-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbboxreg.py
238 lines (212 loc) · 9.05 KB
/
bboxreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#hi i\'m akash kumar i\'am THE playboy
'''
tensorflow version 1.1.0+
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import collections
import numpy as np
import glob
import argparse
import os
import cv2
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", help="path to folder containing images")
parser.add_argument("--mode", default="test", choices=["train", "test", "export"])
parser.add_argument("--output_dir", default=None, help="where to put output files")
parser.add_argument("--checkpoint", default= "check_bbox/model-2000.ckpt",help="directory with checkpoint to resume training from or use for testing")
parser.add_argument("--textfile",default="label.txt",help="text_file containing training labels")
parser.add_argument("--batchsize",default=8,help="Batch size for training")
a = parser.parse_args()
NO_OF_CLASSES=4
ITERATIONS=1200
EPOCHS=10
INP_HEIGHT=99
INP_BREADTH=99
INP_CHANNELS=3
SAVE_FREQ=200
#KEEP_PROB=0.7
def bounding_box_scaler(bbox, image):
img = cv2.imread(a.input_dir+"/" + image)
h, w, _ = img.shape
bbox[0] = int(float(bbox[0])*w)
bbox[1] = int(float(bbox[1])*h)
bbox[2] = int(float(bbox[2])*w)
bbox[3] = int(float(bbox[3])*h)
return (bbox, h, w)
def load_examples_train():
images_ = []
labels_ = []
i=0
with open(a.textfile, "r+") as f:
for line in tqdm(f.readlines()):
words = line.strip().split(" ")
image_name = words[0]
bbox, h, w = bounding_box_scaler([words[1], words[2], words[3], words[4]], image_name)
xmin = bbox[0]
xmax = bbox[2]
ymin = bbox[1]
ymax = bbox[3]
x_tip = int(float(words[5])*w)
y_tip = int(float(words[6])*h)
img = cv2.imread(a.input_dir+"/"+image_name)
img = img[ymin:ymax, xmin:xmax]
normalized_coordinates = np.array(((x_tip-xmin)/(xmax-xmin), (y_tip-ymin)/(ymax-ymin))).astype('float')
#print(normalized_coordinates.shape)
img = cv2.resize(img, (99,99))
normalized_coordinates = normalized_coordinates*99
#print(normalized_coordinates)
images_.append(img)
labels_.append(normalized_coordinates)
i=i+1
return images_, labels_,i
'''def load_examples_train():
textf = a.textfile
f = open(textf, 'r')
images = []
labels = []
no_mat=np.zeros(10)
for line in f:
lines= line.split(',')
filename, label=lines[0],lines[1]
img=cv2.imread(os.path.join(os.getcwd(),a.input_dir,filename),0)
img=2*img/255 -1
img=np.expand_dims(img,-1)
images.append(img)
labels.append(label.rstrip())
no_mat[int(label)]+=1
labels=np.int32(labels)
#print(no_mat)
return images,labels
'''
def next_batch(num, data, labels, id_mat=None):
if id_mat is None:
id_mat=np.arange(len(data))
idx = id_mat[:num]
id_mat=collections.deque(id_mat)
id_mat.rotate(-num)
id_mat=np.array(id_mat)
#print(id_mat[0])
data_shuffle = [data[ i] for i in idx]
labels_shuffle = [labels[ i] for i in idx]
return id_mat,np.asarray(data_shuffle), np.asarray(labels_shuffle)
def conv(batch_input, out_channels, f_size=3,stride=1,padding="VALID"):
with tf.variable_scope("conv"):
in_channels = batch_input.get_shape()[3]
filters = tf.get_variable("filter", [f_size, f_size, in_channels, out_channels], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02))
conv = tf.nn.conv2d(batch_input, filters, [1, stride, stride, 1], padding)
return conv
def fully_connected(batch_input,out_size=4):
with tf.variable_scope("fc"):
in_size=batch_input.get_shape()[1]
weights=tf.get_variable("weights",[in_size,out_size],dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02))
bias=tf.get_variable("bias",[out_size],dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02))
wx=tf.matmul(batch_input,weights)
fc_out=tf.nn.bias_add(wx,bias)
return fc_out
def model_lev2(x):
with tf.variable_scope("conv1"):
lay1=conv(x,32,9,2,"VALID")
with tf.variable_scope("conv2"):
lay2=conv(lay1,21,4,1,"VALID")
#lay2=tf.nn.max_pool(lay1, ksize=[1, 3, 3, 1],strides=[1, 2, 2, 1], padding='SAME')
with tf.variable_scope("conv3"):
lay3=conv(lay2,32,3,1,"SAME")
lay3=tf.nn.max_pool(lay3, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding="VALID")
#lay3_flat=tf.contrib.layers.flatten(lay3)
with tf.variable_scope("conv4"):
lay4=conv(lay3,64,3,1,"VALID")
with tf.variable_scope("conv5"):
lay5=conv(lay4,64,3,1,"VALID")
with tf.variable_scope("pool6"):
lay6=tf.nn.max_pool(lay5, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='VALID')
with tf.variable_scope("conv7"):
lay7=conv(lay6,96,2,1,"VALID")
with tf.variable_scope("conv8"):
lay8=conv(lay7,96,2,1,"VALID")
with tf.variable_scope("conv9"):
lay9=conv(lay8,96,2,1,"VALID")
with tf.variable_scope("fc1"):
lay6_flat=tf.contrib.layers.flatten(lay6)
lay6_fc=fully_connected(lay6_flat,160)
with tf.variable_scope("fc2"):
lay9_flat=tf.contrib.layers.flatten(lay9)
lay9_fc=fully_connected(lay9_flat,160)
with tf.variable_scope("final_layer"):
lay_concat=tf.concat([lay6_fc,lay9_fc],1)
out_lay=fully_connected(lay_concat,2)
return out_lay
def model_train(x,y):
out=model_lev2(x)
return train(out,y)
def train(y_pred,y_train):
with tf.name_scope("trainer"):
#loss=tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_train,logits=y_pred)
loss=tf.square(y_pred-y_train)
loss=tf.reduce_mean(loss)
train_step=tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss)
#correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.to_int64(y_train))
#accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return loss,train_step
def test_model(x):
a=model_lev2(x)
return a
def main(epochs=EPOCHS):
x=tf.placeholder(tf.float32,shape=[None,INP_HEIGHT,INP_BREADTH,INP_CHANNELS])
y=tf.placeholder(tf.float32,shape=[None,2])
#keep_prob=tf.placeholder(tf.float32)
with tf.Session() as session:
if (a.mode=="train"):
x_images,y_train,no_examples=load_examples_train()
iterate=np.int32(EPOCHS*no_examples/int(a.batchsize))
trainer=model_train(x,y)
saver=tf.train.Saver()
if a.checkpoint is not None:
ckpdir=a.checkpoint
saver.restore(session,ckpdir)
session.run(tf.global_variables_initializer())
ckpdir=os.path.join(os.getcwd(),a.checkpoint)
#saver.restore(session,ckpdir)
save_dir=os.path.join(os.getcwd(),a.output_dir)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
id_mat=None
for i in range(iterate):
id_mat,x_batch,y_batch=next_batch(int(a.batchsize),x_images,y_train,id_mat)
loss,_=session.run(trainer,feed_dict={x:x_batch,y:y_batch})
print("Epoch: %d Iter: %d Loss: %g "%((i+1)//no_examples,i+1,loss))
if (i+1)%SAVE_FREQ==0:
saver.save(session, os.path.join(save_dir, "model"),global_step=i+1)
print("Checkpoint Saved")
elif(a.mode=="test"):
#ckpdir=os.path.join(os.getcwd(),a.checkpoint)
ckpdir=a.checkpoint
tester=test_model(x)
saver=tf.train.Saver()
saver.restore(session,ckpdir)
#x_images,y_train,no_examples=load_examples_train()
#cap.isOpened():
# ret,frame=cap.read()
# frame = cv2.cvtColor(framsaver=tf.train.Saver()
#whilee, cv2.COLOR_BGR2GRAY)
#cap = cv2.VideoCapture(0)
# frame=cv2.resize(frame,(128,128))
# cv2.imshow('video',frame)
# if cv2.waitKey(10) & 0xFF==ord('q'):
# break
# frame=2*frame/255-1
# frame=np.expand_dims(np.expand_dims(frame,-1),0)
# output=session.run(tester,feed_dict={x:frame,keep_prob:1.0})
# print(np.argmax(output))
#img,_,_=load_examples_train()
#img=np.expand_dims(np.expand_dims(img,-1),0)
output=session.run(tester,feed_dict={x:img})
for idx,image in enumerate(img):
cv2.circle(image, (output[idx][0], output[idx][1]), 3, (0,255,0), 3)
cv2.imshow("Image", image)
cv2.waitKey(1000)
cv2.destroyAllWindows
print(output.astype('int'))