-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
123 lines (109 loc) · 5.34 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from torch.autograd import Variable
import pandas as pd
import argparse
import os
from model.BiMPM import BiMPM
import gc
import data_loader
import utils
from time import time
def test_model(loader, model):
"""
Help function that tests the models's performance on a dataset
:param: loader: data loader for the dataset to test against
"""
correct = 0
total = 0
model.eval()
for data, labels in loader:
data = [Variable(item) for item in data]
if args.cuda:
data = [d.cuda() for d in data]
labels = labels.cuda()
outputs = model(data)
predicted = (outputs.max(1)[1].data.long()).view(-1)
total += labels.size(0)
correct += (predicted == labels).sum()
model.train()
return (100 * correct / total)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Pytorch model on Quora Paraphrase Detection")
parser.add_argument('--embedding', type=str, default='./embedding/wordvec.txt', help='path to embedding')
parser.add_argument('--vocab', type=int, default=400000, help='words to load from embedding')
parser.add_argument('--data', type=str, default='./data/', help='location of train.tsv, dev.tsv, test.tsv')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--seq-len', type=int, default=50, help='length to pad sentences to')
parser.add_argument('--word-len', type=int, default=20, help='length to pad words to')
parser.add_argument('--perspectives', type=int, default=10, help='number of perspectives to use in matching')
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--train-frac', type=float, default=1.0, help='fraction of training data to take')
parser.add_argument('--dev-frac', type=float, default=1.0, help='fraction of dev data to take')
parser.add_argument('--test-frac', type=float, default=1.0, help='fraction of test data to take')
parser.add_argument('--seed', type=int, default=1111, help='random seed')
parser.add_argument('--cuda', action='store_true', help='use CUDA')
parser.add_argument('--save', type=str, default='./models/', help='path to store models')
parser.add_argument('--interval', type=int, default=50, help='batch interval to report accuracy')
parser.add_argument('--batch-size', type=int, default=16)
args = parser.parse_args()
print(args)
# set random seed
torch.manual_seed(args.seed)
batch_size = args.batch_size
num_epochs = args.epochs
print("Loading pre-trained embedding...")
loaded_embedding, words, chars = utils.load_embedding(args.embedding, words_to_load=args.vocab)
print("Embedding size: %s" % (loaded_embedding.shape,))
print("Preparing data loader...")
# prepare data
quora_train = pd.read_csv(os.path.join(args.data, 'train.tsv'), sep='\t', names=['label', 'p', 'q', 'id'])
quora_dev = pd.read_csv(os.path.join(args.data, 'dev.tsv'), sep='\t', names=['label', 'p', 'q', 'id'])
train_size = len(quora_train)
train_loader = data_loader.make_dataloader(quora_train.sample(frac=args.train_frac, random_state=args.seed),
words, chars, batch_size=batch_size,
seq_len=args.seq_len, word_len=args.word_len, cuda=args.cuda)
dev_loader = data_loader.make_dataloader(quora_dev.sample(frac=args.dev_frac, random_state=args.seed),
words, chars, batch_size=batch_size,
seq_len=args.seq_len, word_len=args.word_len, cuda=args.cuda)
del quora_train
del quora_dev
gc.collect()
print("Defining models, loss function, optimizer...")
# define models, loss, optimizer
model = BiMPM(loaded_embedding, words, chars, perspectives=args.perspectives)
del loaded_embedding
gc.collect()
if args.cuda:
model.cuda()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam([p for p in model.parameters() if p.requires_grad], lr=args.lr)
print(model)
print("beginning training...")
# training the Model
train_acc_history = []
validation_acc_history = []
for epoch in range(num_epochs):
start = time()
for i, (data, labels) in enumerate(train_loader):
if args.cuda:
data = [d.cuda() for d in data]
labels = labels.cuda()
label_batch = Variable(labels)
data = [Variable(item) for item in data]
optimizer.zero_grad()
outputs = model(data)
loss = criterion(outputs, label_batch)
loss.backward()
optimizer.step()
# report performance
if (i + 1) % args.interval == 0:
val_acc = test_model(dev_loader, model)
print('Epoch: [{0}/{1}], Step: [{2}/{3}], Loss: {4}, Validation Acc:{5}'.format(
epoch + 1, num_epochs, i + 1, len(train_loader), loss.data[0], val_acc))
validation_acc_history.append(val_acc)
print("Epoch %d, time taken = %.4f" % (epoch + 1, time() - start))
torch.save(model.state_dict(), os.path.join(args.save, "BiMPM_%d.pth" % epoch))
print("Train Accuracy:")
print(train_acc_history)
print("Validation Accuracy:")
print(validation_acc_history)