-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
102 lines (90 loc) · 3.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from collections import deque
from pathlib import Path
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from arg_parser import ArgParser
from dataset import get_train_dev_datasets
from model import get_model
from logger import TrainLogger
def main():
args = ArgParser().parse_args()
model, model_args = get_model(args.model_load_path)
model = model.to(args._derived['devices'][0])
model.train()
if args._derived['devices'][0] != 'cpu':
model = nn.DataParallel(
model,
device_ids=args._derived['devices'],
output_device=args._derived['devices'][0]
)
# TODO allow for loading optimizer from checkpoint
opt_cls = getattr(torch.optim, args.optimizer)
if opt_cls is torch.optim.Adam:
opt_kwargs = {'betas': (args.adam_beta1, args.adam_beta2)}
else:
opt_kwargs = {}
opt = opt_cls(model.parameters(), lr=args.lr, **opt_kwargs)
train_dataset, dev_dataset = get_train_dev_datasets(
args.dataset_root, args.ratio_train_set_to_whole
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size * len(args._derived['devices']),
num_workers=args.num_workers,
shuffle=True,
# TODO Consider `drop_last` and `pin_memory
)
# TODO ensure that the steps per evaluation is less than the number
# of steps in a batch
dev_loader = torch.utils.data.DataLoader(
dev_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
# TODO Consider `drop_last` and `pin_memory
)
ckpt_paths = deque()
logger = TrainLogger(args, len(train_loader), phase=None)
logger.log_hparams(args)
for epoch in range(1, args.num_epochs + 1):
logger.start_epoch()
for inp, target in tqdm(train_loader, dynamic_ncols=True):
logger.start_iter()
opt.zero_grad()
inp = inp.to(args._derived['devices'][0])
target = target.to(args._derived['devices'][0])
out = model(inp)
# TODO cross entropy is only the same thing as KL divergence when
# the reference distribution has entropy 0 (i.e. single label).
# Should KL divergence itself be used for samples with multiple
# labels?
loss = F.cross_entropy(out, target)
loss.backward()
logger.log_iter(len(inp), loss, model, dev_loader, args)
opt.step()
logger.end_iter()
logger.end_epoch()
# TODO put this logic inside the .end_epoch() function?
if args.save_dir_root and epoch % args.epochs_per_model_save == 0:
samples_processed = (epoch + 1) * len(train_loader)
m = model.module if args._derived['devices'][0] != 'cpu' else m
ckpt_dict = {
'ckpt_info': {'samples_processed': samples_processed},
'model_name': m.__class__.__name__,
'model_state': m.state_dict(),
'model_args': model_args
}
ckpt_path = Path(
args._derived['ckpt_dir']
) / f'step_{samples_processed}.pth'
torch.save(ckpt_dict, ckpt_path)
ckpt_paths.append(ckpt_path)
if len(ckpt_paths) > args.max_ckpts:
oldest_ckpt = ckpt_paths.popleft()
os.remove(oldest_ckpt)
if __name__ == '__main__':
main()