-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
183 lines (149 loc) · 6.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import sys
import json
import time
import logging
import argparse
import torch
import torch.nn as nn
import numpy as np
from utils.model import CSRNet
from utils.augmentation import create_dataloader
# Define constants
LR = 1e-6
BATCH_SIZE = 1
MOMENTUM = 0.95
DECAY = 5e-4
START_EPOCH = 0
EPOCHS = 400
PRINT_FREQ = 100
# Create directory to save models
CKPTS_FILE = 'ckpts'
if not os.path.exists(CKPTS_FILE):
os.mkdir(CKPTS_FILE)
def save_checkpoint(model, optimizer, epoch, loss):
filename = os.path.join(CKPTS_FILE, 'model-{:0.2f}.pth.tar'.format(loss))
state = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': loss}
torch.save(state, filename)
def load_checkpoint(model, optimizer, filename, device):
ckpt = torch.load(filename, map_location=device)
start_epoch = ckpt['epoch']
model.load_state_dict(ckpt['state_dict'])
optimizer.load_state_dict(ckpt['optimizer'])
loss = ckpt['loss']
return model.to(device), optimizer, loss, start_epoch
def main(args):
global START_EPOCH
best_pred = None
loss_data = {'train_mae': [], 'val_mae': []}
# Fetch training and validation subsets
with open(args.train_json) as infile:
train_image_paths = json.load(infile)
with open(args.val_json) as infile:
val_image_paths = json.load(infile)
# Use GPU if available
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logging.info('Using {} device for training'.format(device))
# Define model
logging.info('Building model')
model = CSRNet(training=True).to(device)
criterion = nn.MSELoss(reduction='sum')
optim = torch.optim.SGD(
model.parameters(), LR, momentum=MOMENTUM, weight_decay=DECAY)
# Continue training after checkpoint
if args.pretrained:
logging.info('Loading checkpoint from {}'.format(args.pretrained))
model, optim, best_pred, START_EPOCH = load_checkpoint(
model, optim, args.pretrained, device)
logging.info('Continue training at epoch {}'.format(START_EPOCH))
# Replace best_pred with loss of ckpt model
logging.debug('Best pred is {:0.2f}'.format(best_pred))
# Update metrics
with open('data/loss_data.json') as infile:
loss_data = json.load(infile)
# Logging info
if args.augment:
logging.info('Augmenting training data')
# Training + evaluation
logging.info('Training model')
for epoch in range(START_EPOCH, EPOCHS):
model.train() # Training mode
train_loader = create_dataloader(train_image_paths, augment=args.augment,
batch_size=BATCH_SIZE, shuffle=True)
# Metrics
time_info = []
loss_info = []
for i, (image, target) in enumerate(train_loader):
# Make target compatible with output and add batch dimension
target = target.type(torch.FloatTensor).unsqueeze(0)
# Transfer to either GPU or CPU
image = image.to(device)
target = target.to(device)
# Zero the parameter gradients
optim.zero_grad()
start_time = time.time()
output = model(image)
end_time = time.time()
loss = criterion(output, target)
# backard + optimize
loss.backward()
optim.step()
# Update metrics
time_info.append(end_time - start_time)
loss_info.append(loss.item())
# Log results
if i % PRINT_FREQ == 0:
epoch_text = 'Epoch [{}/{}] ({}/{}) '.format(
epoch, EPOCHS, i, len(train_loader))
time_text = 'Time = {:0.2f}, Total time = {:0.2f} '.format(
time_info[-1], np.sum(time_info))
loss_text = 'Current loss = {:0.3f}, Avg loss = {:0.3f}'.format(
loss_info[-1], np.mean(loss_info))
logging.info(epoch_text + time_text + loss_text)
logging.info('Evaluating model...')
model.eval() # Evaluation mode
val_loader = create_dataloader(
val_image_paths, augment=False, batch_size=BATCH_SIZE, shuffle=True)
mae = 0
for image, target in val_loader:
# Make target compatible with output and add batch dimension
target = target.type(torch.FloatTensor).unsqueeze(0)
# Transfer to either GPU or CPU
image = image.to(device)
target = target.to(device)
# Create density map
output = model(image)
# Calculate MAE without messing with criterion for training
mae += abs((output.sum() - target.sum()).item())
# Average out MAE
mae /= len(val_loader)
logging.info('Mean average Error (MAE) = {:0.4f}'.format(mae))
# Save checkpoint if current state beats the best one
if best_pred is None or mae < best_pred:
save_checkpoint(model, optim, epoch, mae)
logging.info('Checkpoint created')
best_pred = mae
# Update metrics
loss_data['train_mae'].append(np.mean(loss_info))
loss_data['val_mae'].append(mae)
# Save data
with open('data/loss_data.json', 'w') as outfile:
logging.info('Saving loss data in data/loss_data.json')
json.dump(loss_data, outfile)
# Save last model
torch.save(model.state_dict(), os.path.join(CKPTS_FILE, 'model.pth.tar'))
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('train_json', type=str, help='Path to train.json')
parser.add_argument('val_json', type=str, help='Path to val.json')
parser.add_argument('--pretrained', '-p', type=str, default=None,
help='Continue training after checkpoint with model.pth.tar')
parser.add_argument('--augment', '-a', type=bool, default=False,
help='Do dataset augmentation ont training data')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
main(parse_arguments(sys.argv[1:]))