diff --git a/CHANGELOG.md b/CHANGELOG.md index 97ec76a4..e938df74 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,7 @@ # Changelog +# 7.041 + * Slightly faster promotional object parser. + # 7.040 * Fix for [issue 450](https://github.com/techascent/tech.ml.dataset/issues/450) - emapped columns could reduce as a different type than declared in the emap declaration. diff --git a/deps.edn b/deps.edn index fd1b1f45..8bf50f31 100644 --- a/deps.edn +++ b/deps.edn @@ -14,7 +14,7 @@ :exec-fn codox.main/-main :exec-args {:group-id "techascent" :artifact-id "tech.ml.dataset" - :version "7.040" + :version "7.041" :name "TMD" :description "A Clojure high performance data processing system" :metadata {:doc/format :markdown} diff --git a/docs/000-getting-started.html b/docs/000-getting-started.html index 7f2f9a6b..77fc2cd3 100644 --- a/docs/000-getting-started.html +++ b/docs/000-getting-started.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Getting Started

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Getting Started

What kind of data?

TMD processes tabular data, that is, data logically arranged in rows and columns. Similar to a spreadsheet (but handling much larger datasets) or a database (but much more convenient), TMD accelerates exploring, cleaning, and processing data tables. TMD inherits Clojure's data-orientation and flexible dynamic typing, without compromising on being functional; thereby extending the language's reach to new problems and domains.

> (ds/->dataset "lucy.csv")
diff --git a/docs/100-walkthrough.html b/docs/100-walkthrough.html
index 236ba7a0..f5f04bad 100644
--- a/docs/100-walkthrough.html
+++ b/docs/100-walkthrough.html
@@ -4,7 +4,7 @@
   function gtag(){dataLayer.push(arguments);}
   gtag('js', new Date());
 
-  gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Walkthrough

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Walkthrough

tech.ml.dataset (TMD) is a Clojure library designed to ease working with tabular data, similar to data.table in R or Python's Pandas. TMD takes inspiration from the design of those tools, but does not aim to copy their functionality. Instead, TMD is a building block that increases Clojure's already considerable data processing power.

High Level Design

In TMD, a dataset is logically a map of column name to column data. Column data is typed (e.g., a column of 16 bit integers, or a column of 64 bit floating point numbers), similar to a database. Column names may be any Java object - keywords and strings are typical - and column values may be any Java primitive type, or type supported by tech.datatype, datetimes, or arbitrary objects. Column data is stored contiguously in JVM arrays, and missing values are indicated with bitsets.

diff --git a/docs/200-quick-reference.html b/docs/200-quick-reference.html index 1d9c6499..65896003 100644 --- a/docs/200-quick-reference.html +++ b/docs/200-quick-reference.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Quick Reference

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Quick Reference

This topic summarizes many of the most frequently used TMD functions, together with some quick notes about their use. Functions here are linked to further documentation, or their source. Note, unless a namespace is specified, each function is accessible via the tech.ml.dataset namespace.

For a more thorough treatment, the API docs list every available function.

Table of Contents

diff --git a/docs/columns-readers-and-datatypes.html b/docs/columns-readers-and-datatypes.html index 2bd9a95d..f473e859 100644 --- a/docs/columns-readers-and-datatypes.html +++ b/docs/columns-readers-and-datatypes.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Columns, Readers, and Datatypes

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Columns, Readers, and Datatypes

In tech.ml.dataset, columns are composed of three things: data, metadata, and the missing set. The column's datatype is the datatype of the data member. The data member can diff --git a/docs/index.html b/docs/index.html index 89fc0d9a..0fb2162a 100644 --- a/docs/index.html +++ b/docs/index.html @@ -1,10 +1,10 @@ -TMD 7.040

TMD 7.040

A Clojure high performance data processing system.

Topics

Namespaces

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating + gtag('config', 'G-95TVFC1FEB');

TMD 7.041

A Clojure high performance data processing system.

Topics

Namespaces

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions are supported, a straight value->integer map and one-hot encoding.

diff --git a/docs/nippy-serialization-rocks.html b/docs/nippy-serialization-rocks.html index af98ca96..bc708a8f 100644 --- a/docs/nippy-serialization-rocks.html +++ b/docs/nippy-serialization-rocks.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset And nippy

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset And nippy

We are big fans of the nippy system for freezing/thawing data. So we were pleasantly surprized with how well it performs with dataset and how easy it was to extend the dataset object to support nippy diff --git a/docs/supported-datatypes.html b/docs/supported-datatypes.html index fa70d86a..30d62716 100644 --- a/docs/supported-datatypes.html +++ b/docs/supported-datatypes.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Supported Datatypes

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Supported Datatypes

tech.ml.dataset supports a wide range of datatypes and has a system for expanding the supported datatype set, aliasing new names to existing datatypes, and packing object datatypes into primitive containers. Let's walk through each of these topics diff --git a/docs/tech.v3.dataset.categorical.html b/docs/tech.v3.dataset.categorical.html index a79f77e8..04ba7e1f 100644 --- a/docs/tech.v3.dataset.categorical.html +++ b/docs/tech.v3.dataset.categorical.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions are supported, a straight value->integer map and one-hot encoding.

The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta

dataset->categorical-maps

(dataset->categorical-maps dataset)

Given a dataset, return a sequence of categorical map entries.

diff --git a/docs/tech.v3.dataset.clipboard.html b/docs/tech.v3.dataset.clipboard.html index bf834df1..1a292471 100644 --- a/docs/tech.v3.dataset.clipboard.html +++ b/docs/tech.v3.dataset.clipboard.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.clipboard

Optional namespace that copies a dataset to the clipboard for pasting into + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.clipboard

Optional namespace that copies a dataset to the clipboard for pasting into applications such as excel or google sheets.

Reading defaults to 'csv' format while writing defaults to 'tsv' format.

clipboard

(clipboard)

Get the system clipboard.

diff --git a/docs/tech.v3.dataset.column-filters.html b/docs/tech.v3.dataset.column-filters.html index f9d6d1fc..a53cf3c4 100644 --- a/docs/tech.v3.dataset.column-filters.html +++ b/docs/tech.v3.dataset.column-filters.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column-filters

Queries to select column subsets that have various properites such as all numeric + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column-filters

Queries to select column subsets that have various properites such as all numeric columns, all feature columns, or columns that have a specific datatype.

Further a few set operations (union, intersection, difference) are provided to further manipulate subsets of columns.

diff --git a/docs/tech.v3.dataset.column.html b/docs/tech.v3.dataset.column.html index 5ba94d1e..8cf4f4fa 100644 --- a/docs/tech.v3.dataset.column.html +++ b/docs/tech.v3.dataset.column.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column

clone

(clone col)

Clone this column not changing anything.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column

clone

(clone col)

Clone this column not changing anything.

column-map

(column-map map-fn res-dtype & args)

Map a scalar function across one or more columns. This is the semi-missing-set aware version of tech.v3.datatype/emap. This function is never lazy.

diff --git a/docs/tech.v3.dataset.html b/docs/tech.v3.dataset.html index 9b0867da..001c0e4c 100644 --- a/docs/tech.v3.dataset.html +++ b/docs/tech.v3.dataset.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating in memory datasets.

->>dataset

(->>dataset options dataset)(->>dataset dataset)

Please see documentation of ->dataset. Options are the same.

->dataset

(->dataset dataset options)(->dataset dataset)

Create a dataset from either csv/tsv or a sequence of maps.

diff --git a/docs/tech.v3.dataset.io.csv.html b/docs/tech.v3.dataset.io.csv.html index a0429027..9da2ac72 100644 --- a/docs/tech.v3.dataset.io.csv.html +++ b/docs/tech.v3.dataset.io.csv.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.csv

CSV parsing based on charred.api/read-csv.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.csv

CSV parsing based on charred.api/read-csv.

csv->dataset

(csv->dataset input & [options])

Read a csv into a dataset. Same options as tech.v3.dataset/->dataset.

csv->dataset-seq

(csv->dataset-seq input & [options])

Read a csv into a lazy sequence of datasets. All options of tech.v3.dataset/->dataset are suppored aside from :n-initial-skip-rows with an additional option of diff --git a/docs/tech.v3.dataset.io.datetime.html b/docs/tech.v3.dataset.io.datetime.html index 5e667087..7496811c 100644 --- a/docs/tech.v3.dataset.io.datetime.html +++ b/docs/tech.v3.dataset.io.datetime.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.datetime

Helpful and well tested string->datetime pathways.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.datetime

Helpful and well tested string->datetime pathways.

datatype->general-parse-fn-map

Map of datetime datatype to generalized parse fn.

datetime-formatter-or-str->parser-fn

(datetime-formatter-or-str->parser-fn datatype format-string-or-formatter)

Given a datatype and one of fn? string? DateTimeFormatter, return a function that takes strings and returns datetime objects diff --git a/docs/tech.v3.dataset.io.string-row-parser.html b/docs/tech.v3.dataset.io.string-row-parser.html index 10308a1e..42e1132e 100644 --- a/docs/tech.v3.dataset.io.string-row-parser.html +++ b/docs/tech.v3.dataset.io.string-row-parser.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.string-row-parser

Parsing functions based on raw data that is represented by a sequence + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.string-row-parser

Parsing functions based on raw data that is represented by a sequence of string arrays.

partition-all-rows

(partition-all-rows {:keys [header-row?], :or {header-row? true}} n row-seq)

Given a sequence of rows, partition into an undefined number of partitions of at most N rows but keep the header row as the first for all sequences.

diff --git a/docs/tech.v3.dataset.io.univocity.html b/docs/tech.v3.dataset.io.univocity.html index 09481e7b..4797d473 100644 --- a/docs/tech.v3.dataset.io.univocity.html +++ b/docs/tech.v3.dataset.io.univocity.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.univocity

Bindings to univocity. Transforms csv's, tsv's into sequences + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.univocity

Bindings to univocity. Transforms csv's, tsv's into sequences of string arrays that are then passed into tech.v3.dataset.io.string-row-parser methods.

create-csv-parser

(create-csv-parser {:keys [header-row? num-rows column-whitelist column-blacklist column-allowlist column-blocklist separator n-initial-skip-rows], :or {header-row? true}, :as options})

Create an implementation of univocity csv parser.

diff --git a/docs/tech.v3.dataset.join.html b/docs/tech.v3.dataset.join.html index 9cabbd5f..50985ce4 100644 --- a/docs/tech.v3.dataset.join.html +++ b/docs/tech.v3.dataset.join.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.join

implementation of join algorithms, both exact (hash-join) and near.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.join

implementation of join algorithms, both exact (hash-join) and near.

hash-join

(hash-join colname lhs rhs)(hash-join colname lhs rhs {:keys [operation-space], :or {operation-space :int32}, :as options})

Join by column. For efficiency, lhs should be smaller than rhs. colname - may be a single item or a tuple in which is destructures as: (let lhs-colname rhs-colname colname] ...) diff --git a/docs/tech.v3.dataset.math.html b/docs/tech.v3.dataset.math.html index 9531dd04..00d3a487 100644 --- a/docs/tech.v3.dataset.math.html +++ b/docs/tech.v3.dataset.math.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.math

Various mathematic transformations of datasets such as (inefficiently) + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.math

Various mathematic transformations of datasets such as (inefficiently) building simple tables, pca, and normalizing columns to have mean of 0 and variance of 1. More in-depth transformations are found at tech.v3.dataset.neanderthal.

correlation-table

(correlation-table dataset & {:keys [correlation-type colname-seq]})

Return a map of colname->list of sorted tuple of colname, coefficient. diff --git a/docs/tech.v3.dataset.metamorph.html b/docs/tech.v3.dataset.metamorph.html index 34cd8371..3830b165 100644 --- a/docs/tech.v3.dataset.metamorph.html +++ b/docs/tech.v3.dataset.metamorph.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.metamorph

This is an auto-generated api system - it scans the namespaces and changes the first + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.metamorph

This is an auto-generated api system - it scans the namespaces and changes the first to be metamorph-compliant which means transforming an argument that is just a dataset into an argument that is a metamorph context - a map of {:metamorph/data ds}. They also return their result as a metamorph context.

diff --git a/docs/tech.v3.dataset.modelling.html b/docs/tech.v3.dataset.modelling.html index ec9545e0..7b22cdc5 100644 --- a/docs/tech.v3.dataset.modelling.html +++ b/docs/tech.v3.dataset.modelling.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.modelling

Methods related specifically to machine learning such as setting the inference + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.modelling

Methods related specifically to machine learning such as setting the inference target. This file integrates tightly with tech.v3.dataset.categorical which provides categorical -> number and one-hot transformation pathways.

The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta

diff --git a/docs/tech.v3.dataset.print.html b/docs/tech.v3.dataset.print.html index c091c2ff..710475cf 100644 --- a/docs/tech.v3.dataset.print.html +++ b/docs/tech.v3.dataset.print.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.print

dataset->str

(dataset->str ds options)(dataset->str ds)

Convert a dataset to a string. Prints a single line header and then calls + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.print

dataset->str

(dataset->str ds options)(dataset->str ds)

Convert a dataset to a string. Prints a single line header and then calls dataset-data->str.

For options documentation see dataset-data->str.

dataset-data->str

(dataset-data->str dataset)(dataset-data->str dataset options)

Convert the dataset values to a string.

diff --git a/docs/tech.v3.dataset.reductions.apache-data-sketch.html b/docs/tech.v3.dataset.reductions.apache-data-sketch.html index 9dddb2f8..e910678c 100644 --- a/docs/tech.v3.dataset.reductions.apache-data-sketch.html +++ b/docs/tech.v3.dataset.reductions.apache-data-sketch.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions.apache-data-sketch

Reduction reducers based on the apache data sketch family of algorithms.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions.apache-data-sketch

Reduction reducers based on the apache data sketch family of algorithms.

diff --git a/docs/tech.v3.dataset.reductions.html b/docs/tech.v3.dataset.reductions.html index 4f5c425f..5398da4f 100644 --- a/docs/tech.v3.dataset.reductions.html +++ b/docs/tech.v3.dataset.reductions.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions

Specific high performance reductions intended to be performend over a sequence + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions

Specific high performance reductions intended to be performend over a sequence of datasets. This allows aggregations to be done in situations where the dataset is larger than what will fit in memory on a normal machine. Due to this fact, summation is implemented using Kahan algorithm and various statistical methods are done in using diff --git a/docs/tech.v3.dataset.rolling.html b/docs/tech.v3.dataset.rolling.html index 456aceb6..a20cff84 100644 --- a/docs/tech.v3.dataset.rolling.html +++ b/docs/tech.v3.dataset.rolling.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.rolling

Implement a generalized rolling window including support for time-based variable + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.rolling

Implement a generalized rolling window including support for time-based variable width windows.

expanding

(expanding ds reducer-map)

Run a set of reducers across a dataset with an expanding set of windows. These will produce a cumsum-type operation.

diff --git a/docs/tech.v3.dataset.set.html b/docs/tech.v3.dataset.set.html index aeeb9f53..f50829be 100644 --- a/docs/tech.v3.dataset.set.html +++ b/docs/tech.v3.dataset.set.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.set

Extensions to datasets to do per-row bag-semantics set/union and intersection.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.set

Extensions to datasets to do per-row bag-semantics set/union and intersection.

difference

(difference a)(difference a b)

Remove tuples from a that also appear in b.

intersection

(intersection a)(intersection a b)(intersection a b & args)

Intersect two datasets producing a new dataset with the union of tuples. Tuples repeated across all datasets repeated in final dataset at their minimum diff --git a/docs/tech.v3.dataset.tensor.html b/docs/tech.v3.dataset.tensor.html index 3639c6a5..b3393c9c 100644 --- a/docs/tech.v3.dataset.tensor.html +++ b/docs/tech.v3.dataset.tensor.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.tensor

Conversion mechanisms from dataset to tensor and back.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.tensor

Conversion mechanisms from dataset to tensor and back.

dataset->tensor

(dataset->tensor dataset datatype)(dataset->tensor dataset)

Convert a dataset to a tensor. Columns of the dataset will be converted to columns of the tensor. Default datatype is :float64.

mean-center-columns!

(mean-center-columns! tens {:keys [nan-strategy means], :or {nan-strategy :remove}})(mean-center-columns! tens)

in-place nan-aware mean-center the rows of the tensor. If tensor is writeable then this diff --git a/docs/tech.v3.dataset.zip.html b/docs/tech.v3.dataset.zip.html index 6cb7ebda..71882806 100644 --- a/docs/tech.v3.dataset.zip.html +++ b/docs/tech.v3.dataset.zip.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.zip

Load zip data. Zip files with a single file entry can be loaded with ->dataset. When + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.zip

Load zip data. Zip files with a single file entry can be loaded with ->dataset. When a zip file has multiple entries you have to call zipfile->dataset-seq.

dataset-seq->zipfile!

(dataset-seq->zipfile! output options ds-seq)(dataset-seq->zipfile! output ds-seq)

Write a sequence of datasets to zipfiles. You can control the inner type with the :file-type option which defaults to .tsv

diff --git a/docs/tech.v3.libs.arrow.html b/docs/tech.v3.libs.arrow.html index bf4ebc3f..a8a57d79 100644 --- a/docs/tech.v3.libs.arrow.html +++ b/docs/tech.v3.libs.arrow.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.libs.arrow

Support for reading/writing apache arrow datasets. Datasets may be memory mapped + gtag('config', 'G-95TVFC1FEB');

tech.v3.libs.arrow

Support for reading/writing apache arrow datasets. Datasets may be memory mapped but default to being read via an input stream.

Supported datatypes: