-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathnode.go
398 lines (344 loc) · 11.9 KB
/
node.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
package tree_sitter
/*
#cgo CFLAGS: -Iinclude -Isrc -std=c11 -D_POSIX_C_SOURCE=200112L -D_DEFAULT_SOURCE
#include <tree_sitter/api.h>
*/
import "C"
import "unsafe"
// A single node within a syntax [Tree].
// Note that this is a C-compatible struct
type Node struct {
_inner C.TSNode
}
func newNode(node C.TSNode) *Node {
if node.id == nil {
return nil
}
return &Node{_inner: node}
}
// Get a numeric id for this node that is unique.
//
// Within a given syntax tree, no two nodes have the same id. However, if
// a new tree is created based on an older tree, and a node from the old
// tree is reused in the process, then that node will have the same id in
// both trees.
func (n *Node) Id() uintptr {
return uintptr(n._inner.id)
}
// Get this node's type as a numerical id.
func (n *Node) KindId() uint16 {
return uint16(C.ts_node_symbol(n._inner))
}
// Get the node's type as a numerical id as it appears in the grammar
// ignoring aliases.
func (n *Node) GrammarId() uint16 {
return uint16(C.ts_node_grammar_symbol(n._inner))
}
// Get this node's type as a string.
func (n *Node) Kind() string {
return C.GoString(C.ts_node_type(n._inner))
}
// Get this node's symbol name as it appears in the grammar ignoring
// aliases as a string.
func (n *Node) GrammarName() string {
return C.GoString(C.ts_node_grammar_type(n._inner))
}
// Get the [Language] that was used to parse this node's syntax tree.
func (n *Node) Language() *Language {
return &Language{Inner: C.ts_node_language(n._inner)}
}
// Check if this node is *named*.
//
// Named nodes correspond to named rules in the grammar, whereas
// *anonymous* nodes correspond to string literals in the grammar.
func (n *Node) IsNamed() bool {
return bool(C.ts_node_is_named(n._inner))
}
// Check if this node is *extra*.
//
// Extra nodes represent things like comments, which are not required in the
// grammar, but can appear anywhere.
func (n *Node) IsExtra() bool {
return bool(C.ts_node_is_extra(n._inner))
}
// Check if this node has been edited.
func (n *Node) HasChanges() bool {
return bool(C.ts_node_has_changes(n._inner))
}
// Check if this node represents a syntax error or contains any syntax
// errors anywhere within it.
func (n *Node) HasError() bool {
return bool(C.ts_node_has_error(n._inner))
}
// Check if this node represents a syntax error.
//
// Syntax errors represent parts of the code that could not be incorporated
// into a valid syntax tree.
func (n *Node) IsError() bool {
return bool(C.ts_node_is_error(n._inner))
}
// Get this node's parse state.
func (n *Node) ParseState() uint16 {
return uint16(C.ts_node_parse_state(n._inner))
}
// Get the parse state after this node.
func (n *Node) NextParseState() uint16 {
return uint16(C.ts_node_next_parse_state(n._inner))
}
// Check if this node is *missing*.
//
// Missing nodes are inserted by the parser in order to recover from
// certain kinds of syntax errors.
func (n *Node) IsMissing() bool {
return bool(C.ts_node_is_missing(n._inner))
}
// Get the byte offsets where this node starts.
func (n *Node) StartByte() uint {
return uint(C.ts_node_start_byte(n._inner))
}
// Get the byte offsets where this node end.
func (n *Node) EndByte() uint {
return uint(C.ts_node_end_byte(n._inner))
}
// Get the byte range of source code that this node represents.
func (n *Node) ByteRange() (uint, uint) {
return n.StartByte(), n.EndByte()
}
// Get the range of source code that this node represents, both in terms of
// raw bytes and of row/column coordinates.
func (n *Node) Range() Range {
return Range{
StartByte: n.StartByte(),
EndByte: n.EndByte(),
StartPoint: n.StartPosition(),
EndPoint: n.EndPosition(),
}
}
// Get this node's start position in terms of rows and columns.
func (n *Node) StartPosition() Point {
p := Point{}
p.fromTSPoint(C.ts_node_start_point(n._inner))
return p
}
// Get this node's end position in terms of rows and columns.
func (n *Node) EndPosition() Point {
p := Point{}
p.fromTSPoint(C.ts_node_end_point(n._inner))
return p
}
// Get the node's child at the given index, where zero represents the first
// child.
//
// This method is fairly fast, but its cost is technically log(i), so if
// you might be iterating over a long list of children, you should use
// [Node.Children] instead.
func (n *Node) Child(i uint) *Node {
return newNode(C.ts_node_child(n._inner, C.uint(i)))
}
// Get this node's number of children.
func (n *Node) ChildCount() uint {
return uint(C.ts_node_child_count(n._inner))
}
// Get this node's *named* child at the given index.
//
// See also [Node.IsNamed].
// This method is fairly fast, but its cost is technically log(i), so if
// you might be iterating over a long list of children, you should use
// [Node.NamedChildren] instead.
func (n *Node) NamedChild(i uint) *Node {
return newNode(C.ts_node_named_child(n._inner, C.uint(i)))
}
// Get this node's number of *named* children.
//
// See also [Node.IsNamed].
func (n *Node) NamedChildCount() uint {
return uint(C.ts_node_named_child_count(n._inner))
}
// Get the first child with the given field name.
//
// If multiple children may have the same field name, access them using
// [Node.ChildrenByFieldName]
func (n *Node) ChildByFieldName(fieldName string) *Node {
cFieldName := C.CString(fieldName)
defer go_free(unsafe.Pointer(cFieldName))
return newNode(C.ts_node_child_by_field_name(n._inner, cFieldName, C.uint32_t(len(fieldName))))
}
// Get this node's child with the given numerical field id.
//
// See also [Node.ChildByFieldName]. You can
// convert a field name to an id using [Language.FieldIdForName].
func (n *Node) ChildByFieldId(fieldId uint16) *Node {
return newNode(C.ts_node_child_by_field_id(n._inner, C.uint16_t(fieldId)))
}
// Get the field name of this node's child at the given index.
func (n *Node) FieldNameForChild(childIndex uint32) string {
ptr := C.ts_node_field_name_for_child(n._inner, C.uint32_t(childIndex))
if ptr == nil {
return ""
}
return C.GoString(ptr)
}
// Get the field name of this node's named child at the given index.
func (n *Node) FieldNameForNamedChild(namedChildIndex uint32) string {
ptr := C.ts_node_field_name_for_named_child(n._inner, C.uint32_t(namedChildIndex))
if ptr == nil {
return ""
}
return C.GoString(ptr)
}
// Iterate over this node's children.
//
// A [TreeCursor] is used to retrieve the children efficiently. Obtain
// a [TreeCursor] by calling [Tree.Walk] or [Node.Walk]. To avoid
// unnecessary allocations, you should reuse the same cursor for
// subsequent calls to this method.
//
// If you're walking the tree recursively, you may want to use the
// [TreeCursor] APIs directly instead.
func (n *Node) Children(cursor *TreeCursor) []Node {
cursor.Reset(*n)
cursor.GotoFirstChild()
childCount := n.ChildCount()
result := make([]Node, 0, childCount)
for i := 0; i < int(childCount); i++ {
result = append(result, *cursor.Node())
cursor.GotoNextSibling()
}
return result
}
// Iterate over this node's named children.
//
// See also [Node.Children].
func (n *Node) NamedChildren(cursor *TreeCursor) []Node {
cursor.Reset(*n)
cursor.GotoFirstChild()
namedChildCount := n.NamedChildCount()
result := make([]Node, 0, namedChildCount)
for i := 0; i < int(namedChildCount); i++ {
for !cursor.Node().IsNamed() {
if !cursor.GotoNextSibling() {
break
}
}
result = append(result, *cursor.Node())
cursor.GotoNextSibling()
}
return result
}
// Iterate over this node's children with a given field name.
//
// See also [Node.Children].
func (n *Node) ChildrenByFieldName(fieldName string, cursor *TreeCursor) []Node {
fieldId := n.Language().FieldIdForName(fieldName)
done := fieldId == 0
if !done {
cursor.Reset(*n)
cursor.GotoFirstChild()
}
result := make([]Node, 0)
for !done {
for cursor.FieldId() != fieldId {
if !cursor.GotoNextSibling() {
return result
}
}
result = append(result, *cursor.Node())
if !cursor.GotoNextSibling() {
done = true
}
}
return result
}
// Get this node's immediate parent.
// Prefer [Node.ChildContainingDescendant]
// for iterating over this node's ancestors.
func (n *Node) Parent() *Node {
return newNode(C.ts_node_parent(n._inner))
}
// Deprecated: Prefer [Node.ChildWithDescendant] instead, this will be removed in 0.25
// Get the node's child containing `descendant`. This will not return
// the descendant if it is a direct child of `self`, for that use
// [Node.ChildWithDescendant].
func (n *Node) ChildContainingDescendant(descendant *Node) *Node {
return newNode(C.ts_node_child_containing_descendant(n._inner, descendant._inner))
}
// Get the node that contains `descendant`.
// Note that this can return `descendant` itself, unlike the deprecated function
// [Node.ChildContainingDescendant].
func (n *Node) ChildWithDescendant(descendant *Node) *Node {
return newNode(C.ts_node_child_with_descendant(n._inner, descendant._inner))
}
// Get this node's next sibling.
func (n *Node) NextSibling() *Node {
return newNode(C.ts_node_next_sibling(n._inner))
}
// Get this node's previous sibling.
func (n *Node) PrevSibling() *Node {
return newNode(C.ts_node_prev_sibling(n._inner))
}
// Get this node's next named sibling.
func (n *Node) NextNamedSibling() *Node {
return newNode(C.ts_node_next_named_sibling(n._inner))
}
// Get this node's previous named sibling.
func (n *Node) PrevNamedSibling() *Node {
return newNode(C.ts_node_prev_named_sibling(n._inner))
}
// Get the node's first child that extends beyond the given byte offset.
func (n *Node) FirstChildForByte(byteOffset uint) *Node {
return newNode(C.ts_node_first_child_for_byte(n._inner, C.uint(byteOffset)))
}
// Get the node's first named child that extends beyond the given byte offset.
func (n *Node) FirstNamedChildForByte(byteOffset uint) *Node {
return newNode(C.ts_node_first_named_child_for_byte(n._inner, C.uint(byteOffset)))
}
// Get the node's number of descendants, including one for the node itself.
func (n *Node) DescendantCount() uint {
return uint(C.ts_node_descendant_count(n._inner))
}
// Get the smallest node within this node that spans the given range.
func (n *Node) DescendantForByteRange(start, end uint) *Node {
return newNode(C.ts_node_descendant_for_byte_range(n._inner, C.uint(start), C.uint(end)))
}
// Get the smallest named node within this node that spans the given range.
func (n *Node) NamedDescendantForByteRange(start, end uint) *Node {
return newNode(C.ts_node_named_descendant_for_byte_range(n._inner, C.uint(start), C.uint(end)))
}
// Get the smallest node within this node that spans the given range.
func (n *Node) DescendantForPointRange(start, end Point) *Node {
return newNode(C.ts_node_descendant_for_point_range(n._inner, start.toTSPoint(), end.toTSPoint()))
}
// Get the smallest named node within this node that spans the given range.
func (n *Node) NamedDescendantForPointRange(start, end Point) *Node {
return newNode(C.ts_node_named_descendant_for_point_range(n._inner, start.toTSPoint(), end.toTSPoint()))
}
func (n *Node) ToSexp() string {
cString := C.ts_node_string(n._inner)
result := C.GoString(cString)
go_free(unsafe.Pointer(cString))
return result
}
func (n *Node) Utf8Text(source []byte) string {
return string(source[n.StartByte():n.EndByte()])
}
func (n *Node) Utf16Text(source []uint16) []uint16 {
return source[n.StartByte():n.EndByte()]
}
// Create a new [TreeCursor] starting from this node.
func (n *Node) Walk() *TreeCursor {
return newTreeCursor(*n)
}
// Edit this node to keep it in-sync with source code that has been edited.
//
// This function is only rarely needed. When you edit a syntax tree with
// the [Tree.Edit] method, all of the nodes that you retrieve from
// the tree afterward will already reflect the edit. You only need to
// use [Node.Edit] when you have a specific [Node] instance that
// you want to keep and continue to use after an edit.
func (n *Node) Edit(edit *InputEdit) {
C.ts_node_edit(&n._inner, edit.toTSInputEdit())
}
// Check if two nodes are identical.
func (n *Node) Equals(other Node) bool {
return bool(C.ts_node_eq(n._inner, other._inner))
}