-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
299 lines (246 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# coding:utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import time
import torch
import os
import collections
import numpy as np
from tqdm import tqdm
import torch.optim as optim
from torch.utils.data import DataLoader
from eval_utils import evaluate
import opts
import misc.utils as utils
from tensorboardX import SummaryWriter
from models.EncoderDecoder import EncoderDecoder, init_scorer
from misc.utils import print_alert_message, build_floder, create_logger, backup_envir, print_opt, set_seed
from dataset import PropSeqDataset, collate_fn
def train(opt):
set_seed(opt.seed)
save_folder = build_floder(opt)
logger = create_logger(save_folder, 'train.log')
tf_writer = SummaryWriter(os.path.join(save_folder, 'tf_summary'))
if not opt.start_from:
backup_envir(save_folder)
logger.info('backup evironment completed !')
saved_info = {'best': {}, 'last': {}, 'history': {}, 'eval_history': {}}
# continue training
if opt.start_from:
opt.pretrain = False
infos_path = os.path.join(save_folder, 'info.json')
with open(infos_path) as f:
logger.info('Load info from {}'.format(infos_path))
saved_info = json.load(f)
prev_opt = saved_info[opt.start_from_mode[:4]]['opt']
exclude_opt = ['start_from', 'start_from_mode', 'pretrain']
for opt_name in prev_opt.keys():
if opt_name not in exclude_opt:
vars(opt).update({opt_name: prev_opt.get(opt_name)})
if prev_opt.get(opt_name) != vars(opt).get(opt_name):
logger.info('Change opt {} : {} --> {}'.format(opt_name, prev_opt.get(opt_name),
vars(opt).get(opt_name)))
opt.feature_dim = opt.raw_feature_dim
train_dataset = PropSeqDataset(opt.train_caption_file,
opt.visual_feature_folder,
opt.dict_file, True, opt.train_proposal_type,
logger, opt)
val_dataset = PropSeqDataset(opt.val_caption_file,
opt.visual_feature_folder,
opt.dict_file, False, 'gt',
logger, opt)
train_loader = DataLoader(train_dataset, batch_size=opt.batch_size,
shuffle=True, num_workers=opt.nthreads, collate_fn=collate_fn)
val_loader = DataLoader(val_dataset, batch_size=opt.batch_size,
shuffle=False, num_workers=opt.nthreads, collate_fn=collate_fn)
epoch = saved_info[opt.start_from_mode[:4]].get('epoch', 0)
iteration = saved_info[opt.start_from_mode[:4]].get('iter', 0)
best_val_score = saved_info[opt.start_from_mode[:4]].get('best_val_score', -1e5)
val_result_history = saved_info['history'].get('val_result_history', {})
loss_history = saved_info['history'].get('loss_history', {})
lr_history = saved_info['history'].get('lr_history', {})
opt.current_lr = vars(opt).get('current_lr', opt.lr)
opt.vocab_size = train_loader.dataset.vocab_size
# Build model
model = EncoderDecoder(opt)
model.train()
# Recover the parameters
if opt.start_from and (not opt.pretrain):
if opt.start_from_mode == 'best':
model_pth = torch.load(os.path.join(save_folder, 'model-best-CE.pth'))
elif opt.start_from_mode == 'best-RL':
model_pth = torch.load(os.path.join(save_folder, 'model-best-RL.pth'))
elif opt.start_from_mode == 'last':
model_pth = torch.load(os.path.join(save_folder, 'model-last.pth'))
logger.info('Loading pth from {}, iteration:{}'.format(save_folder, iteration))
model.load_state_dict(model_pth['model'])
# Load the pre-trained model
if opt.pretrain and (not opt.start_from):
logger.info('Load pre-trained parameters from {}'.format(opt.pretrain_path))
if torch.cuda.is_available():
model_pth = torch.load(opt.pretrain_path)
else:
model_pth = torch.load(opt.pretrain_path, map_location=torch.device('cpu'))
model.load_state_dict(model_pth['model'])
if torch.cuda.is_available():
model.cuda()
if opt.optimizer_type == 'adam':
optimizer = optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
else:
optimizer = optim.SGD(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
if opt.start_from:
optimizer.load_state_dict(model_pth['optimizer'])
# print the args for debugging
print_opt(opt, model, logger)
print_alert_message('Strat training !', logger)
loss_sum = np.zeros(3)
bad_video_num = 0
start = time.time()
# Epoch-level iteration
while True:
if True:
# lr decay
if epoch > opt.learning_rate_decay_start >= 0:
frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.lr * decay_factor
else:
opt.current_lr = opt.lr
utils.set_lr(optimizer, opt.current_lr)
# scheduled sampling rate update
if epoch > opt.scheduled_sampling_start >= 0:
frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.basic_ss_prob + opt.scheduled_sampling_increase_prob * frac,
opt.scheduled_sampling_max_prob)
model.caption_decoder.ss_prob = opt.ss_prob
# self critical learning flag
if opt.self_critical_after != -1 and epoch >= opt.self_critical_after:
sc_flag = True
init_scorer()
model.caption_decoder.ss_prob = 0
else:
sc_flag = False
# Batch-level iteration
for dt in tqdm(train_loader):
if torch.cuda.is_available():
torch.cuda.synchronize()
if opt.debug:
# each epoch contains less mini-batches for debugging
if (iteration + 1) % 5 == 0:
iteration += 1
break
elif epoch == 0:
break
iteration += 1
if torch.cuda.is_available():
optimizer.zero_grad()
dt = {key: _.cuda() if isinstance(_, torch.Tensor) else _ for key, _ in dt.items()}
dt = collections.defaultdict(lambda: None, dt)
if True:
train_mode = 'train_rl' if sc_flag else 'train'
loss, sample_score, greedy_score = model(dt, mode=train_mode, loader=train_loader)
loss_sum[0] = loss_sum[0] + loss.item()
loss_sum[1] = loss_sum[1] + sample_score.mean().item()
loss_sum[2] = loss_sum[2] + greedy_score.mean().item()
loss.backward()
utils.clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
if torch.cuda.is_available():
torch.cuda.synchronize()
losses_log_every = int(len(train_loader) / 5)
if iteration % losses_log_every == 0:
end = time.time()
losses = np.round(loss_sum / losses_log_every, 3)
logger.info(
"ID {} iter {} (epoch {}, lr {}), avg_iter_loss = {}, time/iter = {:.3f}, bad_vid = {:.3f}"
.format(opt.id, iteration, epoch, opt.current_lr, losses,
(end - start) / losses_log_every, bad_video_num))
tf_writer.add_scalar('lr', opt.current_lr, iteration)
tf_writer.add_scalar('ss_prob', model.caption_decoder.ss_prob, iteration)
tf_writer.add_scalar('train_caption_loss', losses[0].item(), iteration)
tf_writer.add_scalar('train_rl_sample_score', losses[1].item(), iteration)
tf_writer.add_scalar('train_rl_greedy_score', losses[2].item(), iteration)
loss_history[iteration] = losses.tolist()
lr_history[iteration] = opt.current_lr
loss_sum = 0 * loss_sum
start = time.time()
bad_video_num = 0
torch.cuda.empty_cache()
# evaluation
if (epoch % opt.save_checkpoint_every == 0) and (epoch >= opt.min_epoch_when_save) and (epoch != 0):
model.eval()
dvc_json_path = os.path.join(save_folder, 'prediction',
'num{}_epoch{}_score{}_nms{}_top{}.json'.format(
len(val_dataset), epoch, opt.eval_score_threshold,
opt.eval_nms_threshold, opt.eval_top_n))
eval_score = evaluate(model, val_loader, dvc_json_path, './data/captiondata/val_1_for_tap.json',
opt.eval_score_threshold, opt.eval_nms_threshold,
opt.eval_top_n, logger=logger)
current_score = np.array(eval_score['METEOR']).mean()
# add to tf summary
for key in eval_score.keys():
tf_writer.add_scalar(key, np.array(eval_score[key]).mean(), iteration)
_ = [item.append(np.array(item).mean()) for item in eval_score.values() if isinstance(item, list)]
print_info = '\n'.join([key + ":" + str(eval_score[key]) for key in eval_score.keys()])
logger.info('\nValidation results of iter {}:\n'.format(iteration) + print_info)
# for name, param in model.named_parameters():
# tf_writer.add_histogram(name, param.clone().cpu().data.numpy(), iteration, bins=10)
# if param.grad is not None:
# tf_writer.add_histogram(name + '_grad', param.grad.clone().cpu().data.numpy(), iteration,
# bins=10)
val_result_history[epoch] = {'eval_score': eval_score}
# Save model
saved_pth = {'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(), }
if opt.save_all_checkpoint:
checkpoint_path = os.path.join(save_folder, 'model_iter_{}.pth'.format(iteration))
else:
checkpoint_path = os.path.join(save_folder, 'model-last.pth')
torch.save(saved_pth, checkpoint_path)
logger.info('Save model at iter {} to {}.'.format(iteration, checkpoint_path))
# save the model parameter and of best epoch
if current_score > best_val_score:
best_val_score = current_score
best_epoch = epoch
saved_info['best'] = {'opt': vars(opt),
'iter': iteration,
'epoch': best_epoch,
'best_val_score': best_val_score,
'dvc_json_path': dvc_json_path,
'METEOR': eval_score['METEOR'],
'avg_proposal_num': eval_score['avg_proposal_number'],
'Precision': eval_score['Precision'],
'Recall': eval_score['Recall']
}
suffix = "RL" if sc_flag else "CE"
torch.save(saved_pth, os.path.join(save_folder, 'model-best-{}.pth'.format(suffix)))
logger.info('Save Best-model at iter {} to checkpoint file.'.format(iteration))
saved_info['last'] = {'opt': vars(opt),
'iter': iteration,
'epoch': epoch,
'best_val_score': best_val_score,
}
saved_info['history'] = {'val_result_history': val_result_history,
'loss_history': loss_history,
'lr_history': lr_history,
}
with open(os.path.join(save_folder, 'info.json'), 'w') as f:
json.dump(saved_info, f)
logger.info('Save info to info.json')
model.train()
epoch += 1
torch.cuda.empty_cache()
# Stop criterion
if epoch >= opt.epoch:
tf_writer.close()
break
return saved_info
if __name__ == '__main__':
opt = opts.parse_opts()
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in opt.gpu_id])
if opt.disable_cudnn:
torch.backends.cudnn.enabled = False
train(opt)