-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
120 lines (104 loc) · 4.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import logging
import random
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from dataset import Nb101Dataset
from model import NeuralPredictor
from utils import AverageMeter, AverageMeterGroup, get_logger, reset_seed, to_cuda
from scipy.stats import kendalltau
def accuracy_mse(predict, target, scale=100.):
predict = Nb101Dataset.denormalize(predict.detach()) * scale
target = Nb101Dataset.denormalize(target) * scale
return F.mse_loss(predict, target)
def visualize_scatterplot(predict, target, scale=100.):
def _scatter(x, y, subplot, threshold=None):
plt.subplot(subplot)
plt.grid(linestyle="--")
plt.xlabel("Validation Accuracy")
plt.ylabel("Prediction")
plt.scatter(target, predict, s=1)
if threshold:
ax = plt.gca()
ax.set_xlim(threshold, 95)
ax.set_ylim(threshold, 95)
predict = Nb101Dataset.denormalize(predict) * scale
target = Nb101Dataset.denormalize(target) * scale
plt.figure(figsize=(12, 6))
_scatter(predict, target, 121)
_scatter(predict, target, 122, threshold=90)
plt.savefig("assets/scatterplot.png", bbox_inches="tight")
plt.close()
def main():
valid_splits = ["172", "334", "860", "91-172", "91-334", "91-860", "denoise-91", "denoise-80", "all"]
parser = ArgumentParser()
parser.add_argument("--train_split", choices=valid_splits, default="172")
parser.add_argument("--eval_split", choices=valid_splits, default="all")
parser.add_argument("--gcn_hidden", type=int, default=144)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--train_batch_size", default=10, type=int)
parser.add_argument("--eval_batch_size", default=1000, type=int)
parser.add_argument("--epochs", default=300, type=int)
parser.add_argument("--lr", "--learning_rate", default=1e-4, type=float)
parser.add_argument("--wd", "--weight_decay", default=1e-3, type=float)
parser.add_argument("--train_print_freq", default=None, type=int)
parser.add_argument("--eval_print_freq", default=10, type=int)
parser.add_argument("--visualize", default=False, action="store_true")
args = parser.parse_args()
reset_seed(args.seed)
dataset = Nb101Dataset(split=args.train_split)
dataset_test = Nb101Dataset(split=args.eval_split)
data_loader = DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True, drop_last=True)
test_data_loader = DataLoader(dataset_test, batch_size=args.eval_batch_size)
net = NeuralPredictor(gcn_hidden=args.gcn_hidden)
net.cuda()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.wd)
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
logger = get_logger()
net.train()
for epoch in range(args.epochs):
meters = AverageMeterGroup()
lr = optimizer.param_groups[0]["lr"]
for step, batch in enumerate(data_loader):
batch = to_cuda(batch)
target = batch["val_acc"]
predict = net(batch)
optimizer.zero_grad()
loss = criterion(predict, target)
loss.backward()
optimizer.step()
mse = accuracy_mse(predict, target)
meters.update({"loss": loss.item(), "mse": mse.item()}, n=target.size(0))
if (args.train_print_freq and step % args.train_print_freq == 0) or \
step + 1 == len(data_loader):
logger.info("Epoch [%d/%d] Step [%d/%d] lr = %.3e %s",
epoch + 1, args.epochs, step + 1, len(data_loader), lr, meters)
lr_scheduler.step()
net.eval()
meters = AverageMeterGroup()
predict_, target_ = [], []
with torch.no_grad():
for step, batch in enumerate(test_data_loader):
batch = to_cuda(batch)
target = batch["val_acc"]
predict = net(batch)
predict_.append(predict.cpu().numpy())
target_.append(target.cpu().numpy())
meters.update({"loss": criterion(predict, target).item(),
"mse": accuracy_mse(predict, target).item()}, n=target.size(0))
if (args.eval_print_freq and step % args.eval_print_freq == 0) or \
step % 10 == 0 or step + 1 == len(test_data_loader):
logger.info("Evaluation Step [%d/%d] %s", step + 1, len(test_data_loader), meters)
predict_ = np.concatenate(predict_)
target_ = np.concatenate(target_)
logger.info("Kendalltau: %.6f", kendalltau(predict_, target_)[0])
if args.visualize:
visualize_scatterplot(predict_, target_)
if __name__ == "__main__":
main()