diff --git a/R/conformal_infer_cv.R b/R/conformal_infer_cv.R index 31910f6..b6ed4d4 100644 --- a/R/conformal_infer_cv.R +++ b/R/conformal_infer_cv.R @@ -33,7 +33,7 @@ #' Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, Ryan J. Tibshirani #' "Predictive inference with the jackknife+," _The Annals of Statistics_, #' 49(1), 486-507, 2021 -#' @examplesIf !probably:::is_cran_check() +#' @examplesIf !probably:::is_cran_check() & rlang::is_installed(c("modeldata", "parsnip")) #' library(workflows) #' library(dplyr) #' library(parsnip) diff --git a/R/conformal_infer_quantile.R b/R/conformal_infer_quantile.R index 288ff8e..a933d2a 100644 --- a/R/conformal_infer_quantile.R +++ b/R/conformal_infer_quantile.R @@ -31,7 +31,7 @@ #' @references #' Romano, Yaniv, Evan Patterson, and Emmanuel Candes. "Conformalized quantile #' regression." _Advances in neural information processing systems_ 32 (2019). -#' @examplesIf !probably:::is_cran_check() +#' @examplesIf !probably:::is_cran_check() & rlang::is_installed(c("modeldata", "parsnip", "quantregForest")) #' library(workflows) #' library(dplyr) #' library(parsnip) diff --git a/R/conformal_infer_split.R b/R/conformal_infer_split.R index b92e650..1b9d36a 100644 --- a/R/conformal_infer_split.R +++ b/R/conformal_infer_split.R @@ -28,7 +28,7 @@ #' @references #' Lei, Jing, et al. "Distribution-free predictive inference for regression." #' _Journal of the American Statistical Association_ 113.523 (2018): 1094-1111. -#' @examplesIf !probably:::is_cran_check() +#' @examplesIf !probably:::is_cran_check() & rlang::is_installed(c("modeldata", "parsnip", "nnet")) #' library(workflows) #' library(dplyr) #' library(parsnip) diff --git a/man/int_conformal_cv.Rd b/man/int_conformal_cv.Rd index 7309cbd..dc3e66f 100644 --- a/man/int_conformal_cv.Rd +++ b/man/int_conformal_cv.Rd @@ -51,7 +51,7 @@ stop the computations for other types of resamples, but we have no way of knowing whether the results are appropriate. } \examples{ -\dontshow{if (!probably:::is_cran_check()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +\dontshow{if (!probably:::is_cran_check() & rlang::is_installed(c("modeldata", "parsnip"))) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} library(workflows) library(dplyr) library(parsnip) diff --git a/man/int_conformal_quantile.Rd b/man/int_conformal_quantile.Rd index cfc8907..4486985 100644 --- a/man/int_conformal_quantile.Rd +++ b/man/int_conformal_quantile.Rd @@ -46,7 +46,7 @@ Note that the because of the method used to construct the interval, it is possible that the prediction intervals will not include the predicted value. } \examples{ -\dontshow{if (!probably:::is_cran_check()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +\dontshow{if (!probably:::is_cran_check() & rlang::is_installed(c("modeldata", "parsnip", "quantregForest"))) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} library(workflows) library(dplyr) library(parsnip) diff --git a/man/int_conformal_split.Rd b/man/int_conformal_split.Rd index 262c3e9..7ca7563 100644 --- a/man/int_conformal_split.Rd +++ b/man/int_conformal_split.Rd @@ -45,7 +45,7 @@ quantile (e.g., the 95th for 95\% interval) and should not include rows that were in the original training set. } \examples{ -\dontshow{if (!probably:::is_cran_check()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +\dontshow{if (!probably:::is_cran_check() & rlang::is_installed(c("modeldata", "parsnip", "nnet"))) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} library(workflows) library(dplyr) library(parsnip)