Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MHGAN model #5

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,10 @@ Collection of Generative Adversarial Networks developed using TorchGAN
[Link to Paper](https://arxiv.org/pdf/1810.04714.pdf)\
Requires the `torchgan` master.

3. Metropolis-Hastings GAN (MHGAN)\
[Link to Paper](https://arxiv.org/pdf/1811.11357.pdf)\
Requires the `torchgan` master.

## Contribution Guidelines

We are open to accepting any model that you have built. The only things
Expand Down
134 changes: 134 additions & 0 deletions mhgan/mhgan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data as data
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import torchvision.utils as vutils
from IPython.display import HTML
from torch.optim import Adam
from torchgan.losses import (AuxiliaryClassifierDiscriminatorLoss,
AuxiliaryClassifierGeneratorLoss,
MinimaxDiscriminatorLoss, MinimaxGeneratorLoss)
from torchgan.models import ACGANDiscriminator, ACGANGenerator
from torchgan.trainer import Trainer

dataset = dsets.MNIST(root='./mnist',
train=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, ), std=(0.5, ))
]),
download=True)

dataloader = data.DataLoader(dataset,
batch_size=64,
shuffle=True,
num_workers=2)

real_batch = next(iter(dataloader))
plt.figure(figsize=(8, 8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(
np.transpose(
vutils.make_grid(real_batch[0][:64], padding=2, normalize=True).cpu(),
(1, 2, 0)))
plt.show()

acgan = {
"generator": {
"name": ACGANGenerator,
"args": {
"encoding_dims": 100,
"num_classes": 10,
"out_channels": 1,
"step_channels": 32,
"out_size": 32,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.Tanh()
},
"optimizer": {
"name": Adam,
"args": {
"lr": 0.0009,
"betas": (0.5, 0.999)
}
}
},
"discriminator": {
"name": ACGANDiscriminator,
"args": {
"in_channels": 1,
"step_channels": 32,
"in_size": 32,
"num_classes": 10,
"nonlinearity": nn.LeakyReLU(0.2),
"last_nonlinearity": nn.Sigmoid()
},
"optimizer": {
"name": Adam,
"args": {
"lr": 0.0002,
"betas": (0.5, 0.999)
}
}
}
}

loss = [
MinimaxDiscriminatorLoss(),
MinimaxGeneratorLoss(),
AuxiliaryClassifierGeneratorLoss(),
AuxiliaryClassifierDiscriminatorLoss(),
]

if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.backends.cudnn.deterministic = True
epochs = 20
else:
device = torch.device("cpu")
epochs = 5

print("Device: {}".format(device))
print("Epochs: {}".format(epochs))

trainer = Trainer(acgan, loss, sample_size=64, epochs=epochs, device=device)

trainer(dataloader)

fig = plt.figure(figsize=(8, 8))
plt.axis("off")
ims = [[
plt.imshow(plt.imread("{}/epoch{}_generator.png".format(trainer.recon, i)))
] for i in range(1, trainer.epochs + 1)]
ani = animation.ArtistAnimation(fig,
ims,
interval=1000,
repeat_delay=1000,
blit=True)
HTML(ani.to_jshtml())

gen = trainer.generator

dis = trainer.discriminator

for i in range(10):
x = torch.randn([1, 100], device=device)
for k in range(1000):
xk = torch.randn([1, 100], device=device)
a = 1 / dis(gen(x, torch.Tensor([i]).cuda()))
b = 1 / dis(gen(xk, torch.Tensor([i]).cuda()))
d = (a - 1) / (b - 1)
p = torch.rand([1, 1], device=device)
if (p < min(1, d)):
x = xk
image = gen(x, torch.Tensor([i]).cuda())
plt.figure()
plt.axis("off")
plt.title(i)
plt.imshow(np.transpose(vutils.make_grid(image.detach()).cpu(), (1, 2, 0)))