-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfilter.R
executable file
·325 lines (278 loc) · 12.9 KB
/
filter.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# you may modify the following codes to suit some special needs
# need the corrplot, NMF, maftools (>2.0), and BSgenome, MutationalPatterns,
# gridExtra, and gplots R packages
# best use R>=3.6. Can be executed from Rstudio or Rscript, but not in plain R console
# strongly recommend NOT to add un-matched mutation calling results to this analysis.
# the first argument is the path to the filter design file
# it is a tab-delimited file, with three columns: sample_id, patient_id, folder
# folder is the path to the somatic mutation calling folder
# if patient id is not available, set to NA for all samples
# the second argument is the output folder to place all filtering results
# the third argument is the reference genome build, hg38, hg19, mm10
# the fourth argument is the minimum VAF of the mutations in the tumor sample (recommended: 0.01-0.05)
# the fifth argument is whether to filter out extremely long genes. TRUE/FALSE. Default is FALSE
# see below for list of genes. These genes usually turn out to have somatic mutations in
# any cohort of patients
# Rscript filter.R ./example/filter.txt ./example/filter hg38 0.01 FALSE
###### setting up ##########
library(corrplot)
library(NMF)
library(maftools)
library(gplots)
#library(phangorn)
#library(ape)
options(scipen=999)
args = commandArgs(trailingOnly=TRUE)
if (length(args)!=5) {stop("Error: Not the correct number of arguments!")}
design=args[1]
path=args[2]
refBuild=args[3]
min_tumor_vaf=as.numeric(args[4])
filter_long=args[5]=="TRUE"
if (grepl("hg",refBuild))
{
ref_genome=paste("BSgenome.Hsapiens.UCSC.",refBuild,sep="")
}else
{
ref_genome=paste("BSgenome.Mmusculus.UCSC.",refBuild,sep="")
}
if (Sys.getenv("RSTUDIO") == "1")
{
library(rstudioapi)
scriptPath=dirname(rstudioapi::getSourceEditorContext()$path)
}else
{
args=commandArgs(trailingOnly = F)
scriptPath=normalizePath(dirname(sub("^--file=", "", args[grep("^--file=", args)])))
}
cosmic_genes=read.csv(paste(scriptPath,"/somatic_script/cancer_gene_census.csv",sep=""),row.names=1,
stringsAsFactors = F)
long_genes=c("TTN","KCNQ1OT1","MUC16","ANKRD20A9P","TSIX","SYNE1","ZBTB20","OBSCN",
"SH3TC2","NEB","MUC19","MUC4","NEAT1","SYNE2","CCDC168","AAK1","HYDIN","RNF213",
"LOC100131257","FSIP2","MUC5B")
design=read.table(design,stringsAsFactors = F,header=T)
design=design[!duplicated(design),]
if (colnames(design)[1]!="sample_id")
{stop("Error: Did you forgot the column headers for the design file?")}
design=design[order(design$patient_id,design$sample_id),]
if (!file.exists(path)) {dir.create(path)}
######## check parental origin (for sample mislabeling) ##################
if (any(is.na(design$patient_id)))
{
design$patient_id=design$sample_id
}else
{
# read germline mutations
mutations=list()
for (i in 1:dim(design)[1])
{
file=paste(design$folder[i],"/germline_mutations_",refBuild,".txt",sep="")
tmp=read.table(file, stringsAsFactors = F,sep="\t",header = T,
colClasses=c("Ref"="character","Alt"="character"))
mutations[[design$sample_id[i]]]=paste(tmp$Chr,tmp$Start,tmp$Ref,tmp$Alt)
}
# find overlap between germline mutations
germline_overlap=matrix(NA,nrow=dim(design)[1],ncol=dim(design)[1],
dimnames=list(design$sample_id,design$sample_id))
for (i in 1:dim(design)[1])
{
for (j in i:dim(design)[1])
{
a=mutations[[i]]
b=mutations[[j]]
germline_overlap[i,j]=sum(a %in% b)/(length(a)+length(b))*2
germline_overlap[j,i]=germline_overlap[i,j]
}
}
# plot overlap matrix
pdf(file=paste(path,"/germline_overlap.pdf",sep=""),width=6,height=6)
heatmap.2(germline_overlap,Rowv=F,Colv=F,dendrogram="none",symm=T,trace="none",srtCol=45,
density.info="none",key.title=NA)
dev.off()
}
####### read and filter mutations ##########
mutations=c()
for (i in 1:dim(design)[1])
{
# read data
file=paste(design$folder[i],"/somatic_mutations_",refBuild,".txt",sep="")
tmp=read.table(file,stringsAsFactors = F,sep="\t",header = T,
colClasses=c("Ref"="character","Alt"="character"))
if (dim(tmp)[1]==0) {next}
tmp$sample_id=design$sample_id[i]
tmp$patient_id=design$patient_id[i]
# filter
tmp=tmp[tmp$Tumor_alt/(tmp$Tumor_alt+tmp$Tumor_ref)>=min_tumor_vaf,]
tmp=tmp[tmp$Func.refGene %in% c("exonic","exonic;splicing","splicing;exonic","splicing"),] # UTR or coding regions
tmp=tmp[tmp$ExonicFunc.refGene!="synonymous SNV",] # non-S mutations
if (dim(tmp)[1]==0) {next}
if (!"SIFT_pred" %in% colnames(tmp)) {tmp$SIFT_pred=tmp$Polyphen2_HVAR_pred="."} # mouse
tmp=tmp[!(tmp$SIFT_pred=="T" & tmp$Polyphen2_HVAR_pred=="B"),] # damaging missense mutations
genes=table(tmp$Gene.refGene) # too many mutations on the same gene
tmp=tmp[tmp$Gene.refGene %in% names(genes)[genes<=4],]
if (filter_long) {tmp=tmp[!tmp$Gene.refGene %in% long_genes,]}
mutations=rbind(mutations,tmp)
}
# further filter possible artefacts (the exact mutation in too many samples)
mutations$mutation=paste(mutations$Chr,mutations$Start,mutations$Ref,mutations$Alt)
tmp=mutations[,c("patient_id","mutation")]
tmp=tmp[!duplicated(tmp),]
tmp=table(tmp$mutation)
artefact=tmp[tmp>max(length(unique(mutations$patient_id))*0.2,2)]
cat(paste("Filtering ",round(sum(mutations$mutation %in% names(artefact))/dim(mutations)[1]*100),
"% of mutations due to being exactly the same\n"))
mutations=mutations[!mutations$mutation %in% names(artefact),]
########### write results ###############
# all mutations
cosmic_role=cosmic_genes$Role.in.Cancer[match(tolower(mutations$Gene.refGene),tolower(rownames(cosmic_genes)))]
write.csv(cbind(mutations,cosmic_role),file=paste(path,"/all_mutations.csv",sep=""),row.names = F)
# vcf file
system(paste("rm -f -r ",path,"/each",sep=""))
system(paste("mkdir ",path,"/each",sep=""))
for (sample_id in unique(mutations$sample_id))
{
vcf=mutations[mutations$sample_id==sample_id,]
vcf=vcf[,c("Chr","Start","Ref","Alt")]
vcf$ID=vcf$QUAL=vcf$INFO="."
vcf$FILTER="PASS"
vcf=vcf[,c("Chr","Start","ID","Ref","Alt","QUAL","FILTER","INFO")]
colnames(vcf)=c("#CHROM","POS","ID","REF","ALT","QUAL","FILTER","INFO")
write.table("##fileformat=VCFv4.2",
file=paste(path,"/each/",sample_id,".vcf",sep=""),
row.names=F,col.names=F,quote=F)
suppressWarnings({write.table(vcf,
file=paste(path,"/each/",sample_id,".vcf",sep=""),
row.names=F,col.names=T,quote=F,sep="\t",append=T)})
}
# for maf file
tmp=mutations[,c("Chr","Start","End","Ref","Alt","Gene.refGene","ExonicFunc.refGene",
"AAChange.refGene","sample_id","Func.refGene")]
colnames(tmp)[9]="Tumor_Sample_Barcode"
tmp$GeneDetail.refGene=NA
for (i in 1:dim(tmp)[1]) # newer versions of annovar do not label fs mutations properly
{
if (!grepl("frameshift",tmp$ExonicFunc.refGene[i])) {next}
if (nchar(tmp$Ref[i])>nchar(tmp$Alt[i]))
{
tmp$ExonicFunc.refGene[i]=gsub("frameshift substitution","frameshift deletion",tmp$ExonicFunc.refGene[i])
}else
{
tmp$ExonicFunc.refGene[i]=gsub("frameshift substitution","frameshift insertion",tmp$ExonicFunc.refGene[i])
}
}
write.table(tmp[,c("Chr","Start","End","Ref","Alt","Gene.refGene","GeneDetail.refGene","ExonicFunc.refGene",
"AAChange.refGene","Tumor_Sample_Barcode","Func.refGene")],file=paste(path,"/all_mutations.txt",sep=""),row.names = F,sep="\t",quote=F)
# summary of mutations
genes=unique(strsplit(paste(mutations$Gene.refGene,collapse=";"),";")[[1]])
samples=unique(mutations$sample_id)
sum_mut=matrix("",nrow=length(genes),ncol=length(samples))
rownames(sum_mut)=genes
colnames(sum_mut)=samples
for (i in 1:dim(mutations)[1])
{
x=strsplit(mutations$Gene.refGene[i],";")[[1]]
y=mutations$sample_id[i]
z=paste(mutations$Func.refGene[i],mutations$ExonicFunc.refGene[i],sep=" ")
sum_mut[x,y]=sub("^;","",paste(sum_mut[x,y],z,sep=";"),perl=T)
}
cosmic_role=cosmic_genes$Role.in.Cancer[match(tolower(rownames(sum_mut)),tolower(rownames(cosmic_genes)))]
write.csv(cbind(cosmic_role,sum_mut),file=paste(path,"/summary_mutations_details.csv",sep=""))
write.csv(cbind(cosmic_role,1*(sum_mut!="")),file=paste(path,"/summary_mutations.csv",sep=""))
########## plotting ###################
# get data into maf format
laml=annovarToMaf(annovar=paste(path,"/all_mutations.txt",sep=""),refBuild)
write.table(laml,file=paste(path,"/all_mutations.maf",sep=""),quote=F,sep="\t",row.names = F)
laml = read.maf(maf = paste(path,"/all_mutations.maf",sep=""), useAll = TRUE)
# summary
pdf(file=paste(path,"/summary.pdf",sep=""),width=12,height=8)
plotmafSummary(maf = laml, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE,top=20)
dev.off()
# vaf
pdf(file=paste(path,"/vaf.pdf",sep=""),width=6,height=4)
mutations$vaf=mutations$Tumor_alt/(mutations$Tumor_alt+mutations$Tumor_ref)
plot(density(mutations$vaf),xlab="VAF",main="Variant allele frequencies",lwd=2,ylim=c(0,10))
for (sample in unique(mutations$sample_id))
{
if (sum(mutations$sample_id==sample)<2) {next}
lines(density(mutations$vaf[mutations$sample_id==sample]),lwd=1,col="orange")
}
dev.off()
# oncoplot
annotation_oncoplot=design
annotation_oncoplot=cbind(Tumor_Sample_Barcode=design$sample_id,annotation_oncoplot)
annotation_oncoplot=annotation_oncoplot[annotation_oncoplot$sample_id %in% mutations$sample_id,]
pdf(file=paste(path,"/oncoplot_all.pdf",sep=""),width=10,height=10)
oncoplot(maf = laml, top = 50, showTumorSampleBarcodes=T,removeNonMutated=F,
fontSize=0.6,SampleNamefontSize=1,titleFontSize=1,legendFontSize=0.8,annotationFontSize=0.8)
dev.off()
pdf(file=paste(path,"/oncoplot_all_orderbypatient.pdf",sep=""),width=10,height=10)
oncoplot(maf = laml, top = 50, showTumorSampleBarcodes=T,removeNonMutated=F,
annotationDat=annotation_oncoplot[,c("Tumor_Sample_Barcode","patient_id")],
sortByAnnotation=T,clinicalFeatures="patient_id",
fontSize=0.6,SampleNamefontSize=1,titleFontSize=1,legendFontSize=0.8,annotationFontSize=0.8)
dev.off()
show_genes=table(mutations$Gene.refGene)
show_genes=names(show_genes[rank(-show_genes)<50])
show_genes=show_genes[show_genes %in% rownames(cosmic_genes)]
if (length(show_genes)>2)
{
pdf(file=paste(path,"/oncoplot_cosmic.pdf",sep=""),width=10,height=10)
oncoplot(maf = laml, top = 50, showTumorSampleBarcodes=T,removeNonMutated=F,genes=show_genes,
fontSize=0.6,SampleNamefontSize=1,titleFontSize=1,legendFontSize=0.8,annotationFontSize=0.8)
dev.off()
pdf(file=paste(path,"/oncoplot_cosmic_orderbypatient.pdf",sep=""),width=10,height=10)
oncoplot(maf = laml, top = 50, showTumorSampleBarcodes=T,removeNonMutated=F,genes=show_genes,
annotationDat=annotation_oncoplot[,c("Tumor_Sample_Barcode","patient_id")],
sortByAnnotation=T,clinicalFeatures="patient_id",
fontSize=0.6,SampleNamefontSize=1,titleFontSize=1,legendFontSize=0.8,annotationFontSize=0.8)
dev.off()
}
# lollipop plot
# dir=paste(path,"/lollipop",sep="")
# if (!file.exists(dir)) {dir.create(file.path(dir))}
# for (gene in getGeneSummary(laml)$Hugo_Symbol[1:20])
# {
# pdf(file=paste(path,"/lollipop/",gene,".pdf",sep=""), width=10, height=3)
# tryCatch({lollipopPlot(maf = laml, gene = gene,AACol='AAChange.refGene',labelPos="all",repel=T,
# labPosAngle=45,domainLabelSize=1.5,printCount=T)},
# error=function(e) print(e))
# dev.off()
# }
## somatic signature analysis
# install ref genome librarys
tryCatch({eval(parse(text=paste("require(",ref_genome,")",sep="")))},
error=function(e) {
cat(paste("installing ",ref_genome,", will take some time\n",sep=""))
if (!requireNamespace("BiocManager", quietly = TRUE)) {install.packages("BiocManager")}
BiocManager::install(ref_genome)
eval(parse(text=paste("require(",ref_genome,")",sep="")))
})
# load library
library(BSgenome)
library(ref_genome, character.only = TRUE)
library(MutationalPatterns)
library(gridExtra)
# read from vcf files
indiv_vcfs=list.files(paste(path,"/each",sep=""),pattern=".vcf",full.names=T)
sample_names=sub("\\.vcf$","",sub(".*\\/each\\/","",indiv_vcfs),perl=T)
suppressWarnings({indiv_vcfs=read_vcfs_as_granges(indiv_vcfs,
sample_names, ref_genome)})
mut_mat = mut_matrix(vcf_list = indiv_vcfs, ref_genome = ref_genome)
# read reference cancer signatures
sp_url = paste("https://cancer.sanger.ac.uk/cancergenome/assets/",
"signatures_probabilities.txt", sep = "")
cancer_signatures = read.table(sp_url, sep = "\t", header = TRUE,
stringsAsFactors = F)
new_order = match(row.names(mut_mat), cancer_signatures$Somatic.Mutation.Type)
cancer_signatures = cancer_signatures[as.vector(new_order),]
row.names(cancer_signatures) = cancer_signatures$Somatic.Mutation.Type
cancer_signatures = as.matrix(cancer_signatures[, 4:33])
# actual fitting
fit_res = fit_to_signatures(mut_mat, cancer_signatures)
select = which(rowSums(fit_res$contribution) > 10)
pdf(paste(path,"/mut_sig.pdf",sep=""), width = 15, height = 10)
plot_contribution(fit_res$contribution[select,],
cancer_signatures[, select],coord_flip = T,mode = "absolute")
plot_contribution(fit_res$contribution[select,],
cancer_signatures[, select],coord_flip = T,mode = "relative")
dev.off()