forked from ycjuan/libffm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME
294 lines (185 loc) · 8.49 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
Table of Contents
=================
- What is LIBFFM
- Overfitting and Early Stopping
- Installation
- Data Format
- Command Line Usage
- Examples
- OpenMP and SSE
- Building Windows Binaries
- FAQ
What is LIBFFM
==============
LIBFFM is a library for field-aware factorization machine (FFM).
Field-aware factorization machine is a effective model for CTR prediction. It has been used to win the top-3 positions
of following competitions:
* Criteo: https://www.kaggle.com/c/criteo-display-ad-challenge
* Avazu: https://www.kaggle.com/c/avazu-ctr-prediction
* Outbrain: https://www.kaggle.com/c/outbrain-click-prediction
* RecSys 2015: http://dl.acm.org/citation.cfm?id=2813511&dl=ACM&coll=DL&CFID=941880276&CFTOKEN=60022934
You can find more information about FFM in the following paper / slides:
* http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf
* http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
* https://arxiv.org/abs/1701.04099
Overfitting and Early Stopping
==============================
FFM is prone to overfitting, and the solution we have so far is early stopping. See how FFM behaves on a certain data
set:
> ffm-train -p va.ffm -l 0.00002 tr.ffm
iter tr_logloss va_logloss
1 0.49738 0.48776
2 0.47383 0.47995
3 0.46366 0.47480
4 0.45561 0.47231
5 0.44810 0.47034
6 0.44037 0.47003
7 0.43239 0.46952
8 0.42362 0.46999
9 0.41394 0.47088
10 0.40326 0.47228
11 0.39156 0.47435
12 0.37886 0.47683
13 0.36522 0.47975
14 0.35079 0.48321
15 0.33578 0.48703
We see the best validation loss is achieved at 7th iteration. If we keep training, then overfitting begins. It is worth
noting that increasing regularization parameter do not help:
> ffm-train -p va.ffm -l 0.0002 -t 50 -s 12 tr.ffm
iter tr_logloss va_logloss
1 0.50532 0.49905
2 0.48782 0.49242
3 0.48136 0.48748
...
29 0.42183 0.47014
...
48 0.37071 0.47333
49 0.36767 0.47374
50 0.36472 0.47404
To avoid overfitting, we recommend always provide a validation set with option `-p.' You can use option `--auto-stop' to
stop at the iteration that reaches the best validation loss:
> ffm-train -p va.ffm -l 0.00002 --auto-stop tr.ffm
iter tr_logloss va_logloss
1 0.49738 0.48776
2 0.47383 0.47995
3 0.46366 0.47480
4 0.45561 0.47231
5 0.44810 0.47034
6 0.44037 0.47003
7 0.43239 0.46952
8 0.42362 0.46999
Auto-stop. Use model at 7th iteration.
Installation
============
Requirement: It requires a C++11 compatible compiler. We also use OpenMP to provide multi-threading. If OpenMP is not
available on your platform, please refer to section `OpenMP and SSE.'
- Unix-like systems:
Typeype `make' in the command line.
- Windows:
See `Building Windows Binaries' to compile.
Data Format
===========
The data format of LIBFFM is:
<label> <field1>:<feature1>:<value1> <field2>:<feature2>:<value2> ...
.
.
.
`field' and `feature' should be non-negative integers. See an example `bigdata.tr.txt.'
It is important to understand the difference between `field' and `feature'. For example, if we have a raw data like this:
Click Advertiser Publisher
===== ========== =========
0 Nike CNN
1 ESPN BBC
Here, we have
* 2 fields: Advertiser and Publisher
* 4 features: Advertiser-Nike, Advertiser-ESPN, Publisher-CNN, Publisher-BBC
Usually you will need to build two dictionares, one for field and one for features, like this:
DictField[Advertiser] -> 0
DictField[Publisher] -> 1
DictFeature[Advertiser-Nike] -> 0
DictFeature[Publisher-CNN] -> 1
DictFeature[Advertiser-ESPN] -> 2
DictFeature[Publisher-BBC] -> 3
Then, you can generate FFM format data:
0 0:0:1 1:1:1
1 0:2:1 1:3:1
Note that because these features are categorical, the values here are all ones.
Command Line Usage
==================
- `ffm-train'
usage: ffm-train [options] training_set_file [model_file]
options:
-l <lambda>: set regularization parameter (default 0.00002)
-k <factor>: set number of latent factors (default 4)
-t <iteration>: set number of iterations (default 15)
-r <eta>: set learning rate (default 0.2)
-s <nr_threads>: set number of threads (default 1)
-p <path>: set path to the validation set
--quiet: quiet model (no output)
--no-norm: disable instance-wise normalization
--auto-stop: stop at the iteration that achieves the best validation loss (must be used with -p)
By default we do instance-wise normalization. That is, we normalize the 2-norm of each instance to 1. You can use
`--no-norm' to disable this function.
A binary file `training_set_file.bin' will be generated to store the data in binary format.
Because FFM usually need early stopping for better test performance, we provide an option `--auto-stop' to stop at
the iteration that achieves the best validation loss. Note that you need to provide a validation set with `-p' when
you use this option.
- `ffm-predict'
usage: ffm-predict test_file model_file output_file
Examples
========
Download a toy data from:
zip: https://www.csie.ntu.edu.tw/~f01922139/libffm_data/libffm_toy.zip
tar.gz: https://www.csie.ntu.edu.tw/~f01922139/libffm_data/libffm_toy.tar.gz
This dataset is subsampled 1% from Criteo's challenge.
> tar -xzf libffm_toy.tar.gz
or
> unzip libffm_toy.zip
> ./ffm-train -p libffm_toy/criteo.va.r100.gbdt0.ffm libffm_toy/criteo.tr.r100.gbdt0.ffm model
train a model using the default parameters
> ./ffm-predict libffm_toy/criteo.va.r100.gbdt0.ffm model output
do prediction
> ./ffm-train -l 0.0001 -k 15 -t 30 -r 0.05 -s 4 --auto-stop -p libffm_toy/criteo.va.r100.gbdt0.ffm libffm_toy/criteo.tr.r100.gbdt0.ffm model
train a model using the following parameters:
regularization cost = 0.0001
latent factors = 15
iterations = 30
learning rate = 0.3
threads = 4
let it auto-stop
OpenMP and SSE
==============
We use OpenMP to do parallelization. If OpenMP is not available on your
platform, then please comment out the following lines in Makefile.
DFLAG += -DUSEOMP
CXXFLAGS += -fopenmp
Note: Please run `make clean all' if these flags are changed.
We use SSE instructions to perform fast computation. If you do not want to use it, comment out the following line:
DFLAG += -DUSESSE
Then, run `make clean all'
Building Windows Binaries
=========================
The Windows part is maintained by different maintainer, so it may not always support the latest version.
The latest version it supports is: v1.21
To build them via command-line tools of Visual C++, use the following steps:
1. Open a DOS command box (or Developer Command Prompt for Visual Studio) and go to LIBFFM directory. If environment
variables of VC++ have not been set, type
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64\vcvars64.bat"
You may have to modify the above command according which version of VC++ or
where it is installed.
2. Type
nmake -f Makefile.win clean all
FAQ
===
Q: Why I have the same model size when k = 1 and k = 4?
A: This is because we use SSE instructions. In order to use SSE, the memory need to be aligned. So even you assign k =
1, we still fill some dummy zeros from k = 2 to 4.
Q: Why the logloss is slightly different on the same data when I run the program two or more times when I use multi-threading
A: When there are more then one thread, the program becomes non-deterministic. To make it determinisitc you can only use one thread.
Contributors
============
Yuchin Juan, Wei-Sheng Chin, and Yong Zhuang
For questions, comments, feature requests, or bug report, please send your email to:
Yuchin Juan ([email protected])
For Windows related questions, please send your email to:
Wei-Sheng Chin ([email protected])