-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_adding_fvaluevars.py
executable file
·395 lines (333 loc) · 14.6 KB
/
_adding_fvaluevars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# TO BE CLEANED -----------------------------
# Modules
import pandas as pd
import os as os
import statistics as stcs
import numpy as np
import itertools as itr
import pandas as pd
import statsmodels.formula.api as sm
import datetime
import yaml
import importlib
#temp
import matplotlib.pyplot as plt
# Import SETTINGS-file
with open("./SETTINGS.yml", 'r') as stream:
try:
SETTINGS = yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
# Import helpers
spec = importlib.util.spec_from_file_location("noname", "./gen_helpers.py")
helpers = importlib.util.module_from_spec(spec)
spec.loader.exec_module(helpers)
# ----------------------------------
def _wma_weighting_func_linear(self,
steps):
weights = [1*i for i in steps] #steps to be given in range
return weights
def _peg_1usd(self,
time):
peg = 1
return peg
def _peg_default(self,
time):
peg = np.nan
return peg
def _peg_1eur(self,
time):
prices = self.yfinancedata["EURUSD=X"]["cp"] # cp means closing price
dates = self.yfinancedata["EURUSD=X"]["time"]
peg = prices[dates == time.strftime('%Y-%m-%d %H:%M')] # time same for all coins
if len(peg) > 1:
raise TypeError("Issue in Yahoo Finance data!")
elif len(peg) == 0:
pegout = np.nan
else:
pegout = peg.values[0]
return pegout
def _peg_1gbp(self,
time):
prices = self.yfinancedata["EURGBP=X"]["cp"] # cp means closing price
dates = self.yfinancedata["EURGBP=X"]["time"]
peg = prices[dates == time.strftime('%Y-%m-%d %H:%M')] # time same for all coins
if len(peg) > 1:
raise TypeError("Issue in Yahoo Finance data!")
elif len(peg) == 0:
pegout = np.nan
else:
pegout = peg.values[0]
return pegout
def _peg_1nzusd(self,
time):
prices = self.yfinancedata["NZDUSD=X"]["cp"] # cp means closing price
dates = self.yfinancedata["NZDUSD=X"]["time"]
peg = prices[dates == time.strftime('%Y-%m-%d %H:%M')] # time same for all coins
if len(peg) > 1:
raise TypeError("Issue in Yahoo Finance data!")
elif len(peg) == 0:
pegout = np.nan
else:
pegout = peg.values[0]
return pegout
# def _peg_1cny(self,
# time):
# prices = self.yfinancedata["CNYUSD=X"]["cp"] # cp means closing price
# dates = self.yfinancedata["CNYUSD=X"]["time"]
# peg = prices[dates == time.strftime('%Y-%m-%d %H:%M')] # time same for all coins
# if len(peg) > 1:
# raise TypeError("Issue in Yahoo Finance data!")
# elif len(peg) == 0:
# pegout = np.nan
# else:
# pegout = peg.values[0]
# return pegout
def _peg_gold1ounce(self,
time):
prices = self.yfinancedata["GC=F"]["cp"] # cp means closing price
dates = self.yfinancedata["GC=F"]["time"]
peg = prices[dates == time.strftime('%Y-%m-%d %H:%M')] # time same for all coins
if len(peg) > 1:
raise TypeError("Issue in Yahoo Finance data!")
elif len(peg) == 0:
pegout = np.nan
else:
pegout = peg.values[0]
return pegout
def _peg_gold1gramm(self,
time):
prices = self.yfinancedata["GC=F"]["cp"] # cp means closing price
dates = self.yfinancedata["GC=F"]["time"]
peg = prices[dates == time.strftime('%Y-%m-%d %H:%M')] # time same for all coins
if len(peg) > 1:
raise TypeError("Issue in Yahoo Finance data!")
elif len(peg) == 0:
pegout = np.nan
else:
pegout = peg.values[0] * 28.3495
return pegout
def _getStabelcoinPeg(self,
cname):
# 1. Get the right function to apply to daily data
# -- Known cases
switcher = {
# broken "nubits" :self._peg_1usd,
# broken "bitusd" :self._peg_1usd,
"tether" :self._peg_1usd,
"tether-gold":self._peg_gold1ounce,
"perth-mint-gold-token":self._peg_gold1ounce,
"gold-bcr" :self._peg_gold1ounce,
# broken "usd-bancor" :self._peg_1usd,
"sdusd" :self._peg_1usd,
"stasis-eurs":self._peg_1eur,
"gemini-dollar" :self._peg_1usd,
"dai" :self._peg_1usd,
# broken "trustusd" :self._peg_1usd,
"aave-tusd" :self._peg_1usd,
"digitalusd" :self._peg_1usd,
"neutrino" :self._peg_1usd,
"musd" :self._peg_1usd,
"stableusd" :self._peg_1usd,
"true-usd" :self._peg_1usd,
"etoro-euro" :self._peg_1eur,
"equilibrium-eosdt" :self._peg_1usd,
"digix-gold" :self._peg_gold1gramm,
"pax-gold" :self._peg_gold1ounce,
"binance-usd":self._peg_1usd,
"usdx" :self._peg_1usd,
"nusd" :self._peg_1usd,
"usdk" :self._peg_1usd,
"usd-coin" :self._peg_1usd,
"husd" :self._peg_1usd,
"usdq" :self._peg_1usd,
"paxos-standard" :self._peg_1usd,
# pegged to world economy "anchor":self._peg_1usd,
"binance-gbp":self._peg_1gbp,
#"bitCNY" :self._peg_1cny,
"etoro-new-zealand-dollar":self._peg_1nzusd,
}
# -- Unknown cases
self.get_peg_for_day = switcher.get(cname, self._peg_default)
# 2. Apply this function to daily data
datevec = self.coindata[cname]["time"]
peg = []
for d in datevec:
peg.append(self.get_peg_for_day(time = d))
peg_fact = { 'V_fact_fval_coll': peg}
peg_fact = pd.DataFrame(peg_fact)
self.coindata[cname] = pd.concat([self.coindata[cname], peg_fact], axis=1)
def add_fvalue_coll(self):
for coin_name in self.coindata.keys():
self._getStabelcoinPeg(cname = coin_name)
print("|---| Added fundamental value estimate ('Collateral') for: |---|" + coin_name)
def add_fvalue_zero(self):
for coin_name in self.coindata.keys():
self.coindata[coin_name]["V_fact_fval_zero"] = 0
print("|---| Added fundamental value estimate ('ZeroValue') for: |---|" + coin_name )
def add_fvalue_lineartrend(self,
wlength = "from_config",
ols_minobs = "from_config"):
# Input either from config file or specified in arguments
if wlength == "from_config":
wlength = self.config["dataloading"]["fvalue_lineartrend_windowlength"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
if ols_minobs == "from_config":
ols_minobs = self.config["dataloading"]["fvalue_lineartrend_ols_minobs"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
for coin_name in self.coindata.keys():
# Inputs required for longterm trend
prices = self.coindata[coin_name][self.price_var]
prices.index = self.coindata[coin_name]["time"]
# Loop over timeseries to apply rolling functionality (OLS here)
fv_est = list()
for i in range(len(prices)): # loop to satisfy ols_minobs
# Determine cut to apply functionality to
index_from = i
index_to = wlength + i
# Extract data for regression
regressiondata_endog_var = prices.shift(-1)[index_from:index_to]
regressiondata_exog_var = prices[index_from:index_to]
regressiondata = pd.concat([regressiondata_endog_var,
regressiondata_exog_var],
axis = 1)
regressiondata.columns = ["prices","lagged_prices"]
# Performance of regression on data extract if sufficient observ.
cond_many_nans_data_exog = regressiondata_exog_var.isna().sum()
cond_many_nans_data_endog = regressiondata_endog_var.isna().sum()
cond_to_little_observatios = regressiondata.shape[0] < ols_minobs
if (cond_many_nans_data_endog or
cond_many_nans_data_exog or
cond_to_little_observatios):
intercept = np.nan
slope = np.nan
else:
ols_obj = sm.ols(formula = "prices ~ lagged_prices",
data = regressiondata,
missing = 'drop').fit()
intercept = ols_obj.params[0]
slope = ols_obj.params[1]
base_price = regressiondata_endog_var[0]
est_price = intercept + slope * base_price
fv_est.append(est_price)
fv_est = { 'V_fvalue_ols_'+ str(wlength): fv_est}
fv_est = pd.DataFrame(fv_est)
self.coindata[coin_name] = pd.concat([self.coindata[coin_name],
fv_est], axis=1)
print("|---| Added fundamental value estimate ('OLS trend') (wlength = "
+ str(wlength)
+") for: |---| "
+ coin_name)
def add_fvalue_anchored(self,
halflife = "from_config",
minobs = "from_config",
anchortyp = "from_config",
wlength = "from_config"):
# Input either from config file or specified in arguments
if halflife == "from_config":
halflife = self.config["dataloading"]["fvalue_anchor_emwa_halflife"]
elif not type(halflife) == int and not type(halflife) == float:
raise TypeError("Input has to be an integer or float.")
if wlength == "from_config":
wlength = self.config["dataloading"]["fvalue_anchor_wa_wlength"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
if minobs == "from_config":
minobs = self.config["dataloading"]["fvalue_anchor_minobs"]
elif not type(minobs) == int:
raise TypeError("Input has to be an integer.")
if anchortyp == "from_config":
anchortyp = self.config["dataloading"]["fvalue_anchor_anchortyp"]
elif anchortyp not in ["emwa", "lma", "sma"]:
raise TypeError("Input has to be 'emwa', 'lma' or 'sma'.")
# Calculate EMWA per coin
for coin_name in self.coindata.keys():
# Inputs required for longterm trend
prices = self.coindata[coin_name][self.price_var]
center_left_shift = (-minobs+1 if anchortyp == "emwa" else -wlength+1) # as pandas is stupid and does not support center = "left". minobs for emwa as wlength infinite and minobs determining position of first emwa-value
if anchortyp == "emwa":
# Calculate Exponentially Weighted Moving average
fv_est = (prices
.ewm(halflife = halflife,
adjust = False,
min_periods = minobs)
.mean()
.shift(center_left_shift)
)
elif anchortyp == "sma":
# Calculate Equally Weighted Moving average
fv_est = (prices
.rolling(window = wlength,
min_periods = minobs)
.mean()
.shift(center_left_shift)
)
elif anchortyp == "lma":
# Calculate general moving average with custom weight vector
steps = range(wlength,0,-1)
weights = self._wma_weighting_func_linear(steps)
sum_weights = np.sum(weights)
fv_est = (prices
.rolling(window=len(weights), center=False)
.apply(lambda x: np.sum(weights*x) / sum_weights, raw=False)
.shift(center_left_shift)
)
# rename column and append to coindata
fv_est = { 'V_fvalue_'
+ anchortyp
+ '_'
+(str(halflife)
if anchortyp == "emwa"
else str(wlength)): fv_est
}
fv_est = pd.DataFrame(fv_est)
self.coindata[coin_name] = pd.concat([self.coindata[coin_name],
fv_est], axis=1)
print("|---| Added fundamental value estimate ('Anchoring (EMWA)') (halflife = "
+ str(halflife)
+") for: |---| "
+ coin_name)
def reduce_to_single_fv_choice(self,
choice_tradcoins = "from_config",
choice_stabcoins = "from_config"):
if choice_tradcoins == "from_config":
choice_tradcoins = self.config["dataloading"]["fvalue_choice_tradcoins"]
elif not type(choice_tradcoins) not in self.coindata.keys():
raise TypeError("Inputs have to be a valid variable names.")
if choice_stabcoins == "from_config":
choice_stabcoins = self.config["dataloading"]["fvalue_choice_stabcoins"]
elif choice_stabcoins not in self.coindata.keys():
raise TypeError("Inputs have to be a valid variable names.")
for coin_name in self.coindata.keys():
if all(self.coindata[coin_name].loc[:,"is_stablecoin"]) == True:
choice = choice_stabcoins
elif all(self.coindata[coin_name].loc[:,"is_stablecoin"]) == False:
choice = choice_tradcoins
dist_to_fv = (self.coindata[coin_name].loc[:,"prices"] - self.coindata[coin_name].loc[:,choice])
dist_to_fv = { 'V_fv': dist_to_fv}
dist_to_fv = pd.DataFrame(dist_to_fv)
self.coindata[coin_name] = pd.concat([self.coindata[coin_name],
dist_to_fv], axis=1)
print("|---| Added combined fv estimate depending on type: |---| " + coin_name)
def add_fvalue_network(self):
for coin_name in self.coindata.keys():
print("Something's missing here.")
print("|---| Added fundamental value estimate ('Network Estimate') for: |---|" + coin_name )
def add_fvalue_hedge(self):
for coin_name in self.coindata.keys():
print("Something's missing here.")
print("|---| Added fundamental value estimate ('Save Harbour') for: |---|" + coin_name )
def add_fvalue_property(self):
for coin_name in self.coindata.keys():
print("Something's missing here.")
print("|---| Added fundamental value estimate ('Property Protection') for: |---|" + coin_name )
def add_fvalue_txcosts(self):
for coin_name in self.coindata.keys():
print("Something's missing here.")
print("|---| Added fundamental value estimate ('TX Costs') for: |---|" + coin_name )
def add_fvalue_hacks(self):
for coin_name in self.coindata.keys():
print("Something's missing here.")
print("|---| Added fundamental value estimate ('Hacks') for: |---|" + coin_name )