Analytical solution to the Time-Dependent Schrodinger equation for a particle in an infinite square well.
\usepackage{physics} \usepackage{math}
Solving energy eigenvalues and eigenstates are used to understand the future of a physical system in quantum mechanics. The Schrödinger equation is the tool that allows for time evolution where the equation is,
\begin{equation} \ket{\psi} = i \hbar \frac{d}{dt} \ket{\psi}. \end{equation}
When the Schrödinger equation is time-dependent, the solution becomes
\begin{equation} \tag{2} \ket{\psi(t)} = \Sigma_n C_{n}e^{-iE_{n}/\hbar} \ket{E_n}. \end{equation}
Therefore, when
\being{equation} \tag{3} \ket{\psi(0)} = \Sigma_n C_{n} \ket{E_n} \end{equation}
since
The initial
\begin{equation} \tag{4} 1 = \int_{-\infty}^{\infty} A^{2}|\psi(x,0)|^{2} dx. \end{equation}
Once
\begin{equation} \tag{5} \varphi_n(x) = \sqrt{\frac{2}{L}}*sin\Big(\frac{n\pi x}{L}\Big). \end{equation}
Discrete quantized wave vectors are required to solve the Time-Dependent equation,
\begin{equation} \tag{6} E_n = \frac{n^2\pi^2 \hbar^2}{2mL^2}. \end{equation}
Finally, the last item the time dependent Schrödinger equation depends on is
\begin{equation} \tag{7} c_n = \int_{-\infty}^{\infty} \varphi_n(x)^{*} \psi(x,0) dx. \end{equation}
From equation (2): we bring together,
\begin{equation} \tag{8} \psi(x,t) = \sum_{n}^{500} c_{n} e^{-iE_nt/\hbar}\varphi_{n}(x). \end{equation}
Now, as t increase the future of wave equation is determined as shown below in the animation.