-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparen_2.py
222 lines (183 loc) · 7.89 KB
/
paren_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import json
from typing import Union
from jaxtyping import Int
from torch import Tensor
import random
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
VOCAB = {"[pad]": 0, "[start]": 1, "[end]": 2, "(": 3, ")": 4}
HIDDEN_SIZE = 56
HEAD_SIZE = 28
NUM_LAYERS = 3
NUM_HEADS = 2
MAX_LEN = 100
BATCH_SIZE = 32
EPOCHS = 10
LEARNING_RATE = 0.001
device = "mps"
class SimpleTokenizer:
START_TOKEN = 0
PAD_TOKEN = 1
END_TOKEN = 2
base_d = {"[start]": START_TOKEN, "[pad]": PAD_TOKEN, "[end]": END_TOKEN}
def __init__(self, alphabet: str):
self.alphabet = alphabet
# the 3 is because there are 3 special tokens (defined just above)
self.t_to_i = {**{c: i + 3 for i, c in enumerate(alphabet)}, **self.base_d}
self.i_to_t = {i: c for c, i in self.t_to_i.items()}
def tokenize(self, strs: list[str], max_len=None) -> Int[Tensor, "batch seq"]:
def c_to_int(c: str) -> int:
if c in self.t_to_i:
return self.t_to_i[c]
else:
raise ValueError(c)
if isinstance(strs, str):
strs = [strs]
if max_len is None:
max_len = max((max(len(s) for s in strs), 1))
ints = [
[self.START_TOKEN]
+ [c_to_int(c) for c in s]
+ [self.END_TOKEN]
+ [self.PAD_TOKEN] * (max_len - len(s))
for s in strs
]
return torch.tensor(ints)
def decode(self, tokens) -> list[str]:
assert tokens.ndim >= 2, "Need to have a batch dimension"
def int_to_c(c: int) -> str:
if c < len(self.i_to_t):
return self.i_to_t[c]
else:
raise ValueError(c)
return [
"".join(
int_to_c(i.item()) for i in seq[1:] if i != self.PAD_TOKEN and i != self.END_TOKEN
)
for seq in tokens
]
def __repr__(self) -> str:
return f"SimpleTokenizer({self.alphabet!r})"
class BracketsDataset(torch.utils.data.Dataset):
def __init__(self, data_tuples, tokenizer):
self.tokenizer = SimpleTokenizer("()")
self.strs = [x[0] for x in data_tuples]
self.isbal = torch.tensor([x[1] for x in data_tuples])
self.toks = self.tokenizer.tokenize(self.strs)
self.open_proportion = torch.tensor([s.count("(") / len(s) for s in self.strs])
self.starts_open = torch.tensor([s[0] == "(" for s in self.strs]).bool()
def __len__(self):
return len(self.strs)
def __getitem__(self, idx):
return self.strs[idx], self.isbal[idx], self.toks[idx]
def to(self, device):
self.isbal = self.isbal.to(device)
self.toks = self.toks.to(device)
self.open_proportion = self.open_proportion.to(device)
self.starts_open = self.starts_open.to(device)
return self
def load_data():
with open("/Users/utkarsh/Documents/neural-toc/naacl_work/ARENA_3.0/chapter1_transformer_interp/exercises/part51_balanced_bracket_classifier/brackets_data.json") as f:
data_tuples = json.load(f)
data_tuples = data_tuples
random.shuffle(data_tuples)
train_size = int(0.8 * len(data_tuples))
val_size = int(0.1 * len(data_tuples))
test_size = len(data_tuples) - train_size - val_size
train_data = data_tuples[:train_size]
val_data = data_tuples[train_size:train_size+val_size]
test_data = data_tuples[train_size+val_size:]
tokenizer = SimpleTokenizer("()")
train_dataset = BracketsDataset(train_data, tokenizer).to(device)
val_dataset = BracketsDataset(val_data, tokenizer).to(device)
test_dataset = BracketsDataset(test_data, tokenizer).to(device)
return train_dataset, val_dataset, test_dataset
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_size, head_size, num_heads):
super().__init__()
self.num_heads = num_heads
self.head_size = head_size
self.W_q = nn.Linear(hidden_size, num_heads * head_size)
self.W_k = nn.Linear(hidden_size, num_heads * head_size)
self.W_v = nn.Linear(hidden_size, num_heads * head_size)
self.W_o = nn.Linear(num_heads * head_size, hidden_size)
def forward(self, x, mask=None):
batch_size, seq_len, hidden_size = x.size()
Q = self.W_q(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2)
K = self.W_k(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2)
V = self.W_v(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2)
scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_size ** 0.5)
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
attention_weights = torch.softmax(scores, dim=-1)
context = torch.matmul(attention_weights, V).transpose(1, 2).contiguous()
context = context.view(batch_size, seq_len, -1)
return self.W_o(context)
class TransformerBlock(nn.Module):
def __init__(self, hidden_size, head_size, num_heads):
super().__init__()
self.attention = MultiHeadAttention(hidden_size, head_size, num_heads)
self.layernorm1 = nn.LayerNorm(hidden_size)
self.mlp = nn.Sequential(
nn.Linear(hidden_size, 4 * hidden_size),
nn.ReLU(),
nn.Linear(4 * hidden_size, hidden_size)
)
self.layernorm2 = nn.LayerNorm(hidden_size)
def forward(self, x, mask=None):
attn_output = self.attention(x, mask)
x = self.layernorm1(x + attn_output)
mlp_output = self.mlp(x)
return self.layernorm2(x + mlp_output)
# class BalancedParenthesesModel(nn.Module):
# def __init__(self, vocab_size, hidden_size, max_len, num_layers, num_heads):
# super().__init__()
# self.embedding = nn.Embedding(vocab_size, hidden_size)
# self.positional_encodings = nn.Parameter(torch.zeros(1, max_len, hidden_size))
# self.layers = nn.ModuleList([
# TransformerBlock(hidden_size, HEAD_SIZE, num_heads)
# for _ in range(num_layers)
# ])
# self.layernorm_final = nn.LayerNorm(hidden_size)
# self.unembedding = nn.Linear(hidden_size, 2)
# def forward(self, x, mask=None):
# seq_len = x.size(1)
# x = self.embedding(x) + self.positional_encodings[:, :seq_len, :]
# for layer in self.layers:
# x = layer(x, mask)
# x = self.layernorm_final(x)
# logits = self.unembedding(x[:, 0, :])
# return logits
class BalancedParenthesesModel(nn.Module):
def __init__(self, vocab_size, hidden_size, max_len, num_layers, num_heads):
super().__init__()
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.positional_encodings = nn.Parameter(torch.zeros(1, max_len, hidden_size))
self.layers = nn.ModuleList([
TransformerBlock(hidden_size, HEAD_SIZE, num_heads)
for _ in range(num_layers)
])
self.layernorm_final = nn.LayerNorm(hidden_size)
self.unembedding = nn.Linear(hidden_size, 2)
# Store intermediate states during forward pass
self.token_states = None
def forward(self, x, mask=None, return_states=False):
seq_len = x.size(1)
# Embedding with positional encodings
x = self.embedding(x) + self.positional_encodings[:, :seq_len, :]
# Pass through transformer layers
for layer in self.layers:
x = layer(x, mask)
# Final layer normalization
x = self.layernorm_final(x)
# Compute logits
logits = self.unembedding(x[:, 0, :])
# Store token states if requested
if return_states:
return logits, x.detach()
return logits