-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_results.py
223 lines (191 loc) · 6.37 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
import argparse
def export_to_latex(
data_alg_table_mean, data_alg_table_std, alg_columns, column_sort_order
):
latex_table = data_alg_table_mean.copy()
latex_table_std = data_alg_table_std.copy()
rename_columns = {
"Decision tree": "tree",
"Decision tree relabeled": "tree rel.",
"GROOT tree": "GROOT",
"GROOT tree relabeled": "GROOT rel.",
"Dummy model": "dummy",
"Random forest": "forest",
"Random forest relabeled": "forest rel.",
"Boosting": "boosting",
"Boosting relabeled": "boosting rel.",
"GROOT forest": "GROOT forest",
"GROOT forest relabeled": "GROOT forest rel.",
"Adversarial pruning tree": "adv. pruning tree",
"Adversarial pruning forest": "adv. pruning forest",
"Adversarial pruning boosting": "adv. pruning boosting",
"Robust relabeling criterion": "relabeling criterion",
}
latex_table = latex_table.rename(columns=rename_columns)
latex_table_std = latex_table_std.rename(columns=rename_columns)
column_sort_order = [
rename_columns[col] if col in rename_columns else col
for col in column_sort_order
]
export_columns = ["dataset"] + [
col for col in column_sort_order if col in alg_columns
]
latex_table = latex_table[export_columns]
latex_table_std = latex_table_std[export_columns]
max_alg_values = latex_table.max(axis=1).round(3)
if "dummy" in alg_columns:
i_dummy = latex_table.columns.get_loc("dummy")
else:
i_dummy = None
for i in range(len(latex_table.index)):
for j in range(1, len(latex_table.columns)):
if latex_table.iloc[i, j] == max_alg_values[i]:
latex_table.iloc[i, j] = f"\\textbf{{{latex_table.iloc[i, j]}}}"
if j != i_dummy:
latex_table.iloc[
i, j
] = f"{latex_table.iloc[i, j]} \\tiny $\\pm$ {latex_table_std.iloc[i, j]}"
latex_table.iloc[i, j] = str(latex_table.iloc[i, j]).replace("0.", ".")
table_text = latex_table[export_columns].to_latex(index=False, escape=False)
while True:
new_table_text = table_text.replace(" ", " ")
if new_table_text == table_text:
table_text = new_table_text
break
table_text = new_table_text
print(table_text)
parser = argparse.ArgumentParser()
parser.add_argument("--results_dir", type=str, default="out/results/")
parser.add_argument("--max_depth", type=int, default=5)
parser.add_argument("--k_folds", type=int, default=5)
parser.add_argument("--n_estimators", type=int, default=100)
parser.add_argument("--trade_off_dataset", type=str, default="Banknote-authentication")
args = parser.parse_args()
sns.set_theme(style="whitegrid", palette="colorblind")
filename = os.path.join(
args.results_dir,
f"robustness_{args.max_depth}_{args.n_estimators}_{args.k_folds}.csv",
)
results_df = pd.read_csv(filename)
results_mean = results_df.groupby(["dataset", "model"]).mean().reset_index()
results_std = results_df.groupby(["dataset", "model"]).std().reset_index()
def export_results(metric):
data_alg_table_mean = (
pd.pivot_table(
results_mean,
index="dataset",
columns="model",
values=metric,
)
.round(3)
.reset_index()
)
data_alg_table_std = (
pd.pivot_table(
results_std,
index="dataset",
columns="model",
values=metric,
)
.round(3)
.reset_index()
)
print(f"Single trees ({metric})")
export_to_latex(
data_alg_table_mean,
data_alg_table_std,
{"tree", "tree rel.", "GROOT", "GROOT rel.", "relabeling criterion"},
["dataset", "tree", "tree rel.", "GROOT", "GROOT rel.", "relabeling criterion"],
)
print(f"Tree ensembles ({metric})")
export_to_latex(
data_alg_table_mean,
data_alg_table_std,
{
"forest",
"forest rel.",
"boosting",
"boosting rel.",
"GROOT forest",
"GROOT forest rel.",
},
[
"boosting",
"forest",
"GROOT forest",
"boosting rel.",
"forest rel.",
"GROOT forest rel.",
],
)
print(f"Adversarial pruning vs robust relabeling ({metric})")
export_to_latex(
data_alg_table_mean,
data_alg_table_std,
{
"adv. pruning tree",
"tree rel.",
"adv. pruning boosting",
"boosting rel.",
"adv. pruning forest",
"forest rel.",
},
[
"adv. pruning tree",
"tree rel.",
"adv. pruning boosting",
"boosting rel.",
"adv. pruning forest",
"forest rel.",
],
)
print(f"Regular vs robust relabeling ({metric})")
export_to_latex(
data_alg_table_mean,
data_alg_table_std,
{
"tree",
"tree rel.",
"boosting",
"boosting rel.",
"forest",
"forest rel.",
},
[
"tree",
"tree rel.",
"boosting",
"boosting rel.",
"forest",
"forest rel.",
],
)
export_results("adversarial accuracy")
export_results("accuracy")
for trade_off_dataset in results_df["dataset"].unique():
tradeoff_results = results_df[results_df["dataset"] == trade_off_dataset]
tradeoff_results = tradeoff_results[tradeoff_results["model"] != "Dummy model"]
tradeoff_results = tradeoff_results.groupby("model").mean().reset_index()
models = {
"Decision tree",
"Decision tree relabeled",
"Random forest",
"Random forest relabeled",
"Boosting",
"Boosting relabeled",
}
tradeoff_results = tradeoff_results[tradeoff_results["model"].isin(models)]
sns.scatterplot(
x="accuracy",
y="adversarial accuracy",
hue="model",
data=tradeoff_results,
)
plt.tight_layout()
plt.savefig(f"{args.results_dir}/robustness_tradeoff_{trade_off_dataset}.png")
plt.savefig(f"{args.results_dir}/robustness_tradeoff_{trade_off_dataset}.pdf")
plt.close()