forked from MuSAELab/amplitude-modulation-analysis-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_05.m
127 lines (110 loc) · 3.5 KB
/
example_05.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
%% Example 05
% This example shows the use of the transfomrs and their inverses
%
% rfft() Fourier transform for real-valued signals
% irfft() Inverse Fourier transform for real-valued signals
%
% rfft_psd() Computes PSD data from x(f)
% irfft_psd() Recovers x(t) from its PSD data
%
% strfft_spectrogram() Computes Spectrogram data using STFFT
% istrfft_modulation_spectrogram() Recovers x(t) from its STFFT Spectrogram data
%
% wavelet_spectrogram() Computes Spectrogram using CWT
% iwavelet_modulation_spectrogram() Recovers x(t) from its CWT Spectrogram data
%
%% signal
fs = 2000;
time_v = (0:(10*fs)-1)'/fs;
f1 = sin(2 * pi * 100 * time_v);
f2 = sin(2 * pi * 325 * time_v);
m1 = sin(2 * pi * 5 * time_v) + 2;
m2 = sin(2 * pi * 3 * time_v) + 2;
xi = [f1.*m1 + f2.*m2];
n = size(xi,1);
figure()
plot_signal(xi, fs)
%% time <--> frequency
%% FFT and IFFT of a real-valued signal
xi_rfft = rfft(xi);
xo = irfft(xi_rfft, n);
figure()
fi = subplot(2,1,1);
plot_signal(xi, fs, 'Original x(t)')
fo = subplot(2,1,2);
plot_signal(xo, fs, 'Recovered x(t)')
linkaxes([fi, fo], 'xy')
r = corrcoef(xi, xo);
fprintf('Correlation: %0.3f \r\n', r(2) );
%% PSD data obtained with rFFT, and its inverse
xi_psd = rfft_psd(xi, fs);
xo = irfft_psd(xi_psd);
figure()
fi = subplot(4,1,1);
plot_signal(xi, fs, 'Original x(t)')
fo = subplot(4,1,4);
plot_signal(xo, fs, 'Recovered x(t)')
subplot(4,1,[2,3]);
plot_psd_data(xi_psd)
title('PSD of x(t)')
linkaxes([fi, fo], 'xy')
r = corrcoef(xi, xo);
fprintf('Correlation: %0.3f \r\n', r(2) );
%% time <--> time-frequency
%% STFT Spectrogram
xi_strfft = strfft_spectrogram(xi, fs, round(fs * 0.1), round(fs * 0.05));
xo = istrfft_spectrogram(xi_strfft);
figure()
fi = subplot(4,1,1);
plot_signal(xi, fs, 'Original x(t)')
fo = subplot(4,1,4);
plot_signal(xo, fs, 'Recovered x(t)')
subplot(4,1,[2,3]);
plot_spectrogram_data(xi_strfft)
title('STFT Spectrogram of x(t)')
linkaxes([fi, fo], 'xy')
r = corrcoef(xi, xo);
fprintf('Correlation: %0.3f \r\n', r(2) );
%% CWT Spectrogram
xi_cwt = wavelet_spectrogram(xi, fs);
xo = iwavelet_spectrogram(xi_cwt);
figure()
fi = subplot(4,1,1);
plot_signal(xi, fs, 'Original x(t)')
fo = subplot(4,1,4);
plot_signal(xo, fs, 'Recovered x(t)')
subplot(4,1,[2,3]);
plot_spectrogram_data(xi_cwt)
title('CWT Spectrogram of x(t)')
linkaxes([fi, fo], 'xy')
r = corrcoef(xi, xo);
fprintf('Correlation: %0.3f \r\n', r(2) );
%% time <--> frequency-modulation-frequency
%% STFT Modulation Spectrogram
xi_mod_strfft = strfft_modulation_spectrogram(xi, fs, round(fs * 0.1), round(fs * 0.05));
xo = istrfft_modulation_spectrogram(xi_mod_strfft);
figure()
fi = subplot(4,1,1);
plot_signal(xi, fs, 'Original x(t)')
fo = subplot(4,1,4);
plot_signal(xo, fs, 'Recovered x(t)')
subplot(4,1,[2,3]);
plot_modulation_spectrogram_data(xi_mod_strfft, [], [0, 1000], [0, 10])
title('STFT Modulation Spectrogram of x(t)')
linkaxes([fi, fo], 'xy')
r = corrcoef(xi, xo);
fprintf('Correlation: %0.3f \r\n', r(2) );
%% cwt Modulation Spectrogram
xi_mod_cwt = wavelet_modulation_spectrogram(xi, fs);
xo = iwavelet_modulation_spectrogram(xi_mod_cwt);
figure()
fi = subplot(4,1,1);
plot_signal(xi, fs, 'Original x(t)')
fo = subplot(4,1,4);
plot_signal(xo, fs, 'Recovered x(t)')
subplot(4,1,[2,3]);
plot_modulation_spectrogram_data(xi_mod_cwt, [], [0, 1000], [0, 10])
title('CWT Modulation Spectrogram of x(t)')
linkaxes([fi, fo], 'xy')
r = corrcoef(xi, xo);
fprintf('Correlation: %0.3f \r\n', r(2) );