (c*p) # (cmulp c ps)"
lemma [simp]: "evalp ( cmulp c ps ) n = c * evalp ps n"
apply ( induction ps )
apply ( auto simp add: algebra_simps )
done
fun mulp :: "int list \<Rightarrow> int list \<Rightarrow> int list" where
"mulp [] p = []" |
"mulp (a # as) p = sump (cmulp a p) (0 # (mulp as p))"
lemma [simp]: "evalp ( mulp xs ys ) n = evalp xs n * evalp ys n"
apply ( induction xs )
apply ( auto simp add: algebra_simps)
done
fun coeffs :: "unit exp \<Rightarrow> int list" where
"coeffs (Var ()) = [0, 1]" |
"coeffs (Cst c ) = [c]" |
"coeffs (Add e0 e1) = sump (coeffs e0) (coeffs e1)" |
"coeffs (Mul e0 e1) = mulp (coeffs e0) (coeffs e1)"
theorem "eval e (\<lambda> x . (Some n)) = Some ( evalp ( coeffs e ) n)"
apply ( induction e arbitrary:n )
apply ( auto simp add: algebra_simps )
done
end