-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgraph.py
189 lines (153 loc) · 6.41 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import matplotlib
import argparse
import os
import re
import utilities as ut
import utilities.mpl
import utils
ut.mpl.init(font_size=12, legend_font_size=12, tick_size=12)
legend_reg = ut.Registry()
r_ = legend_reg.put
r_('decoder', lambda d_: d_['decoder'])
r_('channel_decoder', lambda d_: d_['channel'].upper() + ', %s decoder' % d_['decoder'])
r_('channel_code', lambda d_: d_['channel'].upper() + ', %s code' % d_['code'])
x_labels = {'bsc': 'Crossover probability',
'bec': 'Erasure probability',
'biawgn': 'E_b/N in dB for E_b=1'}
class DataRoot:
def __init__(self, file_name, label):
self.label = label
self.file_name = file_name
self.data = utils.load_json(os.path.join(args.data_dir, file_name))
if self.data is None: print('>>>>>>>>>>>>>>>>>>>>>>>>>>>>', self.file_name)
def get_label(self):
if args.legend_format is None:
return self.label
else:
return legend_reg.get(args.legend_format)(self.data)
def plot_(pairs, label, style=None):
pairs_ = list(zip(map(float, pairs.keys()), pairs.values()))
pairs_.sort(key=lambda x: x[0])
argsl = list(zip(*pairs_))
kwargs = {'linewidth':args.linewidth, 'label':label}
if style is None: plt.plot(*argsl, **kwargs)
else: plt.plot(*argsl, style, **kwargs)
plot_reg = ut.Registry()
def reg_plot(help_str):
def inner(func):
func.help_str = help_str
plot_reg.put(func.__name__, func)
return func
return inner
@reg_plot('plots of all available data')
def plot_all(dl):
for r in dl: plot_(r.data[args.error], r.get_label())
fmt_err()
plot_common()
def comp_average(dl):
pot = {}
for r in dl:
for point,val in r.data[args.error].items():
if point not in pot.keys(): pot[point] = []
pot[point].append(val)
for point in pot:
vals = pot[point]
pot[point] = sum(vals) / float(len(vals))
return pot
@reg_plot('ensemble of codes and their average')
def ensemble(dl):
for r in dl: plot_(r.data[args.error], None, 'r--')
plot_(comp_average(dl), 'Average', 'b-')
fmt_err()
plot_common('Performance of code ensemble')
@reg_plot('compute average of regex matching files')
def regex_average(dl):
used_l = []
for rg in args.group_regex:
new_dl = []
for r in dl:
if re.search(rg[0], r.file_name):
new_dl.append(r)
used_l.append(r)
print('Regex group: %s'%rg, *[r.file_name for r in new_dl], sep='\n')
plot_(comp_average(new_dl), rg[1])
rest_dl = list(set(dl) - set(used_l))
for r in rest_dl: plot_(r.data[args.error], r.get_label())
fmt_err()
plot_common()
@reg_plot('histogram of iteration count for e.g. ADMM decoder')
def hist_iter(dl):
ax = plt.gca()
if args.param is None: raise Exception('Parameter is None!')
xmin, xmax = 1e10, 0
for r in dl:
series = np.array(r.data['dec'][str(args.param)]['iter'])
xvals = range(len(series))
avg = r.data['dec'][str(args.param)]['average']
ax.bar(xvals, series, label='Average=%g'%avg)
nzero = series.nonzero()[0]
xmin = min(xmin, xvals[nzero[0]])
xmax = max(xmax, xvals[nzero[-1]])
ax.set_yticks([])
diff = max(3, int((xmax-xmin)*0.01))
ax.set_xlim(max(0, xmin-diff), xmax+diff)
ut.mpl.fmt_ax(ax, 'Number of iterations', 'Frequency', leg=1, grid=1)
plot_common('Iteration count histogram')
@reg_plot('average iteration count for e.g. ADMM decoder')
def avg_iter(dl):
for r in dl:
dec = r.data['dec']
pot = {point:dec[point]['average'] for point in dec}
plot_(pot, r.get_label())
xlab, ylab = x_labels[args.channel], 'Average number of iterations'
ut.mpl.fmt_ax(plt.gca(), xlab, ylab, leg=1, grid=1)
plot_common('Average iteration count')
def plot_common(title=None):
plt.legend(loc='best')
if args.xlim is not None: plt.xlim(args.xlim)
if args.ylim is not None: plt.ylim(args.ylim)
if not args.title is None: title = args.title
if title: plt.title(title)
plt.margins(0) # autoscale(tight=True)
utils.make_dir_if_not_exists(args.plots_dir)
img_path = os.path.join(args.plots_dir, args.file_name)
ut.mpl.save_show_fig(args, plt, img_path)
def fmt_err():
xlab, ylab = x_labels[args.channel], args.error.upper()
ut.mpl.fmt_ax(plt.gca(), xlab, ylab, leg=1, grid=1, grid_kwargs={'which':'both'})
plt.yscale('log')
def main(args):
global matplotlib
if args.agg: matplotlib.use('Agg')
import matplotlib.pyplot
global plt
plt = matplotlib.pyplot
file_names = ut.file.filter_strings(args, utils.get_data_file_list(args.data_dir))
if not file_names: exit()
labels = ut.file.gen_unique_labels(file_names, tokens=['_', '__', '-', '.json'])
data_list = [DataRoot(fn, lb) for fn,lb in zip(file_names, labels)]
data_list.sort(key=lambda it: ut.file.naturalkey(it.get_label()))
args.channel = data_list[0].data['channel']
plot_reg.get(args.type)(data_list)
def setup_parser():
# https://stackoverflow.com/questions/17073688/how-to-use-argparse-subparsers-correctly
parser = argparse.ArgumentParser()
parser.add_argument('--type', help='type of the graph', choices=plot_reg.keys(), default='plot_all')
parser.add_argument('--param', help='parameter used in hist_iter graph', type=float)
parser.add_argument('--error', help='error rate metric', default='ber', choices=['wer', 'ber'])
parser.add_argument('--group_regex', nargs=2, action='append', help='if --type regex_average, matches a regex to file names and only plot their average. format: [<regex>, <legend name>]')
parser.add_argument('--linewidth', type=float, default=2)
parser.add_argument('--xlim', help='x-axis range', nargs=2, type=float)
parser.add_argument('--ylim', help='y-axis range', nargs=2, type=float)
parser.add_argument('--legend_format', help='format of legend entries', choices=legend_reg.keys())
parser.add_argument('--title', help='graph title', type=str)
parser.add_argument('--file_name', help='save name', type=str, default='graph')
parser.add_argument('--agg', help='set matplotlib backend to Agg', action='store_true')
ut.mpl.bind_fig_save_args(parser)
ut.file.bind_filter_args(parser)
return utils.bind_parser_common(parser)
if __name__ == '__main__':
args = setup_parser().parse_args()
print(vars(args))
main(args)