forked from kthorn/FPvisualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFPs_bibliography.html
56 lines (56 loc) · 15.2 KB
/
FPs_bibliography.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
<ol><li id="ref1">Tomosugi <i>et al.</i> An ultramarine fluorescent protein with increased photostability and pH insensitivity. <i>Nat Meth</i> 2009. <b>6</b>(5): 351-353. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.1317">10.1038/nmeth.1317</a></li>
<li id="ref2">Mena <i>et al.</i> Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. <i>Nat Biotechnol</i> 2006. <b>24</b>(12): 1569-1571. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt1264">10.1038/nbt1264</a></li>
<li id="ref3">Ai <i>et al.</i> Exploration of New Chromophore Structures Leads to the Identification of Improved Blue Fluorescent Proteins † . <i>Biochemistry</i> 2007. <b>46</b>(20): 5904-5910. doi: <a target="_blank" href="http://dx.doi.org/10.1021/bi700199g">10.1021/bi700199g</a></li>
<li id="ref4">Subach <i>et al.</i> An Enhanced Monomeric Blue Fluorescent Protein with the High Chemical Stability of the Chromophore. <i>PLoS ONE</i> 2011. <b>6</b>(12): e28674. doi: <a target="_blank" href="http://dx.doi.org/10.1371/journal.pone.0028674">10.1371/journal.pone.0028674</a></li>
<li id="ref5">Cubitt <i>et al.</i> Chapter 2: Understanding Structure—Function Relationships in the Aequorea victoria Green Fluorescent Protein. <i>Green Fluorescent Proteins</i> 1998.: 19-30. doi: <a target="_blank" href="http://dx.doi.org/10.1016/S0091-679X(08)61946-9">10.1016/s0091-679x(08)61946-9</a></li>
<li id="ref6">Zapata-Hommer <i>et al.</i> <i>BMC Biotechnology</i> 2003. <b>3</b>(1): 5. doi: <a target="_blank" href="http://dx.doi.org/10.1186/1472-6750-3-5">10.1186/1472-6750-3-5</a></li>
<li id="ref7">Subach <i>et al.</i> Conversion of Red Fluorescent Protein into a Bright Blue Probe. <i>Chemistry & Biology</i> 2008. <b>15</b>(10): 1116-1124. doi: <a target="_blank" href="http://dx.doi.org/10.1016/j.chembiol.2008.08.006">10.1016/j.chembiol.2008.08.006</a></li>
<li id="ref8">Heim <i>et al.</i> Wavelength mutations and posttranslational autoxidation of green fluorescent protein.. <i>Proceedings of the National Academy of Sciences</i> 1994. <b>91</b>(26): 12501-12504. doi: <a target="_blank" href="http://dx.doi.org/10.1073/pnas.91.26.12501">10.1073/pnas.91.26.12501</a></li>
<li id="ref9">Rizzo <i>et al.</i> An improved cyan fluorescent protein variant useful for FRET. <i>Nat Biotechnol</i> 2004. <b>22</b>(4): 445-449. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt945">10.1038/nbt945</a></li>
<li id="ref10">Markwardt <i>et al.</i> An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching. <i>PLoS ONE</i> 2011. <b>6</b>(3): e17896. doi: <a target="_blank" href="http://dx.doi.org/10.1371/journal.pone.0017896">10.1371/journal.pone.0017896</a></li>
<li id="ref11">Kremers <i>et al.</i> Cyan and Yellow Super Fluorescent Proteins with Improved Brightness, Protein Folding, and FRET Förster Radius † , ‡ . <i>Biochemistry</i> 2006. <b>45</b>(21): 6570-6580. doi: <a target="_blank" href="http://dx.doi.org/10.1021/bi0516273">10.1021/bi0516273</a></li>
<li id="ref12">Nguyen <i>et al.</i> Evolutionary optimization of fluorescent proteins for intracellular FRET. <i>Nat Biotechnol</i> 2005. <b>23</b>(3): 355-360. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt1066">10.1038/nbt1066</a></li>
<li id="ref13">Goedhart <i>et al.</i> Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. <i>Nat Meth</i> 2010. <b>7</b>(2): 137-139. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.1415">10.1038/nmeth.1415</a></li>
<li id="ref14">Goedhart <i>et al.</i> Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. <i>Nat Comms</i> 2012. <b>3</b>: 751. doi: <a target="_blank" href="http://dx.doi.org/10.1038/ncomms1738">10.1038/ncomms1738</a></li>
<li id="ref15">Kogure <i>et al.</i> A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. <i>Nat Biotechnol</i> 2006. <b>24</b>(5): 577-581. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt1207">10.1038/nbt1207</a></li>
<li id="ref16">Yang <i>et al.</i> mBeRFP, an Improved Large Stokes Shift Red Fluorescent Protein. <i>PLoS ONE</i> 2013. <b>8</b>(6): e64849. doi: <a target="_blank" href="http://dx.doi.org/10.1371/journal.pone.0064849">10.1371/journal.pone.0064849</a></li>
<li id="ref17">Piatkevich <i>et al.</i> Monomeric red fluorescent proteins with a large Stokes shift. <i>Proceedings of the National Academy of Sciences</i> 2010. <b>107</b>(12): 5369-5374. doi: <a target="_blank" href="http://dx.doi.org/10.1073/pnas.0914365107">10.1073/pnas.0914365107</a></li>
<li id="ref18">Ai <i>et al.</i> Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. <i>Biochem. J.</i> 2006. <b>400</b>(3): 531. doi: <a target="_blank" href="http://dx.doi.org/10.1042/BJ20060874">10.1042/bj20060874</a></li>
<li id="ref19">KARASAWA <i>et al.</i> Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. <i>Biochem. J.</i> 2004. <b>381</b>(1): 307. doi: <a target="_blank" href="http://dx.doi.org/10.1042/BJ20040321">10.1042/bj20040321</a></li>
<li id="ref20">Evdokimov <i>et al.</i> Structural basis for the fast maturation of Arthropoda green fluorescent protein. <i>EMBO Rep</i> 2006. <b>7</b>(10): 1006-1012. doi: <a target="_blank" href="http://dx.doi.org/10.1038/sj.embor.7400787">10.1038/sj.embor.7400787</a></li>
<li id="ref21">Tsutsui <i>et al.</i> Improving membrane voltage measurements using FRET with new fluorescent proteins. <i>Nat Meth</i> 2008. <b>5</b>(8): 683-685. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.1235">10.1038/nmeth.1235</a></li>
<li id="ref22">Pédelacq <i>et al.</i> Engineering and characterization of a superfolder green fluorescent protein. <i>Nat Biotechnol</i> 2005. <b>24</b>(1): 79-88. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt1172">10.1038/nbt1172</a></li>
<li id="ref23">Cubitt <i>et al.</i> Chapter 2: Understanding Structure—Function Relationships in the Aequorea victoria Green Fluorescent Protein. <i>Green Fluorescent Proteins</i> 1998.: 19-30. doi: <a target="_blank" href="http://dx.doi.org/10.1016/S0091-679X(08)61946-9">10.1016/s0091-679x(08)61946-9</a></li>
<li id="ref24">Yang <i>et al.</i> Optimized Codon Usage and Chromophore Mutations Provide Enhanced Sensitivity with the Green Fluorescent Protein. <i>Nucleic Acids Research</i> 1996. <b>24</b>(22): 4592-4593. doi: <a target="_blank" href="http://dx.doi.org/10.1093/nar/24.22.4592">10.1093/nar/24.22.4592</a></li>
<li id="ref25">Karasawa <i>et al.</i> A Green-emitting Fluorescent Protein from Galaxeidae Coral and Its Monomeric Version for Use in Fluorescent Labeling. <i>Journal of Biological Chemistry</i> 2003. <b>278</b>(36): 34167-34171. doi: <a target="_blank" href="http://dx.doi.org/10.1074/jbc.M304063200">10.1074/jbc.m304063200</a></li>
<li id="ref26">Ai <i>et al.</i> Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. <i>BMC Biol</i> 2008. <b>6</b>(1): 13. doi: <a target="_blank" href="http://dx.doi.org/10.1186/1741-7007-6-13">10.1186/1741-7007-6-13</a></li>
<li id="ref27">Lam <i>et al.</i> Improving FRET dynamic range with bright green and red fluorescent proteins. <i>Nat Meth</i> 2012. <b>9</b>(10): 1005-1012. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.2171">10.1038/nmeth.2171</a></li>
<li id="ref28">Shaner <i>et al.</i> A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. <i>Nat Meth</i> 2013. <b>10</b>(5): 407-409. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.2413">10.1038/nmeth.2413</a></li>
<li id="ref29">Orm  <i>et al.</i> Crystal Structure of the Aequorea victoria Green Fluorescent Protein. <i>Science</i> 1996. <b>273</b>(5280): 1392-1395. doi: <a target="_blank" href="http://dx.doi.org/10.1126/science.273.5280.1392">10.1126/science.273.5280.1392</a></li>
<li id="ref30">Nagai <i>et al.</i> A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. <i>Nat. Biotechnol.</i> 2002. <b>20</b>(1): 87-90. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt0102-87">10.1038/nbt0102-87</a></li>
<li id="ref31">Griesbeck <i>et al.</i> Reducing the Environmental Sensitivity of Yellow Fluorescent Protein: MECHANISM AND APPLICATIONS. <i>Journal of Biological Chemistry</i> 2001. <b>276</b>(31): 29188-29194. doi: <a target="_blank" href="http://dx.doi.org/10.1074/jbc.M102815200">10.1074/jbc.m102815200</a></li>
<li id="ref32">Shaner <i>et al.</i> Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. <i>Nat Biotechnol</i> 2004. <b>22</b>(12): 1567-1572. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt1037">10.1038/nbt1037</a></li>
<li id="ref33">Shaner <i>et al.</i> Improving the photostability of bright monomeric orange and red fluorescent proteins. <i>Nat Meth</i> 2008. <b>5</b>(6): 545-551. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.1209">10.1038/nmeth.1209</a></li>
<li id="ref34">Sakaue-Sawano <i>et al.</i> Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. <i>Cell</i> 2008. <b>132</b>(3): 487-498. doi: <a target="_blank" href="http://dx.doi.org/10.1016/j.cell.2007.12.033">10.1016/j.cell.2007.12.033</a></li>
<li id="ref35">Merzlyak <i>et al.</i> Bright monomeric red fluorescent protein with an extended fluorescence lifetime. <i>Nat Meth</i> 2007. <b>4</b>(7): 555-557. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth1062">10.1038/nmeth1062</a></li>
<li id="ref36">Kredel <i>et al.</i> mRuby, a Bright Monomeric Red Fluorescent Protein for Labeling of Subcellular Structures. <i>PLoS ONE</i> 2009. <b>4</b>(2): e4391. doi: <a target="_blank" href="http://dx.doi.org/10.1371/journal.pone.0004391">10.1371/journal.pone.0004391</a></li>
<li id="ref37">Shaner <i>et al.</i> Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. <i>Nat Biotechnol</i> 2004. <b>22</b>(12): 1567-1572. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt1037">10.1038/nbt1037</a></li>
<li id="ref38">Shemiakina <i>et al.</i> A monomeric red fluorescent protein with low cytotoxicity. <i>Nat Comms</i> 2012. <b>3</b>: 1204. doi: <a target="_blank" href="http://dx.doi.org/10.1038/ncomms2208">10.1038/ncomms2208</a></li>
<li id="ref39">Shcherbo <i>et al.</i> Far-red fluorescent tags for protein imaging in living tissues. <i>Biochem. J.</i> 2009. <b>418</b>(3): 567. doi: <a target="_blank" href="http://dx.doi.org/10.1042/BJ20081949">10.1042/bj20081949</a></li>
<li id="ref40">Wang <i>et al.</i> Evolution of new nonantibody proteins via iterative somatic hypermutation. <i>Proceedings of the National Academy of Sciences</i> 2004. <b>101</b>(48): 16745-16749. doi: <a target="_blank" href="http://dx.doi.org/10.1073/pnas.0407752101">10.1073/pnas.0407752101</a></li>
<li id="ref41">Lin <i>et al.</i> Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals. <i>Chemistry & Biology</i> 2009. <b>16</b>(11): 1169-1179. doi: <a target="_blank" href="http://dx.doi.org/10.1016/j.chembiol.2009.10.009">10.1016/j.chembiol.2009.10.009</a></li>
<li id="ref42">Shcherbo <i>et al.</i> Near-infrared fluorescent proteins. <i>Nat Meth</i> 2010. <b>7</b>(10): 827-829. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.1501">10.1038/nmeth.1501</a></li>
<li id="ref43">Morozova <i>et al.</i> Far-Red Fluorescent Protein Excitable with Red Lasers for Flow Cytometry and Superresolution STED Nanoscopy. <i>Biophysical Journal</i> 2010. <b>99</b>(2): L13-L15. doi: <a target="_blank" href="http://dx.doi.org/10.1016/j.bpj.2010.04.025">10.1016/j.bpj.2010.04.025</a></li>
<li id="ref44">Shu <i>et al.</i> Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome. <i>Science</i> 2009. <b>324</b>(5928): 804-807. doi: <a target="_blank" href="http://dx.doi.org/10.1126/science.1168683">10.1126/science.1168683</a></li>
<li id="ref45">Filonov <i>et al.</i> Bright and stable near-infrared fluorescent protein for in vivo imaging. <i>Nat Biotechnol</i> 2011. <b>29</b>(8): 757-761. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nbt.1918">10.1038/nbt.1918</a></li>
<li id="ref46">Shcherbakova <i>et al.</i> Near-infrared fluorescent proteins for multicolor in vivo imaging. <i>Nat Meth</i> 2013. <b>10</b>(8): 751-754. doi: <a target="_blank" href="http://dx.doi.org/10.1038/NMETH.2521">10.1038/nmeth.2521</a></li>
<li id="ref47">Piatkevich <i>et al.</i> Extended Stokes Shift in Fluorescent Proteins: Chromophore–Protein Interactions in a Near-Infrared TagRFP675 Variant. <i>Scientific Reports</i> 2013. <b>3</b>doi: <a target="_blank" href="http://dx.doi.org/10.1038/srep01847">10.1038/srep01847</a></li>
<li id="ref48">Ai <i>et al.</i> Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. <i>Nat Meth</i> 2008. <b>5</b>(5): 401-403. doi: <a target="_blank" href="http://dx.doi.org/10.1038/NMETH.1207">10.1038/nmeth.1207</a></li>
<li id="ref49">Johnson <i>et al.</i> Red Fluorescent Protein pH Biosensor to Detect Concentrative Nucleoside Transport. <i>Journal of Biological Chemistry</i> 2009. <b>284</b>(31): 20499-20511. doi: <a target="_blank" href="http://dx.doi.org/10.1074/jbc.M109.019042">10.1074/jbc.m109.019042</a></li>
<li id="ref50">Pletnev <i>et al.</i> Structure of the red fluorescent protein from a lancelet ( Branchiostoma lanceolatum ): a novel GYG chromophore covalently bound to a nearby tyrosine . <i>Acta Cryst Sect D</i> 2013. <b>69</b>(9): 1850-1860. doi: <a target="_blank" href="http://dx.doi.org/10.1107/S0907444913015424">10.1107/s0907444913015424</a></li>
<li id="ref51">Shcherbakova <i>et al.</i> An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging. <i>J. Am. Chem. Soc.</i> 2012. <b>134</b>(18): 7913-7923. doi: <a target="_blank" href="http://dx.doi.org/10.1021/ja3018972">10.1021/ja3018972</a></li>
<li id="ref52">Hoi <i>et al.</i> An Engineered Monomeric Zoanthus sp. Yellow Fluorescent Protein. <i>Chemistry & Biology</i> 2013. <b>20</b>(10): 1296-1304. doi: <a target="_blank" href="http://dx.doi.org/10.1016/j.chembiol.2013.08.008">10.1016/j.chembiol.2013.08.008</a></li>
<li id="ref53">Erard <i>et al.</i> Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. <i>Molecular BioSystems</i> 2013. <b>9</b>(2): 258. doi: <a target="_blank" href="http://dx.doi.org/10.1039/c2mb25303h">10.1039/c2mb25303h</a></li>
<li id="ref54">Chu <i>et al.</i> Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. <i>Nat Meth</i> 2014. <b>11</b>(5): 572-578. doi: <a target="_blank" href="http://dx.doi.org/10.1038/nmeth.2888">10.1038/nmeth.2888</a></li>
<li id="ref55">Yu <i>et al.</i> An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. <i>Nat Comms</i> 2014. <b>5</b>doi: <a target="_blank" href="http://dx.doi.org/10.1038/ncomms4626">10.1038/ncomms4626</a></li>
</ol>