-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopologys18.tex
267 lines (209 loc) · 11.9 KB
/
topologys18.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
\documentclass{article}
\usepackage{amsthm}
\newtheorem*{definition}{Definition}
\newtheorem*{theorem}{Theorem}
\newtheorem*{lemma}{Lemma}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\usepackage{tikz}
\usetikzlibrary{cd}
\usetikzlibrary{patterns}
\usetikzlibrary{decorations.markings}
\DeclareMathOperator{\Tor}{Tor}
\newcommand{\Z}{\mathbb{Z}}
\renewcommand{\theequation}{\roman{equation}}
\title{\href{https://math.umn.edu/sites/math.umn.edu/files/exams/mantops18.pdf}{Spring 2018 Manifolds and Topology Preliminary Exam}}
\author{University of Minnesota}
\date{}
\begin{document}
\maketitle
\section*{Part A}
\begin{enumerate}
\item Define what it means for two continuous paths $\alpha, \beta: [0,1] \rightarrow X$, both starting at the same point $p$ and ending at the same point $q$, to be homotopic. Define the fundamental group $\pi_1 (X, p)$ as a set.
\begin{definition}
Two paths $\alpha, \beta$ as given above are said to be homotopic (written $\alpha \sim \beta$),
if there exists a continuous map $H(s,t): [0,1]^2 \rightarrow X$ such that $\alpha(t) = H(0,t)$ and $\beta(t) = H(1,t)$.
\end{definition}
\begin{definition}
Note that the relation $\sim$ defines an equivalence relation on all continuous paths sharing a common starting and ending point.
If a continous path starts and ends at the same point $p$, we call it a loop in $X$ with basepoint $p$.
Let $\mathcal{L}_p = \{ \text{loops in $X$ with basepoint $p$} \}$.
Then as a set, $\pi_1(X,p) = \mathcal{L}_p / \sim$ is the set of equivalence classes of $\mathcal{L}_p$ under $\sim$.
\end{definition}
\item Suppose $X$ is a space. Define what it means for two covering maps $p: Y \rightarrow X$ and $q: Z \rightarrow X$ to be isomorphic.
\begin{definition}
Two covering maps $p:Y \rightarrow X$, $q:Z \rightarrow X$ are isomorphic if $f:Y \rightarrow Z$ is a homeomorphism and the following diagram commutes
\begin{center}
\begin{tikzcd}
Y \arrow[rr,"f"] \arrow[rd,"p"'] & &Z \arrow{ld}{q} \\
& X&
\end{tikzcd}
\end{center}
\end{definition}
\item Suppose $p$ is a point in the space $X$ and $\alpha$ is a loop in $X$ starting and ending at a point $p$. If $c$ is the constant loop at $p$, show explicitly that the concatenated loop $\alpha * c$ is homotopic to $\alpha$.
\begin{proof}
Recall that concatenation of loops $\gamma_1, \gamma_2$ is given as
\[ \gamma_1 * \gamma_2 = \begin{cases} \gamma_1(2t) & t \in [0,1/2] \\ \gamma_2(2t-1) & t \in (1/2,1]\end{cases},\]
so
\[ \alpha * c = \begin{cases} \alpha(2t) & t \in [0,1/2] \\ p & t \in (1/2,1].\end{cases}\]
Define
\[H(s,t) = \begin{cases}
\alpha(\frac{2t}{1+s}) & t \in [0,\frac{s+1}{2}] \\
c & t \in (\frac{s+1}{2},1].
\end{cases}\]
Note that $H(0,t) = \alpha * c$ and $H(1,t) = \alpha$ and $H(s,t)$ is continuous in $s$ since $\frac{2}{1+s}$ is continuous.
\end{proof}
%\item Prove that a covering map $Y \rightarrow X$ of path-connected spaces and a point $p \in X$ determine a well defined \textit{conjugacy class} of subgroup $H$ of $\pi_1(X,p)$.
\setcounter{enumi}{4}
\item Suppose $X$ is a space with open subsets $U$ and $V$ such that $X$ is the union $U \cup V$, both $U,V$ are simply-connected, and $H_1(U \cap V) \neq 0$. Show that $H_2(X)$ is nontrivial.
\begin{proof}
We know that given $U,V$ as above, we have the Mayer-Vietoris long exact sequence:
\begin{center}
\begin{tikzcd}
\cdots \arrow[r] %& H_2(U) \otimes H_2(V) \arrow[r]
& H_2(X) \arrow[r] & H_1(U \cap V) \arrow[r] & H_1(U) \otimes H_1(V) \arrow[r] &\cdots
\end{tikzcd}
\end{center}
Since $U,V$ are simply connected, they have trivial $pi_1$.
$H_1$ is the abelianization of $\pi_1$, and so since the trivial group is abelian, we have
$H_1(U) \otimes H_1(V) = 0 \otimes 0 \cong 0$.
We are also given that $H_1(U \cap V) \neq 0$.
Thus, the map $H_1(U \cap V) \rightarrow 0$ is the zero map. Then exactness of the sequence tells us that
${H_2(X) \rightarrow H_1(U \cap V) \neq 0}$ is a surjection. This shows that $H_2(X)$ is nontrivial, since the map
${0 \rightarrow H_1(U\cap V) \neq 0}$ can never be a surjection.
\end{proof}
\item For $n > 0$, define the degree of a continuous map $f: S^n \rightarrow S^n$.
\begin{definition}
Let $f$ be a continuous map from $S^n$ to itself.
Let $f_*$ be the induced map on homology. Then $f_*(x) = kx$ for some integer $k$.
Such $k$ is defined to be the degree of $f$.
\end{definition}
\item Determine, with proof, the degree of the map $f: S^1 \rightarrow S^1$. Given by $(x,y) \mapsto (-x,-y)$.
\begin{proof}
Consider $f = g \circ h$ where $h$ takes $(x,y) \mapsto (-x,y)$ and $g$ takes $(x,y) \mapsto (x,-y)$.
Then $f_*: H_\bullet(S^n) \rightarrow H_\bullet (S^n)$ is $f_* = (g \circ h)_* = g_* \circ h_*$.
Since $g,h$ swap hemispheres, then $\deg (f) = \deg(g)\deg(h) = (-1)^2 = 1$.
\end{proof}
\setcounter{enumi}{7}
\item Let $M$ be the M\"obius band
\[ [0,1]^2 / \{(x,0) \sim (1-x,1)\}\]
with boundary $\partial M$. Show that there does not exist a continuous retraction $r:M \rightarrow \partial M$.
\begin{proof}{(From \href{https://math.stackexchange.com/questions/202447/retraction-of-the-m\%C3\%B6bius-strip-to-its-boundary}{StackExchange})}
Suppose that $\pi_1(\partial M) = \langle \alpha \rangle$ and $\pi_1(M) = \langle \beta \rangle$. The picture
\begin{center}
\begin{tikzpicture}[thick,decoration={
markings,
mark=at position 0.55 with {\arrow{>}}}
]
\draw[postaction={decorate}] (0,0)--(1,0);
%\draw[postaction={decorate}] (1,0)--(1,1);
\draw[postaction={decorate}] (0,1)--(1,1);
%\draw[postaction={decorate}] (0,1)--(0,0);
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[thick,decoration={
markings,
mark=at position 0.6 with {\arrow{>}}}
]
\draw[postaction={decorate}] (0,0)--(1,0);
\draw[postaction={decorate}] (1,0)--(1,1);
\draw[postaction={decorate}] (0,1)--(1,1);
\draw[postaction={decorate}] (0,1)--(0,0);
\end{tikzpicture}
\end{center}
shows that the inclusion $\iota: \partial M \rightarrow M$ induces the homomorphism $\iota_* : \pi_1(\partial M) \rightarrow \pi_1(M),$
where $\iota_*(\alpha) = \beta^2$, since the boundary must be traversed twice to have a closed loop.
If there were a retraction $r: M \rightarrow \partial M$, then the induced homomorphism $r_*$ on fundamental groups would satisfy $r_*\circ \iota_* (\alpha) = \alpha$. But $\iota_*(\alpha) = \beta^2$, so then $r_*(\beta^2) = r_*(\beta)^2 = \alpha$, or $r_*(\beta) = \sqrt{\alpha} \not \in \pi_1(\partial M)$.
\end{proof}
\item Suppose $X$ is a (connected, locally contractible) space whose fundamental group is the group $\mathbb{Z}/2 \times \mathbb{Z}/4.$
How many isomorphism classes of covering maps $Y \rightarrow X$ are there with $Y$ path-connected.
\begin{proof}
Isomorphism classes of path connected covering spaces are in bijection with conjugacy classes of subgroups of the fundamental group.
When the fundamental group is abelian, the conjugacy classes of subgroups are simply
the subgroups (since $ghg^{-1} = gg^{-1} h=h$) of the group.
Note that $\mathbb{Z}/2 \times \mathbb{Z}/4$ is abelian, and has $8$ subgroups.
Namely, Goursat's lemma tells us the subgroups are in bijection with 5-tuples $(G_1, G_2, H_1, H_2, \varphi)$
where $G_1 \trianglelefteq G_2 \leq Z/2$ and $H_1 \trianglelefteq H_2 \leq \mathbb{Z}/4$, and $\varphi: G_2/G_1 \rightarrow H_2/H_1$
is an isomorphism. The possible pairs of $G_1,G_2$ are:
\[ ( \{0\},\{0\}), (\{0\}, Z/2), (\Z/2, \Z/2)\]
yielding quotients
\[ 0 \cong 0/0, \Z/2 \cong \Z/2 / 0, 0 \cong \Z/2 / \Z/2\]
and the possible pairs $H_1,H_2$ are:
\[ ( \{0\},\{0\}), (\{0\}, \Z/2), (\{0\}, \Z/4), (\Z/2, \Z/2),(\Z/2, \Z/4), (\Z/4, \Z/4) \]
which yield quotients:
\[ 0, \Z/2, \Z/4, 0, \Z/2, 0 \].
There are 6 different 4-tuples of quotients who yield the trivial group. The only isomorphism of the trivial group is the trivial map, so
these contribute +6 to our count of of subgroups.
%
There are 2 different 4-tuples of quotients who yield the group $\Z/2$.
Similarly, there is only one isomorphism from $\Z/2$ to itself.
Thus, there are 8 subgroups of $\Z/2\times \Z/4$ and so there are 8 isomorphism classes of covering maps $Y \rightarrow X$
with $Y$ being path connected.
\emph{Note:} 6 of the subgroups are of the form $G \times H$ where $G \leq \Z/2$ and $H \leq \Z/4$.
The two remaining subgrops are
\[ \langle (1,0) + (1,3) \rangle \]
\end{proof}
\href{https://math.stackexchange.com/questions/666840/what-are-the-subgroups-of-bbbz-2-times-bbbz-4}{Alternate proof.}
\item Suppose $X$ is a path connected space, $A$ is a path-connected subspace, $p \in A$ and $C$ is the mapping cone
\[ (X \times \{ 1 \} \cup A\times [0,1])/\{ (a,0) \sim (a^\prime,0)\}\]
use the Seifert-van Kapen theorem to express the fundamental group $\pi_1(C, [(p,1/2)])$
in terms of the map $\pi_1(A,p) \rightarrow \pi_1(X,p)$.
\begin{proof}
First, we see that
\[C = (X \times \{ 1 \} \cup A\times [0,1])/\{ (a,0) \sim (a^\prime,0)\} = (X \times \{ 1 \} ) \cup A\times [0,1] /\{ (a,0) \sim (a^\prime,0)\} \]
since $(a,0) \not \in X \times \{ 1\}$ for any $a$.
The fundamental group $\pi_1(X \times \{1 \}) = \pi_1(X)$ since clearly $X \times\{1\} \cong X$.
Since we set all points $(a,0)$ equal, we get that
$S = A\times [0,1] /\{ (a,0) \sim (a^\prime,0)\}$ is contractable (onto the point $(a,0)$). Thus it has trivial fundamental group.
To compute $\pi_1(C, [(p,1/2)])$, we first observe that since $X,A,C$ are all path connected, the group is independent of basepoint, so we will
in fact compute $\pi_1(C, [(p,1)])$ and we will just call that group $\pi_1(C)$.
Note that $S \cap X \times \{ 1\} \cong A$, so we can write the following diagram:
\begin{tikzcd}
& \pi_1( X \times \{1\} ) \cong \pi_1 (X) \arrow[rd,dashed] \arrow[rrd, bend left]& \\
\pi_1(S \cap X \times \{1 \}) \cong \pi_1(A) \arrow[ru] \arrow[rd]& & \pi_1(S)*_{\pi_1(A)} \pi_1(X) \arrow[r,dashed] & \pi_1(C)\\
& \pi_1(S) \cong \{0\}\arrow[ru,dashed] \arrow[rru, bend right]& \\
\end{tikzcd}
\noindent the left to top arrow is the map $\pi_1(A, p) \rightarrow \pi_1(X,p)$.
(Show $X*_A0 = X/A$)
\end{proof}
\end{enumerate}
\section*{Part B}
\begin{enumerate}
\item
\item
\item
\item
\item
\item
\item Calculate the Lie bracket $[X,Y]$ of the vector fields $X = xy \frac{\partial}{\partial x}$ and $Y = x^3 \cos(x) \frac{\partial}{\partial x}$ on $\mathbb{R}^2$.
\begin{proof}
First, we recall the following theorem:
\begin{theorem}[Coordinate formula for the Lie Bracket]
Let $X,Y$ be smooth vector fields on a smooth manifold $M$ with or without boundary, and let $X = X^i \frac{\partial}{\partial x^i}$
and $Y = Y^j \frac{\partial}{\partial x^j}$ be the coordinate expressions for $X$ and $Y$ in terms of some smooth local
coordinates $(x^i)$ for $M$. Then $[X,Y]$ has the following coordinate expression:
\[ [X,Y] = \left ( X^i \frac{ \partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} \right ) \frac{\partial }{ \partial x^j} .\]
\end{theorem}
Since we are working in $\mathbb{R}^2$ we have coordinates $x^1 = x$ and $x^2 = y$.
We have $X = xy \frac{\partial}{\partial x} + 0 \frac{\partial}{\partial y}$, $Y = x^3 \cos x \frac{\partial}{\partial x} + 0 \frac{\partial}{\partial y}$.
So then since $\frac{\partial 0 }{\partial x^i} = X^2 = Y^2 = 0$ we have
\begin{align*}
[X, Y] &= \left (xy \frac{\partial Y^1}{\partial x} - x^3 \cos x \frac{\partial X^1}{\partial x} \right ) \frac{\partial}{\partial x} \\
%
&= \left (xy (3x^2 \cos x - x^3 \sin x) - x^3 y \cos (x) \right ) \frac{\partial}{\partial x} \\
&= \left (2x^3y \cos x - x^4y \sin x \right ) \frac{\partial}{\partial x} \\
\end{align*}
%Sage code to confirm.
%M.<x,y> = EuclideanSpace()
%X = M.vector_field(x*y, 0, name = 'X')
%Y = M.vector_field(x^3 * cos(x), 0, name = 'Y')
%(X.bracket(Y)).display()
\end{proof}
\item
\item
\item
\end{enumerate}
\end{document}