-
Notifications
You must be signed in to change notification settings - Fork 435
/
Copy pathinference.py
49 lines (40 loc) · 1.65 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""Translate an image to another image
An example of command-line usage is:
python inference.py --model pretrained/apple2orange.pb \
--input input_sample.jpg \
--output output_sample.jpg \
--image_size 256
"""
import tensorflow as tf
import os
from model import CycleGAN
import utils
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string('model', '', 'model path (.pb)')
tf.flags.DEFINE_string('input', 'input_sample.jpg', 'input image path (.jpg)')
tf.flags.DEFINE_string('output', 'output_sample.jpg', 'output image path (.jpg)')
tf.flags.DEFINE_integer('image_size', '256', 'image size, default: 256')
def inference():
graph = tf.Graph()
with graph.as_default():
with tf.gfile.FastGFile(FLAGS.input, 'rb') as f:
image_data = f.read()
input_image = tf.image.decode_jpeg(image_data, channels=3)
input_image = tf.image.resize_images(input_image, size=(FLAGS.image_size, FLAGS.image_size))
input_image = utils.convert2float(input_image)
input_image.set_shape([FLAGS.image_size, FLAGS.image_size, 3])
with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file:
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_file.read())
[output_image] = tf.import_graph_def(graph_def,
input_map={'input_image': input_image},
return_elements=['output_image:0'],
name='output')
with tf.Session(graph=graph) as sess:
generated = output_image.eval()
with open(FLAGS.output, 'wb') as f:
f.write(generated)
def main(unused_argv):
inference()
if __name__ == '__main__':
tf.app.run()