forked from jbkjr/train-procgen-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_ppo_sr.py
249 lines (208 loc) · 9.19 KB
/
graph_ppo_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import copy
import os
import numpy as np
import pandas as pd
import torch
from matplotlib import pyplot as plt
from sklearn.naive_bayes import CategoricalNB
from torch import nn
from torch.distributions import Categorical
import wandb
from common.model import NBatchPySRTorch
from double_graph_sr import find_model, trial_agent_mean_reward
from graph_sr import fine_tune, get_pysr_dir, load_pysr_to_torch
from helper_local import add_symbreg_args, wandb_login, n_params, get_project, create_symb_dir_if_exists
from symbolic_regression import load_nn_policy
def generate_data(agent, env, n):
Obs = env.reset()
M_in, M_out, A_in, A_out = agent.sample(Obs)
act = agent.forward(Obs)
act[::2] = np.random.randint(0, env.action_space.n, len(act))[::2]
while len(M_in) < n:
observation, rew, done, info = env.step(act)
m_in, m_out, a_in, a_out = agent.sample(observation)
act = agent.forward(observation)
act[::2] = np.random.randint(0, env.action_space.n, len(act))[::2]
M_in = np.append(M_in, m_in, axis=0)
M_out = np.append(M_out, m_out, axis=0)
A_in = np.append(A_in, a_in, axis=0)
A_out = np.append(A_out, a_out, axis=0)
return M_in, M_out, A_in, A_out
def generate_data_supervised(agent, env, n):
def predict(Obs):
with torch.no_grad():
Obs = torch.FloatTensor(Obs).to(agent.policy.device)
Logits, a_out, m_out = agent.policy.forward_fine_tune(Obs)
act = Logits.sample().detach().cpu().numpy()
return Logits.logits, act, Obs, a_out, m_out
Obs = env.reset()
Logits, act, Obs, A_out, M_out = predict(Obs)
act[::2] = np.random.randint(0, env.action_space.n, len(act))[::2]
while len(Logits) < n:
obs, rew, done, info = env.step(act)
logits, act, obs, a_out, m_out = predict(obs)
act[::2] = np.random.randint(0, env.action_space.n, len(act))[::2]
Logits = torch.cat([Logits, logits], axis=0)
Obs = torch.cat([Obs, obs], axis=0)
A_out = torch.cat([A_out, a_out], axis=0)
M_out = torch.cat([M_out, m_out], axis=0)
return Obs, Logits, A_out, M_out
def fine_tune_supervised(ns_agent, nn_agent, env, test_env, args, ftdir, a_coef=1., m_coef=1000.):
mean_rewards = trial_agent_mean_reward(ns_agent, env, "", n=args.n_tests, seed=args.seed, print_results=False, reset=False)
val_mean_rewards = trial_agent_mean_reward(ns_agent, test_env, "", n=args.n_tests,
seed=args.seed, print_results=False, reset=False)
nc = args.num_checkpoints
save_every = args.num_timesteps//nc
checkpoints = [(i+1)*save_every for i in range(nc)] + [args.num_timesteps - 2]
checkpoints.sort()
t = 0
i = 0
with torch.no_grad():
x, y, a_out, m_out = generate_data_supervised(nn_agent, env, args.batch_size)
y_hat, a_out_hat, m_out_hat = ns_agent.policy.graph.forward_fine_tune(x)
l_loss = nn.MSELoss()(y, y_hat)
a_loss = nn.MSELoss()(a_out, a_out_hat)
m_loss = nn.MSELoss()(m_out, m_out_hat)
loss = l_loss + a_loss * a_coef + m_loss * m_coef
wandb.log({
'timesteps': t,
'loss': loss.item(),
'l_loss': l_loss.item(),
'a_loss': a_loss.item(),
'm_loss': m_loss.item(),
'mean_reward': mean_rewards,
'val_mean_reward': val_mean_rewards
})
optimizer = torch.optim.Adam(ns_agent.policy.parameters(), lr=args.learning_rate)
for _ in range(args.num_timesteps // args.batch_size):
x, y, a_out, m_out = generate_data_supervised(nn_agent, env, args.batch_size)
# losses, a_losses, m_losses = [], [], []
for _ in range(args.epoch):
y_hat, a_out_hat, m_out_hat = ns_agent.policy.graph.forward_fine_tune(x)
l_loss = nn.MSELoss()(y, y_hat)
a_loss = nn.MSELoss()(a_out, a_out_hat)
m_loss = nn.MSELoss()(m_out, m_out_hat)
loss = l_loss + a_loss * a_coef + m_loss * m_coef
loss.backward()
optimizer.step()
optimizer.zero_grad()
# losses += [loss.item()]
# a_losses += [a_loss.item()]
# m_losses += [m_loss.item()]
t += len(x)
mean_rewards = trial_agent_mean_reward(ns_agent, env, "", n=args.n_tests,
seed=args.seed, print_results=False, reset=False)
val_mean_rewards = trial_agent_mean_reward(ns_agent, test_env, "", n=args.n_tests,
seed=args.seed, print_results=False, reset=False)
log = {
'timesteps': t,
'loss': loss.item(),
'l_loss': l_loss.item(),
'a_loss': a_loss.item(),
'm_loss': m_loss.item(),
'mean_reward': mean_rewards,
'val_mean_reward': val_mean_rewards
}
print(log)
wandb.log(log)
if t > checkpoints[i]:
print("Saving model.")
torch.save({'model_state_dict': ns_agent.policy.state_dict(),
'optimizer_state_dict': optimizer.state_dict()},
ftdir + '/model_' + str(t) + '.pth')
i += 1
p = Categorical(logits=y).probs.detach().cpu().numpy()
p_hat = Categorical(logits=y_hat).probs.detach().cpu().numpy()
plt.scatter(p[:, 0], p_hat[:, 0])
plt.show()
def run_graph_ppo_sr(args):
logdir = args.logdir
n_envs = args.n_envs
data_size = args.data_size
hp_override = {
"device": args.device,
"seed": args.seed,
# "epoch": args.epoch,
"learning_rate": args.learning_rate,
}
if args.load_pysr:
symbdir = args.symbdir
save_file = "symb_reg.csv"
else:
symbdir, save_file = create_symb_dir_if_exists(logdir)
cfg = vars(args)
np.save(os.path.join(symbdir, "config.npy"), cfg)
wandb_name = args.wandb_name
if args.wandb_name is None:
wandb_name = f"graph-ppo-sr{np.random.randint(1e5)}"
if args.use_wandb:
wandb_login()
name = wandb_name
wb_resume = "allow" # if args.model_file is None else "must"
project = get_project("cartpole", "symbreg")
cfg["symbdir"] = symbdir
if args.wandb_group is not None:
wandb.init(project=project, config=cfg, sync_tensorboard=True,
tags=args.wandb_tags, resume=wb_resume, name=name, group=args.wandb_group)
else:
wandb.init(project=project, config=cfg, sync_tensorboard=True,
tags=args.wandb_tags, resume=wb_resume, name=name)
policy, env, symbolic_agent_constructor, test_env = load_nn_policy(logdir, n_envs)
nn_agent = symbolic_agent_constructor(policy)
m_in, m_out, a_in, a_out = generate_data(nn_agent, env, int(data_size))
print("data generated")
if args.load_pysr:
msgdir = get_pysr_dir(symbdir, "msg")
actdir = get_pysr_dir(symbdir, "act")
msg_torch = load_pysr_to_torch(msgdir)
act_torch = load_pysr_to_torch(actdir)
else:
weights = None
msgdir, _ = create_symb_dir_if_exists(symbdir, "msg")
actdir, _ = create_symb_dir_if_exists(symbdir, "act")
print("\nMessenger:")
msg_model, _ = find_model(m_in, m_out, msgdir, save_file, weights, args)
print("\nActor:")
act_model, _ = find_model(a_in, a_out, actdir, save_file, weights, args)
msg_torch = NBatchPySRTorch(msg_model.pytorch())
act_torch = NBatchPySRTorch(act_model.pytorch())
try:
wandb.log({
"messenger": msg_model.get_best().equation,
"actor": act_model.get_best().equation,
})
except Exception as e:
pass
ns_agent = symbolic_agent_constructor(copy.deepcopy(policy), msg_torch, act_torch)
print(f"Neural Parameters: {n_params(nn_agent.policy)}")
print(f"Symbol Parameters: {n_params(ns_agent.policy)}")
# supervised learning:
_, env, _, test_env = load_nn_policy(logdir, n_envs=100)
ftdir = os.path.join(symbdir, "fine_tune")
if not os.path.exists(ftdir):
os.mkdir(ftdir)
fine_tune_supervised(ns_agent, nn_agent, env, test_env, args, ftdir)
wandb.finish()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = add_symbreg_args(parser)
args = parser.parse_args()
args.logdir = "logs/train/cartpole/pure-graph/2024-08-23__15-44-40__seed_6033"
args.iterations = 1
args.load_pysr = False
# args.symbdir = "logs/train/cartpole/pure-graph/2024-08-23__15-44-40__seed_6033/symbreg/2024-08-27__10-39-50"
args.symbdir = "logs/train/cartpole/pure-graph/2024-08-23__15-44-40__seed_6033/symbreg/2024-08-27__19-55-01"
args.model_selection = "accuracy"
args.maxsize = 50
args.binary_operators = ["+", "-", "*", "greater", "/"]
args.unary_operators = ["sin", "relu", "log", "exp", "sign", "sqrt", "square"]
args.device = "gpu" if torch.cuda.is_available() else "cpu"
args.learning_rate = 1e-3
args.ncycles_per_iteration = 4000
args.n_tests = 100
args.batch_size = 1000
args.num_checkpoints = 10
args.num_timesteps = int(1e7)
args.epoch = 100
run_graph_ppo_sr(args)