-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy patheval.py
288 lines (231 loc) · 10.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import argparse
import os
import time
from contrib import adf
from models.resnet import ResNet18
from models.resnet_dropout import ResNet18Dropout
from models_adf.resnet_adf import ResNet18ADF
from models_adf.resnet_adf_dropout import ResNet18ADFDropout
from utils import progress_bar
# Model flags
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--p', default=0.2, type=float, help='dropout rate')
parser.add_argument('--num_samples', default=10, type=int, help='number of samples to collect with Monte Carlo dropout')
parser.add_argument('--noise_variance', default=1e-4, type=float,
help='noise variance')
parser.add_argument('--min_variance', default=1e-4, type=float,
help='min variance')
parser.add_argument('--tau', default=1e-4, type=float,
help='constant data variance for Monte Carlo dropout.')
# Testing flags
parser.add_argument('--load_model_name', default='resnet18_dropout', type=str,
help='model to load')
parser.add_argument('--test_model_name', default='resnet18_dropout_adf', type=str,
help='model to load')
parser.add_argument('--resume', '-r', action='store_true', default=True,
help='resume from checkpoint')
parser.add_argument('--show_bar', '-b', action='store_true', default=True,
help='show bar or not')
parser.add_argument('--verbose', '-v', action='store_true', default=True,
help='regulate output verbosity')
parser.add_argument('--use_mcdo', '-m', action='store_true', default=False,
help='use Monte Carlo dropout to compute predictions and'
'model uncertainty estimates.')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
if args.verbose: print('==> Preparing data...')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data',
train=True,
download=True,
transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=128,
shuffle=True,
num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data',
train=False,
download=True,
transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,
batch_size=100,
shuffle=False,
num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
'ship', 'truck')
# Model
if args.verbose: print('==> Building model...')
def model_loader():
model = {'resnet18': ResNet18,
'resnet18_dropout': ResNet18Dropout,
'resnet18_adf': ResNet18ADF,
'resnet18_dropout_adf': ResNet18ADFDropout,
}
params = {'resnet18': [],
'resnet18_dropout': [args.p],
'resnet18_adf': [args.noise_variance, args.min_variance],
'resnet18_dropout_adf': [args.p, args.noise_variance, args.min_variance],
}
return model[args.test_model_name.lower()](*params[args.test_model_name.lower()])
net = model_loader().to(device)
criterion = nn.CrossEntropyLoss()
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
if args.verbose: print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
model_to_load = args.load_model_name.lower()
# if model_to_load.endswith('adf'):
# model_to_load = model_to_load[0:-4]
ckpt_path = './checkpoint/ckpt_{}.pth'.format(model_to_load)
checkpoint = torch.load(ckpt_path)
if args.verbose: print('Loaded checkpoint at location {}'.format(ckpt_path))
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
def set_training_mode_for_dropout(net, training=True):
"""Set Dropout mode to train or eval."""
for m in net.modules():
# print(m.__class__.__name__)
if m.__class__.__name__.startswith('Dropout'):
if training==True:
m.train()
else:
m.eval()
return net
def one_hot_pred_from_label(y_pred, labels):
y_true = torch.zeros_like(y_pred)
ones = torch.ones_like(y_pred)
indexes = [l for l in labels]
y_true[torch.arange(labels.size(0)), indexes] = ones[torch.arange(labels.size(0)), indexes]
return y_true
def compute_log_likelihood(y_pred, y_true, sigma):
dist = torch.distributions.normal.Normal(loc=y_pred, scale=sigma)
log_likelihood = dist.log_prob(y_true)
log_likelihood = torch.mean(log_likelihood, dim=1)
return log_likelihood
def compute_brier_score(y_pred, y_true):
"""Brier score implementation follows
https://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles.pdf.
The lower the Brier score is for a set of predictions, the better the predictions are calibrated."""
brier_score = torch.mean((y_true-y_pred)**2, 1)
return brier_score
def compute_preds(net, inputs, use_adf=False, use_mcdo=False):
model_variance = None
data_variance = None
def keep_variance(x, min_variance):
return x + min_variance
keep_variance_fn = lambda x: keep_variance(x, min_variance=args.min_variance)
softmax = nn.Softmax(dim=1)
adf_softmax = adf.Softmax(dim=1, keep_variance_fn=keep_variance_fn)
net.eval()
if use_mcdo:
net = set_training_mode_for_dropout(net, True)
outputs = [net(inputs) for i in range(args.num_samples)]
if use_adf:
outputs = [adf_softmax(*outs) for outs in outputs]
outputs_mean = [mean for (mean, var) in outputs]
data_variance = [var for (mean, var) in outputs]
data_variance = torch.stack(data_variance)
data_variance = torch.mean(data_variance, dim=0)
else:
outputs_mean = [softmax(outs) for outs in outputs]
outputs_mean = torch.stack(outputs_mean)
model_variance = torch.var(outputs_mean, dim=0)
# Compute MCDO prediction
outputs_mean = torch.mean(outputs_mean, dim=0)
else:
outputs = net(inputs)
if adf:
outputs_mean, data_variance = adf_softmax(*outputs)
else:
outputs_mean = outputs
net = set_training_mode_for_dropout(net, False)
return outputs_mean, data_variance, model_variance
def evaluate(net, use_adf=False, use_mcdo=False):
net.eval()
test_loss = 0
correct = 0
brier_score = 0
neg_log_likelihood = 0
total = 0
outputs_variance = None
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs_mean, data_variance, model_variance = compute_preds(net, inputs, use_adf, use_mcdo)
if data_variance is not None and model_variance is not None:
outputs_variance = data_variance + model_variance
elif data_variance is not None:
outputs_variance = data_variance
elif model_variance is not None:
outputs_variance = model_variance + args.tau
one_hot_targets = one_hot_pred_from_label(outputs_mean, targets)
# Compute negative log-likelihood (if variance estimate available)
if outputs_variance is not None:
batch_log_likelihood = compute_log_likelihood(outputs_mean, one_hot_targets, outputs_variance)
batch_neg_log_likelihood = -batch_log_likelihood
# Sum along batch dimension
neg_log_likelihood += torch.sum(batch_neg_log_likelihood, 0).cpu().numpy().item()
# Compute brier score
batch_brier_score = compute_brier_score(outputs_mean, one_hot_targets)
# Sum along batch dimension
brier_score += torch.sum(batch_brier_score, 0).cpu().numpy().item()
# Compute loss
loss = criterion(outputs_mean, targets)
test_loss += loss.item()
# Compute predictions and numer of correct predictions
_, predicted = outputs_mean.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if args.show_bar and args.verbose:
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
accuracy = 100.*correct/total
brier_score = brier_score/total
neg_log_likelihood = neg_log_likelihood/total
return accuracy, brier_score, neg_log_likelihood
# Testing adf model
print('==> Loaded model statistics:')
print(' test_model_name = {}'.format(args.test_model_name))
print(' load_model_name = {}'.format(args.load_model_name))
print(' @epoch = {}'.format(start_epoch))
print(' best_acc = {}'.format(best_acc))
print('==> Selected parameters:')
print(' use_mcdo = {}'.format(args.use_mcdo))
print(' num_samples = {}'.format(args.num_samples))
print(' p = {}'.format(args.p))
print(' min_variance = {}'.format(args.min_variance))
print(' noise_variance = {}'.format(args.noise_variance))
print(' tau = {}'.format(args.tau))
print('==> Starting evaluation...')
eval_time = time.time()
accuracy, brier_score, neg_log_likelihood = evaluate(
net,
use_adf=args.test_model_name.lower().endswith('adf'),
use_mcdo=args.use_mcdo)
eval_time = time.time() - eval_time
print('Accuracy = {}'.format(accuracy))
print('Brier Score = {}'.format(brier_score))
print('Negative log-likelihood = {}'.format(neg_log_likelihood))
print('Time = {}'.format(eval_time))