-
Notifications
You must be signed in to change notification settings - Fork 13
/
train.py
executable file
·58 lines (51 loc) · 2.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import tensorflow as tf
from read_utils import TextConverter, batch_generator
from model import CharRNN
import os
import codecs
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('name', 'default', 'name of the model')
flags.DEFINE_integer('num_seqs', 100, 'number of seqs in one batch')
flags.DEFINE_integer('num_steps', 100, 'length of one seq')
flags.DEFINE_integer('lstm_size', 128, 'size of hidden state of lstm')
flags.DEFINE_integer('num_layers', 2, 'number of lstm layers')
flags.DEFINE_boolean('use_embedding', False, 'whether to use embedding')
flags.DEFINE_integer('embedding_size', 128, 'size of embedding')
flags.DEFINE_float('learning_rate', 0.001, 'learning_rate')
flags.DEFINE_float('train_keep_prob', 0.5, 'dropout rate during training')
flags.DEFINE_string('input_file', '', 'utf8 encoded text file')
flags.DEFINE_integer('max_steps', 100000, 'max steps to train')
flags.DEFINE_integer('save_every_n', 1000, 'save the model every n steps')
flags.DEFINE_integer('log_every_n', 10, 'log to the screen every n steps')
flags.DEFINE_integer('max_vocab', 3500, 'max char number')
def main(_):
model_path = os.path.join('model', FLAGS.name)
if os.path.exists(model_path) is False:
os.makedirs(model_path)
with codecs.open(FLAGS.input_file, encoding='utf-8') as f:
text = f.read()
converter = TextConverter(text, FLAGS.max_vocab)
converter.save_to_file(os.path.join(model_path, 'converter.pkl'))
arr = converter.text_to_arr(text)
g = batch_generator(arr, FLAGS.num_seqs, FLAGS.num_steps)
print(converter.vocab_size)
model = CharRNN(converter.vocab_size,
num_seqs=FLAGS.num_seqs,
num_steps=FLAGS.num_steps,
lstm_size=FLAGS.lstm_size,
num_layers=FLAGS.num_layers,
learning_rate=FLAGS.learning_rate,
train_keep_prob=FLAGS.train_keep_prob,
use_embedding=FLAGS.use_embedding,
embedding_size=FLAGS.embedding_size
)
model.train(g,
FLAGS.max_steps,
model_path,
FLAGS.save_every_n,
FLAGS.log_every_n,
)
if __name__ == '__main__':
tf.compat.v1.disable_eager_execution()
tf.compat.v1.app.run()