-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure6.py
executable file
·479 lines (361 loc) · 11.5 KB
/
figure6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#!/usr/bin/env python3
"""
Author: Victoria McDonald
email: [email protected]
website: http://torimcd.github.com
license: BSD
"""
import matplotlib
matplotlib.use("Agg")
import os
import sys
import numpy as np
import netCDF4
import operator
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib import ticker
from mpl_toolkits.basemap import Basemap
import processing_functions as pf
# ------------------------------------------------------------------------
# change this section to match where you downloaded the model output files
# ------------------------------------------------------------------------
download_path = '' # enter the path to the directory where you downloaded the archived data, eg '/home/user/Downloads'
filebase = download_path + 'FYSP_clouds_archive/CAM4/'
filebase_c5 = download_path + 'FYSP_clouds_archive/CAM5/'
outfileloc = download_path + 'temp_data/' # this is the location to save the processed netcdf files to
# ------------------------------------
casenames = ['07','0725','075','0775','08','0825','085','0875','09','0925','095','0975','10','1025','105','1075','11']
casenames_c5 = ['09','0925','095','0975','10','1025','105']
# field variables
fields = 'co2vmr,LHFLX,SHFLX,CLDLOW,CLDHGH,LWCF,SWCF,FSDS,FSDSC,FSNS,FSNSC,FLDS,FLDSC,FLNS,FLNSC'
pf.global_annual_average(filebase, outfileloc, fields, 'cam4')
pf.global_annual_average(filebase_c5, outfileloc, fields, 'cam5')
pf.prep_eis(filebase, outfileloc, 'cam4')
pf.prep_eis(filebase_c5, outfileloc, 'cam5')
pf.total_waterpath(filebase, outfileloc, 'cam4')
exp = [79219.8, 52021.4, 31909.4, 18299.8, 9552.6, 4780.9, 2154.7, 903.8, 368.9, 139.2, 51.4]
sc = [0.8,0.825,0.85,0.875,0.9,0.925,0.95,0.975,1.0,1.025,1.05]
sc_all = ['0.7','0.725','0.75','0.775','0.8','0.825','0.85','0.875','0.9','0.925','0.95','0.975','1.0','1.025','1.05','1.075','1.1']
sc_c5 = ['0.9','0.925','0.95','0.975','1.0','1.025','1.05']
filenames = ['c4_global_average',
'exp',
'c4_global_average',
'c4_global_average',
'c4_eis',
'c4_eis',
'c4_global_average',
'c4_global_average',
'c4_wp_low',
'c4_wp_high',
'c4_global_average',
'c4_global_average']
filenames_c5 = ['c5_global_average',
'exp',
'c5_global_average',
'c5_global_average',
'c5_eis',
'c5_eis',
'c5_global_average',
'c5_global_average',
'c5_wp_low',
'c5_wp_high',
'c5_global_average',
'c5_global_average']
labels_c4 = ['CAM4',
'expected',
'Latent CAM4',
'Sensible CAM4',
'EIS CAM4',
'eis',
'Low CAM4',
'High CAM4',
'Low CAM4',
'High CAM4',
'Longwave CAM4',
'Shortwave CAM4']
labels_c5 = ['CAM5',
'expected',
'Latent CAM5',
'Sensible CAM5',
'EIS CAM5',
'eis',
'Low CAM5',
'High CAM5',
'Low CAM5',
'High CAM5',
'Longwave CAM5',
'Shortwave CAM5']
# field variables
fields= ['co2vmr',
'exp',
'LHFLX',
'SHFLX',
'EIS',
'EIS',
'CLDLOW',
'CLDHGH',
'ICLDTWP',
'ICLDTWP',
'LWCF',
'SWCF']
colors = ['black', 'black', 'saddlebrown', 'saddlebrown', 'peru', 'peru', 'blue', 'blue', 'blue', 'blue', 'lightskyblue', 'lightskyblue', 'blue', 'blue', 'lightskyblue', 'lightskyblue','salmon', 'salmon', 'red','red']
y_labels = [r'$\mathsf{CO_2}$'+ ' ' + r'$\mathsf{(ppm)}$',
r'$\mathsf{Heat}$' + ' ' + r'$\mathsf{Flux}$' + ' ' +r'$\mathsf{(W/m^2)}$',
'eis',
r'$\mathsf{Cloud}$' + ' ' + r'$\mathsf{Fraction}$' ,
r'$\mathsf{Cloud}$' + ' ' + r'$\mathsf{Water}$' + ' ' + r'$\mathsf{Path}$' + ' ' + r'$\mathsf{(W/m^2)}$',
r'$\mathsf{Cloud}$' + ' ' + r'$\mathsf{Forcing}$' + ' ' +r'$\mathsf{(W/m^2)}$']
y_scales = [[0.1, 1000000],[0,100],[0,15],[0,0.5],[0,300],[-65,45]]
letters = ['a', 'b', 'c', 'd', 'e', 'f']
#create plot
fig = plt.figure(figsize=(7.08661,2.5))
# container
grid = gridspec.GridSpec(2, 3, wspace=0.3, hspace=0.3)
# keep track of which plot we're on
n=0
# keep track of which field is being plotted
f=0
# keep track of colors
c=0
for l in letters:
ax = fig.add_subplot(grid[n])
fn = filenames[f]
fn_c5 = filenames_c5[f]
field = fields[f]
if (field == 'EIS'):
i = 0
eisplot = []
eisplot_c5 = []
ltsplot = []
ltsplot_c5 = []
for CASE in casenames:
CASENAME = casenames[i]
outfilebase = 'c4_eis_' + CASENAME + '_'
lts_outfilebase = 'c4_lts_' + CASENAME + '_'
lcl = []
z700 = []
lts = []
qs850 = []
tempsum = []
pal = []
eis = []
# GET LCL
dsloc = outfileloc + outfilebase+'lcl.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
lcl = ds.variables['lcl'][:]
ds.close() #close the file
lcl = lcl.flatten()
#GET z700
dsloc = outfileloc + outfilebase+'z700.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
z700 = ds.variables['Z3'][:]
ds.close() #close the file
z700 = z700.flatten()
#GET lts
dsloc = outfileloc + lts_outfilebase+'lts.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
lts = ds.variables['lts'][:]
ds.close() #close the file
lts = lts.flatten()
#GET qs850
dsloc = outfileloc + outfilebase+'qs850.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
qs850 = ds.variables['smr'][:]
ds.close() #close the file
qs850 = qs850.flatten()
#GET tempsum
dsloc = outfileloc + outfilebase+'tempsum.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
tempsum = ds.variables['T'][:]
ds.close() #close the file
tempsum = tempsum.flatten()
pal = (9.9)*(1-(1+2450000*qs850/(287.058*(tempsum/2)))/(1+(2450000**2)*qs850/(993*461.4*((tempsum/2)**2))))
eis = lts - pal*((z700/1000)-lcl)
eisplot.append(eis.item(0))
ltsplot.append(lts.item(0))
i = i+1
ax.plot(sc_all, eisplot, marker='o', ms=3, markeredgewidth=0.0, color='green',
label='EIS CAM4', rasterized=False)
ax.plot(sc_all, ltsplot, marker='o', ms=3, markeredgewidth=0.0, color='lightgreen',
label='LTS CAM4', rasterized=False)
i = 0
for CASE in casenames_c5:
CASENAME = casenames_c5[i]
outfilebase = 'c5_eis_' + CASENAME + '_'
lts_outfilebase = 'c5_lts_' + CASENAME + '_'
lcl = []
z700 = []
lts = []
qs850 = []
tempsum = []
pal = []
eisc5 = []
# GET LCL
dsloc = outfileloc + outfilebase +'lcl.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
lcl = ds.variables['lcl'][:]
ds.close() #close the file
lcl = lcl.flatten()
#GET z700
dsloc = outfileloc + outfilebase+'z700.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
z700 = ds.variables['Z3'][:]
ds.close() #close the file
z700 = z700.flatten()
#GET lts
dsloc = outfileloc + lts_outfilebase+'lts.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
lts = ds.variables['lts'][:]
ds.close() #close the file
lts = lts.flatten()
#GET qs850
dsloc = outfileloc + outfilebase+'qs850.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
qs850 = ds.variables['smr'][:]
ds.close() #close the file
qs850 = qs850.flatten()
#GET tempsum
dsloc = outfileloc + outfilebase+'tempsum.nc'
if os.path.isfile(dsloc):
# open the file and get out the variable
ds = netCDF4.Dataset(dsloc)
tempsum = ds.variables['T'][:]
ds.close() #close the file
tempsum = tempsum.flatten()
if os.path.isdir(outfileloc):
pal = (9.9)*(1-(1+2450000*qs850/(287.058*(tempsum/2)))/(1+(2450000**2)*qs850/(993*461.4*((tempsum/2)**2))))
eisc5 = lts - pal*((z700/1000)-lcl)
ltsplot_c5.append(lts.item(0))
eisplot_c5.append(eisc5.item(0))
i = i+1
ax.plot(sc_c5, ltsplot_c5, marker='v', ms=3, markeredgewidth=0.0, linestyle='--', color='lightgreen',
label='LTS CAM5', rasterized=False)
ax.plot(sc_c5, eisplot_c5, marker='v', ms=3, markeredgewidth=0.0, linestyle='--', color='green',
label='EIS CAM5', rasterized=False)
ax.set_xlim([0.675,1.125])
ax.set_ylabel(r'$\mathsf{Potential}$' + ' ' + r'$\mathsf{Temperature}$' + ' ' +r'$\mathsf{(K)}$', fontsize=5)
ax.tick_params(labelsize=6)
plt.setp(ax.get_xticklabels(), fontsize=5)
plt.setp(ax.get_yticklabels(), fontsize=5)
else:
# CAM4
plotarray = []
i=0
for CASE in casenames:
CASENAME = casenames[i]
fp_c4 = outfileloc + fn + '_' + CASENAME +'.nc'
if os.path.isfile(fp_c4):
# open the file and get out the variable
dsyear = netCDF4.Dataset(fp_c4)
p = dsyear.variables[field][:]
dsyear.close() #close the file
p = p.flatten()
if (field == 'co2vmr'):
p=p*1000000
plotarray.append(p.item(0))
i +=1
if len(plotarray) > 0:
#plot the data
ax.plot(sc_all, plotarray, marker='o', ms=3, markeredgewidth=0.0, color=colors[c], label=labels_c4[f], rasterized=False)
ax.set_xlim([0.675,1.125])
ax.set_ylabel(y_labels[n], fontsize=5)
ax.tick_params(labelsize=6)
if n > 2:
ax.set_xlabel(r'$\mathsf{S/S_0}$', fontsize=5)
c +=1
i=0
plotarray_c5 = []
for CASE in casenames_c5:
CASENAME = casenames_c5[i]
fp_c5 = outfileloc + fn_c5 + '_' + CASENAME +'.nc'
if os.path.isfile(fp_c5):
# open the file and get out the variable
dsyear = netCDF4.Dataset(fp_c5)
p = dsyear.variables[field][:]
dsyear.close() #close the file
p = p.flatten()
if (field == 'co2vmr'):
p=p*1000000
plotarray_c5.append(p.item(0))
i +=1
if len(plotarray_c5) > 0:
#plot the data
ax.plot(sc_c5, plotarray_c5, marker='v', ms=3, markeredgewidth=0.0, linestyle='--', alpha=1, color=colors[c], label=labels_c5[f], rasterized=False)
c +=1
f = f+1
fn = filenames[f]
fn_c5 = filenames_c5[f]
field = fields[f]
if (field == 'exp'):
ax.plot(sc, exp, marker='.', ms=3, color='lightgrey', label='Expectation', rasterized=False)
else:
# CAM4
i=0
plotarray = []
for CASE in casenames:
CASENAME = casenames[i]
fp_c4 = outfileloc + fn + '_' + CASENAME + '.nc'
if os.path.isfile(fp_c4):
# open the file and get out the variable
dsyear = netCDF4.Dataset(fp_c4)
p = dsyear.variables[field][:]
dsyear.close() #close the file
p = p.flatten()
if (field == 'co2vmr'):
p=p*10000
plotarray.append(p.item(0))
i +=1
if len(plotarray) > 0:
#plot the data
ax.plot(sc_all, plotarray, marker='o', ms=3, markeredgewidth=0.0, color=colors[c], label=labels_c4[f], rasterized=False)
c +=1
i=0
plotarray_c5 = []
for CASE in casenames_c5:
CASENAME = casenames_c5[i]
fp_c5 = outfileloc + fn_c5 + '_' + CASENAME +'.nc'
if os.path.isfile(fp_c5):
# open the file and get out the variable
dsyear = netCDF4.Dataset(fp_c5)
p = dsyear.variables[field][:]
dsyear.close() #close the file
p = p.flatten()
if (field == 'co2vmr'):
p=p*10000
plotarray_c5.append(p.item(0))
i +=1
if len(plotarray_c5) > 0:
#plot the data
ax.plot(sc_c5, plotarray_c5, marker='v', ms=3, markeredgewidth=0.0, linestyle='--', alpha=1, color=colors[c], label=labels_c5[f], rasterized=False)
c +=1
# add letter annotation
plt.text(-0.22, 1.0, letters[n], fontsize=6, fontweight="bold", transform=ax.transAxes)
ax.set_ylim(y_scales[n])
ax.tick_params(labelsize=5)
# Display the legend
plt.legend(loc=0, frameon=False, fontsize=5, prop={"size":5})
if n == 0:
ax.set_yscale("log")
f = f+1
n=n+1
plt.show()
fig.savefig("figures_main/figure6.pdf", format='pdf',bbox_inches='tight')