-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
225 lines (168 loc) · 8.56 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import time
import copy
import numpy as np
#from sleep.core import *
from parla import Parla
from parla.cpu import cpu
try:
from parla.cuda import summarize_memory, clean_memory
except (ImportError, AttributeError):
def summarize_memory():
pass
def log_memory():
pass
def clean_memory():
pass
try:
import cupy as cp
except ImportError:
cp = None
import argparse
from synthetic.core import *
parser = argparse.ArgumentParser(description='Launch graph file in Parla')
parser.add_argument('-d', metavar='N', type=int, help='The dimension of data segments >=2 (Increase to make movement more expensive)', default=2)
parser.add_argument('-data_move', metavar='data_move', type=int, help='type of data movement. options=(None=0, Lazy=1, Eager=2)', default=0)
parser.add_argument('-graph', metavar='graph', type=str, help='the input graph file to run', required=True, default='graph/independent.gph')
parser.add_argument('--verbose', metavar='verbose', nargs='?', const=True, type=str2bool, default=False, help='Activate verbose mode (required for verifying output)')
parser.add_argument('-loop', metavar='loop', default=1, type=int, help='How many times to repeat the graph execution')
parser.add_argument('-outerloop', metavar='outerloop', default=1, type=int, help='How many times to repeat to whole experiment')
parser.add_argument('-reinit', metavar='reinit', default=0, type=int, help='Reinitialize the data on CPU at each inner loop (0=False, 1=True)')
parser.add_argument('--check_data', metavar='check_data', dest='check', nargs='?', const=True, type=str2bool, default=False, help='Activate data check mode (required for verifying movement output output)')
parser.add_argument('-user', metavar='user', type=int, help='type of placement. options=(None=0, User=1)', default=0)
parser.add_argument('-weight', metavar='weight', type=int, help='length of task compute time', default=None)
parser.add_argument('-threads', metavar='threads', type=int, help='Number of workers', default=None)
parser.add_argument('-n', metavar='n', type=int, help='maximum number of tasks', default=None)
parser.add_argument('-gweight', metavar='gweight', type=int, help="length of task gil time", default=None)
parser.add_argument('-use_gpu', metavar='use_gpu', type=int, help="Use any GPUs?", default=1)
data_execution_times = []
graph_execution_times = []
parla_execution_times = []
args = parser.parse_args()
if cp is not None:
n_gpus = cp.cuda.runtime.getDeviceCount()
else:
n_gpus = 0
def main_parla(data_config, task_space, iteration, G, verbose=False, reinit=False):
#dep = [task_space[iteration-1]] if iteration > 0 else []
@spawn(placement=cpu)
async def main_task():
start_data = time.perf_counter()
array = setup_data(data_config, args.d, data_move=args.data_move,
use_gpu=args.use_gpu)
end_data = time.perf_counter()
data_elapsed = end_data - start_data
data_execution_times.append(data_elapsed)
device_id = get_current_devices()[0].index
#print("Running on device", device_id, flush=True)
for i in range(iteration):
#print("Starting Iteration 1", flush=True)
data_elapsed = 0
if reinit and (i != 0):
start_data = time.perf_counter()
if args.data_move == 2 and reinit==2:
print("Resetting Data through PArray movement")
#Reset parray to modified on starting device
rs = TaskSpace("Reset")
for k in range(len(array)):
data = array[k]
if k == 0:
@spawn(rs[k], dependencies=[], placement=gpu(k%n_gpus), inout=[data])
def reset():
noop = 1
else:
@spawn(rs[k], dependencies=[rs[k-1]], placement=gpu(k%n_gpus), inout=[data])
def reset():
noop = 1
await rs[k]
#set to shared state
#ts = TaskSpace("Touch")
#for k in range(len(array)):
# data = array[k]
# @spawn(ts[k], placement=gpu(k%n_gpus), input=[data])
# def reset():
# noop = 1
#await ts
elif args.data_move == 1 or reinit==1:
print("Resetting by creating new PArrays")
del array
array = setup_data(data_config, args.d,
data_move=args.data_move, use_gpu=args.use_gpu)
else:
noop = 1
end_data = time.perf_counter()
data_elapsed = end_data - start_data
data_execution_times.append(data_elapsed)
#print(f"Outer Iteration: {outer} | Time to Reconfigure Data: ", data_elapsed, "seconds", flush=True)
#for l in range(len(array)):
# states = array[l]._coherence._local_states
# for device, val in states.items():
# if val == 2:
# array[l]._coherence._local_states[device] = 1
#
# print(array[l]._coherence._local_states)
print("----")
start_internal = time.perf_counter()
await create_tasks(G, array, args.data_move, verbose, args.check,
args.user, ndevices=args.threads,
ttime=args.weight, limit=args.n,
gtime=args.gweight, use_gpu=args.use_gpu)
end_internal = time.perf_counter()
graph_elapsed = end_internal - start_internal
graph_execution_times.append(graph_elapsed)
print(f"Iteration {i} | Time: {graph_elapsed}", flush=True)
#print(f"{args.weight}, {args.threads}, {graph_elapsed}")
#if reinit and (i!= 0):
# noop = 1
# print(f"Iteration {i} | Data Reset Time: ", data_elapsed, "seconds \n", flush=True)
def main():
#if args.data_move:
# print(f"move=({args.data_move})")
#
#if args.verbose:
# print(f"dim=({args.d})")
G = read_graph(args.graph)
data_config = G.pop(0)
#array = setup_data(data_config, args.d, data_move=args.data_move)
for outer in range(args.outerloop):
task_space = TaskSpace("Graph Iterations")
#NOTE: INCLUDES DATA SETUP TIME IF ARGS.REINIT=TRUE
start = time.perf_counter()
with Parla():
start_internal = time.perf_counter()
main_parla(data_config, task_space, args.loop, G, args.verbose, reinit=args.reinit)
end_internal = time.perf_counter()
end = time.perf_counter()
parla_total_elapsed = end - start
parla_execution_times.append(parla_total_elapsed)
#print(f"Outer Iteration: {outer} | Total Elapsed: ", parla_total_elapsed, "seconds", flush=True)
#Note: This isn't really useful info but its there if you're curious
#if args.verbose:
# print(f"Outer Iteration: {outer} | Time to Spawn Main Task: ", end_internal - start_internal, "seconds", flush=True)
summarize_memory()
#Reset memory counter on outer loop
clean_memory()
#print("--------------- \n")
#print("Summary: ")
if len(graph_execution_times) > 1:
start_index = 1
else:
start_index = 0
graph_mean = np.mean(np.array(graph_execution_times)[start_index:])
graph_median = np.median(np.array(graph_execution_times)[start_index:])
parla_mean = np.mean(np.array(parla_execution_times))
parla_median = np.median(np.array(parla_execution_times))
print(f"Graph Execution Time:: Average = {graph_mean} | Median = {graph_median}")
print(f"Parla Total Time :: Average = {parla_mean} | Median = {parla_median}")
if args.reinit:
data_mean = np.mean(np.array(data_execution_times))
data_median = np.median(np.array(data_execution_times))
print(f"----Data ReInit Time:: Average = {data_mean} | Median = {data_median}")
#print("Note: Data ReInit Time is included in Parla Total Time (subtract out as necessary)")
if __name__ == '__main__':
#Estimate GPU frequency for busy wait timing
#device_info = GPUInfo()
#cycles_per_second = estimate_frequency(100, ticks=0.05*1910*10**6)
#print(cycles_per_second)
#device_info.update(cycles_per_second)
#Launch experiment
main()