forked from smuehlst/jbig2enc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjbig2enc.html
170 lines (133 loc) · 8.33 KB
/
jbig2enc.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
<html>
<head>
<title>jbig2enc: Documentation</title>
</head>
<body style="max-width: 70em; font-family: Arial; text-align: justify;">
<h1><tt>jbig2enc</tt>: Documentation</h1>
<p>Adam Langley <tt><[email protected]></tt></p>
<h5>What is JBIG2</h5>
<p>JBIG2 is an image compression standard from the same people who brought
you the JPEG format. It compresses 1bpp (black and white) images only.
These images can consist of <i>only</i> black and while, there are no
shades of gray - that would be a grayscale image. Any "gray" areas must,
therefore be simulated using black dots in a pattern called <a
href="http://en.wikipedia.org/wiki/Halftone">halftoning</a>.</p>
<p>The JBIG2 standard has several major areas:</p>
<ul>
<li>Generic region coding</li>
<li>Symbol encoding (and text regions)</li>
<li>Refinement</li>
<li>Halftoning</li>
</ul>
<p>There are two major compression technologies which JBIG2 builds on:
<a href="http://en.wikipedia.org/wiki/Arithmetic_coding">arithmetic encoding</a>
and <a href="http://en.wikipedia.org/wiki/Huffman_coding">Huffman encoding</a>. You can
choose between them and use both in the same JBIG2 file, but this is rare.
Arithmetic encoding is slower, but compresses better. Huffman encoding was
included in the standard because one of the (intended) users of JBIG2 were
fax machines and they might not have the processing power for arithmetic
coding.</p>
<p><tt>jbig2enc</tt> <i>only</i> supports arithmetic encoding</p>
<h5>Generic region coding</h5>
<p>Generic region coding is used to compress bitmaps. It is progressive and
uses a context around the current pixel to be decoded to estimate the
probability that the pixel will be black. If the probability is 50% it uses
a single bit to encode that pixel. If the probability is 99% then it takes less
than a bit to encode a black pixel, but more than a bit to encode a white
one.</p>
<p>The context can only refer to pixels above and to the left of the
current pixel, because the decoder doesn't know the values of any of the
other pixels yet (pixels are decoded left-to-right, top-to-bottom). Based
on the values of these pixels it estimates a probability and updates it's
estimation for that context based on the actual pixel found. All contexts
start off with a 50% chance of being black.</p>
<p>You can encode whole pages with this and you will end up with a perfect
reconstruction of the page. However, we can do better...</p>
<h5>Symbol encoding</h5>
<p>Most input images to JBIG2 encoders are scanned text. These have many
repeating symbols (letters). The idea of symbol encoding is to encode what
a letter “a” looks like and, for all the “a”s on
the page, just give their locations. (This is lossy encoding)</p>
<p>Unfortunately, all scanned images have noise in them: no two
“a”s will look quite the same so we have to group all the
symbols on a page into groups. Hopefully each member of a given group will
be the same letter, otherwise we might place the wrong letter on the page!
These, very surprising, errors are called cootoots.</p>
<p>However, assuming that we group the symbols correctly, we can get great
compression this way. Remember that the stricter the classifier, the more
symbol groups (classes) will be generated, leading to bigger files. But,
also, there is a lower risk of cootoots (misclassification).</p>
<p>This is great, but we can do better...</p>
<h5>Symbol retention</h5>
<p>Symbol retention is the process of compressing multi-page documents by
extracting the symbols from all the pages at once and classifing them all
together. Thus we only have to encoding a single letter “a” for
the whole document (in an ideal world).</p>
<p>This is obviously slower, but generates smaller files (about half the
size on average, with a decent number of similar typeset pages).</p>
<p>One downside you should be aware of: If you are generating JBIG2 streams
for inclusion to a linearised PDF file, the PDF reader has to download all
the symbols before it can display the first page. There is solution to this
involing multiple dictionaries and symbol importing, but that's not
currently supported by <tt>jbig2enc</tt>.</p>
<h5>Refinement</h5>
<p>Symbol encoding is lossy because of noise, which is classified away and
also because the symbol classifier is imperfect. Refinement allows us, when
placing a symbol on the page, to encode the difference between the actual
symbol at that location, and what the classifer told us was “close
enough”. We can choose to do this for each symbol on the page, so we
don't have to refine when we are only a couple of pixel off. If we refine
whenever we a wrong pixel, we have lossless encoding using symbols.</p>
<h5>Halftoning</h5>
<p><tt>jbig2enc</tt> doesn't support this at all - so I will only mention
this quickly. The JBIG2 standard supports the efficient encoding of
halftoning by building a dictionary of halftone blocks (like the
dictionaries of symbols which we build for text pages). The lack of support
for halftones in G4 (the old fax standard) was a major weakness.</p>
<h5>Some numbers</h5>
<p>My sample is a set of 90 pages scanning pages from the middle of a
recent book. The scanned images are 300dpi grayscale and they are being
upsampled to 600dpi 1-bpp for encoding.</p>
<ul>
<li>Generic encoding each page: 3435177 bytes</li>
<li>Symbol encoding each page (default classifier settings): 1075185 bytes</li>
<li>Symbol encoding with refinement for more than 10 incorrect pixels: 3382605 bytes</li>
</li>
</ul>
<h2>Command line options</h2>
<p><tt>jbig2enc</tt> comes with a handy command line tool for encoding
images.</p>
<ul>
<li><tt>-d | --duplicate-line-removal</tt>: When encoding generic
regions each scan line can be tagged to indicate that it's the same as
the last scanline - and encoding that scanline is skipped. This
drastically reduces the encoding time (by a factor of about 2 on some
images) although it doesn't typically save any bytes. This is an option
because some versions of <tt>jbig2dec</tt> (an open source decoding
library) cannot handle this.</li>
<li><tt>-p | --pdf</tt>: The PDF spec includes support for JBIG2
(Syntax→Filters→JBIG2Decode in the PDF references for versions
1.4 and above). However, PDF requires a slightly different format for
JBIG2 streams: no file/page headers or trailers and all pages are
numbered 1. In symbol mode the output is to a series of files:
<tt>symboltable</tt> and <tt>page-</tt><i>n</i> (numbered from 0)</li>
<li><tt>-s | --symbol-mode</tt>: use symbol encoding. Turn on for scanned
text pages.</li>
<li><tt>-t <threshold></tt>: sets the fraction of pixels which have
to match in order for two symbols to be classed the same. This isn't
strictly true, as there are other tests as well, but increasing this will
generally increase the number of symbol classes.</li>
<li><tt>-T <threshold></tt>: sets the black threshold (0-255). Any gray value darker
than this is considered black. Anything lighter is considered white.</li>
<li><tt>-r | --refine <tolerance></tt>: (requires <tt>-s</tt>) turn
on refinement for symbols with more than <tt>tolerance</tt> incorrect
pixels. (10 is a good value for 300dpi, try 40 for 600dpi). Note: this is
known to crash Adobe products.</li>
<li><tt>-O <outfile></tt>: dump a PNG of the 1 bpp image before
encoding. Can be used to test loss.</li>
<li><tt>-2</tt> or <tt>-4</tt>: upscale either two or four times before
converting to black and white.</li>
<li><tt>-S</tt> Segment an image into text and non-text regions. This isn't perfect, but running text through the symbol compressor is terrible so it's worth doing if your input has images in it (like a magazine page). You can also give the <tt>--image-output</tt> option to set a filename to which the parts which were removed are written (PNG format).</li>
</ul>
</body>
</html>