-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·403 lines (344 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import time
import shutil
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from torch.optim.lr_scheduler import MultiStepLR
from torch.nn.utils import clip_grad_norm_
import pandas as pd
from dataset import MMTSADataSet
from models import MMTSA
from transforms import *
from opts import parser
from tensorboardX import SummaryWriter
from datetime import datetime
from collections import OrderedDict
best_prec1 = 0
training_iterations = 0
best_loss = 10000000
args = parser.parse_args()
lr_steps_str = list(map(lambda k: str(int(k)), args.lr_steps))
experiment_name = '_'.join((args.dataset, args.arch,
''.join(args.modality).lower(),
'lr' + str(args.lr),
'lr_st' + '_'.join(lr_steps_str),
'dr' + str(args.dropout),
'ep' + str(args.epochs),
'segs' + str(args.num_segments),
'midfu-'+str(args.midfusion),
args.experiment_suffix))
experiment_dir = os.path.join(experiment_name, datetime.now().strftime('%b%d_%H-%M-%S'))
log_dir = os.path.join('runs', experiment_dir)
summaryWriter = SummaryWriter(logdir=log_dir)
def main():
global args, best_prec1, train_list, experiment_dir, best_loss
args = parser.parse_args()
if args.dataset == 'dataEgo':
num_class = 20
elif args.dataset == 'mmdata':
num_class = 20
elif args.dataset == 'MMAct':
num_class = 37
else:
raise ValueError('Unknown dataset ' + args.dataset)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = MMTSA(num_class, args.num_segments, args.modality,
base_model=args.arch,
consensus_type=args.consensus_type,
dropout=args.dropout,
midfusion=args.midfusion)
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
data_length = model.new_length
train_augmentation = model.get_augmentation()
# Resume training from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint {}".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
state_dict_new = OrderedDict()
for k, v in checkpoint['state_dict'].items():
state_dict_new[k] = v
model.load_state_dict(state_dict_new)
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
elif args.pretrained:
if os.path.isfile(args.pretrained):
print(("=> loading pretrained TBN model from {}".format(args.pretrained)))
checkpoint = torch.load(args.pretrained)
state_dict_new = OrderedDict()
for k, v in checkpoint['state_dict'].items():
state_dict_new[k] = v
model.load_state_dict(state_dict_new, strict=False)
print("Pretrained TBN model loaded")
else:
print(("=> no pretrained model found at '{}'".format(args.pretrained)))
if args.freeze:
model.freeze_fn('modalities')
if args.partialbn:
model.freeze_fn('partialbn_parameters')
cudnn.benchmark = True
# Data loading code
normalize = {}
for m in args.modality:
if (m!= 'Sensor' and m!= 'AccWatch' and m!='AccPhone' and m!= 'Gyro' and m!='Orie'):
normalize[m] = GroupNormalize(input_mean[m], input_std[m])
image_tmpl = {}
train_transform = {}
val_transform = {}
for m in args.modality:
if (m == 'RGB'):
image_tmpl[m] = "img_{:05d}.jpg"
train_transform[m] = torchvision.transforms.Compose([
train_augmentation[m],
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize[m],
])
val_transform[m] = torchvision.transforms.Compose([
GroupCenterCrop(crop_size[m]),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize[m],
])
else: # sensor, acc, gyo, orie
train_transform[m] = torchvision.transforms.Compose([
GroupScale(224),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=False),
])
val_transform[m] = torchvision.transforms.Compose([
GroupScale(224),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=False),
])
train_loader = torch.utils.data.DataLoader(
MMTSADataSet(args.dataset,
pd.read_pickle(args.train_list),
data_length,
args.modality,
image_tmpl,
visual_path=args.visual_path,
sensor_path=args.sensor_path,
num_segments=args.num_segments,
transform=train_transform,
cross_dataset = False),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
MMTSADataSet(args.dataset,
pd.read_pickle(args.val_list),
data_length,
args.modality,
image_tmpl,
visual_path=args.visual_path if not args.cross_dataset else args.cross_visual_path,
sensor_path=args.sensor_path,
num_segments=args.num_segments,
mode='val',
transform=val_transform,
cross_dataset = args.cross_dataset),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
criterion = torch.nn.CrossEntropyLoss()
if len(args.modality) > 1:
if 'Sensor' in args.modality:
param_groups = [
{'params': filter(lambda p: p.requires_grad, model.rgb.parameters())},
{'params': filter(lambda p: p.requires_grad, model.sensor.parameters())},
{'params': filter(lambda p: p.requires_grad, model.fusion_classification_net.parameters())},
]
else:
param_groups = [
{'params': filter(lambda p: p.requires_grad, model.rgb.parameters())},
{'params': filter(lambda p: p.requires_grad, model.accwatch.parameters())},
{'params': filter(lambda p: p.requires_grad, model.gyro.parameters())},
{'params': filter(lambda p: p.requires_grad, model.fusion_classification_net.parameters()), 'lr': 0.001},
]
else:
param_groups = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.SGD(param_groups,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer, args.lr_steps, gamma=0.1)
if args.evaluate:
validate(val_loader, model, criterion, device)
return
if args.save_stats:
stats_dict = {'train_loss': np.zeros((args.epochs,)),
'val_loss': np.zeros((args.epochs,)),
'train_acc': np.zeros((args.epochs,)),
'val_acc': np.zeros((args.epochs,))}
model = model.to(device)
for epoch in range(args.start_epoch, args.epochs):
training_metrics = train(train_loader, model, criterion, optimizer, epoch, device)
scheduler.step()
if args.save_stats:
for k, v in training_metrics.items():
stats_dict[k][epoch] = v
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
test_metrics = validate(val_loader, model, criterion, device)
if args.save_stats:
for k, v in test_metrics.items():
stats_dict[k][epoch] = v
prec1 = test_metrics['val_acc']
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best)
summaryWriter.close()
if args.save_stats:
save_stats_dir = os.path.join('stats', experiment_dir)
if not os.path.exists(save_stats_dir):
os.makedirs(save_stats_dir)
with open(os.path.join(save_stats_dir, 'training_stats.npz'), 'wb') as f:
np.savez(f, **stats_dict)
def train(train_loader, model, criterion, optimizer, epoch, device):
global training_iterations
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.train()
if args.partialbn:
model.freeze_fn('partialbn_statistics')
if args.freeze:
model.freeze_fn('bn_statistics')
end = time.time()
for i, (input, target) in enumerate(train_loader):
data_time.update(time.time() - end)
for m in args.modality:
input[m] = input[m].to(device)
output = model(input)
batch_size = input[args.modality[0]].size(0)
target = target.to(device)
loss = criterion(output, target)
prec1, prec5 = accuracy(output, target, topk=(1,5))
losses.update(loss.item(), batch_size)
top1.update(prec1, batch_size)
top5.update(prec5, batch_size)
optimizer.zero_grad()
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
optimizer.step()
training_iterations += 1
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
summaryWriter.add_scalars('data/loss', {
'training': losses.avg,
}, training_iterations)
summaryWriter.add_scalar('data/epochs', epoch, training_iterations)
summaryWriter.add_scalar('data/learning_rate', optimizer.param_groups[-1]['lr'], training_iterations)
summaryWriter.add_scalars('data/precision/top1', {
'training': top1.avg,
}, training_iterations)
summaryWriter.add_scalars('data/precision/top5', {
'training': top5.avg
}, training_iterations)
message = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.avg:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.avg:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.avg:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.avg:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.avg:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5,
lr=optimizer.param_groups[-1]['lr']))
print(message)
training_metrics = {'train_loss': losses.avg, 'train_acc': top1.avg}
return training_metrics
def validate(val_loader, model, criterion, device):
global training_iterations
with torch.no_grad():
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
for m in args.modality:
input[m] = input[m].to(device)
data_time.update(time.time() - end)
output = model(input)
batch_size = input[args.modality[0]].size(0)
target = target.to(device)
loss = criterion(output, target)
prec1, prec5 = accuracy(output, target, topk=(1,5))
losses.update(loss.item(), batch_size)
top1.update(prec1, batch_size)
top5.update(prec5, batch_size)
batch_time.update(time.time() - end)
end = time.time()
summaryWriter.add_scalars('data/loss', {
'validation': losses.avg,
}, training_iterations)
summaryWriter.add_scalars('data/precision/top1', {
'validation': top1.avg,
}, training_iterations)
summaryWriter.add_scalars('data/precision/top5', {
'validation': top5.avg
}, training_iterations)
message = ('Testing Results: '
'Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} '
'Loss {loss.avg:.5f}').format(top1=top1,
top5=top5,
loss=losses)
print(message)
test_metrics = {'val_loss': losses.avg, 'val_acc': top1.avg}
return test_metrics
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
global experiment_dir
weights_dir = os.path.join('models', experiment_dir)
if not os.path.exists(weights_dir):
os.makedirs(weights_dir)
torch.save(state, os.path.join(weights_dir, filename))
if is_best:
shutil.copyfile(os.path.join(weights_dir, filename),
os.path.join(weights_dir, 'model_best.pth.tar'))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_temp = correct[:k]
correct_k = correct_temp.reshape(-1).to(torch.float32).sum(0)
res.append(float(correct_k.mul_(100.0 / batch_size)))
return tuple(res)
if __name__ == '__main__':
main()