tech.ml.dataset Getting Started
+ gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Getting Started
What kind of data?
TMD processes tabular data, that is, data logically arranged in rows and columns. Similar to a spreadsheet (but handling much larger datasets) or a database (but much more convenient), TMD accelerates exploring, cleaning, and processing data tables. TMD inherits Clojure's data-orientation and flexible dynamic typing, without compromising on being functional; thereby extending the language's reach to new problems and domains.
> (ds/->dataset "lucy.csv")
diff --git a/docs/100-walkthrough.html b/docs/100-walkthrough.html
index 236ba7a0..f5f04bad 100644
--- a/docs/100-walkthrough.html
+++ b/docs/100-walkthrough.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Walkthrough
+ gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Walkthrough
tech.ml.dataset
(TMD) is a Clojure library designed to ease working with tabular data, similar to data.table
in R or Python's Pandas. TMD takes inspiration from the design of those tools, but does not aim to copy their functionality. Instead, TMD is a building block that increases Clojure's already considerable data processing power.
High Level Design
In TMD, a dataset is logically a map of column name to column data. Column data is typed (e.g., a column of 16 bit integers, or a column of 64 bit floating point numbers), similar to a database. Column names may be any Java object - keywords and strings are typical - and column values may be any Java primitive type, or type supported by tech.datatype
, datetimes, or arbitrary objects. Column data is stored contiguously in JVM arrays, and missing values are indicated with bitsets.
diff --git a/docs/200-quick-reference.html b/docs/200-quick-reference.html
index 1d9c6499..65896003 100644
--- a/docs/200-quick-reference.html
+++ b/docs/200-quick-reference.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Quick Reference
+ gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Quick Reference
This topic summarizes many of the most frequently used TMD functions, together with some quick notes about their use. Functions here are linked to further documentation, or their source. Note, unless a namespace is specified, each function is accessible via the tech.ml.dataset
namespace.
For a more thorough treatment, the API docs list every available function.
Table of Contents
diff --git a/docs/columns-readers-and-datatypes.html b/docs/columns-readers-and-datatypes.html
index 2bd9a95d..f473e859 100644
--- a/docs/columns-readers-and-datatypes.html
+++ b/docs/columns-readers-and-datatypes.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Columns, Readers, and Datatypes
+ gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Columns, Readers, and Datatypes
In tech.ml.dataset
, columns are composed of three things:
data, metadata, and the missing set.
The column's datatype is the datatype of the data
member. The data member can
diff --git a/docs/index.html b/docs/index.html
index 89fc0d9a..0fb2162a 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -1,10 +1,10 @@
-
TMD 7.040 TMD 7.040
A Clojure high performance data processing system.
Topics
- tech.ml.dataset Getting Started
- tech.ml.dataset Walkthrough
- tech.ml.dataset Quick Reference
- tech.ml.dataset Columns, Readers, and Datatypes
- tech.ml.dataset And nippy
- tech.ml.dataset Supported Datatypes
Namespaces
tech.v3.dataset
Column major dataset abstraction for efficiently manipulating
+ gtag('config', 'G-95TVFC1FEB');
TMD 7.041
A Clojure high performance data processing system.
Topics
- tech.ml.dataset Getting Started
- tech.ml.dataset Walkthrough
- tech.ml.dataset Quick Reference
- tech.ml.dataset Columns, Readers, and Datatypes
- tech.ml.dataset And nippy
- tech.ml.dataset Supported Datatypes
Namespaces
tech.v3.dataset
Column major dataset abstraction for efficiently manipulating
in memory datasets.
Public variables and functions:
- ->>dataset
- ->dataset
- add-column
- add-or-update-column
- all-descriptive-stats-names
- append-columns
- assoc-ds
- assoc-metadata
- bind->
- brief
- categorical->number
- categorical->one-hot
- column
- column->dataset
- column-cast
- column-count
- column-labeled-mapseq
- column-map
- column-map-m
- column-names
- columns
- columns-with-missing-seq
- columnwise-concat
- concat
- concat-copying
- concat-inplace
- data->dataset
- dataset->data
- dataset-name
- dataset-parser
- dataset?
- descriptive-stats
- drop-columns
- drop-missing
- drop-rows
- empty-column-names
- empty-dataset
- ensure-array-backed
- filter
- filter-column
- filter-dataset
- group-by
- group-by->indexes
- group-by-column
- group-by-column->indexes
- group-by-column-consumer
- has-column?
- head
- induction
- major-version
- mapseq-parser
- mapseq-reader
- mapseq-rf
- min-n-by-column
- missing
- new-column
- new-dataset
- order-column-names
- pmap-ds
- print-all
- rand-nth
- remove-column
- remove-columns
- remove-empty-columns
- remove-rows
- rename-columns
- replace-missing
- replace-missing-value
- reverse-rows
- row-at
- row-count
- row-map
- row-mapcat
- rows
- rowvec-at
- rowvecs
- sample
- select
- select-by-index
- select-columns
- select-columns-by-index
- select-missing
- select-rows
- set-dataset-name
- shape
- shuffle
- sort-by
- sort-by-column
- tail
- take-nth
- unique-by
- unique-by-column
- unordered-select
- unroll-column
- update
- update-column
- update-columns
- update-columnwise
- update-elemwise
- value-reader
- write!
tech.v3.dataset.categorical
Conversions of categorical values into numbers and back. Two forms of conversions
are supported, a straight value->integer map and one-hot encoding.
diff --git a/docs/nippy-serialization-rocks.html b/docs/nippy-serialization-rocks.html
index af98ca96..bc708a8f 100644
--- a/docs/nippy-serialization-rocks.html
+++ b/docs/nippy-serialization-rocks.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.ml.dataset And nippy
+ gtag('config', 'G-95TVFC1FEB');tech.ml.dataset And nippy
We are big fans of the nippy system for
freezing/thawing data. So we were pleasantly surprized with how well it performs
with dataset and how easy it was to extend the dataset object to support nippy
diff --git a/docs/supported-datatypes.html b/docs/supported-datatypes.html
index fa70d86a..30d62716 100644
--- a/docs/supported-datatypes.html
+++ b/docs/supported-datatypes.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.ml.dataset Supported Datatypes
+ gtag('config', 'G-95TVFC1FEB');tech.ml.dataset Supported Datatypes
tech.ml.dataset
supports a wide range of datatypes and has a system for expanding
the supported datatype set, aliasing new names to existing datatypes, and packing
object datatypes into primitive containers. Let's walk through each of these topics
diff --git a/docs/tech.v3.dataset.categorical.html b/docs/tech.v3.dataset.categorical.html
index a79f77e8..04ba7e1f 100644
--- a/docs/tech.v3.dataset.categorical.html
+++ b/docs/tech.v3.dataset.categorical.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.categorical
Conversions of categorical values into numbers and back. Two forms of conversions
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.categorical
Conversions of categorical values into numbers and back. Two forms of conversions
are supported, a straight value->integer map and one-hot encoding.
The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta
dataset->categorical-maps
(dataset->categorical-maps dataset)
Given a dataset, return a sequence of categorical map entries.
diff --git a/docs/tech.v3.dataset.clipboard.html b/docs/tech.v3.dataset.clipboard.html
index bf834df1..1a292471 100644
--- a/docs/tech.v3.dataset.clipboard.html
+++ b/docs/tech.v3.dataset.clipboard.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.clipboard
Optional namespace that copies a dataset to the clipboard for pasting into
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.clipboard
Optional namespace that copies a dataset to the clipboard for pasting into
applications such as excel or google sheets.
Reading defaults to 'csv' format while writing defaults to 'tsv' format.
clipboard
(clipboard)
Get the system clipboard.
diff --git a/docs/tech.v3.dataset.column-filters.html b/docs/tech.v3.dataset.column-filters.html
index f9d6d1fc..a53cf3c4 100644
--- a/docs/tech.v3.dataset.column-filters.html
+++ b/docs/tech.v3.dataset.column-filters.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.column-filters
Queries to select column subsets that have various properites such as all numeric
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.column-filters
Queries to select column subsets that have various properites such as all numeric
columns, all feature columns, or columns that have a specific datatype.
Further a few set operations (union, intersection, difference) are provided
to further manipulate subsets of columns.
diff --git a/docs/tech.v3.dataset.column.html b/docs/tech.v3.dataset.column.html
index 5ba94d1e..8cf4f4fa 100644
--- a/docs/tech.v3.dataset.column.html
+++ b/docs/tech.v3.dataset.column.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.column
clone
(clone col)
Clone this column not changing anything.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.column
column-map
(column-map map-fn res-dtype & args)
Map a scalar function across one or more columns.
This is the semi-missing-set aware version of tech.v3.datatype/emap. This function
is never lazy.
diff --git a/docs/tech.v3.dataset.html b/docs/tech.v3.dataset.html
index 9b0867da..001c0e4c 100644
--- a/docs/tech.v3.dataset.html
+++ b/docs/tech.v3.dataset.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset
Column major dataset abstraction for efficiently manipulating
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset
Column major dataset abstraction for efficiently manipulating
in memory datasets.
->>dataset
(->>dataset options dataset)
(->>dataset dataset)
Please see documentation of ->dataset. Options are the same.
->dataset
(->dataset dataset options)
(->dataset dataset)
Create a dataset from either csv/tsv or a sequence of maps.
diff --git a/docs/tech.v3.dataset.io.csv.html b/docs/tech.v3.dataset.io.csv.html
index a0429027..9da2ac72 100644
--- a/docs/tech.v3.dataset.io.csv.html
+++ b/docs/tech.v3.dataset.io.csv.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.io.csv
CSV parsing based on charred.api/read-csv.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.io.csv
CSV parsing based on charred.api/read-csv.
csv->dataset
(csv->dataset input & [options])
Read a csv into a dataset. Same options as tech.v3.dataset/->dataset.
csv->dataset-seq
(csv->dataset-seq input & [options])
Read a csv into a lazy sequence of datasets. All options of tech.v3.dataset/->dataset
are suppored aside from :n-initial-skip-rows
with an additional option of
diff --git a/docs/tech.v3.dataset.io.datetime.html b/docs/tech.v3.dataset.io.datetime.html
index 5e667087..7496811c 100644
--- a/docs/tech.v3.dataset.io.datetime.html
+++ b/docs/tech.v3.dataset.io.datetime.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.io.datetime
Helpful and well tested string->datetime pathways.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.io.datetime
Helpful and well tested string->datetime pathways.
datetime-formatter-or-str->parser-fn
(datetime-formatter-or-str->parser-fn datatype format-string-or-formatter)
Given a datatype and one of fn? string? DateTimeFormatter,
return a function that takes strings and returns datetime objects
diff --git a/docs/tech.v3.dataset.io.string-row-parser.html b/docs/tech.v3.dataset.io.string-row-parser.html
index 10308a1e..42e1132e 100644
--- a/docs/tech.v3.dataset.io.string-row-parser.html
+++ b/docs/tech.v3.dataset.io.string-row-parser.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.io.string-row-parser
Parsing functions based on raw data that is represented by a sequence
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.io.string-row-parser
Parsing functions based on raw data that is represented by a sequence
of string arrays.
partition-all-rows
(partition-all-rows {:keys [header-row?], :or {header-row? true}} n row-seq)
Given a sequence of rows, partition into an undefined number of partitions of at most
N rows but keep the header row as the first for all sequences.
diff --git a/docs/tech.v3.dataset.io.univocity.html b/docs/tech.v3.dataset.io.univocity.html
index 09481e7b..4797d473 100644
--- a/docs/tech.v3.dataset.io.univocity.html
+++ b/docs/tech.v3.dataset.io.univocity.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.io.univocity
Bindings to univocity. Transforms csv's, tsv's into sequences
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.io.univocity
Bindings to univocity. Transforms csv's, tsv's into sequences
of string arrays that are then passed into tech.v3.dataset.io.string-row-parser
methods.
create-csv-parser
(create-csv-parser {:keys [header-row? num-rows column-whitelist column-blacklist column-allowlist column-blocklist separator n-initial-skip-rows], :or {header-row? true}, :as options})
Create an implementation of univocity csv parser.
diff --git a/docs/tech.v3.dataset.join.html b/docs/tech.v3.dataset.join.html
index 9cabbd5f..50985ce4 100644
--- a/docs/tech.v3.dataset.join.html
+++ b/docs/tech.v3.dataset.join.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.join
implementation of join algorithms, both exact (hash-join) and near.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.join
implementation of join algorithms, both exact (hash-join) and near.
hash-join
(hash-join colname lhs rhs)
(hash-join colname lhs rhs {:keys [operation-space], :or {operation-space :int32}, :as options})
Join by column. For efficiency, lhs should be smaller than rhs.
colname - may be a single item or a tuple in which is destructures as:
(let lhs-colname rhs-colname colname] ...)
diff --git a/docs/tech.v3.dataset.math.html b/docs/tech.v3.dataset.math.html
index 9531dd04..00d3a487 100644
--- a/docs/tech.v3.dataset.math.html
+++ b/docs/tech.v3.dataset.math.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.math
Various mathematic transformations of datasets such as (inefficiently)
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.math
Various mathematic transformations of datasets such as (inefficiently)
building simple tables, pca, and normalizing columns to have mean of 0 and variance of 1.
More in-depth transformations are found at tech.v3.dataset.neanderthal
.
correlation-table
(correlation-table dataset & {:keys [correlation-type colname-seq]})
Return a map of colname->list of sorted tuple of colname, coefficient.
diff --git a/docs/tech.v3.dataset.metamorph.html b/docs/tech.v3.dataset.metamorph.html
index 34cd8371..3830b165 100644
--- a/docs/tech.v3.dataset.metamorph.html
+++ b/docs/tech.v3.dataset.metamorph.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.metamorph
This is an auto-generated api system - it scans the namespaces and changes the first
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.metamorph
This is an auto-generated api system - it scans the namespaces and changes the first
to be metamorph-compliant which means transforming an argument that is just a dataset into
an argument that is a metamorph context - a map of {:metamorph/data ds}
. They also return
their result as a metamorph context.
diff --git a/docs/tech.v3.dataset.modelling.html b/docs/tech.v3.dataset.modelling.html
index ec9545e0..7b22cdc5 100644
--- a/docs/tech.v3.dataset.modelling.html
+++ b/docs/tech.v3.dataset.modelling.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.modelling
Methods related specifically to machine learning such as setting the inference
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.modelling
Methods related specifically to machine learning such as setting the inference
target. This file integrates tightly with tech.v3.dataset.categorical which provides
categorical -> number and one-hot transformation pathways.
The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta
diff --git a/docs/tech.v3.dataset.print.html b/docs/tech.v3.dataset.print.html
index c091c2ff..710475cf 100644
--- a/docs/tech.v3.dataset.print.html
+++ b/docs/tech.v3.dataset.print.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.print
dataset->str
(dataset->str ds options)
(dataset->str ds)
Convert a dataset to a string. Prints a single line header and then calls
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.print
dataset->str
(dataset->str ds options)
(dataset->str ds)
Convert a dataset to a string. Prints a single line header and then calls
dataset-data->str.
For options documentation see dataset-data->str.
dataset-data->str
(dataset-data->str dataset)
(dataset-data->str dataset options)
Convert the dataset values to a string.
diff --git a/docs/tech.v3.dataset.reductions.apache-data-sketch.html b/docs/tech.v3.dataset.reductions.apache-data-sketch.html
index 9dddb2f8..e910678c 100644
--- a/docs/tech.v3.dataset.reductions.apache-data-sketch.html
+++ b/docs/tech.v3.dataset.reductions.apache-data-sketch.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.reductions.apache-data-sketch
Reduction reducers based on the apache data sketch family of algorithms.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.reductions.apache-data-sketch
Reduction reducers based on the apache data sketch family of algorithms.
diff --git a/docs/tech.v3.dataset.reductions.html b/docs/tech.v3.dataset.reductions.html
index 4f5c425f..5398da4f 100644
--- a/docs/tech.v3.dataset.reductions.html
+++ b/docs/tech.v3.dataset.reductions.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.reductions
Specific high performance reductions intended to be performend over a sequence
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.reductions
Specific high performance reductions intended to be performend over a sequence
of datasets. This allows aggregations to be done in situations where the dataset is
larger than what will fit in memory on a normal machine. Due to this fact, summation
is implemented using Kahan algorithm and various statistical methods are done in using
diff --git a/docs/tech.v3.dataset.rolling.html b/docs/tech.v3.dataset.rolling.html
index 456aceb6..a20cff84 100644
--- a/docs/tech.v3.dataset.rolling.html
+++ b/docs/tech.v3.dataset.rolling.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.rolling
Implement a generalized rolling window including support for time-based variable
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.rolling
Implement a generalized rolling window including support for time-based variable
width windows.
expanding
(expanding ds reducer-map)
Run a set of reducers across a dataset with an expanding set of windows. These
will produce a cumsum-type operation.
diff --git a/docs/tech.v3.dataset.set.html b/docs/tech.v3.dataset.set.html
index aeeb9f53..f50829be 100644
--- a/docs/tech.v3.dataset.set.html
+++ b/docs/tech.v3.dataset.set.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.set
Extensions to datasets to do per-row bag-semantics set/union and intersection.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.set
Extensions to datasets to do per-row bag-semantics set/union and intersection.
intersection
(intersection a)
(intersection a b)
(intersection a b & args)
Intersect two datasets producing a new dataset with the union of tuples.
Tuples repeated across all datasets repeated in final dataset at their minimum
diff --git a/docs/tech.v3.dataset.tensor.html b/docs/tech.v3.dataset.tensor.html
index 3639c6a5..b3393c9c 100644
--- a/docs/tech.v3.dataset.tensor.html
+++ b/docs/tech.v3.dataset.tensor.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.tensor
Conversion mechanisms from dataset to tensor and back.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.dataset.tensor
Conversion mechanisms from dataset to tensor and back.
dataset->tensor
(dataset->tensor dataset datatype)
(dataset->tensor dataset)
Convert a dataset to a tensor. Columns of the dataset will be converted
to columns of the tensor. Default datatype is :float64.
mean-center-columns!
(mean-center-columns! tens {:keys [nan-strategy means], :or {nan-strategy :remove}})
(mean-center-columns! tens)
in-place nan-aware mean-center the rows of the tensor. If tensor is writeable then this
diff --git a/docs/tech.v3.dataset.zip.html b/docs/tech.v3.dataset.zip.html
index 6cb7ebda..71882806 100644
--- a/docs/tech.v3.dataset.zip.html
+++ b/docs/tech.v3.dataset.zip.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.zip
Load zip data. Zip files with a single file entry can be loaded with ->dataset. When
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.dataset.zip
Load zip data. Zip files with a single file entry can be loaded with ->dataset. When
a zip file has multiple entries you have to call zipfile->dataset-seq.
dataset-seq->zipfile!
(dataset-seq->zipfile! output options ds-seq)
(dataset-seq->zipfile! output ds-seq)
Write a sequence of datasets to zipfiles. You can control the inner type with the
:file-type option which defaults to .tsv
diff --git a/docs/tech.v3.libs.arrow.html b/docs/tech.v3.libs.arrow.html
index bf4ebc3f..a8a57d79 100644
--- a/docs/tech.v3.libs.arrow.html
+++ b/docs/tech.v3.libs.arrow.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.libs.arrow
Support for reading/writing apache arrow datasets. Datasets may be memory mapped
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.arrow
Support for reading/writing apache arrow datasets. Datasets may be memory mapped
but default to being read via an input stream.
Supported datatypes:
diff --git a/docs/tech.v3.libs.clj-transit.html b/docs/tech.v3.libs.clj-transit.html
index 242faef7..7649eab5 100644
--- a/docs/tech.v3.libs.clj-transit.html
+++ b/docs/tech.v3.libs.clj-transit.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.libs.clj-transit
Transit bindings for the jvm version of tech.v3.dataset.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.libs.clj-transit
Transit bindings for the jvm version of tech.v3.dataset.
dataset->transit
(dataset->transit ds out & [format handlers])
Convert a dataset into a transit encoded writer. See source for details.
dataset->transit-str
(dataset->transit-str ds & [format handlers])
Convert a dataset to a transit-encoded json string. See dataset->transit.
java-time-read-handlers
Transit read handlers for java.time.LocalDate and java.time.Instant
diff --git a/docs/tech.v3.libs.fastexcel.html b/docs/tech.v3.libs.fastexcel.html
index dbe072b2..ab484a48 100644
--- a/docs/tech.v3.libs.fastexcel.html
+++ b/docs/tech.v3.libs.fastexcel.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.libs.fastexcel
Parse a dataset in xlsx format. This namespace auto-registers a handler for
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.fastexcel
Parse a dataset in xlsx format. This namespace auto-registers a handler for
the 'xlsx' file type so that when using ->dataset, xlsx
will automatically map to
(first (workbook->datasets))
.
Note that this namespace does not auto-register a handler for the xls
file type.
diff --git a/docs/tech.v3.libs.guava.cache.html b/docs/tech.v3.libs.guava.cache.html
index fde0b5d6..1b7e37cb 100644
--- a/docs/tech.v3.libs.guava.cache.html
+++ b/docs/tech.v3.libs.guava.cache.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.guava.cache
Use a google guava cache to memoize function results. Function must not return
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.guava.cache
Use a google guava cache to memoize function results. Function must not return
nil values. Exceptions propagate to caller.
memoize
(memoize f & {:keys [write-ttl-ms access-ttl-ms soft-values? weak-values? max-size record-stats?]})
Create a threadsafe, efficient memoized function using a guavacache backing store.
diff --git a/docs/tech.v3.libs.parquet.html b/docs/tech.v3.libs.parquet.html
index 5215b2cd..69df545e 100644
--- a/docs/tech.v3.libs.parquet.html
+++ b/docs/tech.v3.libs.parquet.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.libs.parquet
Support for reading Parquet files. You must require this namespace to
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.parquet
Support for reading Parquet files. You must require this namespace to
enable parquet read/write support.
Supported datatypes:
diff --git a/docs/tech.v3.libs.poi.html b/docs/tech.v3.libs.poi.html
index 3ef2b294..0675458e 100644
--- a/docs/tech.v3.libs.poi.html
+++ b/docs/tech.v3.libs.poi.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');tech.v3.libs.poi
Parse a dataset in xls or xlsx format. This namespace auto-registers a handler for
+ gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.poi
Parse a dataset in xls or xlsx format. This namespace auto-registers a handler for
the xls
file type so that when using ->dataset, xls
will automatically map to
(first (workbook->datasets))
.
Note that this namespace does not auto-register a handler for the xlsx
file
diff --git a/docs/tech.v3.libs.smile.data.html b/docs/tech.v3.libs.smile.data.html
index c38cf482..b7c11631 100644
--- a/docs/tech.v3.libs.smile.data.html
+++ b/docs/tech.v3.libs.smile.data.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.smile.data
Bindings to the smile DataFrame system.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.libs.smile.data
Bindings to the smile DataFrame system.
column->smile-column
(column->smile-column col)
Convert a dataset column to a smile vector.
dataset->smile-dataframe
(dataset->smile-dataframe ds)
Convert a dataset to a smile dataframe.
This operation may clone columns if they aren't backed by java heap arrays.
diff --git a/docs/tech.v3.libs.tribuo.html b/docs/tech.v3.libs.tribuo.html
index 6f5c0977..83182e4c 100644
--- a/docs/tech.v3.libs.tribuo.html
+++ b/docs/tech.v3.libs.tribuo.html
@@ -4,7 +4,7 @@
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
- gtag('config', 'G-95TVFC1FEB');
tech.v3.libs.tribuo
Bindings to make working with tribuo more straight forward when using datasets.
+ gtag('config', 'G-95TVFC1FEB');tech.v3.libs.tribuo
Bindings to make working with tribuo more straight forward when using datasets.
;; Classification
tech.v3.dataset.tribuo-test> (def ds (classification-example-ds 10000))