diff --git a/src/jacksonpy/JacksonAlgo.py b/src/jacksonpy/JacksonAlgo.py index cd67e5a..f241071 100644 --- a/src/jacksonpy/JacksonAlgo.py +++ b/src/jacksonpy/JacksonAlgo.py @@ -33,100 +33,94 @@ import warnings -class JackAlgo: - - """ - Class to solve job shop scheduling problem from a list of lists of tasks. - - Args: - duration_data: list of lists of tasks. Each task is a (job,machine) pair. - output_dir: directory to save the output files: by default, the output files are saved in the current directory. - Returns: - PDF file with the results of the algorithm. The PDF file is saved in the output_dir directory. - - Examples: - data_duration = { - "Task 1": [3, 4, 6, 5], - "Task 2": [2, 3, 6, 9], - "Task 3": [8, 9, 2, 6], - "Task 4": [7, 6, 3, 2], - "Task 5": [3, 6, 4, 5], - "Task 6": [5, 8, 7, 9], - } # dictionary of lists of integers {'Task 1': [3, 4, 6, 5], 'Task 2': [2, 3, 6, 9], ...} - - # Solving the problem - al = JacksonAlgo.JackAlgo(data_duration) # create a JackAlgo object with the data - - print(al) # print the problem details - - preparedData = al.prepareData() # prepare the data for the algorithm - cmaxVirtual, _, __ = al.get_cmax_virtual( - preparedData - ) # get the cmaxVirtual result of the virtual sub-problems - result = al.solve( - cmaxVirtual - ) # solve the problem and save the result in the result variable - al.generate_pdf_file( - results=result - ) # generate a pdf file with the result of the problem +class JobShopScheduler: """ + Handles the scheduling for job shop problems using a heuristic based on sub-problems. - list_pre_cleaned = [] - list_cleaned = [] - list_cleaned_ = [] - Algo_details = "This heuristic simply consists in generating m-1 sub-problems of the 2-machine flow-shop type, solving them and selecting the best solution. \ - The sub-problem k is defined by :\nProcessing time on the virtual machine 1 : pi1= the sum of pij (j in [1..k]) \nProcessing time on the virtual machine 2 : pi2= the sum of pij (j in [k+1 .. m]). \ - \n For each of these problems, the optimal order is calculated with the Johnson algorithm and this order is then applied to the basic problem to obtain the Cmax(k).\ - Then, it is enough to choose the best one on the whole Cmax(k)." - nb_sec = 2 - p = 0 - warnings.filterwarnings("ignore", category=FutureWarning) + Attributes: + duration_data (list): A list of job durations. + nb_jobs (int): Number of jobs. + nb_machines (int): Number of machines per job. + output_dir (str): Directory path for outputs. + """ - def __init__(self, duration_data, output_dir="output"): + def __init__(self, duration_data, output_dir='output'): + """ + Initializes the JobShopScheduler with job duration data and output directory. + + Args: + duration_data (list or dict): Job duration data. If dict, format should map job to durations. + output_dir (str): Path to the output directory. + """ + if isinstance(duration_data, dict): + # Convert dict to list format + duration_data = [[k + 1] + list(v) for k, v in enumerate(duration_data.values())] - """ """ self.duration_data = duration_data - if isinstance(self.duration_data, list): - self.nb_machines = len(self.duration_data[0]) - 1 - elif isinstance(self.duration_data, dict): - self.nb_machines = len(list(self.duration_data.values())[0]) - self.duration_data = [ - [k + 1] + list(map(int, v[1])) - for k, v in enumerate(self.duration_data.items()) - ] - self.nb_jobs = len(self.duration_data) self.output_dir = output_dir - - def get_list(self): - - assert self.duration_data is not None, "duration_data is None" - assert self.duration_data[0] is not None, "duration_data[0] is None" - assert ( - len(self.duration_data[0]) == self.nb_machines + 1 - ), "duration_data[0] is not of length {0}".format(self.nb_machines + 1) - assert isinstance(self.duration_data, list), "duration_data is not a list" - assert ( - len(self.duration_data) == self.nb_jobs - ), "duration_data is not of length {0}".format(self.nb_jobs) - assert isinstance(self.duration_data[0], list), "duration_data is not a list" - - list_ = [] - for n in range(len(sum(self.duration_data, [])) // (self.nb_machines + 1)): - list_.append( - sum(self.duration_data, [])[ - n * (self.nb_machines + 1) : (n + 1) * (self.nb_machines + 1) - ] - ) - return list_ - - def fun_calculate(self, k): - list_2 = [] - list_dur = self.get_list() - for n in range(len(list_dur)): - list_2.append( - [list_dur[n][0], sum(list_dur[n][1:k]), sum(list_dur[n][-1:-k:-1])] - ) - return list_2 + self.validate_data() + + def validate_data(self): + """ + Validates the input duration_data to ensure all entries are correctly formatted. + + Raises: + ValueError: If duration_data is empty, not a list, or inconsistent in lengths. + """ + if not self.duration_data: + raise ValueError("duration_data is empty") + + if not isinstance(self.duration_data, list): + raise ValueError("duration_data must be a list") + + length = len(self.duration_data[0]) + for job in self.duration_data: + if not isinstance(job, list) or len(job) != length: + raise ValueError("All jobs must have the same number of machine durations including the job ID") + + self.nb_jobs = len(self.duration_data) + self.nb_machines = length - 1 # Assuming first element is the job id + + def get_job_durations(self): + """ + Retrieves the job durations. + + Returns: + list: A list of job durations including job identifier. + """ + return self.duration_data + + def display_job_durations(self): + """ + Prints the job durations in a formatted table. + """ + header = ["Job ID"] + [f"M {i + 1}" for i in range(self.nb_machines)] + print("\t".join(header)) + for job in self.duration_data: + print("\t".join(map(str, job))) + + def calculate_aggregated_durations(self, k): + """ + Aggregates the machine durations for each job up to index `k` and from the end backwards to `k`. + + Args: + k (int): The pivot index to calculate the sum up to (exclusive) and from the end to. + + Returns: + list: A modified list where each job now includes its ID and two summed durations. + """ + aggregated_durations = [] + job_durations = self.get_job_durations() + + for job in job_durations: + if k >= len(job): + raise ValueError("k is out of the valid range for job durations") + # Calculate sum from start up to k (exclusive) and from end to k (exclusive) + sum_first_k = sum(job[1:k+1]) # sum from first duration to kth duration (inclusive) + sum_last_k = sum(job[-k:]) if k != 0 else 0 # sum last k durations, handle k=0 case + aggregated_durations.append([job[0], sum_first_k, sum_last_k]) + + return aggregated_durations def prepareData(self): warnings.filterwarnings("ignore", category=FutureWarning) @@ -135,17 +129,17 @@ def prepareData(self): ] # create a list of integers for i in r: - JackAlgo.list_pre_cleaned = self.fun_calculate(i) # get the list of lists - JackAlgo.list_cleaned.append( - JackAlgo.list_pre_cleaned + JobShopScheduler.list_pre_cleaned = self.fun_calculate(i) # get the list of lists + JobShopScheduler.list_cleaned.append( + JobShopScheduler.list_pre_cleaned ) # add the list to the list of lists - for i in range(len(JackAlgo.list_cleaned[0]) // (self.nb_jobs)): - JackAlgo.list_cleaned_.append( - JackAlgo.list_cleaned[0][i * (self.nb_jobs) : (i + 1) * (self.nb_jobs)] + for i in range(len(JobShopScheduler.list_cleaned[0]) // (self.nb_jobs)): + JobShopScheduler.list_cleaned_.append( + JobShopScheduler.list_cleaned[0][i * (self.nb_jobs) : (i + 1) * (self.nb_jobs)] ) - return JackAlgo.list_cleaned # return the cleaned list of lists + return JobShopScheduler.list_cleaned # return the cleaned list of lists def get_cmax_virtual(self, preparedData): warnings.filterwarnings("ignore", category=FutureWarning) @@ -206,9 +200,9 @@ def solve(self, flatten_result): warnings.filterwarnings("ignore", category=FutureWarning) create_dir(self.output_dir) _, story = create_pdf_file() - nb_sec = JackAlgo.nb_sec + 1 + nb_sec = JobShopScheduler.nb_sec + 1 story, nb_sec = self.add_section_to_pdf( - story, "Algorithm:", JackAlgo.Algo_details, nb_sec + story, "Algorithm:", JobShopScheduler.Algo_details, nb_sec ) story, nb_sec = self.add_section_to_pdf( @@ -223,7 +217,7 @@ def solve(self, flatten_result): list_data = [] list_data_copy = [] gant_data = [] - p = JackAlgo.p + p = JobShopScheduler.p l_ = self.nb_jobs + 1 klk, klks = {}, {} list_list_gant = []