forked from linpingta/lianjia-eroom-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eroom_price_adjust_tracker.py
176 lines (151 loc) · 6.43 KB
/
eroom_price_adjust_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
# vim: set bg=dark noet ts=4 sw=4 fdm=indent :
""" DESCRIPTION OF WORK"""
__author__ = "linpingta"
import os
import sys
import logging
import argparse
import re
import pandas as pd
import datetime
import copy
import time
from collections import defaultdict
def generate_base_info_dict(key, df, logger):
base_info_dict = {}
cur_data_info_list = df.T.to_dict().values()
for cur_data_info in cur_data_info_list:
hhid = cur_data_info["hhid"]
cur_data_info_t = cur_data_info
cur_data_info_t["online_time"] = key
base_info_dict[hhid] = cur_data_info_t
logger.info("base key[%s] generate req_num[%s]" % (key, len(base_info_dict)))
return base_info_dict
def update_base_info_df(new_key, new_df, pre_key, base_dict, logger):
""" change will be three types:
1. same hhid but different price
2. new hhid not exists in old
3. old hhid not exists in new
"""
pre_key_date = datetime.datetime.strptime(pre_key, "%Y%m%d")
new_key_date = datetime.datetime.strptime(new_key, "%Y%m%d")
new_pre_day_range = (new_key_date - pre_key_date).days
old_base_dict = copy.deepcopy(base_dict)
info_list = []
info_stats_summary_dict = defaultdict(int)
new_data_info_list = new_df.T.to_dict().values()
for new_data_info in new_data_info_list:
new_hhid = new_data_info["hhid"]
community = new_data_info["community"]
if new_hhid in base_dict: # existing hhid
new_total_price = new_data_info["total_price"]
old_total_price = base_dict[new_hhid]["total_price"]
online_time = base_dict[new_hhid]["online_time"]
info_dict = {
"hhid": str(new_hhid),
"pre_time": pre_key,
"new_time": new_key,
"community": community,
"online_time": online_time,
"new_pre_day_range": new_pre_day_range,
"pre_data": old_total_price,
"new_data": new_total_price
}
if new_total_price > old_total_price:
info_dict["type"] = "increase_price"
info_dict["info"] = new_total_price - old_total_price
info_list.append(info_dict)
info_stats_summary_dict["increase_price"] += 1
elif new_total_price < old_total_price:
info_dict["type"] = "decrease_price"
info_dict["info"] = new_total_price - old_total_price
info_list.append(info_dict)
info_stats_summary_dict["decrease_price"] += 1
# always update base_dict result
base_dict[new_hhid]["total_price"] = new_total_price
info_stats_summary_dict["existing_hhid_cnt"] += 1
else: # new source updated
new_data_info_t = new_data_info
new_data_info_t["online_time"] = new_key
base_dict[new_hhid] = new_data_info_t
info_dict = {
"hhid": str(new_hhid),
"pre_time": -1,
"new_time": new_key,
"community": community,
"online_time": new_key,
"new_pre_day_range": new_pre_day_range,
"type": "new_upload",
"info": -1,
"pre_data": -1,
"new_data": -1
}
info_list.append(info_dict)
info_stats_summary_dict["new_hhid_cnt"] += 1
for old_hhid, old_data_info in old_base_dict.items():
if old_hhid not in base_dict: # info remove
online_time_date = datetime.datetime.strptime(base_dict[new_hhid]["online_time"], "%Y%m%d")
new_online_day_range = (new_key_date - online_time_date).days
community = old_data_info["community"]
info_dict = {
"hhid": str(old_hhid),
"pre_time": pre_key,
"new_time": new_key,
"community": community,
"online_time": old_data_info["online_time"],
"new_pre_day_range": new_pre_day_range,
"type": "down_online_less_equal_than",
"info": new_online_day_range,
"pre_data": online_time_date,
"new_data": new_key_date
}
info_list.append(info_dict)
info_stats_summary_dict["delete_hhid_cnt"] += 1
logger.info("pre_key[%s] -> new_key[%s] generate req_num[%s]" % (pre_key, new_key, len(base_dict)))
logger.info("pre_key[%s] -> new_key[%s] info_summary_dict: %s" % (pre_key, new_key, str(info_stats_summary_dict)))
return base_dict, info_list
def main():
logging.basicConfig(
level=logging.DEBUG,
format='[%(filename)s:%(lineno)s - %(funcName)s %(asctime)s;%(levelname)s] %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S'
)
logger = logging.getLogger(__file__)
example_word = """
DESCRIBE ARGUMENT USAGE HERE
python main.py --help
"""
parser = argparse.ArgumentParser(prog=__file__, description='code description', epilog=example_word,
formatter_class=argparse.RawDescriptionHelpFormatter)
# add parameter if needed
parser.add_argument('-v', '--version', help='version of code', action='version', version='%(prog)s 1.0')
parser.parse_args()
date_df_dict = {}
cnt = 0
for cur_file in os.listdir("."):
try:
cur_date = re.search("eroom_time__(.*)_detail__(.*).csv", cur_file, re.IGNORECASE).group(1)
except Exception as e:
continue
cur_df = pd.read_csv(cur_file)
cur_df["cur_date"] = cur_date
date_df_dict[cur_date] = cur_df
base_info_dict = {}
total_info_list = []
pre_key = -1
for idx, key in enumerate(sorted(date_df_dict)):
if idx == 0:
logger.info("key[%s]: generate base info" % key)
base_info_dict = generate_base_info_dict(key, date_df_dict[key], logger)
else:
logger.info("pre_key[%s] -> key[%s]: update base info" % (pre_key, key))
new_base_info_dict, info_list = update_base_info_df(key, date_df_dict[key], pre_key, base_info_dict, logger)
base_info_dict = new_base_info_dict
total_info_list.extend(info_list)
pre_key = key
# output final info
total_info_df = pd.DataFrame(total_info_list)
total_info_df.to_csv("stats_info_updated_%s.csv" % int(time.time()), encoding='utf-8-sig')
if __name__ == '__main__':
main()