forked from mrcodetastic/ESP32-HUB75-MatrixPanel-DMA
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathESP32-HUB75-MatrixPanel-I2S-DMA.cpp
1035 lines (817 loc) · 47 KB
/
ESP32-HUB75-MatrixPanel-I2S-DMA.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <Arduino.h>
#include "ESP32-HUB75-MatrixPanel-I2S-DMA.h"
#if defined(ESP32_SXXX)
#pragma message "Compiling for ESP32-Sx MCUs"
#elif defined(ESP32_CXXX)
#pragma message "Compiling for ESP32-Cx MCUs"
#elif CONFIG_IDF_TARGET_ESP32 || defined(ESP32)
#pragma message "Compiling for original (released 2016) 520kB SRAM ESP32."
#else
#error "Compiling for something unknown!"
#endif
// Credits: Louis Beaudoin <https://github.com/pixelmatix/SmartMatrix/tree/teensylc>
// and Sprite_TM: https://www.esp32.com/viewtopic.php?f=17&t=3188 and https://www.esp32.com/viewtopic.php?f=13&t=3256
/*
This is example code to driver a p3(2121)64*32 -style RGB LED display. These types of displays do not have memory and need to be refreshed
continuously. The display has 2 RGB inputs, 4 inputs to select the active line, a pixel clock input, a latch enable input and an output-enable
input. The display can be seen as 2 64x16 displays consisting of the upper half and the lower half of the display. Each half has a separate
RGB pixel input, the rest of the inputs are shared.
Each display half can only show one line of RGB pixels at a time: to do this, the RGB data for the line is input by setting the RGB input pins
to the desired value for the first pixel, giving the display a clock pulse, setting the RGB input pins to the desired value for the second pixel,
giving a clock pulse, etc. Do this 64 times to clock in an entire row. The pixels will not be displayed yet: until the latch input is made high,
the display will still send out the previously clocked in line. Pulsing the latch input high will replace the displayed data with the data just
clocked in.
The 4 line select inputs select where the currently active line is displayed: when provided with a binary number (0-15), the latched pixel data
will immediately appear on this line. Note: While clocking in data for a line, the *previous* line is still displayed, and these lines should
be set to the value to reflect the position the *previous* line is supposed to be on.
Finally, the screen has an OE input, which is used to disable the LEDs when latching new data and changing the state of the line select inputs:
doing so hides any artefacts that appear at this time. The OE line is also used to dim the display by only turning it on for a limited time every
line.
All in all, an image can be displayed by 'scanning' the display, say, 100 times per second. The slowness of the human eye hides the fact that
only one line is showed at a time, and the display looks like every pixel is driven at the same time.
Now, the RGB inputs for these types of displays are digital, meaning each red, green and blue subpixel can only be on or off. This leads to a
color palette of 8 pixels, not enough to display nice pictures. To get around this, we use binary code modulation.
Binary code modulation is somewhat like PWM, but easier to implement in our case. First, we define the time we would refresh the display without
binary code modulation as the 'frame time'. For, say, a four-bit binary code modulation, the frame time is divided into 15 ticks of equal length.
We also define 4 subframes (0 to 3), defining which LEDs are on and which LEDs are off during that subframe. (Subframes are the same as a
normal frame in non-binary-coded-modulation mode, but are showed faster.) From our (non-monochrome) input image, we take the (8-bit: bit 7
to bit 0) RGB pixel values. If the pixel values have bit 7 set, we turn the corresponding LED on in subframe 3. If they have bit 6 set,
we turn on the corresponding LED in subframe 2, if bit 5 is set subframe 1, if bit 4 is set in subframe 0.
Now, in order to (on average within a frame) turn a LED on for the time specified in the pixel value in the input data, we need to weigh the
subframes. We have 15 pixels: if we show subframe 3 for 8 of them, subframe 2 for 4 of them, subframe 1 for 2 of them and subframe 1 for 1 of
them, this 'automatically' happens. (We also distribute the subframes evenly over the ticks, which reduces flicker.)
In this code, we use the I2S peripheral in parallel mode to achieve this. Essentially, first we allocate memory for all subframes. This memory
contains a sequence of all the signals (2xRGB, line select, latch enable, output enable) that need to be sent to the display for that subframe.
Then we ask the I2S-parallel driver to set up a DMA chain so the subframes are sent out in a sequence that satisfies the requirement that
subframe x has to be sent out for (2^x) ticks. Finally, we fill the subframes with image data.
We use a front buffer/back buffer technique here to make sure the display is refreshed in one go and drawing artefacts do not reach the display.
In practice, for small displays this is not really necessarily.
*/
// macro's to calculate sizes of a single buffer (double buffer takes twice as this)
#define rowBitStructBuffSize sizeof(ESP32_I2S_DMA_STORAGE_TYPE) * (PIXELS_PER_ROW + CLKS_DURING_LATCH) * PIXEL_COLOR_DEPTH_BITS
#define frameStructBuffSize ROWS_PER_FRAME * rowBitStructBuffSize
/* this replicates same function in rowBitStruct, but due to induced inlining it might be MUCH faster when used in tight loops
* while method from struct could be flushed out of instruction cache between loop cycles
* do NOT forget about buff_id param if using this
*/
#define getRowDataPtr(row, _dpth, buff_id) &(dma_buff.rowBits[row]->data[_dpth * dma_buff.rowBits[row]->width + buff_id*(dma_buff.rowBits[row]->width * dma_buff.rowBits[row]->color_depth)])
bool MatrixPanel_I2S_DMA::allocateDMAmemory()
{
/***
* Step 1: Look at the overall DMA capable memory for the DMA FRAMEBUFFER data only (not the DMA linked list descriptors yet)
* and do some pre-checks.
*/
int _num_frame_buffers = (m_cfg.double_buff) ? 2:1;
size_t _frame_buffer_memory_required = frameStructBuffSize * _num_frame_buffers;
size_t _dma_linked_list_memory_required = 0;
size_t _total_dma_capable_memory_reserved = 0;
// 1. Calculate the amount of DMA capable memory that's actually available
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Panel Width: %d pixels.\r\n"), PIXELS_PER_ROW);
Serial.printf_P(PSTR("Panel Height: %d pixels.\r\n"), m_cfg.mx_height);
if (m_cfg.double_buff) {
Serial.println(F("DOUBLE FRAME BUFFERS / DOUBLE BUFFERING IS ENABLED. DOUBLE THE RAM REQUIRED!"));
}
Serial.println(F("DMA memory blocks available before any malloc's: "));
heap_caps_print_heap_info(MALLOC_CAP_DMA);
Serial.println(F("******************************************************************"));
Serial.printf_P(PSTR("We're going to need %d bytes of SRAM just for the frame buffer(s).\r\n"), _frame_buffer_memory_required);
Serial.printf_P(PSTR("The total amount of DMA capable SRAM memory is %d bytes.\r\n"), heap_caps_get_free_size(MALLOC_CAP_DMA));
Serial.printf_P(PSTR("Largest DMA capable SRAM memory block is %d bytes.\r\n"), heap_caps_get_largest_free_block(MALLOC_CAP_DMA));
Serial.println(F("******************************************************************"));
#endif
// Can we potentially fit the framebuffer into the DMA capable memory that's available?
if ( heap_caps_get_free_size(MALLOC_CAP_DMA) < _frame_buffer_memory_required ) {
#if SERIAL_DEBUG
Serial.printf_P(PSTR("######### Insufficient memory for requested resolution. Reduce MATRIX_COLOR_DEPTH and try again.\r\n\tAdditional %d bytes of memory required.\r\n\r\n"), (_frame_buffer_memory_required-heap_caps_get_free_size(MALLOC_CAP_DMA)) );
#endif
return false;
}
// Alright, theoretically we should be OK, so let us do this, so
// lets allocate a chunk of memory for each row (a row could span multiple panels if chaining is in place)
dma_buff.rowBits.reserve(ROWS_PER_FRAME);
// iterate through number of rows
for (int malloc_num =0; malloc_num < ROWS_PER_FRAME; ++malloc_num)
{
auto ptr = std::make_shared<rowBitStruct>(PIXELS_PER_ROW, PIXEL_COLOR_DEPTH_BITS, m_cfg.double_buff);
if (ptr->data == nullptr){
#if SERIAL_DEBUG
Serial.printf_P(PSTR("ERROR: Couldn't malloc rowBitStruct %d! Critical fail.\r\n"), malloc_num);
#endif
return false;
// TODO: should we release all previous rowBitStructs here???
}
dma_buff.rowBits.emplace_back(ptr); // save new rowBitStruct into rows vector
++dma_buff.rows;
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Malloc'ing %d bytes of memory @ address %ud for frame row %d.\r\n"), ptr->size()*_num_frame_buffers, (unsigned int)ptr->getDataPtr(), malloc_num);
#endif
}
_total_dma_capable_memory_reserved += _frame_buffer_memory_required;
/***
* Step 2: Calculate the amount of memory required for the DMA engine's linked list descriptors.
* Credit to SmartMatrix for this stuff.
*/
// Calculate what colour depth is actually possible based on memory available vs. required DMA linked-list descriptors.
// aka. Calculate the lowest LSBMSB_TRANSITION_BIT value that will fit in memory
int numDMAdescriptorsPerRow = 0;
lsbMsbTransitionBit = 0;
while(1) {
numDMAdescriptorsPerRow = 1;
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++) {
numDMAdescriptorsPerRow += (1<<(i - lsbMsbTransitionBit - 1));
}
size_t ramrequired = numDMAdescriptorsPerRow * ROWS_PER_FRAME * _num_frame_buffers * sizeof(lldesc_t);
size_t largestblockfree = heap_caps_get_largest_free_block(MALLOC_CAP_DMA);
#if SERIAL_DEBUG
Serial.printf_P(PSTR("lsbMsbTransitionBit of %d with %d DMA descriptors per frame row, requires %d bytes RAM, %d available, leaving %d free: \r\n"), lsbMsbTransitionBit, numDMAdescriptorsPerRow, ramrequired, largestblockfree, largestblockfree - ramrequired);
#endif
if(ramrequired < largestblockfree)
break;
if(lsbMsbTransitionBit < PIXEL_COLOR_DEPTH_BITS - 1)
lsbMsbTransitionBit++;
else
break;
}
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Raised lsbMsbTransitionBit to %d/%d to fit in remaining RAM\r\n"), lsbMsbTransitionBit, PIXEL_COLOR_DEPTH_BITS - 1);
#endif
#ifndef IGNORE_REFRESH_RATE
// calculate the lowest LSBMSB_TRANSITION_BIT value that will fit in memory that will meet or exceed the configured refresh rate
while(1) {
int psPerClock = 1000000000000UL/m_cfg.i2sspeed;
int nsPerLatch = ((PIXELS_PER_ROW + CLKS_DURING_LATCH) * psPerClock) / 1000;
// add time to shift out LSBs + LSB-MSB transition bit - this ignores fractions...
int nsPerRow = PIXEL_COLOR_DEPTH_BITS * nsPerLatch;
// add time to shift out MSBs
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++)
nsPerRow += (1<<(i - lsbMsbTransitionBit - 1)) * (PIXEL_COLOR_DEPTH_BITS - i) * nsPerLatch;
int nsPerFrame = nsPerRow * ROWS_PER_FRAME;
int actualRefreshRate = 1000000000UL/(nsPerFrame);
calculated_refresh_rate = actualRefreshRate;
#if SERIAL_DEBUG
Serial.printf_P(PSTR("lsbMsbTransitionBit of %d gives %d Hz refresh: \r\n"), lsbMsbTransitionBit, actualRefreshRate);
#endif
if (actualRefreshRate > m_cfg.min_refresh_rate)
break;
if(lsbMsbTransitionBit < PIXEL_COLOR_DEPTH_BITS - 1)
lsbMsbTransitionBit++;
else
break;
}
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Raised lsbMsbTransitionBit to %d/%d to meet minimum refresh rate\r\n"), lsbMsbTransitionBit, PIXEL_COLOR_DEPTH_BITS - 1);
#endif
#endif
/***
* Step 2a: lsbMsbTransition bit is now finalised - recalculate the DMA descriptor count required, which is used for
* memory allocation of the DMA linked list memory structure.
*/
numDMAdescriptorsPerRow = 1;
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++) {
numDMAdescriptorsPerRow += (1<<(i - lsbMsbTransitionBit - 1));
}
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Recalculated number of DMA descriptors per row: %d\n"), numDMAdescriptorsPerRow);
#endif
// Refer to 'DMA_LL_PAYLOAD_SPLIT' code in configureDMA() below to understand why this exists.
// numDMAdescriptorsPerRow is also used to calculate descount which is super important in i2s_parallel_config_t SoC DMA setup.
if ( rowBitStructBuffSize > DMA_MAX ) {
#if SERIAL_DEBUG
Serial.printf_P(PSTR("rowColorDepthStruct struct is too large, split DMA payload required. Adding %d DMA descriptors\n"), PIXEL_COLOR_DEPTH_BITS-1);
#endif
numDMAdescriptorsPerRow += PIXEL_COLOR_DEPTH_BITS-1;
// Note: If numDMAdescriptorsPerRow is even just one descriptor too large, DMA linked list will not correctly loop.
}
/***
* Step 3: Allocate memory for DMA linked list, linking up each framebuffer row in sequence for GPIO output.
*/
_dma_linked_list_memory_required = numDMAdescriptorsPerRow * ROWS_PER_FRAME * _num_frame_buffers * sizeof(lldesc_t);
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Descriptors for lsbMsbTransitionBit of %d/%d with %d frame rows require %d bytes of DMA RAM with %d numDMAdescriptorsPerRow.\r\n"), lsbMsbTransitionBit, PIXEL_COLOR_DEPTH_BITS - 1, ROWS_PER_FRAME, _dma_linked_list_memory_required, numDMAdescriptorsPerRow);
#endif
_total_dma_capable_memory_reserved += _dma_linked_list_memory_required;
// Do a final check to see if we have enough space for the additional DMA linked list descriptors that will be required to link it all up!
if(_dma_linked_list_memory_required > heap_caps_get_largest_free_block(MALLOC_CAP_DMA)) {
#if SERIAL_DEBUG
Serial.println(F("ERROR: Not enough SRAM left over for DMA linked-list descriptor memory reservation! Oh so close!\r\n"));
#endif
return false;
} // linked list descriptors memory check
// malloc the DMA linked list descriptors that i2s_parallel will need
desccount = numDMAdescriptorsPerRow * ROWS_PER_FRAME;
//lldesc_t * dmadesc_a = (lldesc_t *)heap_caps_malloc(desccount * sizeof(lldesc_t), MALLOC_CAP_DMA);
dmadesc_a = (lldesc_t *)heap_caps_malloc(desccount * sizeof(lldesc_t), MALLOC_CAP_DMA);
assert("Can't allocate descriptor framebuffer a");
if(!dmadesc_a) {
#if SERIAL_DEBUG
Serial.println(F("ERROR: Could not malloc descriptor framebuffer a."));
#endif
return false;
}
if (m_cfg.double_buff) // reserve space for second framebuffer linked list
{
//lldesc_t * dmadesc_b = (lldesc_t *)heap_caps_malloc(desccount * sizeof(lldesc_t), MALLOC_CAP_DMA);
dmadesc_b = (lldesc_t *)heap_caps_malloc(desccount * sizeof(lldesc_t), MALLOC_CAP_DMA);
assert("Could not malloc descriptor framebuffer b.");
if(!dmadesc_b) {
#if SERIAL_DEBUG
Serial.println(F("ERROR: Could not malloc descriptor framebuffer b."));
#endif
return false;
}
}
#if SERIAL_DEBUG
Serial.println(F("*** ESP32-HUB75-MatrixPanel-I2S-DMA: Memory Allocations Complete ***"));
Serial.printf_P(PSTR("Total memory that was reserved: %d kB.\r\n"), _total_dma_capable_memory_reserved/1024);
Serial.printf_P(PSTR("... of which was used for the DMA Linked List(s): %d kB.\r\n"), _dma_linked_list_memory_required/1024);
Serial.printf_P(PSTR("Heap Memory Available: %d bytes total. Largest free block: %d bytes.\r\n"), heap_caps_get_free_size(0), heap_caps_get_largest_free_block(0));
Serial.printf_P(PSTR("General RAM Available: %d bytes total. Largest free block: %d bytes.\r\n"), heap_caps_get_free_size(MALLOC_CAP_DEFAULT), heap_caps_get_largest_free_block(MALLOC_CAP_DEFAULT));
#endif
// Just os we know
initialized = true;
return true;
} // end allocateDMAmemory()
void MatrixPanel_I2S_DMA::configureDMA(const HUB75_I2S_CFG& _cfg)
{
#if SERIAL_DEBUG
Serial.println(F("configureDMA(): Starting configuration of DMA engine.\r\n"));
#endif
lldesc_t *previous_dmadesc_a = 0;
lldesc_t *previous_dmadesc_b = 0;
int current_dmadescriptor_offset = 0;
// HACK: If we need to split the payload in 1/2 so that it doesn't breach DMA_MAX, lets do it by the color_depth.
int num_dma_payload_color_depths = PIXEL_COLOR_DEPTH_BITS;
if ( rowBitStructBuffSize > DMA_MAX ) {
num_dma_payload_color_depths = 1;
}
// Fill DMA linked lists for both frames (as in, halves of the HUB75 panel) and if double buffering is enabled, link it up for both buffers.
for(int row = 0; row < ROWS_PER_FRAME; row++) {
#if SERIAL_DEBUG
Serial.printf_P(PSTR( "Row %d DMA payload of %d bytes. DMA_MAX is %d.\n"), row, dma_buff.rowBits[row]->size(), DMA_MAX);
#endif
// first set of data is LSB through MSB, single pass (IF TOTAL SIZE < DMA_MAX) - all color bits are displayed once, which takes care of everything below and including LSBMSB_TRANSITION_BIT
// NOTE: size must be less than DMA_MAX - worst case for library: 16-bpp with 256 pixels per row would exceed this, need to break into two
link_dma_desc(&dmadesc_a[current_dmadescriptor_offset], previous_dmadesc_a, dma_buff.rowBits[row]->getDataPtr(), dma_buff.rowBits[row]->size(num_dma_payload_color_depths));
previous_dmadesc_a = &dmadesc_a[current_dmadescriptor_offset];
if (m_cfg.double_buff) {
link_dma_desc(&dmadesc_b[current_dmadescriptor_offset], previous_dmadesc_b, dma_buff.rowBits[row]->getDataPtr(0, 1), dma_buff.rowBits[row]->size(num_dma_payload_color_depths));
previous_dmadesc_b = &dmadesc_b[current_dmadescriptor_offset]; }
current_dmadescriptor_offset++;
// If the number of pixels per row is too great for the size of a DMA payload, so we need to split what we were going to send above.
if ( rowBitStructBuffSize > DMA_MAX )
{
#if SERIAL_DEBUG
Serial.printf_P(PSTR("Splitting DMA payload for %d color depths into %d byte payloads.\r\n"), PIXEL_COLOR_DEPTH_BITS-1, rowBitStructBuffSize/PIXEL_COLOR_DEPTH_BITS );
#endif
for (int cd = 1; cd < PIXEL_COLOR_DEPTH_BITS; cd++)
{
// first set of data is LSB through MSB, single pass - all color bits are displayed once, which takes care of everything below and including LSBMSB_TRANSITION_BIT
// TODO: size must be less than DMA_MAX - worst case for library: 16-bpp with 256 pixels per row would exceed this, need to break into two
link_dma_desc(&dmadesc_a[current_dmadescriptor_offset], previous_dmadesc_a, dma_buff.rowBits[row]->getDataPtr(cd, 0), dma_buff.rowBits[row]->size(num_dma_payload_color_depths) );
previous_dmadesc_a = &dmadesc_a[current_dmadescriptor_offset];
if (m_cfg.double_buff) {
link_dma_desc(&dmadesc_b[current_dmadescriptor_offset], previous_dmadesc_b, dma_buff.rowBits[row]->getDataPtr(cd, 1), dma_buff.rowBits[row]->size(num_dma_payload_color_depths));
previous_dmadesc_b = &dmadesc_b[current_dmadescriptor_offset]; }
current_dmadescriptor_offset++;
} // additional linked list items
} // row depth struct
for(int i=lsbMsbTransitionBit + 1; i<PIXEL_COLOR_DEPTH_BITS; i++)
{
// binary time division setup: we need 2 of bit (LSBMSB_TRANSITION_BIT + 1) four of (LSBMSB_TRANSITION_BIT + 2), etc
// because we sweep through to MSB each time, it divides the number of times we have to sweep in half (saving linked list RAM)
// we need 2^(i - LSBMSB_TRANSITION_BIT - 1) == 1 << (i - LSBMSB_TRANSITION_BIT - 1) passes from i to MSB
#if SERIAL_DEBUG
Serial.printf_P(PSTR("configureDMA(): DMA Loops for PIXEL_COLOR_DEPTH_BITS %d is: %d.\r\n"), i, (1<<(i - lsbMsbTransitionBit - 1)));
#endif
for(int k=0; k < (1<<(i - lsbMsbTransitionBit - 1)); k++)
{
link_dma_desc(&dmadesc_a[current_dmadescriptor_offset], previous_dmadesc_a, dma_buff.rowBits[row]->getDataPtr(i, 0), dma_buff.rowBits[row]->size(PIXEL_COLOR_DEPTH_BITS - i) );
previous_dmadesc_a = &dmadesc_a[current_dmadescriptor_offset];
if (m_cfg.double_buff) {
link_dma_desc(&dmadesc_b[current_dmadescriptor_offset], previous_dmadesc_b, dma_buff.rowBits[row]->getDataPtr(i, 1), dma_buff.rowBits[row]->size(PIXEL_COLOR_DEPTH_BITS - i) );
previous_dmadesc_b = &dmadesc_b[current_dmadescriptor_offset];
}
current_dmadescriptor_offset++;
} // end color depth ^ 2 linked list
} // end color depth loop
} // end frame rows
#if SERIAL_DEBUG
Serial.printf_P(PSTR("configureDMA(): Configured LL structure. %d DMA Linked List descriptors populated.\r\n"), current_dmadescriptor_offset);
if ( desccount != current_dmadescriptor_offset)
{
Serial.printf_P(PSTR("configureDMA(): ERROR! Expected descriptor count of %d != actual DMA descriptors of %d!\r\n"), desccount, current_dmadescriptor_offset);
}
#endif
//End markers for DMA LL
dmadesc_a[desccount-1].eof = 1;
dmadesc_a[desccount-1].qe.stqe_next=(lldesc_t*)&dmadesc_a[0];
if (m_cfg.double_buff) {
dmadesc_b[desccount-1].eof = 1;
dmadesc_b[desccount-1].qe.stqe_next=(lldesc_t*)&dmadesc_b[0];
} else {
dmadesc_b = dmadesc_a; // link to same 'a' buffer
}
#if SERIAL_DEBUG
Serial.println(F("Performing I2S setup:"));
#endif
i2s_parallel_config_t dma_cfg = {
.gpio_bus={_cfg.gpio.r1, _cfg.gpio.g1, _cfg.gpio.b1, _cfg.gpio.r2, _cfg.gpio.g2, _cfg.gpio.b2, _cfg.gpio.lat, _cfg.gpio.oe, _cfg.gpio.a, _cfg.gpio.b, _cfg.gpio.c, _cfg.gpio.d, _cfg.gpio.e, -1, -1, -1},
.gpio_clk=_cfg.gpio.clk,
.sample_rate=_cfg.i2sspeed,
.sample_width=ESP32_I2S_DMA_MODE,
.desccount_a=desccount,
.lldesc_a=dmadesc_a,
.desccount_b=desccount,
.lldesc_b=dmadesc_b,
.clkphase=_cfg.clkphase,
.int_ena_out_eof=_cfg.double_buff
};
// Setup I2S
i2s_parallel_driver_install(ESP32_I2S_DEVICE, &dma_cfg);
i2s_parallel_send_dma(ESP32_I2S_DEVICE, &dmadesc_a[0]);
#if SERIAL_DEBUG
Serial.println(F("configureDMA(): DMA setup completed on ESP32_I2S_DEVICE."));
#endif
} // end initMatrixDMABuff
/* There are 'bits' set in the frameStruct that we simply don't need to set every single time we change a pixel / DMA buffer co-ordinate.
* For example, the bits that determine the address lines, we don't need to set these every time. Once they're in place, and assuming we
* don't accidentally clear them, then we don't need to set them again.
* So to save processing, we strip this logic out to the absolute bare minimum, which is toggling only the R,G,B pixels (bits) per co-ord.
*
* Critical dependency: That 'updateMatrixDMABuffer(uint8_t red, uint8_t green, uint8_t blue)' has been run at least once over the
* entire frameBuffer to ensure all the non R,G,B bitmasks are in place (i.e. like OE, Address Lines etc.)
*
* Note: If you change the brightness with setBrightness() you MUST then clearScreen() and repaint / flush the entire framebuffer.
*/
/** @brief - Update pixel at specific co-ordinate in the DMA buffer
* this is the main method used to update DMA buffer on pixel-by-pixel level so it must be fast, real fast!
* Let's put it into IRAM to avoid situations when it could be flushed out of instruction cache
* and had to be read from spi-flash over and over again.
* Yes, it is always a tradeoff between memory/speed/size, but compared to DMA-buffer size is not a big deal
*/
void IRAM_ATTR MatrixPanel_I2S_DMA::updateMatrixDMABuffer(int16_t x_coord, int16_t y_coord, uint8_t red, uint8_t green, uint8_t blue)
{
if ( !initialized ) {
#if SERIAL_DEBUG
Serial.println(F("Cannot updateMatrixDMABuffer as setup failed!"));
#endif
return;
}
/* 1) Check that the co-ordinates are within range, or it'll break everything big time.
* Valid co-ordinates are from 0 to (MATRIX_XXXX-1)
*/
if ( x_coord < 0 || y_coord < 0 || x_coord >= PIXELS_PER_ROW || y_coord >= m_cfg.mx_height) {
return;
}
/* LED Brightness Compensation. Because if we do a basic "red & mask" for example,
* we'll NEVER send the dimmest possible colour, due to binary skew.
* i.e. It's almost impossible for color_depth_idx of 0 to be sent out to the MATRIX unless the 'value' of a color is exactly '1'
* https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/
*/
#ifndef NO_CIE1931
red = lumConvTab[red];
green = lumConvTab[green];
blue = lumConvTab[blue];
#endif
/* When using the drawPixel, we are obviously only changing the value of one x,y position,
* however, the two-scan panels paint TWO lines at the same time
* and this reflects the parallel in-DMA-memory data structure of uint16_t's that are getting
* pumped out at high speed.
*
* So we need to ensure we persist the bits (8 of them) of the uint16_t for the row we aren't changing.
*
* The DMA buffer order has also been reversed (refer to the last code in this function)
* so we have to check for this and check the correct position of the MATRIX_DATA_STORAGE_TYPE
* data.
*/
#ifndef ESP32_SXXX
// We need to update the correct uint16_t in the rowBitStruct array, that gets sent out in parallel
// 16 bit parallel mode - Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
// Irrelevant for ESP32-S2 the way the FIFO ordering works is different - refer to page 679 of S2 technical reference manual
x_coord & 1U ? --x_coord : ++x_coord;
#endif
uint16_t _colorbitclear = BITMASK_RGB1_CLEAR, _colorbitoffset = 0;
if (y_coord >= ROWS_PER_FRAME){ // if we are drawing to the bottom part of the panel
_colorbitoffset = BITS_RGB2_OFFSET;
_colorbitclear = BITMASK_RGB2_CLEAR;
y_coord -= ROWS_PER_FRAME;
}
// Iterating through colour depth bits, which we assume are 8 bits per RGB subpixel (24bpp)
uint8_t color_depth_idx = PIXEL_COLOR_DEPTH_BITS;
do {
--color_depth_idx;
// uint8_t mask = (1 << (color_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST)); // expect 24 bit color (8 bits per RGB subpixel)
#if PIXEL_COLOR_DEPTH_BITS < 8
uint8_t mask = (1 << (color_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
#else
uint8_t mask = (1 << (color_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
#endif
uint16_t RGB_output_bits = 0;
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2, BIT_G2, BIT_R2, BIT_B1, BIT_G1, BIT_R1 */
RGB_output_bits |= (bool)(blue & mask); // --B
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(green & mask); // -BG
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(red & mask); // BGR
RGB_output_bits <<= _colorbitoffset; // shift color bits to the required position
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(y_coord, color_depth_idx, back_buffer_id);
// We need to update the correct uint16_t word in the rowBitStruct array pointing to a specific pixel at X - coordinate
p[x_coord] &= _colorbitclear; // reset RGB bits
p[x_coord] |= RGB_output_bits; // set new RGB bits
} while(color_depth_idx); // end of color depth loop (8)
} // updateMatrixDMABuffer (specific co-ords change)
/* Update the entire buffer with a single specific colour - quicker */
void MatrixPanel_I2S_DMA::updateMatrixDMABuffer(uint8_t red, uint8_t green, uint8_t blue)
{
if ( !initialized ) return;
/* https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/ */
#ifndef NO_CIE1931
red = lumConvTab[red];
green = lumConvTab[green];
blue = lumConvTab[blue];
#endif
for(uint8_t color_depth_idx=0; color_depth_idx<PIXEL_COLOR_DEPTH_BITS; color_depth_idx++) // color depth - 8 iterations
{
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
uint16_t RGB_output_bits = 0;
// uint8_t mask = (1 << color_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST); // 24 bit color
#if PIXEL_COLOR_DEPTH_BITS < 8
uint8_t mask = (1 << (color_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
#else
uint8_t mask = (1 << (color_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
#endif
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2, BIT_G2, BIT_R2, BIT_B1, BIT_G1, BIT_R1 */
RGB_output_bits |= (bool)(blue & mask); // --B
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(green & mask); // -BG
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(red & mask); // BGR
// Duplicate and shift across so we have have 6 populated bits of RGB1 and RGB2 pin values suitable for DMA buffer
RGB_output_bits |= RGB_output_bits << BITS_RGB2_OFFSET; //BGRBGR
//Serial.printf("Fill with: 0x%#06x\n", RGB_output_bits);
// iterate rows
int matrix_frame_parallel_row = dma_buff.rowBits.size();
do {
--matrix_frame_parallel_row;
// The destination for the pixel row bitstream
ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(matrix_frame_parallel_row, color_depth_idx, back_buffer_id);
// iterate pixels in a row
int x_coord=dma_buff.rowBits[matrix_frame_parallel_row]->width;
do {
--x_coord;
p[x_coord] &= BITMASK_RGB12_CLEAR; // reset color bits
p[x_coord] |= RGB_output_bits; // set new color bits
} while(x_coord);
} while(matrix_frame_parallel_row); // end row iteration
} // colour depth loop (8)
} // updateMatrixDMABuffer (full frame paint)
/**
* @brief - clears and reinitializes color/control data in DMA buffs
* When allocated, DMA buffs might be dirty, so we need to blank it and initialize ABCDE,LAT,OE control bits.
* Those control bits are constants during the entire DMA sweep and never changed when updating just pixel color data
* so we could set it once on DMA buffs initialization and forget.
* This effectively clears buffers to blank BLACK and makes it ready to display output.
* (Brightness control via OE bit manipulation is another case)
*/
void MatrixPanel_I2S_DMA::clearFrameBuffer(bool _buff_id){
if (!initialized)
return;
// we start with iterating all rows in dma_buff structure
int row_idx = dma_buff.rowBits.size();
do {
--row_idx;
ESP32_I2S_DMA_STORAGE_TYPE* row = dma_buff.rowBits[row_idx]->getDataPtr(0, _buff_id); // set pointer to the HEAD of a buffer holding data for the entire matrix row
ESP32_I2S_DMA_STORAGE_TYPE abcde = (ESP32_I2S_DMA_STORAGE_TYPE)row_idx;
abcde <<= BITS_ADDR_OFFSET; // shift row y-coord to match ABCDE bits in vector from 8 to 12
// get last pixel index in a row of all colordepths
int x_pixel = dma_buff.rowBits[row_idx]->width * dma_buff.rowBits[row_idx]->color_depth;
//Serial.printf(" from pixel %d, ", x_pixel);
// fill all x_pixels except color_index[0] (LSB) ones, this also clears all color data to 0's black
do {
--x_pixel;
if ( m_cfg.driver == HUB75_I2S_CFG::SM5266P) {
// modifications here for row shift register type SM5266P
// https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/164
row[x_pixel] = abcde & (0x18 << BITS_ADDR_OFFSET); // mask out the bottom 3 bits which are the clk di bk inputs
} else {
row[x_pixel] = abcde;
}
} while(x_pixel!=dma_buff.rowBits[row_idx]->width);
// color_index[0] (LSB) x_pixels must be "marked" with a previous's row address, 'cause it is used to display
// previous row while we pump in LSB's for a new row
abcde = ((ESP32_I2S_DMA_STORAGE_TYPE)row_idx-1) << BITS_ADDR_OFFSET;
do {
--x_pixel;
if ( m_cfg.driver == HUB75_I2S_CFG::SM5266P) {
// modifications here for row shift register type SM5266P
// https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/164
row[x_pixel] = abcde & (0x18 << BITS_ADDR_OFFSET); // mask out the bottom 3 bits which are the clk di bk inputs
} else {
row[x_pixel] = abcde;
}
//row[x_pixel] = abcde;
} while(x_pixel);
// modifications here for row shift register type SM5266P
// https://github.com/mrfaptastic/ESP32-HUB75-MatrixPanel-I2S-DMA/issues/164
if ( m_cfg.driver == HUB75_I2S_CFG::SM5266P) {
uint16_t serialCount;
uint16_t latch;
x_pixel = dma_buff.rowBits[row_idx]->width - 16; // come back 8*2 pixels to allow for 8 writes
serialCount = 8;
do{
serialCount--;
latch = row[x_pixel] | (((((ESP32_I2S_DMA_STORAGE_TYPE)row_idx) % 8) == serialCount) << 1) << BITS_ADDR_OFFSET; // data on 'B'
row[x_pixel++] = latch| (0x05<< BITS_ADDR_OFFSET); // clock high on 'A'and BK high for update
row[x_pixel++] = latch| (0x04<< BITS_ADDR_OFFSET); // clock low on 'A'and BK high for update
} while (serialCount);
} // end SM5266P
// let's set LAT/OE control bits for specific pixels in each color_index subrows
// Need to consider the original ESP32's (WROOM) DMA TX FIFO reordering of bytes...
uint8_t coloridx = dma_buff.rowBits[row_idx]->color_depth;
do {
--coloridx;
// switch pointer to a row for a specific color index
row = dma_buff.rowBits[row_idx]->getDataPtr(coloridx, _buff_id);
#ifdef ESP32_SXXX
// -1 works better on ESP32-S2 ? Because bytes get sent out in order...
row[dma_buff.rowBits[row_idx]->width - 1] |= BIT_LAT; // -1 pixel to compensate array index starting at 0
#else
// We need to update the correct uint16_t in the rowBitStruct array, that gets sent out in parallel
// 16 bit parallel mode - Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
// Irrelevant for ESP32-S2 the way the FIFO ordering works is different - refer to page 679 of S2 technical reference manual
row[dma_buff.rowBits[row_idx]->width - 2] |= BIT_LAT; // -2 in the DMA array is actually -1 when it's reordered by TX FIFO
#endif
// need to disable OE before/after latch to hide row transition
// Should be one clock or more before latch, otherwise can get ghosting
uint8_t _blank = m_cfg.latch_blanking;
do {
--_blank;
#ifdef ESP32_SXXX
row[0 + _blank] |= BIT_OE;
row[dma_buff.rowBits[row_idx]->width - _blank - 1 ] |= BIT_OE; // (LAT pulse is (width-2) -1 pixel to compensate array index starting at 0
#else
// Original ESP32 WROOM FIFO Ordering Sucks
uint8_t _blank_row_tx_fifo_tmp = 0 + _blank;
(_blank_row_tx_fifo_tmp & 1U) ? --_blank_row_tx_fifo_tmp : ++_blank_row_tx_fifo_tmp;
row[_blank_row_tx_fifo_tmp] |= BIT_OE;
_blank_row_tx_fifo_tmp = dma_buff.rowBits[row_idx]->width - _blank - 1; // (LAT pulse is (width-2) -1 pixel to compensate array index starting at 0
(_blank_row_tx_fifo_tmp & 1U) ? --_blank_row_tx_fifo_tmp : ++_blank_row_tx_fifo_tmp;
row[_blank_row_tx_fifo_tmp] |= BIT_OE;
#endif
} while (_blank);
} while(coloridx);
} while(row_idx);
}
/**
* @brief - reset OE bits in DMA buffer in a way to control brightness
* @param brt - brightness level from 0 to row_width
* @param _buff_id - buffer id to control
*/
void MatrixPanel_I2S_DMA::brtCtrlOE(int brt, const bool _buff_id){
if (!initialized)
return;
if (brt > PIXELS_PER_ROW - (MAX_LAT_BLANKING + 2)) // can't control values larger than (row_width - latch_blanking) to avoid ongoing issues being raised about brightness and ghosting.
brt = PIXELS_PER_ROW - (MAX_LAT_BLANKING + 2); // +2 for a bit of buffer...
if (brt < 0)
brt = 0;
// start with iterating all rows in dma_buff structure
int row_idx = dma_buff.rowBits.size();
do {
--row_idx;
// let's set OE control bits for specific pixels in each color_index subrows
uint8_t coloridx = dma_buff.rowBits[row_idx]->color_depth;
do {
--coloridx;
// switch pointer to a row for a specific color index
ESP32_I2S_DMA_STORAGE_TYPE* row = dma_buff.rowBits[row_idx]->getDataPtr(coloridx, _buff_id);
int x_coord = dma_buff.rowBits[row_idx]->width;
do {
--x_coord;
// clear OE bit for all other pixels
row[x_coord] &= BITMASK_OE_CLEAR;
// Brightness control via OE toggle - disable matrix output at specified x_coord
if((coloridx > lsbMsbTransitionBit || !coloridx) && ((x_coord) >= brt)){
row[x_coord] |= BIT_OE; // Disable output after this point.
continue;
}
// special case for the bits *after* LSB through (lsbMsbTransitionBit) - OE is output after data is shifted, so need to set OE to fractional brightness
if(coloridx && coloridx <= lsbMsbTransitionBit) {
// divide brightness in half for each bit below lsbMsbTransitionBit
int lsbBrightness = brt >> (lsbMsbTransitionBit - coloridx + 1);
if((x_coord) >= lsbBrightness) {
row[x_coord] |= BIT_OE; // Disable output after this point.
continue;
}
}
} while(x_coord);
// need to disable OE before/after latch to hide row transition
// Should be one clock or more before latch, otherwise can get ghosting
uint8_t _blank = m_cfg.latch_blanking;
do {
--_blank;
#ifdef ESP32_SXXX
row[0 + _blank] |= BIT_OE;
#else
// Original ESP32 WROOM FIFO Ordering Sucks
uint8_t _blank_row_tx_fifo_tmp = 0 + _blank;
(_blank_row_tx_fifo_tmp & 1U) ? --_blank_row_tx_fifo_tmp : ++_blank_row_tx_fifo_tmp;
row[_blank_row_tx_fifo_tmp] |= BIT_OE;
#endif
//row[0 + _blank] |= BIT_OE;
// no need, has been done already
//row[dma_buff.rowBits[row_idx]->width - _blank - 3 ] |= BIT_OE; // (LAT pulse is (width-2) -1 pixel to compensate array index starting at 0
} while (_blank);
} while(coloridx);
} while(row_idx);
}
/*
* overload for compatibility
*/
bool MatrixPanel_I2S_DMA::begin(int r1, int g1, int b1, int r2, int g2, int b2, int a, int b, int c, int d, int e, int lat, int oe, int clk) {
// RGB
m_cfg.gpio.r1 = r1; m_cfg.gpio.g1 = g1; m_cfg.gpio.b1 = b1;
m_cfg.gpio.r2 = r2; m_cfg.gpio.g2 = g2; m_cfg.gpio.b2 = b2;
// Line Select
m_cfg.gpio.a = a; m_cfg.gpio.b = b; m_cfg.gpio.c = c;
m_cfg.gpio.d = d; m_cfg.gpio.e = e;
// Clock & Control
m_cfg.gpio.lat = lat; m_cfg.gpio.oe = oe; m_cfg.gpio.clk = clk;
return begin();
}
/**
* @brief - Sets how many clock cycles to blank OE before/after LAT signal change
* @param uint8_t pulses - clocks before/after OE
* default is DEFAULT_LAT_BLANKING
* Max is MAX_LAT_BLANKING
* @returns - new value for m_cfg.latch_blanking
*/
uint8_t MatrixPanel_I2S_DMA::setLatBlanking(uint8_t pulses){
if (pulses > MAX_LAT_BLANKING)
pulses = MAX_LAT_BLANKING;
if (!pulses)
pulses = DEFAULT_LAT_BLANKING;
m_cfg.latch_blanking = pulses;
setPanelBrightness(brightness); // set brightness to reset OE bits to the values matching new LAT blanking setting
return m_cfg.latch_blanking;
}
#ifndef NO_FAST_FUNCTIONS
/**
* @brief - update DMA buff drawing horizontal line at specified coordinates
* @param x_ccord - line start coordinate x
* @param y_ccord - line start coordinate y
* @param l - line length
* @param r,g,b, - RGB888 color
*/
void MatrixPanel_I2S_DMA::hlineDMA(int16_t x_coord, int16_t y_coord, int16_t l, uint8_t red, uint8_t green, uint8_t blue){
if ( !initialized )
return;
if ( x_coord < 0 || y_coord < 0 || l < 1 || x_coord >= PIXELS_PER_ROW || y_coord >= m_cfg.mx_height)
return;
l = ( (x_coord + l) >= PIXELS_PER_ROW ) ? (PIXELS_PER_ROW - x_coord):l;
//if (x_coord+l > PIXELS_PER_ROW)
// l = PIXELS_PER_ROW - x_coord + 1; // reset width to end of row
/* LED Brightness Compensation */
#ifndef NO_CIE1931
red = lumConvTab[red];
green = lumConvTab[green];
blue = lumConvTab[blue];
#endif
uint16_t _colorbitclear = BITMASK_RGB1_CLEAR, _colorbitoffset = 0;
if (y_coord >= ROWS_PER_FRAME){ // if we are drawing to the bottom part of the panel
_colorbitoffset = BITS_RGB2_OFFSET;
_colorbitclear = BITMASK_RGB2_CLEAR;
y_coord -= ROWS_PER_FRAME;
}
// Iterating through color depth bits (8 iterations)
uint8_t color_depth_idx = PIXEL_COLOR_DEPTH_BITS;
do {
--color_depth_idx;
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
uint16_t RGB_output_bits = 0;
// uint8_t mask = (1 << color_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST);
#if PIXEL_COLOR_DEPTH_BITS < 8
uint8_t mask = (1 << (color_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
#else
uint8_t mask = (1 << (color_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
#endif
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2, BIT_G2, BIT_R2, BIT_B1, BIT_G1, BIT_R1 */
RGB_output_bits |= (bool)(blue & mask); // --B
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(green & mask); // -BG
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(red & mask); // BGR
RGB_output_bits <<= _colorbitoffset; // shift color bits to the required position
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE *p = dma_buff.rowBits[y_coord]->getDataPtr(color_depth_idx, back_buffer_id);
// inlined version works slower here, dunno why :(
// ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(y_coord, color_depth_idx, back_buffer_id);
int16_t _l = l;
do { // iterate pixels in a row
int16_t _x = x_coord + --_l;
#ifdef ESP32_SXXX
// ESP 32 doesn't need byte flipping for TX FIFO.
uint16_t &v = p[_x];
#else
// Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
uint16_t &v = p[_x & 1U ? --_x : ++_x];
#endif
v &= _colorbitclear; // reset color bits
v |= RGB_output_bits; // set new color bits
} while(_l); // iterate pixels in a row
} while(color_depth_idx); // end of color depth loop (8)
} // hlineDMA()
/**
* @brief - update DMA buff drawing vertical line at specified coordinates
* @param x_ccord - line start coordinate x
* @param y_ccord - line start coordinate y
* @param l - line length
* @param r,g,b, - RGB888 color
*/
void MatrixPanel_I2S_DMA::vlineDMA(int16_t x_coord, int16_t y_coord, int16_t l, uint8_t red, uint8_t green, uint8_t blue){
if ( !initialized )
return;
if ( x_coord < 0 || y_coord < 0 || l < 1 || x_coord >= PIXELS_PER_ROW || y_coord >= m_cfg.mx_height)
return;
// check for a length that goes beyond the height of the screen! Array out of bounds dma memory changes = screwed output #163
l = ( (y_coord + l) >= m_cfg.mx_height ) ? (m_cfg.mx_height - y_coord):l;
//if (y_coord + l > m_cfg.mx_height)
/// l = m_cfg.mx_height - y_coord + 1; // reset width to end of col
/* LED Brightness Compensation */
#ifndef NO_CIE1931
red = lumConvTab[red];
green = lumConvTab[green];
blue = lumConvTab[blue];
#endif
#ifndef ESP32_SXXX
// Save the calculated value to the bitplane memory in reverse order to account for I2S Tx FIFO mode1 ordering
x_coord & 1U ? --x_coord : ++x_coord;
#endif
uint8_t color_depth_idx = PIXEL_COLOR_DEPTH_BITS;
do { // Iterating through color depth bits (8 iterations)
--color_depth_idx;
// let's precalculate RGB1 and RGB2 bits than flood it over the entire DMA buffer
// uint8_t mask = (1 << color_depth_idx COLOR_DEPTH_LESS_THAN_8BIT_ADJUST);
#if PIXEL_COLOR_DEPTH_BITS < 8
uint8_t mask = (1 << (color_depth_idx+MASK_OFFSET)); // expect 24 bit color (8 bits per RGB subpixel)
#else
uint8_t mask = (1 << (color_depth_idx)); // expect 24 bit color (8 bits per RGB subpixel)
#endif
uint16_t RGB_output_bits = 0;
/* Per the .h file, the order of the output RGB bits is:
* BIT_B2, BIT_G2, BIT_R2, BIT_B1, BIT_G1, BIT_R1 */
RGB_output_bits |= (bool)(blue & mask); // --B
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(green & mask); // -BG
RGB_output_bits <<= 1;
RGB_output_bits |= (bool)(red & mask); // BGR
int16_t _l = 0, _y = y_coord;
uint16_t _colorbitclear = BITMASK_RGB1_CLEAR;
do { // iterate pixels in a column
if (_y >= ROWS_PER_FRAME){ // if y-coord overlapped bottom-half panel
_y -= ROWS_PER_FRAME;
_colorbitclear = BITMASK_RGB2_CLEAR;
RGB_output_bits <<= BITS_RGB2_OFFSET;
}
// Get the contents at this address,
// it would represent a vector pointing to the full row of pixels for the specified color depth bit at Y coordinate
ESP32_I2S_DMA_STORAGE_TYPE *p = getRowDataPtr(_y, color_depth_idx, back_buffer_id);
p[x_coord] &= _colorbitclear; // reset RGB bits
p[x_coord] |= RGB_output_bits; // set new RGB bits