-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
231 lines (171 loc) · 7.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import numpy as np
import tensorflow.python.keras.backend as K
from tensorflow.python.keras.layers import Input, Lambda
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from yolo.model import PreprocessTrueBoxes, YOLOBody, TinyYOLO, YOLOLoss
from yolo.utils import get_rand_data
def _main():
annotation_path = 'train.txt'
log_dir = 'logs/000/'
classes_path = 'model_data/coco_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
class_names = _get_classes(classes_path)
num_classes = len(class_names)
anchors = _get_anchors(anchors_path)
input_shape = (416, 416)
is_tiny = len(anchors) == 6
if is_tiny: model = create_tiny(input_shape, anchors, num_classes,
freeze_body=2, weights_path='model_data/yolo_tiny.h5')
else: model = create(input_shape, anchors, num_classes,
freeze_body=2, weights_path='model_data/yolo.h5')
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch: 04d} - loss{loss: .4f} - val_loss{val_loss: .4f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=.1, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
val_split = .1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(1)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines) * val_split)
num_train = len(lines) - num_val
# Training Frozen layers first.
if True:
model.compile(optimizer=Adam(lr=1e-3), loss={
'yolo_loss': lambda y_true, y_pred: y_pred
})
batch_size = 32
print('Train on {} samples, val on {} samples, with batch size {}'.format(
num_train,
num_val,
batch_size
))
model.fit_generator(_data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train // batch_size),
validation_data=_data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val // batch_size),
epochs=50,
initial_epoch=0,
callbacks=[logging, checkpoint])
model.save_weights(log_dir + 'trained_weights_stage_1.h5')
#Unfreeze and continue training, to fine tune.
if True:
for i in range(len(model.layers)):
model.layers[i].trainable = True
#Recompile
model.compile(optimizer=Adam(lr=1e-4), loss={
'yolo_loss': lambda y_true, y_pred: y_pred
})
model.summary()
return
batch_size = 32
print('Unfreeze all of the layers.')
print('Train on {} samples, val on {} samples, with batch size {}'.format(
num_train, num_val, batch_size
))
model.fit_generator(_data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train // batch_size),
validation_data=_data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val // batch_size),
epochs=100,
initial_epoch=50,
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
model.save_weights(log_dir + 'trained_weights_final.h5')
def _get_classes(classes_path):
with open(classes_path) as f:
_class_names = f.readlines()
_class_names = [c.strip() for c in _class_names]
return _class_names
def _get_anchors(anchors_path):
with open(anchors_path) as f:
_anchors = f.readline()
_anchors = [float(x) for x in _anchors.split(',')]
return np.array(_anchors).reshape(-1, 2)
def create(input_shape,
anchors,
num_classes,
load_pretrained=True,
freeze_body=2,
weights_path='model_data/yolo_weights.h5' ):
K.clear_session()
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h // {0: 32, 1: 16, 2: 8}[l], w // {0: 32, 1: 16, 2: 8}[l], num_anchors // 3, num_classes + 5))
for l in range(3)]
model_body = YOLOBody(image_input, num_anchors // 3, num_classes)
print('Create YOLO3 model with {} anchors and {} classes.'.format(
num_anchors,
num_classes
))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True)
print('Load weights {}'.format(weights_path))
if freeze_body in [1, 2]:
num = (185, len(model_body.layers) - 3)[freeze_body - 1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers'.format({
num,
len(model_body.layers)
}))
model_loss = Lambda(YOLOLoss, output_shape=(1, ), name='yolo_loss', arguments={
'anchors': anchors,
'num_classes': num_classes,
'ignore_threshold': .5
})([*model_body.output, *y_true])
return Model([model_body.input, *y_true], model_loss)
def create_tiny(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/tiny_yolo_weights.h5'):
K.clear_session()
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h // {0: 32, 1: 16}[l], w // {0: 32, 1: 16}[l],
num_anchors // 2, num_classes + 5)) for l in range(2)]
model_body = TinyYOLO(image_input, num_anchors // 2, num_classes)
print('Create Tiny YOLO3 Model with {} anchors and {} classes.'.format(
num_anchors,
num_classes
))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
num = (20, len(model_body.layers) - 2)[freeze_body - 1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(
num,
len(model_body.layers)
))
model_loss = Lambda(YOLOLoss, output_shape=(1,), name='yolo_loss', arguments={
'anchors': anchors,
'num_classes': num_classes,
'ignore_threshold': .7,
})([*model_body.output, *y_true])
return Model([model_body.output, *y_true], model_loss)
def _data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
'''Data generator for fit_generator'''
n = len(annotation_lines)
i = 0
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i == 0: np.random.shuffle(annotation_lines)
image, box = get_rand_data(annotation_lines[i], input_shape, random=True)
image_data.append(image)
box_data.append(box)
i = (i + 1) % n
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = PreprocessTrueBoxes(box_data, input_shape, anchors, num_classes)
yield [image_data, *y_true], np.zeros(batch_size)
def _data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
if len(annotation_lines) == 0 or batch_size <= 0: return None
return _data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
if __name__ == '__main__':
_main()