From 7e44d3556b77ddf83ee015a7378501d9e13425cc Mon Sep 17 00:00:00 2001 From: Chris Nuernberger Date: Sun, 2 Feb 2025 16:13:31 -0700 Subject: [PATCH] Release 7.039 --- CHANGELOG.md | 3 +++ deps.edn | 4 ++-- docs/000-getting-started.html | 2 +- docs/100-walkthrough.html | 2 +- docs/200-quick-reference.html | 2 +- docs/columns-readers-and-datatypes.html | 2 +- docs/index.html | 4 ++-- docs/nippy-serialization-rocks.html | 2 +- docs/supported-datatypes.html | 2 +- docs/tech.v3.dataset.categorical.html | 2 +- docs/tech.v3.dataset.clipboard.html | 2 +- docs/tech.v3.dataset.column-filters.html | 2 +- docs/tech.v3.dataset.column.html | 2 +- docs/tech.v3.dataset.html | 2 +- docs/tech.v3.dataset.io.csv.html | 2 +- docs/tech.v3.dataset.io.datetime.html | 2 +- docs/tech.v3.dataset.io.string-row-parser.html | 2 +- docs/tech.v3.dataset.io.univocity.html | 2 +- docs/tech.v3.dataset.join.html | 2 +- docs/tech.v3.dataset.math.html | 2 +- docs/tech.v3.dataset.metamorph.html | 2 +- docs/tech.v3.dataset.modelling.html | 2 +- docs/tech.v3.dataset.print.html | 2 +- docs/tech.v3.dataset.reductions.apache-data-sketch.html | 2 +- docs/tech.v3.dataset.reductions.html | 2 +- docs/tech.v3.dataset.rolling.html | 2 +- docs/tech.v3.dataset.set.html | 2 +- docs/tech.v3.dataset.tensor.html | 2 +- docs/tech.v3.dataset.zip.html | 2 +- docs/tech.v3.libs.arrow.html | 2 +- docs/tech.v3.libs.clj-transit.html | 2 +- docs/tech.v3.libs.fastexcel.html | 2 +- docs/tech.v3.libs.guava.cache.html | 2 +- docs/tech.v3.libs.parquet.html | 2 +- docs/tech.v3.libs.poi.html | 2 +- docs/tech.v3.libs.smile.data.html | 2 +- docs/tech.v3.libs.tribuo.html | 2 +- 37 files changed, 41 insertions(+), 38 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index e3d9df01..c4ac47a1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,7 @@ # Changelog +# 7.039 + * Fix error in dtype-next/native-buffer/native-buffer->byte-array + # 7.038 * Upgrade to hamf 2.020. * Fix for [issue 447](https://github.com/techascent/tech.ml.dataset/issues/447) - filter column by keyword. diff --git a/deps.edn b/deps.edn index ba481438..ffd77826 100644 --- a/deps.edn +++ b/deps.edn @@ -1,6 +1,6 @@ {:paths ["src" "resources" "target/classes"] :deps {;;org.clojure/clojure {:mvn/version "1.11.1"} - cnuernber/dtype-next {:mvn/version "10.127"} + cnuernber/dtype-next {:mvn/version "10.128"} techascent/tech.io {:mvn/version "4.31" :exclusions [org.apache.commons/commons-compress]} org.apache.datasketches/datasketches-java {:mvn/version "4.2.0"} @@ -14,7 +14,7 @@ :exec-fn codox.main/-main :exec-args {:group-id "techascent" :artifact-id "tech.ml.dataset" - :version "7.038" + :version "7.039" :name "TMD" :description "A Clojure high performance data processing system" :metadata {:doc/format :markdown} diff --git a/docs/000-getting-started.html b/docs/000-getting-started.html index 5ef90131..b4f59e83 100644 --- a/docs/000-getting-started.html +++ b/docs/000-getting-started.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Getting Started

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Getting Started

What kind of data?

TMD processes tabular data, that is, data logically arranged in rows and columns. Similar to a spreadsheet (but handling much larger datasets) or a database (but much more convenient), TMD accelerates exploring, cleaning, and processing data tables. TMD inherits Clojure's data-orientation and flexible dynamic typing, without compromising on being functional; thereby extending the language's reach to new problems and domains.

> (ds/->dataset "lucy.csv")
diff --git a/docs/100-walkthrough.html b/docs/100-walkthrough.html
index b3844f94..22998762 100644
--- a/docs/100-walkthrough.html
+++ b/docs/100-walkthrough.html
@@ -4,7 +4,7 @@
   function gtag(){dataLayer.push(arguments);}
   gtag('js', new Date());
 
-  gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Walkthrough

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Walkthrough

tech.ml.dataset (TMD) is a Clojure library designed to ease working with tabular data, similar to data.table in R or Python's Pandas. TMD takes inspiration from the design of those tools, but does not aim to copy their functionality. Instead, TMD is a building block that increases Clojure's already considerable data processing power.

High Level Design

In TMD, a dataset is logically a map of column name to column data. Column data is typed (e.g., a column of 16 bit integers, or a column of 64 bit floating point numbers), similar to a database. Column names may be any Java object - keywords and strings are typical - and column values may be any Java primitive type, or type supported by tech.datatype, datetimes, or arbitrary objects. Column data is stored contiguously in JVM arrays, and missing values are indicated with bitsets.

diff --git a/docs/200-quick-reference.html b/docs/200-quick-reference.html index e2fee0cd..ebc63765 100644 --- a/docs/200-quick-reference.html +++ b/docs/200-quick-reference.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Quick Reference

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Quick Reference

This topic summarizes many of the most frequently used TMD functions, together with some quick notes about their use. Functions here are linked to further documentation, or their source. Note, unless a namespace is specified, each function is accessible via the tech.ml.dataset namespace.

For a more thorough treatment, the API docs list every available function.

Table of Contents

diff --git a/docs/columns-readers-and-datatypes.html b/docs/columns-readers-and-datatypes.html index e0fcf5e3..9dadee71 100644 --- a/docs/columns-readers-and-datatypes.html +++ b/docs/columns-readers-and-datatypes.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Columns, Readers, and Datatypes

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Columns, Readers, and Datatypes

In tech.ml.dataset, columns are composed of three things: data, metadata, and the missing set. The column's datatype is the datatype of the data member. The data member can diff --git a/docs/index.html b/docs/index.html index 3c3724b5..2dd25641 100644 --- a/docs/index.html +++ b/docs/index.html @@ -1,10 +1,10 @@ -TMD 7.038

TMD 7.038

A Clojure high performance data processing system.

Topics

Namespaces

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating + gtag('config', 'G-95TVFC1FEB');

TMD 7.039

A Clojure high performance data processing system.

Topics

Namespaces

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions are supported, a straight value->integer map and one-hot encoding.

diff --git a/docs/nippy-serialization-rocks.html b/docs/nippy-serialization-rocks.html index 1bce1f09..d3007c80 100644 --- a/docs/nippy-serialization-rocks.html +++ b/docs/nippy-serialization-rocks.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset And nippy

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset And nippy

We are big fans of the nippy system for freezing/thawing data. So we were pleasantly surprized with how well it performs with dataset and how easy it was to extend the dataset object to support nippy diff --git a/docs/supported-datatypes.html b/docs/supported-datatypes.html index 1e34dd5a..27a57536 100644 --- a/docs/supported-datatypes.html +++ b/docs/supported-datatypes.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Supported Datatypes

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Supported Datatypes

tech.ml.dataset supports a wide range of datatypes and has a system for expanding the supported datatype set, aliasing new names to existing datatypes, and packing object datatypes into primitive containers. Let's walk through each of these topics diff --git a/docs/tech.v3.dataset.categorical.html b/docs/tech.v3.dataset.categorical.html index 1e0edfea..1fab17d0 100644 --- a/docs/tech.v3.dataset.categorical.html +++ b/docs/tech.v3.dataset.categorical.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions are supported, a straight value->integer map and one-hot encoding.

The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta

dataset->categorical-maps

(dataset->categorical-maps dataset)

Given a dataset, return a sequence of categorical map entries.

diff --git a/docs/tech.v3.dataset.clipboard.html b/docs/tech.v3.dataset.clipboard.html index b4b7cd0c..94a8021b 100644 --- a/docs/tech.v3.dataset.clipboard.html +++ b/docs/tech.v3.dataset.clipboard.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.clipboard

Optional namespace that copies a dataset to the clipboard for pasting into + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.clipboard

Optional namespace that copies a dataset to the clipboard for pasting into applications such as excel or google sheets.

Reading defaults to 'csv' format while writing defaults to 'tsv' format.

clipboard

(clipboard)

Get the system clipboard.

diff --git a/docs/tech.v3.dataset.column-filters.html b/docs/tech.v3.dataset.column-filters.html index e7e482ce..2ee3ec90 100644 --- a/docs/tech.v3.dataset.column-filters.html +++ b/docs/tech.v3.dataset.column-filters.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column-filters

Queries to select column subsets that have various properites such as all numeric + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column-filters

Queries to select column subsets that have various properites such as all numeric columns, all feature columns, or columns that have a specific datatype.

Further a few set operations (union, intersection, difference) are provided to further manipulate subsets of columns.

diff --git a/docs/tech.v3.dataset.column.html b/docs/tech.v3.dataset.column.html index 5c43afd7..55b32f5d 100644 --- a/docs/tech.v3.dataset.column.html +++ b/docs/tech.v3.dataset.column.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column

clone

(clone col)

Clone this column not changing anything.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column

clone

(clone col)

Clone this column not changing anything.

column-map

(column-map map-fn res-dtype & args)

Map a scalar function across one or more columns. This is the semi-missing-set aware version of tech.v3.datatype/emap. This function is never lazy.

diff --git a/docs/tech.v3.dataset.html b/docs/tech.v3.dataset.html index 0f08f9e0..fb001df8 100644 --- a/docs/tech.v3.dataset.html +++ b/docs/tech.v3.dataset.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating in memory datasets.

->>dataset

(->>dataset options dataset)(->>dataset dataset)

Please see documentation of ->dataset. Options are the same.

->dataset

(->dataset dataset options)(->dataset dataset)

Create a dataset from either csv/tsv or a sequence of maps.

diff --git a/docs/tech.v3.dataset.io.csv.html b/docs/tech.v3.dataset.io.csv.html index 359c84d3..f0ce27e4 100644 --- a/docs/tech.v3.dataset.io.csv.html +++ b/docs/tech.v3.dataset.io.csv.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.csv

CSV parsing based on charred.api/read-csv.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.csv

CSV parsing based on charred.api/read-csv.

csv->dataset

(csv->dataset input & [options])

Read a csv into a dataset. Same options as tech.v3.dataset/->dataset.

csv->dataset-seq

(csv->dataset-seq input & [options])

Read a csv into a lazy sequence of datasets. All options of tech.v3.dataset/->dataset are suppored aside from :n-initial-skip-rows with an additional option of diff --git a/docs/tech.v3.dataset.io.datetime.html b/docs/tech.v3.dataset.io.datetime.html index 71378ff1..7cbd11df 100644 --- a/docs/tech.v3.dataset.io.datetime.html +++ b/docs/tech.v3.dataset.io.datetime.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.datetime

Helpful and well tested string->datetime pathways.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.datetime

Helpful and well tested string->datetime pathways.

datatype->general-parse-fn-map

Map of datetime datatype to generalized parse fn.

datetime-formatter-or-str->parser-fn

(datetime-formatter-or-str->parser-fn datatype format-string-or-formatter)

Given a datatype and one of fn? string? DateTimeFormatter, return a function that takes strings and returns datetime objects diff --git a/docs/tech.v3.dataset.io.string-row-parser.html b/docs/tech.v3.dataset.io.string-row-parser.html index 4e629226..7bcc5a86 100644 --- a/docs/tech.v3.dataset.io.string-row-parser.html +++ b/docs/tech.v3.dataset.io.string-row-parser.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.string-row-parser

Parsing functions based on raw data that is represented by a sequence + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.string-row-parser

Parsing functions based on raw data that is represented by a sequence of string arrays.

partition-all-rows

(partition-all-rows {:keys [header-row?], :or {header-row? true}} n row-seq)

Given a sequence of rows, partition into an undefined number of partitions of at most N rows but keep the header row as the first for all sequences.

diff --git a/docs/tech.v3.dataset.io.univocity.html b/docs/tech.v3.dataset.io.univocity.html index 056f84b6..6ea08de3 100644 --- a/docs/tech.v3.dataset.io.univocity.html +++ b/docs/tech.v3.dataset.io.univocity.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.univocity

Bindings to univocity. Transforms csv's, tsv's into sequences + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.univocity

Bindings to univocity. Transforms csv's, tsv's into sequences of string arrays that are then passed into tech.v3.dataset.io.string-row-parser methods.

create-csv-parser

(create-csv-parser {:keys [header-row? num-rows column-whitelist column-blacklist column-allowlist column-blocklist separator n-initial-skip-rows], :or {header-row? true}, :as options})

Create an implementation of univocity csv parser.

diff --git a/docs/tech.v3.dataset.join.html b/docs/tech.v3.dataset.join.html index c3807116..c31ca6de 100644 --- a/docs/tech.v3.dataset.join.html +++ b/docs/tech.v3.dataset.join.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.join

implementation of join algorithms, both exact (hash-join) and near.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.join

implementation of join algorithms, both exact (hash-join) and near.

hash-join

(hash-join colname lhs rhs)(hash-join colname lhs rhs {:keys [operation-space], :or {operation-space :int32}, :as options})

Join by column. For efficiency, lhs should be smaller than rhs. colname - may be a single item or a tuple in which is destructures as: (let lhs-colname rhs-colname colname] ...) diff --git a/docs/tech.v3.dataset.math.html b/docs/tech.v3.dataset.math.html index 382a4a98..95be0915 100644 --- a/docs/tech.v3.dataset.math.html +++ b/docs/tech.v3.dataset.math.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.math

Various mathematic transformations of datasets such as (inefficiently) + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.math

Various mathematic transformations of datasets such as (inefficiently) building simple tables, pca, and normalizing columns to have mean of 0 and variance of 1. More in-depth transformations are found at tech.v3.dataset.neanderthal.

correlation-table

(correlation-table dataset & {:keys [correlation-type colname-seq]})

Return a map of colname->list of sorted tuple of colname, coefficient. diff --git a/docs/tech.v3.dataset.metamorph.html b/docs/tech.v3.dataset.metamorph.html index 2274161f..a7d2ae2e 100644 --- a/docs/tech.v3.dataset.metamorph.html +++ b/docs/tech.v3.dataset.metamorph.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.metamorph

This is an auto-generated api system - it scans the namespaces and changes the first + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.metamorph

This is an auto-generated api system - it scans the namespaces and changes the first to be metamorph-compliant which means transforming an argument that is just a dataset into an argument that is a metamorph context - a map of {:metamorph/data ds}. They also return their result as a metamorph context.

diff --git a/docs/tech.v3.dataset.modelling.html b/docs/tech.v3.dataset.modelling.html index 6e6c9785..68f5cf4d 100644 --- a/docs/tech.v3.dataset.modelling.html +++ b/docs/tech.v3.dataset.modelling.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.modelling

Methods related specifically to machine learning such as setting the inference + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.modelling

Methods related specifically to machine learning such as setting the inference target. This file integrates tightly with tech.v3.dataset.categorical which provides categorical -> number and one-hot transformation pathways.

The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta

diff --git a/docs/tech.v3.dataset.print.html b/docs/tech.v3.dataset.print.html index f918cf5a..a6653333 100644 --- a/docs/tech.v3.dataset.print.html +++ b/docs/tech.v3.dataset.print.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.print

dataset->str

(dataset->str ds options)(dataset->str ds)

Convert a dataset to a string. Prints a single line header and then calls + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.print

dataset->str

(dataset->str ds options)(dataset->str ds)

Convert a dataset to a string. Prints a single line header and then calls dataset-data->str.

For options documentation see dataset-data->str.

dataset-data->str

(dataset-data->str dataset)(dataset-data->str dataset options)

Convert the dataset values to a string.

diff --git a/docs/tech.v3.dataset.reductions.apache-data-sketch.html b/docs/tech.v3.dataset.reductions.apache-data-sketch.html index 3d0d122b..e0ff9acb 100644 --- a/docs/tech.v3.dataset.reductions.apache-data-sketch.html +++ b/docs/tech.v3.dataset.reductions.apache-data-sketch.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions.apache-data-sketch

Reduction reducers based on the apache data sketch family of algorithms.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions.apache-data-sketch

Reduction reducers based on the apache data sketch family of algorithms.

diff --git a/docs/tech.v3.dataset.reductions.html b/docs/tech.v3.dataset.reductions.html index 440f5b42..fc0c47cb 100644 --- a/docs/tech.v3.dataset.reductions.html +++ b/docs/tech.v3.dataset.reductions.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions

Specific high performance reductions intended to be performend over a sequence + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions

Specific high performance reductions intended to be performend over a sequence of datasets. This allows aggregations to be done in situations where the dataset is larger than what will fit in memory on a normal machine. Due to this fact, summation is implemented using Kahan algorithm and various statistical methods are done in using diff --git a/docs/tech.v3.dataset.rolling.html b/docs/tech.v3.dataset.rolling.html index 6e497394..9b64f63c 100644 --- a/docs/tech.v3.dataset.rolling.html +++ b/docs/tech.v3.dataset.rolling.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.rolling

Implement a generalized rolling window including support for time-based variable + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.rolling

Implement a generalized rolling window including support for time-based variable width windows.

expanding

(expanding ds reducer-map)

Run a set of reducers across a dataset with an expanding set of windows. These will produce a cumsum-type operation.

diff --git a/docs/tech.v3.dataset.set.html b/docs/tech.v3.dataset.set.html index a8b19f6b..9b89957c 100644 --- a/docs/tech.v3.dataset.set.html +++ b/docs/tech.v3.dataset.set.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.set

Extensions to datasets to do per-row bag-semantics set/union and intersection.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.set

Extensions to datasets to do per-row bag-semantics set/union and intersection.

difference

(difference a)(difference a b)

Remove tuples from a that also appear in b.

intersection

(intersection a)(intersection a b)(intersection a b & args)

Intersect two datasets producing a new dataset with the union of tuples. Tuples repeated across all datasets repeated in final dataset at their minimum diff --git a/docs/tech.v3.dataset.tensor.html b/docs/tech.v3.dataset.tensor.html index 7166424d..a5163b8f 100644 --- a/docs/tech.v3.dataset.tensor.html +++ b/docs/tech.v3.dataset.tensor.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.tensor

Conversion mechanisms from dataset to tensor and back.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.tensor

Conversion mechanisms from dataset to tensor and back.

dataset->tensor

(dataset->tensor dataset datatype)(dataset->tensor dataset)

Convert a dataset to a tensor. Columns of the dataset will be converted to columns of the tensor. Default datatype is :float64.

mean-center-columns!

(mean-center-columns! tens {:keys [nan-strategy means], :or {nan-strategy :remove}})(mean-center-columns! tens)

in-place nan-aware mean-center the rows of the tensor. If tensor is writeable then this diff --git a/docs/tech.v3.dataset.zip.html b/docs/tech.v3.dataset.zip.html index 44b3c872..97a85be1 100644 --- a/docs/tech.v3.dataset.zip.html +++ b/docs/tech.v3.dataset.zip.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.zip

Load zip data. Zip files with a single file entry can be loaded with ->dataset. When + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.zip

Load zip data. Zip files with a single file entry can be loaded with ->dataset. When a zip file has multiple entries you have to call zipfile->dataset-seq.

dataset-seq->zipfile!

(dataset-seq->zipfile! output options ds-seq)(dataset-seq->zipfile! output ds-seq)

Write a sequence of datasets to zipfiles. You can control the inner type with the :file-type option which defaults to .tsv

diff --git a/docs/tech.v3.libs.arrow.html b/docs/tech.v3.libs.arrow.html index ea717f94..d84933ab 100644 --- a/docs/tech.v3.libs.arrow.html +++ b/docs/tech.v3.libs.arrow.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.libs.arrow

Support for reading/writing apache arrow datasets. Datasets may be memory mapped + gtag('config', 'G-95TVFC1FEB');

tech.v3.libs.arrow

Support for reading/writing apache arrow datasets. Datasets may be memory mapped but default to being read via an input stream.

Supported datatypes: