-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA_Fibonacciness.cpp
62 lines (50 loc) · 1.63 KB
/
A_Fibonacciness.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef vector<bool> vbl;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<string> vstr;
typedef vector<pll> vpll;
#define endl '\n'
#define all(x) x.begin(),x.end()
#define rall(x) x.rbegin(),x.rend()
constexpr ll mod = 1000000007;
inline void Parvez() { ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0); }
template<class T>inline istream& operator>>(istream& in, vector<T>& v) { for (T& x : v) { in >> x; }return in; }template<class T>inline ostream& operator<<(ostream& out, vector<T>& v) { for (ll i = 0;i < v.size() - 1;i++) { out << v[i] << ' '; }out << v[v.size() - 1];return out; }
inline void inp() {}template<class H, class... T>inline void inp(H&& h, T &&...t) { cin >> h;inp(forward<T>(t)...); }inline void print() { cout << endl; }template<class H, class... T>inline void print(H&& h, T &&...t) { cout << h;if (sizeof...(t) != 0)cout << ' ';print(forward<T>(t)...); }
void solution(ll& T) {
vll v(4);
inp(v);
ll cnt = 0;
ll mx = 0;
v.insert(v.begin() + 2, v[3] - v[2]);
for (ll i = 0; i < 5 - 2; i++) {
cnt += v[i] == v[i + 2] - v[i + 1];
}
mx = max(cnt, mx);
cnt=0;
v.erase(v.begin() + 2);
v.insert(v.begin() + 2, v[0] + v[1]);
for (ll i = 0; i < 5 - 2; i++) {
cnt += v[i] == v[i + 2] - v[i + 1];
}
mx = max(cnt, mx);
cnt = 0;
v.erase(v.begin() + 2);
v.insert(v.begin()+2, v[2]-v[1]);
for (ll i = 0; i < 5 - 2; i++) {
cnt += v[i] == v[i + 2] - v[i + 1];
}
mx = max(cnt, mx);
cout<<mx<<endl;
}
signed main() {
Parvez();
ll TT = 1;
cin >> TT;
for (ll T = 1;T <= TT;T++)
solution(T);
return 0;
}