-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_keypoint_generation.py
90 lines (72 loc) · 2.94 KB
/
dataset_keypoint_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import mediapipe as mp
import csv
import copy
import itertools
import string
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
# functions
def calc_landmark_list(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_point = []
# Keypoint
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
# landmark_z = landmark.z
landmark_point.append([landmark_x, landmark_y])
return landmark_point
def pre_process_landmark(landmark_list):
temp_landmark_list = copy.deepcopy(landmark_list)
# Convert to relative coordinates
base_x, base_y = 0, 0
for index, landmark_point in enumerate(temp_landmark_list):
if index == 0:
base_x, base_y = landmark_point[0], landmark_point[1]
temp_landmark_list[index][0] = temp_landmark_list[index][0] - base_x
temp_landmark_list[index][1] = temp_landmark_list[index][1] - base_y
# Convert to a one-dimensional list
temp_landmark_list = list(
itertools.chain.from_iterable(temp_landmark_list))
# Normalization
max_value = max(list(map(abs, temp_landmark_list)))
def normalize_(n):
return n / max_value
temp_landmark_list = list(map(normalize_, temp_landmark_list))
return temp_landmark_list
def logging_csv(letter, landmark_list):
csv_path = 'keypoint.csv'
with open(csv_path, 'a', newline="") as f:
writer = csv.writer(f)
writer.writerow([letter, *landmark_list])
alphabet = list(string.ascii_uppercase)
alphabet += ['1','2','3','4','5','6','7','8','9']
# For static images:
address = 'images/data/'
IMAGE_FILES = []
for i in alphabet:
for j in range(1199):
IMAGE_FILES.append(address+i+'/'+str(j)+'.jpg')
with mp_hands.Hands(
static_image_mode=True,
max_num_hands=2,
min_detection_confidence=0.5) as hands:
for idx, file in enumerate(IMAGE_FILES):
# Read an image, flip it around y-axis for correct handedness output (see
# above).
image = cv2.flip(cv2.imread(file), 1)
# Convert the BGR image to RGB before processing.
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Print handedness and draw hand landmarks on the image.
# print('Handedness:', results.multi_handedness)
if not results.multi_hand_landmarks:
continue
image_height, image_width, _ = image.shape
annotated_image = image.copy()
for hand_landmarks, handedness in zip(results.multi_hand_landmarks,results.multi_handedness):
landmark_list = calc_landmark_list(annotated_image, hand_landmarks)
# Conversion to relative coordinates / normalized coordinates
pre_processed_landmark_list = pre_process_landmark(landmark_list)
logging_csv(file[12],pre_processed_landmark_list)