-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.rs
491 lines (402 loc) · 13.9 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
use fxhash::FxHashMap;
use pyo3::{exceptions::PyValueError, prelude::*};
use rand::prelude::*;
use rand_distr::{WeightedError, WeightedIndex};
#[derive(Debug)]
#[pyclass]
pub struct Urns {
pub data: Vec<Agent>,
}
impl Urns {
// function to create empty urns
pub fn new() -> Self {
return Self { data: vec![] };
}
pub fn add_urn(&mut self) -> usize {
self.data.push(Agent::new());
let x = self.data.len() - 1;
self.data[x].id = x;
self.data.len() - 1
}
pub fn add(&mut self, target_agent_id: usize, added_agent_id: usize) {
assert_ne!(target_agent_id, added_agent_id);
// update the all the interactions of agent
*self.data[target_agent_id].interactions
.entry(added_agent_id)
.or_insert(0) += 1;
// update the total number of interactions
self.data[target_agent_id].total_interactions += 1;
// update the unique number of interactions
self.data[target_agent_id].unique_interactions = self.data[target_agent_id].interactions.len();
}
pub fn add_many(&mut self, target_agent_id: usize, added_agent_ids: Vec<usize>) {
for agent_id in added_agent_ids {
self.add(target_agent_id, agent_id);
}
}
pub fn get(&self, agent_id: usize) -> Option<&Agent> {
self.data.get(agent_id)
}
}
#[derive(Debug, Clone)]
#[pyclass]
pub struct Agent {
pub id: usize,
pub interactions: FxHashMap<usize, usize>,
pub total_interactions: usize, // number of interactions/ selections
pub unique_interactions: usize, // degree of node
pub gene: AgentGene,
}
#[pymethods]
impl Agent {
#[new]
fn new() -> Self {
return Self {
id: usize::default(),
interactions: FxHashMap::default(),
total_interactions: usize::default(),
unique_interactions: usize::default(),
gene: AgentGene::new(),
};
}
}
#[derive(Debug, Clone)]
#[pyclass]
pub struct EnvironmentGene {
pub rho: usize,
pub nu: usize,
pub recentness: f64,
pub friendship: f64,
}
#[pymethods]
impl EnvironmentGene {
#[new]
fn new(rho: usize, nu: usize, recentness: f64, friendship: f64) -> Self {
Self {
rho,
nu,
recentness,
friendship,
}
}
}
#[derive(Debug, Clone)]
#[pyclass]
pub struct AgentGene {
pub immediacy: f64,
pub longevity: f64,
pub fitness: f64,
}
#[pymethods]
impl AgentGene {
#[new]
fn new() -> Self {
let mut rng = thread_rng();
Self {
immediacy: rng.gen_range(0.1..=0.9),
longevity: rng.gen_range(0.1..=0.9),
fitness: rng.gen_range(10.0..=100.0)
}
}
}
#[derive(Debug)]
#[pyclass]
pub struct Environment {
gene: EnvironmentGene,
pub urns: Urns,
/** callerとして選択される可能性のあるエージェント群の (agent_id, weight) の組 */
pub weights: FxHashMap<usize, usize>,
/** 最近度 */
recentnesses: Vec<FxHashMap<usize, usize>>,
/** (caller, callee) で表される生成データ */
#[pyo3(get)]
pub history: Vec<(usize, usize)>,
}
impl From<ProcessingError> for PyErr {
fn from(error: ProcessingError) -> Self {
PyValueError::new_err(error.0.to_string())
}
}
impl From<WeightedError> for ProcessingError {
fn from(error: WeightedError) -> Self {
ProcessingError(error)
}
}
#[derive(Debug)]
pub struct ProcessingError(WeightedError);
#[pymethods]
impl Environment {
#[new]
pub fn new(gene: EnvironmentGene) -> Self {
let mut urns = Urns::new();
urns.add_urn();
urns.add(0, 1);
urns.add_urn();
urns.add(1, 0);
for agent_id in [0, 1] {
for _ in 0..(gene.nu + 1) {
let i = urns.add_urn();
urns.add(agent_id, i);
}
}
let mut candidates = FxHashMap::default();
for agent_id in [0, 1] {
candidates.insert(agent_id, gene.nu + 2);
}
let mut recentnesses = vec![];
for _ in 0..(2 + 2 * (gene.nu + 1)) {
recentnesses.push(FxHashMap::default());
}
Environment {
history: vec![],
gene,
urns,
weights: candidates,
recentnesses,
}
}
pub fn get_caller(&self) -> Result<usize, ProcessingError> {
pub fn aging(time: f64, immediacy: f64, longevity: f64) -> f64 {
return ( 1.0 / ( (2.0 * std::f64::consts::PI).sqrt() * longevity * time ) ) * (- ((time - immediacy).ln().powi(2)) / (2.0 * longevity.powi(2))).exp();
}
let mut rng = thread_rng();
let time = self.history.len() as f64 + 1.0;
// filter so that only agents that have interacted in the past can be callers
let caller_candidates: Vec<Agent> = self.urns.data.clone().into_iter().filter(|agent| !agent.interactions.is_empty()).collect();
// let mut probabilities: Vec<f64> = caller_candidates.clone().iter().map(|agent| agent.gene.fitness * (agent.total_interactions as f64) * aging(time, agent.gene.immediacy, agent.gene.longevity) ).collect();
let mut probabilities: Vec<f64> = caller_candidates.clone().iter().map(|agent| (agent.total_interactions as f64) * aging(time, agent.gene.immediacy, agent.gene.longevity) ).collect();
let min_probability = probabilities.iter().fold(f64::NAN, |m, v| v.min(m));
for p in probabilities.iter_mut() {
*p += min_probability.abs() + 10f64.powf(-10f64);
}
let caller = WeightedIndex::new(probabilities)
.map(|dist| self.weights.keys().nth(dist.sample(&mut rng)).unwrap())
.copied()?;
Ok(caller)
}
pub fn get_callee(&self, caller: usize) -> Result<usize, ProcessingError> {
let mut rng = thread_rng();
let urn = self.urns.get(caller).unwrap();
let candidates: Vec<usize> = urn.interactions.keys().map(|v| v.to_owned()).collect();
let weights = urn.interactions.values().map(|v| v.to_owned());
let callee = WeightedIndex::new(weights)
.map(|dist| dist.sample(&mut rng))
.map(|i| candidates[i])?;
Ok(callee)
}
pub fn interact(&mut self, caller: usize, callee: usize) -> Option<()> {
let is_first_interaction = !self.recentnesses[caller].contains_key(&callee);
self.history.push((caller, callee));
*self.recentnesses[caller].entry(callee).or_insert(0) += 1;
*self.recentnesses[callee].entry(caller).or_insert(0) += 1;
if !self.weights.contains_key(&callee) {
self.add_novelty(callee);
}
// ρ個の交換(毎回実行)
*self.weights.entry(caller).or_insert(0) += self.gene.rho;
*self.weights.entry(callee).or_insert(0) += self.gene.rho;
self.urns.add_many(caller, vec![callee; self.gene.rho]);
self.urns.add_many(callee, vec![caller; self.gene.rho]);
if is_first_interaction {
let caller_recommendees = self.get_recommendees(caller, callee).unwrap();
let callee_recommendees = self.get_recommendees(callee, caller).unwrap();
self.urns.add_many(caller, callee_recommendees);
self.urns.add_many(callee, caller_recommendees);
*self.weights.entry(caller).or_insert(0) += self.gene.nu + 1;
*self.weights.entry(callee).or_insert(0) += self.gene.nu + 1;
}
Some(())
}
fn get_recommendees(&self, me: usize, opponent: usize) -> Result<Vec<usize>, ProcessingError> {
let mut rng = thread_rng();
let mut ret = vec![];
let urn = self.urns.get(me).unwrap();
let recentness = self.recentnesses.get(me).unwrap();
// 計算用にコピーを作成
let mut urn = urn.clone();
let mut recentness = recentness.clone();
// 自分自身と相手自身を取り除く
urn.interactions.remove(&opponent);
urn.interactions.remove(&me);
recentness.remove(&opponent);
recentness.remove(&me);
let mut weights_map = FxHashMap::default();
let max_friendship = urn.interactions.values().fold(f64::NAN, |m, v| (*v as f64).max(m));
for (agent, weight) in urn.interactions {
*weights_map.entry(agent).or_insert(0.0) +=
(weight as f64 / max_friendship) * self.gene.friendship;
}
let max_recentness = recentness
.values()
.fold(f64::NAN, |m, v| (*v as f64).max(m));
for (agent, weight) in recentness {
*weights_map.entry(agent).or_insert(0.0) +=
(weight as f64 / max_recentness) * self.gene.recentness;
}
let min_weight = weights_map.values().fold(f64::NAN, |m, v| v.min(m));
for w in weights_map.values_mut() {
*w += min_weight.abs() + 10f64.powf(-10f64);
}
let candidates: Vec<usize> = weights_map.keys().copied().collect();
let mut weights = Vec::from_iter(weights_map.values().cloned());
for _ in 0..(self.gene.nu + 1) {
let dist = WeightedIndex::new(weights.clone())?;
let i = dist.sample(&mut rng);
ret.push(candidates[i]);
// 一度選択したものは重みを0にして重複して選択されないようにする
weights[i] = 0.0;
}
Ok(ret)
}
fn add_novelty(&mut self, agent_id: usize) {
for _ in 0..(self.gene.nu + 1) {
let i = self.urns.add_urn();
self.urns.add(agent_id, i);
self.recentnesses.push(FxHashMap::default());
}
*self.weights.entry(agent_id).or_insert(0) += self.gene.nu + 1;
}
}
/// A Python module implemented in Rust.
#[pymodule]
fn rsurn(_py: Python, m: &PyModule) -> PyResult<()> {
m.add_class::<Urns>()?;
m.add_class::<EnvironmentGene>()?;
m.add_class::<Environment>()?;
Ok(())
}
#[cfg(test)]
mod test {
use std::collections::HashSet;
use crate::*;
#[test]
fn sample_program() {
let gene = EnvironmentGene {
rho: 3,
nu: 4,
recentness: 0.5,
friendship: 0.5,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn negative_friendship() {
let gene = EnviornmentGene {
rho: 3,
nu: 4,
recentness: 0.5,
friendship: -0.5,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn negative_recentness() {
let gene = EnviornmentGene {
rho: 3,
nu: 4,
recentness: -0.5,
friendship: 0.5,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn zero_recentness() {
let gene = EnviornmentGene {
rho: 3,
nu: 4,
recentness: 0.0,
friendship: 0.5,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn zero_friendship() {
let gene = Gene {
rho: 3,
nu: 4,
recentness: 0.5,
friendship: 0.0,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn rho_greater_than_nu() {
let gene = EnviornmentGene {
rho: 5,
nu: 5,
recentness: 1.0,
friendship: 0.0,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn nu_greater_than_rho() {
let gene = EnviornmentGene {
rho: 1,
nu: 20,
recentness: 0.5,
friendship: 0.0,
};
let mut env = Environment::new(gene);
for _ in 0..1000 {
let caller = env.get_caller().unwrap();
let callee = env.get_callee(caller).unwrap();
let _ = env.interact(caller, callee);
}
assert_eq!(env.history.len(), 1000);
}
#[test]
fn do_not_recommend_same_agents() {
let (rho, nu, recentness, friendship) = (5, 5, 1.0, 0.0);
let gene = EnviornmentGene {
rho,
nu,
recentness,
friendship,
};
let mut env = Environment::new(gene);
env.interact(1, 10);
let (me, opponent) = (1, 11);
env.add_novelty(opponent);
let recommendees = env.get_recommendees(me, opponent).unwrap();
let set: HashSet<usize> = HashSet::from_iter(recommendees.clone());
assert_eq!(set.len(), nu + 1);
assert_eq!(recommendees.len(), nu + 1);
}
}