-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
44 lines (36 loc) · 1.64 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# from __future__ import print_function
# from __future__ import division
import torch
import numpy as np
from torchvision import transforms
import os
import glob
from PIL import Image
class DataLoaderSegmentation(torch.utils.data.dataset.Dataset):
def __init__(self, folder_path, num_classes):
super(DataLoaderSegmentation, self).__init__()
self.img_files = glob.glob(os.path.join(folder_path,'Images','*.*'))
self.label_files = []
self.num_classes = num_classes
for img_path in self.img_files:
image_filename, _ = os.path.splitext(os.path.basename(img_path))
label_filename_with_ext = f"{image_filename}_label.jpg"
self.label_files.append(os.path.join(folder_path, 'Labels', label_filename_with_ext))
self.transforms = transforms.Compose([transforms.ToTensor()])
def __getitem__(self, index):
img_path = self.img_files[index]
label_path = self.label_files[index]
image = Image.open(img_path)
label = Image.open(label_path)
# Set pixels with values above the number of classes to the number of clases
label_np = np.asarray(label)
label_np = np.clip(label_np, 0, self.num_classes)
# Apply Transforms
image = self.transforms(image)
label = Image.fromarray(label_np)
label = self.transforms(label).unsqueeze(0)
# Convert to int64 and remove second dimension
label = label.long().squeeze()
return image, label
def __len__(self):
return len(self.img_files)