-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
30 lines (22 loc) · 1.01 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import numpy as np
eps = 1.0e-8
def csp_loss(csp_data, soft_assignments, discount=0.95):
# collect prob. of satisfying each constraint
sat_prob = csp_data.constraint_sat_prob(soft_assignments)
sat_prob = torch.cat([p for p in sat_prob.values()], dim=0)
# min. negative log-likelihood
loss = -torch.log(sat_prob + eps).mean(dim=0)
# weighted sum with discount factor through time
weights = discount ** torch.arange(loss.shape[0]-1, -1, -1, device=csp_data.device)
loss = (weights * loss).sum()
return loss
def mis_loss(csp_data, soft_assignments, discount=0.95, kappa=1.0):
sat_prob = csp_data.constraint_sat_prob(soft_assignments)
sat_prob = torch.cat([p for p in sat_prob.values()], dim=0)
is_loss = -torch.log(sat_prob + eps).mean(dim=0)
max_loss = soft_assignments.mean(dim=0)
loss = (is_loss + kappa) * (max_loss + 1)
weights = discount ** torch.arange(loss.shape[0]-1, -1, -1, device=csp_data.device)
loss = (weights * loss).sum()
return loss