-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcap.c
1261 lines (1139 loc) · 52.2 KB
/
cap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/****************************************************************
cap.c
Cut-and-Paste program. The code uses two windows (P and S) of
3-component waveforms to determined the moment tensor
M_ij = M0 * [ sqrt(1-iso*iso)*D_ij + sqrt(2/3)*iso*I_ij ],
where I_ij is the unit tensor and D_ij is a deviatoric tensor:
D_ij = (1/sqrt(1-2*clvd+4*clvd^2)*[(1-clvd)*DC_ij + clvd*CLVD_ij],
and
DC_ij = n_i v_j + n_j v_i,
CLVD_ij = v_i v_j + n_i n_j - 2 N_i N_j,
(n is the fault normal, v is the slip vector, N=nXv)
iso = tr(M)/M0/sqrt(6), -1<= iso <=1,
clvd = -m2/(2*m1), -0.5 <= clvd <=0.25,
where m1 is the largest positive eigenvalue of the deviatoric tensor
and m2 is the smallest in absolute value.
The solution is given in terms of Mw, strike, dip,
rake, iso, and clvd. The full moment tensor is also given in the
output file in the formate of
M0_in_dyncm Mxx Mxy Mxz Myy Myz Mzz
where x=North, y=East, z=Down.
For reference, see:
Zhu and Helmberger, Advancements in source estimation
techniques using broadband regional seismograms, BSSA, 86, 1634-1641, 1996.
Zhao and Helmberger, 1994
Ben-Zion and Zhu, 2012
Tape and Tape, 2012, 2013
requires:
Green's function -- has P and S arrival time set (t1 and t2 in SAC header)
optional:
Data -- P pick (A in SAC header) --> align with t1
-- Pnl window (t1 and t2)
-- P-SV, SH window (t3 and t4)
Modify history:
June 19, 1998 Lupei Zhu modified from srct.c
July 9, 1998 Lupei Zhu use different velocities for love and rayleigh
July 16, 1998 Lupei Zhu improve m0 estimation using parabola near mimimum
July 19, 1998 Lupei Zhu allow inputs for time shifts
July 26, 1998 Lupei Zhu taper waveforms (w=0.4)
Jan. 29, 1998 Lupei Zhu add option of repeat inversion after discard bad comp.
Nov. 9, 1999 Lupei Zhu absorb shft_pnl into constant shift
use rint() to convert float (t/dt) to int
Dec 2, 1999 Lupei Zhu taper waveform before conv() use w=0.3
Dec 27, 1999 Lupei Zhu compute windows using apparent Vp, Vs
June 28, 2000 Lupei Zhu switch to new greens function format
Feb 15, 2001 Lupei Zhu taper waveform after conv.
June 27, 2001 Lupei Zhu add fm_thr (firt-motion threshold)
July 16, 2001 Lupei Zhu add directivity option
Jan. 02, 2002 Lupei Zhu add an input for number of freedom per sec (nof_per_samp)
Oct. 31, 2002 Lupei Zhu use abolute time in the output sac files
July 18, 2003 Lupei Zhu use Butterworth filters to band-pass data
July 30, 2003 Lupei Zhu not absorb shft_pnl into constant shift
Aug. 18, 2003 Lupei Zhu normalize L2 of misfit by # of points
Aug. 21, 2003 Lupei Zhu tie SH and SV using variable tie (0-0.5)
Sep. 28, 2003 Lupei Zhu use P and S take-off angles in hd.user1/user2
Oct. 12, 2003 Lupei Zhu output other local minimums whose
misfit-min is less than mltp*sigma.
Apr. 06, 2004 Lupei Zhu allow inputing a SAC source time function src.sac
Sep. 06, 2004 Lupei Zhu make cap to run above the event_dir level
Jan. 28, 2007 Lupei Zhu use C-wrapped buttworth filtering subroutines.
Aug. 20, 2007 Lupei Zhu use SAC's Butterworth filter routines.
Jan. 28, 2008 Lupei Zhu include teleseismic P and SH in inversion (by setting W_PnlR<0).
The time windows of the z component and r/t components can be different
for both the data and Greens functions.
Mar. 11, 2010 Lupei Zhu Correct a bug when computing m0 using interpolation.
Change to no interpolation of FM untill the correct mw is found to avoid unstable interpolation in some cases.
Mar. 12, 2010 Lupei Zhu modified from cap.c by adding ISO.
June 10, 2010 Lupei Zhu Correct a bug introduced in Jan. 2008 which deleted
distance compensation and Pnl weighting of the
Greens functions.
Feb. 13, 2012 Lupei Zhu revise the decomposition of m_ij.
Mar. 2, 2012 Lupei Zhu correct a bug in using discard_bad_data().
Mar. 25, 2012 Lupei Zhu output misfit errors for bootstrapping.
Sept 13, 2012 Lupei Zhu correct a bug in iso interpolation.
Oct. 29, 2012 Lupei Zhu add CLVD and consolidate the searches for
mw, iso, and clvd.
Nov. 6, 2012 Lupei Zhu correct a bug in CLVD_ij (in radiats.c).
Known bugs:
****************************************************************/
#include "cap.h"
int total_n,loop=0,start=0,debug=0, Ncomp=0,Psamp[STN],Ssamp[STN],edep=-999;
float data2=0.0;
/* flags for computing uncertainty on the lune. 1==apply */
int only_first_motion=0; // polarity misfit. runs ONLY polarity, no waveform misfit
int misfit_on_lune=0; // waveform misfit. output misfit on the lune
char filename_prefix[255]; // used for all output files
/* workaround for filter issues with small magnitude events (Uturuncu) */
// this has not been tested with DIRECTIVITY option
int FTC_data=1, FTC_green=0;// for original CAP set FTC_data=0, FTC_green=0
/* allows use of polarities even when weight=0.
* Note CAP still needs at least 1 waveform for the inversion */
int skip_zero_weights=0; // for original CAP set skip_zero_weights=1
// Flag to create regular grid as in Alvizuri & Tape (2016) and Silwal & Tape (2016).
// NOTE reproducibility may not be exact since grid spacing uses function gridvec.
// Function gridvec does not implement the discretization of the previous version of
// cap.c which uses rules to account for special grid points.
// Function gridvec also avoids endpoints in all parameters.
// See NOTE flag LUNE_GRID_INSTEAD_OF_UV in function sub_inversion.c
int LUNE_GRID_INSTEAD_OF_UV = 0; // default = 0 (ie do not run old grid mode)
int main (int argc, char **argv) {
int i,j,k,k1,l,m,nda,npt,plot,kc,nfm,useDisp,dof,tele,indx,gindx,dis[STN],tsurf[STN],search_type,norm;
int n1,n2,ns, mltp, nup, up[3], n_shft, nqP, nqS,isurf=0,ibody=0,istat=0,Nsurf=0,Nbody=0,Nstat=0;
int win_len_Nsamp[2],n[NCP],max_shft[NCP],npts[NRC],stn_comp_CC[200][NCP];
int repeat;
char tmp[255],glib[128],dep[32],dst[16],eve[32],*c_pt;
float x,x1,x2,y,y1,amp,dt,rad[6],arad[4][3],fm_thr,tie,mtensor[3][3],rec2=0.,VR,evla,evlo,evdp;
float Pshift_max, Sshift_max, Sshift_static[STN];
float rms_cut[NCP], t0[NCP], tb[NRC], t1, t2, t3, t4, srcDelay;
float dtP_pick[STN];
float tshift_static_body = 0; //
float tshift_static_surf_rayl; // weight file col 12
float tshift_static_surf_love; // weight file col 13
float tshift_static_surf_rayl_input; // command line input
float shft0[STN][NCP]; //
float Pnl_win; //
float ts; // Surface arrival time
float surf_win; //
float P_pick[STN]; //
float P_win[STN]; //
float S_pick[STN]; //
float S_win[STN]; //
float S_shft[STN]; //
float fraction_before_P = 0.4; // seconds?
float fraction_before_S = 0.3; // seconds?
float stn_comp_log_amp[200][NCP];
float stn_comp_misfit[200][NCP];
float stn_comp_shift[200][NCP];
float max_amp_syn[200][NCP];
float max_amp_obs[200][NCP];
float log_amp_thresh;
float ppick[200];
float wt_pnl,wt_rayleigh,wt_love;
float tstarP, tstarS, attnP[NFFT], attnS[NFFT];
float *data[NRC], *green[NGR];
float bs_body,bs_surf,bs[NCP],weight,nof_per_samp;
float w_pnl[NCP];
float distance,dmin=100.,vp,vs1,vs2,depSqr=25;
float *data_obs, *data_syn; // save seismograms for plotting
float *f_pt,*f_pt0,*f_pt1;
float *pObs_ftc; // a copy of observed waveforms, used with FTC flags
float *g_pt; // for FTC_green
float pol_wt;
float pnl_reward, sw_reward;
int npt_data, offset_h=0;
GRID grid;
MTPAR mt[3];
COMP *spt;
DATA *obs, *obs0;
FM *fm, *fm0;
FM *fm_copy; /* copy of all first motions entered in weight file */
int nwaveforms=0; // print progress in reading seismograms
// dtP_pick[STN] was con_shft[STN] earlier
//fprintf(stderr,"\n----------------------------------------------------------\n");
fprintf(stderr,"\n==============================\n");
fprintf(stderr,"Initialize CAP and read data\n");
fprintf(stderr,"==============================\n");
// start random number generator (randvec function). See also cap.h
fprintf(stderr,"NOTE random seed = %d (randvec function)\n", RANDSEED);
// option 1 seed is user defined
srand(RANDSEED);
// option 2 seed using current time
//srand(time(NULL));
// variables for uniform MT
SEARCHPAR *searchPar = calloc(1, sizeof(SEARCHPAR));
// variables to verify that Mw_best is not near search limits
FILE * fid_warn; // output file for warnings
char out_best_sol[255]; // save best solution parameters
FILE * fid_best_sol;
SOLN sol;
SACHEAD hd[NRC];
FILE *f_out, *wt, *wt2, *wt3, *fid_srcfile, *f_tshift ;
float tau0, riseTime, *src;
char type[2] = {'B','P'}, proto[2] = {'B','U'};
double f1_pnl, f2_pnl, f1_sw, f2_sw;
float pnl_sn[30], pnl_sd[30], sw_sn[30], sw_sd[30];
long int order=4, nsects;
void principal_values(float *);
fprintf(stderr,"\nReading input parameters for inversion\n");
#ifdef DIRECTIVITY
int ns_pnl, ns_sw;
float *src_pnl, *src_sw;
float tau, faultStr, faultDip, rupDir, rupV, pVel, sVel, temp;
scanf("%f%f%f%f%f",&pVel,&sVel,&riseTime,&tau0,&rupDir);
rupDir *= DEG2RAD;
rupV = 0.8*sVel;
#endif
strcpy(eve,argv[1]);
strcpy(dep,argv[2]);
/* get station info and polarity */
FILE *fidfmp;
FMPDATA *fmpdata;
fmpdata = (FMPDATA *) malloc(sizeof(FMPDATA));
/****** input control parameters *************/
char mod_dep[255]="-999"; /* for renaming .out file */
char model[128];
int depth=-999;
scanf("%s %d",model, &depth); // velocity model name, and event depth
edep=depth;
// WRITE POLARITY AND STATION DATA
// This section was used in previous CAP with flag only_first_motion=1
// for generating polarity misfit on the lune (Uturuncu FMT paper).
// Now it's set to run for all inversions
char filename_fmpdata[255];
strcpy(fmpdata->evid, eve);
strcpy(fmpdata->vmod, model);
fmpdata->idep = depth;
sprintf(mod_dep,"%s_%s_%03d",fmpdata->evid, fmpdata->vmod, fmpdata->idep );
if (stat("./OUTPUT_DIR") == -1) {mkdir("./OUTPUT_DIR", 0755);} // create directory is it doesn't exist
sprintf(filename_prefix, "OUTPUT_DIR/%s_%s_%03d", fmpdata->evid, fmpdata->vmod, fmpdata->idep);
sprintf(filename_fmpdata, "%s_fmpdata.txt", filename_prefix);
fidfmp = fopen(filename_fmpdata, "w");
// end
scanf("%f%f%f%f%d%f%f%f",
&x1, // P window length in seconds (Note: for nearby stations window length is less than this)
&y1, // Surface window length in seconds
&Pshift_max, // allowable P time-shift in seconds
&Sshift_max, // allowable Surface time-shift in seconds
&repeat, // repeat inversion and discard bad trace (OBSOLETE)
&fm_thr, // first motion threshold
&tie, // tie shifts between Rayleigh and Love
&tshift_static_surf_rayl_input); // Surface wave static shift for all stations
if (repeat) for(j=0;j<NCP;j++) scanf("%f",rms_cut+4-j);
scanf("%f%f%f",
&vp, // apparent velocity for Pnl (see cap.pl for more info)
&vs1, // apparent velocity for Love
&vs2); // apparent velocity for Rayleigh
scanf("%f%f%f",
&bs_body, // distance scaling for body waves
&bs_surf, // distance scaling for surface waves
&nof_per_samp); // number of freedom for computing uncertainty (OBSOLETE)
scanf("%f%f%f",
&wt_pnl, // weight for Pnl
&wt_rayleigh, // weight for Rayleigh
&wt_love); // weight for Love
scanf("%d",&plot);
scanf("%d%f",
&useDisp, // to integrate (from velocity to disp)
&pol_wt); // relative weight for polarity misfit
scanf("%s",glib); // path to greens function library
scanf("%d",&search_type); // random or grid
scanf("%d",&norm); // L1 or L2 norm for waveform misfit
if (useDisp == 1) {
fprintf(stderr, "\nWARNING flag W1. Will convert velocity to displacement\n\n");
}
fprintf(stderr, "search type = %d, norm = %d\n", search_type, norm);
/*** input source functions and filters for pnl and sw ***/
scanf("%f",&dt); // sampling interval
if (dt>0.) {
scanf("%f%f",
&tau0, // duration of source-time function
&riseTime); // rise-time of source-time function
if ((src = trap(tau0, riseTime, dt, &ns)) == NULL) {
fprintf(stderr,"fail to make a trapzoid stf\n");
return -1;
}
srcDelay = 0.;
} else {
scanf("%s",tmp); scanf("%f",&riseTime);
if ((src = read_sac(tmp,hd)) == NULL) {
fprintf(stderr,"fail to read in source time: %s\n",tmp);
return -1;
}
dt = hd->delta;
ns = hd->npts;
srcDelay = -hd->b;
}
// write source function to a file
fid_srcfile = fopen("./OUTPUT_DIR/srcfile","wb");
for(i=0;i<=ns;i++) {
fprintf(fid_srcfile,"%f \t %f\n",((double)i*dt),src[i]);
}
fclose(fid_srcfile);
// filter bands for body and surface waves
scanf("%lf%lf%lf%lf",
&f1_pnl, // minimum period for body waves
&f2_pnl, // maximum period for body waves
&f1_sw, // minimum period for surface waves
&f2_sw); // maximum period for surface waves
if (f1_pnl>0.) design(order, type, proto, 1., 1., f1_pnl, f2_pnl, (double) dt, pnl_sn, pnl_sd, &nsects);
if (f1_sw>0.) design(order, type, proto, 1., 1., f1_sw, f2_sw, (double) dt, sw_sn, sw_sd, &nsects);
/** max. window length, shift, and weight for Pnl portion **/
win_len_Nsamp[0]=rint(x1/dt); // P window length in sample points
max_shft[3]=max_shft[4]=2*rint(Pshift_max/dt); // allowable P time-shift in sample points
w_pnl[3]=w_pnl[4]=wt_pnl; // weight for P waves (default = 2)
/** max. window length, shift, and weight for P-SV, SH **/
win_len_Nsamp[1]=rint(y1/dt); // P window length in sample points
max_shft[0]=max_shft[1]=max_shft[2]=2*rint(Sshift_max/dt); // allowable Surface time-shift in sample points
w_pnl[1]=w_pnl[2]=wt_rayleigh; // weight for rayleigh waves (default = 1)
w_pnl[0]=wt_love; // weight for love waves (default = 1)
/** begin -- get range of search parameters **/
fprintf(stderr, "\nInput parameter ranges \n");
// NOTE magnitude parameters include dMw and number of points
scanf("%f%f%d%f", &searchPar->mw1, &searchPar->mw2, &searchPar->nmw, &searchPar->dmw);
// (v, w, k, h, s) format: (start, end, number of points and grid spacings (for regular grid))
if(LUNE_GRID_INSTEAD_OF_UV == 1) {
fprintf(stderr,"WARNING. Using non uniform grid (gamma, delta) \n");
}
scanf("%f%f%d%d", &searchPar->v1, &searchPar->v2, &searchPar->nv, &searchPar->dv);
scanf("%f%f%d%d", &searchPar->w1, &searchPar->w2, &searchPar->nw, &searchPar->dw);
scanf("%f%f%d%d", &searchPar->k1, &searchPar->k2, &searchPar->nk, &searchPar->dk);
scanf("%f%f%d%d", &searchPar->h1, &searchPar->h2, &searchPar->nh, &searchPar->dh);
scanf("%f%f%d%d", &searchPar->s1, &searchPar->s2, &searchPar->ns, &searchPar->ds);
// initialize u. It's used internally so is not passed from cap.pl
searchPar->u1 = 0; searchPar->u2 = 0; searchPar->nu = 0; searchPar->du = 0;
// total number of solutions
scanf("%d", &searchPar->nsol);
// u = [0, 3pi/4], w = [-3pi/8, +3pi/8]. u, w have the same number of points.
searchPar->nu = searchPar->nw;
// output values
fprintf(stderr, "mw1= %6.3f mw2= %6.3f nmw= %d dmw= %6.3f\n", searchPar->mw1, searchPar->mw2, searchPar->nmw, searchPar->dmw);
fprintf(stderr, "v1= %11.6f v2= %11.6f nv= %10d dv= %10d\n", searchPar->v1, searchPar->v2, searchPar->nv, searchPar->dv);
fprintf(stderr, "w1= %11.6f w2= %11.6f nw= %10d dw= %10d\n", searchPar->w1, searchPar->w2, searchPar->nw, searchPar->dw);
fprintf(stderr, "k1= %11.6f k2= %11.6f nk= %10d dk= %10d\n", searchPar->k1, searchPar->k2, searchPar->nk, searchPar->dk);
fprintf(stderr, "h1= %11.6f h2= %11.6f nh= %10d dh= %10d\n", searchPar->h1, searchPar->h2, searchPar->nh, searchPar->dh);
fprintf(stderr, "s1= %11.6f s2= %11.6f ns= %10d ds= %10d\n", searchPar->s1, searchPar->s2, searchPar->ns, searchPar->ds);
fprintf(stderr, "\nNumber of solutions to prepare = %10d\n", searchPar->nsol);
// allocate memory for (strike, dip, rake)
// grid.err = (float *) malloc(grid.n[0]*grid.n[1]*grid.n[2]*sizeof(float));
grid.err = (float *) calloc(searchPar->nsol, sizeof(float));
if (grid.err == NULL ) {
fprintf(stderr,"fail to allocate memory for storing misfit errors\n");
return -1;
}
fprintf(stderr,"Allocating memory for moment tensors (nsol = %10d) ... ", searchPar->nsol);
ARRAYMT * arrayMT = calloc(searchPar->nsol, sizeof(ARRAYMT));
if (arrayMT == NULL) {
fprintf(stderr,"Abort. unable to allocate.\n");
return 0;
} else {
fprintf(stderr,"done.\n\n");
}
/** end -- get range of search parameters **/
#ifdef DIRECTIVITY
faultStr = grid.x0[0]*DEG2RAD;
faultDip = grid.x0[1]*DEG2RAD;
#endif
/** input number of stations **/
scanf("%d",&nda);
// Compute reward factors
// Reward for using longer time-windows and wider bandpass
pnl_reward = (x1*(f2_pnl-f1_pnl));
sw_reward = (y1*(f2_sw-f1_sw));
//pnl_reward = 1;
//sw_reward = 1;
fprintf(stderr, "Pnl reward: %f ; Sw reward: %f \n",pnl_reward, sw_reward);
if (nda > STN) {
fprintf(stderr,"number of station, %d, exceeds max., some stations are discarded\n",nda);
nda = STN;
}
obs = obs0 = (DATA *) malloc(nda*sizeof(DATA));
fm = fm0 = (FM *) malloc(3*nda*sizeof(FM));
/* used when not discarding stations with zero weight */
if (skip_zero_weights==0){
fm_copy = (FM *) malloc(nda*sizeof(FM));
}
if (obs == NULL || fm == NULL) {
fprintf(stderr,"fail to allocate memory for data\n");
return -1;
}
/**** loop over stations *****/
total_n = 0;
n_shft = 0;
nfm = 0;
fprintf(stderr,"Reading waveform data (nsta = %d) ... \n", nda);
for(i=0;i<nda;i++) {
nwaveforms++;
fprintf(stderr,"%d ", nwaveforms);
//-----------------------------------------------------------
// Read weight file
//-----------------------------------------------------------
// input station name and weighting factor
scanf("%s%s",tmp,dst);
for(nup=0,j=0;j<NCP;j++) {
scanf("%d",&obs->com[4-j].on_off); // weight for Pnl and Surface waves
nup += obs->com[4-j].on_off;
}
// arrival times, time windows, static shifts
scanf("%f %f %f %f %f %f",
&x1, // P arrival-time
&Pnl_win, // P window length
&ts, // Surface arrival time (same for both Rayleigh and Love)
&surf_win, // Surface window length
&tshift_static_surf_rayl, // Allow different tshifts for Rail, love
&tshift_static_surf_love); //
// use static shift from command line input if it is non-zero
// Note: In that case same static shift is applied to all stations
// XXX verify static shift
if (tshift_static_surf_rayl_input != 0) {
tshift_static_surf_rayl = tshift_static_surf_rayl_input;
}
// XXX chech if applied for surface only or the entire waveform
Sshift_static[i] = tshift_static_surf_rayl;
tsurf[i]=ts; // Surface arrival time
tele = 0;
bs[0] = bs[1] = bs[2] = bs_surf; // distance scaling for surface waves
bs[3] = bs[4] = bs_body; // distance scaling for body waves
if (obs->com[3].on_off<0) {
tele = 1;
tstarS = obs->com[1].on_off;
tstarP = obs->com[2].on_off;
obs->com[1].on_off = obs->com[2].on_off = obs->com[3].on_off = 0;
nup = obs->com[0].on_off + obs->com[4].on_off;
bs[0] = bs[1] = bs[2] = bs_body;
j = NFFT;
if (tstarP>0.) fttq_(&dt, &tstarP, &j, &nqP, attnP);
if (tstarS>0.) fttq_(&dt, &tstarS, &j, &nqS, attnS);
}
/* original code: remove current station if all weights==0 */
/* updated code: don't remove station */
if (skip_zero_weights==1){
if (nup==0) { /* skip this station */
nda--; i--;
continue;
}
}
/* up[i] unknown if not in weight file, so initialize*/
up[0] = 0;
up[1] = 0;
up[2] = 0;
nup = sscanf(tmp,"%[^/]/%d/%d/%d",obs->stn,&up[0],&up[1],&up[2]);
if ( fm_thr > 1 ) nup = 1;
/**************input waveforms************/
strcat(strcat(strcat(strcpy(tmp,eve),"/"),obs->stn), ".t");
c_pt = strrchr(tmp,(int) 't');
// Loop over components (NRC = 3)
// See here for more info on sac headers:
// https://ds.iris.edu/files/sac-manual/manual/file_format.html
for(j=0;j<NRC;j++){
*c_pt = cm[j]; // cm[NRC]={'t','r','z'};
if ((data[j] = read_sac(tmp,&hd[j])) == NULL) return -1;
tb[j] = hd[j].b-hd[j].o; // trace begining time - origin time
npts[j] = hd[j].npts; // number of sample points
}
obs->az = hd->az; // azimuth
obs->dist = distance = hd->dist; // distance
obs->tele = tele;
if (x1<=0.) x1 = hd[2].a; // P arrival time from 'z' component header
// (if not inputted in weight file)
x1 -= hd[2].o; // P arrival time - origin time
// shift relative to origin
if (tele && tshift_static_surf_rayl>0.) {
tshift_static_surf_rayl -= hd[0].o;
}
t1 = hd[2].t1-hd[2].o;
t2 = hd[2].t2-hd[2].o;
t3 = hd[0].t3-hd[0].o;
t4 = hd[0].t4-hd[0].o;
if (dst[0]=='0' && dst[1]=='\0')
snprintf(dst,10,"%1.0f", rint(obs->dist)); // if 0 distance given use the distance from header files
evla = hd->evla; // event latitude
evlo = hd->evlo; // event longitude
evdp = hd->evdp; // event depth
/**************compute source time function***********/
#ifdef DIRECTIVITY
temp = hd->az*DEG2RAD-faultStr;
temp = rupV*cos(temp)*cos(rupDir)-sin(temp)*sin(rupDir)*cos(faultDip);
tau = tau0*(1-temp/pVel);
src_pnl = trap(tau, riseTime, dt, &ns_pnl);
tau = tau0*(1-temp/sVel);
src_sw = trap(tau, riseTime, dt, &ns_sw);
if (src_pnl == NULL || src_sw == NULL) {
fprintf(stderr, "failed to make src for pnl or sw\n");
return -1;
}
fprintf(stderr,"station %s %5.1f tauS %5.1f\n",obs->stn,hd->az,tau);
#endif
/************input green's functions***********/
strcat(strcat(strcat(strcat(strcpy(tmp,glib),dep),"/"),dst),".grn.0");
c_pt = strrchr(tmp,(int) '0');
//fprintf(stderr, "NOTE: convolving greens function with src time function (trapezoid) tau0=dura=%f riseTime=%f \n", tau0, riseTime);
// WRITE POLARITY AND STATION DATA
// This section was used in previous CAP with flag only_first_motion=1
// for generating polarity misfit on the lune (Uturuncu FMT paper).
// Now it's set to run for all inversions
fmpdata->azim = hd->az; // azimuth (should be same as earlier)
strcpy(fmpdata->stname, obs->stn);
fmpdata->stlo = hd->stlo; // station longitude
fmpdata->stla = hd->stla; // station latitude
fmpdata->dist = hd->dist; // distance
obs->stla = hd->stla; // station latitude
obs->stlo = hd->stlo; // station longitude
// end
// Loop over greens function (NGR = 10)
for(j=0;j<NGR;j++) {
*c_pt = grn_com[j];
indx = 0; if (j>1) indx = 1; if (j>=kk[2]) indx=2;
if ((green[j] = read_sac(tmp,&hd[indx])) == NULL) return -1;
conv(src, ns, green[j], hd[indx].npts);
if (tele) {
if (tstarP>0. && j>=kk[2]) conv(attnP, nqP, green[j], hd[indx].npts);
if (tstarS>0. && j< kk[2]) conv(attnS, nqS, green[j], hd[indx].npts);
}
}
if (!tele) {hd[0].t2 = hd[2].t2; hd[0].user2 = hd[2].user2;}
/* generate first-motion polarity data */
// user1 = P take-off angle; user2 = S take-off angle (From greens function)
if (nup>1 && (hd[2].user1<0. || hd[0].user2<0.)) {
fprintf(stderr,"No P/S take-off angle in Greens' function %s\n",tmp);
} else {
obs->alpha = hd[2].user1;
for(j=1;j<nup;j++) {
/* type: 1=P; 2=SV; 3=SH; positive=up; negative=down */
fm->type = up[j-1];
fm->az = obs->az;
if (abs(fm->type)==1) fm->alpha = hd[2].user1;
else fm->alpha = hd[0].user2;
nfm++;
fm++;
}
}
/* make copy of station and polarity (if no polarity, set=0) */
/* note this is a workaround, only works with p-wave first motions */
/* type: 1=P; 2=SV; 3=SH; positive=up; negative=down */
if (skip_zero_weights==0){
fm_copy->type = up[0];
fm_copy->az = obs->az;
fm_copy->alpha = hd[2].user1;
fm_copy++;
}
// WRITE POLARITY AND STATION DATA
// This section was used in previous CAP with flag only_first_motion=1
// for generating polarity misfit on the lune (Uturuncu FMT paper).
// Now it's set to run for all inversions
fmpdata->pol = up[0]; // First motion polarity
fmpdata->toa = hd[2].user1; // P take-off angle
fmpdata->tp = hd[2].t1; // P arrival time
fmpdata->ts = hd[2].t2; // S arrival
// end
/*** calculate time shift needed to align data and syn approximately ****/
/* positive shift means synthetic is earlier */
dtP_pick[i] = -srcDelay; // srcDelay is 0 at this point (because dt > 0)
if ( x1 > 0.) { /* if first-arrival is specified */
// x1 = (User-defined Parrival time) - (origin time)
dtP_pick[i] += x1 - hd[2].t1; /* use it to align with greens' fn*/
// Greens functions origin time is always 0
// dtP_pick = (Data P arrival from weight file) - (synthetic Parrival from green function)
}
// align teleseismic S
if (tele && tshift_static_surf_rayl > x1 ) {
tshift_static_surf_rayl -= hd[0].t2 + dtP_pick[i];
}
// Change static shift when observed P arrival time is given
// otherwise the time-shift window becomes asymmetric
if (abs(dtP_pick[i]) > 0.) {
tshift_static_surf_rayl = tshift_static_surf_rayl - dtP_pick[i];
}
//-------------------------------------------------------------
/** calculate time windows for Pnl and Surface wave portions **/
/* for Pnl portion */
// t1 and t2 could be set in the data
// t1 - P arrival time (used for cutting P window)
// t2 - S arrival time (used for cutting S window)
if (t1 < 0 || t2 < 0 ) {
/* no time window in the data trace. use default time window in syn */
if (!tele && vp>0.) { // OPTIONAL : we haven't used this
/* use vp to compute t1 */
t1 = sqrt(distance*distance+depSqr)/vp;
}
else {
/* use tp as t1 */
// This is from green's functions header (in sec)
t1 = hd[2].t1;
}
// fraction_before_P governs the length of waveform before the parrival
// so that P window starts before the P arrival (flat line before P arrival)
t1 = t1 - fraction_before_P * win_len_Nsamp[0] * dt + dtP_pick[i];
/* ts plus some delay */
// OPTIONAL : we haven't used this
t2 = hd[0].t2 + 0.2*win_len_Nsamp[0]*dt + dtP_pick[i];
if (Pnl_win != 0) {
/* for specific length of time window */
// from -T flag of command line input (in sec)
t2 = t1 + Pnl_win;
}
/* 20170730 these outputs are mainly for debugging. disabled for now
* See also below for surface waves */
//fprintf(stderr,"WARNING ti<0 for SAC headers t1 and/or t2\n");
//fprintf(stderr,"Estimated new values: t1 %7.4f t2 %7.4f\n", t1, t2);
}
//-------------------------------------------------------------
/* do the same for the s/surface wave portion */
if (ts<=0.) {
/*if S wave arrival is not specified */
// get S arrival time from green's functions header
ts= hd[0].t2;
}
else {
fprintf(stderr,"WARNING arrival time for surface waves not specified\n");
}
if (t3 < 0 || t4 < 0 ) {
if (!tele && vs1>0. && vs2> 0.) {
// OPTIONAL : we haven't used this
// only if vs is specified (default vs1=vs2=-1)
t3 = sqrt(distance*distance+depSqr)/vs1 - 0.3*win_len_Nsamp[1]*dt;
t4 = sqrt(distance*distance+depSqr)/vs2 + 0.7*win_len_Nsamp[1]*dt;
}
else {
// if vp and vs are not input (see cap.pl)
t3 = ts - fraction_before_S * win_len_Nsamp[1] * dt;
t4 = t3 + win_len_Nsamp[1]*dt;
}
if (ts > 0.) {
/* if surface wave arrival time is given */
// XXX verify static shift
t3 += tshift_static_surf_rayl;
t4 += tshift_static_surf_rayl;
}
else {
/* add dtP_pick only if surf arrival time is not specified*/
// XXX verify static shift
t3 += dtP_pick[i] + tshift_static_surf_rayl;
t4 += dtP_pick[i] + tshift_static_surf_rayl;
fprintf(stderr,"%f %f %f %f\n",t3,t4,hd[0].t2,dtP_pick[i]);
}
/* for specific length of time window */
if (surf_win != 0) {
t4 = t3 + surf_win;
}
/* 20170730 these outputs are mainly for debugging. disabled for now
* See also above for body waves */
//fprintf(stderr,"WARNING ti<0 for SAC headers t3 and/or t4\n");
//fprintf(stderr,"Estimated new values: t3 %7.4f t4 %7.4f\n", t3, t4);
}
/*calculate the time windows */
n1 = rint((t2 - t1)/dt); /*Pnl*/
n2 = rint((t4 - t3)/dt); /*PSV/SH*/
if (n1>win_len_Nsamp[0]) n1=win_len_Nsamp[0];
if (n2>win_len_Nsamp[1]) n2=win_len_Nsamp[1];
/* storing in array so that later it could saved in weight_cap.dat ouput file */
P_pick[i] = t1;
P_win[i] = n1*dt;
S_pick[i] = t3;
S_win[i] = n2*dt;
S_shft[i] = tshift_static_surf_rayl;
dis[i]=atoi(dst);
Psamp[i] = n1;
Ssamp[i] = n2;
/***window data+Greens, do correlation and L2 norms **/
t0[0]=t3; /* love wave */
t0[1]=t0[2]=t4-n2*dt; /* rayleigh wave */
t0[3]=t0[4]=t1; /* Pnl */
n[0]=n[1]=n[2]=n2; n[3]=n[4]=n1;
shft0[i][0] = tshift_static_surf_love; // Surf transverse
shft0[i][1] = tshift_static_surf_rayl; // Surf radial
shft0[i][2] = tshift_static_surf_rayl; // Surf vertical
shft0[i][3] = tshift_static_body; // P radial
shft0[i][4] = tshift_static_body; // P vertical
if (obs->com[0].on_off>0) n_shft++;
if (obs->com[1].on_off>0 || obs->com[2].on_off>0) n_shft++;
if (obs->com[3].on_off>0 || obs->com[3].on_off>0) n_shft++;
isurf=0;
ibody=0;
istat=0;
for(spt=obs->com,kc=2,j=0;j<NCP;j++,spt++,kc=NRF) {
indx = kd[j];
gindx = kk[j];
if (tele) {
if (j==2) {indx=1; gindx=2;} /* no vertical S, use the radial */
if (j==3) {indx=2; gindx=kk[2];} /* no radial P, use the vertical */
}
spt->npt = npt = n[j];
spt->b = t0[j];
// Caution: This weight scales the amplitude of waveforms. w_pnl = 1 ALWAYS (make changes in cap.pl)
weight = pow(distance/dmin,bs[j]);
// multiply -Dflag to the weights
spt->on_off = (int)spt->on_off * w_pnl[j];
// multiple weights by reward factors
// Add reward factor to each component
if (j<3) {
spt->on_off = spt->on_off;
spt->rew = sw_reward;
}
else {
spt->on_off = spt->on_off;
spt->rew = pnl_reward;
}
if (spt->on_off) {
total_n+=npt;
Ncomp += spt->on_off;
} // Ncomp = number of all the components
// count number of surface and body wave components
if (j<3) {
if (spt->on_off >= 1) isurf ++;
}
else {
if (spt->on_off >= 1) ibody ++;
}
istat += spt->on_off;
// FILTER & CUTTING FOR OBSERVED WAVEFORMS
// filter then cut
if(FTC_data == 1) {
npt_data = npts[indx]-offset_h;
// prepare the whole waveform, then taper it
pObs_ftc = cutTrace(data[indx], npts[indx], offset_h, npt_data);
taper(pObs_ftc, npt_data);
if (pObs_ftc == NULL) {
fprintf(stderr, "fail to window the data\n");
return -1;
}
}
// cut then filter
else {
// prepare a window of the waveform, then taper it
f_pt = cutTrace(data[indx], npts[indx], (int) rint((t0[j]-tb[indx])/dt), npt);
taper(f_pt, npt);
if (f_pt == NULL) {
fprintf(stderr, "fail to window the data\n");
return -1;
}
spt->rec = f_pt;
}
if (j<3) {
// surface waves
if (f1_sw>0.) {
// filter then cut
if(FTC_data == 1) {
// filter the whole waveform, then cut and taper it
apply(pObs_ftc,(long int) npt_data, 0,sw_sn,sw_sd,nsects);
f_pt = cutTrace(pObs_ftc, npt_data, (int) rint((t0[j]-tb[indx])/dt), npt);
taper(f_pt, npt);
spt->rec = f_pt;
}
// cut then filter
else {
// filter a window of the waveform
apply(f_pt,(long int) npt,0,sw_sn,sw_sd,nsects);
}
}
}
else {
// body waves
if (f1_pnl>0.) {
// filter then cut
if(FTC_data == 1) {
// filter the whole waveform, then cut and taper it
apply(pObs_ftc,(long int) npt_data, 0,pnl_sn,pnl_sd,nsects);
f_pt = cutTrace(pObs_ftc, npt_data, (int) rint((t0[j]-tb[indx])/dt), npt);
taper(f_pt, npt);
spt->rec = f_pt;
}
// cut then filter
else {
// filter a window of the waveform
apply(f_pt,(long int) npt,0,pnl_sn,pnl_sd,nsects);
}
}
}
// NOTE convert to displacement!
if (useDisp == 1) {
cumsum(f_pt, npt, dt);
}
// Compute Data norm
for(x2=0.,l=0;l<npt;l++,f_pt++) {
*f_pt *= weight;
x2+=(*f_pt)*(*f_pt);
}
spt->rec2 = x2;
if (norm==1) x2 = sqrt(x2);
rec2 += spt->on_off*x2/(spt->npt * spt->rew);
// FILTER & CUTTING FOR GREENS FUNCTIONS
for(m=0,k=0;k<kc;k++) {
// filter then cut
if(FTC_green == 1) {
// prepare the whole waveform, then taper it
g_pt = cutTrace(green[gindx+k], hd[indx].npts, 0, hd[indx].npts);
taper(g_pt, hd[indx].npts);
if ( g_pt == NULL ) {
fprintf(stderr, "fail to window the Greens functions\n");
return -1;
}
}
// cut then filter
else {
// prepare a window of the waveform, then taper it
f_pt = cutTrace(green[gindx+k], hd[indx].npts, (int) rint((t0[j]-dtP_pick[i]-shft0[i][j]-hd[indx].b)/dt), npt);
taper(f_pt, npt);
if ( f_pt == NULL ) {
fprintf(stderr, "fail to window the Greens functions\n");
return -1;
}
spt->syn[k] = f_pt;
}
if (j<3) {
#ifdef DIRECTIVITY
conv(src_sw, ns_sw, f_pt, npt);
#endif
if (f1_sw>0.) {
// filter then cut
if(FTC_green){
// filter the whole waveform, then cut and taper it
apply(g_pt,(long int) hd[indx].npts, 0,sw_sn,sw_sd,nsects);
f_pt = cutTrace(g_pt, hd[indx].npts, (int) rint((t0[j]-dtP_pick[i]-shft0[i][j]-hd[indx].b)/dt), npt);
taper(f_pt, npt);
spt->syn[k] = f_pt;
}
// cut then filter
else {
// filter a window of the waveform
apply(f_pt,(long int) npt,0,sw_sn,sw_sd,nsects);
taper(f_pt, npt);
}
}
}
else {
#ifdef DIRECTIVITY
conv(src_pnl, ns_pnl, f_pt, npt);
#endif
if (f1_pnl>0.) {
// filter then cut
if(FTC_green){
// filter the whole waveform, then cut and taper it
apply(g_pt,(long int) hd[indx].npts, 0,pnl_sn,pnl_sd,nsects);
f_pt = cutTrace(g_pt, hd[indx].npts, (int) rint((t0[j]-dtP_pick[i]-shft0[i][j]-hd[indx].b)/dt), npt);
taper(f_pt, npt);
spt->syn[k] = f_pt;
}
// cut then filter
else {
// filter a window of the waveform
apply(f_pt,(long int) npt,0,pnl_sn,pnl_sd,nsects);
taper(f_pt, npt);
}
}
}
// NOTE convert to displacement!
if (useDisp == 1) {
cumsum(f_pt, npt, dt);
}
for(l=0;l<npt;l++) f_pt[l] *= weight;
spt->crl[k] = crscrl(npt,spt->rec,f_pt,max_shft[j]);
for(x=1.,k1=k;k1>=0;k1--,x=2.) {
f_pt0=spt->syn[k];
f_pt1=spt->syn[k1];
for(x2=0.,l=0;l<npt;l++) {
x2+=(*f_pt0++)*(*f_pt1++);
}
spt->syn2[m++] = x*x2;
}
}
//fprintf(stderr, "%s %e %e\n",obs->stn, spt->rec2, spt->syn2[j]);
// fprintf(stderr, "%d %d %d %d \n",ibody,Nbody,isurf,Nsurf);
} // end of loop over components
Nsurf += isurf;
Nbody += ibody;
Nstat += (istat>0);
obs++;
for(j=0;j<NRC;j++) free(data[j]);
for(j=0;j<NGR;j++) free(green[j]);
// WRITE POLARITY AND STATION DATA
// This section was used in previous CAP with flag only_first_motion=1
// for generating polarity misfit on the lune (Uturuncu FMT paper).
// Now it's set to run for all inversions
fmp_print_parameters(fidfmp, fmpdata);
} /*********end of loop over stations ********/
fprintf(stderr,"\nDone reading waveforms.\n\n");
// WRITE POLARITY AND STATION DATA
// This section was used in previous CAP with flag only_first_motion=1
// for generating polarity misfit on the lune (Uturuncu FMT paper).
// Now it's set to run for all inversions
//fmp_print_parameters(fidfmp, fmpdata);
fclose(fidfmp);
free(fmpdata);
// end
fprintf(stderr,"Total number of stations Nda= %d\n", nda);
fprintf(stderr,"Total number of components Ncomp= %d\n", Ncomp);
fprintf(stderr,"Total body wave components Nbody= %d\n", Nbody);
fprintf(stderr,"Total surf wave components Nsurf= %d\n", Nsurf);
fprintf(stderr,"Total Nstat= %d\n",Nstat);
data2=rec2/Ncomp;
if (nda < 1) {
fprintf(stderr,"No station available for inversion\n");
return -1;
}
INVERSION:
// call initSearchMT instead of "error". This call includes extra parameters (searchPar, arrayMT)
sol = initSearchMT(nda,obs0,nfm,fm0,fm_thr,max_shft,tie,mt,grid,0,search_type,norm, searchPar, arrayMT, pol_wt);
dof = nof_per_samp*total_n;
x2 = sol.wferr/dof; /* data variance */
//fprintf(stderr,"\n=========total_n=%d \t dof=%d \t error=%f\t nof=%f===========\n",total_n,dof,sol.err, nof_per_samp);
/* repeat grid search if needed */
if ( repeat && discard_bad_data(nda,obs0,sol,x2,rms_cut) ) {
repeat--;
goto INVERSION;
}
//Compute variance reduction
if (norm==1)
VR = 100*(1.-(sol.err)*(sol.err));
if (norm==2)
VR = 100*(1.-sol.err);
/***** output waveforms for both data and synthetics ****/
i = win_len_Nsamp[1]; if(win_len_Nsamp[0]>i) i=win_len_Nsamp[0];
data_obs = (float *) malloc(i*sizeof(float));
data_syn = (float *) malloc(i*sizeof(float));
if ((data_obs == NULL) || (data_syn == NULL)) {
fprintf(stderr,"Failed to allocate memory for seismogram output.\n");
return -1;
}
/**************output the results***********************/
// Stop if the best magnitude is at a boundary. Except for a point search.