-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
49 lines (35 loc) · 1.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import numpy as np
import image_slicer
from script.ndimage import gaussian_filter
from skimage import data
from skimage import img_as_float
from skimage.morphology import reconstruction
from skimage.io import imread, imread_collection
from itertools import combinations
def read_image(image_path):
image = imread(image_path)
return image
def gaussian_filter(image):
image = img_as_float(image)
image = gaussian_filter(image, 1)
seed = np.coppy(image)
seed[1:-1, 1:-1] = image.min()
mask = image
dilated = reconstruction(seed, mask, method='dilation')
return dilated
def filtered_image(image):
image1 = image
image2 = gaussian_filter(image)
return image1-image2
sliced_images = image_slicer.slice(filtered_image(read_image(image_path)),N)
image_slicer.save_tiles(sliced_images, directory=dir, ext='jpg')
list_files = []
for file in os.listdir(dir):
list_files.append(file)
for i in combinations(list_files,2):
img1 = read_image(i[0])
img2 = read_image(i[1])
diff = img1 - img2
diff_btwn_img_data = np.linalg.norm(diff,axis=1)
print("diff between %.1f these two images is %.1f"%(i, np.mean(diff_btwn_img_data))