-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathVariableLength.lua
86 lines (69 loc) · 3.08 KB
/
VariableLength.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
local VariableLength, parent = torch.class("nn.VariableLength", "nn.Decorator")
function VariableLength:__init(module, lastOnly)
parent.__init(self, assert(module:maskZero()))
-- only extract the last element of each sequence
self.lastOnly = lastOnly -- defaults to false
self.gradInput = {}
end
function VariableLength:updateOutput(input)
-- input is a table of batchSize tensors
assert(torch.type(input) == 'table')
assert(torch.isTensor(input[1]))
local batchSize = #input
self._input = self._input or input[1].new()
-- mask is a binary tensor with 1 where self._input is zero (between sequence zero-mask)
self._mask = self._mask or torch.ByteTensor()
-- now we process input into _input.
-- indexes and mappedLengths are meta-information tables, explained below.
self.indexes, self.mappedLengths = self._input.nn.VariableLength_FromSamples(input, self._input, self._mask)
-- zero-mask the _input where mask is 1
nn.utils.recursiveZeroMask(self._input, self._mask)
self.modules[1]:setZeroMask(self._mask)
-- feedforward the zero-mask format through the decorated module
local output = self.modules[1]:updateOutput(self._input)
if self.lastOnly then
-- Extract the last time step of each sample.
-- self.output tensor has shape: batchSize [x outputSize]
self.output = torch.isTensor(self.output) and self.output or output.new()
self.output.nn.VariableLength_ToFinal(self.indexes, self.mappedLengths, output, self.output)
else
-- This is the revese operation of everything before updateOutput
self.output = self._input.nn.VariableLength_ToSamples(self.indexes, self.mappedLengths, output)
end
return self.output
end
function VariableLength:updateGradInput(input, gradOutput)
self._gradOutput = self._gradOutput or self._input.new()
if self.lastOnly then
assert(torch.isTensor(gradOutput))
self._gradOutput.nn.VariableLength_FromFinal(self.indexes, self.mappedLengths, gradOutput, self._gradOutput)
else
assert(torch.type(gradOutput) == 'table')
assert(torch.isTensor(gradOutput[1]))
self.indexes, self.mappedLengths = self._gradOutput.nn.VariableLength_FromSamples(gradOutput, self._gradOutput, self._mask)
end
-- zero-mask the _gradOutput where mask is 1
nn.utils.recursiveZeroMask(self._gradOutput, self._mask)
-- updateGradInput decorated module
local gradInput = self.modules[1]:updateGradInput(self._input, self._gradOutput)
self.gradInput = self._input.nn.VariableLength_ToSamples(self.indexes, self.mappedLengths, gradInput)
return self.gradInput
end
function VariableLength:accGradParameters(input, gradOutput, scale)
-- requires a previous call to updateGradInput
self.modules[1]:accGradParameters(self._input, self._gradOutput, scale)
end
function VariableLength:clearState()
self.gradInput = {}
if torch.isTensor(self.output) then
self.output:set()
else
self.output = {}
end
self._gradOutput = nil
self._input = nil
return parent.clearState(self)
end
function VariableLength:setZeroMask()
error"Not Supported"
end