diff --git a/README.md b/README.md index 2a8ec50..393d3ad 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,7 @@ Pkg.add("SASLib") ## Read Performance -I did benchmarking mostly on my Macbook Pro laptop. In general, the Julia implementation is somewhere between 10-100x faster than the Python counterpart. Test results are documented in the `test/perf_results_` folders. +I did benchmarking mostly on my Macbook Pro laptop. In general, the Julia implementation is somewhere between 10-100x faster than the Python Pandas. Test results are documented in the `test/perf_results_` folders. ## User Guide @@ -86,7 +86,7 @@ Columns 1:ACTUAL, 2:PREDICT, 3:YEAR, 4:MONTH ### Assignments -You may assign values at a cell level. Doing so has a side effect. +You may assign values at the cell level. Doing so has a side effect. ``` julia> srs = rs[:ACTUAL, :PREDICT, :YEAR, :MONTH][1:2] @@ -216,14 +216,14 @@ If you need to read files incrementally, you can use the `SASLib.open` function julia> handler = SASLib.open("productsales.sas7bdat") SASLib.Handler[productsales.sas7bdat] -julia> results = SASLib.read(handler, 2) +julia> rs = SASLib.read(handler, 2) Read productsales.sas7bdat with size 2 x 10 in 0.06831 seconds SASLib.ResultSet (2 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH 1: 925.0, 850.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-01-01 2: 999.0, 297.0, CANADA, EAST, EDUCATION, FURNITURE, SOFA, 1.0, 1993.0, 1993-02-01 -julia> results = SASLib.read(handler, 3) +julia> rs = SASLib.read(handler, 3) Read productsales.sas7bdat with size 3 x 10 in 0.00046 seconds SASLib.ResultSet (3 rows x 10 columns) Columns 1:ACTUAL, 2:PREDICT, 3:COUNTRY, 4:REGION, 5:DIVISION, 6:PRODTYPE, 7:PRODUCT, 8:QUARTER, 9:YEAR, 10:MONTH @@ -282,10 +282,7 @@ julia> typeof.(columns(rs)) ### Numeric Columns Constructor -In general, SASLib allocates native arrays when returning numerical column data. However, you can provide a custom constructor so you would be able to either preallcoate the array or construct a different type of array. The `number_array_fn` parameter is a Dict that maps column symbols to the -custom constructors. Similar to `string_array_fn`, this Dict may be -specified with a special symbol `:_all_` to indicate such constructor -be used for all numeric columns. +In general, SASLib allocates native arrays when returning numerical column data. However, you can provide a custom constructor so you would be able to either preallcoate the array or construct a different type of array. The `number_array_fn` parameter is a Dict that maps column symbols to the custom constructors. Similar to `string_array_fn`, this Dict may be specified with a special symbol `:_all_` to indicate such constructor be used for all numeric columns. Example - create SharedArray: ```