-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
306 lines (258 loc) · 14.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import argparse
import json
import os
import time
import numpy as np
import pandas as pd
from dataset import get_dataset, get_handler
from torchvision import transforms
import torch
from models.cnn import CNNClassifier
from models.lstm import LSTMClassifier
from models.gcn import GCNClassifier
from models.resnet import ResNetClassifier
from models.densenet import DenseNetClassifier
from models.vit import VisionTransformerClassifier
from models.training import Training
from query_strategies.random_sampling import RandomSampling
from query_strategies.entropy_sampling import EntropySampling
from query_strategies.core_set import CoreSet
from query_strategies.gcn_sampling import GCNSampling
from query_strategies.alpha_mix_sampling import AlphaMixSampling
from query_strategies.weight_perturbation_sampling import WeightPerturbationSampling
import warnings
warnings.filterwarnings('ignore')
ALL_STRATEGIES = [
'RandomSampling',
'EntropySampling',
'CoreSet',
'GCNSampling',
'AlphaMixSampling',
'WeightPerturbationSampling'
]
def save_args(args, path, name):
config = vars(args)
with open(os.path.join(path, name + '.json'), 'w') as f:
hps = {key: val for key, val in config.items() if not isinstance(val, type)}
json.dump(hps, f, indent=2)
def supervised_learning(args):
train_parser = argparse.ArgumentParser(description="Training hyper-parameters.")
train_parser.add_argument('--n_epoch', type=int, default=500)
train_parser.add_argument('--optimizer', type=str, default='Adam')
train_parser.add_argument('--batch_size', type=int, default=64)
train_parser.add_argument('--learning_rate', type=float, default=0.001)
train_parser.add_argument('--emb_size', type=int, default=256)
train_parser.add_argument('--dropout', type=float, default=0.1)
train_parser.add_argument('--continue_training', type=bool, default=True)
train_parser.add_argument('--n_early_stopping', type=int, default=50)
train_parser.add_argument('--mode', type=str, default='testing', choices=['validation', 'testing'])
if 'MNIST' in args.data_name:
train_parser.add_argument('--model', type=str, default='cnn', choices=['cnn', 'resnet', 'densenet', 'vit_small', 'vit_base'])
elif 'BACE' in args.data_name:
train_parser.add_argument('--model', type=str, default='gcn')
else:
train_parser.add_argument('--model', type=str, default='lstm')
train_args, _ = train_parser.parse_known_args()
train_params_pool = {
'MNIST':
{'n_epoch': train_args.n_epoch,
'n_label': 10,
'n_training_set': 50000,
# For simpleCNN
'transform': transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))]),
# For Resnet, Densenet and ViT
# 'transform': transforms.Compose([transforms.Resize(32),
# transforms.Grayscale(3),
# transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]),
'loader_tr_args': {'batch_size': train_args.batch_size},
'loader_va_args': {'batch_size': train_args.batch_size},
'loader_te_args': {'batch_size': train_args.batch_size},
'optimizer_args': {'lr': train_args.learning_rate},
'log_dir': './logs/MNIST',
'continue_training': train_args.continue_training,
'n_early_stopping': train_args.n_early_stopping},
'IMDB':
{'n_epoch': train_args.n_epoch,
'n_label': 2,
'n_training_set': 20000,
'loader_tr_args': {'batch_size': train_args.batch_size},
'loader_va_args': {'batch_size': train_args.batch_size},
'loader_te_args': {'batch_size': train_args.batch_size},
'optimizer_args': {'lr': train_args.learning_rate},
'log_dir': './logs/IMDB',
'continue_training': train_args.continue_training,
'n_early_stopping': train_args.n_early_stopping},
'BACE':
{'n_epoch': train_args.n_epoch,
'n_label': 2,
'n_training_set': 967,
'loader_tr_args': {'batch_size': train_args.batch_size},
'loader_va_args': {'batch_size': train_args.batch_size},
'loader_te_args': {'batch_size': train_args.batch_size},
'optimizer_args': {'lr': train_args.learning_rate},
'log_dir': './logs/BACE',
'continue_training': train_args.continue_training,
'n_early_stopping': train_args.n_early_stopping},
}
train_params = train_params_pool[args.data_name]
train_params['optimizer'] = train_args.optimizer
train_params['mode'] = train_args.mode
if args.strategy == 'All':
for strategy in ALL_STRATEGIES:
al_train(args, train_args, train_params, strategy)
else:
al_train(args, train_args, train_params, args.strategy)
def al_train(args, train_args, train_params, strategy_name):
main_path = os.path.join(args.log_dir, args.data_name)
if not os.path.exists(main_path):
os.makedirs(main_path)
general_path = os.path.join(main_path,
'init' + str(args.n_init_lb) +
'_query' + str(args.n_query) +
'_rounds' + str(args.n_round))
if not os.path.exists(general_path):
os.makedirs(general_path)
for repeat in args.repeats:
al_train_sub_experiment(args, train_args, train_params, strategy_name, general_path, repeat)
def al_train_sub_experiment(args, train_args, train_params, strategy_name, general_path, repeat):
exp_name = strategy_name + '_repeat' + str(repeat)
sub_path = os.path.join(general_path, exp_name)
if not os.path.exists(sub_path):
os.makedirs(sub_path)
save_args(args, sub_path, 'args')
save_args(train_args, sub_path, 'train_args')
if 'IMDB' in args.data_name:
X_tr, Y_tr, X_va, Y_va, X_te, Y_te, vocab = get_dataset(args.data_name, args.data_dir)
else:
X_tr, Y_tr, X_va, Y_va, X_te, Y_te = get_dataset(args.data_name, args.data_dir)
train_params['emb_size'] = train_args.emb_size
args.n_label = train_params['n_label']
n_pool = len(Y_tr)
n_val = len(Y_va)
n_test = len(Y_te)
idxs_lb = np.zeros(n_pool, dtype=bool)
idxs_tmp = np.arange(n_pool)
np.random.shuffle(idxs_tmp)
idxs_lb[idxs_tmp[:args.n_init_lb]] = True
print('number of labeled pool: {}'.format(idxs_lb.sum()))
print('number of unlabeled pool: {}'.format(n_pool - idxs_lb.sum()))
print('number of validation pool: {}'.format(n_val))
print('number of testing pool: {}'.format(n_test))
if 'BACE' in args.data_name:
net = GCNClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'emb_size': train_params['emb_size'],
'in_features': 78,
'dropout': train_args.dropout}
elif 'IMDB' in args.data_name:
net = LSTMClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'emb_size': train_params['emb_size'],
'in_features': len(vocab),
'dropout': train_args.dropout}
elif 'resnet' in train_args.model:
net = ResNetClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'pretrained': True, 'fine_tune_layers': 1,
'emb_size': train_params['emb_size'],
'dropout': train_args.dropout}
elif 'densenet' in train_args.model:
net = DenseNetClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'pretrained': True, 'fine_tune_layers': 1,
'emb_size': train_params['emb_size'],
'dropout': train_args.dropout}
elif 'vit_small' in train_args.model:
net = VisionTransformerClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'pretrained': True, 'fine_tune_layers': 1,
'pretrained_weights': 'weights/dino_deitsmall16_pretrain.pth',
'emb_size': train_params['emb_size'],
'dropout': train_args.dropout}
elif 'vit_base' in train_args.model:
net = VisionTransformerClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'pretrained': True, 'fine_tune_layers': 1,
'pretrained_weights': 'weights/dino_vitbase16_pretrain.pth',
'emb_size': train_params['emb_size'],
'dropout': train_args.dropout}
else:
net = CNNClassifier
net_args = {'arch_name': train_args.model, 'n_label': train_params['n_label'],
'emb_size': train_params['emb_size'],
'in_channels': 1,
'dropout': train_args.dropout}
use_cuda = torch.cuda.is_available()
print('Using %s device.' % ("cuda" if use_cuda else "cpu"))
device = torch.device("cuda" if use_cuda else "cpu")
handler = get_handler(args.data_name)
model = Training(net, net_args, handler, train_params, device, init_model=True)
cls = globals()[strategy_name]
strategy = cls(X_tr, Y_tr, X_va, Y_va, idxs_lb, model, args, device)
print(args.data_name)
print('Repeat {}'.format(repeat))
print(type(strategy).__name__)
# round 0
strategy.train(name='0')
con, acc, pre, rec, f1 = strategy.predict(X_va, Y_va, X_te, Y_te)
result_conf = pd.DataFrame(con)
result_aprf = pd.DataFrame([[acc.item(), pre.item(), rec.item(), f1.item(), 0.]])
result_conf.to_csv(os.path.join(general_path, strategy_name + '_conf_0_repeat' + str(repeat) + '.csv'), header=False, index=False)
result_aprf.to_csv(os.path.join(general_path, strategy_name + '_aprf_repeat' + str(repeat) + '.csv'), header=False, index=False)
print('Round 0\nconfusion matrix\n{}\naccuracy {:.4f} precision {:.4f} recall {:.4f} f1_score {:.4f}'.format(con, acc, pre, rec, f1))
if args.save_checkpoints:
torch.save(strategy.model.clf, os.path.join(sub_path, 'model_round_0.pt'))
# torch.save(strategy.model.clf.state_dict(), os.path.join(sub_path, 'model_round_0.pt'))
np.save(open(os.path.join(sub_path, 'query_0.np'), 'wb'), idxs_tmp[idxs_lb])
# AL rounds
for rd in range(1, args.n_round + 1):
print('Round {}'.format(rd))
budget = args.n_query
print('query budget: %d' % budget)
start_time = time.time()
q_idxs = strategy.query(budget)
duration = time.time() - start_time
if 'BACE' in args.data_name:
query_result = torch.zeros(len(Y_tr), dtype=torch.bool)
else:
query_result = torch.zeros(Y_tr.size(), dtype=torch.bool)
query_result[q_idxs] = True
# update
idxs_lb[q_idxs] = True
strategy.update(idxs_lb)
print('training with %d labeled samples.' % idxs_lb.sum())
strategy.train(str(rd))
con, acc, pre, rec, f1 = strategy.predict(X_va, Y_va, X_te, Y_te)
result_conf = pd.DataFrame(con)
result_aprf.loc[len(result_aprf)] = [acc.item(), pre.item(), rec.item(), f1.item(), duration]
result_conf.to_csv(os.path.join(general_path, strategy_name + '_conf_{}'.format(rd) + '_repeat' + str(repeat) + '.csv'), header=False, index=False)
result_aprf.to_csv(os.path.join(general_path, strategy_name + '_aprf' + '_repeat' + str(repeat) + '.csv'), header=False, index=False)
print('Round {}\nconfusion matrix\n{}\naccuracy {:.4f} precision {:.4f} recall {:.4f} f1_score {:.4f}'.format(rd, con, acc, pre, rec, f1))
if args.save_checkpoints:
torch.save(strategy.model.clf, os.path.join(sub_path, 'model_round_%d.pt' % (rd)))
# torch.save(strategy.model.clf.state_dict(), os.path.join(sub_path, 'model_round_%d.pt' % (rd)))
np.save(open(os.path.join(sub_path, 'query_' + str(rd) + '.np'), 'wb'), q_idxs)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Weight Perturbation Active Learning hyper-parameters")
parser.add_argument('--data_name', type=str, default='MNIST', choices=['MNIST', 'IMDB', 'BACE'], help='The dataset')
parser.add_argument('--data_dir', type=str, default='./data', help='The directory of data')
parser.add_argument('--log_dir', type=str, default='./logs', help='The directory of log')
parser.add_argument('--save_checkpoints', type=bool, default=True, help='If save checkpoints')
parser.add_argument('--repeats', type=int, default=[1,2,3,4,5])
parser.add_argument('--n_init_lb', type=int, default=100, help='Initial labeled samples')
parser.add_argument('--n_query', type=int, default=100, help='Query labeled samples')
parser.add_argument('--n_round', type=int, default=5, help='AL round')
parser.add_argument('--strategy', type=str, default='WeightPerturbationSampling',
choices=['RandomSampling', 'EntropySampling',
'CoreSet', 'GCNSampling',
'AlphaMixSampling', 'WeightPerturbationSampling', 'All'])
parser.add_argument('--eps_cap', type=float, default=0.001, choices=[0.00001, 0.0001, 0.001, 0.01, 0.1])
parser.add_argument('--eps_get', type=str, default='accumulated', choices=['accumulated', 'max_optimized', 'min_optimized'])
parser.add_argument('--eps_select', type=str, default='entropy', choices=['random', 'entropy', 'kmeans'])
parser.add_argument('--eps_learning_rate', type=float, default=0.1, help='The learning rate of finding the optimised epsilon')
parser.add_argument('--eps_learning_iters', type=int, default=5, help='The number of iterations for learning epsilon')
parser.add_argument('--eps_learning_batch_size', type=int, default=1000000, help='The batchsize for learning epsilon')
args, _ = parser.parse_known_args()
supervised_learning(args)