-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfree_convection.jl
120 lines (95 loc) · 5.06 KB
/
free_convection.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
using Oceananigans
using Oceananigans.Units
using Oceananigans: fields
using Printf
using GLMakie
using JLD2
function run_free_convection(; N=32, H=64, Qᵇ=1e-8, N²=1e-6, advection=UpwindBiasedFifthOrder(), model_kwargs...)
grid = RectilinearGrid(size=(N, N, N), x=(0, 2H), y=(0, 2H), z=(-H, 0), halo=(3, 3, 3))
buoyancy_boundary_conditions =
FieldBoundaryConditions(top=FluxBoundaryCondition(Qᵇ), bottom=GradientBoundaryCondition(N²))
model = NonhydrostaticModel(; grid = grid,
tracers = :b,
advection = advection,
timestepper = :RungeKutta3,
buoyancy = BuoyancyTracer(),
boundary_conditions = (; b=buoyancy_boundary_conditions),
closure = AnisotropicMinimumDissipation(),
model_kwargs...)
# Initial condition: linear stratification + surface-concentrated random noise
bᵢ(x, y, z) = N² * z + 1e-3 * N² * H * exp(16z / H) * randn()
set!(model, b=bᵢ)
stop_time = (H/2)^2 * N² / 3Qᵇ # run till boundary layer depth ≈ H/2
simulation = Simulation(model; Δt=10.0, stop_time)
# Adaptive time-stepping
simulation.callbacks[:wizard] = Callback(TimeStepWizard(cfl=0.5, max_Δt=1minute), IterationInterval(10))
# Simple logging
progress(sim) = @info @sprintf("[%.2f %%] iter %d, t = %s, Δt = %s, max(|w|): %.2e",
100time(sim) / stop_time,
iteration(sim),
prettytime(sim),
prettytime(sim.Δt),
maximum(abs, sim.model.velocities.w))
simulation.callbacks[:progress] = Callback(progress, IterationInterval(10))
prefix = "free_convection_$N"
simulation.output_writers[:fields] = JLD2OutputWriter(model, fields(model),
prefix = prefix * "_fields",
schedule = TimeInterval(stop_time/100),
field_slicer = nothing,
force = true)
u, v, w, b = fields(model)
κₑ = model.diffusivity_fields.κₑ.b
wb = Field(Average(w * b, dims=(1, 2)))
qᵇ = Field(Average(- ∂z(b) * κₑ, dims=(1, 2)))
simulation.output_writers[:averages] = JLD2OutputWriter(model, (; wb, qᵇ),
prefix = prefix * "_averages",
schedule = TimeInterval(stop_time/100),
init = (file, model) -> (file["surface_flux"] = Qᵇ),
force = true)
run!(simulation)
return prefix
end
Ns = [16, 32, 64, 128]
for N in Ns
@info "Running convection with" N
# Run the free convection experiment
prefix = run_free_convection(N=N)
# Generate file paths from the file prefix
fields_path = prefix * "_fields.jld2"
averages_path = prefix * "_averages.jld2"
# Load vertical velocity data and coordinates
w = FieldTimeSeries(fields_path, "w")
x, y, z = nodes(w)
Nt = size(w, 4)
Nz = w.grid.Nz
wmax = maximum(abs, w[Nt])
n = Observable(1) # `n` represents the "snapshot index" (n varies from 1 to 11 here)
# Build the figure
fig = Figure(resolution=(1600, 800))
# A heatmap of vertical velocity
# Note: @lift interprets the node `n` so wⁿ can be updated dynamically to produce an animation
w_title = @lift "Vertical velocity at t = " * prettytime(w.times[$n])
wⁿ = @lift Array(interior(w[$n]))[1, :, :]
ax = Axis(fig[1, 1:3]; title=w_title, xlabel="x (m)", ylabel="z (m)")
hm = heatmap!(ax, y, z, wⁿ, colormap=:balance, colorrange = (-wmax, wmax))
cb = Colorbar(fig[1, 4], limits=(-wmax, wmax), colormap=:balance)
# Line plots of the vertical fluxes
fluxes_label = @lift "xy-averaged fluxes at t = " * prettytime(w.times[$n])
averages_file = jldopen(averages_path)
Qᵇ = averages_file["surface_flux"]
iterations = parse.(Int, keys(averages_file["timeseries/t"]))
wb = @lift averages_file["timeseries/wb/" * string(iterations[$n])][:]
qᵇ = @lift vcat(averages_file["timeseries/qᵇ/" * string(iterations[$n])][1:Nz], [Qᵇ])
ax = Axis(fig[1, 5]; xlabel=fluxes_label, ylabel="z (m)")
scatter!(ax, wb, z, label="Resolved, ⟨wb⟩")
scatter!(ax, qᵇ, z, label="Unresolved, -⟨κₑ ∂z(b)⟩")
axislegend(ax, position=:rb)
xlims!(ax, -Qᵇ/5, 1.15*Qᵇ)
# Update figure data to produce an animation
record(fig, prefix * ".mp4", 1:Nt, framerate=16) do nn
@info "Animating frame $nn of $Nt..."
n[] = nn
end
# Close the file with horizontal averages
close(averages_file)
end