From 2c023e351f4ea5d12405338184f7bcf2b7a3546f Mon Sep 17 00:00:00 2001 From: vanislekahuna Date: Wed, 28 Aug 2024 21:53:22 -0700 Subject: [PATCH] Added additional documentation on how to replicate environment and refer to env variables in Jupyter --- --file | 169 ++ .gitignore | 210 ++- .../BC_Wildfire_Mapping-checkpoint.ipynb | 1409 ++++++++++++++++- tutorials/BC_Wildfire_Mapping.ipynb | 846 ++++++++-- .../etc/conda/activate.d/env_vars.sh | 0 .../etc/conda/deactivate.d/env_vars.sh | 0 tutorials/README.md | 107 ++ tutorials/cyberse_wildfire.env | 169 ++ tutorials/requirements.txt | 2 +- 9 files changed, 2760 insertions(+), 152 deletions(-) create mode 100644 --file create mode 100644 tutorials/Package/envs/cyberse_wildfire/etc/conda/activate.d/env_vars.sh create mode 100644 tutorials/Package/envs/cyberse_wildfire/etc/conda/deactivate.d/env_vars.sh create mode 100644 tutorials/README.md create mode 100644 tutorials/cyberse_wildfire.env diff --git a/--file b/--file new file mode 100644 index 00000000..7f742862 --- /dev/null +++ b/--file @@ -0,0 +1,169 @@ +# This file may be used to create an environment using: +# $ conda create --name --file +# platform: win-64 +@EXPLICIT +https://repo.anaconda.com/pkgs/main/win-64/blas-1.0-mkl.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ca-certificates-2024.7.2-haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/tzdata-2024a-h04d1e81_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/vs2015_runtime-14.40.33807-h98bb1dd_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/winpty-0.4.3-4.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/vc-14.40-h2eaa2aa_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/bzip2-1.0.8-h2bbff1b_6.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/icu-73.1-h6c2663c_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/intel-openmp-2023.1.0-h59b6b97_46320.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jpeg-9e-h827c3e9_3.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/lerc-3.0-hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libbrotlicommon-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libdeflate-1.17-h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libffi-3.4.4-hd77b12b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libsodium-1.0.18-h62dcd97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libwebp-base-1.3.2-h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/lz4-c-1.9.4-h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/openssl-3.0.14-h827c3e9_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/sqlite-3.45.3-h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tbb-2021.8.0-h59b6b97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/xz-5.4.6-h8cc25b3_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/yaml-0.2.5-he774522_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/zlib-1.2.13-h8cc25b3_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/krb5-1.20.1-h5b6d351_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libbrotlidec-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libbrotlienc-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libclang13-14.0.6-default_h8e68704_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libpng-1.6.39-h8cc25b3_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl-2023.1.0-h6b88ed4_46358.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tk-8.6.14-h0416ee5_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/zeromq-4.3.5-hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/zstd-1.5.5-hd43e919_2.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/brotli-bin-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/freetype-2.12.1-ha860e81_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libclang-14.0.6-default_hb5a9fac_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libpq-12.17-h906ac69_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libtiff-4.5.1-hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-3.10.12-he1021f5_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/attrs-23.1.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/brotli-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/brotli-python-1.0.9-py310hd77b12b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/certifi-2024.7.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/charset-normalizer-3.3.2-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/colorama-0.4.6-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/debugpy-1.6.7-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/decorator-5.1.1-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/defusedxml-0.7.1-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/exceptiongroup-1.2.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/executing-0.8.3-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/idna-3.7-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/json5-0.9.6-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyterlab_widgets-3.0.10-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/kiwisolver-1.4.4-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/lcms2-2.12-h83e58a3_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/markupsafe-2.1.3-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mistune-2.0.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl-service-2.4.0-py310h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nest-asyncio-1.6.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/openjpeg-2.5.2-hae555c5_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/overrides-7.4.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/packaging-24.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/pandocfilters-1.5.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/parso-0.8.3-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/platformdirs-3.10.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ply-3.11-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/prometheus_client-0.14.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/psutil-5.9.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/pure_eval-0.2.2-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/pycparser-2.21-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pygments-2.15.1-py310haa95532_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyparsing-3.0.9-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyqt5-sip-12.13.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-fastjsonschema-2.16.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-json-logger-2.0.7-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pytz-2024.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pywin32-305-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pywinpty-2.0.10-py310h5da7b33_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyyaml-6.0.1-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyzmq-25.1.2-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/qt-main-5.15.2-h19c9488_10.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/rfc3986-validator-0.1.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/rpds-py-0.10.6-py310h062c2fa_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/send2trash-1.8.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/setuptools-72.1.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/six-1.16.0-pyhd3eb1b0_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/sniffio-1.3.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/soupsieve-2.5-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tomli-2.0.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tornado-6.4.1-py310h827c3e9_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/traitlets-5.14.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/typing_extensions-4.11.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/unicodedata2-15.1.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/wcwidth-0.2.5-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/webencodings-0.5.1-py310haa95532_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/websocket-client-1.8.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/wheel-0.43.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/widgetsnbextension-4.0.10-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/win_inet_pton-1.1.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/anyio-4.2.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/asttokens-2.0.5-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/async-lru-2.0.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/babel-2.11.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/beautifulsoup4-4.12.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/bleach-4.1.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/cffi-1.16.0-py310h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/comm-0.2.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/fonttools-4.51.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jedi-0.19.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jinja2-3.1.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_core-5.7.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/jupyterlab_pygments-0.1.2-py_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/matplotlib-inline-0.1.6-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/numpy-base-1.26.4-py310h65a83cf_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pillow-10.4.0-py310h827c3e9_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pip-24.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/prompt-toolkit-3.0.43-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pysocks-1.7.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-dateutil-2.9.0post0-py310haa95532_2.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/qtpy-2.4.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/referencing-0.30.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/rfc3339-validator-0.1.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/sip-6.7.12-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/terminado-0.17.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tinycss2-1.2.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/typing-extensions-4.11.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/argon2-cffi-bindings-21.2.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/branca-0.6.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jsonschema-specifications-2023.7.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_client-8.6.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_server_terminals-0.4.4-py310haa95532_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/prompt_toolkit-3.0.43-hd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyqt-5.15.10-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/stack_data-0.2.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/urllib3-2.2.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/argon2-cffi-21.3.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ipython-8.25.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jsonschema-4.19.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/requests-2.32.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ipykernel-6.28.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ipywidgets-8.1.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_events-0.10.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nbformat-5.9.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_console-6.6.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nbclient-0.8.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/qtconsole-5.5.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nbconvert-7.10.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_server-2.14.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter-lsp-2.2.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyterlab_server-2.25.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/notebook-shim-0.2.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyterlab-4.0.11-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/notebook-7.0.8-py310haa95532_2.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter-1.0.0-py310haa95532_9.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/bottleneck-1.3.7-py310h9128911_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/contourpy-1.2.0-py310h59b6b97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/folium-0.14.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/matplotlib-3.8.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/matplotlib-base-3.8.4-py310h4ed8f06_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl_fft-1.3.8-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl_random-1.2.4-py310h59b6b97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/numpy-1.26.4-py310h055cbcc_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/numexpr-2.8.7-py310h2cd9be0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pandas-2.2.2-py310h5da7b33_0.tar.bz2 diff --git a/.gitignore b/.gitignore index 9c4ab007..c8e8f997 100644 --- a/.gitignore +++ b/.gitignore @@ -1,12 +1,29 @@ +# Data files +*.asc *.csv -output* -tmp* -quinlan* -2019* -vri* +*.tsv +*.json +*.pkl +*.pickle +*.h5 +*.xlsx +*.xls +*.gz +*.zip +*.tar *.tar.gz -bin/* -test* +*.tgz +*.rar +*.arff +*.db* +*.docx +*.txt +jb-bank* +jb-bank +uci-marketing-data +*.duckdb* +*.bkp +*.dtmp *.pyc *.shp *.shx @@ -21,3 +38,182 @@ cpp/out/* *pass cpp/mean/* cpp/label/* + +# Misc +output* +tmp* +quinlan* +2019* +vri* +bin/* +test* + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/#use-with-ide +.pdm.toml + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ + +*.doctrees +*jupyter_execute +*.DS_Store +course-material/_build + +# Ignore everything in the products directory +products/* + +# But do not ignore .gitkeep files +!products/.gitkeep +*.metadata +*.csv +*.asc +*.csv +*.parquet \ No newline at end of file diff --git a/tutorials/.ipynb_checkpoints/BC_Wildfire_Mapping-checkpoint.ipynb b/tutorials/.ipynb_checkpoints/BC_Wildfire_Mapping-checkpoint.ipynb index fecbddf3..a4209922 100644 --- a/tutorials/.ipynb_checkpoints/BC_Wildfire_Mapping-checkpoint.ipynb +++ b/tutorials/.ipynb_checkpoints/BC_Wildfire_Mapping-checkpoint.ipynb @@ -6,7 +6,7 @@ "id": "Q4cJY74nZBVE" }, "source": [ - "# **Cyberse BC Wildfire Mapping**" + "# **BC Wildfire Mapping**" ] }, { @@ -21,6 +21,13 @@ "[Photo Source](https://www.cbc.ca/news/canada/calgary/badly-burned-puppy-nero-receives-outpouring-of-support-1.2422753)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Click here to access to the original Google Colab notebook](https://drive.google.com/file/d/1R7l9kQHj6Y142MoGKLWfprD7itmuPN6C/view?usp=sharing)" + ] + }, { "cell_type": "markdown", "metadata": { @@ -61,23 +68,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "collapsed": true, "id": "k_xsUtyuYs_7", "outputId": "cd90e8f0-f062-49b9-dc83-0bf77f7916fc" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: earthengine-api==0.1.406 in c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages (from -r requirements.txt (line 1)) (0.1.406)\n", + "Requirement already satisfied: folium==0.14.0 in c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages (from -r requirements.txt (line 2)) (0.14.0)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -rotobuf (c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages)\n", + "ERROR: Ignored the following versions that require a different python version: 0.20.5 Requires-Python >=3.8; 0.20.6 Requires-Python >=3.8; 0.20.7 Requires-Python >=3.8; 0.21.0 Requires-Python >=3.8; 0.22.0 Requires-Python >=3.8; 0.22.1 Requires-Python >=3.8; 0.23.0 Requires-Python >=3.8; 0.23.1 Requires-Python >=3.8; 0.23.2 Requires-Python >=3.8; 0.24.0 Requires-Python >=3.8; 0.24.1 Requires-Python >=3.8; 0.24.2 Requires-Python >=3.8; 0.24.3 Requires-Python >=3.8; 0.24.4 Requires-Python >=3.8; 0.25.0 Requires-Python >=3.8; 0.26.0 Requires-Python >=3.8; 0.27.0 Requires-Python >=3.8; 0.27.1 Requires-Python >=3.8; 0.27.2 Requires-Python >=3.8; 0.27.3 Requires-Python >=3.8; 0.27.4 Requires-Python >=3.8; 0.28.0 Requires-Python >=3.8; 0.28.1 Requires-Python >=3.8; 0.28.2 Requires-Python >=3.8; 0.29.0 Requires-Python >=3.8; 0.29.1 Requires-Python >=3.8; 0.29.2 Requires-Python >=3.8; 0.29.3 Requires-Python >=3.8; 0.29.4 Requires-Python >=3.8; 0.29.5 Requires-Python >=3.8; 0.29.6 Requires-Python >=3.8; 0.30.0 Requires-Python >=3.8; 0.30.1 Requires-Python >=3.8; 0.30.2 Requires-Python >=3.8; 0.30.3 Requires-Python >=3.8; 0.30.4 Requires-Python >=3.8; 0.31.0 Requires-Python >=3.8; 0.32.0 Requires-Python >=3.8; 0.32.1 Requires-Python >=3.8; 0.33.0 Requires-Python >=3.8; 0.33.1 Requires-Python >=3.8; 0.34.0 Requires-Python >=3.8\n", + "ERROR: Could not find a version that satisfies the requirement geemap==0.32.1 (from versions: 0.1.0, 0.1.1, 0.1.2, 0.1.3, 0.1.4, 0.1.5, 0.1.6, 0.1.7, 0.2.0, 0.2.1, 0.3.0, 0.3.1, 0.3.2, 0.4.0, 0.4.1, 0.4.2, 0.5.0, 0.5.1, 0.5.2, 0.5.3, 0.5.4, 0.5.5, 0.6.0, 0.6.1, 0.6.2, 0.6.3, 0.6.4, 0.6.5, 0.6.6, 0.6.7, 0.6.8, 0.6.9, 0.6.10, 0.6.11, 0.6.12, 0.6.13, 0.6.14, 0.7.0, 0.7.1, 0.7.2, 0.7.3, 0.7.4, 0.7.5, 0.7.6, 0.7.7, 0.7.8, 0.7.9, 0.7.10, 0.7.11, 0.7.12, 0.7.13, 0.8.0, 0.8.1, 0.8.2, 0.8.3, 0.8.4, 0.8.5, 0.8.6, 0.8.7, 0.8.8, 0.8.9, 0.8.10, 0.8.11, 0.8.12, 0.8.13, 0.8.14, 0.8.15, 0.8.16, 0.8.17, 0.8.18, 0.9.0, 0.9.1, 0.9.2, 0.9.3, 0.9.4, 0.9.5, 0.10.0, 0.10.1, 0.10.2, 0.11.0, 0.11.1, 0.11.2, 0.11.3, 0.11.4, 0.11.5, 0.11.6, 0.11.7, 0.11.8, 0.12.0, 0.12.1, 0.13.0, 0.13.1, 0.13.2, 0.13.3, 0.13.4, 0.13.5, 0.13.6, 0.13.7, 0.13.8, 0.13.9, 0.13.10, 0.13.11, 0.14.0, 0.14.1, 0.14.2, 0.14.3, 0.15.0, 0.15.1, 0.15.2, 0.15.3, 0.15.4, 0.15.5, 0.16.0, 0.16.1, 0.16.2, 0.16.3, 0.16.4, 0.16.5, 0.16.6, 0.16.7, 0.16.8, 0.16.9, 0.17.0, 0.17.1, 0.17.2, 0.17.3, 0.18.0, 0.18.1, 0.18.2, 0.18.3, 0.19.0, 0.19.1, 0.19.2, 0.19.3, 0.19.4, 0.19.5, 0.19.6, 0.20.0, 0.20.1, 0.20.2, 0.20.3, 0.20.4)\n", + "ERROR: No matching distribution found for geemap==0.32.1\n" + ] + } + ], "source": [ - "!pip install -r requirements.txt" + "# !pip install -r requirements.txt" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "id": "rilgOE8QYs6j" }, @@ -86,9 +111,10 @@ "import ee\n", "import folium\n", "import geemap # geemap.core as geemap\n", + "import pytz\n", + "import os\n", "import numpy as np\n", "import pandas as pd\n", - "import pytz\n", "import matplotlib.pyplot as plt\n", "from IPython.display import Image\n", "from datetime import datetime" @@ -133,7 +159,7 @@ " - Once you've created a Google Cloud Project, return to the [projects page]((https://console.cloud.google.com/cloud-resource-manager) and you should see your project listed under \"Resources\"\n", " - Beside the \"name\" column is a column named `ID`. Copy the ID value associated to your project and enter it in the `project` argument of the `ee.Initialize()` function below.\n", "\n", - "5. ? **Create credentials for Earth Engine**\n", + "5. **Create credentials for Earth Engine**\n", " - In the Google Cloud Console, go to \"APIs & Services\" > \"Credentials\"\n", " - Click \"Create Credentials\" and under \"Select an API\" dropdown, choose \"Google Earth Engine API\"\n", " - Fill in the details in the \"Service Account details\" step to create a service account.\n", @@ -154,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -163,13 +189,56 @@ "id": "b_cXIM3vYs4N", "outputId": "b26fe635-c1f0-4057-b19a-29fa0abe3e4a" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], "source": [ "# Trigger the authentication flow.\n", "ee.Authenticate()\n", "\n", "# Initialize the library.\n", - "ee.Initialize(project=\"bc-wildfire-422905\") #\"{enter-project-name}\"" + "project_name = os.environ.get(\"CYBERSE\")\n", + "ee.Initialize(project=project_name) # \"bc-wildfire-422905\"" ] }, { @@ -187,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -196,7 +265,42 @@ "id": "f5aWXtRJYs1q", "outputId": "c5ceaefe-f63f-4cbb-884e-536983a0be77" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Getting coordinates of the point of interest\n", "# which is the Lytton library as the poi for the Lytton Creek wildfire that started on 2021-06-30\n", @@ -246,7 +350,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -255,7 +359,42 @@ "id": "Agm19ss4Z-Cf", "outputId": "7ed3179e-f46f-4efd-b2de-55bea11f98ce" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def mask_s2_clouds(image):\n", " \"\"\"Masks clouds in a Sentinel-2 image using the QA band.\n", @@ -284,7 +423,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -293,7 +432,42 @@ "id": "POj82YNEzyE_", "outputId": "d888cbe7-cdfe-4060-902a-b5638e4b16c1" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Google function that allows ee layers on folium\n", "def add_ee_layer(self, ee_image_object, vis_params, name):\n", @@ -325,7 +499,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -334,7 +508,49 @@ "id": "yx1OYij_Z95P", "outputId": "bbdf2a3f-628d-4723-a683-a2504895dfa8" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total number: 27\n" + ] + } + ], "source": [ "s2_dataset = ee.ImageCollection(\"COPERNICUS/S2_SR_HARMONIZED\").filterDate(start_date, end_date).filterBounds(poi).filter(ee.Filter.lt(\"CLOUDY_PIXEL_PERCENTAGE\", 20)).map(mask_s2_clouds)\n", "\n", @@ -344,17 +560,288 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, - "collapsed": true, "id": "2htR-4b92JLL", "outputId": "4d57d634-2a94-4475-d04f-cfd2fa2e5202" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "{'type': 'Image',\n", + " 'bands': [{'id': 'B1',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [1830, 1830],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [60, 0, 499980, 0, -60, 5600040]},\n", + " {'id': 'B2',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'B3',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'B4',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'B5',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'B6',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'B7',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'B8',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'B8A',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'B9',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [1830, 1830],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [60, 0, 499980, 0, -60, 5600040]},\n", + " {'id': 'B11',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'B12',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'AOT',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'WVP',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 429496.75},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'SCL',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'TCI_R',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'TCI_G',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'TCI_B',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'MSK_CLDPRB',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'MSK_SNWPRB',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'QA10',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [10980, 10980],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [10, 0, 499980, 0, -10, 5600040]},\n", + " {'id': 'QA20',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 429496.75},\n", + " 'dimensions': [5490, 5490],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [20, 0, 499980, 0, -20, 5600040]},\n", + " {'id': 'QA60',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 6.553500175476074},\n", + " 'dimensions': [1830, 1830],\n", + " 'crs': 'EPSG:32610',\n", + " 'crs_transform': [60, 0, 499980, 0, -60, 5600040]},\n", + " {'id': 'MSK_CLASSI_OPAQUE',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'crs': 'EPSG:4326',\n", + " 'crs_transform': [1, 0, 0, 0, 1, 0]},\n", + " {'id': 'MSK_CLASSI_CIRRUS',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'crs': 'EPSG:4326',\n", + " 'crs_transform': [1, 0, 0, 0, 1, 0]},\n", + " {'id': 'MSK_CLASSI_SNOW_ICE',\n", + " 'data_type': {'type': 'PixelType',\n", + " 'precision': 'float',\n", + " 'min': 0,\n", + " 'max': 0.02550000138580799},\n", + " 'crs': 'EPSG:4326',\n", + " 'crs_transform': [1, 0, 0, 0, 1, 0]}],\n", + " 'properties': {'system:footprint': {'type': 'LinearRing',\n", + " 'coordinates': [[-122.14795105746178, 49.56171188412999],\n", + " [-122.14790729300596, 49.561707970022596],\n", + " [-121.48241050636712, 49.55489352105015],\n", + " [-121.48226960340271, 49.55496128313161],\n", + " [-121.46675880041288, 50.048507122600746],\n", + " [-121.4508124104042, 50.54198671004312],\n", + " [-121.4509189803275, 50.542078108087395],\n", + " [-121.75711809372756, 50.54574935708296],\n", + " [-121.75716507148948, 50.54572402339127],\n", + " [-121.75723134979857, 50.54571899943225],\n", + " [-121.75900275964747, 50.54355299175503],\n", + " [-121.76260511189456, 50.53548757569572],\n", + " [-121.76802146843227, 50.522593146684116],\n", + " [-122.085461682415, 49.72846537606213],\n", + " [-122.092463120295, 49.71017094157173],\n", + " [-122.1483051727211, 49.56271071386906],\n", + " [-122.14831939269564, 49.5618909054019],\n", + " [-122.14828018587892, 49.561861416962806],\n", + " [-122.14827217485382, 49.56181930543502],\n", + " [-122.14795105746178, 49.56171188412999]]},\n", + " 'system:index': '20210621T185921_20210621T190713_T10UEA'}}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Getting a feel of the resulting data structure\n", "s2_dataset.first().getInfo()" @@ -371,7 +858,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -380,7 +867,175 @@ "id": "zGX67k_8eFUp", "outputId": "dd4843a8-7f2b-45f5-9901-68024f5c0455" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #5 / Date: 2021-06-26 11:59:19 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #9 / Date: 2021-06-29 12:09:19 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #11 / Date: 2021-07-01 11:59:21 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #12 / Date: 2021-07-01 11:59:21 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #15 / Date: 2021-07-06 11:59:19 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #18 / Date: 2021-07-09 12:09:19 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image #26 / Date: 2021-07-14 12:09:21 PST/PDT\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "s2_params = {\n", " \"bands\": [\"B4\", \"B3\", \"B2\"], # True color (RGB)\n", @@ -454,7 +1109,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -463,7 +1118,42 @@ "id": "NtWbuiUxwyAl", "outputId": "27d06ea6-819b-4f75-e6c6-2273afbdd13e" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Function to calculate NBR\n", "def calculate_nbr(image):\n", @@ -495,7 +1185,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -504,7 +1194,185 @@ "id": "opi5waGAw2Nm", "outputId": "3aa1f91b-4e87-4547-d561-0812dd9de714" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Apply NBR calculation\n", "s2_nbr = s2_dataset.map(calculate_nbr)\n", @@ -601,7 +1469,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -610,7 +1478,50 @@ "id": "zNMqPDWsYski", "outputId": "431d45de-0835-4dea-e01c-93215f9d1468" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of GOES-16 images: 4273\n", + "Number of GOES-17 images: 4245\n" + ] + } + ], "source": [ "# Gathering satellite data\n", "goes_16 = ee.ImageCollection(\"NOAA/GOES/16/FDCF\").filterDate(start_date, end_date).filterBounds(poi)\n", @@ -633,7 +1544,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -642,7 +1553,42 @@ "id": "I45V4_jnYszD", "outputId": "f542ed6f-4621-45f5-cb57-d2b27a1abb31" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def map_from_mask_codes_to_confidence_values(image):\n", " return image.clip(poi).remap(fire_mask_codes, confidence_values, default_confidence_value)" @@ -650,7 +1596,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -659,7 +1605,42 @@ "id": "fFCZ5ojkYsv7", "outputId": "f3e88198-a677-497a-92a5-ef81f8a344b1" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Applies scaling factors.\n", "def apply_scale_factors(image):\n", @@ -699,7 +1680,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -708,7 +1689,42 @@ "id": "mgp4IJ_K9txq", "outputId": "67192ca4-9524-4aef-8065-e56955d110c8" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Fire Detection Characterization (FDC) Algorithm example implementation\n", "\n", @@ -754,7 +1770,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -763,7 +1779,59 @@ "id": "GftMLsQZxYl5", "outputId": "5b096c7a-9da1-46d8-83a5-e342ade7e30e" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAHqCAYAAADMLNG2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtCklEQVR4nOzdeXhU1fkH8O/sk2QyWSAQkSUglE1RWcS4gYgsWtywLkVFa90KKFA36sKiFlwqLhVQS9GqiMVCXarigqDIUkTxhxvFBaVC2EL2zExm5v7+SBMZkjnvGzKQgXw/z5PngXnvvPfcdc6cOfccm2VZFoiIiIiIiIiIyMje1AUgIiIiIiIiIjoUsBGFiIiIiIiIiEiBjShERERERERERApsRCEiIiIiIiIiUmAjChERERERERGRAhtRiIiIiIiIiIgU2IhCRERERERERKTARhQiIiIiIiIiIgU2ohARERERERERKbARhZJCXl4errzyyiZZ95QpU2Cz2Zpk3fFs3rwZNpsNzzzzTFMXpUk888wzsNls+Pjjj5u6KAlRsz2bN29u6qIQEREdUpqyjggAAwcOxMCBA9XLHn300Qe2QI3A+khiLFu2DDabDcuWLWvqolATYSMKHVAbNmzAhRdeiA4dOsDr9eLII4/EmWeeiccff7ypi5YQs2bNSqqGjhdeeAE2mw0+n6+pixLX4sWLMXz4cLRs2RJutxtt2rTBRRddhKVLlzZ10YiIiA4LNV+W6/u7/fbba5fLy8urfd1utyMzMxPHHHMMrr32WqxZsyZu/kAggJkzZ6J///7IyMiA1+vFL37xC4wdOxb/+c9/1OV84403YLPZ0KZNG0Sj0UZt88GydetWTJkyBevXr2/qotRx5ZVXxj3ub7311kEty8CBA2POLb/fj65du+Lyyy/HO++806jc8+fPxyOPPJKYghokWz2fkoezqQtAh6+VK1fi9NNPR/v27XHNNdcgNzcXW7ZswerVq/Hoo49i3Lhxtctu3LgRdvuh16Y3a9YstGzZskl/IalRVlaGW2+9FWlpaU1dlHpZloXf/OY3eOaZZ3D88cdj4sSJyM3NxbZt27B48WKcccYZ+Oijj3DSSSc1dVGJiIgOC9OmTUPHjh1jXtu3p8Rxxx2H3//+9wCA0tJSfPXVV1i4cCGefvppTJgwAQ8//HDM8rt27cKwYcOwbt06/PKXv8Svf/1r+Hw+bNy4EQsWLMBTTz2FUCikKt8LL7yAvLw8bN68GUuXLsXgwYMbsbUHxttvvx3z/61bt2Lq1KnIy8vDcccd1zSFMvB4PPjLX/5S5/Vjjz0WZ555Ji655BJ4PJ6DUpa2bdti+vTpAIDy8nJ88803WLRoEZ5//nlcdNFFeP755+FyuRqcd/78+fj8888xfvz4BJc4Vrx6/mmnnYbKykq43e4Dun5KXmxEoQPmvvvuQ0ZGBtauXYvMzMyY2I4dO2L+f7Bu5oeze++9F+np6Tj99NPxz3/+s6mLU8ef/vQnPPPMMxg/fjwefvjhmEeo7rjjDjz33HNwOnlLIiIiSpThw4ejb9++xmWOPPJIXHbZZTGv3X///fj1r3+NmTNnokuXLrjhhhtqY1deeSU+/fRTvPzyyxg5cmTM++655x7ccccdqrKVl5fjlVdewfTp0zFv3jy88MILSdWIUlFRgdTU1EPui7LT6axzPPfmcDiM77csC4FAACkpKY0uS0ZGRp2yzJgxAzfeeCNmzZqFvLw83H///Y1ez8Fmt9vh9XqbuhjUhA69n/7pkPHtt9+iZ8+edRpQAKBVq1Yx/9/3edeabqgrVqzAjTfeiJycHGRmZuK6665DKBRCUVERrrjiCmRlZSErKwu33norLMuqfX+8ZxW1Y43MmzcPgwYNQqtWreDxeNCjRw/Mnj27Tpm/+OILLF++vLa74t7PzBYVFWH8+PFo164dPB4POnfujPvvv79Od9WioiJceeWVyMjIQGZmJkaPHo2ioiJj+fa1adMmzJw5Ew8//HDchgibzYYpU6bUeT3R+74+lZWVmD59Orp164aHHnqo3jFoLr/8cpxwwgkxrwWDQUycOBE5OTlIS0vD+eefj507d8Ys88orr+Dss89GmzZt4PF4cNRRR+Gee+5BJBKJWa7mOeUvv/wSp59+OlJTU3HkkUfigQceiFmu5tz5+9//jvvuuw9t27aF1+vFGWecgW+++aZOudesWYNhw4YhIyMDqampGDBgAD766CPj/iAiIkpmKSkpeO6555CdnY377ruv9nN+zZo1+Ne//oWrr766TgMKUP2j2EMPPaRax+LFi1FZWYlf/epXuOSSS7Bo0SIEAgHVe//v//4PAwYMQEpKCtq2bYt7770X8+bNq3e8j1mzZqFnz57weDxo06YNxowZU6eeVVNHWLduHU477TSkpqbiD3/4Q22spn63bNky9OvXDwBw1VVX1db/9q1XNqSuMXXqVBx55JFIT0/HhRdeiOLiYgSDQYwfPx6tWrWCz+fDVVddhWAwqNo3JvWNiZKXl4df/vKXWLJkCfr27YuUlBQ8+eSTAPR12YZwOBx47LHH0KNHD/z5z39GcXFxTPz5559Hnz59kJKSguzsbFxyySXYsmVLbXzgwIH417/+hR9++KF2/+fl5dXGg8EgJk+ejM6dO8Pj8aBdu3a49dZb691/zz//PE444QSkpqYiKysLp512Wm3PI1M9P973jIULF9aWvWXLlrjsssvw008/xSxz5ZVXwufz4aeffsJ5550Hn8+HnJwc3HzzzXXqrgsWLECfPn2Qnp4Ov9+PY445Bo8++mhDdzkdAPzZlw6YDh06YNWqVfj888/3e5CtcePGITc3F1OnTsXq1avx1FNPITMzEytXrkT79u3xxz/+EW+88QYefPBBHH300bjiiisSUvbZs2ejZ8+eOOecc+B0OvHaa6/hd7/7HaLRKMaMGQMAeOSRRzBu3Dj4fL7aX11at24NoPrXiwEDBuCnn37Cddddh/bt22PlypWYNGkStm3bVvscp2VZOPfcc7FixQpcf/316N69OxYvXozRo0c3qLzjx4/H6aefjrPOOgt///vfE7IPErnvV6xYgcLCQowfP178BWTfMmRlZWHy5MnYvHkzHnnkEYwdOxYvvfRS7TLPPPMMfD4fJk6cCJ/Ph6VLl+Luu+9GSUkJHnzwwZh8e/bswbBhw3DBBRfgoosuwssvv4zbbrsNxxxzDIYPHx6z7IwZM2C323HzzTejuLgYDzzwAEaNGhXzjPjSpUsxfPhw9OnTB5MnT4bdbq9tgPvwww/rNAoREREdTMXFxdi1a1fMay1btlS91+fz4fzzz8fcuXPx5ZdfomfPnnj11VcBVP/w0VgvvPACTj/9dOTm5uKSSy7B7bffjtdeew2/+tWvjO/76aefcPrpp8Nms2HSpElIS0vDX/7yl3p7NU+ZMgVTp07F4MGDccMNN2Djxo2YPXs21q5di48++ijmUZLdu3dj+PDhuOSSS3DZZZfV1un21r17d0ybNg133303rr32Wpx66qkAEPMockPqGtOnT0dKSgpuv/12fPPNN3j88cfhcrlgt9uxZ88eTJkyBatXr8YzzzyDjh074u6771bt232PucvlQkZGRtzlN27ciEsvvRTXXXcdrrnmGnTt2lVdl90fDocDl156Ke666y6sWLECZ599NoDqXux33XUXLrroIvz2t7/Fzp078fjjj+O0007Dp59+iszMTNxxxx0oLi7Gf//7X8ycORMAascCjEajOOecc7BixQpce+216N69OzZs2ICZM2fiP//5T0xP7alTp2LKlCk46aSTMG3aNLjdbqxZswZLly7FkCFDjPX8+jzzzDO46qqr0K9fP0yfPh3bt2/Ho48+io8++qi27DUikQiGDh2K/v3746GHHsK7776LP/3pTzjqqKNqe3298847uPTSS3HGGWfU9tb56quv8NFHH+Gmm27a731PCWIRHSBvv/225XA4LIfDYeXn51u33nqrtWTJEisUCtVZtkOHDtbo0aNr/z9v3jwLgDV06FArGo3Wvp6fn2/ZbDbr+uuvr30tHA5bbdu2tQYMGFD72vvvv28BsN5///2Y9Xz//fcWAGvevHm1r02ePNna91KoqKioU8ahQ4danTp1inmtZ8+eMeutcc8991hpaWnWf/7zn5jXb7/9dsvhcFg//vijZVmW9c9//tMCYD3wwAMx23PqqafWKWc8r7/+uuV0Oq0vvvjCsizLGj16tJWWllZnOQDW5MmT67ye6H1fn0cffdQCYC1evFjcnr3LMHjw4JgyTJgwwXI4HFZRUVHta/Udq+uuu85KTU21AoFA7WsDBgywAFh/+9vfal8LBoNWbm6uNXLkyNrXas6d7t27W8FgsM42bNiwwbIsy4pGo1aXLl3q7KeKigqrY8eO1plnnllne77//nvV9hMRETVGzedOfX9769Chg3X22WfHzTNz5kwLgPXKK69YlmVZ559/vgXA2rNnT6PKt337dsvpdFpPP/107WsnnXSSde6559ZZdt96yrhx4yybzWZ9+umnta/t3r3bys7Ojvms3bFjh+V2u60hQ4ZYkUikdtk///nPFgDrr3/9a+1rNXWEOXPm1Fn/gAEDYuo5a9eujVtHa2hd4+ijj46pF1966aWWzWazhg8fHpM3Pz/f6tChQ5317Wv06NH1HvOa8tdXH+nQoYMFwHrrrbdicmnrsvEMGDDA6tmzZ9z44sWLLQDWo48+almWZW3evNlyOBzWfffdF7Pchg0bLKfTGfP62WefXe/+eO655yy73W59+OGHMa/PmTPHAmB99NFHlmVZ1qZNmyy73W6df/75MeeGZVkxdbp49fx9v2eEQiGrVatW1tFHH21VVlbWLvf6669bAKy777679rWaYzRt2rSYnMcff7zVp0+f2v/fdNNNlt/vt8LhcJ31U9Pj4zx0wJx55plYtWoVzjnnHHz22Wd44IEHMHToUBx55JG1v2RIrr766phHP/r37w/LsnD11VfXvuZwONC3b1989913CSv73s+B1vyKM2DAAHz33Xd1uh3WZ+HChTj11FORlZWFXbt21f4NHjwYkUgEH3zwAYDqUemdTmfMs8YOhyNm0F2TUCiECRMm4Prrr0ePHj0auJVmidz3JSUlAID09PQGleHaa6+NKcOpp56KSCSCH374ofa1vY9VaWkpdu3ahVNPPRUVFRX4+uuvY/L5fL6YZ3PdbjdOOOGEest/1VVXxTwHXfNrU82y69evx6ZNm/DrX/8au3fvrj3G5eXlOOOMM/DBBx8cMjMNEBHR4emJJ57AO++8E/PXEDW/8JeWlgLY/8/zfS1YsAB2uz3mkaBLL70Ub775Jvbs2WN871tvvYX8/PyYQV2zs7MxatSomOXeffddhEIhjB8/PmbygmuuuQZ+vx//+te/Ypb3eDy46qqrGrFV1RpS17jiiitiesPU1LV+85vfxCzXv39/bNmyBeFwWFy/1+utc8z/9Kc/Gd/TsWNHDB06NOY1bV12f+17bi1atAjRaBQXXXRRzPpyc3PRpUsXvP/++2LOhQsXonv37ujWrVtMjkGDBgFAbY5//vOfiEajuPvuu+tMbFHfI+eSjz/+GDt27MDvfve7mLFSzj77bHTr1q3OuQYA119/fcz/Tz311JhzJDMzE+Xl5Y2eyYgODD7OQwdUv379sGjRIoRCIXz22WdYvHgxZs6ciQsvvBDr168Xv/i3b98+5v81XRHbtWtX53XpQ7chPvroI0yePBmrVq1CRUVFTKy4uNjYJRKoHqPk//7v/5CTk1NvvGZg3R9++AFHHHFEnSmJu3btqirnzJkzsWvXLkydOlW1fEMkct/7/X4AP39Q7m8ZsrKyACBmfV988QXuvPNOLF26tLZyV2PfBq+2bdvW+XDMysrC//3f/zV43Zs2bQIA46NXxcXFte8jIiI62E444QRxYFmTsrIyAD83muz9eV7fmHdaNWNR7N69G7t37wYAHH/88QiFQli4cCGuvfbauO/94YcfkJ+fX+f1zp0711kOqFuncrvd6NSpU8wPMkD1ALuJGES2MXUNU10rGo2iuLgYLVq0MK7f4XA0eIDefWdwAvR12f2177m1adMmWJaFLl261Lu8ZhafTZs24auvvhLL/O2338JutyfsB8h45xoAdOvWDStWrIh5zev11iljVlZWTP32d7/7Hf7+979j+PDhOPLIIzFkyBBcdNFFGDZsWELKTI3DRhQ6KNxuN/r164d+/frhF7/4Ba666iosXLgQkydPNr4v3vgZ9b1u7TW4abxW5H0HbKrPt99+izPOOAPdunXDww8/jHbt2sHtduONN97AzJkzVb0LotEozjzzTNx66631xn/xi1+IOSTFxcW499578bvf/Q4lJSW1DQhlZWWwLAubN29GampqnUF892XFGRR2f/d9fbp16wYA2LBhA8477zzjspoy1KyvqKgIAwYMgN/vx7Rp03DUUUfB6/Xik08+wW233VbnWEn5GrJsTe4HH3ww7hSH+zaOERERHUo+//xzAD83UOz9eV7TQ7OhNm3ahLVr1wJAvV+YX3jhBWMjyoGSiNlogMTUNRqSIxHq2/YDXZfd99yKRqOw2Wx48803691+TZ0qGo3imGOOqTMtd419G6eaimZ8wFatWmH9+vVYsmQJ3nzzTbz55puYN28errjiCjz77LMHoZRkwkYUOuhqfhHZtm3bAVtHza//+46+vu+vDvV57bXXEAwG8eqrr8b8QlBfN8J4jTVHHXUUysrKxF8COnTogPfeew9lZWUxHw4bN24Uy7lnzx6UlZXhgQceqDPqO1D9q8K5554bM4hWfT1BGvtLgsYpp5yCrKwsvPjii/jDH/7QoMFlTZYtW4bdu3dj0aJFOO2002pf//777xOS3+Soo44CUP2rXDJNyUhERJQIZWVlWLx4Mdq1a4fu3bsDAEaMGIHp06fj+eef3+9GlBdeeAEulwvPPfdcnfrAihUr8Nhjj+HHH3+s00ujRocOHeqdLW/f1zp06ACguk7VqVOn2tdDoRC+//77/f7s3p/HPQ5F2rrs/ohEIpg/fz5SU1Nxyimn1K7Psix07NhRbKAx1b8/++wznHHGGcbjdNRRRyEajeLLL7+M+0OYaT372vtcq3l0qMbGjRtr4w3ldrsxYsQIjBgxAtFoFL/73e/w5JNP4q677qrT84oOLo6JQgfM+++/X2+L+RtvvAFA/8jK/ujQoQMcDked5zVnzZolvrfmA33vshcXF2PevHl1lk1LS6t3OuKLLroIq1atwpIlS+rEioqKap9pPeussxAOh2OmT45EInj88cfFcrZq1QqLFy+u83f66afD6/Vi8eLFmDRpUsx79p2K7c0330QgEDhgv2zUSE1NxW233YavvvoKt912W73re/755/Hvf/+7QXnrO1ahUEh1nBurT58+OOqoo/DQQw/Vdknd275TMRMRER0qKisrcfnll6OwsBB33HFH7ZfJ/Px8DBs2DH/5y19ifqSpEQqFcPPNNxtzv/DCCzj11FNx8cUX48ILL4z5u+WWWwAAL774Ytz3Dx06FKtWrcL69etrXyssLMQLL7wQs9zgwYPhdrvx2GOPxdQT5s6di+Li4toZYRoqLS0NQN0f6g432rpsQ0UiEdx444346quvcOONN9Y+InbBBRfA4XBg6tSpdeqJlmXVPvYFVB+D+sYovOiii/DTTz/h6aefrhOrrKxEeXk5AOC8886D3W7HtGnT6vRa3nvd8er5++rbty9atWqFOXPmxEyl/Oabb+Krr77ar3Nt7+0FALvdjl69egFAQqa7psZhTxQ6YMaNG4eKigqcf/756NatG0KhEFauXImXXnoJeXl5CRm8K56MjAz86le/wuOPPw6bzYajjjoKr7/+uqrXxZAhQ2pbfq+77jqUlZXh6aefRqtWrer0nunTpw9mz56Ne++9F507d0arVq0waNAg3HLLLXj11Vfxy1/+EldeeSX69OmD8vJybNiwAS+//DI2b96Mli1bYsSIETj55JNx++23Y/PmzejRowcWLVqkGrw2NTW13kdj/vnPf+Lf//53vbGvvvoKZ511Fs455xxs3boVjz76KDIyMrBy5Uq8+OKLuPTSS8X17q9bbrkFX3zxBf70pz/h/fffx4UXXojc3FwUFBTUlnnlypUNynnSSSchKysLo0ePxo033gibzYbnnnvugDcKAdUfZn/5y18wfPhw9OzZE1dddRWOPPJI/PTTT3j//ffh9/vx2muvHfByEBERNcZPP/2E559/HkB175Mvv/wSCxcuREFBAX7/+9/juuuui1n+b3/7G4YMGYILLrgAI0aMwBlnnIG0tDRs2rQJCxYswLZt2/DQQw/Vu641a9bgm2++wdixY+uNH3nkkejduzdeeOEF3HbbbfUuc+utt+L555/HmWeeiXHjxtVOcdy+fXsUFhbWNvjk5ORg0qRJmDp1KoYNG4ZzzjkHGzduxKxZs9CvX7+YwV8b4qijjkJmZibmzJmD9PR0pKWloX///vWOK3Io09ZlTYqLi2vPrYqKCnzzzTdYtGgRvv32W1xyySW45557apc96qijcO+992LSpEnYvHkzzjvvPKSnp+P777/H4sWLce2119Y20PXp0wcvvfQSJk6ciH79+sHn82HEiBG4/PLL8fe//x3XX3893n//fZx88smIRCL4+uuv8fe//x1LlixB37590blzZ9xxxx245557cOqpp+KCCy6Ax+PB2rVr0aZNG0yfPr12PfXV8/flcrlw//3346qrrsKAAQNw6aWX1k5xnJeXhwkTJjR4///2t79FYWEhBg0ahLZt2+KHH37A448/juOOO662Zxg1oYM3ERA1N2+++ab1m9/8xurWrZvl8/kst9ttde7c2Ro3bpy1ffv2mGXjTbO7du3amOVqpiPeuXNnzOv1Teu7c+dOa+TIkVZqaqqVlZVlXXfdddbnn3+umuL41VdftXr16mV5vV4rLy/Puv/++62//vWvdaaFKygosM4++2wrPT09Zgo5y7Ks0tJSa9KkSVbnzp0tt9tttWzZ0jrppJOshx56KGY6u927d1uXX3655ff7rYyMDOvyyy+3Pv30U/UUx/syTXE8ceJE61e/+pWVkpJiHXHEEdaf//xna86cOVZqaqr129/+1rKsxOx7k5dfftkaMmSIlZ2dbTmdTuuII46wLr74YmvZsmW1y8QrQ31TV3/00UfWiSeeaKWkpFht2rSpnUp73+XiTbU3evTomGnyataxcOHCmOXqmx7bsizr008/tS644AKrRYsWlsfjsTp06GBddNFF1nvvvVdnezjFMRERHQzxPkf3VTO9LQDLZrNZfr/f6tmzp3XNNddYa9asifu+iooK66GHHrL69etXW8fr0qWLNW7cOOubb76J+75x48ZZAKxvv/027jJTpkyxAFifffZZbRn3riNaVvVn76mnnmp5PB6rbdu21vTp063HHnvMAmAVFBTELPvnP//Z6tatm+VyuazWrVtbN9xwQ50pmk3T8e47xbFlWdYrr7xi9ejRw3I6nTF1g8bWNRpaB6tvPaY6WbwpjuNNc62ty9anZrrnmj+fz2d16dLFuuyyy6y333477vv+8Y9/WKeccoqVlpZmpaWlWd26dbPGjBljbdy4sXaZsrIy69e//rWVmZlpAYjZt6FQyLr//vutnj17Wh6Px8rKyrL69OljTZ061SouLo5Z11//+lfr+OOPr11uwIAB1jvvvFMbj1fPr68+almW9dJLL9Xmy87OtkaNGmX997//jVkm3jHa9/tITX25VatWltvtttq3b29dd9111rZt2+LuOzp4bJZ1EH6yJaImZ7PZMHnyZEyZMqWpi0JERESUUOPHj8eTTz6JsrKyhI29RkRUH46JQkREREREh4zKysqY/+/evRvPPfccTjnlFDagENEBxzFRiIiIiIjokJGfn4+BAweie/fu2L59O+bOnYuSkhLcddddTV00ImoG2IhCRERERESHjLPOOgsvv/wynnrqKdhsNvTu3Rtz587Faaed1tRFI6JmgGOiEBEREREREREpcEwUIiIiIiIiIiIFNqIQERERERERESkk3Zgo0WgUW7duRXp6Omw2W1MXh4iICABgWRZKS0vRpk0b2O0H5zeIQCCAUCiU0JxutxterzehOYkagnU9IiJKRtq63gFrRHniiSfw4IMPoqCgAMceeywef/xxnHDCCeL7tm7dinbt2h2oYhERETXKli1b0LZt2wO+nkAggI4dO6KgoCCheXNzc/H999+zIYUaZX/reQDrekRElNykut4BaUR56aWXMHHiRMyZMwf9+/fHI488gqFDh2Ljxo1o1aqV8b3p6ekAgGkA4lXvFirK0F+IRxQ5NgrxIYoc/xXiXRQ5/i7Ej1DkOFWIlyhySNsSVORoKcS3KXL4hHhUkeOh4mJjfEFGhpijQoj/qCjHFiGuq46avSbEj1XkkI7bt4ocXwvxMxQ5PhTifRU5tgtxaVsBoEqI71DkuFCIv6XI0U2IOxQ5ioR4mSLHp0K8lyKHtC3SfRAALhXi5qu+2i5DLAhgFn7+nDrQQqEQCgoKsGXLFvj9/oTkLCkpQbt27RAKhdiIQvutMfU84OdraPq0qXHPw6KiPWKe1LQ0YQl57oRgIGCMp6fL116oyvyp4PW4xRx79hQZ4y6XS8zh85n3Rzgi15DCwrZYlpzD4TR/vagKSZ+igMNh/gTTzItxww3XG+PPPvs3MUc0at5e6dgDQJXQmzA1VTqPZSUlRca4NyVVzOEUjlsoKNf0A8L15FN8fpaXmWseKanytkTCYWNcOkcBAMI5Fg7Lxz4zM9MYLykpFXN4PObPak1nvnDE/M1XOs8BoLLC/M0nJTVFzOH1eIxx6T4IAFlZWcZ4RHOfi8Q/PwKBAO6edq9Y1zsgjSgPP/wwrrnmGlx11VUAgDlz5uBf//oX/vrXv+L22283vremW6cXQLxDoSm0+RDpGlGk9Wiqn1I55NNNLof8sSqvR9NZXNoWzTRPUg65mpGYYyt9IdEcF2l7pXIC8rHTlEMinT+ackrnuua4JeJ6SsS2SGXV5JAe5NBck1IVQLNPpX2maUSRcshVhMQcF+lc19z3pRyahl5NWQ/24wd+fyr8frnSqGOuWBJpNKaeB+xV1/N6kZJS/10oEJA/FVLEhkC5ZiJdzfHKtzfpC7/XK99ZKivNXz41jSgpKea7YDgs15CqxMYL+QuK9GXcYZc/nRLRiCLW9YT9BchfLqVyAoBDePxTc45JQiFzDvlakY+bPQGffZpySA0gmhxhIYe0rYB8joXD8rGXzrGQokFR+sFD1YgiXPuaRhRLWEZzXKRtke6DgLxPI0KDESCfH4Bc10v4Q92hUAjr1q3D4MGDf16J3Y7Bgwdj1apViV4dERERER0krOcREVFzl/CeKLt27UIkEkHr1q1jXm/dujW+/rpuh/5gMIjgXt3DSko0D5YQERE1F2EkrgcJe6JQ4zS0ngewrkdERIeXJp/iePr06cjIyKj940BjREREewsn+I/o4GJdj4iIDicJb0Rp2bIlHA4Htm+PHb5x+/btyM3NrbP8pEmTUFxcXPu3ZYs01CYRERERNYWG1vMA1vWIiOjwkvBGFLfbjT59+uC9996rfS0ajeK9995Dfn5+neU9Hg/8fn/MHxEREdVgTxRKHg2t5wGs6xER0eHlgMzOM3HiRIwePRp9+/bFCSecgEceeQTl5eW1o7hrfI/4syRcpni/NNaxZtYKaQrbAkWOxUL8akWObCE+PAHl6KHIIU3J+qQix1YhLm0rAGQK8VcUOa4TRlxuo8jxvhA/XpFDml54gyKHNE22NHGeZvYV6bgdqcghXU+fKXLUXz3/mWZ6a6kTubStACBNSFeuyPGCENdMottCiEvTSmtyrFHkkOaN0cyKI43p3lmRY4UQ19yzTftdc60QNQeJqOcBQKgqCIej/s9jaRrLatIMLfK0FdKsFFVVcsNjcXGRMe50SndawOk010w1DU9SOTTTmktTsu7ebZoIvlplZaUx7nDIXz+kWW+Ki+VJ6x999FFj3OmUZzwqE6bbTVVM6yrNJhIImPcXALjd5hme7MIMQJrZjKqE6Zo1M0RJ15NmW9OEqcs12+J2m8uqmRVH2hbNjDaFheap2qXjBsjXQlAx9bSUo0KYvhiQyxqNKmZDs5lzeIQpkAH5mtTMvONwxC9HVUhTaz1AjSgXX3wxdu7cibvvvhsFBQU47rjj8NZbb9UZhIyIiIgkESSuB4lmEngiM9bziIioOTsgjSgAMHbsWIwdO/ZApSciImomODsPJR/W84iIqLlq8tl5iIiIiIiIiIgOBQesJwoRERElAnuiEBERESUL9kQhIiIiIiIiIlJgTxQiIqKkxp4oRERERMmCjShERERJLYLEzarD2XmIiIiIGoOP8xARERERERERKSRtT5TdAFxxYj8o3h/vvTU6KXJIv9dlKnIMFeLbFTk2C/GPFTl6C/EcRY6VQjxTkeM4If6TIsdmIf5LRY4NQnynIoe0zzIVOaRzLKDIIe0zaR2pinUcJ8S/VuSQ9vnFihyfCPFTFDkKhbhXkSNDiOcqcqQJ8a6KHA8kIId0L9RcT98J8eWKHJp7UGPL0V+Rw3QuVzWgLIkVQeIew2FPFEoekXAY4XD953YoFBLfb7PZjHG32yPmsCxz3OFwiDnS0/3GeFWVfP1K21tRUSHmSEkxf6I7nXK1v7y83Bi32+X94fWmGOPhsHw3lfZHRoZ5nwNAZaW5FhXv3NubtM80+wMwn2TRqHASQt5n0nlst8u/m6ekmI9bICDXSgOBSmM8MzNLzFFZaT7X09J8Yo5IxHxsNfvD6TQfW6dT+rYpr8frle9R27fvMMY9HjmHx+M2xv1++XqSrsmysjIxh+Ye1NhypKbK32yCwWDcmOZ6BNgThYiIiIiIiIhIJWl7ohARERHAgWWJiIiIkgcbUYiIiJIaG1GIiIiIkgUf5yEiIiIiIiIiUmBPFCIioqTGnihEREREyYI9UYiIiIiIiIiIFNgThYiIKKlximMiIiKiZJG0jSilAOLNvt1J8f48Ib5BkaO3EJdnS5eX6a/IIVV5yxU5jhXi5tnnqxUI8UJFjhwh3kKR430hrjkuxUJ8iCLHTiG+SZFjgBD3KnLkCvHjhPhyxTq+FuKfKHJI56B0fgHA4ASUo50QN88+X+0UIb5GkWOrEJ+vyPFLIf53RY42QvwFRQ7puj5JkUM6x6TzBwC+EeKa5oMKQ6zpHoTh4zx0eIpEoohEovXGPB63+H6327xMZaVcI0hJSTHGLcsSc0Sj9W9DDZ/PJ+aQ1iOtAwBcrng1Z906ACAcNtcIIxH5TiqV1eGQv36UlpYZ45Yl7w+prH5/upgjHDbfM0OhoJhDOv4pKfKDAS6XeZ95vebzuKzMvD8BwGazGeOVlZViDul6qqqSv3H4fObjoilHIq6F1NQ0Y7y83FRjqCZt7549e8QcGRl+IUeRmMPtNu+PwkK5HE6n+RxMSzPvLwAIBs33ZOn8qc4hX3MS0z1Kc68F+DgPEREREREREZFK0vZEISIiIoA9UYiIiIiSBxtRiIiIkhobUYiIiIiSBR/nISIiIiIiIiJSYE8UIiKipMaeKERERETJgj1RiIiIiIiIiIgU2BOFiIgoqUWQuB4kmomeiYiIiCgeNqIQERElNT7OQ0RERJQskrYR5WIAqXFiGxXvf0mIj1bkKBLi6YocASG+UpGjgxCvUOTYIMSrFDmiQvxCRY41QjykyDFciOcpcrwrxHcqchQK8aGKHN8IcY8ix2YhnifEv1SsI1uI5ypySNeLV5FDuval4woA1wrxPEWOz4R4J0UO6d4wIAE5NPu0VIhL15smh2Z/SM+Waq7Ji4T4i4ocvQ2xIIBlihxEpJOZmYmUlJR6Y8FgUHz/nj1Fxnh2tvTpBUQi5t5Zdrv85LtlWcZ4RUW5mMPtdhvj0ahUCwMCgUohh7mcGpmZmeIy5eXS9srl8Pv9xri0vwCgtNT86RQOy43K4bD5/EhPN5cTkM9lu90m5giFzDVkaX8Eg1KNAXA6zV8LXS75a6Pd7hDi8rZK+0s6rgDQsmULY1xz/lRUmK8nj0fOYVnm69bn84k5pGtfs08jEXMO6XqrLof5WtDsD5tQVM01Kd2Dior2iDlSUuK1MuglbSMKERERAeyJQkRERJQ8OLAsEREREREREZECe6IQERElNfZEISIiIkoWbEQhIiJKamxEISIiIkoWfJyHiIiIiIiIiEiBPVGIiIiSWgSJ60FiHl2fiIiIiMzYE4WIiIiIiIiISCFpe6KsAeCJE/u74v0DhPjXihx5QvxLRY7zhfgnihxeIZ6myLFCiOcrciwX4prfNzsIcfMs5tWKhPhuRY7jhXg7RQ5pf7ysyHGqEA8ocvQX4k8J8SmKdbwoxPMUOXKEeJEih3T+FChyVAnxCkWODUK8VJFDmqG+RJFjjRCX9jkA5DZyHQCwSYhr7pW/FOI7FTm2CvFjFDlM91ub4v0HRgSJ60HCniiUPCoqK2BZ9X/y79lTJL7f5/MZ48Gg/CnqdruN8UBAzpGRkWGMV1ZWijlsNvPvmk6n/LtnUVGxMZ6WJtcYy8rKhCUsMYe0Ty05BSIR870qEpF756WmphjjLpe5nIC8P4qKisQc0n63FDskLc1ca9i1y1z7zc2VPu3la046rgDgdJq/WkrHFQBSUszrCYelmhwQjZr3aTQqf+OQrn1NDrvdfN1Go/L+KC8310ylfQ4ALpd5GWkdABAMBo1xzb3S7zffK8Nh+bqWjr/Xa77uAcBmM9ToTLG9sCcKERFRUgsn+E9v9uzZ6NWrF/x+P/x+P/Lz8/Hmm28CAAoLCzFu3Dh07doVKSkpaN++PW688UYUF8d+kfvxxx9x9tlnIzU1Fa1atcItt9yiqigRERERJaOk7YlCRERETatt27aYMWMGunTpAsuy8Oyzz+Lcc8/Fp59+CsuysHXrVjz00EPo0aMHfvjhB1x//fXYunUrXn65ui9eJBLB2WefjdzcXKxcuRLbtm3DFVdcAZfLhT/+8Y9NvHVEREREDcdGFCIioqTWdFMcjxgxIub/9913H2bPno3Vq1fj6quvxj/+8Y/a2FFHHYX77rsPl112GcLhMJxOJ95++218+eWXePfdd9G6dWscd9xxuOeee3DbbbdhypQpqu7hRERERMmEj/MQERGRKBKJYMGCBSgvL0d+fv0jaRUXF8Pv99c+o71q1Socc8wxaN26de0yQ4cORUlJCb744ouDUm4iIiKiRGJPFCIioqSW+CmOS0pihy72eDzweOofzn3Dhg3Iz89HIBCAz+fD4sWL0aNHjzrL7dq1C/fccw+uvfba2tcKCgpiGlAA1P6/oEAzFDQRERFRcmFPFCIioqSW+IFl27Vrh4yMjNq/6dOnx117165dsX79eqxZswY33HADRo8ejS+/jJ1zqaSkBGeffTZ69OiBKVOmJGzLiYiIiJINe6IQERE1M1u2bIHf76/9f7xeKED1tJadO3cGAPTp0wdr167Fo48+iieffBIAUFpaimHDhiE9PR2LFy+Gy+WqfW9ubi7+/e9/x+Tbvn17bYyIiIjoUMOeKEREREkt8T1RaqYsrvkzNaLsKxqNIhgMAqjugTJkyBC43W68+uqr8Hq9Mcvm5+djw4YN2LFjR+1r77zzDvx+f72PBBERERElu6TtiXIxAF+c2BrF+7sIcc2T2JuFuFeIA8A8IV6qyDFUiJcrcrQW4pmKHBOEuLStANBbiL+ryNE2ATmkqrvmuHQT4po5J1xCfLMix2IhPkSIL1GsI12IS9sBAOuFeJUix1ohnqfIIa2nvyJHB8Uyku+E+E5FDukcjChyFAlx6V6qWU8LRY6PhXiOIod0bKXzGDDfKwOK9x9uJk2ahOHDh6N9+/YoLS3F/PnzsWzZMixZsqS2AaWiogLPP/88SkpKasdaycnJgcPhwJAhQ9CjRw9cfvnleOCBB1BQUIA777wTY8aMaVDDDR2esjKzkJKSUm+svLxCfL90DoXD8idLKBQyxu12+ffGwsJCYzwale/G6el+YzwajYo5XC5ztd7hcIg5cnLMd1tpWwEgJSXVGC8tlWtZbre5ZqHJ4fGYa+qRiLxPpXPMZrOJOex28zKBgPkcBICiomJj3O83f8Jp9pd0rmu2tbKy0hi3LEvMUVFhvvZ1s7qZ15OWliZmSMTscdL9JRyWxztLxGdlOGy+B+nWYd6nDofcrCAd25pB6Y2lsMznoeaevXeP2X1J+6pG0jaiEBEREdCUUxzv2LEDV1xxBbZt24aMjAz06tULS5YswZlnnolly5ZhzZrqnzVqHvep8f333yMvLw8OhwOvv/46brjhBuTn5yMtLQ2jR4/GtGnTErQ9RERERAcXG1GIiIiSWtM1osydOzdubODAgapfFTt06IA33nijQeslIiIiSlYcE4WIiIiIiIiISIE9UYiIiJJaBInriaJ71peIiIiI6seeKERERERERERECuyJQkRElNTCAORZNfS5iIiIiGh/sRGFiIgoqbERhYiIiChZJG0jyhYA8WaZP07x/p1CPFuRQ6qyVilyHCPE489SrV/mRUWOG4T4VkWOQiGu2ae3CPFzFDkkXRTLDBbiUxKQI6DIsVyIt1PkyBTi5hnZgaMU6/hJiGtGWZDOn/MVOb4T4p8ockj79F1FjpBiGYlbiJcocpwoxDXllK6XNYocA4T43xU5ugrxzYoc/YR4uSLHdkMsqHg/EemFQiE4HPXXtlJSUsT3h8PmRkGHQ67m2mzmeDQqz0Dl9XqNcbtdWAkAm1CQPXv2iDlatmxpjFdVyTVXaZ86nXKD7tat5lpDRkaGmEPi8XjEZfz+dGN827YCMUd6ujlHNBoVc5SVlRnjLpdUIwAcDvMIDFI53G55f0nnh2Y2tkjEfP5kZGSKOYJB86dtZWWlmMPlMn97Ki0tFXNotlciXdfRqFyDTk1NM8Y15ZSul4oKuYaUluYzxouKisQcXq+5HKGQXHNNTY3XQlBNc02azvWqsOYbfhI3ohARERHAnihEREREyYMDyxIRERERERERKbAnChERUVLjFMdEREREyYKNKEREREktjMR1HOXjPERERESNwcd5iIiIiIiIiIgU2BOFiIgoqbEnChEREVGyYE8UIiIiIiIiIiIF9kQhIiJKauyJQkRERJQskrYR5TUArjixNMX7OwnxeLn3FhDiPyhypArxTxQ5hgrxOxQ5pH2Wo8jxrhDfqchxvhD/TpEjT4i7FTlWCXFpnwNAuhCvUuSQ7FYs86EQv0GIv6pYx2VCfIsixylC/H1FjsFCvEiRo50QL1XkkM717YocFwnxzxQ5XhLimYocLYT4AEWOAiF+vCKHdI/qosgh3W8152muISZ9Jhw4ESRuVh3OzkPJo6SkGKFQsN6Y3S43HLrdHmPcZrOJOSwraoyHwyExh1TW8vJKMUd6urlWkZvbutHlcDrlan9pqflTMByWG2IzMjKN8XjHfG9ut1Sbk49tWVm5MS7tcwBwOBzGuGVZYg5JJCLv0/Jy8ydQy5YtjfHi4mJxHVlZ2cZ4KCRfC2lpPmNcOr8AwO83H5doVP4cc7nM508kIueQznXNtZCZmWmMBwLyvaGoaI8xLp2jmmV8PvNxA4CqKvP2pqamiDmke5R0T9fkqKqSv4G5XPHvhZpzA+DjPEREREREREREKknbE4WIiIiA6t4jiXoMhz1RiIiIiBqDPVGIiIiIiIiIiBTYE4WIiCiphaF5/l+fi4iIiIj2FxtRiIiIkhobUYiIiIiSBR/nISIiIiIiIiJSYE8UIiKipMaeKERERETJImkbUewA4s1oPUDx/jVCXJ6lHJBmj5dnoQakWdnNM7JX+1qI/6DIIe2zNooc0pwOmYoc0vaeosgh7dNNihySVMUyO4X4SQkox/oElEM61zXX03Ih3lmRIyDENfv8dSHeWpGjQoi7FDlyhLjm/vJdAsrRSYhr7i8FQlw6bhrfKJb5pRD/TJGjRIhrznXT/UVzzyeihrAhXgOhz+cT311ebr6jRyLybFQOR7zaZrVo1BJzRKPm9Tid5nUAQDAYNMZLS0NiDmmfuVyaTxbz9kr7C5C31+eTP53CYfM+DYfN+0vDbpc75IfD5obntLS0RpejsrKy0eWIRKLGeFqafD2VlZUZ4x6PR8xhWeZyaPZ5cbH509zlkr++RqNSOeQfJpxO83qkdQBAKCRdt3I53G7zftfcX6Tzx7Lk+5xEuocBgN+fYYxrrgXpfqv57DDdX6LKfZG0jShEREQEsCcKERERUfJgIwoREVFSiyBxjSjyL/NEREREFB8HliUiIiIiIiIiUmBPFCIioqSWyEdw+DgPERERUWOwEYWIiCipsRGFiIiIKFnwcR4iIiIiIiIiIgX2RCEiIkpq7IlCRERElCzYE4WIiIiIiIiISKHBPVE++OADPPjgg1i3bh22bduGxYsX47zzzquNW5aFyZMn4+mnn0ZRURFOPvlkzJ49G126dGnQeloD8MSJrVC8PyDEBytyLBfipyhy7BTiRYocW4V4a0WOTkJcs08HCfF2ihxfC/FgAnI4FDmyhXg/RY5nhXhXRY7tQjxTkWOAEI8KcelaAYAcIS5tByCfH4sVOaTrtocih3SuexU5pNbnKkWOT4R4G0WOk4S4dP8BAJcQL1XkkPRWLLNFiHdW5MgU4umKHKb7reZaOTASOS0xpzgms4NVzwMAh9MJp7P+qmhZWbn4/mjU/Ann98tXfVlZmTHu8/nEHOGwuYdXJCJfd1VV5k8Ol0uusns8bmNcs099PvM+c7ulTw0gEDDX5qJRS8wRDJpz2BSzvjsc5n2Wmpoq5igsLDTGPZ5431Z+Jp0fDodcc5XOQ8sy71MpDiDutVhDOkcBwO02n4MVFcVijvR08zno9co1tfJy83Vts8n9CKRzTLNPKysrjHGXS76e0tLSjHHp/AIAm7AxmnuUJCVFvp6qqkLGuOZ6kq4Xu10+ttFo/HNZ+lypXY9qqb2Ul5fj2GOPxRNPPFFv/IEHHsBjjz2GOXPmYM2aNUhLS8PQoUMRCDRd9ZOIiOjQFU7wH1F8rOcRERGZNbgnyvDhwzF8+PB6Y5Zl4ZFHHsGdd96Jc889FwDwt7/9Da1bt8Y///lPXHLJJY0rLREREREdMKznERERmSV0TJTvv/8eBQUFGDz45073GRkZ6N+/P1atWlXve4LBIEpKSmL+iIiIqAZ7olBy2J96HsC6HhERHV4S2ohSUFAAAGjdOnaUjtatW9fG9jV9+nRkZGTU/rVrpxlZg4iIiIgOpv2p5wGs6xER0eGlyWfnmTRpEoqLi2v/tmyRhhckIiJqTtgThQ5trOsREdHhpMFjopjk5uYCALZv344jjjii9vXt27fjuOOOq/c9Ho9HNRIvERFR8xQGIM8CoMPZeWj/7U89D2Bdj4iIDi8J7YnSsWNH5Obm4r333qt9raSkBGvWrEF+fn4iV0VEREREBxHreURERPvRE6WsrAzffPNN7f+///57rF+/HtnZ2Wjfvj3Gjx+Pe++9F126dEHHjh1x1113oU2bNjjvvPMatJ4sAPFmAZdnoQZ+EOLlihzmWcqBTxQ5VgrxoxQ5pO09VZFjiRCXZ34HNiiWkUjriT8s3c+kGdU1v7PmJCDHkUJcOvYAcEwj4wDwkhA/RYh/rVjHcYplJF8K8XMVOaQO4PMUOcyzy+vK8agQv0CRo1SIuxU5pHtQvHvo3qT7y1mKHDuFuOa4HCvE1yhy9Bfimnv2SYZYheL9B0YEieuJEk1QHjpcHax6HgA4nU44nfVXRaNR+VwNhULGuCaH3W7+VKiokK/8igpzrdLtlnvh2O3m3zXT0nxijpIS8yeLZcn3kcrKSnEZibSe8nK5Fm6z2aS1iDninVu1GRT7w+Uy1zqlYw8AXm+KMZ6SIn9a79lTZIz7fGnGeHm5fB6npJjLqSFNdZ6RkSHmqKoyX9eFhbsVJTGfP5py7Nxprt1ocsj3IOk8ByorzcfOZpP7REj3F7/fL+YIh82PA2uOi3SOaa6n1FTzua65Z5uuF8vS1ZMa3BPl448/xvHHH4/jjz8eADBx4kQcf/zxuPvuuwEAt956K8aNG4drr70W/fr1Q1lZGd566y14vZrqPBERESWL2bNno1evXvD7/fD7/cjPz8ebb75ZG3/qqacwcOBA+P1+2Gw2FBUV1cmRl5cHm80W8zdjxoyDuBXUEKznERERmTW4J8rAgQONLbc2mw3Tpk3DtGnTGlUwIiIiApqyJ0rbtm0xY8YMdOnSBZZl4dlnn8W5556LTz/9FD179kRFRQWGDRuGYcOGYdKkSXHzTJs2Dddcc03t/9PTpb6e1FRYzyMiIjJL6MCyRERElGhhJG4Is4Y1oowYMSLm//fddx9mz56N1atXo2fPnhg/fjwAYNmyZcY86enptYOSEhERER3KmnyKYyIiIkp+kUgECxYsQHl5eYMHEZ0xYwZatGiB448/Hg8++KD4bDURERFRsmJPFCIioqSW+J4oJSUlMa+apqDdsGED8vPzEQgE4PP5sHjxYvTo0UO9xhtvvBG9e/dGdnY2Vq5ciUmTJmHbtm14+OGH938ziIiIiJoIG1GIiIiamXbt2sX8f/LkyZgyZUq9y3bt2hXr169HcXExXn75ZYwePRrLly9XN6RMnDix9t+9evWC2+3Gddddh+nTp8dtuCEiIiJKVmxEISIiSmqJ74myZcuWmCkNTY0ZbrcbnTt3BgD06dMHa9euxaOPPoonn3xyv0rQv39/hMNhbN68GV27dt2vHERERERNhY0oRERESS2Chg4IG1/1rCs1Uxbvj2g0imAwuN8lWL9+Pex2O1q1arXfOYiIiIiaStI2oryD+IU7XfF+afJETfUvU4hvUuS4UIi/r8gh/U4XUOSQ9keOIodLiL+hyOEV4kMUOb4U4g5FjiIh/hdFjuOEeESRQzouyxU5tgjx44T4p4p1SL+Bb1XkyBDimvM4VYi3UeToJsR/UuSYKsS/U+SQyqq5v2QL8TRFDum6flaR4ywh3luR41sh3l+RI0+IZypyUKxJkyZh+PDhaN++PUpLSzF//nwsW7YMS5YsAQAUFBSgoKAA33zzDYDq8VPS09PRvn17ZGdnY9WqVVizZg1OP/10pKenY9WqVZgwYQIuu+wyZGVlNeWmURIoLSlBVShUb8zn84nvdzjMn/jRqDw1uJRDMwhyZmamMV5aWibm8HrNj7ZZltyQarebP62dTrnab7fbjPF9x1Panxx+vzzFeSAg1QrM6wCAcNhcEyss3C3m8HpThCXkc0w6Lprzo6qq/uukRkqKuSZfUVEprkMSDleJy0jXUyLOY5dLqrkAHo/5G0dVlbwtRxxhnlEuGDQfEwBwu81lDQTkb6QOh/m6lfYXUD01vUlhYaGYQ/rhJSVFqqUDoZB5e1NT5Zqr2+02xqVzMFGSthGFiIiIgOrHeeQvDDpyhX9vO3bswBVXXIFt27YhIyMDvXr1wpIlS3DmmWcCAObMmYOpU39uVjzttNMAAPPmzcOVV14Jj8eDBQsWYMqUKQgGg+jYsSMmTJgQM04KERER0aGEjShERERUr7lz5xrjU6ZMiTsgLQD07t0bq1evTnCpiIiIiJoOG1GIiIiSWtP1RCEiIiKiWGxEISIiSmpsRCEiIiJKFomaM5GIiIiIiIiI6LDGnihERETJzIomrgMJO6IQERERNQp7ohARERERERERKSRtT5QeAOLNAi3PLg9saWQcAHYKcXlGbcA8aztwqyLHd0K8XJFDmlFdnrUd+FyIn6TIIR07TTmkGcS7KHIUCPFuihwrhfgnihzSLPVdFTnaCfFFQlw6RwH5eslT5JD2hzy7PJApxHMVOT4W4m0VOTYI8U6KHF4hvkmRo58Q19wbJBcqlpGu6+MVOZYI8eWKHLOEuOaavNgQS8T+3C9R6G6O2lxEScLr9cLrrf9u6HA4xPdXVZk/RUOhkJgjHA4b45GIOQ4ATqe5ZtK6dSsxRzBoLms0Kl+8dnvjx06qrAwY42lpUi0MsNvNv9Faih5xUg632yPmkI5tvHNvb+Xl5jt/ZWWFmCMaNW+wphwuV7xvRdWKioqMcadT/sonXU9ut7kMgLw/pONavYz52vd6pW81QEWFuRxut5xDuhY8Hnl/2Gzm7Q2FSsQcqanmGrLm3iDJzMwQl3E4zOeQTXH7KS01b29ZWZmYo21b8zcf6dgDQFZWVtxYOBwR3w8kcSMKERERAYj87y9RuYiIiIhov/FxHiIiIiIiIiIiBfZEISIiSmbsiUJERESUNNgThYiIiIiIiIhIgT1RiIiIkhkHliUiIiJKGmxEISIiSmZ8nIeIiIgoafBxHiIiIiIiIiIiBfZEISIiSmZ8nIeIiIgoaSRtI4odgCNO7HXF+ycI8WxFjo+F+CeKHN8J8WJFjk5C3JuAcpQrckjr2aDI8WshPl+RY1ACyiEtc5YiR2sh/ntFjjeFuEuRI0+Ih4S4Zp/nCvGdihzSud5fkaOLENcce2mfStsKAD8Icc09KlOIVyhySNsrrQOQz5+/K3KkCvFuihzthLjmnr1UiGuup5mGWJXi/USkZ7PZYLPZ6o2VlMg1pJycVsa40ylXcysqzDWgiopKMUcwaP6kDYfl5+g8Ho8xHonIOYJBS1hCbkWNdzxqBALy/sjKyjLG9+zZI+bw+dKFcgTEHFJZ/X6/mMPlMp9D6enmcxAASkpKjHFpnwOA2+02xi3LfOw1+1za1nBY/sYhnad+f5qYQ7oWKivlc1Dap06nXCMIhczXdXGx+bgCgMMR79tstWhUviYrK83nurQOQD5/9uwpEnPY7eYHWLxe+fxwuczlcDjke3ZZWakxbrfL19POnTvixjT3FiCJG1GIiIgI1d97EjWWCXuiEBERETUKG1GIiIiSGQeWJSIiIkoaHFiWiIiIiIiIiEiBPVGIiIiSGQeWJSIiIkoa7IlCRERERERERKTAnihERETJjGOiEBERESUNNqIQERElMzaiEBERESWNpG1EaQ8g3mzTRYr3LxHi/RU5lgvxTEWOb4T4KkWObCGeqshxrhCXZ/YGtgrxTEWORUK8iyLHSiGu2ZaThLhmn0o2KpY5Roi3U+T4RIhLx75YsY4eimUkrwnx7xQ5ioS4dN0DQG8h7lLkyBDiXRU5NgvxKkWONkL8B0WOo4V4uiKH9FzoekWO04X4CkUOtxDvq8hxpCEWAPC6IgcR6bhcbrjd9V+5kYjc4ldSUmKMp6WliTnKysqMcbvdIeYIBoPGeDgcFnM4neb12O3yE/h+v/nTSZOjqsr86eNwyPujqMhcs3C7PWKO8vJyY9xms4k5UlPNx1+zPySBgPnYA4DXm2KMu1xyzaOyssIYl4695nryejU1aLOSEvOxD4Xk/SWVtbTUfN0DQEqKuSavOX+kc93rlc/jUChkjFuWVHORzw9pHYB8bDXXgrTPKisrxRw+n88Yl677/5XEGE1Nlb/FOZ3x96lNcc8HkrgRhYiIiMCBZYmIiIiSCAeWJSIiIiIiIiJSYE8UIiKiZMYxUYiIiIiSBhtRiIiIkpmFxD2GYyUoDxEREVEzxcd5iIiIiIiIiIgU2BOFiIgomfFxHiIiIqKkwUYUIiKiZMZGFCIiIqKkwcd5iIiIiIiIiIgUkrYnyi4AnjixHMX7pWW+U+ToLcT/rMgxQYi/rsjxSyG+QZHjdiGu2af5QjxXkePXQnyRIscPQvwKRY53FctIVgjxfooc0o/Cf1HkWNPIcmiO/RtCvJ0ih3Q9dVDk8CegHDuF+HZFDqmsmxU50oS4poV7ixBvq8ixSYhrxjOV7qdHK3JI12S6Iod0XDT3W9N6Qor3HxBRJG5g2UTlIUqAcCSMcDhcb8zplKuo0jLBYFDMkZKSaozv2iV9agA5Oa2M8ZKSYjGH359hjAcClWKObdu2GuOafZqWZv50cjpdYo6srCxjvKioSMwRCpnvuNnZ2WKO0tJScRlJWVm5MZ6aaj5/qplH9C4s3C1mKC+vaFQ5NMe+pKTEGHe75WMvXU9ut1vMYbc7jHGXS84R775So6qqSswhlVU6RwHAbjfX5mw2MQWqqszr0RyXUMh8L7QUg84HAgFjPCUlRcxRVma+JqVjD8jHRTqPq9cT/7hUKY4rwJ4oREREREREREQqSdsThYiIiMAxUYiIiIiSCBtRiIiIkhkbUYiIiIiSBh/nISIiIiIiIiJSYE8UIiKiZMaBZYmIiIiSBnuiEBEREREREREpsCcKERFRMosicWOZsCcKERERUaMkbSPKMgDxZor+reL9HwrxNEWOIiHeX5HjEyGeq8jxmRAvUuS4o5Hr0DDP/F3tNiE+KAHlWKJYJlOID1bkkI5dkSLHciGep8jRRYh/KcTNs75XyxbiOxU5pP0llROQt9U8c3y1NkK8gyLH50JcnuVeXo9LkWONEPcqckj7vViR4yIhrrm/XCvE31XkSMR9LCnxcR46TJWVliFcVVVvrEWLFuL7y8vLjHG7Xe5wHYmYWyhTU+UaY2VlhTHudMp39MrKSmNcKicAtG5t/qSV1qERjcrl2Lp1qzHu8/kaXY7S0hJxGbvd/Gns9/vFHC6X+dhpjktZmfk8dbvl2ovb7THGAwFzbS4atcR1OJ3m/RUOhxU5zPtLKicgb6vNZhNzSMdNs8/l60Uuh7weOUdFhfn+4nbL9zlpv2vO48zMLGNcc3+R7uulpeZrBQACgcbfxxKBj/MQERERERERESmwEYWIiCiZRRL81wCzZ89Gr1694Pf74ff7kZ+fjzfffLM2/tRTT2HgwIHw+/2w2WwoKiqqk6OwsBCjRo2C3+9HZmYmrr76avGXWSIiIqJkxUYUIiIiqlfbtm0xY8YMrFu3Dh9//DEGDRqEc889F1988QWA6m7Gw4YNwx/+8Ie4OUaNGoUvvvgC77zzDl5//XV88MEHuPZa6QEuIiIiouSUtGOiEBEREfarB4kxVwOMGDEi5v/33XcfZs+ejdWrV6Nnz54YP348AGDZsmX1vv+rr77CW2+9hbVr16Jv374AgMcffxxnnXUWHnroIbRpI41SRERERJRc2BOFiIgomUUT/AegpKQk5i8YDIrFiEQiWLBgAcrLy5Gfn68q+qpVq5CZmVnbgAIAgwcPht1ux5o10tDIRERERMmHjShERETNTLt27ZCRkVH7N3369LjLbtiwAT6fDx6PB9dffz0WL16MHj16qNZTUFCAVq1axbzmdDqRnZ2NgoKCRm0DERERUVPg4zxERETJ7AA8zrNly5aY6T09nvhTSnbt2hXr169HcXExXn75ZYwePRrLly9XN6QQERERHU7YiEJERNTM1My2o+F2u9G5c2cAQJ8+fbB27Vo8+uijePLJJ8X35ubmYseOHTGvhcNhFBYWIjc3t+EFJyIiImpiSduI0hWAO07secX7U4V4P0WOFUK8nSJHmhDvoMixXYh7FTn+LMTPVeR4WYjfrciRLsQ1nbv7CvElihwthPhyRQ5pv2uOi3QOrVTkGCTEC4V4lWIdRUJcOiaA/OzgTkWOb4R4J0WO1kLcocghHbeQIsdnQnyLIofUD0Bzj5KuySMVOT4W4gFFDml/aI5LqRDXnB+bDDHNtXJANOHAsvWJRqOqMVQAID8/H0VFRVi3bh369OkDAFi6dCmi0Sj69+/f+MLQIc3r9cDrrf/Tcs8e6dMLsNvNnyyahsKysnJj3OVyNbocbne8Gu3PwuGwMW6z2cQcu3aZP0n9/gwxR3FxkTHeurXc+Gm3m+/Y4bB8N01NNdfkS0tLxBwOh/lrTlmZ9KkB2GzmY2u3y8fF7TafQ+Xl5nMQAHw+86d1OGy+uVuWJa4jEjHnkI6JhnSeAxA/X9zu+D0na7hc5mOvuJzE61azTysqKo3xqir5Woh3j6yhuUc5HObz2OmUc1RUVBjjlhUVc1RWamqEZpGIeT0ej3y/NZ1jkYh8jgJJ3IhCREREACzUDgibkFwNMGnSJAwfPhzt27dHaWkp5s+fj2XLlmHJkurm6oKCAhQUFOCbb6qbODds2ID09HS0b98e2dnZ6N69O4YNG4ZrrrkGc+bMQVVVFcaOHYtLLrmEM/MQERHRIYmNKERERFSvHTt24IorrsC2bduQkZGBXr16YcmSJTjzzDMBAHPmzMHUqVNrlz/ttNMAAPPmzcOVV14JAHjhhRcwduxYnHHGGbDb7Rg5ciQee+yxg74tRERERInARhQiIqJk1oSP88ydO9cYnzJlCqZMmWJcJjs7G/Pnz2/YiomIiIiSFBtRiIiIKKlVVVWhoKAAFRUVyMnJQXZ2dlMXiYiIiJopaaxHIiIiakrRBP8dIkpLSzF79mwMGDAAfr8feXl56N69O3JyctChQwdcc801WLt2bVMXk4iIiJoZNqIQEREls0iC/w4BDz/8MPLy8jBv3jwMHjwY//znP7F+/Xr85z//wapVqzB58mSEw2EMGTIEw4YNw6ZNpnmViIiIiBKHj/MQERFRUlm7di0++OAD9OzZs974CSecgN/85jeYPXs2nnnmGXz44Yfo0qXLQS4lERERNUdJ24jiBRBvlueTFO//SYgvVeRoJ8S7JaAchYoc0uzxPRQ5ioR4niLHBUL8eUUOqSf5RYocrwrxoYocaUJ8pyKHX4hrZkLvK8TPVeSQzo83hXgHxTq2KpaRFAlxzVMGvYX4ckUO6br+VJEjR4jnK3JI25uuyCHdCzXXpJTjS0UOiXTcAOBdIX68IkepENeMolFkiIUV7z8gmnBg2aby4osvqpYLh8O4/vrrD3Bp6ECx222w2231xlJTpU9qIByuMsZLS8vEHC6Xyxj3er1ijqoqczkiEfnCi0bNnwqackSj5vW43fFq1j/LyMg0xvfs2SPmkOZSz8zMEjMUFxcb4+npUi0MsNvNHe7DYfmubrc7jHHpuAFAamqqMZ6RkSHmiETM6ykpKTHGNcdeOo81pHPQMp8aAICUFPP+Kitr/HUdClWKOZxO89fktDRzOQHAEjbY4TCfX9XrMd8L9+yRv01KOQIBzbcWM+m4AdWP6ZqkpqaIOaRrzuGQmzcikQpDTFdR4uM8RERElHRmzpxpjJeWlmLoUE2zOREREVHisBGFiIgomTXTgWX/8Ic/4G9/+1u9sfLycgwbNgy7d+8+yKUiIiKi5i5pH+chIiIiNMvHeQDgueeew+WXX47MzEycc845ta+Xl5dj6NCh2LlzJ5Yv1zzER0RERJQ4bEQhIiKipHPhhReiqKgIl156Kf71r39h4MCBtT1Qtm/fjuXLl+OII45o6mISERFRM8NGFCIiomQWReJ6kBxCj/MAwG9/+1sUFhbi3HPPxSuvvIK7774bW7duxfLly9GmTZumLh4RERE1Q2xEISIioqR16623orCwEGeccQby8vKwbNkytG3btqmLRURERM0UG1GIiIiSWSIHhD2EeqJccMEFMf93uVxo2bIlbrrpppjXFy1adDCLRURERM0cG1GIiIiSWTMdWDYjIyPm/5deemkTlYSIiIjoZw1qRJk+fToWLVqEr7/+GikpKTjppJNw//33o2vXrrXLBAIB/P73v8eCBQsQDAYxdOhQzJo1C61bt25QwRz/+6vPl4r39xfiWxU58oR4agJyrFXkaCfENXXirkI8pMgREOK9FTkyhXi8Y763c4S45vyQjv9ORQ7pHNukyCHts/WKHNL2VgjxAYp1SPIUyywV4mmKHF8L8WWWJeYYZLMp1mQmHVvN3S5biEvXLAB8LMQ1XzmLhbh03QPyPUhzvz1diH+uyFEuxL9T5DBdDwHI5zElzrx585q6CM3SwazrAbb//dUVDMp3n9RU8ydHVVWVmMPtdhvjdru90TkqKqRP4uqeVmby55vH4210jmjU3F0tJSVFzOF0mmtzmo/hfRtR9xUIyOeHdPzD4bCYIzXVfFyCwaAih/kbQ2VlpZhD2l7puHk8PnEdEuk8B4CyslJj3GaTryfp2u8Zka4V4MvSEnEZuRzmE9XplL9GS8t4vdI1K98/srKyxBzhsLmm5nTK9wbp/qG53/p85vNQc11L57rmmjSVw6E4rgAgn8l7Wb58OcaMGYPVq1fjnXfeQVVVFYYMGYLy8p+rrhMmTMBrr72GhQsXYvny5di6dWudLrlERESkFE3wH5EB63pERERmDeqJ8tZbb8X8/5lnnkGrVq2wbt06nHbaaSguLsbcuXMxf/58DBo0CED1L0ndu3fH6tWrceKJJyau5ERERHRYuv7663HnnXeqBpB96aWXEA6HMWrUqINQssMf63pERERmjRoTpbi4uiN4dnZ1x/R169ahqqoKgwcPrl2mW7duaN++PVatWlXvB2swGIzpdlNS0vjuV0RERIeNZjgmSk5ODnr27ImTTz4ZI0aMQN++fdGmTRt4vV7s2bMHX375JVasWIEFCxagTZs2eOqpp5q6yIct1vWIiIhiNehxnr1Fo1GMHz8eJ598Mo4++mgAQEFBAdxuNzIzM2OWbd26NQoKCurNM336dGRkZNT+tWsnjQBCRETUjEQS/HcIuOeee/Cf//wHJ598MmbNmoUTTzwR7du3R6tWrdC1a1dcccUV+O677/DUU09h9erV6NWrV1MX+bDEuh4REVFd+90TZcyYMfj888+xYsWKRhVg0qRJmDhxYu3/S0pK+OFKRETUzLVu3Rp33HEH7rjjDuzZswc//vgjKisr0bJlSxx11FGwJWCQaDJjXY+IiKiu/WpEGTt2LF5//XV88MEHMc8r5+bmIhQKoaioKOYXiu3btyM3N7feXB6PBx6PZ3+KQUREdPhL5ICwh+jAsllZWaoZCChxWNcjIiKqX4Me57EsC2PHjsXixYuxdOlSdOzYMSbep08fuFwuvPfee7Wvbdy4ET/++CPy8/MTU2IiIiIiOiBY1yMiIjJrUE+UMWPGYP78+XjllVeQnp5e++xrRkYGUlJSkJGRgauvvhoTJ05EdnY2/H4/xo0bh/z8/AaP1t4OQLyZszW/ZXwnxC9S5FgsxI9V5PhBiF+lyGGeHRzQDKfXSYjLs3IDy4X4AEWONkK8XIgDwJdCPE+RY4sQ12zLJ0Jcs0+lcrgVOaRZ2aVtkcoAyOexPMu9fOzr//0yllTWsYru/ccI8UxFOVxCvFSRQzp/NB3dM4T4i4ockh6KZaRzMF2RY6MQP0WRQzo/NMclKUWRuLFMDtGeKHTwHMy6nsvthttd/yed3S7fz/cerLY+WVmZYo6agXPjsdvl3xtDoZAx3qJFCzFHNGq+yHft2i3miLcva1iWQ8xRXl5mjKel+cQcdrv5UzIalW9EgYC5FiVtKwBUVZmPi88nb0tFhbkWblnytkjnByCf65ZlGePStlRVSZ/Ucjk1j1C6XOZj73RKNSi5HN+miSngtZm/4joc8rUgba/mPK6srDTGpf0FyGXds2ePmEPi8Whq8uZz0G6X96l0z/b55IMbCpnPZelemigNakSZPXs2AGDgwIExr8+bNw9XXnklAGDmzJmw2+0YOXIkgsEghg4dilmzZiWksERERM0OH+ehg4h1PSIiIrMGNaJIraAA4PV68cQTT+CJJ57Y70IRERER0cHHuh4REZHZfk9xTERERAdBM5zieF/hcBjvvvsunnzySZSWVj+YtXXrVpSVmR89ICIiIkq0/Z7imIiIiA6CRDZ+HIKNKD/88AOGDRuGH3/8EcFgEGeeeSbS09Nx//33IxgMYs6cOU1dRCIiImpG2BOFiIiIktZNN92Evn37Ys+ePUhJSal9/fzzz4+ZIYaIiIjoYGBPFCIiomTWzAeW/fDDD7Fy5co6s3Hk5eXhp59+aqJSERERUXPFnihERESUtKLRKCKRus8h/fe//0V6umYCbSIiIqLEYSMKERFRMmvmA8sOGTIEjzzySO3/bTYbysrKMHnyZJx11llNVzAiIiJqlpL2cZ5NANxxYh0U7+8hxGcocvQX4hWKHJuF+NuKHK2F+HBFDq8QL1Xk+KUQf0WRQ1rPSkWO04X4FkWObkK8XJHjaCH+viKHZr9LpG0pEuLSuQEAfYX4TkWOE4X4JkUOaX8NUOToJ8SfV+ToJMQLFDmGCvF3FTmk7T1VkWO9EG+nyCFdt6mKHCcJ8a8VOaRrTvpcAMznWFDx/gOimQ8s+9BDD2HYsGHo0aMHAoEAfv3rX2PTpk1o2bIlXnzxxaYuHjVCMBCALU5s38e36uPzmT/Btm/fIeZITTXfoaJR+Rm4qqqQMV5SUiLmcDrNVXK/3y/msNvj7c1qkYi8LX5/hjFeXFws5pD2WXm5XMtKT/cZ46FQlZjD4zGfH5pju/c4TPUpK5Nrcpr1SKRtCYfNN3e7Xf7dXLoWwuGwIkeaMR4Myp+k0v7y+cznBgCkppm3pXB3oZjD65X2ubw/pN6SmvPH6/UY42lp8v6orKw0xjX3W+m69XjkcywtzXx+BAIBMYc0K5903ADAZot/joWr5OMKJHEjChEREVG7du3w2Wef4aWXXsJnn32GsrIyXH311Rg1apT4BYeIiIgo0diIQkRElMwsJG5AWCtBeQ6SqqoqdOvWDa+//jpGjRqFUaNGNXWRiIiIqJnjmChERESUlFwul6p7LxEREdHBwkYUIiKiZNbMB5YdM2YM7r//ftXz50REREQHGh/nISIiSmZRJO5xnkTlOYjWrl2L9957D2+//TaOOeaYOgPTLVq0qIlKRkRERM0RG1GIiIgoaWVmZmLkyJFNXQwiIiIiAGxEISIiSm7NfIrjefPmNXURiIiIiGolbSNKHoB4szy/rnj/ACF+viLHWiFeoMjRSYj/pMixQYj3VeRYIcTbKXJIM6rfoMixUYgPVuQwz7gOOBQ5pGEKv1TkkPZZjiLHeiFeocghkcrRWpHDL8SPUeRYL8R3KnJI3/+kawUAioT4GkUO6f7yiSKHVNY8RQ7pmlypyLFZiEvXGyCXVbruAfm61VzXUlk1g4DtNsSqFO8nIj23xwOPx1NvrKSkWHx/WprPGM/MzBBzVFSYP2k1Y/G43fVvQ42qKvnuEQhUGuOpqalijrKycmPc7XaJOcJh8ydty5YtxRzSYNDp6fIni91uvmPbbDYxh2WZn18MBEJiDpfLvM8cDvmrVGWl+dhGo41/ztLpNJfD5ZLLabebP2lTUuJ9M/uZtK26sa3M08hJ1woARCLm81i67gEgPd18f5G2FZDL6na7xRzSNVlebr7uASAUMp/rDodcQ5LKGggExRyA+brVXNeaskoikfjnoSm2t6RtRCEiIiI0+54oHTt2NFasvvvuu4NYGiIiImruODsPERFRMosm+K8BZs+ejV69esHv98Pv9yM/Px9vvvlmbTwQCGDMmDFo0aIFfD4fRo4cie3bt8fksNlsdf4WLFigLsP48eNx00031f797ne/Q35+PoqLi3Httdc2bIOIiIiIGok9UYiIiKhebdu2xYwZM9ClSxdYloVnn30W5557Lj799FP07NkTEyZMwL/+9S8sXLgQGRkZGDt2LC644AJ89NFHMXnmzZuHYcOG1f4/MzNTXYabbrqp3tefeOIJfPzxx/u1XURERET7i40oREREyawJH+cZMWJEzP/vu+8+zJ49G6tXr0bbtm0xd+5czJ8/H4MGDQJQ3VjSvXt3rF69GieeeGLt+zIzM5Gbm9vo4u9t+PDhmDRpEgeeJSIiooOKj/MQERGRKBKJYMGCBSgvL0d+fj7WrVuHqqoqDB7885Dg3bp1Q/v27bFq1aqY944ZMwYtW7bECSecgL/+9a+wLPPAgRovv/wysrOzG52HiIiIqCHYE4WIiCiZRZG4nij/GxOlpKQk5mWPYZaUDRs2ID8/H4FAAD6fD4sXL0aPHj2wfv16uN3uOo/mtG7dGgUFP89fN23aNAwaNAipqal4++238bvf/Q5lZWW48cYbVUU+/vjjYwaWtSwLBQUF2LlzJ2bNmqXKQURERJQobEQhIiJKZvsxIKwxF4B27WInaZ88eTKmTJlS71u6du2K9evXo7i4GC+//DJGjx6N5cuXq1d511131f77+OOPR3l5OR588EF1I8q5554b04hit9uRk5ODgQMHolu3bupyEBERESUCG1GIiIiamS1btsDv99f+P14vFABwu93o3LkzAKBPnz5Yu3YtHn30UVx88cUIhUIoKiqK6Y2yfft24/gn/fv3xz333INgMGhcb414jTtERERETSFpG1EKAcSrWvVXvH+NEB8sxAGghRC/UJHjEyH+vCLHuUL8fUWO3kK8nRAHgN1CfEkCyrFSkUM6/kFFDmk9eYocPwnxyxQ5XhTiJylySEM1BoT4ZsU6NgnxToocxUJc83vyZiG+XYgDQI4QP1aRQ3qyYrMiR54QLxDiAPClEK9S5LhBiGs6QDwrxDX7NF2I71TkkI6tZn+YcmjuLQfEARhYtmbK4v0RjUYRDAbRp08fuFwuvPfeexg5ciQAYOPGjfjxxx+Rn58f9/3r169HVlaWqgEFABwOB7Zt24ZWrVrFvL579260atUKkUiidg4dbJFIGJFIuN5Yamqa+P6Kigpj3OGQ7iyAw2GuCmtmkqqsNJdjz55CMYffn2GMl5aWiTlSUlKMcbfbLeYIh+s/Hj+Xo8QYry5HqjFeXl4u5khLM+eIRuVxlaT1uFya/WH+5MjKyhJz7NlTZIynpcnnutNpPk+lcaZCoZC4jmDQ/CmnOX+k+7Hmvi+VtarKfI4C8v6SrhUAkIbu0uxTaZ9ptiUQMNfkNWOMtWzZstE5pPuYZp/a7ebhWKX7DyDfswF5W0znh0M4d2pzqJYiIiKiZmfSpEkYPnw42rdvj9LSUsyfPx/Lli3DkiVLkJGRgauvvhoTJ05EdnY2/H4/xo0bh/z8/NqZeV577TVs374dJ554IrxeL9555x388Y9/xM0336wuQ7zKXTAYVFXqiYiIiBKJjShERETJ7ACMiaK1Y8cOXHHFFdi2bRsyMjLQq1cvLFmyBGeeeSYAYObMmbDb7Rg5ciSCwSCGDh0aM9iry+XCE088gQkTJsCyLHTu3BkPP/wwrrnmGnHdjz32GADAZrPhL3/5C3w+X20sEonggw8+4JgoREREdNCxEYWIiCiZHYDHebTmzp1rjHu9XjzxxBN44okn6o0PGzYMw4YNa9hK/2fmzJkAqnuizJkzBw6HozbmdruRl5eHOXPm7FduIiIiov3FRhQiIiJKOt9//z0A4PTTT8eiRYtUYw8QERERHWhsRCEiIkpmTdgTJRm8/75m+HQiIiKig4ONKERERJTU/vvf/+LVV1/Fjz/+WGdGhIcffriJSkVERETNERtRiIiIklkTDiybDN577z2cc8456NSpE77++mscffTR2Lx5MyzLQu/evZu6eERERNTMJG0jylYArjix1or3Hy3E1yhyDBXiryty/CTE71Xk+ESID1fkMM/sDWQocqwW4scqckjOVCzzihA/RZGjjRDvrMhRKsQ/U+QYrFhGMk2InyrEOyjWkSnENddCJyFepMghLeNV5DhGiFcockj3jy6KHBuEeDtFDuna/06R40UhrrmupfNYuv8AwLtCvEqRQ9pnmvtcsSEWMsQOqCgS9xjOIdiIMmnSJNx8882YOnUq0tPT8Y9//AOtWrXCqFGj9nvQWkoOVaEqOOyOemNOp1xF9XrNd/2KinIxR3q63xgvLjbdFaqFw+Y7VG7uEWKOyspKY9zvN5cTACKRsDG+9+DM8Uj7LCUlRcwhSU9PF5eR9ntaWpqYw+WK902imtfrEXNEIuabZmVlQMyh2V5JQUGBMS7tD8108NL5UVJSIuaQ1hONyh9m0jI2m03M4fWaz9NoVL43SNeCxyOfP4GA+bp2ueTjIl37waBcO9mzZ48xrrmupfM4HJaPbVmZ+duTZVliDmmfae5zkUj8slpRuQwAYFctRURERNQEvvrqK1xxxRUAqr9YV1ZWwufzYdq0abj//vubuHRERETU3LARhYiIKJlFEvx3iElLS6sdB+WII47At99+WxvbtWtXUxWLiIiImqmkfZyHiIiI6MQTT8SKFSvQvXt3nHXWWfj973+PDRs2YNGiRTjxxBObunhERETUzLARhYiIKJk184FlH374YZSVlQEApk6dirKyMrz00kvo0qULZ+YhIiKig46NKERERMksgsQ9fHuIPc4TiUTw3//+F7169QJQ/WjPnDlzmrhURERE1JxxTBQiIiJKSg6HA0OGDBFnFiAiIiI6WNiIQkRElMyiCf47xBx99NH47jvNhN1EREREB17SPs5zJoB4M1ZreiN/JsT7K3JILUy9FTm8Qny+IsdxQvwbRY7jhfirihwdhHixIkeOEHcpclwrxNMUOaTj8roiR5tGxgHgRSH+S0UOaZl2QnyxYh3SuZ6tyNFJiGu+Ip0rxLcrchQ0Mg4AhUJ8qiLHdCHeRZFDus9lKnIMViwjcQjxUkWOKiEu3X8AuX1Ac45tMsQOsSdhDhv33nsvbr75Ztxzzz3o06cP0tJi7/J+v7+JSkaNlZ6ejpSUeLU9S3x/RUWlMZ6aqqkRmKWmporLBAIBY7yoSO5J5fXG2w/VgsGgmCM11ZyjuFiuqbndbmM8HJbvhE6n+euFzWYTc7Ro0cIYdzjk34HtdvMyJSXy/nC5zDVTKQ5A7EmXkSHfw6RlXC7zcSsuLhLXkZJiPtedTunTHvB4PMa45jz2+zOM8XA4LOYIh821iqoqOUckYl4m94gjxBzbC8w1U2l/AfJ9TnNc0tPTxWUk0mVrs8m/0liW+b4unccaoZB8jpnOw0BAfj+QxI0oREREhGY9JgoAnHXWWQCAc845J+bLl2VZsNlsiEQOwY0iIiKiQxYbUYiIiJJZM29Eef/995u6CERERES12IhCRERESWvAgAFNXQQiIiKiWhxYloiIKJlZSNygsvIwE0npww8/xGWXXYaTTjoJP/30EwDgueeew4oVK5q4ZERERNTcsBGFiIiIktY//vEPDB06FCkpKfjkk09qB4QrLi7GH//4xyYuHRERETU3bEQhIiJKZpEE/x1i7r33XsyZMwdPP/10zEwYJ598Mj755JMmLBkRERE1RxwThYiIKJlFAMgzgupzHWI2btyI0047rc7rGRkZKCoqOvgFIiIiomaNPVGIiIgoaeXm5uKbb76p8/qKFSvQqVOnJigRERERNWdJ2xNlEwBPnFgPxfsLhXhAkaO1ENd0IvYK8X6KHF2E+HJFjv8K8a6KHCuF+FmKHNI+/U6RY40Q363IcaoQv0KRQ/KxYplLhbjm2KYL8c+F+GbFOn4pxDMVOZYqlpGkCvH+ihxvCnHN/aVCiL+hyJEtxN9V5JCu2w2KHG4h3kGRQ/oa61DkkM7jNoocpUJ8pyLHiYZYCMD/KXIkXM2gsInKdYi55pprcNNNN+Gvf/0rbDYbtm7dilWrVuHmm2/GXXfd1dTFo0YIBIOw2ervZuX1SjUoIBIxd62yLHkk5bQ08ydLRYV0xwfsdvNvkqmp0qcX4HbHq/VWKysrE3OEQlXGuNdrXgcAlJeXG+Pp6X4xx96P3dWnZlyjxpRDOvYAkJaWZoxnZ0ufxDLN+ZGVlWWMa46tw2E+xyorzd9sQqGQuA6/P0Mog/xpXlYmfRLLAgHztkrXLACUlJjLobm/RKPmD8yS4hIxh7TPSkvl/eXxmK9b6dgDiHufreF2S7VBeRlhFQAAu928P9xu870DACIR83EJh8NijtTU+PcGqYw1krYRhYiIiOj2229HNBrFGWecgYqKCpx22mnweDy4+eabMW7cuKYuHhERETUzbEQhIiJKZs18TBSbzYY77rgDt9xyC7755huUlZWhR48e8Pl8TV00IiIiaobYiEJERJTMmvnjPDXcbjfS09ORnp7OBhQiIiJqMhxYloiIiJJWOBzGXXfdhYyMDOTl5SEvLw8ZGRm48847UVVlHgOCiIiIKNHYE4WIiCiZNfPHecaNG4dFixbhgQceQH5+PgBg1apVmDJlCnbv3o3Zs2c3cQmJiIioOWEjChERUTKLInGNH4fg4zzz58/HggULMHz48NrXevXqhXbt2uHSSy9lIwoREREdVHych4iIiJKWx+NBXl5endc7duyompaRiIiIKJGStidKIYB4VaMCxfuvEuLLFTm2CnFNC5S0zBBFjkeEeF9FjhwhLs9yD/xSiMszrgMrhHi6Ioe0T6VyAsBjCcixXYi3UeTYIsRPUeSQSOdxf0WOrkJ8jSLHYCEulRMAPhPiXypySNsrHVcAKBXibROQI1uRo4sQ14wW0UmI/6DI8boQl8oJJOYeJeXQ3KMyDbGA4v0HRBSJe5znEOyJMnbsWNxzzz2YN28ePB4PACAYDOK+++7D2LFjm7h01BjRSASRSP3drMLhsPj+Fi3Md8qysjIxRyhkvlPabI2/+Pz+DHGZHTt2GOOpqaliDqfTXK2PRuUbgFRWzf4oLzfvd7vdIeaQ1pOR4Rdz7Ny50xjXHBdp3CW32yXmCIVCxrjPlybmkNdhLmdamnz+eL0eY7y8XP4kTk831+SlcgJAIFBpjAeD8qdxaqp5n2rG05KuF82xl3I4nfK1IB0XwBJzuN3mHNI5CgAlJSXGeM3ns0ki7lFSDs09yrTfLUven0ASN6IQERERffrpp3jvvffQtm1bHHvssQCAzz77DKFQCGeccQYuuOCC2mUXLVrUVMUkIiKiZoKNKERERMkskYPBHoIDy2ZmZmLkyJExr7Vr166JSkNERETNHRtRiIiIklkzb0SZN29eUxeBiIiIqBYHliUiIiIiIiIiUmBPFCIiomTWzAeW3b17N+6++268//772LFjR52B5woLC5uoZERERNQcsRGFiIiIktbll1+Ob775BldffTVat26dkNlSiIiIiPYXG1GIiIiSWTMfE+XDDz/EihUramfmISIiImpKbEQhIiJKZs38cZ5u3bqhsrKyqYtBREREBCCJG1GOAuCNE0tTvH+2ENf8nuUQ4jsVOaT6alCRo6sQl8oJACuE+HBFjo+F+E+KHLlCfKUih7TfT1LkkCbH7KfI8aIQ1zylXyLEqxQ5egvxo4T484p15Ajx9xU5pH2+PQE5NihySNdkuiJHQIh/qcjRQ4ivUeQoEuKaSWDj3WcboosQ36zIMUCIa64FyeeKZYYYYnyIpGnMmjULt99+O+6++24cffTRcLlcMXG/399EJaPGcns88Hg89cbsdnnug127dhnjXm+KmEN6PKyqSr77WJZljO87jk99vN7690NDlJWVGeOaa6WiosIYD4fl/eF0uozx8vJyMUc4HDbG09LkbwMul9sYT01NFXPs2bPHGA+H5e590ah5mVDIfP4AQEqKuaw+n/n82bNHrpU6neavhWVlpWIOlyvbGJeOa3UO83ELBORGdemadDjkb09SjkBAqg0CXq+5llVebr7eAPkck/YXANjtja/BxLtX1wiFQmIOn89njEv7XENzXPz++LV97b5K2kYUIiIiQmJ7jxyCPVEyMzNRUlKCQYMGxbxuWRZsNhsikUPwGSUiIiI6ZLERhYiIiJLWqFGj4HK5MH/+fA4sS0RERE1O7itJRERETSeS4L8GmD17Nnr16gW/3w+/34/8/Hy8+eabtfFAIIAxY8agRYsW8Pl8GDlyJLZvj30478cff8TZZ5+N1NRUtGrVCrfccouqS3eNzz//HPPmzcPFF1+MgQMHYsCAATF/RERERAcTG1GIiIiSWTTBfw3Qtm1bzJgxA+vWrcPHH3+MQYMG4dxzz8UXX3wBAJgwYQJee+01LFy4EMuXL8fWrVtxwQUX1L4/Eong7LPPRigUwsqVK/Hss8/imWeewd13360uQ9++fbFly5aGFZyIiIjoAOHjPERERFSvESNGxPz/vvvuw+zZs7F69Wq0bdsWc+fOxfz582vHK5k3bx66d++O1atX48QTT8Tbb7+NL7/8Eu+++y5at26N4447Dvfccw9uu+02TJkyBW63PCDeuHHjcNNNN+GWW27BMcccU2dg2V69eiVug4mIiIgEbEQhIiJKZhEAjR+wvtr/eqKUlMTODeYxzJJSW4xIBAsXLkR5eTny8/Oxbt06VFVVYfDgwbXLdOvWDe3bt8eqVatw4oknYtWqVTjmmGPQunXr2mWGDh2KG264AV988QWOP/54scgXX3wxAOA3v/lN7Ws2m40DyxIREVGTYCMKERFRM9OuXewE2JMnT8aUKVPqXXbDhg3Iz89HIBCAz+fD4sWL0aNHD6xfvx5utxuZmZkxy7du3RoFBQUAgIKCgpgGlJp4TUzj+++/Vy1HREREdDA0qBFl9uzZmD17NjZv3gwA6NmzJ+6++24MHz4cQPUAc7///e+xYMECBINBDB06FLNmzapTgdJw/e+vPt8q3t9DiG9U5JCewL5YkUOaMftlRQ5ptusvFTnMs8sD9yly3CDEOylyfC3ExypyLBHi8iz2wIVCXConAHQQ4jmKHEVCvEqR4zshvlKIS9sBAPOE+NGKHJI2imW2CnHpHAWA54X4ICEOyOeH5hwsFuKa4TKlY79TkaOLEN+kyCH1A0hT5JCG6shU5JDulZpBwD41xKT7+QFzAHqibNmyBX6/v/ZlUy+Url27Yv369SguLsbLL7+M0aNHY/ny5QkqkKxDB81dihLlYNb1bLDFnW0pFAqK7/d6vcZ4MCjnqKoyX9mZmVliDssyX6BFRUVijmjUfBeMRqU7HGC3m+9y+w76XJ+WLVsa41KPNQAIBs1lzckxrwMASkrMn6TRqNwDbd8G3n1J5QQgPnLodMpfpaTectL5A8jnckVFuTGueXRy9+5CYzwlxXy9aez7OGZ9qqrMtd8WLeTzZ8+ePcZ4erpPzBEMmgdAj0TkQcbCYfOx9/k05TAf+0hEHqhdum4190qpIiLdfwD5XHc4HIoc5v2umcCvoqIybiwQkO8LQAMHlm3sAHNERETUQAdgYNma2XZq/kwVLLfbjc6dO6NPnz6YPn06jj32WDz66KPIzc1FKBSq8wVx+/btyM3NBQDk5ubW+eJW8/+aZTSee+45nHzyyWjTpg1++OEHAMAjjzyCV155RZ2DdFjXIyIiMmtQI8qIESNw1llnoUuXLvjFL36B++67Dz6fD6tXr0ZxcTHmzp2Lhx9+GIMGDUKfPn0wb948rFy5EqtXrz5Q5SciIqKDKBqNIhgMok+fPnC5XHjvvfdqYxs3bsSPP/6I/Px8AEB+fj42bNiAHTt21C7zzjvvwO/3o0cPqc9otdmzZ2PixIk466yzUFRUVPurbmZmJh555JHEbRgBYF2PiIhIst9THEciESxYsEA9wBwRERHthyiqH+lJxF8DpzieNGkSPvjgA2zevBkbNmzApEmTsGzZMowaNQoZGRm4+uqrMXHiRLz//vtYt24drrrqKuTn5+PEE08EAAwZMgQ9evTA5Zdfjs8++wxLlizBnXfeiTFjxqgeCwCAxx9/HE8//TTuuOOOmK6+ffv2xYYNGxq2QdQgrOsRERHV1eCBZRszwFx9gsFgzHNY+84YQERERE1jx44duOKKK7Bt2zZkZGSgV69eWLJkCc4880wAwMyZM2G32zFy5MiY8TFqOBwOvP7667jhhhuQn5+PtLQ0jB49GtOmTVOX4fvvv693Fh+Px4PycvM4ALR/WNcjIiKKr8GNKIkeYG769OmYOnXqfr+fiIjosBYFoBgoTaWBA9TOnTvXGPd6vXjiiSfwxBNPxF2mQ4cOeOONNxq24r107NgR69evrzPA7FtvvYXu3bvvd16Kj3U9IiKi+Br8OE9jBpirz6RJk1BcXFz7t2WLNCcOERFRM5KoR3lq/g4R06ZNQ0VFBSZOnIgxY8bgpZdegmVZ+Pe//4377rsPkyZNwq233trUxTwssa5HREQUX4N7ouyrvgHmRo4cCaDuAHP18Xg86ueiiYiIqHmYOnUqrr/+evz2t79FSkoK7rzzTlRUVODXv/412rRpg0cffRSXXHJJUxezWWBdj4iI6GcNakSZNGkShg8fjvbt26O0tBTz58/HsmXLsGTJkpgB5rKzs+H3+zFu3LiYAeaIiIiogSJossd5mpJl/VzYUaNGYdSoUaioqEBZWRlatWrVhCU7vLGuR0REZNagRpTGDjDXEI7//dUnGOf1hiwTf/izn10oxDVPeKcJ8XRFjhwhnqHI0U2IuxU5lgrxKkWO4UJcM8/CMUI8fofin30txIsUOVoI8Xjn796kCT4/VuSQeud3EuKa49ZViGsmKv1ciGt+o5SuBU0Hcem4bVTkqBDixylySPegDkIckM/TBk7EUq/WimWkr06a41KagBynCPFBihymZ1wrFe+nxLLZYluPUlNTkZqa2kSlaR4OZl3PZqv+q080Krf4RaPmT8BwWP6E23eQ3H1pBsG1281Px0txAHA6pSq5XKvweLzCEnJrbFmZ+W68d+NmPH6/3xivrAyIObxe87Y4nS4xRyBgXo90/gCAw9HoTvvitlRUSLWK+NdJDbfbXIvSHDev15xD2g5A3ud2u3wOStdCVZV8Xe89k1t9AgH522Q0aq5FpaSkiDmke5DNJn8Dk85TxaEVuVzyeZ6aav5WGwqFxBzSPtUc27Q0czl8Pvnbtel6kq61Gg26MyRigDkiIiJqgCYcWLap/eIXv6jTkLKvwsLCg1Sa5oF1PSIiIrPGN68SERHRgdNMH+cBqsdFycjQ9LckIiIiOjjYiEJERERJ6ZJLLuH4J0RERJRU2IhCRESUzJppTxTpMR4iIiKipiCPdEVERER0kGkGQiQiIiI62NgThYiIKJlZOKR6kCSKNIo/ERERUVNgIwoREVESi0CeyrwhuYiIiIho/yVtI8oXAOLNnJ2peH+BED9XkWOrENdURs0zrgO/VOR4RYhvVOQ4SYj/pMhhnnEdaKPIMVuIS+UEgGIhLh17AMgR4u8rcpwvxJcqcnQV4kcrcrwpxL1CvJNiHb0Vy0ik6+k7RY7jhHipIkdqAnLcIcSXK3JsEeJfKnLkCvF2ihwrhfixihzrhfipihzS/tigyCFd15pz7K9W/LO9pCSCmzI+U2QhIo1AIBA35nBItQ4gHK4yxjUzO4VC5hyabmB2u3n8Hk05iovNtZtgMP6+qpGammaMS/urmnlbXC6XmGHXrl3GuFROAIhEzLXscDgs5nA6zV9zpH0OyMeuvLxczOH1mr8NpKRINTWgpKTEGLfZzCM0eDzxvlXtXQ6phiSTrqdgMKQoR4oxLp0bAGC3m/eHpqdj69bmWlZZWZmYIxQyb6/pHljD6TRfc263fE1K56m0zwGgsrLSGE9Lk6/rqirz+REImNcByNd1MBgUc1x00UVxY6WlpQBuk8shLkFERERNhj1RiIiIiJIHB5YlIiIiIiIiIlJgTxQiIqIkFv3fX6JyEREREdH+YyMKERFREuPjPERERETJg4/zEBEREREREREpsCcKERFREuPjPERERETJgz1RiIiIiIiIiIgU2BOFiIgoiXFMFCIiIqLkkbSNKLsAuOLEtijef6QQf0ORI0+ID1LkSBfiSxQ5ThLi8fbT3nZK5dgo5/hjV3P8XUU5fq1YRiId/62KHEVCfIIix1oh7lDkyBXi2xU5hgrxr4V4B8U6lgrxCkWONkJc85iBVA6vIofU/a6HIsdcIS5cKqr1aL7sbhLi3ylynCLENefgb4X4m4oc0v7IUeSQ9kd/RY5Wtk/ixprqUZgoEtf4wcd5KJmEw2GEw+F6Y1VVIfH9Tqe5BlRSUiLmcLvdxrjPJ9XkALvd/MlSWiqXIy0tzRi32Wxijnj7sjbHhm/kcuQfZ4yXlpaKOTIzs8RlJFVVVY2KA0AkYr5z5uTInywVFeYajuKwiOdpVZX5uAFAerrfGA8GA8a4dJ4D8rGNRuVPELdb863ErKzMXA6bTX6QQjouXq9cY9y9e7eQwyPm0KxHEgwGjfGyMnMcANLSfMa45npq0aKFMa6530r7w+mUmyak/SHdSwHgL3/5S9xYQMhfg4/zEBEREREREREpJG1PFCIiIuLAskRERETJhD1RiIiIiIiIiIgU2BOFiIgoiXFgWSIiIqLkwUYUIiKiJMZGFCIiIqLkwcd5iIiIiIiIiIgU2BOFiIgoiXFgWSIiIqLkkbSNKJsAOOLErlK8f4sQP0qRo1yIn6TIEX8W6mqbFDnMs6UDGxQ5pFnKr+sq58gW4t0U5SgQ4u0UOdoI8R6KHNJ+f0ORQ9JJscxOIX6MIsdPQlzaH58r1vGDEM9Q5JDOwXRFjkFCXPOognRv+K8ixxAhXqjIUSTEqxQ5pH2Wo8ghrSekyCHd5zTleF6IK25R6CLE/6zIYfp8CQJ4VJEj0fg4Dx2ugqEgbLb6Y9nZLcT3h0LmO5Tb7RFzRKPmpsW0tDQxx+7du43xYDAo5ohEzOUIBCrFHLZ4O/N/XH3kGpJUDo9H+jQHwuGwMe52u8QcLpd5Ga9XLoe030tLS8QcEs05Ju0PzbaEw+ZPaylHZWVAXEdVlfl6cjjifTP7mc1mfsjBbrfEHD6fVLuRc4RC5v0lxQHA7zeXIxyWP1EjEfMyliVvi8Nh3qdOp3z+yOuRyyHd55xOuVlhzx5zDVlzf/F4zNfcrl3StysgOzv+t9rKgHytAHych4iIiIiIiIhIJWl7ohAREREf5yEiIiJKJuyJQkRERERERESkwJ4oRERESSyKxI1lwp4oRERERI3DRhQiIqIkxoFliYiIiJIHH+chIiIiIiIiIlJgTxQiIqIkxoFliYiIiJIHe6IQERERERERESkkbU+UcQBS4sQ0v6RVCPFsRY4vhfjSBJTjKkWOYiH+nSJHFyFeqsixW4inK3L0EOKpihyfCPFjEpCjtyLHsUL8VUUOaX9sUeRwCfG5Qnx4AtahUSTE2yhyzBbiExQ5pH06WJFjjRDXXAvSefqZIodXiG9V5JDuH90UOT4X4pp7do4Ql/Y5IG+v5ro23ferFO8/EDgmCh2uclq2REpK/bU9y5Lf73Saq7FOp0PMEQgEjPHSUrmGFI2a73ItWsi1znDYfHWGQkExh9frMcYjEfluHImEjXG7Xf791es1fzppclRWVhrjKSnSJyBQWWmuhaekyLVOaT3FxSViDml/VFXJny42m80Y373bXEtPT/eL6/B45H0qiUTM57HLJdcod+3aZYzn5Eg1BiAUMu/T9HS5plZebj5/HA7NtRDv22w16TwH5GOvOX+k+4fm2FdWmu+VluKm7XCY79kVFeViDml7Ndd1MBh/W0KG2N6SthGFiIiI2IhCRERElEz4OA8RERERERERkQIbUYiIiJJYNMF/DTF9+nT069cP6enpaNWqFc477zxs3LgxZplvv/0W559/PnJycuD3+3HRRRdh+/btMcvk5eXBZrPF/M2YMaOBpSEiIiJqemxEISIionotX74cY8aMwerVq/HOO++gqqoKQ4YMQXl59XPL5eXlGDJkCGw2G5YuXYqPPvoIoVAII0aMqDNOxLRp07Bt27bav3HjxjXFJhERERE1CsdEISIiSmJNOSbKW2+9FfP/Z555Bq1atcK6detw2mmn4aOPPsLmzZvx6aefwu+vHrjw2WefRVZWFpYuXYrBg38eqjk9PR25ubmN3QQiIiKiJsWeKEREREnMQuIe5VFMeGJUXFw9X1x2dvVsI8FgEDabDR7Pz7OCeL1e2O12rFixIua9M2bMQIsWLXD88cfjwQcfRDhsngWEiIiIKBmxJwoREVEzU1ISOy2nx+OJaQipTzQaxfjx43HyySfj6KOPBgCceOKJSEtLw2233YY//vGPsCwLt99+OyKRCLZt21b73htvvBG9e/dGdnY2Vq5ciUmTJmHbtm14+OGHE79xRERERAdQ0jairALgjhPbqXh/phCXZykHpFnIP1bkGJCAHMcK8XxFjg1CXJ5hXLZFsYw0C/nXihzS/vhJkUPaXocixyohPkSR409CvIsih3T8bxXiSxXryBTi0rUCANKs7dK+AIBThXiaIke6EH9DkeMYIa55YOETIa65R3UQ4hmKHNI+0xzbNkJ8rSKHdG/4vSLHl0JcM6iq6fwIAFiiyJFoB+Jxnnbt2sW8PnnyZEyZMsX43jFjxuDzzz+P6WGSk5ODhQsX4oYbbsBjjz0Gu92OSy+9FL1794bd/nNn14kTJ9b+u1evXnC73bjuuuswffp0sfGGDl/l5RWIROq/MjU9lRwO86d1KGQTczid5qpwZWWFmCMtzWeMV1TIObzeFGEd8idcZWXAGLesxvZFA6qqQuIye1/79QkGzeUEgJQU8/6oqpJrrtFo47e3vNx87Px+qVYB7Nixwxh3u+V7oM9nPv6tWrU2xktLS8V1OJ3m60m6VgD52Ev7ApDPdWkdmmX2/SGhPikp5pqJ0ynX1KRr326X71Fud7xvxDXlkL+1SPtDc2xdLvP2au5zNpt5e1u1aiXmCASk+5yYAg5H/PuL5rgCSdyIQkRERAfGli1bascwASA2ZIwdOxavv/46PvjgA7Rt2zYmNmTIEHz77bfYtWsXnE4nMjMzkZubi06dOsXN179/f4TDYWzevBldu3Zt3MYQERERHURsRCEiIkpiB6Init/vj2lEiceyLIwbNw6LFy/GsmXL0LFjx7jLtmzZEgCwdOlS7NixA+ecc07cZdevXw+73a761YmIiIgombARhYiIKInVDAqbqFwNMWbMGMyfPx+vvPIK0tPTUVBQAADIyMio7W4/b948dO/eHTk5OVi1ahVuuukmTJgwobaHyapVq7BmzRqcfvrpSE9Px6pVqzBhwgRcdtllyMrKStCWERERER0cbEQhIiKies2ePRsAMHDgwJjX582bhyuvvBIAsHHjRkyaNAmFhYXIy8vDHXfcgQkTJtQu6/F4sGDBAkyZMgXBYBAdO3bEhAkTYsZJISIiIjpUsBGFiIgoiR2Ix3m0NANRzpgxAzNmzIgb7927N1avXt3ANRMRERElJ3l4YyIiIiIiIiIiYk8UIiKiZNaUPVGIiIiIKBYbUYiIiJJYUw4sS0RERESxkrYRxQvAHSd2jOL9a4X4ZYocnwjxkCKH9LxUJ0WONCHeTZFD2haNfkLcpchRJMS3K3KUCvGtihwZQvwNRY6LhfirihybhXh/RY5iIV4oxDXH7bdC/FlFjnIhfqkih3Qez1bkuEqIb1HkaCPENV9UpWtfOm4A8IMQT1fkyBHiyxU5MoX4SYocHwvx9xU5CoR4D0UO0z5L2g9MokOU3W6D3W6rN+b1esX3V1ZWGONZWdlijooKcw7NuEA2W/3bUMPt9og57HZzjdHjafz+AMzlBIDU1FRzBptPzBGJmPu8VVWFxRxut/mTNBSqFHM4nQ5jvLS0RMyRmWmeQayoSKqFAaGQ+RtDaqpU0wfCYfM+leLxrrO9tWjR0hjfvXu3mMNuNx83aX8CQGWl+dju3r1LzJGd3cIYr6qqEnM4nZoaspnHY772IxH5WpDOH4fDfJ4DgNNprsGUlZWJOex283rS0uTzWLrflpbK5QiHzcdOc680bYt0L67BOiEREVESiyJxj+GwJwoRERFR43BgWSIiIiIiIiIiBfZEISIiSmIcE4WIiIgoebARhYiIKIlxdh4iIiKi5MHHeYiIiIiIiIiIFNgThYiIKImxJwoRERFR8mBPFCIiIiIiIiIihaTtidIaQLyZtS9SvH+zEH9XWQaTsxJQjhxFju+EuHn28GoXCvHXFTk2CPFjFTkKhXiqIsdGIX6pIsdKIf5bRY4vhbhmW24S4vJM5/J+f0OIawaanN/IMgDAU0K8iyKHdB4/ocjxtRAPKHKsEeLxZ5//WbsE5JDO426KHNI9qLcih3Seano/nC7E31fk6CTEpeMGABWGWFDx/gOBA8vS4crhdMHpdNUby8rKEt9fUGCuAZWWloo5XC5zVdjv94s5QiFzOZxOubot5bAsS8yRmZlpjBcXl4g5KisrjfHU1BQxRyQSNsbtdvk33GDQ/GmcmSmfHxUV5cZ4ixYtxByBgLkcmm1p2dL8SavJkZJi3u8lJeZjqzh9sGePuZauOfa7du02xj2eeN/ufiadx7t27RRzSOePZcmfhhUVphqBjtvtFpawiTkqK83nsccjf1uQ7kEpKfK3FptNLqvE5/MZ42VlZWIOt9t8DmmOWzQa//gHgrraXtI2ohAREREf5yEiIiJKJnych4iIiIiIiIhIgT1RiIiIkhh7ohARERElD/ZEISIiIiIiIiJSYE8UIiKiJGYhcQPCKsYWJCIiIiIDNqIQERElMT7OQ0RERJQ8+DgPEREREREREZECe6IQERElsSgS9zhPovIQERERNVdJ24jyBQBXnNhaxftPEeLdFDm2CPHlihwOIb5TkcPbyHUAwGIh3kmRI0OIv63IMViIVylyBIT4VkWOFgnI0UaI5ypyhIT4h4oc0jJ5ihwS6bh8p8hxvhBfocghnes5ihzSMnmKHO0SUI6XG7kOAOgtxH9Q5OghxP+syJEmxLMVOQqE+HGKHNL1dKwix5GGWKXi/USkFwxUwhZnpJ6ffqoQ3+/zme8+Ho9UgwKqqsx3jrKyMjEHYDNGw+GwnMFm7hxuM68CAFBUVGyMu91uMYfTaf6kLSkpFXOkp6cb416vPDqTZZmXCYflGqPDYf6aEwrJOZzOeN9GdHFA3pbycvkck5ZxueRjK4lGzeUMBqVPWSAz0/xtoaysXMwhnetOp/z1VVpGcy1I+1RTjqKiImEd8vmTkpJqjIdC8nHxes33wl275G+k0j1Ksz+k69brTRFzSKO7paTIOUz7PRLR/dyUtI0oRERExDFRiIiIiJIJG1GIiIiSGBtRiIiIiJIHB5YlIiIiIiIiIlJgTxQiIqIkxoFliYiIiJIHe6IQERERERERESmwJwoREVES45goRERERMmDjShERERJLIrENX7wcR4iIiKixmlUI8qMGTMwadIk3HTTTXjkkUcAAIFAAL///e+xYMECBINBDB06FLNmzULr1q0blNvxv7/6DFC8/xMh/qoix4VCvFCR4yIhvlGRY60Q/60ix0ohbp7VvdpyId5VkUN6fsw8E3o1qaxbFTkuE+J/UeQwz3QuHzcAOFaIH6PI0UaIlwrxAsU6pOtJc01+JsS/U+R4WYj3VuT4WIgXKXJI+7SdIod07CsUOfoLcem4AcBDQlyzLS2EeJEix/PWmcb4bbZ3xBydhPg3inKY7ushxfuJDicHsp5Xzfa/v7p8vjTx3ZWV5jtlcXGxmCMjI9MYD4flJszMTHOOYDAo5qioMG9LixbSnRYoLy83xp3OeDXrn5WVlRnjXq9HzGGr/5DWstvl0QTsdnOSUEiqhQHZLbKN8d27dos5LMsyxqXjBgApKSnGuNdrjgOAy+UyxqNR83laVRUW11FZWWmM+3w+MUdFhTlHKCRfC0VF5m1JSZG/LUjHJRKRr+tIxPyzg3RMAPnYR6PyTxupqebtle6DALBjxw5jXLMtTqe52UCzTy+99FJjfOFCqaYPeDzme1AgYL4PAkAkEv96CAYD4vuBRoyJsnbtWjz55JPo1atXzOsTJkzAa6+9hoULF2L58uXYunUrLrjggv1dDRERUbMWTfAfkQbreURERPXbr0aUsrIyjBo1Ck8//TSysrJqXy8uLsbcuXPx8MMPY9CgQejTpw/mzZuHlStXYvXq1QkrNBERUXMRSfAfkYT1PCIiovj2qxFlzJgxOPvsszF48OCY19etW4eqqqqY17t164b27dtj1apVjSspERERER1wrOcRERHF1+AxURYsWIBPPvkEa9fWHfGhoKAAbre7zrOhrVu3RkFB/SMvBIPBmGdFS0pKGlokIiKiw1YiH8Ph4zwkSXQ9D2Bdj4iIDi8N6omyZcsW3HTTTXjhhRfg9XoTUoDp06cjIyOj9q9dO80whkRERESUSAeingewrkdERIeXBjWirFu3Djt27EDv3r3hdDrhdDqxfPlyPPbYY3A6nWjdujVCoRCKiopi3rd9+3bk5ubWm3PSpEkoLi6u/duyZct+bwwREdHhhmOi0MFyIOp5AOt6RER0eGnQ4zxnnHEGNmzYEPPaVVddhW7duuG2225Du3bt4HK58N5772HkyJEAgI0bN+LHH39Efn5+vTk9Ho84VREREVFzlcjGDzaikMmBqOcBrOsREdHhpUGNKOnp6Tj66KNjXktLS0OLFi1qX7/66qsxceJEZGdnw+/3Y9y4ccjPz8eJJ56YuFITERERUUKxnkdERCRr8MCykpkzZ8Jut2PkyJEIBoMYOnQoZs2a1eA83QHEexq3SPF+6WnbTEWOkBAfrsixRIgfp8hxnRDXPLXcT4h/pshRJcQ3K3IEhPhsRY47hHgHRY6XhHi6IkemEI8/xN7PThLiryhylArxQUJcOiYAkCfE1yhyFApxzfV0phC/TZHjGCF+rCJHFyG+UpFDOse6KnJI10uOIkdvxTIS6RzS3KPutL1jjGuup91CvIcih6mnhuZaORA4sCwlk0TV8wDA4/XGHXslEpH7TblcbmPc4XAoSmEZo36/X8xQWmr+JE5JSRFztGjRwhi32+Un8FNTU43xiopKMYdlmfdHKCTVjoFo1Jxj165dYo7c3NbGuNttPvYAULRnjzHucMj71G43n0PhsFQ7rm6INCkuLhZzRKPm68HnM9cqLEu++0v7tKKiXMwRDpvLqbme0tPNy2zd+pOYw+s1X3Ner3xv8HrNvefKyuT9Id2DpHUAwO7d5uvF6ZS/zqekmO8NGtGo+Ryy2Wxijn/84x/GeDgcFnNInw2NHc8rIty/ajS6EWXZsmUx//d6vXjiiSfwxBNPNDY1ERERETUh1vOIiIhiJbwnChERESVOFIkby4Q9UYiIiIgah40oRERESYwDyxIREREljwZNcUxERETNx/Tp09GvXz+kp6ejVatWOO+887Bx48aYZb799lucf/75yMnJgd/vx0UXXYTt27fHLFNYWIhRo0bB7/cjMzMTV199NcrKyg7mphARERElBBtRiIiIklg0wX8NsXz5cowZMwarV6/GO++8g6qqKgwZMgTl5dUD6pWXl2PIkCGw2WxYunQpPvroI4RCIYwYMSJmELpRo0bhiy++wDvvvIPXX38dH3zwAa699tr93SVERERETYaP8xAREVG93nrrrZj/P/PMM2jVqhXWrVuH0047DR999BE2b96MTz/9tHbWhWeffRZZWVlYunQpBg8ejK+++gpvvfUW1q5di759+wIAHn/8cZx11ll46KGH0KZNm4O+XURERET7iz1RiIiIklgkwX8AUFJSEvMXDAZVZamZijM7OxsAEAwGYbPZ4PH8PE2j1+uF3W7HihUrAACrVq1CZmZmbQMKAAwePBh2ux1r1mgmSCciIiJKHknbE+UzAK44Mc3sz/HeW+M4RY4NQjxXkSNHiG9R5JAGApRnqAc2CXHz7PLVThXiXypynCvE5VnbgWIhbp7lvlqpENfsD6kF8nxFDmlbNHoLcel6kfYFAAwQ4q8rcvxSiEvnKAC8I8SlfQEAFUJ8oxAH5Ou6iyLHUiGep8iRKcQ1j270E+KLFDmk7f1ckaNrI9cBANLXcU2OZLQ/j+GYcgFAu3btYl6fPHkypkyZYn5vNIrx48fj5JNPxtFHHw0AOPHEE5GWlobbbrsNf/zjH2FZFm6//XZEIhFs27YNAFBQUIBWrVrF5HI6ncjOzkZBQUFCtosOTYHKSsCy6o3Z7Tbx/TabeRmvN0UuQyBgjDudclVZWiYUCok5gPr3Q41o1ByvXo+5MdRul2tZaWk+Y1zaXwCQkZEhLiMJh821X6dTPj8iEfOd0+GQf0uWzrGMjExFORo/pHdKSqoxLpVT2hcA4POZj31JiVxrzcjwG+OBgNxgX1paYoxL+wJAzOOk9dH8cCBd116vxxgHgNJS89hfbrd5fwGAw2G+buPcQmOkppr3WVFRkZhD2t6yMvneIOXY+weZeCoqyhudIxHYE4WIiKiZ2bJlC4qLi2v/Jk2aJL5nzJgx+Pzzz7FgwYLa13JycrBw4UK89tpr8Pl8yMjIQFFREXr37g27nVUMIiIiOvwkbU8UIiIiOjBTHPv9/toxTDTGjh1bOyBs27ZtY2JDhgzBt99+i127dsHpdCIzMxO5ubno1KkTACA3Nxc7duyIeU84HEZhYSFyczV9OomIiIiSB38mIiIionpZloWxY8di8eLFWLp0KTp27Bh32ZYtWyIzMxNLly7Fjh07cM455wAA8vPzUVRUhHXr1tUuu3TpUkSjUfTv3/+AbwMRERFRIrEnChERURI7ED1RtMaMGYP58+fjlVdeQXp6eu0YJhkZGUhJqR5vYt68eejevTtycnKwatUq3HTTTZgwYQK6dq0e6aZ79+4YNmwYrrnmGsyZMwdVVVUYO3YsLrnkEs7MQ0RERIccNqIQERElMQuJG1hWMf5cjNmzZwMABg4cGPP6vHnzcOWVVwIANm7ciEmTJqGwsBB5eXm44447MGHChJjlX3jhBYwdOxZnnHEG7HY7Ro4ciccee2w/t4KIiIio6bARhYiIiOplKYb9nzFjBmbMmGFcJjs7G/Pnz09UsYiIiIiaDBtRiIiIklhTPs5DRERERLE4sCwRERERERERkULS9kT5BQBPnFiR4v09hPh3ihxpQlzTApUuxAsVOUqF+JeKHFcJ8cWKHAVCfLMixydC3KvI8a0QX6vIcYwQ1wx1uFWIH6nIsVKI91PkWCTEjxPiml+mdwrxTooc7wpx6ZrV0FzXfYW4tK0A8IoQ763IMUCIS9cKAEjzmmhySA9YFCtyuIR4WyEOyPs9oMhxihDX3F9M+yykeP+BwJ4odLhyezzweOqv7UWj8tnq9Zqv6mBQvmrtdnNtzmaziTkcDnOOcFjelkjEPPJRICDfBVu0yDbGi4rkO3o4XGWMh0LyPq2srDDGpX1evZ5go9YBAF5vijHudEqfXvL+cLnkHOXl5cZ4amqqmKO4uMgYl7ZVIxwOG+Nud7xvZj8rLTV/a/F4NJ/EZtK5Acj7tKLCvK0AUFJivl5SUuTj5vP5jHHNeZyaav5GqsmxZ88eYzwSke9RoZD5Xuh2a64n836PRuVHiNPSzPvUbpfv2RUVlXFjQcW9FkjiRhQiIiKqHlQ2UQPLJioPERERUXPFx3mIiIiIiIiIiBTYE4WIiCiJ8XEeIiIiouTBnihERERERERERArsiUJERJTEOCYKERERUfJgIwrR/7d377FxVdcex38ej8fjx9iOnYdrkhBzExFRSC4OSRoopSURqO3lEmgFf/SRPnSFWieQRP0DpKZBFVKigsqjjUKlSrT/pKGAEiAqbcPLgPJocOqrhBYr0FBME+dxqePn2OOZc/+I4uIS77WTOc4ch+9HspTMOrPOmXUes729z9kAEGHczgMAABAd3M4DAAAAAADgIbIjUS6RNNaM550e799lxOd65Bgy4pd55LCGTj/rkcMyw2OZzUb80hDW4/MXzgYj3u6RY44Rv8IjxxtGfJ9HjiYjfsAjx7IQclizwyeN+DSPdSSMuM8tAlcacZ/91mHEr/XIYc1i7zM7vHUM+lxfao34ix45Ljfi13vksGqa8shxixF/zyPH34249VklaYcRL/fI0eWIZTzePx5yCm8ECbfzIEoSJQklEmf/hunvt77dpL6+Pme8tNT6BpSCIDByWN+AkpFC6fQpM4elpMT69pJOnjzpjI9V69HrcS9TNlbj/CPicfe2ptODZo5EotQZTybtfdvb6z4+fI6xMuMDp9MDZo5Uyv1N6pMjl3NfvWMx99/F43H7V76ioiJn3DpXJCmZdNfLZ79lMu7fwMrLK8wcsZj1WexvQ+sYLC11xyW77j09PWYO6zpWUVFp5hgacte0uNgeV1FVVZ3XOnyWSSbtmp461e2MW+eCJGWzY7eqXLFR6/FaCgAAAAAA4BMusiNRAAAAD5YFAACIEjpRAACIsKzCGzbKg2UBAADyw+08AAAAAAAAHhiJAgBAhDESBQAAIDoYiQIAAAAAAOCBkSgAAEQYD5YFAACIDjpRAACIMG7nAQAAiI7IdqIckpQYI7bQ4/3vGvHLPHLsMuIfeuQ4YcRv8MhxxIgf8MixzIj/3SOHtZ46jxx781yHJO0z4is9cnQY8R+EkCPtkSNlxHs8cqwx4lbNff4yXW3EreNcss/J6z1yPGfEp3nksPbbFI8ch4x4xiOHdU7e6JHjmBH3qcc/jPhVHjkeMOINHjmqjLh1DEr2OXetR45uI/8LHjkA+BkcTKuo6Oyx8vJy8/1DQ4POeCIxVkvyX/r7+4z4sJljeNi9TGVlpZkjk3F/c6TTA2aOykp3q2JoaMjMMTDgXk88bv/q0N/f74z7fJZcLnDGJ0+ebObIZNyfd8qUqR453PslCOxWVCzm7gbPZu0c1rb29bmPYx/FxcXOuPU5JPucrKysMHOcOpX/MWjtt+JiO4f1WST3MSrZ52QY14aSkhIzx/CwO0cyWWbmOHasM+/tiMXcx1gm445L9jlXVmYfY7nc2H9SihX7/dkqsp0oAACA23kAAACihAfLAgAAAAAAeGAkCgAAEZZTeM8yYSQKAABAfuhEAQAgwrKSxnhsxHnlAgAAwPnjdh4AAAAAAAAPjEQBACDCeLAsAABAdDASBQAAAAAAwENkR6I0SRprxuqdHu+/xIi3eeSYYsT/5pHjTiPuc3+6e4bx07WyWLPHW+uQ7L9g1nrk+LsRf8Qjx70hbMf1RjzpkcOqWdojx5tGfI5HjgNG3NrOQx7rGDLiPufCVUb80RBy+Oy3jBG3zntJKg8hR4sR9xkx8K4R7/HI8VUjXhFCDp/P8g8jXuyR4zIj3u2Rw3V8WMfOeOGZKLhYlZWVqazs7K293l77ChaPlzjj6fSARw53U3hw0PoGlGpqJhlLBGaOWMz9d82x6vRRuZz7altcbF9Jg8C9rVa9JGloyF2zSy6ZbuY4cuRI3ttRUVHpjFs1l6TiYvcyw8P2N1x/f78zXlpaauYYGHAfy9a+HRwcNNdh7fuhITtHMuk+Tk+cOJF3jljM5xsx/+PYOj58cvT29prLWKy69/VZv+VJNTU1zrjPuVBd7c7hI5Nxt6SKPHZtIuE+X3I5u6WTy419fLhiHxXZThQAAEAnCgAAQJRwOw8AAAAAAIAHRqIAABBhPFgWAAAgOuhEAQAgwridBwAAIDq4nQcAAAAAAMADI1EAAIiwQOHdhuP3zHkAAACMhZEoAAAAAAAAHhiJAgBAhIX5HBOeiQIAAJCfyHaivCWpdIzYf3i8//+M+AmPHHPyjEtjf4Yz9nrkeNOIN3jk+KwR/9AjxwyPZSxWA/5pjxzW8KlDHjmWGfGHPXIsNuIpjxxdRvxSjxx1eebwqVfSiF/vkeNtI36DR45TRtznvM4YcZ/zusOIv+iR46tGfIpHDuvc3++Rw/osf/PI0WTE0x45jhlx6ziX7HPuA48crpoWe7x/PNCJgotVenBQRUVnf2xyImG1oKTh4WFnPJt1xyWptNS9HisuSbGY+9HPfX0DZo7+/n5nvKSkxMxRWVnhjGcy9hXAZz02942DXV1dZoYxDosRg4ODZo5Uyv2tcOLEcTNHebm7prGYPag/l3PX3SdHPO7+lS2RSDjjPvUa61w8o6Ki0syRTru/8Ssr7RzDw+56Wee9JOVy7mPQ5/pSVORuMfb09Jg5ampqnHFrv0rS4KD7nBwYcF87JCmTGTLW4Y5LUllZmTMeBPYNw5mMu6bFxXZLyzpfhoaslr77OmedByPb4bUUAAAAAADAJ1xkR6IAAIDTD5UNa4rjsB5QCwAA8EnFSBQAAAAAAAAPdKIAABBh2ZB/zsWGDRu0cOFCpVIpTZ06VcuXL1d7e/uoZTo7O/WNb3xD9fX1qqioUFNTk5555plRy8yaNUtFRUWjfjZu3HiOWwMAAFB4dKIAABBhhexEaWlpUXNzs/bs2aOdO3cqk8nopptuUl9f38gy3/zmN9Xe3q7nnntOBw4c0O2336477rhDf/7zn0fl+vGPf6yjR4+O/KxatepcSwEAAFBwPBMFAACc1e9///tR///Vr36lqVOnqrW1VZ/73OckSbt27dLmzZu1aNEiSdIPf/hDPfzww2ptbdXVV1898t5UKqX6+voLt/EAAADjgJEoAABEWC7kH0nq7u4e9eMz/aUknTp1eqLx2trakdeuvfZaPfnkk/rwww+Vy+W0detWpdNpff7znx/13o0bN6qurk5XX321HnzwQa9pKgEAAKImsiNR5khyz0btZs127Z71/bQjRrzaI8eHRnyWR47LjHiLR46/GPEPPHJ0GPErPHI0GfEDHjmsGcTf8cix32MZS7sR/55HjqeN+GMeOW404lOM+FyPdew14l0eOeryXIdkny+3euT4HyN+qUcO62/ptUZckkqN+PMeOf7TiFvniiRdYsRrPHKkjfj/euT4gRF/yCPHHCP+3x45Tjli/R7vnyhmzJgx6v/r16/X/fff73xPLpfT6tWrdd111+nKK68cef23v/2t7rzzTtXV1Skej6u8vFzbtm3T7NmzR5a5++671dTUpNraWu3atUv33Xefjh49qp/+9Kehfi5MLMnShJJJ62o4tiAInPFYzP5b4dBQxhmPx+0r6fCw+0a5RCJh5igtdS/T29tr5kin3Vdj67NKUibjbkEnk0kzR1lZuTM+MDBg5rDmJPPp+B0YyP+qPTjorunkyZPNHP/8Z5czfvLkCTNHZWXKGY/H3b/SlZba51l/v7teuZx9Q6i1HX199j6xzpfqavs3sPffd//W4nNOlpSUOOM+14ZYzH0cd3e7Wh2nJZPWb8T2/H3xuPuzxGL2Z7Gutz7n9dSpU53x48ePmzmsY7m6usrMkc2OPVdhLuc3j2FkO1EAAEC40xKfydXR0aGqqn81NHwa2M3NzTp48KDeeOONUa+vW7dOXV1devHFFzV58mRt375dd9xxh15//XVdddVVkqS1a9eOLD9v3jwlEgnddddd2rBhg9e6AQAAooJOFAAAImw8OlGqqqpGdaJYVq5cqR07dui1117T9OnTR15/99139fOf/1wHDx7Upz/9aUnS/Pnz9frrr2vTpk16/PHHz5pv8eLFGh4e1nvvvafLL7/8vD8PAADAhUYnCgAAOKsgCLRq1Spt27ZNr776qhobG0fFzwz//vfbJoqLi51DYtva2hSLxcyhvQAAAFFDJwoAABGWleS+E9nfuY5qaW5u1pYtW/Tss88qlUqps7NT0ul70svKyjR37lzNnj1bd911lx566CHV1dVp+/bt2rlzp3bs2CFJ2r17t/bu3asvfOELSqVS2r17t9asWaOvf/3rmjRpUkifDAAA4MKgEwUAAJzV5s2bJeljM+088cQT+ta3vqWSkhL97ne/07333qtbbrlFvb29mj17tn7961/rS1/6kqTTz1vZunWr7r//fg0ODqqxsVFr1qwZ9ZwUAACAiYJOFAAAIqyQI1Gsp/FL0pw5c/TMM8+MGW9qatKePXvOcc0AAADRRCcKAAARNh4PlgUAAMD5idmLAAAAAAAAILIjUXolDY8Rm+Hx/neM+BSPHA1G/C8eOWryXIdkf5aFHjkOGfFlHjl2GfE5Hjk6jfgxjxy3GfEXPHJYx1B9CDle9sgxZMQ/65FjthG39n2XxzpmGfE2jxzWcfpfHjmsmu/1yPE9I24do5KUMuJXeOSoMeIZjxzvGfEOjxzWuf+6R46kEb/bI4d1ffG5zk0z4j7X7IQjNuDx/vFQyNt5gPGUzQbKZs9+VJaUlJjvHxwcdMbjcbuZm0i415NOp80csVhxXus4vR73ZykvL887RyplfXtJfX19znhpaamZI5MZqwV/2vCwOy5JNTXVznh3d7eZo6TEdUWXysvt/WLtu56eXjOHdQWvqKg0M1h1t86FbDZrriORcNdrYMD+FrSO0+rqKjOHde739fWbOSZPnuyMZzJ2K6u42H1eJ5NW68e+NvjcMjs05P5tIZOxfpuQiovd57513ktSLFbkjE+Z4q65z3p8rnPWdd26DkpSUdHYn2V42D5XJEaiAAAAAAAAeInsSBQAAHB69EhYI1HCygMAAPBJRScKAAARlpPkHkTrj04UAACA/HA7DwAAAAAAgAdGogAAEGFZMRIFAAAgKhiJAgAAAAAA4CFyI1HOTPXkmlDOntjKnh7UngxKsiZI8pmC1JoYz2fKTGs77Mn37M/rsx1WDp/9Yq3HZ79YOXz2i1VTn2lArbrbE2zZ2+rTy5nvdkykc8GagM3nXHBPNudXjzD2vXW++NTU2lZ7EslwzierpvbEeXZNw/gsPvvFNbHdmW30mZIwTIxEwcVmpK3nmD7YZxpca/phnymOi+PuK9igxxTHgXGGZrMen2XQfUX3maLWmubWh1VTn2lurSmOfaaNdsxA6p1jrOmzvVciu+5DHlPlZofdyxQV2a0962vHmubW5/jJ5tz18tpvMfdnGR62Wgz2uT/gdfy49+2wx37L5dxFz+bs89rabz41LS7Of0pf67z1m8rdXVOfa4O173zaV3GjHj45XMfHmVpYeYqCC90aNHzwwQeaMWNGoTcDAICz6ujo0PTp08d9Pel0Wo2Njers7Aw1b319vQ4fPqxkMhlqXsAXbT0AQJRZbb3IdaLkcjkdOXJEqVRqpJeou7tbM2bMUEdHh6qqqgq8hRMf9QwfNQ0fNQ0fNc1PEATq6elRQ0ODYsZf28KSTqc1NOQzPspfIpGgAwUF9e9tPa5N4aOm4aOm4aOm4aKe+fNt60Xudp5YLDZmr09VVRUHRIioZ/ioafioafio6fmrrq6+oOtLJpN0eOCiM1Zbj2tT+Khp+Khp+KhpuKhnfnzaejxYFgAAAAAAwAOdKAAAAAAAAB4mRCdKaWmp1q9fr9LS0kJvykWBeoaPmoaPmoaPmgKIIq5N4aOm4aOm4aOm4aKeF07kHiwLAAAAAAAQRRNiJAoAAAAAAECh0YkCAAAAAADggU4UAAAAAAAAD3SiAAAAAAAAeIh8J8qmTZs0a9YsJZNJLV68WH/6058KvUkTxmuvvaZbbrlFDQ0NKioq0vbt20fFgyDQj370I33qU59SWVmZli1bpkOHDhVmYyeADRs2aOHChUqlUpo6daqWL1+u9vb2Ucuk02k1Nzerrq5OlZWV+spXvqJjx44VaIujb/PmzZo3b56qqqpUVVWlJUuW6IUXXhiJU8/8bdy4UUVFRVq9evXIa9QVQJTQ1jt/tPXCRVsvfLT1xhftvMKIdCfKk08+qbVr12r9+vXav3+/5s+fr5tvvlnHjx8v9KZNCH19fZo/f742bdp01vhPfvITPfbYY3r88ce1d+9eVVRU6Oabb1Y6nb7AWzoxtLS0qLm5WXv27NHOnTuVyWR00003qa+vb2SZNWvW6Pnnn9dTTz2llpYWHTlyRLfffnsBtzrapk+fro0bN6q1tVVvvvmmbrzxRt1666166623JFHPfO3bt0+/+MUvNG/evFGvU1cAUUFbLz+09cJFWy98tPXGD+28AgoibNGiRUFzc/PI/7PZbNDQ0BBs2LChgFs1MUkKtm3bNvL/XC4X1NfXBw8++ODIa11dXUFpaWnwm9/8pgBbOPEcP348kBS0tLQEQXC6fiUlJcFTTz01ssxf//rXQFKwe/fuQm3mhDNp0qTgl7/8JfXMU09PTzBnzpxg586dwQ033BDcc889QRBwnAKIFtp64aGtFz7aeuODtl7+aOcVVmRHogwNDam1tVXLli0beS0Wi2nZsmXavXt3Abfs4nD48GF1dnaOqm91dbUWL15MfT2dOnVKklRbWytJam1tVSaTGVXTuXPnaubMmdTUQzab1datW9XX16clS5ZQzzw1Nzfry1/+8qj6SRynAKKDtt74oq2XP9p64aKtFx7aeYUVL/QGjOXkyZPKZrOaNm3aqNenTZumt99+u0BbdfHo7OyUpLPW90wMY8vlclq9erWuu+46XXnllZJO1zSRSKimpmbUstTU7cCBA1qyZInS6bQqKyu1bds2XXHFFWpra6Oe52nr1q3av3+/9u3b97EYxymAqKCtN75o6+WHtl54aOuFi3Ze4UW2EwWIsubmZh08eFBvvPFGoTdlwrv88svV1tamU6dO6emnn9aKFSvU0tJS6M2asDo6OnTPPfdo586dSiaThd4cAAAmJNp64aGtFx7aedEQ2dt5Jk+erOLi4o89SfjYsWOqr68v0FZdPM7UkPqeu5UrV2rHjh165ZVXNH369JHX6+vrNTQ0pK6urlHLU1O3RCKh2bNna8GCBdqwYYPmz5+vRx99lHqep9bWVh0/flxNTU2Kx+OKx+NqaWnRY489png8rmnTplFXAJFAW2980dY7f7T1wkVbLzy086Ihsp0oiURCCxYs0EsvvTTyWi6X00svvaQlS5YUcMsuDo2Njaqvrx9V3+7ubu3du5f6jiEIAq1cuVLbtm3Tyy+/rMbGxlHxBQsWqKSkZFRN29vb9f7771PTc5DL5TQ4OEg9z9PSpUt14MABtbW1jfxcc801+trXvjbyb+oKIApo640v2nrnjrbehUFb7/zRzouGSN/Os3btWq1YsULXXHONFi1apEceeUR9fX369re/XehNmxB6e3v1zjvvjPz/8OHDamtrU21trWbOnKnVq1frgQce0Jw5c9TY2Kh169apoaFBy5cvL9xGR1hzc7O2bNmiZ599VqlUauS+wurqapWVlam6ulrf/e53tXbtWtXW1qqqqkqrVq3SkiVL9JnPfKbAWx9N9913n774xS9q5syZ6unp0ZYtW/Tqq6/qD3/4A/U8T6lUauTe7TMqKipUV1c38jp1BRAVtPXyQ1svXLT1wkdbL1y08yKi0NMDWX72s58FM2fODBKJRLBo0aJgz549hd6kCeOVV14JJH3sZ8WKFUEQnJ76bt26dcG0adOC0tLSYOnSpUF7e3thNzrCzlZLScETTzwxsszAwEDw/e9/P5g0aVJQXl4e3HbbbcHRo0cLt9ER953vfCe49NJLg0QiEUyZMiVYunRp8Mc//nEkTj3D8dGp74KAugKIFtp654+2Xrho64WPtt74o5134RUFQRBcyE4bAAAAAACAiSiyz0QBAAAAAACIEjpRAAAAAAAAPNCJAgAAAAAA4IFOFAAAAAAAAA90ogAAAAAAAHigEwUAAAAAAMADnSgAAAAAAAAe6EQBAAAAAADwQCcKAAAAAACABzpRAAAAAAAAPNCJAgAAAAAA4IFOFAAAAAAAAA//D083FemWfE6MAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of fire pixels detected: 2\n" + ] + } + ], "source": [ "# Apply simplified FDC algorithm\n", "fire_detections = simplified_fdc(image_4um, image_11um)\n", @@ -787,7 +1855,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -796,7 +1864,59 @@ "id": "3ZQx_2SQdUx8", "outputId": "0f1044d6-b757-431c-8041-263c1ea7032a" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAHqCAYAAADMLNG2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwGUlEQVR4nOzdeXhTVf4/8HeSNkmTZulekVVh2FFZxKICIrIpLuDggoKOu4AKOo6MG6IO6jjiMiyjo9VRGRQFF0ZhUBRFlkEEvzAqgwuCQlm6L1ma5P7+6K+V0OZ8Tmmgwb5fz9PngbxvPjm5W05uzr3XZBiGASIiIiIiIiIiUjI3dwOIiIiIiIiIiI4FPIhCRERERERERKSBB1GIiIiIiIiIiDTwIAoRERERERERkQYeRCEiIiIiIiIi0sCDKEREREREREREGngQhYiIiIiIiIhIAw+iEBERERERERFp4EEUIiIiIiIiIiINPIhCR1X79u1x1VVXNctrz5gxAyaTqVleO5YdO3bAZDLhxRdfbO6mJLyrrroKqampzd2MuLnqqqvQvn375m4GERFRQmvOviMADB48GIMHD9aetkePHke2QU3w4osvwmQyYceOHc3dlGPaxx9/DJPJhI8//ri5m0LNhAdRKC62bNmCiy++GO3atYPdbsfxxx+Pc845B88880xzNy0u5s6d2+wHOh5++GGcf/75yMnJgclkwowZMxqcbtu2bZg6dSoGDBgAu92e8B+Wfr8fs2fPRv/+/eHxeGC32/Gb3/wGkydPxv/+97/mbh4REdExp/bLckN/d911V9107du3r3vcbDbD6/WiZ8+euP7667F+/fqY9eP12f3ee+/BZDKhVatWiEQiTXrPR8vu3bsxY8YMbN68ubmbUs9VV10Vc7kvW7bsqLZl8ODBUeuW2+1G586dceWVV2LFihVNqr1gwQI8+eST8WmoQiL0/ykxJTV3A+jYt2bNGpx11llo27YtrrvuOuTm5mLXrl1Yt24dnnrqKUyZMqVu2m3btsFsPvaO3c2dOxeZmZnN+kvIPffcg9zcXJxyyilYvnx5zOnWrl2Lp59+Gt26dUPXrl0T8kO+1oEDBzBixAhs3LgR5513Hi6//HKkpqZi27ZtWLhwIZ599lkEg8HmbiYREdExaebMmejQoUPUY4eOlDj55JNx++23AwDKy8vx9ddfY9GiRXjuuecwdepUPPHEE1HTx/Oz+9VXX0X79u2xY8cOrFy5EkOHDm3Cuz0y/v3vf0f9f/fu3XjggQfQvn17nHzyyc3TKAWbzYa///3v9R4/6aSTcM455+DSSy+FzWY7Km1p3bo1Zs2aBQCorKzEt99+i8WLF+OVV17BuHHj8MorryA5ObnRdRcsWICtW7fitttui3OLo8Xq/w8cOBA+nw9Wq/WIvj4lLh5EoSZ7+OGH4fF4sGHDBni93qhs3759Uf8/WjvtX6MffvgB7du3x4EDB5CVlRVzuvPPPx8lJSVwuVx4/PHHE/ogylVXXYVNmzbhjTfewNixY6OyBx98EHfffXcztYyIiOjYN3LkSPTt21c5zfHHH48rrrgi6rFHH30Ul19+OWbPno1OnTrhpptuqsvi9dldWVmJt99+G7NmzUJ+fj5effXVhDqIUlVVBYfDccx9UU5KSqq3PA9msViUzzcMA36/HykpKU1ui8fjqdeWRx55BLfccgvmzp2L9u3b49FHH23y6xxtZrMZdru9uZtBzejYGxJACee7775D9+7d6x1AAYDs7Oyo/x96XmvtcNPVq1fjlltuQVZWFrxeL2644QYEg0GUlJRgwoQJSEtLQ1paGu68804YhlH3/FjnJOpeayQ/Px9DhgxBdnY2bDYbunXrhnnz5tVr83//+1+sWrWqbljiwefGlpSU4LbbbkObNm1gs9nQsWNHPProo/WGpZaUlOCqq66Cx+OB1+vFxIkTUVJSomzfoe3QkZ6eDpfLJU7XmHlXez2SnTt34rzzzkNqaiqOP/54zJkzB0DN6VxDhgyB0+lEu3btsGDBAvH1169fj3/961+45ppr6nXCgJoDbo8//ni9x3/++WdceOGFSE1NRVZWFu644w6Ew+GoaR5//HEMGDAAGRkZSElJQZ8+ffDGG2/Uq2UymTB58mS89dZb6NGjB2w2G7p3715vyGvt9XS+/fZbXHXVVfB6vfB4PLj66qtRVVVVr+4rr7yCPn36ICUlBenp6bj00kuxa9cucZ4QERElgpSUFLz88stIT0/Hww8/XNf3OtzP7oYsWbIEPp8Pv/3tb3HppZdi8eLF8Pv9Ws/9v//7PwwaNAgpKSlo3bo1HnroIeTn5zd4CvPcuXPRvXt32Gw2tGrVCpMmTarX/6q9lsnGjRsxcOBAOBwO/PGPf6zLavt9H3/8Mfr16wcAuPrqq+v6hYf2N7/66iucddZZcDgcOP744/HYY49F5bV9sNdffx0PPPAAjj/+eLhcLlx88cUoLS1FIBDAbbfdhuzsbKSmpuLqq69GIBDQmjcqDV0TpX379jjvvPOwfPly9O3bFykpKfjb3/4GQL+P2xgWi6VuxPRf//pXlJaWRuVSH2rw4MH417/+hR9//LFu/h/cRw4EArj//vvRsWNH2Gw2tGnTBnfeeWeD8++VV17BqaeeCofDgbS0NAwcOLBu5JGq/x+rD71o0aK6tmdmZuKKK67Azz//HDVNbZ9apz+7cOFC9OnTBy6XC263Gz179sRTTz3V2FlORwBHolCTtWvXDmvXrsXWrVsP+2JaU6ZMQW5uLh544AGsW7cOzz77LLxeL9asWYO2bdviT3/6E9577z38+c9/Ro8ePTBhwoS4tH3evHno3r07zj//fCQlJeHdd9/FzTffjEgkgkmTJgEAnnzySUyZMgWpqal1v67k5OQAqPmVYtCgQfj5559xww03oG3btlizZg2mT5+OPXv21J2vaRgGLrjgAqxevRo33ngjunbtiiVLlmDixIlxeR9HQzgcxsiRIzFw4EA89thjePXVVzF58mQ4nU7cfffdGD9+PMaMGYP58+djwoQJyMvLqzeE+GDvvPMOAODKK69sVBuGDx+O/v374/HHH8cHH3yAv/zlLzjxxBOjfiV76qmncP7552P8+PEIBoNYuHAhfvvb32Lp0qU499xzo2quXr0aixcvxs033wyXy4Wnn34aY8eOxc6dO5GRkRE17bhx49ChQwfMmjULX3zxBf7+978jOzs76leUhx9+GPfeey/GjRuHa6+9Fvv378czzzyDgQMHYtOmTQ0ebCQiIjoSSktLceDAgajHMjMztZ6bmpqKiy66CM8//zy++uordO/e/bA+u2N59dVXcdZZZyE3NxeXXnop7rrrLrz77rv47W9/q3zezz//jLPOOgsmkwnTp0+H0+nE3//+9wZHO8+YMQMPPPAAhg4diptuugnbtm3DvHnzsGHDBnz22WdRp5IUFhZi5MiRuPTSS3HFFVfU9fUO1rVrV8ycORP33Xcfrr/+epx55pkAgAEDBtRNU1xcjBEjRmDMmDEYN24c3njjDfzhD39Az549MXLkyKh6s2bNQkpKCu666y58++23eOaZZ5CcnAyz2Yzi4mLMmDED69atw4svvogOHTrgvvvu05q3hy7z5ORkeDyemNNv27YNl112GW644QZcd9116Ny5s3Yf93BYLBZcdtlluPfee7F69eq6vplOH+ruu+9GaWkpfvrpJ8yePRsA6m48EIlEcP7552P16tW4/vrr0bVrV2zZsgWzZ8/G//73P7z11lt1bXjggQcwY8YMDBgwADNnzoTVasX69euxcuVKDBs2TNn/b8iLL76Iq6++Gv369cOsWbOwd+9ePPXUU/jss8/q9f90+rMrVqzAZZddhrPPPruun/n111/js88+w6233nrY857ixCBqon//+9+GxWIxLBaLkZeXZ9x5553G8uXLjWAwWG/adu3aGRMnTqz7f35+vgHAGD58uBGJROoez8vLM0wmk3HjjTfWPRYKhYzWrVsbgwYNqnvso48+MgAYH330UdTr/PDDDwYAIz8/v+6x+++/3zh0la+qqqrXxuHDhxsnnHBC1GPdu3ePet1aDz74oOF0Oo3//e9/UY/fddddhsViMXbu3GkYhmG89dZbBgDjsccei3o/Z555Zr12Svbv328AMO6//35x2j//+c8GAOOHH36olzVm3k2cONEAYPzpT3+qe6y4uNhISUkxTCaTsXDhwrrHv/nmG632XXTRRQYAo7i4WHwfB7dh5syZUY+fcsopRp8+faIeO3S5BoNBo0ePHsaQIUOiHgdgWK1W49tvv6177MsvvzQAGM8880zdY7Xrzu9+97t67yEjI6Pu/zt27DAsFovx8MMPR023ZcsWIykpKerxiRMnGu3atdN450RERI1T279q6O9g7dq1M84999yYdWbPnm0AMN5++23DMBr/2R3L3r17jaSkJOO5556re2zAgAHGBRdcUG/aQ/uOU6ZMMUwmk7Fp06a6xwoLC4309PSoPs++ffsMq9VqDBs2zAiHw3XT/vWvfzUAGC+88ELdY4MGDTIAGPPnz6/3+oMGDYrqA27YsCFm3622zj/+8Y+6xwKBgJGbm2uMHTu27rHaPliPHj2i+suXXXaZYTKZjJEjR0bVzcvL0+oz1PaVDv2rbX/tenFwv7Bdu3YGAGPZsmVRtXT7uLEMGjTI6N69e8x8yZIlBgDjqaeeMgyjcX2oc889t8H58fLLLxtms9n49NNPox6fP3++AcD47LPPDMMwjO3btxtms9m46KKLotYNwzCivo/E6v8f2ocOBoNGdna20aNHD8Pn89VNt3TpUgOAcd9999U9ptufvfXWWw23222EQqF6r0/Nj6fzUJOdc845WLt2Lc4//3x8+eWXeOyxxzB8+HAcf/zxdb9YSK655pqo2w/3798fhmHgmmuuqXvMYrGgb9+++P777+PW9oPP96z9tWbQoEH4/vvv6w0vbMiiRYtw5plnIi0tDQcOHKj7Gzp0KMLhMD755BMANVefT0pKihotYbFYoi66eyy49tpr6/7t9XrRuXNnOJ1OjBs3ru7xzp07w+v1isuprKwMALROPTrYjTfeGPX/M888s95rHbxci4uLUVpaijPPPBNffPFFvXpDhw7FiSeeWPf/Xr16we12N9j+hl67sLCw7r0sXrwYkUgE48aNi1ofcnNz0alTJ3z00UeNeq9ERERNMWfOHKxYsSLqrzFqf+EvLy8HcPif3YdauHAhzGZz1ClBl112Gd5//30UFxcrn7ts2TLk5eVFXdQ1PT0d48ePj5rugw8+QDAYxG233RZ1U4PrrrsObrcb//rXv6Kmt9lsuPrqq5vwrmqkpqZGXQfEarXi1FNPbbBfMWHChKjRMLX939/97ndR0/Xv3x+7du1CKBQSX99ut9db5n/5y1+Uz+nQoQOGDx8e9ZhuH/dwHbpuxaMPtWjRInTt2hVdunSJqjFkyBAAqKvx1ltvIRKJ4L777qt3w4uDv4/o+vzzz7Fv3z7cfPPNUddKOffcc9GlS5d66xog92e9Xi8qKyubfCcjOjJ4Og/FRb9+/bB48WIEg0F8+eWXWLJkCWbPno2LL74YmzdvRrdu3ZTPb9u2bdT/a4cctmnTpt7j0odrY3z22We4//77sXbt2nrXtigtLVUOfQSA7du34//+7/9iXui19sK6P/74I4477ri6D4xanTt3bkLrjy673V7vfXo8HrRu3breB47OcnK73QBqPjx1T3FpqA1paWn1Xmvp0qV46KGHsHnz5qhzYBv6YDx03YtVs6Fp09LSANQcqHG73di+fTsMw0CnTp0abP/hXIGeiIjocJ166qnihWVVKioqAPxy0ORwPrsbUnstisLCQhQWFgIATjnlFASDQSxatAjXX399zOf++OOPyMvLq/d4x44d600H1O9rWa1WnHDCCXV5reOPPz4uF5FtqF+UlpaG//u//6s3bWP6v5FIBKWlpfVONT6UxWJp9AV6Gzr9WrePe7gOXbfi0Yfavn07vv76a7HN3333Hcxms/j9RFesdQ0AunTpgtWrV0c9ptOfvfnmm/H6669j5MiROP744zFs2DCMGzcOI0aMiEubqWl4EIXiymq1ol+/fujXrx9+85vf4Oqrr8aiRYtw//33K58X60rhDT1uHHRh2VhHiw+9MFNDvvvuO5x99tno0qULnnjiCbRp0wZWqxXvvfceZs+erXXRrEgkgnPOOQd33nlng/lvfvMbsUaiOXj+Hqwxy0hVp1aXLl0A1FyUtvacYol0RXkA+PTTT3H++edj4MCBmDt3Lo477jgkJycjPz+/wQveNqb90rSRSAQmkwnvv/9+g9MeehCNiIgokW3duhXALwcoDuez+1Dbt2/Hhg0bAKDBL8yvvvqq8iDKkRKPu9EA8elXHG7f6nA19N6PdB/30HUrHn2oSCSCnj171rstd61DD041F53+bHZ2NjZv3ozly5fj/fffx/vvv4/8/HxMmDABL7300lFoJanwIAodMbW/fOzZs+eIvUbtSIBDr7J+6K8LDXn33XcRCATwzjvvRP0S0NBwwVgHa0488URUVFSIR/zbtWuHDz/8EBUVFVEfAtu2bRPbeaTVDqOstXfv3qPyuqNHj8asWbPwyiuvHHZHrCFvvvkm7HY7li9fHnWRufz8/Li9RiwnnngiDMNAhw4djskDaERERLUqKiqwZMkStGnTBl27dgUQn8/uV199FcnJyXj55ZfrfZlcvXo1nn76aezcubPBkaJATZ/q22+/rff4oY+1a9cOQE1f64QTTqh7PBgM4ocffjjs2ykfzukexyLdPu7hCIfDWLBgARwOB84444y619PtQ6n65V9++SXOPvts5XI68cQTEYlE8NVXX0WdFqb7Ooc6eF2rPXWo1rZt2+ryxrJarRg9ejRGjx6NSCSCm2++GX/7299w77331ht5RUcXr4lCTfbRRx81eGT8vffeA3BkT1lp164dLBZLvfMy586dKz639oP74LaXlpY2+GXb6XQ2eDvicePGYe3atVi+fHm9rKSkpO7c1VGjRiEUCkXdPjkcDuOZZ54R23mkHXrQaMmSJQCO3K8dtfLy8jBixAj8/e9/j7paeq1gMIg77rij0XUtFgtMJlPUaKQdO3Y0+BrxNmbMGFgsFjzwwAP15p9hGHVDlomIiBKZz+fDlVdeiaKiItx99911Xybj8dn96quv4swzz8Qll1yCiy++OOrv97//PQDgn//8Z8znDx8+HGvXrsXmzZvrHisqKsKrr74aNd3QoUNhtVrx9NNPR30mP//88ygtLa13tz5dTqcTQP0f8H5tdPu4jRUOh3HLLbfg66+/xi233FJ3ilhj+lBOp7PBaxeOGzcOP//8M5577rl6mc/nQ2VlJQDgwgsvhNlsxsyZM+uNPD/4tWP1/w/Vt29fZGdnY/78+VGnkb///vv4+uuvD2tdO7TPaDab0atXLwCIy+2uqWk4EoWabMqUKaiqqsJFF12ELl26IBgMYs2aNXjttdfQvn37uFykKxaPx4Pf/va3eOaZZ2AymXDiiSdi6dKlWudpDhs2rO4I7w033ICKigo899xzyM7Orjd6pk+fPpg3bx4eeughdOzYEdnZ2RgyZAh+//vf45133sF5552Hq666Cn369EFlZSW2bNmCN954Azt27EBmZiZGjx6N008/HXfddRd27NiBbt26YfHixVoXr6318ssv48cff6y7dssnn3yChx56CEDNrQZrj3KXlpbWHZz57LPPAAB//etf4fV64fV6MXny5Ki6zz33HPx+P04++WR8/vnnWLRoEUwmExYvXowOHTpg8ODB2m1srH/84x8YNmwYxowZg9GjR+Pss8+G0+nE9u3bsXDhQuzZswePP/54o2qee+65eOKJJzBixAhcfvnl2LdvH+bMmYOOHTs2eD5yPJ144ol46KGHMH36dOzYsQMXXnghXC4XfvjhByxZsgTXX3/9YR0YIiIiOlJ+/vlnvPLKKwBqRp989dVXWLRoEQoKCnD77bfjhhtuiJq+KZ/d69evx7fffluvL1Lr+OOPR+/evfHqq6/iD3/4Q4PT3HnnnXjllVdwzjnnYMqUKXW3OG7bti2KiorqDvhkZWVh+vTpeOCBBzBixAicf/752LZtG+bOnYt+/fpFXfy1MU488UR4vV7Mnz8fLpcLTqcT/fv3b/C6Iscy3T6uSmlpad26VVVVhW+//RaLFy/Gd999h0svvRQPPvhg3bSN6UP16dMHr732GqZNm4Z+/fohNTUVo0ePxpVXXonXX38dN954Iz766COcfvrpCIfD+Oabb/D6669j+fLl6Nu3Lzp27Ii7774bDz74IM4880yMGTMGNpsNGzZsQKtWrTBr1qy612mo/3+o5ORkPProo7j66qsxaNAgXHbZZXW3OG7fvj2mTp3a6Pl/7bXXoqioCEOGDEHr1q3x448/4plnnsHJJ59cNzKMmtHRvBUQ/Tq9//77xu9+9zujS5cuRmpqqmG1Wo2OHTsaU6ZMMfbu3Rs1baxbHG/YsCFqutpbyu7fvz/q8YkTJxpOpzPqsf379xtjx441HA6HkZaWZtxwww3G1q1btW5x/M477xi9evUy7Ha70b59e+PRRx81XnjhhXq3fysoKDDOPfdcw+VyRd0qzjAMo7y83Jg+fbrRsWNHw2q1GpmZmcaAAQOMxx9/POq2dYWFhcaVV15puN1uw+PxGFdeeaWxadMm7Vsc1942r6G/g29TXHuL4ob+Dr4dXO3t2ebOnWuceuqphtVqNbp162asWrXKuOKKK4zU1NS62/81NN9r29TQ7eukWyYerKqqynj88ceNfv361a0/nTp1MqZMmRJ16+FYbWhouT7//PNGp06dDJvNZnTp0sXIz89vcDoAxqRJkxps/8Hraaz1saFbBRqGYbz55pvGGWecYTidTsPpdBpdunQxJk2aZGzbti3q/fAWx0REdCTE6l8dqvb2tgAMk8lkuN1uo3v37sZ1111nrF+/PubzdD+7DzVlyhQDgPHdd9/FnGbGjBkGAOPLL7+sa+PBn8mGYRibNm0yzjzzTMNmsxmtW7c2Zs2aZTz99NMGAKOgoCBq2r/+9a9Gly5djOTkZCMnJ8e46aab6t2iWXU73kNvcWwYhvH2228b3bp1M5KSkqL6cbHqHPqZX9sHW7RoUdR0je0XN/Q6DfWVDq1/6C2OY/XZdPu4DTm035qammp06tTJuOKKK4x///vfMZ+n04eqqKgwLr/8csPr9dbr3waDQePRRx81unfvbthsNiMtLc3o06eP8cADDxilpaVRr/XCCy8Yp5xySt10gwYNMlasWFGXx+r/H3qL41qvvfZaXb309HRj/Pjxxk8//RQ1jW5/9o033jCGDRtmZGdnG1ar1Wjbtq1xww03GHv27Ik57+joMRnGER6zT0QJ6eOPP8ZZZ52Fjz766IiONiEiIiI60m677Tb87W9/Q0VFhdaFO4mIDheviUJERERERMcMn88X9f/CwkK8/PLLOOOMM3gAhYiOOF4ThYiIiIiIjhl5eXkYPHgwunbtir179+L5559HWVkZ7r333uZuGhG1ADyIQkREREREx4xRo0bhjTfewLPPPguTyYTevXvj+eefx8CBA5u7aUTUAvCaKEREREREREREGnhNFCIiIiIiIiIiDTyIQkRERERERESkIeGuiRKJRLB79264XC6YTKbmbg4REREAwDAMlJeXo1WrVjCbj85vEH6/H8FgMK41rVYr7HZ7XGsSNQb7ekRElIh0+3pH7CDKnDlz8Oc//xkFBQU46aST8Mwzz+DUU08Vn7d79260adPmSDWLiIioSXbt2oXWrVsf8dfx+/3o0KEDCgoK4lo3NzcXP/zwAw+kUJMcbj8PYF+PiIgSm9TXOyIHUV577TVMmzYN8+fPR//+/fHkk09i+PDh2LZtG7Kzs5XPdblcAIA/A0iJMc0ujTbEem4tn5ADwI9Cfq1GjflCPkqjxttCfo5GjS5CXqVR489CfqNGDZuQv6hRo72Ql2rU+GupeqoXPB6xRl8hl5Y9AHQS8kyNGtKyKxJynW1B6urq1PhJyHtr1Ngu5D00arwh5Cdp1EgW8mKNGtI+6nuNGp2F/AyNGpuEXJrnAPCDkOssW+l+Ck9q1LhayHdq1DhLkVWiZn9b+zl1pAWDQRQUFGDXrl1wu91xqVlWVoY2bdogGAzyIAodtqb084BftqFHH5oZcz0MVleLdaQRYZFIRKxRLYz0ysjIEGscOHBAmetsv6VCv0RnvyNt0zrzY9++vco8M1PumUiji4qKpJ4JkGxV9xgj4bBY4+abb1Lm+fkvijUcTqcyP7B/v1jDJiyXJItFrBGJqO8DEgqHhOfLy96abFXXMOQaIWG7TUmRej9AIBhQ5nab/NlVWlqirpHiEGtI63EopJ7ngLyPqhbeKyCvP6nOVLFGVZX620IgILcjKLQ1xSHPU6mt+/fvE2ukp6v3ycGg/NmR6o7dDp/Ph1un/V7c5x6RgyhPPPEErrvuOlx9dU2Xdv78+fjXv/6FF154AXfddZfyubUrbApif8mQvogDgLR5ybsBQL0rAdS71RrSly15dZNryLsjua06g2mllUXnvUjLRXqvgLz8peUGyB0anXkq7bJ02iHND512SLfXise2ILVD5xZf0nLTea9SjXhsTzpfK6Ua8dhH6WwLUg2dfZRUQ2c9lvYNOvNDaqvOh5W0/HWWrdwVkTtW8eZ2O+B266zdOuROH5GkKf084JdtyG63x/xSZdH4YhmPgygWoYbOlz7p4IXWF0fhS0w82qEzP+LxXqR9pM4BXKtwECWscRBF7OtpvBeHMI3Oe5GmSUqSP+GkZSd9odc6iGIVDqLoHJQUtludeW42S+uPzvbkV7dDY7kdjYMoFuG9AvHZJg3hAJhOv0ZaLjrzVGqrzvYk1dD57JC2a0CeJ3E/qTsYDGLjxo0YOnToLy9iNmPo0KFYu3ZtvF+OiIiIiI4S9vOIiKili/tIlAMHDiAcDiMnJyfq8ZycHHzzzTf1pg8EAlFH38vKyuLdJCIiomNYCPEbQcKRKNQ0je3nAezrERHRr0uz3+J41qxZ8Hg8dX+80BgREdHBQnH+Izq62NcjIqJfk7gfRMnMzITFYsHevdEXptq7dy9yc3PrTT99+nSUlpbW/e3apXPZWCIiIiI62hrbzwPY1yMiol+XuB9EsVqt6NOnDz788MO6xyKRCD788EPk5eXVm95ms8Htdkf9ERERUS2ORKHE0dh+HsC+HhER/bockbvzTJs2DRMnTkTfvn1x6qmn4sknn0RlZWXdVdx19EbsuyS013i+dM3u/ho1lgp5gUYN6TallRo1Jgi5zqDYp4U8S6PGnUIu37AOeEfIde5IIpGvyQw8J1xx+VONGg2f+f0LnVvldhPyrzRqpAv5e0Kucxtc6WZhP2vU8Aq5dEtxnRrqGzPWkOZ5oUaN4UL+vkYNabk1/HtutIuFfKtGjROE/EuNGv2EXL4BZHzumiSt6zr7uZcUmXwDQKKWIR79PABIcTpi3iVBulNIDfW94ZzC7WkB+dbCoZB8u0zp1p86dzVJT1d/KujMj3371LcH1bkLjHSLap274pSVlSvzeNzhTKfEc889p8wrKyvEGtJdXhyOpt81ye9XvwYAWCzqZSddZyg1Ved+fcJtlDW2BenOKEHhluIAYDara+jcFUea52HhltCAfFtxaT0H5LvzJCXJ33y83jRl7vP5xBrS3a6qquQaDuEWxjrLRdr2TSZ5fIe0ruvs54oKY39r9Wlsj8AROohyySWXYP/+/bjvvvtQUFCAk08+GcuWLat3ETIiIiKShBG/ESTyFyAiCft5RETUkh2RgygAMHnyZEyePPlIlSciImoheHceSjzs5xERUUvV7HfnISIiIiIiIiI6FhyxkShEREQUDxyJQkRERJQoOBKFiIiIiIiIiEgDR6IQERElNI5EISIiIkoUPIhCRESU0MKI3111eHceIiIioqbg6TxERERERERERBoSdiTKTgCOGNlqjee3EvKlGjVcQn6JRo2+Qr5Fo4ZFyLtp1Bgu5MkaNbxC/pVGjbM0ppFIy26QRo1vhfx4jRpBIa/WqPG9kG/XqCEt/5OEvEjjNdoL+QUaNW4V8t4aNQqE/GKNGs9qTCN5Xciv0agREfIzNQ5xTxaKSMseALoIeZZGDWldl/ZhgHxE/wSNGlVCrrOOrVJk0jZ/5IQRv9NwOBKFEkd1IIigueE9REVFhfh8q1XdeyktLRNrWCzqvY83LU2skZISq8daw+/3iTUAkzK12+1iBbfbrX4Fk/o1AMBiUX818PsDYg2XS+pBy8rKSpW505kq1pDampSk0/s1lGkkos4BIBBQf3rozFO7Xb3sUlJSlHkoJO/7HQ6rMvd4vGKNn376SZlL7QSAcFjdVq9XbseBAwfEaSTFxSXKPDMzU6xhGOr1w+WS1+OdO3cpc4dDnqc2m3r/kZQkHxKQ13V5/yLtg2w29TpY0w5151dnHVN9vhhC/VociUJEREREREREpCFhR6IQERERwAvLEhERESUOHkQhIiJKaDyIQkRERJQoeDoPEREREREREZEGjkQhIiJKaByJQkRERJQoOBKFiIiIiIiIiEgDR6IQERElNN7imIiIiChRJOxBlAMAYt3l2aHx/HIh1xmCc56Ql2nU2C/kN2nU+FzI12vUGCDklRo1dgj5No0aq4T8BY0aq4W8k0YNqa0nadRoI+RfadToJuS9NWp0FHJp/Vmp8RqdhXyKRo3kJuYAcIGQ36hRo7+Q79ao8bqQL9GoIW1zazRuUy9t199rtEPaV0r7MADwNDEHgH8Kuc6+8iMh/1Kjhmo91FgkRwhP56Ffp1AohFCo4XXSbJZ7auGweqs0meQ2uN3qPVREeI2adqi3q7S0TLFGZWWVMq+qkntqDodTnEYSDAaVeSDgF2tUVKjnR7t2bcUalZUVytxut4k1AoGAMk9JifVN4xdWq7p34vfL88Nutytzh0P+ZmOzqd+vtH6Ul6vnZ81rqNv500+7xBomYaMzm+WN0uVSb5O7dsntcDrV87S6ulqs0b59B2VeWloi1ohE1PuPykp5u05NVW/XgYB6mwWAcFi9f4m1Hz5YUpJFmVss6hwAioqKlHlWVpZYo7xc3XP1+31iDdV6aNJYRwGezkNEREREREREpCVhR6IQERERwJEoRERERImDB1GIiIgSGg+iEBERESUKns5DRERERERERKSBI1GIiIgSGkeiEBERESUKjkQhIiIiIiIiItLAkShEREQJLYz4jSAJx6kOERERUcvEgyhEREQJjafzEBERESWKhD2I0hdAaoysXOP5X2rUl6wS8t4aNXYL+RKNGicJuUOjRlDIpfkFAAOE/BKNGv8U8nkaNa4V8q80aviF3KlRY4uQn6NRY42Qx2PZStvL9xqvIa2n52nUaCXk2zRqVAr5fo0a0nrcQ6PGI0J+gkaNj4T8Yo0anYV8dhxqSNsbIK9DWRo1PhByaX4BgE3IpXUQAPorsgro7aOISI/D6YQjJaXBLBKRR01VVfnU9R3yp2hFRYVQo+H2Hay6ulqZl5SUijVSYsyHWqGQ+jVqGMpUml8AkJqq7gGlpR0n1igqKlLm+/cfEGtkZGQqc59Pfi+GEVHmZrN8VQOfT91jdLldYo3KCnXvRacdhqFetuGw+r0GgwHxNUpLS5S52+0RayQnJytzv1/qgcvbfigk/xjgcKjXY2l7A4C9e/cqc6vVKtYoL1fvX7xer1jDbrcr83375N6v3a7uIWVkZIg1AgH1N46kJPmwQnm5+luJlAOA2WwS2qFeBwHA6Yy9ftg19i1AAh9EISIiIoAjUYiIiIgSBy8sS0RERERERESkgSNRiIiIEhpHohARERElCh5EISIiSmg8iEJERESUKHg6DxERERERERGRBo5EISIiSmhhxG8EiXzHEyIiIiKKjSNRiIiIqEHz5s1Dr1694Ha74Xa7kZeXh/fff78uf/bZZzF48GC43W6YTCaUlJTUq1FUVITx48fD7XbD6/XimmuuEW8rS0RERJSoEnYkyhIAse5o/Y3G828S8q80anQWcvlO58BzQv6SRg3pDvSXa9T4m5CP0agxT8h3aNRQ3+kckO8ODnwh5NUaNdoIuc5vtbuEfLZGjeFCvkajRm8hzxfyezReY7CQ36lRQ3qvKzVqSNvCBI0aWUIurecA8LmQX6BRQ3ovlRo1pgl5N40a0nL5QKPGBiHfrVFDWoe+16jRSsh19i9LFZnOPv/ICCN+I0gaV6d169Z45JFH0KlTJxiGgZdeegkXXHABNm3ahO7du6OqqgojRozAiBEjMH369AZrjB8/Hnv27MGKFStQXV2Nq6++Gtdffz0WLFgQjzdEx7CSkhIE/A1vWYGAvMVlZmYqc59PrmG3x+pt1ohEDLFGm7ZtlXlRYZFYw2xW/66ZlpYu1jhw4IAy93o9Ta4RDAbFGiaT+r2EQvLIuqqqKmVuGPJySU62ClPINaqr1e933959Yg23263MKyvlT3yHw6HMCwsLlXlObq74Gt9u367Ms7NzxBrSe62okD+Jg0GLMk9Pl7eF5GT1V1xpPQfkddDjkbcni0W9LUQiEbHGzz//pMztdunbFeB2q3ud5eXycpHmR3W1/A1MWocCgYBYw2pNVuY687S0tDRm5ovxmXSohD2IQkREREBzXlh29OjRUf9/+OGHMW/ePKxbtw7du3fHbbfdBgD4+OOPG3z+119/jWXLlmHDhg3o27cvAOCZZ57BqFGj8Pjjj6NVK+nQFxEREVFi4ek8RERELUxZWVnUn86vP+FwGAsXLkRlZSXy8vK0Xmft2rXwer11B1AAYOjQoTCbzVi/fv1ht5+IiIioufAgChERUUILxfkPaNOmDTweT93frFmzYr76li1bkJqaCpvNhhtvvBFLlixBt246J4sBBQUFyM7OjnosKSkJ6enpKCgo0Hz/RERERImDp/MQERG1MLt27Yo6d91mi31diM6dO2Pz5s0oLS3FG2+8gYkTJ2LVqlXaB1KIiIiIfk14EIWIiCihxf8Wx7V329FhtVrRsWNHAECfPn2wYcMGPPXUU/jb36RLlgO5ubnYty/6wouhUAhFRUXI1bjQIREREVGi4ek8RERECS3+p/M0RSQS0bqGCgDk5eWhpKQEGzdurHts5cqViEQi6N+/f5PbQkRERHS0cSQKERERNWj69OkYOXIk2rZti/LycixYsAAff/wxli9fDqDmmicFBQX49ttvAdRcP8XlcqFt27ZIT09H165dMWLECFx33XWYP38+qqurMXnyZFx66aW8Mw8REREdk3gQhYiIKKE13y2O9+3bhwkTJmDPnj3weDzo1asXli9fjnPOOQcAMH/+fDzwwAN10w8cOBAAkJ+fj6uuugoA8Oqrr2Ly5Mk4++yzYTabMXbsWDz99NPxeTtERERER5nJMAyjuRtxsLKyMng8HiwF4Iwxjc5NEWM9t9YWjRpXCHlYo8YXQl6lUeN6If9Io8YuIXdp1Ogt5Ns1alyerM5vrpZrxL78YQ2ds/wdQt5Go4Y0zW6NGtJyqdSosU3ILxJynasSfCPk+zVqlAr5co0alwm5znKTDNeYRpofOste2ubu0qjxJyHX2VdKYwF09g3SNH6NGtL+I6JRwyvkp2jU2KrIfACmAigtLdW+nkhT1H4elpY+ALfbHqeafng89x+190DUkNp1e/4zTyIlJaXBaSor5R6S2aw+K93v94k10tLShSnkbnJVlfp1IhF5D5aZmanMy8vLxRrBYFCZWywWsYbDoe4hBQLyHj09PUOZ79y5U6xhNpuEXH4v0vphtQqdUgDJyVZlXl0td1yl5aKzfkinUHo8HmWenCy/V2nZhkLyQfhQSP3tSGc9TktLU+Y6y02i8/nn96vnubRcAcBiUa+Du3fvEWu0anWcMtfZV0rLX2onIG9zOutxMKiepzpHJaT9mLQPAwCfL/Y+2+fz4bbf/0HsJ3EkChERUUJrvpEoRERERBSNB1GIiIgSGg+iEBERESUK3p2HiIiIiIiIiEgDR6IQEREltDDiN4JE52peRERERBQLR6IQEREREREREWngSBQiIqKEFgIg34lCvxYRERERHS4eRCEiIkpoPIhCRERElCgS9iDKegD2GJl8N2xggJCna9RYKuQ6dymXXqeTRo3vhfxmjRr3CblXo8Y9Qp6lUePxanXeRqOGV8iLNGo8IeSnadS4Q8il5QYA0h3me2rUkOb7F0Lu1XiNprYBAGLfab3GIxo1vhLy1zRqDBLyaRo1hgr5txo1coT8Ao0aHYX8G40aFwn5PI0aESFfpVGjv5Bv0KgxXcg3adRop8h0PnuISF9lVRUikYb3ILEeP5jT6VTmSUnywcfS0lJlbjabxBoWi7o7bbPZxBqBQECZ//TTLrFGbm6uMrdY5PmxZ89uZZ6UJH912LdvnzJPTraKNeS2ytd3at36eGW+bdv/xBrZ2dnKXFpuNQxlareniBWk+e7z+ZR5MCj1OGU6y95sVi+3Vq2OE2v4/ep5WlxcItZITU1V5j/99LNYw+VyKXOdZS/NM4/HI9aw2WJ9I64hzS8A8Hq9ynz//v1iDUlFRYU4jcPhUOY+n9zTyslR96CrquQaVmvsfVAopPdjU8IeRCEiIiKAI1GIiIiIEgcvLEtEREREREREpIEjUYiIiBIab3FMRERElCh4EIWIiCihhRC/gaM8nYeIiIioKXg6DxERERERERGRBo5EISIiSmgciUJERESUKDgShYiIiIiIiIhIA0eiEBERJTSORCEiIiJKFAl7EGUHAGuMrL3G89sI+XqNGr2FfItGjVVCnqFR42Ih/7dGDZeQRzRq9BPyao0aWUL+hkaN3wl5ukaNV4T8Jo0aJUIe1KghzQ+debpNyKX1+CuN1xgq5DrbQrmQf6pRQ3ovQzRqnCDk0r4DAHYLeQ+NGslC7tSoMUfIde7Dsl3IvRo1pPnu0aghrR86y3a/kPub2I4qjecfGWHE7646vDsPJY5gIAizqeEDhFZrrF6g/jSVlZViDYfDocz9fp9Yo6KiQplbLBaxRlqaV5mfeGJHsYb0OgYMsYbDr54fkYhcIzVV/fWipKRErJGeru4hJyXJ87SoqEiZZ2ZmijXCYWmfKc+PpCT1/DAMuUYgEFDmKSkpytzvlz8B3W71twWfT64hza/KSvW2AgApKep10OVKFWtYrTZlnpws9cKAUEjdC7fb7WINs9kk5PIPJPv3q3s38Vh/dLanVJd6/dDZz0nrR2qq9I0VCIXUPwZFIvK32kgkdjtU2cF4Og8RERERERERkYaEHYlCREREQM3okXidhsORKERERERNwZEoREREREREREQaOBKFiIgooYUAqM+rblwtIiIiIjpcPIhCRESU0HgQhYiIiChR8HQeIiIiIiIiIiINHIlCRESU0DgShYiIiChRJOxBlOMBxLr79kUaz98s5Gdp1Hg+DjXKhbydRo2VQv65Ro3WQj5Zo8ZuIc/RqNFGyOdq1Ngu5Drz9Hshz9KosVbIz9Co4RByr0aNQiGX7rh+nsZrzBPyCRo1tgr5AI0aEvkO9fL8+FKjRm8hl+YXAIwU8lj7v4N1E3KdbcEr5NL8AoAyIS/VqHG+kD+rUaNAyIdq1PhRkfk1nk9E+pKSk5GcnNxg5vV6xef7fFXK3OWS92CFhepP0dTUVLFGOBxR5larVaxRXl6hzKuq1O+15nUanpe1MjPl3k0wWK3MYy2vgyUlqadp3VrqDQKBQECZ68zTQCCozJOS5K9BlZWVyjw11SnWMJvVA/8tFrn3Eg6rD4BLNTwej/gaBw4cUObp6WliDZ9P/UnpdMrzSyb/qGCxqOe5z+cTazgcKcpcml8A4HK5lbm0bgCA3a7uEUrbPSCvH2azvA5GhP1cOCzf/U9aDwsL5XlaXa3eR7nd8n4/GIy9bwiF9O5imLAHUYiIiAjgSBQiIiKixMGDKERERAktjPgdRNH7hYWIiIiIGsYLyxIRERERERERaeBIFCIiooQWz1NweDoPERERUVPwIAoREVFC40EUIiIiokTB03mIiIiIiIiIiDRwJAoREVFC40gUIiIiokTBkShERERERERERBoaPRLlk08+wZ///Gds3LgRe/bswZIlS3DhhRfW5YZh4P7778dzzz2HkpISnH766Zg3bx46derUqNc5C4AzRjZb4/mjhLxIo0ZfIdd5R18KeZZGjfZCnq5R4zQhL9GocYWQ67yXb4R8t0aN44W8SqNGrHWr1sUaNf4p5O00akikdgJARMjtQl6i8Rr3CfljGjX+IuQzNGq0EfJBGjWeFfIeGjV2CPl5GjWkG83qrMeFQq6zTa4X8s4aNX4Scp191C4h19nfSstf2qcDwDxF1nxjOOJ5W2Le4pjUjlY/DwDcLhdSUlIazPbt2yc/3+1W5uGwvNU6HA5lbrdLn6KA3+9T5klJcnfbarUKNSxiDYdD3WvQmR/p6eo9dlKy/F78Pr8yr66uFmskJycr80hE6v0AZrP6t2Kv1yvWKC4uVubBoHq56ZDaCQCGIdUwKfNwWN735x6Xq8z3FuwVa7Ru3VqZ79mzR6whLXu32yXWOHDggDLX2a4DgaDQDo9YwxAWnM56HAqpt1ud/UtlZaUy15kfwaB6fujso6qr1TWsVptYw+VSL39pnw4A+/fvV6TqbalWo0eiVFZW4qSTTsKcOXMazB977DE8/fTTmD9/PtavXw+n04nhw4fD71fvUImIiKghoTj/EcXGfh4REZFao0eijBw5EiNHjmwwMwwDTz75JO655x5ccMEFAIB//OMfyMnJwVtvvYVLL720aa0lIiIioiOG/TwiIiK1uF4T5YcffkBBQQGGDh1a95jH40H//v2xdu3aBp8TCARQVlYW9UdERES1OBKFEsPh9PMA9vWIiOjXJa4HUQoKCgAAOTk5UY/n5OTUZYeaNWsWPB5P3V+bNtJVD4iIiOhomDdvHnr16gW32w232428vDy8//77dbnf78ekSZOQkZGB1NRUjB07Fnv3Rp83bzKZ6v0tXLjwaL8VioPD6ecB7OsREdGvS7PfnWf69OkoLS2t+9u1S7q8IBERUUvSfCNRWrdujUceeQQbN27E559/jiFDhuCCCy7Af//7XwDA1KlT8e6772LRokVYtWoVdu/ejTFjxtSrk5+fjz179tT9HXyhUvr1Y1+PiIh+TRp9TRSV3Nyaqzrv3bsXxx13XN3je/fuxcknn9zgc2w2G2w2+Uq8RERELVMIgHBrBm2NuzvP6NGjo/7/8MMPY968eVi3bh1at26N559/HgsWLMCQIUMA1Bws6dq1K9atW4fTTvvlvnBer7euj0DHrsPp5wHs6xER0a9LXEeidOjQAbm5ufjwww/rHisrK8P69euRl5cXz5ciIiKioygcDmPhwoWorKxEXl4eNm7ciOrq6qjrY3Tp0gVt27atd32MSZMmITMzE6eeeipeeOEF8baPlJjYzyMiIjqMkSgVFRX49ttv6/7/ww8/YPPmzUhPT0fbtm1x22234aGHHkKnTp3QoUMH3HvvvWjVqlWjh+7+B0CsO1br/Ja1W8jVdyCv0UPI12vU2BKHdniFfJRGjZeEvOl3uQeGa0yjuis3AKzRqDFAyD/XqHGCkEvtBIAhQq5zhPJ4Idfpkj4i5O2EfKvGa0jr+nkaNZYK+UUaNaqF/DGNGtI259SoMUvIr45DO3TWwb1CrjNgXlp20jwHAOkSkdKyB4CzhHy1Ro1WQv6FRg3V8m++81/DiN9IlAgA1Luwp2qkwJYtW5CXlwe/34/U1FQsWbIE3bp1w+bNm2G1WuH1eqOmP/T6GDNnzsSQIUPgcDjw73//GzfffDMqKipwyy23xOk9UTwdrX4eAFRUViIcbnh0VHKy3EWtrlbvoUIhk1gjJSVFmVdWVoo1fD7p9s5yO5KSLMrc7faINYqKCpvcDonb7RanCYXUpw1WVcnz1OFQfxpXVVWJNaTRT1I7ASA1NVWZm0zyPE1OVn/iO51yz+PQa00dKhRS9+R9Pp/4GtJy8XjkdbC0tFSZe71yDekguzQvAHm5mM3yJ/q+ferXSU/PaHI7dNZBaT8n5QDg8ai3W8OIiDUiEfVI1tJS+YLhLpd6e6qokPcNVqt6e9LZN6iWv9mst59s9EGUzz//HGed9Ut3d9q0aQCAiRMn4sUXX8Sdd96JyspKXH/99SgpKcEZZ5yBZcuWwW6PdUiEiIiIjqZDL+x5//33Y8aMGQ1O27lzZ2zevBmlpaV44403MHHiRKxatUr7te699966f59yyimorKzEn//8Zx5ESVDs5xEREak1+iDK4MGDlUcITSYTZs6ciZkzZzapYURERAQciZEou3btivpFWfWLrdVqRceOHQEAffr0wYYNG/DUU0/hkksuQTAYRElJSdRolL179yqvf9K/f388+OCDCAQCvE5GAmI/j4iISK3Z785DREREKvG/O0/tLYtr/xpzMCMSiSAQCKBPnz5ITk6Ouj7Gtm3bsHPnTuX1MTZv3oy0tDQeQCEiIqJjUlzvzkNERES/HtOnT8fIkSPRtm1blJeXY8GCBfj444+xfPlyeDweXHPNNZg2bRrS09PhdrsxZcoU5OXl1d2Z591338XevXtx2mmnwW63Y8WKFfjTn/6EO+64o5nfGREREdHh4UEUIiKihBZC/AaOyhePO9i+ffswYcIE7NmzBx6PB7169cLy5ctxzjnnAABmz54Ns9mMsWPHIhAIYPjw4Zg7d27d85OTkzFnzhxMnToVhmGgY8eOeOKJJ3DdddfF6f0QERERHV08iEJEREQNev7555W53W7HnDlzMGfOnAbzESNGYMSIEUeiaURERETNggdRiIiIElrzjUQhIiIiomg8iEJERJTQwojfwY943eWHiIiIqGVK2IMoXwJIjpE9ovH8fCFvpVGjVMhjte9glwj5Do0aLiFfqlFjlJBv0ahhF/I1GjWqhfxWjRorhfwEjRqVQj5Do4ZDyJ0aNS4W8lc0auwS8tuFvFzjNUqE/FONGm2EvCoO7ZC2FQDoLOTtNGr0F/LYN3f9xRdCnqVRY5CQS+s5AHwg5EM1aowWcmnZA8DrQn69Rg3pMIPOPFXto3TWUSLS5/f5gBi3U27VSu6pFRYWKnOrVe6phcMhZW4ymcQaaWleZR4MBsUaZrNFmZeWSr1SRN22vCE+n1+sIb3fykr5k0V1i2wAyMrKFmuUl6t7Jzp394pE1J8Ke/bsEWuYzepRgFIOIOoW8A0pLi4Sa1RXq9chZ6p6nobDYfE1IhH1NJWVFWKN5GSr8BryDwJSWy0WeZ7bbOpvLTabup0A4HCoe/JJSfLXaJ/P1+QaqampylxnnpaVqbcnt1vuQbs9HmWenCzvb4uLS5R5ZmaGWEPYvcBmk+epah8VCukdHknYgyhEREQE1JzOI3+R08ORKERERERNEa+TrImIiIiIiIiIftU4EoWIiCihcSQKERERUaLgQRQiIqKExoMoRERERImCp/MQEREREREREWngSBQiIqJEZkTiN4CEA1GIiIiImoQjUYiIiIiIiIiINCTsSJRTAaTEyHZrPF+6Y7Z8R21gu5B/pVHjCiHvqVHjPSHvplHjNY1pJGOEvJNGjV1CnqVRQ33nd2CoRo3vhVy+SzlQIuQvadSYLeSjNGpUC/k/hbxE4zX6C/kNGjU2CPn7GjXShXy6Rg1puXyhUeMkIR+uUaONkL+hUaOHkJdo1Ogn5Mdr1HAIuc52HRbyJzVqLBTyVRo1flZkfo3nHxER6H1o6dYiShAOhxMpKQ1/qldXS59uMkNj5FUgEFDmfr+85aelqT+d7CmxerS/KCstU9ewS70foLi4RJxG4vV6lLnJJF+fKRhUL7ukJPnrh9msfh2n0yXWkJatyyXXCIfVn05FRUVijf379ylzt9st1ohE1CtzcVGxMpfeBwA4HOpP88zMTLFGZWWlMi8rKxdrWCwWZZ6TkyvWKCwsVOZVVT6xRoqw3bo98nKzWq3KvKSkRKMd6m0/GGz6sk1OVrcTACxm9diLpKRksYZk37794jTtO7RX5hXlFWIN1eeL3x8Unw8k8EEUIiIiQs0RJrmPpF+LiIiIiA4bT+chIiIiIiIiItLAkShERESJjCNRiIiIiBIGR6IQEREREREREWngSBQiIqJExgvLEhERESUMHkQhIiJKZDydh4iIiChh8HQeIiIiIiIiIiINHIlCRESUyHg6DxEREVHCSNiDKB4AKTGyf2o8/xYhPzFdrjG3SJ17NdrxhZDr1Ogn5H01anwv5K00amwXcum9AsD1Qn6VRo3xQu7XqLFayHM0apws5L01ajiFvL9GjTeEfJeQ68yvL4X8K40aFiEfqlHDFYd2lAt5T40a0vy4R6PGACHX2EXhWSHfr1HjWiF/TKOGtFyu0KixRsgnatR4SsildRAAtiiyao3nE5E+i8UMi6XhLbO4uFh8flZ2ljJ3OhxijT17CpS52SzvOXy+qibXcAhtdTrl9xIIBJS51Zrc5BpVVT6xRmZmpjL/8ccfxRrp6WnK3DAMsUZlZaUyT06WvwalpMT6NqKXA4DZrB7473RKvUGgpKREmQeD6k8ow5CPoPt86mXr98s9RpPJpMxdLqnHULNfULdDXgcjEfX71Vlu0vzYs3uPWENatklJ8r7hwIFCZR4KhcQaGRkZynzv3r1iDWk9Tk+Xe67SNqlTY/8+de9WWAUBAD5f7HVZZz0HEvggChEREaFm9Ei8rmXCkShERERETcKDKERERImMF5YlIiIiShi8sCwRERERERERkQaORCEiIkpkvLAsERERUcLgSBQiIiIiIiIiIg0ciUJERJTIeE0UIiIiooTBgyhERESJjAdRiIiIiBJGwh5ESQfgiJG10nj+P4V8QJFcQ7pzdzuNdmwV8hKNGlKf9w2NGtcIeblGjVwh76lR40chn6FR430hr9KoIa1D3TRqfCHkOncZbyPkqzRq2IX8TiGX1lEA6C/kn2rU+F7IpfcByMttg0aNMUJ+gkaNXUI+TKPG50Kus02OEvK3NWpI+7GTNGqkC3mJRo25Qr5So8aZQq6zjqn2twHI+x8i0peUZEFSUsO9reTkZPH5xUXFyjwYCIo1TCaTMrdarWINv1/9iR8O6xy9NJRpSYncZc/IyFDmkYjcjqQk9Xy321PEGsFgQJkfd5zUowRKS8uUeSQiX+BJWofsdvlToarKp8wNQ73cACApSb3syssrxBomk/oKDDk52crc55N7pU6nU5lXVMjtDATUy17a3gDAalUvt6oquafv8XiVuc1mE2tUV6v3H263W6xRVVWpzMNheT2WXqe0tFSsIc3TlBR5u7ZY1N+MdfZzbdq0VuY620Jqqno9lbYVAFBttvIWXSNhD6IQEREReGFZIiIiogTCC8sSEREREREREWngSBQiIqJExmuiEBERESUMHkQhIiJKZAbidxqO7sm+RERERNQgns5DRERERERERKSBI1GIiIgSGU/nISIiIkoYPIhCRESUyHgQhYiIiChh8HQeIiIiIiIiIiINCTsS5RsA9hhZicbzLxFyv0YNr5C/oFHjD0L+lEaNO4R8h0aN84W8m0aNcUJu1agxMVmdP1Qt16gU8s4a7fiiiTkAbBPy/ho1yoX8S40aK4X8CiHX2RZmCrnO+tNFyC/SqCEt+1j7jIP9XcirNGpI28IbGjVOE/IsjRr7hbyTRo1vhTxHo8ZqIZ+oUUNi0ZgmKOSbNWqcqciqAMzWqBF3EcTvwrLxqkMUBz5/AICpwSwclodNpaWlKfNIRF7hLRb13qWoqFCskZ2t3lPu3y/trYHs7GxlHgxKezjg+++/V+Z2u/wpmZbmFaZoeHkdLDMzU5nv2bNHrCEtO5vNJtbw+XzKvKpK/sQPBALK3Ol0iDUiEfW6XF6ubicAVFSoe4zp6elCG+RtoaBAvVxsNnn9kdYxr9cr1pDaajLJYwAKC9Xbrc78kNpaUlIs1nA4nMo8KUn+Kh4KhZS5zrYQCKj3H8nJcjsqKtS9cGkd1GGSdy8wDPUV8n0+6dsCkJoae7lYLHpjTDgShYiIiIiIiIhIAw+iEBERJbJwnP8aYd68eejVqxfcbjfcbjfy8vLw/vvv1+V+vx+TJk1CRkYGUlNTMXbsWOzduzeqxs6dO3HuuefC4XAgOzsbv//978Vf1oiIiIgSFQ+iEBERJbJmPIjSunVrPPLII9i4cSM+//xzDBkyBBdccAH++9//AgCmTp2Kd999F4sWLcKqVauwe/dujBkz5pemh8M499xzEQwGsWbNGrz00kt48cUXcd999x327CAiIiJqTgl7TRQiIiJqXqNHj476/8MPP4x58+Zh3bp1aN26NZ5//nksWLAAQ4YMAQDk5+eja9euWLduHU477TT8+9//xldffYUPPvgAOTk5OPnkk/Hggw/iD3/4A2bMmAGrVedqWkRERESJgyNRiIiIElkkzn+HKRwOY+HChaisrEReXh42btyI6upqDB06tG6aLl26oG3btli7di0AYO3atejZsydycn658Obw4cNRVlZWN5qFiIiI6FjCkShEREQtTFlZWdT/bTZbzCv8b9myBXl5efD7/UhNTcWSJUvQrVs3bN68GVartd4dDHJyclBQUAAAKCgoiDqAUpvXZkRERETHGo5EISIiSmQRxO96KP9/JEqbNm3g8Xjq/mbNmhXz5Tt37ozNmzdj/fr1uOmmmzBx4kR89dVXR+KdEhERESW8hB2JshiAJUZ2t8bzlwh5D40aG4R8kEaNN4Tcq1FjpZB30qjxopDr/B4onbmu06V2VqvzJzVqSPO0vUaNLCHXGfHeW8h15mmukJ+kUaOdkG9u4vMBoK+Qr9eoIb2XlzRq7BbyWPuMg10r5IUaNaR1PUOjRishl7Z7QJ4fQzRqfCrkOu/lIiHfrFFD2p/21KjhFPLjNWqo1kNh93XkNPE0nHq1AOzatQtut7vu4VijUADAarWiY8eOAIA+ffpgw4YNeOqpp3DJJZcgGAyipKQkajTK3r17kZtbs3fLzc3Ff/7zn6h6tXfvqZ2GWq7SklIE7P4Gs9zcnAYfP1hJSYkyt9vtYo2qqiplnpqa2uR2WCzyp1N5ebkyt9tjb6O12rVrq8yrq+W7YplMJmXu9ze8vA62efNmZd66tbw3luapzvWUkpLUX3MMQywBh8OhzEMh+ZMhKSlZmaekpIg1pPfr86nXY535FYmo36u0rQCAw6F+L0VFci8rGFTPU2kdBYCMDHXvJRyWtwVpXbdY5K/RycnqZS9t94C8jqWmusQaFRUVylzaVgDA6/Uoc5/PJ9aQ9qd2u7wtmM3qMSDS9gYARUVFMTOdfRzAkShEREQtTu0ti2v/VAdRDhWJRBAIBNCnTx8kJyfjww8/rMu2bduGnTt3Ii8vDwCQl5eHLVu2YN++fXXTrFixAm63G926dYvfGyIiIiI6ShJ2JAoRERHhsG5NrKzVCNOnT8fIkSPRtm1blJeXY8GCBfj444+xfPlyeDweXHPNNZg2bRrS09PhdrsxZcoU5OXl4bTTTgMADBs2DN26dcOVV16Jxx57DAUFBbjnnnswadKkRh24ISIiIkoUPIhCREREDdq3bx8mTJiAPXv2wOPxoFevXli+fDnOOeccAMDs2bNhNpsxduxYBAIBDB8+HHPnzq17vsViwdKlS3HTTTchLy8PTqcTEydOxMyZM5vrLRERERE1CQ+iEBERJbJmHIny/PPPK3O73Y45c+Zgzpw5Madp164d3nvvvca9MBEREVGC4kEUIiKiRHYELixLRERERIeHF5YlIiIiIiIiItLAkShERESJrBlP5yEiIiKiaByJQkRERERERESkIWFHokwD4IiRvaHx/DFCnqxRY7eQV2nUuFrIl2rUOFPICzVq3Czkc4UcAP4u5NJ7BYDnhNylUeN2IZ+nUaNayO/WqPGlkJ+gUWObkOus6xcLuVPIP9B4jZFC3k2jxt4m5gBQLuTnadQ4ScjzNWqcLOSbNWpsEXJp3QCASUK+X6OGtB/rqVGjNA41pEt1VGrU+EbIszRqdFFkAY3nHxEciUK/UtnZWUhJSWkwKykpEZ/v8XiVuclkEmtUV6t7BJGIfCGhjIwMZV5aKu0lgdTUVGUeCoXEGrt2/aTM27RpLdYoLFT3KtPT08Uabdu2UeZms0WskZ2drcwPHDgg1jAMQ5nn5uaINXw+nzK32axiDb/fr8xLS0vEGtK6bjarfxevqJB6UIDb7VbmdrtdrCGtp9XV8nosbXNSOwHA4Wh4v1JLWs8BxNw31ZLWDZ1pAgG5Z5GVpe69hELStxp5niYny9+MQyF1ByIlRV4/JDr724oK9faUlCQf3rDZYrc1ot5t/PI6epMRERFRszAQvwvCanYOiIiIiKhhPJ2HiIiIiIiIiEgDR6IQERElMp7OQ0RERJQweBCFiIiIElp1dTUKCgpQVVWFrKwsresyEBERER0JPJ2HiIgokUXi/HeMKC8vx7x58zBo0CC43W60b98eXbt2RVZWFtq1a4frrrsOGzZsaO5mEhERUQvDgyhERESJLBznv2PAE088gfbt2yM/Px9Dhw7FW2+9hc2bN+N///sf1q5di/vvvx+hUAjDhg3DiBEjsH379uZuMhEREbUQPJ2HiIiIEsqGDRvwySefoHv37g3mp556Kn73u99h3rx5ePHFF/Hpp5+iU6dOR7mVRERE1BIl7EGULwHYYmQTNZ7/ipDfoVFjnJCv1agxT8jP0KghvZeLNGpcIOTy3eOBoUK+VaOGpI3GNF8I+Q0aNU4Q8gKNGtId1b/UqHGWkE/QqCEtu3wh76vxGp8LeSuNGjuEXOd35H5CvkajhnQ2Q5FGDfUd6oE/OuQaL1ep83h8HXxDY5ohQv6jRg1p+etsC0Eh76ZR4wMhv1ajxnWKrFrj+UdEC7yw7D//+U+t6UKhEG688cYj3Bo6Unx+H2Ldd1vnujdFRcXKPDsnW6yRluZV5hUVlWKN/fv3K/PU1FSxRlGR+tPH6/WKNTwejzIPh+Xz+VwulzL3+aRPQJnVahKn8fnUH5IZGRliDZst1jeJGtXV8l7dZFK3tarKJ9ZwudTLPyPjRLFGOKLeeRcVFipzh0PumFRVqed5UpLU8wWCQfWneSAQEGtIba2qkrdJSSgkfxgmJze8b6p13HFy7/fAgQPKXFpHdZSUlIjTpKaqt2tpuQFAcrJ6+etsC7H297XsdrtYobxcvQ5lZmaKNXbu3Bkz8/v19nE8nYeIiIgSzuzZs5V5eXk5hg8ffpRaQ0RERFSDB1GIiIgSWQu9sOwf//hH/OMf/2gwq6ysxIgRI1Ao/PpKREREFG8JezoPERERoUWezgMAL7/8Mq688kp4vV6cf/75dY9XVlZi+PDh2L9/P1atWtWMLSQiIqKWiAdRiIiIKOFcfPHFKCkpwWWXXYZ//etfGDx4cN0IlL1792LVqlU47rjjmruZRERE1MLwIAoREVEiiyB+I0iOodN5AODaa69FUVERLrjgArz99tu47777sHv3bqxatQqtWulc0pqIiIgovngQhYiIiBLWnXfeiaKiIpx99tlo3749Pv74Y7Ru3bq5m0VEREQtFA+iEBERJbJ4XhD2GBqJMmbMmKj/JycnIzMzE7feemvU44sXLz6azSIiIqIWjgdRiIiIElkLvbCsx+OJ+v9ll13WTC0hIiIi+kWjDqLMmjULixcvxjfffIOUlBQMGDAAjz76KDp37lw3jd/vx+23346FCxciEAhg+PDhmDt3LnJychrVsAsApMbI/qnx/IuEfIVGjUFCvk2jRm8h/1mjRjchd2nUyBXyNho1qoW8VKNGOyEv16gxRMiXatTYLORnatSQvovovBfpR+E3NGrsbWI7TtN4DanGbo0aJUKeHocaTxlfizUeN3VV5gUa7fAL+f4quYZDyCdotONpIX9Io4b0fvtp1Fgn5J2FHJDnqc4ACum9vKRRo6ciCwD4QKMGxUd+fn5zN6FFOpp9PY/HC0dKSoNZUVGR+Hyv16PMy8vkT+LU1Fi9zRpJSQGxhsOh3qNXV0s9KMButytzi8Us1khKUnfrrVarWCMQMIQp5COx0utEIvIePTVV3bstK5N7nX6/T5k7neplX0M9P3Tei6S4uFicJhQKKfNwWN0Oh9MpvoZUIxSS1+NwWL1+JCVZmlyjTbF6uQJAQVKyMtd5L5WV0vxQLxMAMJvV2216htz73b9vvzI/7jj5+mDSPsjhlHqlQFVlpTKX9mGAvL0Y0u4H8rIrKioUa6jaqtEEAIC8Rz7IqlWrMGnSJKxbtw4rVqxAdXU1hg0bhsqDZurUqVPx7rvvYtGiRVi1ahV2795db0guERERaYrE+Y9IgX09IiIitUaNRFm2bFnU/1988UVkZ2dj48aNGDhwIEpLS/H8889jwYIFGDKkZrxAfn4+unbtinXr1uG003R+8yYiIqKW7MYbb8Q999yjdQHZ1157DaFQCOPHjz8KLfv1Y1+PiIhIrUnXRCktrRlKl55eMxRp48aNqK6uxtChQ+um6dKlC9q2bYu1a9c2+MEaCAQQCPwyVLKsrKwpTSIiIvp1aYHXRMnKykL37t1x+umnY/To0ejbty9atWoFu92O4uJifPXVV1i9ejUWLlyIVq1a4dlnn23uJv9qsa9HREQUrVGn8xwsEongtttuw+mnn44ePXoAAAoKCmC1WuH1eqOmzcnJQUFBw2erz5o1Cx6Pp+6vTRudq3MQERG1EOE4/x0DHnzwQfzvf//D6aefjrlz5+K0005D27ZtkZ2djc6dO2PChAn4/vvv8eyzz2LdunXo1atXczf5V4l9PSIiovoOeyTKpEmTsHXrVqxevbpJDZg+fTqmTZtW9/+ysjJ+uBIREbVwOTk5uPvuu3H33XejuLgYO3fuhM/nQ2ZmJk488USYTKbmbuKvHvt6RERE9R3WQZTJkydj6dKl+OSTT6LOV87NzUUwGERJSUnULxR79+5Fbm7D94ex2Wyw2WyH0wwiIqJfv3heEPYYvbBsWloa0tLSmrsZLQr7ekRERA1r1Ok8hmFg8uTJWLJkCVauXIkOHTpE5X369EFycjI+/PDDuse2bduGnTt3Ii8vLz4tJiIiIqIjgn09IiIitUaNRJk0aRIWLFiAt99+Gy6Xq+7cV4/Hg5SUFHg8HlxzzTWYNm0a0tPT4Xa7MWXKFOTl5TX6au3bAcS6Y7XOAFBp4OkFGjVmC/nlGjXWC3lnjRpSW6do1GinMY1kpZB30qjhEvIqjRr/FPLhGjVOEHL5DuNATyHXWU+lO6rLd1wHdgj5ACFfofEa0o/XFo0a0rI/T6PGl0L+mqmrWKNEyK/VaMdmIS/XqCFdmmK7Rg1pnj2lUaNIyHtr1JD2L9UaNX4U8qBGjSFC7taoMVqRVUBvnsZdBPG7lskxOhKFjp6j2dcL+P0wxzgty2q1is+vqKhU5h6PR6yxf/8+Za4zAqqyUt17sdvlUTgej1eZ79q1S6yhM88kFRXqTzCrVX4vFov6N9pIRN4RFRcXK3OXS+pVQBz9FA6HxBp2e4oyT06W57nJpJ4fZrP8m3YwqP4UdDqdyry8TO6ZGIYhTCGfQikt+9RU+ZO4qsqnzItaZ4o1In51jYwMuYbPp96uw2F5PZbmacDvF2t4POp5Ju3DACAUUnciHA71eg7I+xd5/ZHXY0CukZqq3vbNZvlbSXpG7M+GKp963anVqIMo8+bNAwAMHjw46vH8/HxcddVVAIDZs2fDbDZj7NixCAQCGD58OObOnduYlyEiIqJaPJ2HjiL29YiIiNQadRBF5wiT3W7HnDlzMGfOnMNuFBEREREdfezrERERqR32LY6JiIjoKGiBtzg+VCgUwgcffIC//e1vKC+vGZa+e/duVFRUNHPLiIiIqKU57FscExER0VEQz4Mfx+BBlB9//BEjRozAzp07EQgEcM4558DlcuHRRx9FIBDA/Pnzm7uJRERE1IJwJAoRERElrFtvvRV9+/ZFcXExUlJ+ufjdRRddFHWHGCIiIqKjgSNRiIiIElkLv7Dsp59+ijVr1tS7M0D79u3x888/N1OriIiIqKXiSBQiIiJKWJFIBOFw/fOQfvrpJ63bnBIRERHFEw+iEBERJbIWfmHZYcOG4cknn6z7v8lkQkVFBe6//36MGjWq+RpGRERELVLCns7zMwB7jGyQxvOlo0N/0KhxiZB/pVHDL+QWjRpvCPnFGjXi8VtdfyHfrlHjXiHvpFHjESFfqlHjeyFvp1FDGhW/WqNGuZDrrB+5Qt5KyLfE4TUKNWqcJuR7NWpUC7lNo8ZQId+lUaONkH+hUUP66rdKo4a0L+ynUUNa/iM1aryjMY3kPCFfr1EjKOT7NWo8pMik9e+IacYLy86aNQuLFy/GN998g5SUFAwYMACPPvooOnfuXDfNd999hzvuuAOrV69GIBDAiBEj8MwzzyAnJ6dumvbt2+PHH3+sV/uuu+4S2/D4449jxIgR6NatG/x+Py6//HJs374dmZmZ+Oc//9m4N0QJJVhdDYul4U+6eIwy2r17tzhNWppXmft8Uk+uZrSUmkmsUVxcrMyldgKA2azTa1BzOJzKPBAIiDX27ClQ5jab/GndqpW691JaWirWkNpqs1mVOQBId/zWuUNYQyPpDmYyyetHUpL6K1tycrIy9/t9Gq+hrqGz7KX1p7o6JNYA1DPdbJbnl7T/CAalHoM8T0MheZ66PV5lXlEurz+prlRl7nA4xBrSfszt9og1SkpKxGkkHq/6dSorKjWqqNePUEhex/YWxN5H+f3yPh/gSBQiIiKKYdWqVZg0aRLWrVuHFStWoLq6GsOGDUNlZU1Hp7KyEsOGDYPJZMLKlSvx2WefIRgMYvTo0fW+WM6cORN79uyp+5syZYpWG9q0aYMvv/wSd999N6ZOnYpTTjkFjzzyCDZt2oTs7Oy4v2ciIiIilYQdiUJERESo+dElXheEFX5VPdSyZcui/v/iiy8iOzsbGzduxMCBA/HZZ59hx44d2LRpE9xuNwDgpZdeQlpaGlauXImhQ38Z++VyuZCbK41ri1ZdXY0uXbpg6dKlGD9+PMaPH9+4N0BEREQUZxyJQkRERFpqh9Cnp6cDqBnebTKZoobn2+12mM1mrF4dfVLjI488goyMDJxyyin485//rDXkNjk5WXtoLREREdHRwIMoREREiewIXFi2rKws6k/nXPdIJILbbrsNp59+Onr06AEAOO200+B0OvGHP/wBVVVVqKysxB133IFwOIw9e/bUPfeWW27BwoUL8dFHH+GGG27An/70J9x5551ab3/SpEl49NFHtQ66EBERER1pPJ2HiIgokUUQv9N5/n+dNm2iL498//33Y8aMGcqnTpo0CVu3bo0aYZKVlYVFixbhpptuwtNPPw2z2YzLLrsMvXv3htn8y+8006ZNq/t3r169YLVaccMNN2DWrFniRSY3bNiADz/8EP/+97/Rs2dPOJ3RFy5cvHix8vlERERE8cSDKERERC3Mrl276q5hAsh3y5g8eTKWLl2KTz75BK1bt47Khg0bhu+++w4HDhxAUlISvF4vcnNzccIJJ8Ss179/f4RCIezYsSPqTj8N8Xq9GDt2rMa7IiIiIjryeBCFiIgokR2BWxy73e6ogyixGIaBKVOmYMmSJfj444/RoUOHmNNmZmYCAFauXIl9+/bh/PPPjznt5s2bYTabte6uk5+fL05DREREdLQk7EGUVAApMbKnNJ7fRsi7Na45DYp9h+lfnCHkn2vUUN/pXH6vACB1QSdo1HhbyM/TqHGxkJ+kUeOfQt5bo4Z0F/IPNGq0E/IsjRqrhVxnHZOW/0whn6rxGl4hT9eosUpjmqa243mNGtI6+I1GDWn/YdGoIZ2AUKRRQ1rXV2rUkC7ZGY99lF2jhrTN9dCoca+QP6BR40dFFtR4/q/NpEmTsGDBArz99ttwuVwoKKjZK3k8HqSk1HxK5+fno2vXrsjKysLatWtx6623YurUqXUjTNauXYv169fjrLPOgsvlwtq1azF16lRcccUVSEtLa7b3Rs3PYjbDYml4j7l//z7x+cnJVmVut+vsfdR0rsWTmupU5lVVVWINs1n9yWG1qt8rABQWFirzjAz507r24tGxeDzywVeLxavMU1Lk5VJcXKzMHY5Y3xJ+ceht1g9VXl4u1pDme1KS/FWq9pbwsYRC1WINaV2v3TfHkp0t90pjbYu1kpLk3k1FRYU4jUTaFqT1HAA8Hq8y17kOmLz/MIk1SktKlHkoJP9C4nA4lHl5uTzPDUO9LVRVSd+M5PXDZJLnR3mZepvT2TccfL21huTmHifWCAZj9+ik91krYQ+iEBEREY7ISBRd8+bNAwAMHjw46vH8/HxcddVVAIBt27Zh+vTpKCoqQvv27XH33Xdj6tRfDs/abDYsXLgQM2bMQCAQQIcOHTB16tSo66SodOjQQdk5+/777xv3poiIiIiagAdRiIiIEtkRuLCsLsMwxGkeeeQRPPLIIzHz3r17Y926dY174YPcdtttUf+vrq7Gpk2bsGzZMvz+978/7LpEREREh4MHUYiIiChh3XrrrQ0+PmfOHHz+uc4JZ0RERETxY5YnISIiomYTjvPfr8TIkSPx5ptvNncziIiIqIXhQRQiIiI65rzxxhtIT9e5rDURERFR/PB0HiIiokQWQfxGkMTr2ipH0SmnnBJ1YVnDMFBQUID9+/dj7ty5zdgyIiIiaol4EIWIiCiRNeOFZRPBBRdcEHUQxWw2IysrC4MHD0aXLl2asWVERETUEvEgChERESWsGTNmNHcTiIiIiOok7EGUAwDsMbITNZ6/QMjv0KgR6/VrTdCoUS7kOjdnvFPI12jUuELInRo1Bgn5Ko0aFwv5Wo0a44X8I40aTwv57Ro1vhLymzRqFAr59Ro1tgn5RCFfrvEa3wh5w/fOiCb9AN5Jo0Z/Ibdo1MgScum9AkC1kK/XqHGRkOsMGJgt5G00alwm5Ns1akjvN0+jxilC/oFGDWnZvqdRw6HIdNavIyKeF4Q9Bi8sa7FYsGfPHmRnZ0c9XlhYiOzsbITDx+CbIgBAKBxGKBRqMLNabeLzi4uLlfmh60xDDh7l1JDc3AyxhrQO/vzzbrFGTo66rZWVlWIN6RpBZrO8F0tNTVXmFRUVYg2v16vMKyurxBrSeykvl3rYwP79+5W5zvrh9/uVeWZWplhDWj8yM+V1zO8PKHNpfpWVlYmvEQioXyMrS/qUBQxDndts8nbtdKq/lUjbLAAkJ6u/4krvFag5dVSlqkreJj0er/AaQbHGvn37lHlycrJYIz1dveyk9RyQ90GpqfK3SYdD1cvSW0+TktTLVqeG2Rz7srAmRRZVQ2sqIiIiomYQqyMbCARgtVqPcmuIiIiopUvYkShERESEFntNlKefrhkzaDKZ8Pe//z3qF/JwOIxPPvmE10QhIiKio44HUYiIiBJZCz2dZ/bsmhPWDMPA/PnzYbH8ciqC1WpF+/btMX/+/OZqHhEREbVQPIhCRERECeeHH34AAJx11llYvHgx0tLSmrlFRERERDyIQkRElNha6EiUWh99pHO5cCIiIqKjgwdRiIiIKKH99NNPeOedd7Bz504Eg9F3M3jiiSeaqVVERETUEvEgChERUSJroReWrfXhhx/i/PPPxwknnIBvvvkGPXr0wI4dO2AYBnr37t3czSMiIqIWJmEPopQCiHXH6pM0nr9IyP+uUWOokP9Fo8YbQv6xRo0dQm4RcgCQ7mS+RqOGV8gna9T4Usg9GjVuFPKpGjVuEvJuGjW2CbnOPD1TyKs1anzVxFxndL90/4vXNGqcoTGN5BUh7xyH1xikMc0XQh5r33Uwad/QX6PGFUIubfeAvH7o1Ogr5E6NGkuEfKVGjROFvEqjxlnC8+dp1Ii7COJ3Gs4xeBBl+vTpuOOOO/DAAw/A5XLhzTffRHZ2NsaPH48RI0Y0d/OoCcLhMMLhhlfulJQU8fkdOnRQ5gcOHBBruN0uZb5v316xRklJiTLv1KmTWOPQEVb1yZ8skYh6A6+slPfoB1/AuSGZmVliDZ/P16TXAIBdu3Yq86ysbLFGZmamMrfb7WINv1893ysr5Hmamqr+FIx1G/fGtEPKdV7DZrMp85KSYrGG05kqTiMpKipS5lI7dUjLBJDX40hEnqfSvsHpdIg10tPV1wMLh+UPdr9fei9yDYdD3Vaz2SzWkOZHRUW5WMNqVS9/nfdy8N3+DmUyye8DAPSmIiIiImoGX3/9NSZMmAAASEpKgs/nQ2pqKmbOnIlHH320mVtHRERELQ0PohARESWycJz/jjFOp7PuV/rjjjsO3333XV2mM9KAiIiIKJ4S9nQeIiIiotNOOw2rV69G165dMWrUKNx+++3YsmULFi9ejNNOO625m0dEREQtDA+iEBERJbIWfmHZJ554AhUVFQCABx54ABUVFXjttdfQqVMn3pmHiIiIjjoeRCEiIkpkYcTv5Ntj7HSecDiMn376Cb169QJQc2rP/Pnzm7lVRERE1JLxmihERESUkCwWC4YNG4biYvmuEERERERHAw+iEBERJbJInP+OMT169MD333/f3M0gIiIiApDAp/OMABDrDt4lGs/fIOQnadT4VsgHaNQ4Qcgf06ixQ8h7atToLeSrNGokC7l8x3WgnZDv16gxWch/1KhRJuRva9SQjkDKdzoHnhfyizRq9BVyi5D/U+M1Rgp5ukYNaVtYr1HjFiFfolFjh5Bv16hhF3Kdkw1mC/kQjRpLhVya54B8dkepRg1pu96lUUPabu/QqPGKkLfSqPG5IgtoPJ/i76GHHsIdd9yBBx98EH369IHTGf1p43a7m6ll1FQetwspKSkNZuGwfO5ZVVWlMnc4Gq59ML9fvWUfur41xGq1KfO9e/eKNWrvQBVLSor0yQM4HA5lXnttIRWTyaTMzRb591erVd1jDIXkZZuZmaXMpfkFAJGI+nVKS+VPOGl+6KynhYWFytzr9Yg1pGUrNFNrNJ/Lpd6XRiLyUXibTb0tVFaqt1kAyMpWL/uS4hKxRiCgXj+CQfkT3WRSr+tt2rQRa+zfv0+Zp6a6xBplZer1VNr/1DCUqc42abValXl1dbVYQ9pus7OzxRpFRep1WdpmAaCqqipm5vP7xecDCXwQhYiIiNCir4kCAKNGjQIAnH/++VGdI8MwYDKZtL7EEBEREcULD6IQERElshZ+EOWjjz5q7iYQERER1eFBFCIiIkpYgwYNau4mEBEREdXhhWWJiIgSmYH4XVRWfVp0wvr0009xxRVXYMCAAfj5558BAC+//DJWr17dzC0jIiKiloYHUYiIiChhvfnmmxg+fDhSUlLwxRdfIBCouSBgaWkp/vSnPzVz64iIiKil4UEUIiKiRBaO898x5qGHHsL8+fPx3HPPITn5l7t+nH766fjiiy+asWVERETUEvGaKERERIksDEC+Y59+rWPMtm3bMHDgwHqPezwelJSUHP0GERERUYvGkShERESUsHJzc/Htt9/We3z16tU44YQTmqFFRERE1JIl7EiU7QBSYmQ5Gs/fJuQ9NWp0FvKgRg2XkF+mUaNayN/WqLFcyNtr1HhXyNto1Ogm5NJyAwC/kJdo1LALudROAOgi5H/UqHGGkC/VqNFXyNcLeYbGa0gD5nXunZEv5L01arwfh3asikM7SoX8HY0aASGX3isAFAn5Lo0aVUJ+sUaNvUKepVFD2q/r7F+kfbZTo4Zq/9JsgzhqLwobr1rHmOuuuw633norXnjhBZhMJuzevRtr167FHXfcgXvvvbe5m0dN4PcHYDI1/HtecrLcRfX71XtSu136tJenMQz5asxms/o3ybS0NLGG9DqlpdInD1BWVqbMrVarRg3161itycocAOz2WD34GoFAuVjDMNTzNByW98gmk3oIXzzWj927d4s1UlPVnz6lperlBgAOh0OZV1VVKnOLRd6efD6fMk9NTRVrFBYWKvOUFPW6AQBlwvxwuaRvV0B5uXodS0lRz09AXsd0tslIRL1dS9ssAIRC6nYEgxUa7VB/+Hu9Xo12hJR5UpK8jknTJCfL+yi73abMpf0xIC8XHQl7EIWIiIjorrvuQiQSwdlnn42qqioMHDgQNpsNd9xxB6ZMmdLczSMiIqIWhgdRiIiIElkLvyaKyWTC3Xffjd///vf49ttvUVFRgW7dumn9KkpEREQUbzyIQkRElMha+Ok8taxWK1wuF1wuFw+gEBERUbPhhWWJiIgoYYVCIdx7773weDxo37492rdvD4/Hg3vuuQfV1dJVw4iIiIjiiyNRiIiIElkLP51nypQpWLx4MR577DHk5eUBANauXYsZM2agsLAQ8+bNa+YWEhERUUvCgyhERESJLIL4Hfw4Bk/nWbBgARYuXIiRI0fWPdarVy+0adMGl112GQ+iEBER0VHF03mIiIioQbNmzUK/fv3gcrmQnZ2NCy+8ENu2Rd+M/rvvvsNFF12ErKwsuN1ujBs3Dnv3Rt/4uqioCOPHj4fb7YbX68U111yDigr5towAYLPZ0L59+3qPd+jQQeuWrURERETxlLAjUQ4AiHVndp0zoAcIufou5jVyhVznh8EvhPw8jRrXCLl8l3vgIiHfqlHjAiEfolHjUSHvplFjt5D306jxqZAXaNTYL+RnaNSQnKQxjfQV4g4hX6PxGlcLubRMAHnZfqRRY5eQ62yTQY1pJK3i0A5pHftZo8YJQv6tRo2+Qr5Fo4ZLyP0aNaT38o1GjSwhz9CosVKRNdvVNyKI3+k8jRyJsmrVKkyaNAn9+vVDKBTCH//4RwwbNgxfffUVnE4nKisrMWzYMJx00klYubJm7t17770YPXo01q1bB7O55rea8ePHY8+ePVixYgWqq6tx9dVX4/rrr8eCBQvENkyePBkPPvgg8vPzYbPZAACBQAAPP/wwJk+e3Lg3RAklFA4jFAo1mBmGIT7f6XQq83C44doHS05OVuY67aiqqlLmHo9HrLFz505lbjLJOwGv16vMfT6fWMPtVrc11SXt8YF9hxxEPZTdLvdcg0H1HtfpdIg1KioqlXmsda8x00jroI6UlBRxGmn5Z2dnK/PKSvW8AID0DPWnZLWwTAAgMzNTmZeXl4s15Gtdyduk3jRq8dg3JCVZlLnOdb1sNnVP3+8PiDUcDvX24vfL+wazWf1eIhG5g1H7GR5LICD3GJOS1IcvLBb58EZFRez1MFSt900hYQ+iEBERUfNatmxZ1P9ffPFFZGdnY+PGjRg4cCA+++wz7NixA5s2bYLb7QYAvPTSS0hLS8PKlSsxdOhQfP3111i2bBk2bNiAvn1rDts988wzGDVqFB5//HG0aqU+LLlp0yZ8+OGHaN26NU46qebQ8pdffolgMIizzz4bY8aMqZt28eLF8Xz7RERERPXwIAoREVEii+fFYP9/rbKysqiHbTab+AsRAJSWlgIA0tPTAdSMCDGZTFHPtdvtMJvNWL16NYYOHYq1a9fC6/XWHUABgKFDh8JsNmP9+vW46CL1WEmv14uxY8dGPdamTRuxrURERERHAg+iEBERJbIjcBDl0IMQ999/P2bMmKF8aiQSwW233YbTTz8dPXr0AACcdtppcDqd+MMf/oA//elPMAwDd911F8LhMPbs2QMAKCgoqDfUPCkpCenp6SgokE+ezM/P13xzREREREceLyxLRETUwuzatQulpaV1f9OnTxefM2nSJGzduhULFy6seywrKwuLFi3Cu+++i9TUVHg8HpSUlKB3795110MhIiIi+jXhSBQiIqJEdgQuLOt2u+uuYaJj8uTJWLp0KT755BO0bt06Khs2bBi+++47HDhwAElJSfB6vcjNzcUJJ9RcLjg3Nxf79u2Lek4oFEJRURFyc6VLuAOFhYW477778NFHH2Hfvn31Ll5XVFSk/T6IiIiImooHUYiIiKhBhmFgypQpWLJkCT7++GN06NAh5rS1d2VYuXIl9u3bh/PPPx8AkJeXh5KSEmzcuBF9+vSpmyYSiaB///5iG6688kp8++23uOaaa5CTk6N1lxIiIiKiI4UHUYiIiBLZEbgmiq5JkyZhwYIFePvtt+FyuequYeLxeOpuy5mfn4+uXbsiKysLa9euxa233oqpU6eic+fOAICuXbtixIgRuO666zB//nxUV1dj8uTJuPTSS8U78wDAp59+itWrV9fdmYeIiIioOfEgChERUSI7Aqfz6Jo3bx4AYPDgwVGP5+fn46qrrgIAbNu2DdOnT0dRURHat2+Pu+++G1OnTo2a/tVXX8XkyZNx9tlnw2w2Y+zYsXj66ae12tClSxf4fL7GNZyIiIjoCDEZhmE0dyMOVlZWBo/Hg+UAnDGm+V6jzj+EfFLjmtUgq8Y0K4R8jEaN7UKepVHjKyGfKuQA8J6Qf6RRY6iQL9eokSzkOje+XCrkb8WhxnqNGg4hz9CocbWQvy3k0voFAMcL+SsaNa4Rcp3tKUfIn9WoMVLIT9OosUPIt2nU2CDkOtt1T41pJDcId7V9NyDXkNZ1v0Y75JM6ZNI4BZ2v7BcoskoAF6HmNr+NuZ7I4ar9PCw9AXBb4lQzDHi+P3rvIR42bNiAu+66C/fddx969OiB5OToT4Fj5X3QL2rX7b/99em6EU2HCgTknY90PZysrMzDat/BdE4fKy8vV+Yej1esIb3fpCT5d0+/X723PfQuWQ0pKytV5uXlFWINl8slvEaZMgcAs1k935OT5V6D9F5qr9ukUntb91gqK6vEGtJFti0WeQefmanuEZaUqNupsz0dum89VHGxfP2pjAyp5ypvT8nJ6nW9sLBQrCF9Ljicsb5l/iIYCCpzaXsDAJ9PvX5YLPJ2HWsf2RjZ2epeZXFxiVijqqpSmUci8iEFh0P65iOTahx6DbaGeL2emJnP58NNt0wV+0kciUJERJTIGjl65KjVOkq8Xi/KysowZMiQqMcNw4DJZEI4HM/znYiIiIjUeBCFiIiIEtb48eORnJyMBQsW8MKyRERE1Ox4EIWIiCiRhQHE68TbY3AkytatW7Fp06a6C9USERERNSf1SXpERETUvCJx/jvG9O3bF7t27WruZhAREREB4EgUIiIiSmBTpkzBrbfeit///vfo2bNnvYsf9urVq5laRkRERC0RD6IQERElshZ+Os8ll1wCAPjd735X95jJZOKFZYmIiKhZ8CAKERERJawffvihuZtAREREVKdRB1HmzZuHefPmYceOHQCA7t2747777sPIkSMB1Nwv+/bbb8fChQsRCAQwfPhwzJ07Fzk5OY1u2D4Ase4C/ZHG868W8i81amwV8gkaNaYK+V0aNYYK+VcaNbYJ+ViNGn8W8t0aNZYLeX+NGscL+dsaNe4T8lc0aqjv/A64NGqkC7nOspXe7/tCfpHGa7wk5K00amQI+acaNaRlvzj2bd/r/Km06e2wCPk3GjVOEvLhGjXmCbm03QOAN6DOX9OoYRfyHRo1pO3lAo0aS4S8p0aN7YrMp/H8I6KFj0Rp165dczehRTmafb3q6mokJTXcFS0vLxefn5Gh/hStqpK3Wr/fr8zT06VPaiArK1uZ794t95BcLvVeUGqnzjQ//PC9WKPV8epP2mCwWqxRVlamzJ1Op1jj0NP2DlVaKnyYA8jNzVXmhYVFYo1IRL3TtFjky0taLOqvWzrLtqRE/X6lee71yh2koiL1/JCWCSC/18rKCrFGKKR+nY4dO4k1du/+WZlXlMvtkO4EFwgIHSgAKSkpytzlcos1Dhw4ILRDXn8sFnXPtaSkWKxhMqnX9WAwKNYwm9U1vF6vWKOkpESZS/McAPz+2MvO75ffB9DIC8u2bt0ajzzyCDZu3IjPP/8cQ4YMwQUXXID//ve/AICpU6fi3XffxaJFi7Bq1Srs3r0bY8aMacxLEBER0cFa+IVlAeDll1/G6aefjlatWuHHH38EADz55JN4+22dw+bUGOzrERERqTXqIMro0aMxatQodOrUCb/5zW/w8MMPIzU1FevWrUNpaSmef/55PPHEExgyZAj69OmD/Px8rFmzBuvWrTtS7SciIqJfsXnz5mHatGkYNWoUSkpK6q6B4vV68eSTTzZv436F2NcjIiJSO+xbHIfDYSxcuBCVlZXIy8vDxo0bUV1djaFDfzn5pEuXLmjbti3Wrl0bl8YSERG1OBHUnNITj79jcCTKM888g+eeew5333131JDkvn37YsuWLc3Ysl8/9vWIiIjqa/SFZbds2YK8vDz4/X6kpqZiyZIl6NatGzZv3gyr1VrvXKacnBwUFBTErBcIBKLOKZPO6SMiIqKW44cffsApp5xS73GbzYbKyspmaNGvH/t6REREsTV6JErnzp2xefNmrF+/HjfddBMmTpyIr77Sufxlw2bNmgWPx1P316ZNm8OuRURE9KvTwq+J0qFDB2zevLne48uWLUPXrl2PfoNaAPb1iIiIYmv0QRSr1YqOHTuiT58+mDVrFk466SQ89dRTyM3NRTAYrHfF3L179yqvjj19+nSUlpbW/e3atavRb4KIiOhXK16n8tT+HSNmzpyJqqoqTJs2DZMmTcJrr70GwzDwn//8Bw8//DCmT5+OO++8s7mb+avEvh4REVFsjT6d51CRSASBQAB9+vRBcnIyPvzwQ4wdW3PD3G3btmHnzp3Iy8uL+XybzQabzdbUZhAREdGvyAMPPIAbb7wR1157LVJSUnDPPfegqqoKl19+OVq1aoWnnnoKl156aXM3s0VgX4+IiOgXjTqIMn36dIwcORJt27ZFeXk5FixYgI8//hjLly+Hx+PBNddcg2nTpiE9PR1utxtTpkxBXl4eTjvttCPVfiIiol+3MABTnGoZcapzFBjGL40dP348xo8fj6qqKlRUVCA7O7sZW/brxr4eERGRWqMOouzbtw8TJkzAnj174PF40KtXLyxfvhznnHMOAGD27Nkwm80YO3YsAoEAhg8fjrlz5x5Wwz4BYI2ReTSe/4WQr9GoMUbIv9SoEfsyazV2aNT4XsjP0KjRWch1rqm/Ssh3a9SQ5qk0vwCgo5A/qVHjXiE/QaOGRcjLNWo4hdylUUN6HWn9yNd4Db+QT9SosUHIMzRqSGcivFwq18gSco0S4nbbRaOGtD2116ixVcgHadSQLsvZSqNGfyH/VqNGeyF/TaNGJyHXmR+qqz5UaTyf4stkij565HA44HA4mqk1LcPR7OtVVFQgFAo1mCUlSZ+yQFWVT5nrXHjY41H3Kn0+9WsAQChUrcyDwaBYIxgMKHOnU+oxAHa7erRPRYU8PyrKK5S59F4B1Lvw8OHUkEYutW7dWqyxZ4+6Z2q1yqOjDt0HHSoSkS80ZTarr55gschXV4hE1D2g1FT1+lFYWCS+hmGo30t6erpYo6pK/UlpsTT5JAjs379fnCYpSf06oZB8bqu03eqMrqusVG9PVmusb7u/8PvV+yCnM1WsIa2nSUnJYg1pH3TwxcNjkd5vcXGxWEOa76kueX74fbG/2YTDeuc9N2pNfv7555W53W7HnDlzMGfOnMaUJSIiolgiaJEjUQDgN7/5jfglpqhI/nJA+tjXIyIiUmv64UAiIiI6clro6TxAzXVRpJECREREREcTD6IQERFRQrr00kt5/RMiIiJKKDyIQkRElMha6EgU6TQeIiIiouYgX8mIiIiI6Cg7+O48RERERImCI1GIiIgSmYFjagRJvOjc9YKIiIjoaONBFCIiogQWhnx778bUIiIiIqLDl7AHUdoDsMfIvBrPl6aZqlHjj0KuvhN6jYuEfK5GjXwhf0WjxhAhd2nUWC/kOueGSfP0DI0aFiHfqlGjlZC/r1HjFiGX5pdOOy7RqLFUyEuE/G6N1+gm5LG21YNtE3JpXujUaKNRQ9pude4DcrWQ62xP0pfZco0a44Tcq1GjQMilZQ8AGULu1KixRmMayedCnq5R40LjyphZWVkQ8LzWqDYRUWxWqw02m63BzGKRPu3laXQuSrx7925lrjMiymZTf3K0aSN/OhUWFirz4uJisUZqqvrTR2eeVlZWKnOdaxXt2aOep05nqlhDuhCU3+8TKyQlJSvzsrIysUZWVpYyl+YXACQnq9vh9aaJNcrKSpV5KKTuVeTm5oivYbenKHOzWV72fn9AmUvzoqaGX5lbrXKNcFi93SYlyduCy6Xu3ehsTxKpnYC8fui0IxSqVuZ2u9yTl+aZ2axefwC97UVSVaXuyess2/POOy9mVl6u0wNP4IMoRERExJEoRERERImEF5YlIiIiIiIiItLAkShEREQJLPL//+JVi4iIiIgOHw+iEBERJTCezkNERESUOHg6DxERERERERGRBo5EISIiSmA8nYeIiIgocXAkChERERERERGRBo5EISIiSmC8JgoRERFR4kjYgyjpAFJiZH/XeP5JQv6VRo0ThHyIRo1dQr5So4Y0XOgSjRrbhfyebXKNDZ3Veb5GOyYJuV+jxgYhT9aoUSTkF2nUWCrkQY0adiH/UqNGXyGvEvJqjdeYKeR7NWp0FHKdZb9CyKV1AwBcQj5Ko4a07KV9BwD0FvJKjRq7hbxAo0Y3IdfYNWCokM/WqHGLkEvvFZD3cwGNGpeYXo6Z6WwrR0IE8Tv4wdN5KJFYLGZYLJYGs6KiQvH5dnusnmINv1/+ZLFarcrc5ZI+NYDqavUnfnl5uVjDZFLnXm+aWCMQUO/lqtZtFmvkDhuozAsL5eWSmZmlzA1D3hNVVal7LyZphgEIh0PK3Ov1iDVKS0uFKQyxhtRWn88n1nA4HMo8ElHPU8OQ27lnzx5lHgqp5ycA2Gw2ZS61EwAqKtTbi88n9WwBs7nh/Uott9st1pCWvfReAcDhUO+jdOZHMKjufYRCcu/Ebld/4/D75R6Sy6WeZ/v27RNrZGWp9w3V1fJ7kfZzkYi8rr/8cuy+ns7nBsDTeYiIiIiIiIiItCTsSBQiIiLihWWJiIiIEglHohARERERERERaeBIFCIiogTGC8sSERERJQ6ORCEiIkpg4Tj/NcasWbPQr18/uFwuZGdn48ILL8S2bdGXGy4oKMCVV16J3NxcOJ1O9O7dG2+++WbUNO3bt4fJZIr6e+SRRxrZGiIiIqLmx4MoRERE1KBVq1Zh0qRJWLduHVasWIHq6moMGzYMlZW/3D9qwoQJ2LZtG9555x1s2bIFY8aMwbhx47Bp06aoWjNnzsSePXvq/qZMmXK03w4RERFRk/F0HiIiogTWnBeWXbZsWdT/X3zxRWRnZ2Pjxo0YOLDmVqhr1qzBvHnzcOqppwIA7rnnHsyePRsbN27EKaecUvdcl8uF3NzcJrWfiIiIqLkl7EGUVxC7cTdpPL+dkO/WqPEPIb9Yo8YXQv6BRo1uQv5XjRqjhPyOznIN9Z29gZEa7Zgn5DrL9nghl+YXAKwQcp3lIs0PbxxqVAo5AFiamL+n8RrSPG2jUUNjFRNNFXKd5SbNj+0aNXoLuVejhrQPOkGjxlIhH65RQ3ovOvtKab731KghndjRV6PGICGfqVHjTEXmA7BEo0a8HYlropSVlUU9brPZYLPZxOeXlpYCANLT0+seGzBgAF577TWce+658Hq9eP311+H3+zF48OCo5z7yyCN48MEH0bZtW1x++eWYOnUqkpISthtCR0FxcTF8Pl+DWWZmpvh8q1W9zgaDQY02FCnztLQ0sYbPV6XMy8vLxRp2u12ZHziwX6zhdruVua2fvDeW2iq9BgAcOHBAmessW5crWZnb7SlijfLyMmVeViYvF2kfZTZLvQogOVldIxzWObxtalJ+6D6/IdI6GInI7bTb5c8RSVZWtjLX2Z4kgUBAnMbhUK9jFou87IPBamWu87nr86mXncvlEmukpDiUudROQN6eUlLU6w8A7N27V5k7HOp2AkCqK1WZF+wpEGs4nbFrmM16/RL2XoiIiFqYNm2iD33ef//9mDFjhvI5kUgEt912G04//XT06NGj7vHXX38dl1xyCTIyMpCUlASHw4ElS5agY8eOddPccsst6N27N9LT07FmzRpMnz4de/bswRNPPBHX90VERER0pPEgChERUQI7Eqfz7Nq1K+oXZZ1fwyZNmoStW7di9erVUY/fe++9KCkpwQcffIDMzEy89dZbGDduHD799FP07Fnzy/e0adPqpu/VqxesVituuOEGzJo1S+u1iYiIiBIFD6IQERG1MG63W2tYfq3Jkydj6dKl+OSTT9C6deu6x7/77jv89a9/xdatW9G9e3cAwEknnYRPP/0Uc+bMwfz58xus179/f4RCIezYsQOdO8fjZD8iIiKio4MHUYiIiBJYBPG7JkpjR7QYhoEpU6ZgyZIl+Pjjj9GhQ4eovKqq5loQZnP0zf4sFovy/PnNmzfDbDYjO1t97jsRERFRouFBFCIiogR2JC4sq2vSpElYsGAB3n77bbhcLhQU1FywzePxICUlBV26dEHHjh1xww034PHHH0dGRgbeeustrFixAkuX1lz6eO3atVi/fj3OOussuFwurF27FlOnTsUVV1yhddFOIiIiokTCgyhERETUoHnzau6pduiddvLz83HVVVchOTkZ7733Hu666y6MHj0aFRUV6NixI1566SWMGlVzXzibzYaFCxdixowZCAQC6NChA6ZOnRp1nRQiIiKiYwUPohARESWwI3FhWV2GYYjTdOrUCW+++WbMvHfv3li3bl0jX5mIiIgoMZnlSYiIiIiIiIiIKGFHolwMIEWRSX4v5Jdp1Bgn5Ns0ahQJ+Z0aNXYJuUWjxklC7tCoIb3fco0aQ4Xcq1GjQMj3a9TYKuQnaNSQ7ifRU6PGB0J+ikaNvUL+NyEfo/Ea0jp4vEaNVUJ+okaNF4T8AY0aLiH/UaNGtZB/qlFjiJDP0qgh7T++1KgxT8jP1KiRL+TSdg8AJUKu816k9fQCjRqqz454jQZprOa8JgrRkeT1epGS0nBvz+uVr5fz888/K3Oda+5Ir+P3+8UaoZB6y8rJkS+gHAxKnyyyWPOy1qEXgG6I3x9Q5pGIvBdxudSftBaL3HOtrlbPj1AoJNbw+dTLTuf26tI0KQ71PAeA8jJ1D9nhkHvh0vwoLDygzD0eb5NfIzk5WaxRUVGhzK1WeZ4XFRUq89zc48QaFot6XQ8EgmKNSEQ9EtPnqxRruFypynzvXqkXL+8/fD6fWOPAAfX6kZrqFGsUFqq/1UrbPQCEw+r9h857CQbVy87j8Yg1du+O/dnhD6j3gbUS9iAKERER8SAKERERUSLh6TxERERERERERBo4EoWIiCiBNeeFZYmIiIgoGkeiEBERERERERFp4EgUIiKiBMZrohARERElDh5EISIiSmAG4ncajvpeA0REREQk4ek8REREREREREQaEnYkSvL//2vIbRrPzxHy1zRqZAh5ukaNdkK+VaOGdNftkRo1qoT8A40aFiG3a9QYIuQFGjW+F3KpnQBwhpDv0qghvY76Lvc1/EKus1w6CfkdQr5c4zUGCblXo4a0Hr+iUeM0IddZB98Wcml+AkCWkEvvVacdozRqlAt5rH3owaRtcrdGjXFC/rlGDWmbHKBR44sm5gBwiyLzA7hLo0a88XQe+rUymUwwmUwNZj/99JP4/KQkdTe2pKRYrGGxqGtYLHKvwmq1KnOfT/q0B8xm9e+aHo9brBGJqMeslZdLnxoA0PDyqOX3q3MASE1VfwpWV1eLNYLBoDKPtd4czOl0Nrkd0uuEQ/JeVVouZWVlYg273abMs7OzhdeQl31qaqoy19kWpPW4uFjeJh0O9XIzm+VlX1paqsytVvX8BOT9i8Uij0UoKVG3w+2Wt+twWBqLKs8Pl0u9bINBeVvwer3KvKpK+rYpb5PSOqjzOj6f3I6srNg9eZ39NcCRKEREREREREREWhJ2JAoRERFxJAoRERFRIuFBFCIiogQWQfwuLBuvOkREREQtFU/nISIiIiIiIiLSwJEoRERECYyn8xARERElDo5EISIiIiIiIiLSwJEoRERECYwjUYiIiIgSBw+iEBERJTBeWJaIiIgocSTsQZRNAKwxsjM0nv+SkN+kUWO9kJ+kUaONkKdr1PhKyF0aNUqEvJ9GjXZCbteoUSjk/9CoMVzIC+JQQ5rnANBJyDdr1Jgt5Jdp1PALubQeS8sVAPoL+b0aNa4W8pEaNYqEfKlGDWnbX65RQ1rXu2jUaC/kOutgUMj3atS4OVmd31Mt17AIeZ5GO0qF/AONGls0ppEMUGRVcahPRL/w+XwwDKPBLDXVKT6/qEj9qZCZmSnWqKxUb9kpKSliDas1Vo+1hsUi7SUBv9+nzM1muUY4rB5rlpLiEGtI78Vslq8EEAqFlHlxsfRpDrhcbmVeXS1/OLk96hpFhXI7bHabMvdVqZcbAOzfv1+Zp6WliTUikYa3k1p+v3o9lpYrADid6m1u9+7dYo2MjAxl7narlwkAhMPq9ae0tEyskZml3vbLy+Qa0rpus8nffKT57vdLvXjE3EfW0tkWsrOzlfnu3T+LNQCTMtXZZ4dC6n1UmcZy0ZlnEtW6Hono/dyUsAdRiIiIqGb0SLxOw+FIFCIiIqKm4YVliYiIiIiIiIg0cCQKERFRAuM1UYiIiIgSBw+iEBERJTDenYeIiIgocfB0HiIiIiIiIiIiDRyJQkRElMA4EoWIiIgocXAkChERERERERGRhoQdiTIOQKw7OJ+o8fxdQv6jRg3pjurrNWqsFvKRGjVcQr5No8ZFQl6kUWOGkN+uUcMi5N00anwn5GM0auQL+SUaNdYJ+W6NGj8nq/OX5Fu/4zwh3yLky+WXwFdCfpJGjceFfKpGje1Cvl+jxj+F/GeNGllCXqJR4wMhl5YrIO9femjUWCSsY16NGv2F/Mx2co2XhZ1ypUY7hgj5Do0aSxVZUOP5RwIvLEu/VmlpaUhJSWkws9qkXhgQDKp3YMGgvNWaTCZlXlUl730qKiqUucfjFmtYLOoueSDgF2t4PF5lHgoVizUKCgqUeXZ2tlhDYrPZxWmCwYAyl94rABQVFipzb1qaWKOqUr38pXUQAHr27KnMDxw4INbwej3K3OfzKfOysnLxNfx+dQ2Ho+Ft9WD79u1T5tnZUg8KCATUyz4UCok1iovU63p1tbzckpLU22QoJI/trKhQz3e3W71ca2qo9y+x9qEHKypSf9Mzm6VvaIDTGeubeY309HSxhrR/iUTkXkpqaqoy19nvl5aWxcz8fnlfCyTwQRQiIiLi6TxEREREiYSn8xARERERERERaeBIFCIiogTGkShEREREiYMjUYiIiIiIiIiINHAkChERUQIzEL8LwhpxqkNERETUUvEgChERUQLj6TxEREREiYOn8xARERERERERaeBIFCIiogQWQfxO54lXHSIiIqKWKmEPonwJICVGNk/j+RcIeYZGjVZC/phGjaFC/rpGjSwhd2jUmC3kOvPjYSEv0qiRrDGN5Ewhl5YbAFwi5Cs0akjzTGee3lytzj0aNQqF3CLk0voFAAVNzAGgt5Av16hxuZDfoVFD2jd8qlHjCiHP1ajxgZDrzNOThLxEo4awCmptC/uFfNWPcg3pNJOeGu34Ush7aNRQradVAJ7XqEFEeqqqfDCMhq/Uc+CAtGcB3G71p2RSktzNTbaqeyZ7C/ZqtMOlzIuLS8QaUlvNZnnw+P79+5S5xSLPj1atjlPmoZB8UqDZbBKnkTidqcpcWm4A4E1LU+blZeViDYtF3YvSWcd27tzZpNcAgMJCdS/bJMxynXZWV4ealANASkqsb281yjTmeVq6ernt/vlnsYa0b6isrBBrJCer25GUJK+DFRXq9xsKSb0wwOFQz1OdbTI5Wb38pXbWvI56+VdUyPM01v6+lrT+AIDP51PmdrtdrKHanyYn631bTdiDKERERMRrohARERElEh5EISIiSmA8iEJERESUOHhhWSIiImrQrFmz0K9fP7hcLmRnZ+PCCy/Etm3boqYpKCjAlVdeidzcXDidTvTu3Rtvvvlm1DRFRUUYP3483G43vF4vrrnmGq2hv0RERESJhgdRiIiIElgkzn+NsWrVKkyaNAnr1q3DihUrUF1djWHDhqGysrJumgkTJmDbtm145513sGXLFowZMwbjxo3Dpk2b6qYZP348/vvf/2LFihVYunQpPvnkE1x//fWHMzuIiIiImhVP5yEiIqIGLVu2LOr/L774IrKzs7Fx40YMHDgQALBmzRrMmzcPp556KgDgnnvuwezZs7Fx40accsop+Prrr7Fs2TJs2LABffv2BQA888wzGDVqFB5//HG0aqVzOXAiIiKixMCRKERERAksHOc/ACgrK4v6CwQCWm0pLS0FAKSnp9c9NmDAALz22msoKipCJBLBwoUL4ff7MXjwYADA2rVr4fV66w6gAMDQoUNhNpuxfv36xs8QIiIiombEgyhEREQJLIL4HUCpPZ2nTZs28Hg8dX+zZs2S2xGJ4LbbbsPpp5+OHj1+uWH066+/jurqamRkZMBms+GGG27AkiVL0LFjRwA110zJzs6OqpWUlIT09HQUFOjczJuIiIgocTTpdJ5HHnkE06dPx6233oonn3wSAOD3+3H77bdj4cKFCAQCGD58OObOnYucnJxG1f4KgDVGdo7G878X8vc1anQTcp0ByJcIeaWQA8AqIX9Ko8ZyjWkkPwm5zl0fLEJ+hkaN/UL+uUaNSxzqfEWVXGODkGdptEN6L+00agwS8l1CrvFW8baQX6xRo0jIX9KoIf1m/YJGjT8K+QCNGtL+w6VRo7OQV2vUkNq6XaPGe018DUBua18hB4ARxlRl/oJptljjGiH/QKMdqnVMb6zGsWHXrl1wu911/7fZbOJzJk2ahK1bt2L16tVRj997770oKSnBBx98gMzMTLz11lsYN24cPv30U/Ts2TPubaej50j28wAgEPDBZDIazFJT5T1pMBhU5mVlZWINu92uzK3WZLFGWlqaMo9E5KsRSRdabt26tVhD5/1KgkFpj97w8oqm7u2lpqaKFUKhkDKvqpR7LxkZGcq8vKxcrFFVpX6dpCT5q5T0XqzWWN94fiHNs+pq9bagsw7WjjSMxePxijXCYfW3gaIiqTcIVFWpvx21bSv3jnfv3q3MnU6nWKO0VL09WSzStxrAZlPvXyIReXtyudTLPhDwizWkfYPDIc8Padt3OFLECqNHn6/MFy9eLNYQt+vypm3XPr88P4EmjETZsGED/va3v6FXr15Rj0+dOhXvvvsuFi1ahFWrVmH37t0YM2bM4b4MERFRi3YkLizrdruj/qSDKJMnT8bSpUvx0UcfRX2Z++677/DXv/4VL7zwAs4++2ycdNJJuP/++9G3b1/MmTMHAJCbm4t9+/ZF1QuFQigqKkJubu7hzxg6otjPIyIiathhHUSpqKjA+PHj8dxzz0UdfS8tLcXzzz+PJ554AkOGDEGfPn2Qn5+PNWvWYN26dXFrNBERUUtxJK6JosswDEyePBlLlizBypUr0aFDh6i89tccszm6O2GxWOp++czLy0NJSQk2btxYl69cuRKRSAT9+/dvZIvoaGA/j4iIKLbDOogyadIknHvuuRg6dGjU4xs3bkR1dXXU4126dEHbtm2xdu3aprWUiIiIjqpJkybhlVdewYIFC+ByuVBQUICCggL4fD4ANZ/xHTt2xA033ID//Oc/+O677/CXv/wFK1aswIUXXggA6Nq1K0aMGIHrrrsO//nPf/DZZ59h8uTJuPTSS3lnngTFfh4REVFsjb4mysKFC/HFF19gw4b6V4QoKCiA1WqF1+uNejwnJyfmxeMCgUDUXQHicT4nERHRr8XBp+HEo1ZjzJs3DwDq7rRTKz8/H1dddRWSk5Px3nvv4a677sLo0aNRUVGBjh074qWXXsKoUaPqpn/11VcxefJknH322TCbzRg7diyefvrpJr4bOhLi3c8D2NcjIqJfl0YdRNm1axduvfVWrFixQrwQl65Zs2bhgQceiEstIiIiih/DkC9616lTJ7z55pvKadLT07FgwYJ4NYuOkCPRzwPY1yMiol+XRp3Os3HjRuzbtw+9e/dGUlISkpKSsGrVKjz99NNISkpCTk4OgsEgSkpKop63d+/emBePmz59OkpLS+v+du2S7iVCRETUcjTnNVGoZTkS/TyAfT0iIvp1adRIlLPPPhtbtmyJeuzqq69Gly5d8Ic//AFt2rRBcnIyPvzwQ4wdOxYAsG3bNuzcuRN5eXkN1rTZbFq3ViQiImqJ4nnwgwdRSOVI9PMA9vWIiOjXpVEHUVwuF3r06BH1mNPpREZGRt3j11xzDaZNm4b09HS43W5MmTIFeXl5OO200+LXaiIiIiKKK/bziIiIZI2+sKxk9uzZdReNCwQCGD58OObOndvoOgMBOGJk32k83ynkfTVqZAl5rPYd7BUhH6BRwyrk32jU8Ar59xo16l9iLlqyRo0uQv43jRqjhLyzRo2bq9R5ukaNy4R8qUaNZ4T8Uo0aXwi5S8g7abzGCUL+rEaNa4X8Vo0aZwn5rDjUkPYdgDzP3tOoIW37OiMG1gu5tM0CwGghL9GoUSnk2zRqrDXNVubS/hiQt5fpGjVU+8JqjecfCc15YVmiQ8WrnwcATmcqUlJSGsyCwUCDjx/s0FtrH8rhkHtqSUnqrnAoFBJrFBYWKXOnM1WsAZiUqd8vzw+LxaLMA4GgWKP2tuWxmEzqdgIQRx0VFhaKNdxud5NeAwB+/PFHZZ6UpJ5fQM31nFRKS0vFGq3btFbmO37YIdbw+dTLxWxWvxed+WW1Nn25ZWRkKPOsLPnT3OVS91z37o19Eetfaqi3OWnfAQA2m/q6UDrL3umUepXydccqK9W9LGmbBQC326PMw2G51xmJqHsQB188PJaFCxcqc2l/DAA7duxQ5jk5OWIN1edLtcZnDxCHgygff/xx1P/tdjvmzJmDOXPmNLU0ERERETUj9vOIiIiixX0kChEREcVPBPG7lglHohARERE1DQ+iEBERJTBeWJaIiIgocTTqFsdERERERERERC0VR6IQERElMF5Yluj/tXfvQVLWd77HPzM905dh7lxmhBkUV0pjqVREQXRPzAEO6majaDa3yp6QxE2dWgcjUqmtSlUIuRWYWJWTmLAk5ySS2krhtSSulEZHxWGtFWOg2JIkctADEYIMIMxMz6Xn+uwfs8w6y8zv+5Vp6Gfw/aqySvrT/e1f/55L//qZ3/M8AADEBzNRAAAAAAAAHJiJAgBAjHFNFAAAgPiI7UGU/ydpvLtze6Yjh+/sLYXv+j7sWSP/b44aTxu5fadz6XdGfqujxjYjD9+RfdiPjfxzjhp/b+TWcpMk60731h3ZJXv5lzlqtBr5XEeNFiO/xlHDep/pRv6I4z3uMPKko8aFRv6io8YxI1/sqPGykVv9JUkXG7ln3/CEkVt9LknNRn6Ro8YVRu7Z375l5K86atxk5HscNazl4tm//EMg65K01VEj3zidB+erXG+vioqKzvj11ktLShJmjWw2G8ynTLFHFdlsRzAfGBgwa3R3dwdzTz9ZnyWRsPujsbEhmB84cMCsMW3atGBeXGxPhC8uDn/eRMKuYS1/Tzv6+/uDeSpljUqlzmxnMC8rs0ed1vuUlIR/0rW1nTTfo6qqOph71sFkMjwi7OwMr6OSdPJkeHspL7d/tXR2hvvc6i9JSibDfV5eXm7WaGtrC+bV1dVmjWz2RDC3+lySMplMMI8UmTX6enuDeVdXeB8mSZWV4WXX05Mza6RS4c9r7TskacaMukAbeszXS5zOAwAAAAAA4BLbmSgAAIDTeQAAAOKEmSgAAAAAAAAOzEQBACDGmIkCAAAQHxxEAQAgxiLl74Kw9qXjAAAAEMLpPAAAAAAAAA7MRAEAIMY4nQcAACA+mIkCAAAAAADgENuZKA2SMuNkxxyvTxj5JkeNFUZe5qjxRSN/1FHjs0b+JUeN/2vk2xw1/tXI/8ZRI2vk7zpqtBn5844aFxv5FEcNa/nf7qjxZSP3XAfhcSOfN8FckiqMvM9R41dG3uio0WHkTzpq3GbkLY4aG438WkeNw0b+mqPGLCO3lptkby/7HDUuMvITjhoPGflBR41PG/kRR42tgazX8fqzgZkoOF8lS0uVTCbHzAYGBszXFxWF8xMn7FFFTU1tMC8utv/eWFsbrnHyZJujHTXB/O233zZrNDaGv0k7OzvNGtZzqqqqzRpDQ+E9jWfZWjWyWWtEKSWTqWDuWbbFxeGVrLp6qlnDWnZRZF+tqqenJ5hnMuP9avLlkpRIhPvD084TJ8Lf+ONt7+9lLfv29nazRlVVVTD3bAvHjx8P5mVl9i/BgYH+YN7d3W3WKC0tDebWcpOkbDY8gs7l7BGOtewGB+3t+uTJk8G8ry/cX5JUXV0dzPv77XZ0d4/fH7lczny9FOODKAAAYPhgar4uLJuvOgAAAB9UnM4DAAAAAADgwEwUAABijNN5AAAA4oOZKAAAAAAAAA7MRAEAIMa4JgoAAEB8cBAFAIAY43QeAACA+OB0HgAAAAAAAIfYzkS5TNKUcTL7DtLSeiP/gaPG847nWC418gOOGj8xcs9n2WjkCx01skaedtS42Mj3OGpUG/liR41dRt7iqFFr5B9z1LCW3VZHjT8Y+V4jt5aJJFUYuWebvMjI5zlqHDDy6xw1/mzkxxw1LJ4a/2jkqx01/ruRJx01rGV7paOGtQ4ddNQoNfL/76hhbdf7HDVCp7t41vOzYUj5m0HC6TyIk3Q6rXR67NFDFEXm61tbW4P5rFkNZo2Ojg7zOZbxPsMp/f19Zo3jx8PfHLNmzTJrvPvu8WBeVjbeyPo/DQ6G9xLFxfbfX5PJVDAvKcmZNaREMC0vt769pO7u7mDe2dlptyIR/qn01ltvmTVmNYSXXXtbu1mjtzfcZ1YeReFlIklTpoT73LNNJpPhkUdZWcas0dcX3l4863F/f/gbe2BgwKxh8dRoaGwM5n8+ZI1KpYqKcuMZRWaNRCK8bNNpe7mkUuF1yFpuklRUFG5rX1+vWaO7uyeY9/baNaTx12VPGyRmogAAAAAAALjEdiYKAADgwrIAAABxwkEUAABibFD5mzbKhWUBAAAmhtN5AAAAAAAAHJiJAgBAjDETBQAAID6YiQIAAAAAAODATBQAAGKMC8sCAADEBwdRAACIMU7nAQAAiI/YHkR5XlJ6nCzreP1njXyro0aXkV/tqLHPyH/qqPG8kbc4avydkVvtlKRtRn67o8YzRn7MUeMtI/csl5eN/DuOGo8Yuac/rH6vc9S4wsitvzxPd7yHtVzqHTUuN/JaR41/NfI/OGq0G/liR402I/+5o8bnjfw+Rw1re6py1HjAyO9w1LC2Bc92/Wkjn+uosdHI/9FR46lAlpP0rKPG+WT9+vV64okn9MYbbyiTyej666/X9773PV166aWSpAMHDmjOnDljvvbRRx/VJz/5SUlSUVHRaflDDz2kz3zmM2ev8Yi9jmxW/f39Y2ZDQ/a8qZqammDe3m7t8e33yWQyZo3e3t5g3tg426zR0dERzDs7O80aU6dODea5XLidnveprra/WazPMjAwYNbo6wu3NZMpM2t0dYVH8hdccIFZo63tZDD39Eev0e+lpaVmjXQ6vB5GURTMS0rsn3zWcvHUyGTG+/U2LJGwa/T1hZdbLpczawwMhP9kUF5ebtYYGgrXePfdd80atVPDo9uZM2eaNaztqbQ0YdY4diw8EquqqjZrWNuCZ7uurg7vs1Op8PojScePHw/mDY2NZo2OwHdDccLuT4lrogAAEGtDef7v/WhpaVFTU5N27Nih5uZm9ff3a9myZSM/ThobG/XOO++M+u9b3/qWysvLdcstt4yqtWnTplHPW758+Rn0BgAAQGHFdiYKAAAorN/85jej/v3LX/5SM2bM0M6dO/WRj3xEiURC9fWj56Jt2bJFn/rUp077S191dfVpzwUAAJhsmIkCAECMDWn4Wib5+G+iF5Y9dXpEbe3YU5R37typ3bt368477zwta2pq0rRp07RgwQI9+OCD5vRzAACAOGImCgAAMTYo6fQripx5Len0c6xTqZRSqVTwtUNDQ1q1apVuuOEGXXHF2Fdj+sUvfqEPfehDuv7660c9/u1vf1uLFy9WWVmZnnvuOd11113q7OzUV77ylTP+LAAAAIXAQRQAAD5gGv/LhdfWrl2rb37zm8HXNDU1ac+ePXr55bEvzd3T06PNmzdrzZo1p2XvfezDH/6wurq6dP/993MQBQAATDocRAEAIMbO5IKwoVqSdPDgQVVWVo48bs1CWblypbZu3art27eroaFhzOc8/vjj6u7u1uc/b917Slq4cKG+853vqLe313xvAACAOOEgCgAAHzCVlZWjDqKMJ4oi3X333dqyZYteeumlcW9nLA2fynPrrbdq+nT7xum7d+9WTU0NB1AAAMCkE9uDKJ+UNN4dvMeeSDzaZUY+1VGjz8i3OWrMNfLDjhpXTjCXpDojD98JfdhfGXn4DuTDrKH1TY4aXzdyz9WSFxp5haPG/zBy+07n0hEj9/z12Xc38/HZP3ekXUbuWfZVRt7sqNFq5J71Z5+Rv+ioca2RX+6o8byRe/r0CSOf5ahxr5Ffb+SSdI2R/5ujRoeR/9lRw/osnmUb6vdex+vPhrNxTRSvpqYmbd68WU8++aQqKip05MjwXquqqkqZTGbkeW+++aa2b9+up59++rQaTz31lFpbW3XdddcpnU6rublZ69at01e/+tWJfBScB2pqalT2nvXovTo7O83Xp9Phb9qSEvsb0rrAcTZrt8M6GNjfb40oNWp7OpNckkpLS4O551rOVVXhb+uBgX6zRklJ+OeF5wDuO++ER8hFRfZeccqUsmCeSNjrR0VFeERYVGSPOq0+81xk2/644SdYy0SSenq6g/nAwIBZw9rmstmsWaO/P/w+1jKRpL6+8De2Z/9SVhZef6z9jyRlO8Kf19On7e1twdza7iVp+vQZwby8fIpZI5cL90dPT49ZY2goPArx7Cutz9LpWMdC/e5ZJlKMD6IAAIDCHkTZuHGjJOmjH/3oqMc3bdqkL3zhCyP/fvDBB9XQ0KBly5adVqO0tFQbNmzQvffeqyiKdMkll+gHP/iBvvzlL7/P1gAAABQeB1EAAMCYvLchXrdundatWzdmdvPNN+vmm2/OZ7MAAAAKhoMoAADE2Nm4sCwAAADODAdRAACIsUKezgMAAIDRPNfgBAAAAAAA+MBjJgoAADEWKX+n4fiucAIAAIDxMBMFAAAAAADAgZkoAADEWD6vY8I1UQAAACYmtgdRfiMpPU7W73j9ASN/3FFjrpEvddQY7zOccsJR43UjP+yocbWRVztq/G8j9/THrjy0400j/2dHjb818v/pqLHCyPc5aljr8t87avQZea+RH3O8x+1G3u2o8S9GvthR49+M3LNdX2Hkf+Oo0WLkFztq1Bq5tf+RpAuN/HlHjUYjv9tRw9q/1DlqWKereNZTa/2w2ilJVwayHsfrzwYOouB81dHeof6+sb/FPLfX7u0Nf8O1t7eZNVKpVDCvqKgwaxQXhy/9PDBgb3k9PeE9zMCAPfrNZMqCeSKRMGscPXo0mHv6o7s7PCrwtMNatm1tbWaN2qnhb9o//emAXaM2XCOXs0ZZknUi5bRp0ydcY2gonA8MDJjvUFVVbbyHfWJpV1dnMC8vt9cfa1vwbNfpdCaYV1dXmzU6O8OfJZkM7zske1239j/D75MM5tlsdsI1Dh48ZNbIZMJ9Wlpaataw9uue9bS7O7x+lJWF94NSeP1wfPVI4nQeAAAAAAAAl9jORAEAAMOzdPJ1i+N8XaAWAADgg4qZKAAAAAAAAA7MRAEAIMa4JgoAAEB8cBAFAIAY4yAKAABAfHA6DwAAAAAAgAMzUQAAiDEuLAsAABAfsT2IUi5pvDs41zte/ycj/ztHjWeNvNpRw7ob+pWOGuE71NufVZKajXyWo4Z1F/vLHTX+0sifcdS42sg906u+Z+Sez/K0kX/dUeNFI1/lqPHXRn6xkS9zvMcrRp5z1Jhq5D9x1LjOyH/oqHGXkScdNf7KyFscNSzWNivZ26SVS9IuI7/RUSNr5P/HUeNrRv4rR40LjdzaFiSpNJB1OV4PwC+RKFIiMfa3dklJaGsc1tfXF8ynTrW+eaSOjvAeLJFImDWs56Qz9nC7pCRco7c3/FklqbMz/Fk8fVpSEm5rOp02a5SXlwfzjo52s0YmUxbMi4rsQ8tHW1uDueezdHR0BPO6OvtXSTYbXi6HDh0ya1RWVgbzVCo1oddLUmdnZzCPosiskUiE15/jx4+ZNcrKpgTzWQ0NZo1DBw8Gc8/6Y/WZ1V8e1roh2duklUtSd3d3MLe2WUkaHAyfEPzuu8fNGnV1dcH8xImTZo1kMjxST6XskXxR0fi/Fj3ruRTjgygAACC/s0eYiQIAADAxHEQBACDGOIgCAAAQH1xYFgAAAAAAwIGZKAAAxNigJN8ZujZmogAAAEwMM1EAAAAAAAAcmIkCAECMMRMFAAAgPjiIAgBAjHFhWQAAgPjgdB4AAAAAAACH2M5EuVpS+ThZreP16438RkeN24z8AUeNzxr5rxw1bjfyQUeNy438SkeNfzLyqx019hm557MsM/I9jhrVE8wlqdLI/8VR4w9Gfomjxq1GvsXIrW1Fkv7WyD3L7SIj/1+OGpca+U8cNb5u5J7l9oiR/7WjRqOR73XU8DzHUpGH9zhi5P/sqPGokVv9JUmfNvJnHTWWBrIBx+vPBk7nwfkqUzZFZZnMmFkikTBf39raGszLy8cbSf6nqqqqYH7s2DGzRk1NTTA/ceKEWaO6utp8jiWdThv52H39XlZby8rKzBq9vb3BPHLs0Corw99OPT05s0ZxcXgdKimx1zGrRldXp1mjtzfc1lQqZdaw1o+2trZgbm0rklRbG16PPcstmUwG86lTp5k1rPX4uGObrKurD+ae5dbWdjKYV1aG9x2S3R/WtjL8HHtdtxQXh+dNeNrR398fzC+++C/MGidPhvu0tLTUrGHtbzs6OswaFRXj71+KiorM10vMRAEAAAAAAHCJ7UwUAAAwPHskXzNR8lUHAADgg4qDKAAAxNiQJN/kUhsHUQAAACaG03kAAAAAAAAcmIkCAECMDYqZKAAAAHHBTBQAAAAAAACH2M1Eif7j/lldgefYNz+yb0Vp38gp3AZJCt/oaVj3OWhHj6OGdXMsq52S/XntG0pJ1g3FPDfxstrqqdFn5J7lYtXwtMPqU+s9pIn3qef2xPmo4VnHLNZnzcf2lI/1x/NZ87EteNYPy7nYnjz7Bms/5lm2+ejTUI1T607kuc9jHjETBeebU9tQT8/4W77nFse5XHirTpTYw1zrlprWe0jhzyFJPY4aKaOGpx0Dg+HRr2fXZb1Pd7f9DdfbF/5W8NyeeGgoPLLoydnfCgPGLVkTjlscDw6E2zFotFOy+9S6jbIkdU9wHcs5+staLp71Z3DQMyIMGzLeyLM9JZMT3yb7jfW4tDR8+2JJGjD6w9OOgf6Jj/YSifC+0Npmh9sR3p66u+1fpNa+0tOOiW4LklQS+G441UZrrFcUnevRoOHQoUNqbGwsdDMAABjTwYMH1dDQcNbfJ5fLac6cOTpy5Ehe69bX12v//v1Kp9N5rQt4MdYDAMSZNdaL3UGUoaEhHT58WBUVFSoqGv7bW0dHhxobG3Xw4EFVVlYWuIWTH/2Zf/Rp/tGn+UefTkwURcpms5o5c6aKi8/N2bC5XE59jr/MvB/JZJIDKCio/zrWY9+Uf/Rp/tGn+Uef5hf9OXHesV7sTucpLi4e96hPZWUlK0Qe0Z/5R5/mH32af/Tpmauqqjqn75dOpznggfPOeGM99k35R5/mH32af/RpftGfE+MZ63FhWQAAAAAAAAcOogAAAAAAADhMioMoqVRKa9euVSqVKnRTzgv0Z/7Rp/lHn+YffQogjtg35R99mn/0af7Rp/lFf547sbuwLAAAAAAAQBxNipkoAAAAAAAAhcZBFAAAAAAAAAcOogAAAAAAADhwEAUAAAAAAMAh9gdRNmzYoIsuukjpdFoLFy7Ub3/720I3adLYvn27Pv7xj2vmzJkqKirSr3/961F5FEX6xje+oQsuuECZTEZLly7Vvn37CtPYSWD9+vW69tprVVFRoRkzZmj58uXau3fvqOfkcjk1NTVp6tSpKi8v1yc+8Qm1trYWqMXxt3HjRl111VWqrKxUZWWlFi1apGeeeWYkpz8n7r777lNRUZFWrVo18hj9CiBOGOudOcZ6+cVYL/8Y651djPMKI9YHUR555BGtXr1aa9eu1a5duzRv3jzddNNNOnr0aKGbNil0dXVp3rx52rBhw5j597//fT3wwAP66U9/qldffVVTpkzRTTfdpFwud45bOjm0tLSoqalJO3bsUHNzs/r7+7Vs2TJ1dXWNPOfee+/VU089pccee0wtLS06fPiw7rjjjgK2Ot4aGhp03333aefOnfrd736nxYsX67bbbtPvf/97SfTnRL322mv62c9+pquuumrU4/QrgLhgrDcxjPXyi7Fe/jHWO3sY5xVQFGMLFiyImpqaRv49ODgYzZw5M1q/fn0BWzU5SYq2bNky8u+hoaGovr4+uv/++0cea2tri1KpVPTQQw8VoIWTz9GjRyNJUUtLSxRFw/1XWloaPfbYYyPP+eMf/xhJil555ZVCNXPSqampiX7+85/TnxOUzWajuXPnRs3NzdGNN94Y3XPPPVEUsZ4CiBfGevnDWC//GOudHYz1Jo5xXmHFdiZKX1+fdu7cqaVLl448VlxcrKVLl+qVV14pYMvOD/v379eRI0dG9W9VVZUWLlxI/zq1t7dLkmprayVJO3fuVH9//6g+veyyyzR79mz61GFwcFAPP/ywurq6tGjRIvpzgpqamvSxj31sVP9JrKcA4oOx3tnFWG/iGOvlF2O9/GGcV1glhW7AeI4fP67BwUHV1dWNeryurk5vvPFGgVp1/jhy5Igkjdm/pzKMb2hoSKtWrdINN9ygK664QtJwnyaTSVVXV496Ln0a9vrrr2vRokXK5XIqLy/Xli1bdPnll2v37t305xl6+OGHtWvXLr322munZaynAOKCsd7ZxVhvYhjr5Q9jvfxinFd4sT2IAsRZU1OT9uzZo5dffrnQTZn0Lr30Uu3evVvt7e16/PHHtWLFCrW0tBS6WZPWwYMHdc8996i5uVnpdLrQzQEAYFJirJc/jPXyh3FePMT2dJ5p06YpkUicdiXh1tZW1dfXF6hV549TfUj/vn8rV67U1q1btW3bNjU0NIw8Xl9fr76+PrW1tY16Pn0alkwmdckll2j+/Plav3695s2bpx/96Ef05xnauXOnjh49qquvvlolJSUqKSlRS0uLHnjgAZWUlKiuro5+BRALjPXOLsZ6Z46xXn4x1ssfxnnxENuDKMlkUvPnz9cLL7ww8tjQ0JBeeOEFLVq0qIAtOz/MmTNH9fX1o/q3o6NDr776Kv07jiiKtHLlSm3ZskUvvvii5syZMyqfP3++SktLR/Xp3r179fbbb9On78PQ0JB6e3vpzzO0ZMkSvf7669q9e/fIf9dcc40+97nPjfw//QogDhjrnV2M9d4/xnrnBmO9M8c4Lx5ifTrP6tWrtWLFCl1zzTVasGCBfvjDH6qrq0tf/OIXC920SaGzs1NvvvnmyL/379+v3bt3q7a2VrNnz9aqVav03e9+V3PnztWcOXO0Zs0azZw5U8uXLy9co2OsqalJmzdv1pNPPqmKioqR8wqrqqqUyWRUVVWlO++8U6tXr1Ztba0qKyt19913a9GiRbruuusK3Pp4+trXvqZbbrlFs2fPVjab1ebNm/XSSy/p2WefpT/PUEVFxci526dMmTJFU6dOHXmcfgUQF4z1JoaxXn4x1ss/xnr5xTgvJgp9eyDLj3/842j27NlRMpmMFixYEO3YsaPQTZo0tm3bFkk67b8VK1ZEUTR867s1a9ZEdXV1USqVipYsWRLt3bu3sI2OsbH6UlK0adOmkef09PREd911V1RTUxOVlZVFt99+e/TOO+8UrtEx96UvfSm68MILo2QyGU2fPj1asmRJ9Nxzz43k9Gd+vPfWd1FEvwKIF8Z6Z46xXn4x1ss/xnpnH+O8c68oiqLoXB60AQAAAAAAmIxie00UAAAAAACAOOEgCgAAAAAAgAMHUQAAAAAAABw4iAIAAAAAAODAQRQAAAAAAAAHDqIAAAAAAAA4cBAFAAAAAADAgYMoAAAAAAAADhxEAQAAAAAAcOAgCgAAAAAAgAMHUQAAAAAAABw4iAIAAAAAAODw7w/Zl2i3vOXCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of fire pixels detected: 2\n" + ] + } + ], "source": [ "# Visualize results\n", "fig1, (ax3, ax4) = plt.subplots(1, 2, figsize=(12, 5))\n", @@ -830,7 +1950,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -839,7 +1959,42 @@ "id": "Hin2lrkHYshb", "outputId": "382b47a0-880c-4e44-86ee-fd57732bc362" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Conversion from mask codes to confidence values.\n", "fire_mask_codes = [10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35]\n", @@ -868,7 +2023,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -899,7 +2054,57 @@ "id": "lh4HOGb7dU-b", "outputId": "ac8f4ff4-f292-49e6-cd5a-571ff781c424" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d066f1802666466aa9fb23f7476ceebd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[50.23128609777502, -121.58153879631847], controls=(WidgetControl(options=['position', 'transparent…" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# We can visualize that initial data processing step from each satellite, using:\n", "affected_area_palette = [\"white\", \"yellow\", \"orange\", \"red\", \"purple\"]\n", @@ -931,7 +2136,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -961,7 +2166,57 @@ "id": "rVEaK3EgdU7T", "outputId": "536cab9f-6042-4cf1-9800-d977cd136f80" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b1180311a03847ed8059154885374b4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[50.23128609777502, -121.58153879631847], controls=(WidgetControl(options=['position', 'transparent…" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Combine the confidence values from both GOES-16 and GOES-17 using the minimum reducer\n", "combined_confidence = ee.ImageCollection([goes_16_max_confidence, goes_17_max_confidence]).reduce(ee.Reducer.min())\n", @@ -987,7 +2242,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1017,7 +2272,57 @@ "id": "invP31ehdU2T", "outputId": "80c2aba1-f7f7-43b6-9f5e-ce7d347469a9" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5f89a2bde8d94c7e9349e07e4ef9cc23", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[50.23128609777502, -121.58153879631847], controls=(WidgetControl(options=['position', 'transparent…" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Define the kernel for smoothing\n", "kernel = ee.Kernel.square(2000, \"meters\", True)\n", @@ -1117,9 +2422,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "cyberse_wildfire", "language": "python", - "name": "python3" + "name": "cyberse_wildfire" }, "language_info": { "codemirror_mode": { @@ -1131,7 +2436,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.10.12" }, "widgets": { "application/vnd.jupyter.widget-state+json": { @@ -3220,5 +4525,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorials/BC_Wildfire_Mapping.ipynb b/tutorials/BC_Wildfire_Mapping.ipynb index ebdbb663..a4209922 100644 --- a/tutorials/BC_Wildfire_Mapping.ipynb +++ b/tutorials/BC_Wildfire_Mapping.ipynb @@ -6,7 +6,7 @@ "id": "Q4cJY74nZBVE" }, "source": [ - "# **Cyberse BC Wildfire Mapping**" + "# **BC Wildfire Mapping**" ] }, { @@ -21,6 +21,13 @@ "[Photo Source](https://www.cbc.ca/news/canada/calgary/badly-burned-puppy-nero-receives-outpouring-of-support-1.2422753)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Click here to access to the original Google Colab notebook](https://drive.google.com/file/d/1R7l9kQHj6Y142MoGKLWfprD7itmuPN6C/view?usp=sharing)" + ] + }, { "cell_type": "markdown", "metadata": { @@ -66,7 +73,6 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "collapsed": true, "id": "k_xsUtyuYs_7", "outputId": "cd90e8f0-f062-49b9-dc83-0bf77f7916fc" }, @@ -76,8 +82,7 @@ "output_type": "stream", "text": [ "Requirement already satisfied: earthengine-api==0.1.406 in c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages (from -r requirements.txt (line 1)) (0.1.406)\n", - "Requirement already satisfied: folium==0.14.0 in c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages (from -r requirements.txt (line 2)) (0.14.0)\n", - "Requirement already satisfied: geemap==0.20.4 in c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages (from -r requirements.txt (line 3)) (0.20.4)\n" + "Requirement already satisfied: folium==0.14.0 in c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages (from -r requirements.txt (line 2)) (0.14.0)\n" ] }, { @@ -85,14 +90,14 @@ "output_type": "stream", "text": [ "WARNING: Ignoring invalid distribution -rotobuf (c:\\users\\owner\\documents\\anaconda package\\lib\\site-packages)\n", - "ERROR: Ignored the following versions that require a different python version: 3.6.0 Requires-Python >=3.8; 3.6.0rc1 Requires-Python >=3.8; 3.6.0rc2 Requires-Python >=3.8; 3.6.1 Requires-Python >=3.8; 3.6.2 Requires-Python >=3.8; 3.6.3 Requires-Python >=3.8; 3.7.0 Requires-Python >=3.8; 3.7.0rc1 Requires-Python >=3.8; 3.7.1 Requires-Python >=3.8; 3.7.2 Requires-Python >=3.8; 3.7.3 Requires-Python >=3.8; 3.7.4 Requires-Python >=3.8; 3.7.5 Requires-Python >=3.8; 3.8.0 Requires-Python >=3.9; 3.8.0rc1 Requires-Python >=3.9; 3.8.1 Requires-Python >=3.9; 3.8.2 Requires-Python >=3.9; 3.8.3 Requires-Python >=3.9; 3.8.4 Requires-Python >=3.9; 3.9.0 Requires-Python >=3.9; 3.9.0rc2 Requires-Python >=3.9; 3.9.1 Requires-Python >=3.9; 3.9.1.post1 Requires-Python >=3.9; 3.9.2 Requires-Python >=3.9\n", - "ERROR: Could not find a version that satisfies the requirement matplotlib==3.7.1 (from versions: 0.86, 0.86.1, 0.86.2, 0.91.0, 0.91.1, 1.0.1, 1.1.0, 1.1.1, 1.2.0, 1.2.1, 1.3.0, 1.3.1, 1.4.0, 1.4.1rc1, 1.4.1, 1.4.2, 1.4.3, 1.5.0, 1.5.1, 1.5.2, 1.5.3, 2.0.0b1, 2.0.0b2, 2.0.0b3, 2.0.0b4, 2.0.0rc1, 2.0.0rc2, 2.0.0, 2.0.1, 2.0.2, 2.1.0rc1, 2.1.0, 2.1.1, 2.1.2, 2.2.0rc1, 2.2.0, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 3.0.0rc2, 3.0.0, 3.0.1, 3.0.2, 3.0.3, 3.1.0rc1, 3.1.0rc2, 3.1.0, 3.1.1, 3.1.2, 3.1.3, 3.2.0rc1, 3.2.0rc3, 3.2.0, 3.2.1, 3.2.2, 3.3.0rc1, 3.3.0, 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.4.0rc1, 3.4.0rc2, 3.4.0rc3, 3.4.0, 3.4.1, 3.4.2, 3.4.3, 3.5.0b1, 3.5.0rc1, 3.5.0, 3.5.1, 3.5.2, 3.5.3)\n", - "ERROR: No matching distribution found for matplotlib==3.7.1\n" + "ERROR: Ignored the following versions that require a different python version: 0.20.5 Requires-Python >=3.8; 0.20.6 Requires-Python >=3.8; 0.20.7 Requires-Python >=3.8; 0.21.0 Requires-Python >=3.8; 0.22.0 Requires-Python >=3.8; 0.22.1 Requires-Python >=3.8; 0.23.0 Requires-Python >=3.8; 0.23.1 Requires-Python >=3.8; 0.23.2 Requires-Python >=3.8; 0.24.0 Requires-Python >=3.8; 0.24.1 Requires-Python >=3.8; 0.24.2 Requires-Python >=3.8; 0.24.3 Requires-Python >=3.8; 0.24.4 Requires-Python >=3.8; 0.25.0 Requires-Python >=3.8; 0.26.0 Requires-Python >=3.8; 0.27.0 Requires-Python >=3.8; 0.27.1 Requires-Python >=3.8; 0.27.2 Requires-Python >=3.8; 0.27.3 Requires-Python >=3.8; 0.27.4 Requires-Python >=3.8; 0.28.0 Requires-Python >=3.8; 0.28.1 Requires-Python >=3.8; 0.28.2 Requires-Python >=3.8; 0.29.0 Requires-Python >=3.8; 0.29.1 Requires-Python >=3.8; 0.29.2 Requires-Python >=3.8; 0.29.3 Requires-Python >=3.8; 0.29.4 Requires-Python >=3.8; 0.29.5 Requires-Python >=3.8; 0.29.6 Requires-Python >=3.8; 0.30.0 Requires-Python >=3.8; 0.30.1 Requires-Python >=3.8; 0.30.2 Requires-Python >=3.8; 0.30.3 Requires-Python >=3.8; 0.30.4 Requires-Python >=3.8; 0.31.0 Requires-Python >=3.8; 0.32.0 Requires-Python >=3.8; 0.32.1 Requires-Python >=3.8; 0.33.0 Requires-Python >=3.8; 0.33.1 Requires-Python >=3.8; 0.34.0 Requires-Python >=3.8\n", + "ERROR: Could not find a version that satisfies the requirement geemap==0.32.1 (from versions: 0.1.0, 0.1.1, 0.1.2, 0.1.3, 0.1.4, 0.1.5, 0.1.6, 0.1.7, 0.2.0, 0.2.1, 0.3.0, 0.3.1, 0.3.2, 0.4.0, 0.4.1, 0.4.2, 0.5.0, 0.5.1, 0.5.2, 0.5.3, 0.5.4, 0.5.5, 0.6.0, 0.6.1, 0.6.2, 0.6.3, 0.6.4, 0.6.5, 0.6.6, 0.6.7, 0.6.8, 0.6.9, 0.6.10, 0.6.11, 0.6.12, 0.6.13, 0.6.14, 0.7.0, 0.7.1, 0.7.2, 0.7.3, 0.7.4, 0.7.5, 0.7.6, 0.7.7, 0.7.8, 0.7.9, 0.7.10, 0.7.11, 0.7.12, 0.7.13, 0.8.0, 0.8.1, 0.8.2, 0.8.3, 0.8.4, 0.8.5, 0.8.6, 0.8.7, 0.8.8, 0.8.9, 0.8.10, 0.8.11, 0.8.12, 0.8.13, 0.8.14, 0.8.15, 0.8.16, 0.8.17, 0.8.18, 0.9.0, 0.9.1, 0.9.2, 0.9.3, 0.9.4, 0.9.5, 0.10.0, 0.10.1, 0.10.2, 0.11.0, 0.11.1, 0.11.2, 0.11.3, 0.11.4, 0.11.5, 0.11.6, 0.11.7, 0.11.8, 0.12.0, 0.12.1, 0.13.0, 0.13.1, 0.13.2, 0.13.3, 0.13.4, 0.13.5, 0.13.6, 0.13.7, 0.13.8, 0.13.9, 0.13.10, 0.13.11, 0.14.0, 0.14.1, 0.14.2, 0.14.3, 0.15.0, 0.15.1, 0.15.2, 0.15.3, 0.15.4, 0.15.5, 0.16.0, 0.16.1, 0.16.2, 0.16.3, 0.16.4, 0.16.5, 0.16.6, 0.16.7, 0.16.8, 0.16.9, 0.17.0, 0.17.1, 0.17.2, 0.17.3, 0.18.0, 0.18.1, 0.18.2, 0.18.3, 0.19.0, 0.19.1, 0.19.2, 0.19.3, 0.19.4, 0.19.5, 0.19.6, 0.20.0, 0.20.1, 0.20.2, 0.20.3, 0.20.4)\n", + "ERROR: No matching distribution found for geemap==0.32.1\n" ] } ], "source": [ - "!pip install -r requirements.txt" + "# !pip install -r requirements.txt" ] }, { @@ -101,23 +106,15 @@ "metadata": { "id": "rilgOE8QYs6j" }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\owner\\Documents\\Anaconda Package\\lib\\site-packages\\pandas\\compat\\_optional.py:138: UserWarning: Pandas requires version '2.7.0' or newer of 'numexpr' (version '2.6.9' currently installed).\n", - " warnings.warn(msg, UserWarning)\n" - ] - } - ], + "outputs": [], "source": [ "import ee\n", "import folium\n", "import geemap # geemap.core as geemap\n", + "import pytz\n", + "import os\n", "import numpy as np\n", "import pandas as pd\n", - "import pytz\n", "import matplotlib.pyplot as plt\n", "from IPython.display import Image\n", "from datetime import datetime" @@ -162,7 +159,7 @@ " - Once you've created a Google Cloud Project, return to the [projects page]((https://console.cloud.google.com/cloud-resource-manager) and you should see your project listed under \"Resources\"\n", " - Beside the \"name\" column is a column named `ID`. Copy the ID value associated to your project and enter it in the `project` argument of the `ee.Initialize()` function below.\n", "\n", - "5. ? **Create credentials for Earth Engine**\n", + "5. **Create credentials for Earth Engine**\n", " - In the Google Cloud Console, go to \"APIs & Services\" > \"Credentials\"\n", " - Click \"Create Credentials\" and under \"Select an API\" dropdown, choose \"Google Earth Engine API\"\n", " - Fill in the details in the \"Service Account details\" step to create a service account.\n", @@ -192,13 +189,56 @@ "id": "b_cXIM3vYs4N", "outputId": "b26fe635-c1f0-4057-b19a-29fa0abe3e4a" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], "source": [ "# Trigger the authentication flow.\n", "ee.Authenticate()\n", "\n", "# Initialize the library.\n", - "ee.Initialize(project=\"bc-wildfire-422905\") #\"{enter-project-name}\"" + "project_name = os.environ.get(\"CYBERSE\")\n", + "ee.Initialize(project=project_name) # \"bc-wildfire-422905\"" ] }, { @@ -225,7 +265,42 @@ "id": "f5aWXtRJYs1q", "outputId": "c5ceaefe-f63f-4cbb-884e-536983a0be77" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Getting coordinates of the point of interest\n", "# which is the Lytton library as the poi for the Lytton Creek wildfire that started on 2021-06-30\n", @@ -284,7 +359,42 @@ "id": "Agm19ss4Z-Cf", "outputId": "7ed3179e-f46f-4efd-b2de-55bea11f98ce" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def mask_s2_clouds(image):\n", " \"\"\"Masks clouds in a Sentinel-2 image using the QA band.\n", @@ -322,7 +432,42 @@ "id": "POj82YNEzyE_", "outputId": "d888cbe7-cdfe-4060-902a-b5638e4b16c1" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Google function that allows ee layers on folium\n", "def add_ee_layer(self, ee_image_object, vis_params, name):\n", @@ -364,6 +509,40 @@ "outputId": "bbdf2a3f-628d-4723-a683-a2504895dfa8" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", @@ -387,11 +566,44 @@ "base_uri": "https://localhost:8080/", "height": 1000 }, - "collapsed": true, "id": "2htR-4b92JLL", "outputId": "4d57d634-2a94-4475-d04f-cfd2fa2e5202" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "text/plain": [ @@ -656,6 +868,40 @@ "outputId": "dd4843a8-7f2b-45f5-9901-68024f5c0455" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", @@ -666,7 +912,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -685,7 +931,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -704,7 +950,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -723,7 +969,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -742,7 +988,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -761,7 +1007,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -780,7 +1026,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -872,7 +1118,42 @@ "id": "NtWbuiUxwyAl", "outputId": "27d06ea6-819b-4f75-e6c6-2273afbdd13e" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Function to calculate NBR\n", "def calculate_nbr(image):\n", @@ -914,6 +1195,40 @@ "outputId": "3aa1f91b-4e87-4547-d561-0812dd9de714" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "text/html": [ @@ -944,7 +1259,7 @@ " <meta name="viewport" content="width=device-width,\n", " initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />\n", " <style>\n", - " #map_c194b38c3974f262ed78a568e47e1cec {\n", + " #map_1d5a71638f9e81fcf45e539a3eeae7df {\n", " position: relative;\n", " width: 100.0%;\n", " height: 100.0%;\n", @@ -958,14 +1273,14 @@ "<body>\n", " \n", " \n", - " <div class="folium-map" id="map_c194b38c3974f262ed78a568e47e1cec" ></div>\n", + " <div class="folium-map" id="map_1d5a71638f9e81fcf45e539a3eeae7df" ></div>\n", " \n", "</body>\n", "<script>\n", " \n", " \n", - " var map_c194b38c3974f262ed78a568e47e1cec = L.map(\n", - " "map_c194b38c3974f262ed78a568e47e1cec",\n", + " var map_1d5a71638f9e81fcf45e539a3eeae7df = L.map(\n", + " "map_1d5a71638f9e81fcf45e539a3eeae7df",\n", " {\n", " center: [50.23124506328952, -121.58154057521354],\n", " crs: L.CRS.EPSG3857,\n", @@ -979,79 +1294,79 @@ "\n", " \n", " \n", - " var tile_layer_4083e8d7d8542af651e72ac02e8cb55e = L.tileLayer(\n", + " var tile_layer_bb8ca86ff2b78983a20c70a3c33fbf60 = L.tileLayer(\n", " "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",\n", " {"attribution": "Data by \\u0026copy; \\u003ca target=\\"_blank\\" href=\\"http://openstreetmap.org\\"\\u003eOpenStreetMap\\u003c/a\\u003e, under \\u003ca target=\\"_blank\\" href=\\"http://www.openstreetmap.org/copyright\\"\\u003eODbL\\u003c/a\\u003e.", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_7775693baba7cb2d07a253def6323407 = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/a9996e2b60c108e5cd54bd8daa78dfc3-f6dd2afc29ee15374d80de7384fc7d50/tiles/{z}/{x}/{y}",\n", + " var tile_layer_735d89abfe4650e2dd69b6ff17d16a38 = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/bb6bdf4dab45d60d201f772446b3f6e3-3cbddd39e0c3660f51971ea1a2175f95/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_ea8aedb380ca826072e48ed70ff4c6aa = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/576c6f32199e05e737a2e570d3b2e266-9426506cdf833707afa9587489fe4eb7/tiles/{z}/{x}/{y}",\n", + " var tile_layer_eee8cdbe3afe23a15db53f594fd63ca5 = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/355e2b1687235a6534a768449c5793be-82d269675cf795ac4e9eff2cb1b0ce8a/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_7d0a909d51d10a5941e5f3b5d094a999 = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/c4594139d591dbec18d277202712ad93-7a817c5718545976d12507b735a07b4e/tiles/{z}/{x}/{y}",\n", + " var tile_layer_4b2cbac119656219c4730b49e13b969e = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/430ac435f74a035d9f3571dac8f98b38-2c3a2d5ce6dbc47f9d3a6cb8cf8cba8e/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_cbe59b4d7ab31a3f7d85ede98c9684d1 = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/a96915a0dd0349ea9cc55dd686afa3dd-980c01149f118dd498f77c76c3216bbb/tiles/{z}/{x}/{y}",\n", + " var tile_layer_fac7773dc8350920aaf2acc9cc7239e1 = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/59e2c12bd278f0a9020acf8101da6232-c53827ab61fff5c9ed06a5a37ae4cd61/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_252f185de5ab374489ca56897e8e8dbc = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/dd3cd212589110824a9b28f5642e736c-7032f8533027a27c134fcf7ff884101a/tiles/{z}/{x}/{y}",\n", + " var tile_layer_6ef2dd08bb0ca96d512e326b337c0869 = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/1e9d6b8b168272de3ef2d9698b13e500-e5f87787905f95741fcb4b61dcfc50d5/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_1ef5ee89fbc6a0701bad843a87bfdb7a = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/1f4a5cfd9367ac0c395995dad797ac44-4e207f1ba58be22b22dc47c746fa8e87/tiles/{z}/{x}/{y}",\n", + " var tile_layer_d9634c8d3c7c7c38fe0c01776166a353 = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/74d133bdb1b89f79f6cdd8ce5e6cb4b0-8aa5634ff3bb8f1fb0161610e7d1fa92/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var tile_layer_98187df0e2ccf2e7ccb8b44d5bc28d1e = L.tileLayer(\n", - " "https://earthengine.googleapis.com/v1/projects/bc-wildfire-422905/maps/775fd006d5b246f1bb91ccb3cbe906d8-459a28427e37f14d65c918d62844047d/tiles/{z}/{x}/{y}",\n", + " var tile_layer_8d2f4134cd22f2d44b17268a127a816f = L.tileLayer(\n", + " "https://earthengine.googleapis.com/v1/projects/earthengine-legacy/maps/71e4f5a55c72a5c7988f4eb6a9321c80-f5eb711f58173c6e6ea84eae3a8bddc8/tiles/{z}/{x}/{y}",\n", " {"attribution": "Map Data \\u0026copy; \\u003ca href=\\"https://earthengine.google.com/\\"\\u003eGoogle Earth Engine\\u003c/a\\u003e", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", " \n", - " var layer_control_114cb888ff986e3da4c194da2ab8ffa0 = {\n", + " var layer_control_71ecda7ba18ec6652b855b693b2c9adc = {\n", " base_layers : {\n", - " "openstreetmap" : tile_layer_4083e8d7d8542af651e72ac02e8cb55e,\n", + " "openstreetmap" : tile_layer_bb8ca86ff2b78983a20c70a3c33fbf60,\n", " },\n", " overlays : {\n", - " "Sentinel-2 SWIR Image #5 / Date: 2021-06-26 11:59:19 PST/PDT" : tile_layer_7775693baba7cb2d07a253def6323407,\n", - " "Sentinel-2 SWIR Image #9 / Date: 2021-06-29 12:09:19 PST/PDT" : tile_layer_ea8aedb380ca826072e48ed70ff4c6aa,\n", - " "Sentinel-2 SWIR Image #11 / Date: 2021-07-01 11:59:21 PST/PDT" : tile_layer_7d0a909d51d10a5941e5f3b5d094a999,\n", - " "Sentinel-2 SWIR Image #12 / Date: 2021-07-01 11:59:21 PST/PDT" : tile_layer_cbe59b4d7ab31a3f7d85ede98c9684d1,\n", - " "Sentinel-2 SWIR Image #15 / Date: 2021-07-06 11:59:19 PST/PDT" : tile_layer_252f185de5ab374489ca56897e8e8dbc,\n", - " "Sentinel-2 SWIR Image #18 / Date: 2021-07-09 12:09:19 PST/PDT" : tile_layer_1ef5ee89fbc6a0701bad843a87bfdb7a,\n", - " "Sentinel-2 SWIR Image #26 / Date: 2021-07-14 12:09:21 PST/PDT" : tile_layer_98187df0e2ccf2e7ccb8b44d5bc28d1e,\n", + " "Sentinel-2 SWIR Image #5 / Date: 2021-06-26 11:59:19 PST/PDT" : tile_layer_735d89abfe4650e2dd69b6ff17d16a38,\n", + " "Sentinel-2 SWIR Image #9 / Date: 2021-06-29 12:09:19 PST/PDT" : tile_layer_eee8cdbe3afe23a15db53f594fd63ca5,\n", + " "Sentinel-2 SWIR Image #11 / Date: 2021-07-01 11:59:21 PST/PDT" : tile_layer_4b2cbac119656219c4730b49e13b969e,\n", + " "Sentinel-2 SWIR Image #12 / Date: 2021-07-01 11:59:21 PST/PDT" : tile_layer_fac7773dc8350920aaf2acc9cc7239e1,\n", + " "Sentinel-2 SWIR Image #15 / Date: 2021-07-06 11:59:19 PST/PDT" : tile_layer_6ef2dd08bb0ca96d512e326b337c0869,\n", + " "Sentinel-2 SWIR Image #18 / Date: 2021-07-09 12:09:19 PST/PDT" : tile_layer_d9634c8d3c7c7c38fe0c01776166a353,\n", + " "Sentinel-2 SWIR Image #26 / Date: 2021-07-14 12:09:21 PST/PDT" : tile_layer_8d2f4134cd22f2d44b17268a127a816f,\n", " },\n", " };\n", " L.control.layers(\n", - " layer_control_114cb888ff986e3da4c194da2ab8ffa0.base_layers,\n", - " layer_control_114cb888ff986e3da4c194da2ab8ffa0.overlays,\n", + " layer_control_71ecda7ba18ec6652b855b693b2c9adc.base_layers,\n", + " layer_control_71ecda7ba18ec6652b855b693b2c9adc.overlays,\n", " {"autoZIndex": true, "collapsed": false, "position": "topright"}\n", - " ).addTo(map_c194b38c3974f262ed78a568e47e1cec);\n", + " ).addTo(map_1d5a71638f9e81fcf45e539a3eeae7df);\n", " \n", "</script>\n", "</html>\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" allowfullscreen webkitallowfullscreen mozallowfullscreen>" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1164,6 +1479,40 @@ "outputId": "431d45de-0835-4dea-e01c-93215f9d1468" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", @@ -1204,7 +1553,42 @@ "id": "I45V4_jnYszD", "outputId": "f542ed6f-4621-45f5-cb57-d2b27a1abb31" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def map_from_mask_codes_to_confidence_values(image):\n", " return image.clip(poi).remap(fire_mask_codes, confidence_values, default_confidence_value)" @@ -1221,7 +1605,42 @@ "id": "fFCZ5ojkYsv7", "outputId": "f3e88198-a677-497a-92a5-ef81f8a344b1" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Applies scaling factors.\n", "def apply_scale_factors(image):\n", @@ -1270,7 +1689,42 @@ "id": "mgp4IJ_K9txq", "outputId": "67192ca4-9524-4aef-8065-e56955d110c8" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Fire Detection Characterization (FDC) Algorithm example implementation\n", "\n", @@ -1328,7 +1782,41 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFUAAAHqCAYAAADFx3HMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXgUVbo/8G+nk+4knXSHhCUgS0AckE1FFIMoQWVTFkXuVVkMIo7KzB1x+aEwqKBiEJwBRgFlQBBRkWERRQFRlpEREHTwMqK4DGCEBCEhWye91+8Pbnpokpz3pNORjn4/z5PngX6r3zpVder06dOnqkyGYRggIiIiIiIiIqJaiTnfBSAiIiIiIiIiaog4qEJEREREREREFAYOqhARERERERERhYGDKkREREREREREYeCgChERERERERFRGDioQkREREREREQUBg6qEBERERERERGFgYMqRERERERERERh4KAKEREREREREVEYOKhC9WrPnj245ZZb0Lp1a1itVjRr1gyZmZl4+OGHQ5bLyspCVlbWeSnj9u3bYTKZsH379lq/9+DBg5g2bRqOHDkS8XJNmzYNJpOp1u8bPXo0TCYTBg8eHPEyRUJJSQlmzJiBHj16wG63w2q1IiMjA+PGjcPnn38eXK5y+0+dOnUeSxs5y5Ytg8lkqpe6QkREdK7Kz53q/h555JHgchkZGcHXY2Ji4HA4cPHFF+POO+/EBx98UGN+3c9zyYEDB2AymRAXF4e8vLxqlzmf/USg+j7ZggULsGzZsirLVvYrV69e/TOVLtSRI0dqPO49evQILjd69Gi0b9/+ZynT1KlTQ8qRmJiIli1bYuDAgZg/fz7KysrCzr1z505MmzYNJSUlESxx7dbTu3dv3HDDDfW6fopusee7APTL9d5772Ho0KHIysrCrFmz0Lx5c+Tl5WHfvn1YuXIl/vSnPwWXXbBgwXksafgOHjyI6dOnIysrCxkZGee7OHjvvffw9ttvw263n++iVOv7779H//798dNPP+G+++7D9OnTkZSUhCNHjmDVqlW4/PLLUVRUBIfDcb6LSkRE9IuwdOlSdOzYMeS1Fi1ahPz/6quvxvPPPw8AKCsrw6FDh7By5UoMGDAAt956K958803ExcUFl4/k5/nixYsBAD6fD8uXL8ejjz5a102OuPHjx2PgwIEhry1YsACNGzfG2LFjz0+hBP/zP/+DkSNHhryWlJQU/Pf06dNRWlr6s5Zpy5YtSEpKgsfjwbFjx/DRRx/h4YcfxuzZs7FhwwZ06dKl1jl37tyJ6dOnY/z48fXa/1WtZ9GiRWH9EEq/HBxUoXoza9YstG3bFps3b0Zs7H+q2u23345Zs2aFLNupU6efu3i/OMXFxbj33nvx9NNPY968eee7OFX4/X7ccsstOHXqFHbt2hXywdmnTx9kZ2dj48aNIZ02IiIiqpsuXbqEzFCoTkpKCq666qrg/2+44Qb87ne/w7Rp0zB9+nRMnToVzz33HIDIfp673W68/vrruOSSS3Dq1Cm88sorUTWoUl5eHpxV0bJly/NdnFpp3bp1yDE914UXXijmMAwDbrcb8fHxESlTjx49kJKSEvz/HXfcgQkTJiArKwtDhw7F119/DYvFEpF1/Zz4PYZ4+Q/Vm4KCAjRu3DhkQKVSTExo1Tt3Wmfl1MXZs2fjueeeQ0ZGBhISEpCVlYVvvvkGXq8Xjz32GFq0aAGHw4FbbrkFP/30U0hOk8mEadOmVVl3RkaG+KvCvn37cPvttwfXm5GRgTvuuANHjx4NLrNs2TL813/9FwCgb9++wSmNZ08F/fDDD3H99dfDbrcjMTERV199NT766KMq63vvvfdw6aWXwmq1om3btsFfi2rj4YcfRvPmzfGHP/yh2nhNlzlV7uuzyz127FgkJSXh66+/xoABA2Cz2dC8eXPMnDkTALB792707t0bNpsNv/nNb/Dqq6+K5Xv77bdx4MABTJ48ucZfIgYNGoTExMSQ106cOIE77rgDDocDzZo1w7hx41BcXByyzPz583HttdeiadOmsNls6Nq1K2bNmgWv1xuyXFZWFrp06YK9e/fimmuuQWJiItq1a4eZM2ciEAhU2Vdvvvkm/vjHP6JFixaw2+244YYbcOjQoSrl1j3OREREDcm0adPQuXNnvPjii3C5XADC/zyvzttvv42CggKMHz8e2dnZ+Oabb7Bz506tsv34448YMWIEkpOTkZKSglGjRmHv3r1V+jQA8M477yAzMxOJiYlITk5Gv379sGvXrirbajKZ8Pnnn2PEiBFo1KhRcODh3Mt/MjIy8OWXX2LHjh3B/t+5M5a9Xq/Yh6jsl+zatQu9evUK9jmXLl0K4Ez/sHv37khMTETXrl2xadMmrX2j49zLf3w+H0wmEyZOnIgFCxagY8eOsFgsWLFiBYAzA2BPPfUUOnToAKvViqZNm+Luu++u82Xa3bt3x+TJk3H48OEql0xt3rwZffv2DfavrrnmmpB+7NSpUzF58mQAQKtWrYLH4uw69Oabb+Kqq64KHvuBAwfiiy++qFKOXbt2YfDgwUhNTUV8fDzat28fvF2BtJ7qLv8pKCjAfffdhxYtWsBisaBdu3Z4/PHH4fF4gsucvc9fffVVdOzYEYmJibj00kuxcePGkHwnTpzA+PHj0apVK1itVjRp0gS9e/fGtm3barvLqR5wUIXqTWZmJvbs2YM//OEP2LNnT5UvuDrmz5+Pf/zjH5g/fz4WL16Mr7/+GkOGDMHdd9+NkydP4pVXXsGsWbPw4YcfYvz48REr+5EjR9ChQwfMnTsXmzdvxnPPPYe8vDxcccUVwQ+Pm266Cc8++2ywnLt27cKuXbtw0003AQBWrFiB/v37w26349VXX8WqVauQmpqKAQMGhHzh/uijjzBs2DAkJydj5cqVmD17NlatWhX8QNXx4YcfYvny5Vi8eDHMZnNE9oHX68Xw4cNx0003Yf369Rg0aBAmT56MKVOmIDs7G+PGjcO6devQoUMHjB07Fp999pkyX+V12TfffHOtynHrrbfiN7/5DdasWYPHHnsMb7zxBh588MGQZb7//nuMHDkSr732GjZs2IC7774bs2fPxr333lslX35+PkaNGoXRo0fjnXfeCW5XZafhbFOmTMHRo0exePFiLFq0CN9++y2GDBkCv98fXEb3OBMREZ0Pfr8fPp8v5K82hgwZgvLycuzbtw9A+J/n1VmyZAmsVitGjRqFcePGwWQyYcmSJeL7nE4n+vbti23btuG5557DqlWr0KxZM9x2221Vln3jjTcwbNgw2O12vPnmm1iyZAlOnz6NrKysagdwhg8fjvbt2+Nvf/sbXnrppWrXv27dOrRr1w6XXXZZsP+3bt26kGV0+hDAmX7JXXfdhfHjx2P9+vXo2rUrxo0bh6eeegqTJ0/GpEmTsGbNGiQlJeHmm2/G8ePHxf0DAIFAoMpxNwxDfN/q1auxePFiTJs2DR988AF69eoFv9+PwYMHY/bs2RgzZgzee+89PPvss9i4cSOuu+664IBbuIYOHQoA+Pvf/x58bdmyZRg0aBDS0tKwfPlyrFq1Cna7Hf369QsOrNx3332YMGECgDMDZ5XH4pJLLgEAPPXUUxg1ahS6deuGv/3tb3j11VdRVFSE3r17hwxwvf/++7j22mtx7NgxzJ07F++//z6mTJmC/Px8rfWcq7y8HFlZWXj99dfxyCOP4L333sPIkSORk5MT/EH2bOvXr8fChQvxzDPPYM2aNXA4HLj55ptDfswdNWoUNmzYgCeffBJbtmzB4sWLcd1116GgoCDc3U6RZBDVk1OnThm9e/c2ABgAjLi4OKNXr15GTk6OUVpaGrJsnz59jD59+gT/f/jwYQOAcckllxh+vz/4+ty5cw0AxtChQ0PeP3HiRAOAUVxcHHwNgPHkk09WKVebNm2M7Ozs4P+3bdtmADC2bdtW47b4fD6jrKzMsNlsxrx584Kv/+1vf6v2vU6n00hNTTWGDBkS8rrf7zcuueQS48orrwy+1rNnT6NFixZGRUVF8LWSkhIjNTXV0DlFS0tLjYyMDGPy5Mkh23jTTTeFLFfTdlbu66VLlwZfy87ONgAYa9asCb7m9XqNJk2aGACMzz//PPh6QUGBYTabjYceekhZzoEDBxoADJfLJW6TYRjGk08+aQAwZs2aFfL6hAkTjPj4eCMQCFT7Pr/fb3i9XmP58uWG2Ww2CgsLg7E+ffoYAIw9e/aEvKdTp07GgAEDgv+v3Fc33nhjyHKrVq0yABi7du0yDKN2x3np0qUGAOPw4cNa209ERFQXlZ871f15vd7gctX1Gc62cOFCA4Dx1ltvGYZR+8/zmhw5csSIiYkxbr/99uBrffr0MWw2m1FSUhKy7Ln9xPnz5xsAjI0bN4Ysd++994b0afx+v9GiRQuja9euIf3J0tJSo2nTpkavXr2Cr1X2O5544okqZa2Mna1z584hZaqk24eo3C4Axr59+4KvVfarEhISjGPHjgVf379/vwHA+Mtf/lJlnWer7NdV97dly5bgcqNGjTIuvPDC4P+9Xq8BwGjUqJFRVFQUkvO1114zABjr168PeX337t0GAGPRokXKMv3xj380ABinT5+uNl5aWmoACPanSktLDYfDYdxyyy0hy/l8PqNz584hxy0nJ8cAYOTm5lbZD2az2XjwwQdDXi8pKTGaNm1qjBw50jAMwwgEAkabNm2M3/zmN4bb7a5xG2paj2EYxtVXX21cf/31wf+/+OKLBgBj7dq1IcvNmDHDAGBs3brVMIz/7PPmzZsbZWVlweWOHTtmADBmz54dfC0+Pt545JFHaiwfnV+cqUL1Ji0tDR9//DH27t2LmTNnYtiwYfjmm28wefJkdO3aVWu64I033hhyqdDFF18MAMHZIOe+/sMPP0Sk7GVlZXj00UfRvn17xMbGIjY2FklJSXA6nfjqq6/E93/yyScoLCxEdnZ2yC8EgUAAAwcOxN69e+F0OuF0OrF3714MHz485HrV5ORkDBkyRKusjz32GOLi4vDEE0+Evb3VMZlMuPHGG4P/j42NRfv27dG8eXNcdtllwddTU1PRtGnTkNH0SKr89aJSt27d4HK5Qi73+uc//4mhQ4ciLS0NZrMZcXFxuPPOO+H3+/HNN9+EvD89PR1XXnlllZzVlb+6dQMILqt7nImIiM6X5cuXY+/evSF/1V2aXRNDY3ZDOJYuXYpAIIBx48YFXxs3bhycTifeeust5Xt37NgRvJTjbHfccUfI/w8dOoTjx49jzJgxIf3JpKQk3Hrrrdi9ezfKy8tD3nPrrbeGu0khpD5EpebNm+Pyyy8P/r+yX3XppZeG3FC4sq+r29964IEHqhz3nj17iu+74YYbqtxgeMOGDUhLS8ONN94Y0t+5/PLL0bhx47CeoHm2c+vYzp07UVxcXKV/ZRgGBg4ciD179oizYzZt2gS/348777wzJEdCQkLIZURfffUVjh49ivHjx0fsfi5bt26F3W7HLbfcEvJ65e0Hzp3JfP3118NmswX/36JFCzRu3DjkWF955ZVYsmQJZsyYEfYVAFR/eKNaqnc9evQI3iDN6/Xi0UcfxZw5czBr1qwqN6w9V2pqasj/Kxu7ml6v6/TDSiNHjsRHH32Exx9/HFdccQXsdntwkKGiokJ8/4kTJwAAI0aMqHGZwsJCmEwmBAIBpKenV4lX99q5Pv30UyxYsABr166Fy+UKbn/llM+ioiIkJCTAarWKuc6VmJhY5cZkFoulyr6vfF3a961btwYAHD58uMpTCFTS0tJC/l+5LZXH4YcffsA111yDDh06YN68ecjIyEB8fDw+/fRT/O53v6tyvM7NV5mzuuMqrVv3OJ/9QUlERPRzuvjii8Ub1apUfrGr/IIf7uf52QKBAJYtW4YWLVoEnxQEnPlCb7PZsGTJEuVl3QUFBWjWrFmV1899rfLSiObNm1dZtkWLFggEAjh9+nTI/V+qWzYcUh+iUk39qrr2dVu2bBnWca9u+0+cOIGCgoIabz5c1/uqnFvHKvtXqkvMTp8+rTxWlTnO/iHwbJX78+TJkwAQ0RsRFxQUVFu29PR0mEymKpfs6PRNV69ejWeeeQaLFi3C1KlTkZycjOHDh2PWrFlo2rRpxMpO4eGgCv2s4uLi8OSTT2LOnDn417/+Va/rslqtcLvdVV6Xrj0sLi4OXrP42GOPBV93u90oLCzUWnfjxo0BAC+88EKNd15v1qwZvF4vTCZT8JrNs1X32rkOHjwIwzCqjIQDQG5uLho1aoQ5c+Zg4sSJwdfPvZa6rKxMXE8kDBgwAIsWLcLbb78dsl/r6u2334bT6cTatWvRpk2b4Ov79++P2DpqonuciYiIGiLDMPDuu+/CZrMFv6BH4vP8ww8/DH6Rru4L5e7du3Hw4MEan6qSlpaGTz/9tMrr5/adKnPn5eVVWfb48eOIiYlBo0aNQl7/tT8at7rtb9y4MZo1a4YNGzZU+566Psr4nXfeAYDgQysq+1cLFizAFVdcUe17KpepSWX87bffxgUXXFAlXrmdTZo0AXDmxseRkpaWVm0/ND8/H4ZhiGWvTpMmTTBv3jzMmzcPR48exfr16zF58mScOnWqxuNCPx8OqlC9ycvLq3aUtvLymbOnNNaHjIwM/O///m/Ia1u3bhUHEUwmEwzDqDK7Y/HixVVuLlbTrw5XX301UlJScPDgQfz+97+vcV0WiwVXXnkl1q5di9mzZwdnhpSWluLdd99VbyCAgQMHVnvX79tvvx1t27ZFTk5OyJ3dAeCLL74IuUO57l3262rYsGHo2rUrcnJyMHjw4GqfGLB58+bgU3l0VX4onn28DMPAX//617oXWqB7nImIiBqi6dOn4+DBg5gyZUqwjxKJz/MlS5YgJiYGa9eurXKpyY8//ogxY8bglVdeqfFpiH369MGqVauwceNGDBo0KPj6ypUrQ5br0KEDLrjgArzxxht45JFHgn0Gp9OJNWvWBJ8IFI6aZrn+Eg0ePBirV6+GyWQKuVQpEj7//HPMnDkTF154YfDSq2uuuQZ2ux1fffUV7r//fuX7a+qLDxw4EGazGd9//z2GDRtW4/svvvhiZGRkYMmSJZg4cWKNs3FqWk91rr/+eqxduxbvvvtuyOX8y5cvD8brok2bNvjDH/6ALVu2iA+KoJ8HB1Wo3gwYMAAtW7bEkCFD0LFjRwQCAezfvx9/+tOfkJSUhAceeKBe1z9mzBg8/vjjeOKJJ9CnTx8cPHgQL774YpUP73PZ7XZce+21mD17Nho3boyMjAzs2LEDS5YsQUpKSsiylR2JRYsWITk5GfHx8Wjbti3S0tLwwgsvIDs7G4WFhRgxYgSaNm2KkydP4osvvsDJkyexcOFCAMDTTz+NgQMHol+/fnj44Yfh9/vx3HPPwWaziTNj0tPTq71MKD4+HmlpaSGPqa6Uk5MDq9WKzp0744svvgg+wWjHjh3o3r178JrfSDObzVi3bh369++PzMxM3H///ejbty9sNhuOHj2K1atX491338Xp06drlbdfv36wWCy44447MGnSJLhcLixcuLDWecKRlJSkfZyJiIiiVVFREXbv3g3gzIDDoUOHsHLlSnz88cf47//+b0yfPj24bF0/zwsKCrB+/XoMGDCgxi+7c+bMwfLly5GTk1Ptl9zs7GzMmTMHo0ePxjPPPIP27dtj48aN2Lx5MwAE758SExODWbNmYdSoURg8eDDuvfdeuN1uzJ49G0VFRZg5c2bY+6xr165YuXIl3nrrLbRr1w7x8fHo2rVr2Pmi2ahRo/DGG29gwIABmDhxInr06IHY2FgcO3YMW7duxYgRI7TuBbhv3z4kJSXB6/Xi2LFj+Oijj7BixQqkp6fjnXfeCR5ru92Ov/zlLxg3bhxOnTqFW2+9FU2aNMFPP/2EL774AqdPn8aLL74IAMF9PnfuXIwePRpxcXHo2LEjLrzwwuCs8++++w4DBgxASkoK8vPz8emnn8LhcOCJJ56AyWTC/PnzMWzYMGRmZuKBBx5Aq1at8MMPP2DLli147bXXlOtJSkqqsp1jx47FwoULMXr0aDz11FPo1KkTPv74Y+Tk5GDo0KHV9s9VCgoKMGDAANxxxx3Bde7Zswdbtmyp9olX9PPjoArVm6lTp2L9+vWYM2cO8vLy4Ha70bx5c9xwww2YPHly8IZb9eX//b//h5KSEixbtgzPP/88rrzySqxatUo5Wl3pjTfewAMPPIBJkybB5/Ph6quvxpYtW6rcILdt27aYO3cu5s2bh6ysLPj9fixduhRjx47F6NGj0bp1a8yaNQv33nsvSktLgzceq7xRFXBmUODtt9/G1KlTcdtttyE9PR0TJkxARUVFSCcmUiZPnoxXXnkFX375JTIyMrB06VIsW7YMq1atQs+ePettUAUALrzwQnz++ed44YUXsG7dOixcuDBYL6699lrs3LlTHPQ6V8eOHbFmzRpMnToVw4cPR1paGkaOHImHHnoo5Ner+qJ7nImIiKLVP/7xD2RmZsJkMsFms+GCCy7AlVdeialTp6J///5Vlq/L5/mKFSvgdrtx77331lie3/72t7jvvvvw7rvvYvjw4VXiNpsNW7duxcSJEzFp0iSYTCb0798fCxYswI033hjyI9jIkSNhs9mQk5OD2267DWazGVdddRW2bduGXr16hbG3zpg+fTry8vJwzz33oLS0FG3atMGRI0fCzhfNYmNjsWHDBsydOxcrVqzAjBkzEBsbi5YtWyIrK6vGy7TO1a9fPwBnZn2kpaWha9eumD17NsaOHVtlcCI7Oxtt2rTBrFmzcM8998DpdAb7V3fddVdwueuvvx6TJk3Ca6+9hpdeegmBQAAff/wxevfujccffxxdunTBvHnz8Prrrwfr6BVXXIHBgwcHc9x4443YsWMHnn76afz+97+Hx+NBy5YtQy6vV63nXImJidi+fTumTJmCmTNn4tSpU2jZsiUeffTRsB4skZiYiB49euDVV1/F0aNH4fP50Lp1a0yZMgWTJk2qdT6KPJNRX7f0JqKosn37dvTt2xfbtm2r9Qg5ERERUbR79tlnMXXqVPzwww8RvfEoEZEKZ6oQEREREVGDUnn5R8eOHeH1erF161b85S9/wejRozmgQkQ/Kw6qEBERERFRg5KYmIg5c+bgyJEjcLvdaN26NR599FFMnTr1fBeNiH5lePkPEREREREREVEYYs53AYiIiIiIiIiIGiIOqhARERERERERhYGDKkREREREREREYYi6G9UGAgEcP34cycnJMJlM57s4REREIQzDQGlpKVq0aIGYmJ/ntwmXywWPxxPRnBaLBfHx8RHNSaSL/T0iIopmtenv1dugyoIFCzB79mzk5eWhc+fOmDt3Lq655hrxfcePH0erVq3qq1hEREQRkZub+7M8ttPlcqFt27bIz8+PaN709HQcPnyYAysUtnD7egD7e0RE1DDo9PfqZVDlrbfewsSJE7FgwQJcffXVePnllzFo0CAcPHgQrVu3Vr43OTkZALAQQIJiObdQhkSNcm4S4pdo5NgnxKVyAoDU/dDp7q4W4r/XyHFIiP9GI8dRIZ6skeNbId5II8cpIV6ukeMGIS5tq045GmvkkL5G7dHIcZvGMklCXKrrANBViB/QyFEsxJtp5DgtxC/SyCHVQ1X7VEk6d/M0ckh11ayRQ2ropX0OAC2EuEsjR28h/o1GDmmfScceAB4V4u8KcTeABfjP51V983g8yM/PR25uLux2e0RylpSUoFWrVvB4PBxUobDUpa8H/Of8mfXsM0hQ1EHpIZU6s8VKSkqU8YQEuddYUeFUxgMB+WGaNpv6kzYmRp6xU1RUpIw3aSL3LFwu9ay3+HiLmMPt9irjZrN8XNwedS/ZHCN/TfH5fcq4EQiIOZKT1cdF2ladcsSadbZFvZ5yp7oOAkBKitxLls6Z8ooKMYfqnAWACpfcKwj4/cp4bJy8z/w+dQ6r1SrmcLvV9dCk0cZI567XI9chw5Dqqtw+SLP+/MI+B4C4uDhlPKBxTtlsNmXcrTHz1udV7zO/cM4BQLNm6cp4UbG6B+xyufDEU89o9ffqZVDlz3/+M+6++26MHz8eADB37lxs3rwZCxcuRE5OjvK9lZUhAeqBEal66wyqSB8ZOl+a1NUOkKudvB6d7q50INVVW289OvtU2hadfSo1fzr7Q8ohNyny9kbiS3Uk9ofOSayzHml75Y8leT06OaTzMhI5dOpQJMohLSN3WwHpY1hnUEVqp6Q4IJc1Em1dJI6tzrZIA4g65QDkzkuk2e2JsNt1WmIdcmeESKUufT3grP5efDwSEmpuHSIxqCJdOpeQIH8qGIa656AzqCKtR2dbXMKXVdW+rGQyqdcTHy+3gjEx6k8fs1n+dJK+iJp1BiJ86rZM5wugtM+kbdUpR2yszrao1yMNQgB6x1+qZ9I5p7seifQFP05jUMUnDKro1GXps1znvBTrskYd+iUNqsjnlLxPvUIbojOoIpVDGlCrpNPfi/jF4B6PB5999hn69+8f8nr//v3xySefRHp1RERERPQzYl+PiIjoPyI+U+XUqVPw+/1o1ix0kn6zZs2qvR7c7XaHjBJJUzSJiIh+nXyI3AwTzlSh8NW2rwewv0dERL9c9fbYgnOnyRiGUe3UmZycHDgcjuAfb1pGREREFP10+3oA+3tERPTLFfFBlcaNG8NsNlf5peKnn36q8osGAEyePBnFxcXBv9zc3EgXiYiI6BfAF+E/ovDUtq8HsL9HRES/XBEfVLFYLLj88suxZcuWkNe3bNmCXr16VVnearXCbreH/BEREdG5OKhC0aG2fT2A/T0iIvrlqpen/zz00EMYM2YMevTogczMTCxatAg//PAD7rvvvvpYHRERERH9jNjXIyIiOqNeBlVuu+02FBQU4KmnnkJeXh66dOmC999/H23atNHO8RHUj868SHj/AY11XCPEd2jkaCfEdR7dKj/JXdZDiO/UyJEixFdr5CgV4pdo5JD2qc5zBaTHrkrrAICvhfgqjRx3CnFpnwPyPu2kkeNbjWWkq9t1rn7/txDvrZHjkBA/rpHjeyGuM0WviRD/WCPHFUK8SCOHVFfTNV2WTE8AACAASURBVHJIx6WnRo7NQvykRg6d7ZVIbZ103ADgiBCX9mkk2uzw+BG5GSY6D5Ynqlkk+noAUFZWpnwcrdWqfiSqy1UhrsNmUz9IvaysTMxhtap7FtJjigH5UbU6jypNTFQ/Vt3pdIo5pEcEnz4tt9ZSWXUeuWuxqI+tzrZIjzq1WKQeIeByqR+rWlR0WszRqFGqMh4bKz9SV9qnVqv8rULnEbHSI3MtFnVcZz1JSTYxh7TfvV6vmMPj0Xskror0uGunU24fEhLU52UgIH/mSueDzmO5pcfHS+0HAJSWqr95SI8PB/S2VyKVNTZWrmNSPZUe2+3z6Q+V1MugCgBMmDABEyZMqK/0RERERHQesa9HRERUj4MqREREFEl8pDIRERFRtOGgChERUYPAQRUiIiKiaBPxp/8QEREREREREf0acKYKERFRg8CZKkRERETRhjNViIiIiIiIiIjCwJkqREREDYIfkXsUMh+pTERERBQJUTuokgpA9bTudsL7CzXWcVCIJ2vkcAnxLzRyDNBYRiI9qVtnSlILIa7TBZf2u84+PSrEpWMPAP8U4l9r5OglxIdq5NhZx3UAQLkQz9DIIR1bAJCeXC9tCyAfX50cB4R4K40cNwrxdRo5JDr18Fsh3v1nyvGxEC/SyDFYiFs0cqwX4k6NHGlCXGo/AOBCIb5ZiHs01lE//IjcZTscVKHoEGM2w2w21xi3WNSti88nnxMul7q3ZjbLvaRAwFDG3W65BUtOtovLSGJi1GU1meQcFktcncsh7XedferxqFtTq1X+ZCkvr1DG3W6ppw7YbOpetMPhEHM4nerjL60DAAKBgDIunQtnlpGPrVSHysrkuhyJHC6X+tjFxcnba7erz6miomIxh0Rnv3s8bmU8IUHqZQNutzpHYmKCmEOqh36//NnvcEjtlNzIlJSo97tU1wHAbFYPU0jtBwAkJam/mZSWlirj0mfH2Xj5DxERERERERFRGKJ2pgoRERGdjTeqJSIiIoo2nKlCRERERERERBQGzlQhIiJqEDhThYiIiCjacFCFiIioQeCgChEREVG04eU/RERERERERERh4EwVIiKiBoGPVCYiIiKKNpypQkREREREREQUhqidqdIUQLwivkd4v1djHdKI0rcaOfoI8d4aOUqEeEAjRysh7tHIsVljGckNQvyQRo5cId5JI8clGstITgpxnfrRToinauRoKcRXaeSI01gmUYgf1MghbY9dI8dFQrxcI8cnQtyqkaOJENc5p6Rt0WmnWghxqZ4CQHeNZSTSftfZFqk93KiRQzrvjmrkkM6HS4V4hcY66gfvqUK/PHGxcYiLq/msLC9Xtz6GYYjrMJnUcZfLLeaw2ZLqFAeAQEA9Q0xjU5T76v+yiDlKSkrlFQmSk5OVcbfbJebweNSfHPHxqm8CZyQkJIjLSHw+dXvodsv1w2JR9yxiY80aOdTH9vTpIjFHTIxQ2QHExKi/Ablc8rGTticmRmd71fssEJC/ATmdTqEc8v6IjZW+DsvnlLQtOu2UdG5L9RSIzPkg73d5n0rtYUmJ9O1XPu88Hp2euLqs8v6St7VS1A6qEBER0dk4qEJEREQUbXj5DxERERERERFRGDhThYiIqEHgTBUiIiKiaMOZKkREREREREREYeBMFSIiogaBM1WIiIiIog0HVYiIiBoEPyI3GKJ+CgkRERER6eHlP0REREREREREYYjamSrlAFRPyc4Q3p+rsY42QtymkcMrxI9r5GgixI9o5DgpxDto5EgV4v00ciwW4t01ckj7o1Qjh+SgxjIthPhgjRzS8ZfqDwAc1VhGkqixzDYh3ikC5dD5bfwCIf61Rg7p/NfZlnZCPEUjh7RPH9PIMV+IS/sLONOeqsRp5JD2qdQGAfI5NUAjh1SHemnkeEqI9xbiHo111I/zd/nPwoULsXDhQhw5cgQA0LlzZzzxxBMYNGgQCgsL8eSTT+KDDz5Abm4uGjdujJtvvhlPP/00HA5HMMcPP/yA3/3ud9i6dSsSEhIwcuRIPP/887BYLBHaJmqIAkYAgUDNPT6pfng88hkp5YiJ0fmN0RDK4RYzxMaqu9062+Lzqc9dq9WqUQ6zMp6cnCzmKCgoUMYTEuSeh7Q/AoG6z6hzuVwa5VB/CtrtDmUcALxedY8uEFDXHwDw+er+6aJTl0tLy5Tx+Pj4OpdDOl8Aeb+73fI55Xar97vOtlitUvugPl8AoKxMvU+bNWsm5jh5Ut2TiouTe2uqthQAYmJMYg6PR71PpTYIkMuq08ZIbDb5m3p+fn6dcrjdcvtRKWoHVYiIiCg6tGzZEjNnzkT79u0BAK+++iqGDRuGf/7znzAMA8ePH8fzzz+PTp064ejRo7jvvvtw/PhxrF69GgDg9/tx0003oUmTJti5cycKCgqQnZ0NwzDwwgsvnM9NIyIiIqoTDqoQERE1COdvpsqQIUNC/j9jxgwsXLgQu3fvxt133401a9YEYxdeeCFmzJiB0aNHw+fzITY2Fh988AEOHjyI3NxctGhxZs7Sn/70J4wdOxYzZsyA3W6v+yYRERERnQe8pwoREVGD4IvwX3j8fj9WrlwJp9OJzMzMapcpLi6G3W4PTu/ftWsXunTpEhxQAYABAwbA7Xbjs88+C7ssREREROcbZ6oQERH9SpWUlIT832q11nhPhgMHDiAzMxMulwtJSUlYt24dOnWqeoeigoICPP3007j33nuDr+Xn51e5prxRo0awWCziNc9ERERE0YwzVYiIiBqEyM9UadWqFRwOR/AvJyenxrV36NAB+/fvx+7du3H//fcjOzsbBw+G3va7pKQEN910Ezp16oQnn3wyJGYyVb1BnmEY1b5ORERE1FBwpgoREdGvVG5ubsj9TFRPDrFYLMEb1fbo0QN79+7FvHnz8PLLLwMASktLMXDgwOAslrPv/p+eno49e/aE5Dt9+jS8Xq/WUxGIiIiIohVnqhARETUIfkRulsqZR5Xa7faQP53HsVYyDCP4yMuSkhL0798fFosF77zzTpXHWGZmZuJf//oX8vLygq998MEHsFqtuPzyy2u7I4iIiIiiBmeqEBERNQh+VA6GRCaXvilTpmDQoEFo1aoVSktLsXLlSmzfvh2bNm1CaWkp+vfvj/LycqxYsQIlJSXBe7U0adIEZrMZ/fv3R6dOnTBmzBjMnj0bhYWFeOSRR3DPPffwyT9ERETUoEXtoErc//3V5Hvh/ZdqrkNljxAHAJcQT9bIIXVt+2jkKBTiTTRyfCHE39fI0UGIf62RQ9ree4w8YQlgqqm5Mt5LoxweIX5II4dTiB/VyHGZEJfqMQCc1FhmvBD/PALruUgjxw4h3kYjx4NCXOfcPiHE44U4ALQQ4rs0ckjHV+fcli6u2KmRwyvEu2vkkNo6qQ0C5DZmvUaOO+pYDmlf/BKdOHECY8aMQV5eHhwOB7p164ZNmzahX79+2L59e/DSnsrLgyodPnwYGRkZMJvNeO+99zBhwgRcffXVSEhIwMiRI/H888+fj82hKGIymZT31fF43Mr3x8cniOuIiVHft6e8vFzMYRgBYR1mjRzqeFJSkpjD51O3pJVP3FJxuSqU8eLiEmUcAKxW9aeg2y31kOXtvWvcODHHyy+9pIwnJtrEHID6wOhsSyCgrh8ej9SrBBIT1XVZ5/5TPp/8ZLe0tDRlXOd8kNYj1Q8AKCsrU8YtFouYo0kTdS9IZ1u8XvW2WCzyhR1nX+5aHadT+kYgt1M657a0jE45DKGhkurpmRzqeEWFug0CgPh49czZ4uJiMUejRo3qVA6/X/8HqKgdVCEiIqKz1e1RyFVz6VuyZEmNsaysLLETBgCtW7fGhg0barVeIiIiomjHe6oQEREREREREYWBM1WIiIgahPM3U4WIiIiIqsdBFSIiogah8uk/kcpFRERERHXFy3+IiIiIiIiIiMLAmSpEREQNAi//ISIiIoo2nKlCRERERERERBSGqJ2pUgxA9VT4AcL7F2mso7cQVz9x/IyeQvxzjRzqJ9tHxmaNZcxCXP0k+DNyhXiKRo4fhfhwU3MxR6EQv0WjHMfquA4ASBfiUj0GgBNCvJ1GDrfGMquF+LcaOe4S4jrnVKoQl/YHAKwQ4tJxAeT6foVGju+EeL5GDumc2aGRY5AQl9oxQK+skkMRKIfqcwHQOy5SPRwmxMshny/1gzNV6JfH7/fD76/5Hj/JycnK9xcUFIjrsNmSlHGTySTmSExU56ioqBBz6Dx6vK5KS0vFZaTNjY2Vvx54vV5lPCZG6lUCHo86x7y5c8UcPp/6/lApKY46l0NaByDvM4dDXY8BwOtVt8sWi0XMEQjIdayoqEgZd7vlXmNamtRbk88ps1ldR6Q6BgAul7pXEBcn12Xp2CUmJoo5pH3m88nbIp0zZWVlYg673a6M22zytkj1UIfbrT4uOvtUai91ckhtu8Ohbh90zrlKUTuoQkRERGfjoAoRERFRtOHlP0REREREREREYeBMFSIiogaBM1WIiIiIog1nqhARERERERERhYEzVYiIiBoEPyI3w0S+8SIRERERyTioQkRE1CD4ID+nrTa5iIiIiKiuePkPEREREREREVEYOFOFiIioQeBMFSIiIqJoE7WDKg4A8Yr4h8L7L9JYR4oQ76mRY7UQb6KR43Mh3l4jx1EhrrMtHwjxIo0c3YX4QY0c3wrxXho5OgnxUo0cNiEu7XMA8ArxQxo5pK9Q+zRyDNBYpkSI99bIIW3Pbo0clwrxYRo5tgrxExo5VO0PIJ+3ANBCiH+ikeNGIb5FI4e0HqktBIDjQvwWjRzvC/FWGjmaCXGdNkY6d6U2xqWxDiLSYzabYTbX/ElXWlqmfL/FYtVah4rNlijmKCpS94JiY+UudUWFRxmPj5e3xeNR59DZlpISdS/I75fvuZSQoF6PyyW3lOXlTmU8MVHqiQHx8epP60AgIOaIiVFP3A8E1PscALxeQxl3u91iDsCkjFZUlIsZkpPt4jKBgPr42mzyfne51NsjHVsAiI9PUMZTUhxiDql98HqlnjhgMqmPv85+j4uLU8adTnl/2O3qY1daKn97kdYjtYWAvM90jktJifpbRVycRcwRF6duU3XaGKm9lNoYj0b9qRS1gypERER0Ns5UISIiIoo2HFQhIiJqEPj0HyIiIqJowxvVEhERERERERGFgTNViIiIGgQfIvdbCC//ISIiIooEzlQhIiIiIiIiIgoDZ6oQERE1CJypQkRERBRtOKhCRETUIHBQhYiIiCjaRO2gSgUA1ZPl1U8DB9I01nFUvzg1yhbihzRySGXdoZEjRYgXa+ToIMRzNXLoP827Zt2F+LcaOeKFuFR/AODfQnySRo5PhPh6jRzXCPFOGjl0nvNxoRDX+Son1ZGOGjnyhfhWjRxNhPhBjRzSfi2MQDl06uEgIS6dt4C8T3XaqVZCfKlGjl5CXGd//EuIS20hAPQW4uVC3KWxDiLSEwgEEAjU3OMzmUzK95vN8mPGPR5Prct1rtTUVGXc5XKLOcxmdbe7rKxMzBETo95en0/+xI+PtyrjHo/cmzMMQ1xGkpCQKJRD3qcxMereiVR/AMDtVtePpk2biTmcTqcyXlws98RttiRl3GqVercAIB8Xi0V9/HV4veo6olNWn089uF9aKp8PsbHqc8rlkj+xpTqic05J5dCph3aHXRmXzlsA8HrV+9TtlvdHXJy6N1ZQIPeAExNtyrjO/qioUJdVp+2XzinVZw9Qu3YuagdViIiI6Gx+RO5RyHykMhEREVEk8Ea1RERERERERERh4EwVIiKiBsGPyN0LhTNViIiIiCKBgypEREQNgg+AfB2yfi4iIiIiqite/kNEREREREREFAbOVCEiImoQOFOFiIiIKNpwpgoRERERERERURg4U4WIiKhB4EwVIiIiomjTYAdVvhPi+zRyDBPiHo0cuUI8TiNHqhDP18hxVIibNXIcEeJ9IlCOizRytBDiKRo5/i3EdY5LYh3XAQABIT4iAjkOauTQKWszIW7TyCEdm2KNHJGoy18IcencB4CiOsYB+dzurpFjvRDXObbthHi6Rg5pWxZr5JC2V1oHACQLca9GDmmfNdHIcX5wUIV+fdxutzLu98tPsnI4HMq4YRhiDo9H3bqYTPK5aTarP8F8PrkF83rVvVOdcng86hxJSUl1zmG1WsUccXHq3pi0v86UQ10/dNrMmBj1xH15HXIdcjh0eq9qLpdLXMbtlr+9xMWpv/5J+wOQj43OeSnVIR0VFRXKuHTuA3JZdbYlNla9PxISEsQcxUXqXrLUFgLyeRcbK38DkralsLBAzJGYqN5es1kegpDrodxuS+dDbGzkhkJ4+Q8RERERERERURga7EwVIiKiXxc/IjdTRf7ljYiIiIhknKlCRERERERERBQGzlQhIiJqECJ5HxTeU4WIiIgoEjioQkRE1CBwUIWIiIgo2vDyHyIiIiIiIiKiMHCmChERUYPAmSpERERE0abWgyp///vfMXv2bHz22WfIy8vDunXrcPPNNwfjhmFg+vTpWLRoEU6fPo2ePXti/vz56Ny5c0QLPkKIr9XI0UyIr9bI0UuI52rkkJ5c30cjxz4h3lsjx/tCvKdGjmQhrjM1StoW+YnzQA8h7tXIUSjED2rk6C7E52jk6CTEpW0FgBMay+wS4u00ckjHV6cOpQrx4xo5pLIWaOT4QIi31MjRRoh31MjxshCX2kIAsAnxpRo57hDi4zVySM+b0Tm2Uptq1sjRRIjnC3GPxjqIGrJo6esBQEqKupdUXFwk5oiNVXd3dXLYbOqW1OWSW4bYWHULZbMliTnKy8uFHFKLD5SUlAg5EsUcZrP6E9+k8aAyaVvMZrlFT0xUlzUQMMQcfr/608nlcok5EhLU5Th58icxR3x8vDIubSsAeL3ygLnT6VTGLRarmEM6vjpllc4Hj0furVssFmXc75f3R0lJqbCOODGHYajLIR1bACgoOKWMOxzSN0YgJkZ9XhYWSt9ugEaNGinjqalpYg5DOO28XvnYejzqNtWk0chIbb9UDp9GOSvV+vIfp9OJSy65BC+++GK18VmzZuHPf/4zXnzxRezduxfp6eno168fSkvVFZaIiIhU/DgzwyQSf3ykMtWMfT0iIiJ9tR5UGTRoEJ555hkMHz68SswwDMydOxd//OMfMXz4cHTp0gWvvvoqysvL8cYbb0SkwERERL9OkRpQqfzTt3DhQnTr1g12ux12ux2ZmZnYuHFjML5o0SJkZWXBbrfDZDKhqKjqL/8ZGRkwmUwhf4899ljtdgH9LNjXIyIi0hfRG9UePnwY+fn56N+/f/A1q9WKPn364JNPPonkqoiIiOhn0rJlS8ycORP79u3Dvn37cN1112HYsGH48ssvAZyZxj9w4EBMmTJFmeepp55CXl5e8G/q1Kk/R/EpgtjXIyIiChXRG9Xm55+5Er1Zs9C7lTRr1gxHjx6t9j1utxtutzv4f+k6TyIiol8nHwD5/gB6anf5z5AhQ0L+P2PGDCxcuBC7d+9G586dMXHiRADA9u3blXmSk5ORnp5eq3VTdAmnrwewv0dERL9c9fJI5XNvHGMYRo03k8nJyYHD4Qj+tWrVqj6KREREROcoKSkJ+Tv7S29N/H4/Vq5cCafTiczMzFqt77nnnkNaWhouvfRSzJgxQ7wRHUWv2vT1APb3iIjolyuigyqVvz5V/opR6aeffqryi0alyZMno7i4OPiXm6vzvBwiIqJfm8jfU6VVq1YhX3RzcnJqXPuBAweQlJQEq9WK++67D+vWrUOnTtLzyf7jgQcewMqVK7Ft2zb8/ve/x9y5czFhwoTa7QI678Lp6wHs7xER0S9XRC//adu2LdLT07FlyxZcdtllAM48DmnHjh147rnnqn2P1WqF1So/uouIiOjXLfKX/+Tm5sJutwdfVX0ed+jQAfv370dRURHWrFmD7Oxs7NixQ3tg5cEHHwz+u1u3bmjUqBFGjBgRnL1CDUM4fT2A/T0iIvrlqvWgSllZGb777rvg/w8fPoz9+/cjNTUVrVu3xsSJE/Hss8/ioosuwkUXXYRnn30WiYmJGDlyZEQLTkRERHVT+TQfHRaLBe3btwcA9OjRA3v37sW8efPw8ssvh7Xuq666CgDw3XffcVAlyrCvR0REpK/Wgyr79u1D3759g/9/6KGHAADZ2dlYtmwZJk2ahIqKCkyYMAGnT59Gz5498cEHHyA5OblW6/EAqPnKXCBVeP8IjXWsF+LtNHKYhXhXjRz5QnyHRo5yIV6qkeP+Oq4DkPfHHo0c+pPJwy/HCY0ccUJcqj+AXE+na+TYKsQLNXKkaCzTXYhL9RQATgpx+W4N8vEfppHj30J8r0aOPkJc5zafUj3UObf/IMR/1MhxTIjr3BXDK8R17owhfW3WucOCVJd1rmmNr2MOl8Y66ocfkZupEqhzBsMwtO7BUpN//vOfAIDmzZvXuSwUWT9XXw84U48Mo+Z6HRurbkkdDvkTrqSkWBm3WHRm0Kh6pUBCQoKYwetVt6ROZ5mYIxBQn7tSHAAaN25c5xzS/nA65V5jfLzUGutQl8Pvlx8fr7oXEAAUF8u9aLNZ/ZUqPV1u58rK1Ovx+eSeh9ks9TyAhIREYT3SJz7g9ar3ayAgf1ZJx1/n3JY+g8rL5XqYlJQkLCFvi1CFUFYmn9tNmjRRxj0e+bhIx85ms4k5VO3x/y0h5oiJUddDi0X6liXXZWmfn1lG3aOTcvgD+jf1r/WgSlZWlnJnm0wmTJs2DdOmTattaiIiIopCU6ZMwaBBg9CqVSuUlpZi5cqV2L59OzZt2gTgzP018vPzg7MbDhw4gOTkZLRu3RqpqanYtWsXdu/ejb59+8LhcGDv3r148MEHMXToULRu3fp8bhpVg309IiIifRG9pwoRERHVl/M3U+XEiRMYM2YM8vLy4HA40K1bN2zatAn9+vUDALz00kuYPv0/c++uvfZaAMDSpUsxduxYWK1WvPXWW5g+fTrcbjfatGmDe+65B5MmTYrQ9hARERGdHxxUISIiahB8iNxD+2o3qLJkyRJlXJq10L17d+zevbtW6yQiIiJqCCL6SGUiIiIiIiIiol8LzlQhIiJqEM7fTBUiIiIiqh5nqhARERERERERhYEzVYiIiBoEzlQhIiIiijZRO6iyC+rCHRXef5HGOqRlijRySE/Z/kIjR6YQL9TIMUiIuzRyHBDi8pPegUsiUI5iId5FI8e/hfh1GjleEeJ3aeTIEOJHNHL0EuLStgKAVWMZqS7LT5QHUoV4gUaO74X4Jxo5mghxZwRybNDIkS7E+2vkmC/Ee2vkkPaZTSOHVA919odbiOscF68Q16mnHwrxeCHu0VhH/fAjcoMhkXqKEFHdlDvLEPD7aox7POozzmqVP+EsFvUygYBfzGEymZTxiooKMYfNpm5t/X65HHZ7sjKuehR2JZdLXdZAQG5n4uMThHLIOaTtjY+XWmPA41F/siQlqfcXABQWqnsnqalS7wawWi3KuFSPAbl+uN1yjpgYdT0F5LoMyDnMZvVXSL/inK4kHTunU+4VxMaqy6FTl6UcJSXSNxMgNlbd+5DOWwA4efKUMi7VDwAoL1fvs5gY+YcZaT16+0PdDukcF6ktk+sxUF5eKuRQ7w+3S+q5/gcv/yEiIiIiIiIiCkPUzlQhIiKis/mg8wuiHs5UISIiIooEzlQhIiIiIiIiIgoDZ6oQERE1CJypQkRERBRtOKhCRETUIHBQhYiIiCja8PIfIiIiIiIiIqIwcKYKERFRQ2AEIjfBhBNViIiIiCKCM1WIiIiIiIiIiMIQtTNVbgOQoIifFN7/ucY6UoW4WSOHX4j31cjxiRAv0sixWYhbNHK0EuK7NHKkC/ERGjnsQlzn2LYQ4nEaOS4U4rkaOVxC/F8aOe4W4jrbEtBY5n0h3lMjx0VC3KuR499CXDpvAaBAiGdo5JCWuVMjxyEhvlojRxMhXqiR434hLu1zADgoxG/QyCGtR6o/ALBUiHfVyCGtR9rnLgArNdYTcQHoncy6uYiiQEpKIyQk1Nzj8/l8yvdXVJSL6zCb1d1dk8atigxDPb0rKSlJzFFe7lTG/X6pVwmUlpYKS8gbExen7hU6nepynsmh7n2kpKSIOWJi1D3t8nL52Fos6nKYNA6uxWJVxr1eufci1Y+KigoxR+PGjZVxk0mnHOIiKCkpUcZttkQxh7TPAgG5IB6PRxk3m+VvYn6/un2wWORvQNIyqalyz9PlcivjRUXyt7nYWHU7pdM+SHXI7VbvcwBwudTfXpKSksUc0rG1WtX1BwAKC9W9+fh41UiB3nqkfa7TfgRzaS9JRERE548f8kh+bXIRERERUZ3x8h8iIiIiIiIiojBwpgoREVFDwJkqRERERFGHM1WIiIiIiIiIiMLAmSpEREQNAW9US0RERBR1OKhCRETUEPDyHyIiIqKow8t/iIiIiIiIiIjCELUzVb4HoHqydCfh/Z9rrCNXiKdo5DgkxJto5MgW4os0clwkxKVtBQD1U8mB/ho59grxQo0cvYX4JRo5Vgtxr0YO9dPR9coh1Y9mGjmk4z9dI8dmjWVuFOJS/QCAeCH+oUaOLkJcquuAfP530MhxRIhv1cghtSE6bYzkiMYyUj3UmbQgXS3yhUaOrkL8oEaOSLR1d9axHD6NddQLXv5Dv0BujwcxMTX/xhcfr/5kqaiQ1+H1epRxs9ks5nC73cp4bKzcpU5NTVPGT506JeawWFS9Y8DrlXs4hqFuAOz2ZDFHeXm5Mu73yy2lzZakjCcmJog5ioqKlPFAwBBz+HzqsuqUw+VS14+4uDgxh3T8mzdvLuYoKSkRl7Hb7cq4VD8AwGRS/y7vdBaLOeLj1fvValXXdUCuh1ar1DMFPB51+1BWVirmkNoQnTZGIpUTkOshIJ8PhrCIyyU3utKxdbnkbxVSW6ezP9LSUpXxm0TlpwAAIABJREFUigqpHCZxHZU4U4WIiIiIiIiIKAxRO1OFiIiIzhJA5O6FwpkqRERERBHBQRUiIqKGgDeqJSIiIoo6vPyHiIiIiIiIiCgMnKlCRETUEPBGtURERERRhzNViIiIiIiIiIjCwJkqREREDQHvqUJEREQUdTioQkRE1BBwUIWIiIgo6kTtoEoF1H2+9cL7r9FYRzMhfkIjxzEhvk0jR7kQT9bIITmosUyKEP9RI8cNQnytRo7VQvwijRxFQvzfGjk6CPGdGjmkY3ebRo73hfhbGjm6ayyTK8R16uFxId4mAjlyjE1ijktMA5XxRRrlkOgcu3whrlOXpf1RqJFjnxC/SyOH1IZI9RSQ2xipnADw30J8s0YOrxCX9rlbYx1EpMcIBBAI1HyTn+LiYuX7bTabuI64uDhl3OuVWgXA51MvU1ZWJuZQbScAxMTU/ap8l8slLmM2m4VyyPsjOVndKygulnpiQFGRehmr1Srm8PvVI8Qej0fMER+vXk9ZmVPMIR27tLQ0MYdU10+fPi3mSExMEJfxetX7JCZGXT/O5FDXkbg4S51zjBs3Tsyxdq36m0VBwSkxhyQlpZG4jNQ+WCxyXZZy+HzyryHl5epvlWlpqWKOigp1G1JSIrd1Uh2SygkAKSnqXmNpaamYwzAMZVzc5365LawUtYMqREREdBbeqJaIiIgo6vBGtUREREREREREYeBMFSIiooaA91QhIiIiijocVCEiImoIDETush31ZcZEREREpImX/xARERERERERhYEzVYiIiBoCXv5DREREFHU4U4WIiIiIiIiIKAxRO1Ple6gLd4vw/uMa6/haiPfSyLFZiEvl1CmHUyOHdJl9hkaOfwvx3ho5vhDido0cnYT4jxo52mksI9kjxOM1cqif0g48pJFDqofSOgB5WwCgjxDfqpEjV4jrHP9vhfifTQPFHB8KcZ2nzkv18BONHBcI8fUaOU4K8QyNHNK5+7lGDqkdGqyRY68Qz9TIsVGIS/sLkCdpSNvq1lhHveBMFfoFcrvdMJlMNcYdDofy/T6f3KKXlanPWpvNJuYoLS1VxqVyAme2VSUQqPtNkywWi7iMx6MuR1KSvC0VFRXKeEyM3DuJj1f3pDwe+dhaLFZxGYnTWa6Mq+qn7jLHjsm918REdT3UKYe0LQCQlJSkjJeWlok5vF6PMq5z/KXzYfny5WIO6bw0DPkGYlI9dDrlb2JxcXHKeElJsZjD5/Mp4zrndlKSug6Vl6vPW0BuhxwOuTdfUaGuhzptbklJiTLu96v3FyAff2lba9MmR+2gChEREZ0lgMjdqDZSeYiIiIh+5Xj5DxERERERERFRGDioQkRE1BD4I/xXCwsXLkS3bt1gt9tht9uRmZmJjRv/czHWokWLkJWVBbvdDpPJhKKioio5Tp8+jTFjxsDhcMDhcGDMmDHVLkdERETUkHBQhYiIiJRatmyJmTNnYt++fdi3bx+uu+46DBs2DF9++SUAoLy8HAMHDsSUKVNqzDFy5Ejs378fmzZtwqZNm7B//36MGTPm59oEIiIionrBe6oQERE1BOfxRrVDhgwJ+f+MGTOwcOFC7N69G507d8bEiRMBANu3b6/2/V999RU2bdqE3bt3o2fPngCAv/71r8jMzMShQ4fQoUOHWm8CERERUTTgTBUiIqKGIBDhvzD5/X6sXLkSTqcTmZk6z2wCdu3aBYfDERxQAYCrrroKDocDn3yi8ywtIiIioujEmSpERES/Uuc+stBqtcJqrf4RpQcOHEBmZiZcLheSkpKwbt06dOokPXz8jPz8fDRt2rTK602bNkV+fn7tC05EREQUJThThYiIqCEIIHI3qf2/mSqtWrUK3jjW4XAgJyenxtV36NAB+/fvx+7du3H//fcjOzsbBw8e1C6+yWSq8pphGNW+TkRERNRQRO1MlUYA4hTxPcL7m2isQ/p9bYdGjkFCXGdS8xVC3KyR404h/qJGjmZC3KuRo0SID9XIsVyIt9PIoXP8JdItB3T2h0uI36GR419CXOdOBDq3T1iqsYxkhBDfq5EjRYgf0shRKsR1flv/nRB/XSPHASHeSiNHLyGuU9elOlT9vIRQ5UJcp53qKcR3aeSQLjbZoJFD+vy4QIhL53VDkpubC7vdHvx/TbNUAMBisaB9+/YAgB49emDv3r2YN28eXn75ZXE96enpOHHiRJXXT548iWbNpE8f+iWLjTUjNrbmFqS8XN36xMbKXdn4+HhlvKysTMxx9nlSnfJyp5gjMTFRGdcZX0xLS1XGT548KeaIi1Pvs0DAEHMEAuqehcOh3l8AUFh4Whm3Wi1iDp3jLzGEzTWkBQAEAuprKlNSGok5XC71p4tUj8+Qy1pQUKiRRy0lRd1bk85bADCb1T0Ht1v+tJXqoc4+a9JE3ZMqLJT3l8tVoYzHxcl1OTHRpozr1HWpDsXEyI2MVJd12ilpW5xOub202dQ5SkqKxRxOp/T5oRptAGJj9W9Ax5kqREREDUE93FOl8hHJlX+qQZVzGYYBt9uttWxmZiaKi4vx6aefBl/bs2cPiouL0auXNHRIREREFL2idqYKERERneU8Pv1nypQpGDRoEFq1aoXS0lKsXLkS27dvx6ZNmwCcuWdKfn4+vvvuOwBn7r+SnJyM1q1bIzU1FRdffDEGDhyIe+65Jziz5be//S0GDx7MJ/8QERFRg8aZKkRERKR04sQJjBkzBh06dMD111+PPXv2YNOmTejXrx8A4KWXXsJll12Ge+65BwBw7bXX4rLLLsM777wTzPH666+ja9eu6N+/P/r3749u3brhtddeOy/bQ0RERBQpnKlCRETUEJzHmSpLlixRxqdNm4Zp06Ypl0lNTcWKFStqt2IiIiKiKMeZKkREREREREREYeBMFSIioobgrBvMRiQXEREREdUZB1WIiIgagvN4+Q8RERERVS9qB1VOQV24jsL71U8+P0N6+nmyRo5SIa5+ivsZh4T4CI0cE4W4/DRwoEiIX6OR41IhflQjxw1C/LhGDumq/XSNHHcJ8c0aOSJRP3oI8aUaORI1luknxA9o5FgrxPto5IgX4l6NHKlCvFAjx5tCvKVGDmm/79DIIX33lfYXABwU4k00ctiEeFeNHLuFeAuNHFJZr9PIIZ13BUJc+uwgIn0+nw8+n6/GuNWq08qpGYZ6alZMjHw1vN+vbo1jYuSep8ulfgR5SorcK8jN/VEZl7YVkLfFZksSc8THJyjjHo/8aZ2crO5pe71yjsLC08p4XJz8VSc1NU0ZLy0tEXP4/er9Hhsr14/ERHWvobBQ+nTSq8tJSer97nLJn3LFxepvDUlJch0ymUzCEoaYw2xWH1+fT/4FobBQ3Su0WOLEHNJ+LysrE3MYhnp7dY6tdOxiY+XzQVqPdO4DQHm5+ptnXJy8T6WySvUYAMxm9Xmn+uwBgEBAf1pv1A6qEBER0Vk4U4WIiIgo6vBGtUREREREREREYeBMFSIioobAQORuMCvPqiYiIiIiDRxUISIiagh4+Q8RERH9f/buPEyq8s77/6e6q6qr9wUakICKMRIRNKJGQWNUEDSiJhkfnJjHH2YYnTHgghAdYjKJmSh4JUaRRBKNQROjOC7EJRGXoDiIGCWiGNdoUPxBs/betXbV80cPrS30/b27Kegq+/26rrou6M/p7zl1trrr9H3ug5zD7T8AACCnrVixQv/+7/+uww47TKWlpQoGgxo0aJAmT56sG264Qdu2bevrRQQAAP0UF1UAAMgH6Sy/8sCyZct0+OGH6+tf/7qampp04YUX6o477tAf/vAH/fSnP9URRxyh+++/X8OHD9esWbNUX+9+EggAAEC2cfsPAADISVdddZW+//3v66tf/arzEYzvvfeebrrpJt1222268sor9+ESAgCA/o6LKgAA5IN+OKbKK6+84jXdQQcdpJtvvnkvLw0AAMCucvaiyiRJEUe+wvj9r3nMo8HIh3jUaDbyL2VhOX7kUaPOyGd61EgY+UaPGm8aea1HjUYjL/GocZ2R3+tR469Gbm17SbrYyJ/yqLHDyA/wqOE6lnaytr+1n0rSKCOv8qix1MjP9qhRnoXl2GDkT3jUmG7kx3rUsL4m+pzrrPdrnT8kaayRW+vLZzmsfV2SnjbyoR41Wo281MgLPeaxV/TDiyqS9Nxzz+n44493TjNr1izdeOON+2iJkE1l5RUqjnT/KdXa2uL8/cpK+4ze3u7e4V29oHxrlJWV7XGNujr7bJxKJZ35wIF2SyuTcT/+K5l0z0OS4vGYMw8G7a8YqZR7fRQU2KMUDB26nzOvr7dbL9FomzNvb7fvlxw4cKAzb272aTW610c4HDYrBAI+Izu4t7+1n0pSxHHMSlJBgf1J2dbmbvFXVlaaNaz5FBbay5FMulvATU32thswoMaZl5ba3162bt3qzH3Oddb79Tm2S0rcy5pIWN8Y7O3is49Zx0w4bJ+30+mAM7fOMT7noM5pvacEAADYx84880ytW7eu2/yKK67Qbbfdtg+XCAAA4CNcVAEAIB/0w4FqJem8887T5MmT9Y9//GOXbM6cOfrlL3+phx9+uA+WDAAAgIsqAAAgh/385z/XySefrIkTJ3a5PeLKK6/ULbfcooceekinnHJKHy4hAADoz7ioAgBAPmjP8iuP/Pa3v9Whhx6qU089VQ0NDZo7d64WLlyopUuX6tRTT+3rxQMAAP1Yzg5UCwAAPiat7F0MyaPbf6SOwffuv/9+TZ48WYcddph27NihBx98UJMnT+7rRQMAAP0cF1UAAEDOuvXWWzv/fcYZZ+g///M/dfrpp2vDhg1dsosuuqgvFg8AAPRzXFQBACAfZHOA2TzqqfKDH/ygy/+rq6u1evVqrV69uvNngUCAiyoAAKBP9Oiiyrx58/Tggw/qzTffVHFxscaPH6/rr79eI0eO7JwmHo9rzpw5uueeexSNRjVhwgTdcsstGjZsWI8WLCH3gC8Tjd//tcc8xhv5qizUWOtRo9TIf+lRY56R/49HjQFG/qZHjbFGPtLIJekxIx/nUeNxIz/Io8ZGI3/Ho8Zfjfx1jxq1Ru5+qn2Hz3pM85SRT/GoYa2zlR41vmbkH3rUWGHkPvth9w9w7XCxR437jXy4Rw1rfezwqPGCkR/hUcO662S7Rw3r/ZZ71Gg08iaPGuuNPGLkCY95IHs2bdrU14vQ7+zL9p6U+d/X7pWXu88M27fbZ5/SUndLq7W1dY9rRKNRs0ZBgXsow+H7258Km+s2O/PW1hazRmGhu/kfj8fMGsXFJc48EikyazQ1uc/YZWVWC1lqamp25kVFYbNGIpF05vF43KwRjbY581jMXqfBoHu7pFIps0Y4bK/35mb3OquoqDRrJJPudeZzTFVVuedjbRdJamlx7+8++2E06t42AwcONGs0NLhbJ6FQyKxRWVnlzNvb7e3f1uZe78XFxWYN1/m4Yzns+5Ct91tYWGjWsOaTTtvLkUi4W2yBgPucnPA49nfq0UC1K1as0IwZM7R69Wo9+eSTSqVSmjRpUpcD5/LLL9fSpUu1ZMkSrVy5Ui0tLZoyZYrXBgAAAN3oxwPVYt+ivQcAgL8e9VRZtmxZl/8vXrxYgwYN0po1a3TiiSeqsbFRt99+u373u99p4sSOviR33XWXhg8frqeeeooB5QAA6K1+ePvPH/7wB331q1/1mnbz5s1av369jj322L28VJ9+tPcAAPC3R49Ubmzs6OpUU1MjSVqzZo2SyaQmTZrUOc3QoUM1evRorVrlczMNAABAh/nz5+uII47QggUL9I9//GOXPBqNavny5fqXf/kXjR49Whs3Wjchojdo7wEA0L1eD1SbyWR0xRVX6IQTTtDo0aMlSXV1dQqHw6quru4y7eDBg1VXV7fbOvF4vMu9itb9lQAA9EvZvG0nT+7QWL16te6//34tXLhQs2bNUk1Njfbbbz9FIhHV19frgw8+UEVFhaZNm6ZXXnlFQ4cO7etF/tShvQcAgFuvL6rMnDlTr776qlautIeezGQyCgQCu83mzZuna665preLAQAAPsXOOeccnXPOOdq4caP+53/+R+vXr1c0GtXAgQN15JFH6otf/KLXIIDoHdp7AAC49eqiyiWXXKKHH35Yzz77bJdR3ocMGaJEIqH6+vouf73YsmWLxo/f/XNy5s6dqyuuuKLz/01NTRo+3OeZGAAA9CP9sKfKxw0dOlTnnntuXy9Gv0J7DwAAW4/GVMlkMpo5c6YefPBBLV++XCNGjOiSH3XUUQqFQnryySc7f7Zp0ya99tpr3X7IFhUVqaKiossLAAB8QjrLL6AbtPcAAPDXo54qM2bM0N13362HHnpI5eXlnffNVlZWqri4WJWVlZo+fbpmz56tAQMGqKamRnPmzNGYMWM6R4cHAABA7qK9BwCAvx5dVFm0aJEk6aSTTury88WLF+uCCy6QJN14440KBoOaOnWqotGoJkyYoDvuuEOFhYU9WrB6SUWOvMr4/a94zCNm5EOyUKPco8ZBRn6/R40aI3/Po0aJkU/xqJE08pc9aowy8qc9aljvZfd/R+sqYuQ+e/RbRm7tP5K9ba1csreLJB1o5K971LD2ZZ8/jlvb1zr2JelII/fZdgcauc8xZa0PnxrWsvpsl1oj/3GzXeMW42Tm8wDVh4zcOl4k6Rwj93nuyGeN3FpfUY957BVpZe+2HXqqwGFftvdSqXalUt3v2OGwu55Pj5dMxr3Dh0J2cziddtcIBu0aRUVhZ95Q32DWCAbd6yMet08SoZC7o3pFRaVZI5PJOPO2NvtMGYm4W1rNzS1mjYIC93spLS01awQC7hrdjRP0cbFY3Jlb+6Bkb9tg0GrdSum0e7tIUijk3g9jMbt1au3Lxu4hyd6+PueSkpJiYwp724XD7vfy8QG2u2Otj3g8Ydaw9jOf7VJY6D4PnXbaaWaNp576szOvqLC/3e58Ylx3rONFkqqq3C3+1tZWs0Y47Lqa4HPetvefzlreU8o+gUodJ8iFCxdq4cKFPSkNAACAHEB7DwAAfz0aUwUAAPQRxlSR1NFj4P3331d7ex6OtgsAAD51uKgCAEA+aM/yK8/EYjHNmDFDxcXF+uxnP6v3339fknTFFVfoZz/7WR8vHQAA6K+4qAIAAHLe9773PT333HP605/+1GUshhNPPFG///3v+3DJAABAf9ajMVUAAEAfyWYPkzzsqXL//ffr97//vY4//vguA/oddthh+vvf/96HSwYAAPozeqoAAICct2XLFg0dOnSXn0ejUa+BVQEAAPYGLqoAAJAP+vlAtWPHjtWyZct2+fkdd9yhY489tg+WCAAAIIdv/9lfkuvJ4wcav/+CxzzajHzXv4ftymqXHuRRY6OR20/hlp4w8m941LCefm4/LV562shHedT4nJH7bJeIkS/yqHGCkdtPi7enafaokTRyn/Xhsx8+auTDPWq4nygvLc1Cjdc9atQa+UiPGtZ+uNKjhvU1b4pHjUYj99mHrH3kB+V2DesK/F89lsPaLj772Lo9nIdk70MHGHncYx57RT+//ee6667TGWecobffflvt7e361a9+pddff11PPfWUnnnmmb5ePPRSOBRWOBzuNi8q6j6TpPr6BnMe6bS7tRYMhswalqKiInOaRML9iW4tpyQ1NbnP+tXV1WaNTMY9n4/dXdetlpYWZ15UZLXEpHDYvc58tktBgfvTadu2bWaN0tJSZ26tL0lKp9295drb97xGOGyvD2udSlJTk7tlEQq5jzlJKihwfytobLRaL1JhobtGLGa3tINB91fZSMReH9ax29pqfxMrLS1x5pWVFWaNVMr9wezzxDtrH1m27HGzhqWtLWpOY22X8nJ7H4vF3POx5tFRw70PuT57JCmRTJjz2ImeKgAAIOedeOKJeuaZZ7Rx40YNHTpU9913n4qKivTcc8/RUwUAAPSZnO2pAgAAPqYf91RJpVJ64IEHdPLJJ+vee+/t68UBAADoRE8VAACQ04LBoC644AJFo3a3YwAAgH2JiyoAAOSDjLI3SG0ePiznmGOO0auvvtrXiwEAANAFF1UAAMgH7Vl+9cCiRYt0+OGHq6KiQhUVFRo3bpwee+yxzjwej+uSSy7RwIEDVVpaqrPOOksffvhhlxqBQGCX1y9/+UvvZZg1a5bmzJmjX//613r55Zf19ttvd3kBAAD0BcZUAQAATsOGDdP8+fN18MEHS5LuvPNOnX322Xr55Zd12GGH6fLLL9cjjzyiJUuWaMCAAZo9e7amTJmiNWvWdHnCw+LFi3Xaaad1/r+ystJ7Gf7pn/5JknTRRRdJ6rhII0mZTEaBQMDryQgAAADZxkUVAADywc5bd7JVqwfOPPPMLv+/9tprtWjRIq1evVrDhg3T7bffrt/97neaOHGiJOmuu+7S8OHD9dRTT2ny5Mmdv1dVVaUhQ4b0apHfeOONXv0eAADA3sRFFQAA+qmmpqYu/y8qKlJRUZHzd9rb23XfffeptbVV48aN05o1a5RMJjVp0qTOaYYOHarRo0dr1apVXS6qzJw5U//6r/+qESNGaPr06broootUUOB3J/LIkSN78M4AAAD2jZy9qFIg94Avbxq/PzQLy/C+xzQnG/mjHjW+bOQ+naMHG/kLHjViRv41jxpTjPxmjxobjPyHHjV+YeSzPGrcb+RHeNRIGnm5R41mI3/Io8bXPaY5wMjDHjXajNxnH7KOmW941LDODz7b7rdGPtnIJWmrka/0qFFn5Js9alj7mc9XWmudfWjkkt05oioLNVo9aljn7VIj77Pnz+yFRyoPHz68y49/8IMf6Ic//OFuf2XdunUaN26cYrGYysrKtHTpUo0aNUpr165VOBxWdXV1l+kHDx6surqP9uD/+q//0oQJE1RcXKw///nPmj17trZt26bvfe97Xov83//938586tSpXnWQX2KxuDMPhUJ7PI9EImFOU15e5sybmhrNGqWl7hrBYKEzl6RQyN10b2uzz4LptHukap/b8ioq3NNs3Wp9AkrJpLuVtN9++5k1rPkMGlRr1qivb3DmJSXFZg1rnfpcPE6n3Z9wjY32PlZZaX+ShsNWiy5g1rCW1Wcf+uRF/U/65GfK7sTj7m8vkYi97errdzjz8nK7tZ5KpZx5S4t9XKZS7uMhmXTPQ1KX2217y9rfEwnr242Uybj3IZ/lzGTc53ZrH5SksjL3Odc6LjMZ/1H9c/aiCgAA+Ji9cFFlw4YNqqio6Pyxq5fKyJEjtXbtWjU0NOiBBx7QtGnTtGLFim6n3znWyU4fv3jyhS98QZL0ox/9yPuiyrRp07q+hfZ2pVIpFRYWKhQKcVEFAAD0CZ7+AwBAP7XzaT47X66LKuFwWAcffLCOPvpozZs3T0cccYQWLFigIUOGKJFIqL6+vsv0W7Zs0eDB3fejPO6449TU1KTNm336W0nRaLTLKx6P65VXXtGXvvQlPfqoT79QAACA7OOiCgAA+SCd5dceymQyisfjOuqooxQKhfTkk092Zps2bdJrr72m8ePHd/v7L7/8siKRiKqqfG782lUgENCYMWM0f/58XXLJJb2qAQAAsKe4/QcAgHywF27/8fXd735Xp59+uoYPH67m5mYtWbJEzzzzjJYtW6bKykpNnz5ds2fP1oABA1RTU6M5c+ZozJgxnU8DeuSRR1RXV6dx48apuLhYTz/9tK6++mpddNFF5sC4lkgkog8++GCPagAAAPQWF1UAAIDT5s2bdf7552vTpk2qrKzU4YcfrmXLlunUU0+VJN14440KBoOaOnWqotGoJkyYoDvuuKNzMLpQKKRbbrlFV1xxhdLptA466CD96Ec/0owZM7yX4Yknnujy/0wmo02bNmnBggUaN25c9t4sAABAD3BRBQCAfJBW9nqq9PD2n9tvv92ZRyIRLVy4UAsXLtxtftppp+m0007r2Ux3U+OTKioqdMopp2jBggV7VBsAAKC3uKgCAAByXjTa9WHWBQUFWXmcLgAAwJ7I2YsqdZJcd1mPMn6/zWMe7qfSSwd51HjJyD/nUcNaVms5JelsI6/zqFFr5LdmoYZPR+93jPwxjxrWtvNZH1YNn/Ux2shP8ahxv5Ff6lFjgMc0v/KYxnKcka/0qHGOkVv7hyQdaOSve9QYaeQHeNR408g/41HjVCNf61Gj3MgjHjWs4846J0vSKiP/hkeNHUbus49Z5yFr/4h5zGOvyNIAs5218syCBQt0ySWXqLi4uMvPY7GYbr75Zl155ZV9tGTYE6n2pFKpwm7zSMR9hkqn7Z25vd3dxauoKGzWaGtzt9Z8xgayljWVsruiVVZWOvNkMmXWCAbdzf/t27fvcY2BAweaNRKJuDNvamo0a1jbzmd9WNtu2zZ7fRQXu/fTsjLrk1hqaHC3+GtrrVa2VFhof7Xbvn2bOY2lpKTUmbe2tpo1rEHK43H3/iF1PJXOJRazP7GLitzbzpqHZC+rzx8ArH0kFos6c0kqLHQ/gyYQsJ9R09TU5Mytc7IktbW5t39VVbVZw+Kzj9XWus9D1v6RarfPHzvx9B8AAPJBe5ZfeWbu3Llqbm7e5eetra2aO3duHywRAAAAF1UAAEAeyGQyCgQCu/z8jTfeUHX1nv/VCwAAoDdy9vYfAADwMf309p/99ttPgUBAgUBAY8aMUUHBR38Pam9v144dO3TBBRf03QICAIB+jYsqAAAgZ/3whz9UJpPRt7/9bc2ePVsVFRWdWTgc1oEHHqiTTz65D5cQAAD0Z1xUAQAgH2RzLJQ8GlPl3/7t3yRJI0aM0CmnnMITfwAAQE7hogoAAPmgn15U2Wny5Mmd/06n00qluo7K7/OEBgAAgGxjoFoAAJDzYrGY5syZo/3331/hcFjFxcVdXgAAAH2BiyoAAOSDdJZfeeY//uM/9NBDD+m6665TOBzWL37xC82dO1eDBw/Wb37zm75ePAAA0E/l7O0/Vi/nDcbvf82c7RU+AAAgAElEQVRjHo8a+VaPGmM8prFY7yXiUaPByBs9alhtbJ91+jkj9+lxPsDIkx41rPmUe9SwtssBHjXGG3nMo8ZEI3/Jo4bPfL5i5HUeNVYZ+RSPGi8Yuc+2e8fIx2ahxlseNaxzyLEeNRJGbh0vkjTUyFd41LCOuxKPGv/XyO/1qDHEyK33KkmvG/n7Rm5tE+wdS5cu1W9+8xtNmDBBF198sSZOnKiDDz5Yn/3sZ/XAAw9o2rRpfb2I6IVMpuPVnUTCffapqqoy59HY6G4FffJWst2JRPa8N1Qi4T57fPzJVt1JpdwtnPZ2u6WVca1wSZWVlWaNSKTImIdZQoWF7q8h6bRHEYPHKlUy6d4uPrcWlpaWOvNMxr6SXV7ubuG0tbWZNXzW2ccH+96dZNI+HlpbW515ZaV7Hh013O+nsNDeeLFY3JmXlNitk3jcXcPKJfscUlrq00pybzvreJGkYNA95lhLS4tZw9qHfM5T1dU1zryhod6sYb0Xn/HVYjH3NyDrnJw08o+jpwoAAPkgrY/+4rCnrzzsqbJt2zZ97nMdl+4rKipUX9/RKDvppJP09NNP9+WiAQCAfoyLKgAA5INsXVDJ5oC3+9CIESP0wQcfSJI+//nP68EHH5QkPf744+ZfXgEAAPYWLqoAAICcd/755+vFF1+UJF111VW68cYbVVFRoRkzZuiyyy7r46UDAAD9Vc6OqQIAAD4mmwPM5uHtP1dddVXnvydNmqS//e1veuGFF3TwwQfri1/8Yh8uGQAA6M/oqQIAAHJaMpnU6aefrnfe+WgI6c9+9rM677zzuKACAAD6FD1VAADIB+3K3p9C8mxMlVAopBdffFGBQKCvFwUAAKALeqoAAJAP0ll+5ZnzzjtPv/3tb/t6MQAAALqgpwoAAMh5oVBICxYs0J///GcdffTRKi0t7ZJfd911fbRkAACgP8vbiypWz+X/9qiRMPJCz2VxuctjmnFGXulRo9nIR3vU2GjkL2RhORo8atQa+YMeNb5s5K971Bhj5DUeNaz34tMDf7ORv+VR43SPad4z8jqPGlVGPsSjxjtGPtKjRszIH/eoYR3/B3jUmGnk6zxqbDXyiEcN67285lHDOk/5HFMDjLzUyCVpu5H7nLdfMnLreIlKusNjPlnXj2//kaRVq1Zp1KhRSqfT+stf/tIl47agT7OMM62vr7crZNw1sqG+foc5zScvBH5SQYG9H7e3u7uZRSL2p0IqlXTmbW1tZo102r0c7e32SSYYdH8NaW5uMmuUlZU581jMahHY66yw0P66ZL0Xn10wnXZvl1gsbtbwebx8PO7+BpRMupdDkgoL3Z+2wWDIYznc7ycSKTJrWMe2zz4kuY+7cDhsVqitHejMo1F7P0ylUs7c53POmsbneLDOUz41rGMmELAbM+3t7vVhbTfJPpdZx0tP2hZ5e1EFAAD0H88//3xfLwIAAMAuGFMFAIB80J7lV5768MMPtWLFCq+/lgEAAOxtXFQBACAfZJS9QWr3/t0QWdfQ0KAzzjhD+++/v0455RRt3Nhx0+r06dN11VVX9fHSAQCA/oqLKgAAIOfNnj1b0WhUb7/9tkpKSjp//n/+z//RH//4xz5cMgAA0J8xpgoAAPmgXT7jsvnXyjOPPfaY/vjHP+rggw/u8vNDDjlE69ev75uFAgAA/R49VQAAQM5rampSeXn5Lj+vr6/3ejoDAADA3sBFFQAA8kE/H6j2hBNO0D333NP5/52POvzZz36mL3/5y321WAAAoJ/L2dt/BkpyPTV+hfH7jR7z+P+M/B2PGv+/kV/kUWOykf/ao8ZmI9/gUWO8kQ/1qGHNp9ajRtrIv+JRY6mRj/KoYb2XkEeNR418sEeN94zc5++zPvvyQUa+zqPGDiM/z6PG94y81aNGs5F/y6OGtd5f8Kix2MhXedQ4wWMaS4OR+zxD5UAj93kvrxv5AI8axxq5z3vZaOTDjdxnH9wrdg4ym61aeeYnP/mJTjrpJP31r39VIpHQ97//fb322mv68MMP9dxzz/X14qGXgoVBBYPdN0dbWlqcv9/ebl8hrKmpcebxeNyskUwmnfmAAQPNGhUVFc5827Zte7wcyWTCrFFSUurMKyrsFo61HK5tulMm4x4x21pfktTQ4G7xRyKubxMdrPey8wKuS2NjkzMPhez1EY+7t53Pcvjsy0VF7pZjLBY1a6RS7uPu/ffXmzUGDx7izNNp+4Oqvd39fq1jX7LXe1tbm1lj+3Z3C7i11W45lJW5j0sf6bR7u2Qy9jq1en76vBfr6XyFhfbxUFpa4szTaXvEfevYDoXc57pUKmXOYyd6qgAAgJw3ZswYvfLKKzrkkEP0pS99SRs3btTEiRP18ssva+TIkX29eAAAoJ/K2Z4qAADgY/r5QLWSNGzYMF1//fV9vRgAAACduKgCAADyQnNzs+6880698cYbCgQCOvTQQ3X++ed73SYAAACwN3D7DwAA+SCd5VeeWbVqlUaMGKEf//jH+sc//qH33ntPP/7xjzVixAitWuUzqg8AAED20VMFAIB80M9v/7n44os1ZcoU3XrrrZ0D6SWTSV100UW6+OKL9corr/TxEgIAgP6IiyoAACDnvf3227r33nu7PJkgFArpqquu0pFHHtmHSwYAAPozbv8BACAfpNXRwyQbrzy8/eeII47Q3//+911+/s4772jMmDF9sEQAAAD0VAEAAHlgzpw5uvTSS7V+/Xodd9xxkqTVq1frpptu0vz58/X22293TnvIIYf01WICAIB+JmcvqrTJ/Ye0Y7MwjzojL/eo8Xkj/6lHjZiRv+VRo9bIR3rU2GDkPuvjQCOPeNR408iP9qhhDRcw06PGzz2msQw3cmvbS9K/Grm1H0vSZo9pdhj5NI8a1jr7L48a9xu5zzM+Wo38fY8a1rb5nEcNa18e4lFjgJEnPWpYnRJ8jkuLtZ9K0kNZmI91HvI5X1o1XjByn+N2r0gre2Oq5GFPlalTp0qSLr300l2yc889V5KUyWQUCATU3p6Hg8b0U+lMWul09ztkaWnJHs8jlXKfKQsL7Y7bRUXuM+WWLVvMGq73KUnxeNysEQy6m+5FRUVmjWRyz9fHx2/D251AwD5ZWe+3pMTe9pmMO6+ttVrI0tatW81pLKFQyJlnrAWVNGCA+xPf2o8lKZlMmdOkUu7zY01NjVlj69Ztzny//fYzazQ0NDjzgoJCs4Z1TCUS9jqzto3PMRWPu1sGoZD9lbuw0D2Nzz5kTRII7PlNKtZ+KkmNjY17PB9r+8dibR413O+3tdVdIxrzb/Hl7EUVAADwMdm8TpCH1xzeeOONvl4EAACAXXBRBQAA5LyRI336XAIAAOxbXFQBACAf9POeKlJHN/3nn39eW7Zs2aXb90UXXdRHSwUAAPozLqoAAICcd/fdd2v69OlKp9Oqrq7uMmZDIBDgogoAAOgTPFIZAIB8kM7yqwcWLVqkww8/XBUVFaqoqNC4ceP02GOPdebxeFyXXHKJBg4cqNLSUp111ln68MMPu9T44IMPdOaZZ6q0tFQDBw7UpZdeqkQi4b0Mc+fO1Xe+8x21traqrq5OmzZt6nxt3LixZ28IAAAgS7ioAgBAPmjP8qsHhg0bpvnz5+ull17SSy+9pFNOOUVnn322/va3v0mSLr/8ci1dulRLlizRypUr1dLSoilTpnQ+hae9vV1nnHGGWltbtXLlSi1ZskQPPPCAZs+e7b0MTU1NmjZtmvn0EwAAgH2JiyoAAMDpzDPP1Fe+8hUdcsghOuSQQ3TttdeqrKxMq1evVmNjo26//XbdcMMNmjhxoo488kjdddddWrdunZ566ilJ0hNPPKHXX39dd911l4488khNnDhRN9xwg2677TY1NTV5LcMFF1yghx7KxoO5AQAAsidn/9xzgqRSR241q6o85vGekR/kUSNi5Jd51HA/pV2a6lHjKSP/nEcNa3086lEjbOTf8KhhPXW82aOG9V7u9ajxupF/xqPGCUae9Kixwch9evHXeUwzxMgf9KhxhJH77IcfGrnPqAmtRu7z1Hlr25R41Bhr5BUeNQ4w8gEeNe4ycp/3Um7k93vUONbIV3jUeMvIfW4mGWfk1jnIyveatKSAOZV/rV5qb2/Xfffdp9bWVo0bN05r1qxRMpnUpEmTOqcZOnSoRo8erVWrVmny5Ml6/vnnNXr0aA0dOrRzmsmTJysej2vNmjU6+eSTzfn+5Cc/0ZlnnqknnnhCY8aMUSgU6pJfd911vX9T6DNlpaUqLi7uNm9sbHT+fmFhoTmPeDzuzIuKiswaBQXug6+2ttassbPnVneqq+3Wa1OTuxUUidjvxbrtrrHRvtD58TGNdqe6utqs8cnBpj+pvd0+USUS7m1bX19v1ojF3K2CT55rdqeszPWtRUqnM2aNntwO2Z1k0m5ZWu+nocF9zElyHrOS3zGVSLiXdeBAu5Vk7UOZjL0PZTLubVNQYPdBKC52t6QKCuzzVDjs/hblc66z9nef91JY6J6mocH65iqVlrrXR0tLi1nDOi6t7Sb5HJd7vv/slLMXVQAAwN71yV4iRUVF3TaG161bp3HjxikWi6msrExLly7VqFGjtHbtWoXD4V2+RA0ePFh1dR2XdOvq6jR48OAueXV1tcLhcOc0lp/97Gd6/PHHdcABB6ihoWGXgWoBAAD6AhdVAADIB3vQu6S7WsOHD+/y4x/84Af64Q9/uNtfGTlypNauXauGhgY98MADmjZtmlas6L5/USaTMS98fHIal+uvv16//OUvecoPAADIKVxUAQAgH7RLsnu7+vnfiyobNmxQRcVHXaxdXbbD4bAOPvhgSdLRRx+tF198UQsWLNC5556rRCKh+vr6Lr1VtmzZovHjx0uShgwZohdeeKFLvfr6eiWTyV16sHSnsLDQ6zYhAACAfYmBagEA6Kd2PiJ558vnPvidMpmM4vG4jjrqKIVCIT355JOd2aZNm/Taa691XlQZN26cXnvtNW3atKlzmieeeEJFRUU66qijvOY3Y8YM/epXv/JePgAAgH2BnioAAOSDvXD7j6/vfve7Ov300zV8+HA1NzdryZIleuaZZ7Rs2TJVVlZq+vTpmj17tgYMGKCamhrNmTNHY8aM0cSJEyVJkyZN0qhRo3T++efrJz/5iXbs2KE5c+bowgsv7NJTxuXNN9/UY489pj/+8Y8aPXr0LoMt3n333T17UwAAAFnARRUAAOC0efNmnX/++dq0aZMqKyt1+OGHa9myZTr11FMlSTfeeKOCwaCmTp2qaDSqCRMm6I477uh8WkFhYaH++Mc/6tvf/raOP/54FRcX67zzztNPf/rTHi3H6aef3vlvn5H/AQAA9jYuqgAAkA/2wpgqvm6//XZnHolEtHDhQi1cuLDbafbff389+uijPZvxx9xzzz29/l0AAIC9hTFVAADIB+1ZfuWhdDqtlStX6s4771RLS4skadu2bYpGo328ZAAAoL/qUU+VRYsWadGiRVq/fr0k6bDDDtN//ud/dnbHjcfjmjNnju65557O7r+33HKLhg0b1uMFe1NSsSMPOTJJOsFjHlabssqjxjoj3+FRo/sHUnY4wKPG54z8FY8aESM/1aPGvUYe86gx3Mj/7lHjbCN/0aPGMUZurS9JutPIZ3nUeM/IWz1qFHpMU2fk1j4mSe8Y+VaPGrVGvsGjxpA9nIdkH9tPe9S42Mh91kepkT9p5JI00chv9aixysitbS9JU4zcZz99yMhne9R42WMal/ge/j5658MPP9QZZ5yhN998U+3t7frSl76ksrIyXXPNNUqn0/rFL37R14v4qbEv23uxWMz5WG3rkdtlZdZZ0r5VbOdtai7RqLsFk0qlzBqtrS3OPBwOmzWswaTb2uwLjAUF7nVaXl5u1mhoqHfmmYzdHe6T4yJ9Ujxun20rKyudeVtbm1mjpKTEmfs89n3HDneLv7bWbnnE4wlnnk7b69RnWZPJpDP3GbDc2jbJpH08BIPur6GJhHs5fWpYuWQf2y0tzWaNAQMGOnOfc0xBgbuvg89yWMfu9u3bzBotLe5vFomEz3FpjZVm76dNTY3OfNCgQWYNn/OhS8w4Jj+uRz1Vhg0bpvnz5+ull17SSy+9pFNOOUVnn322/va3v0mSLr/8ci1dulRLlizRypUr1dLSoilTpqi9PU//JAYAQK5IZ/mVZy677DIdeuihamhoUHHxR392+frXv97lyUPYc7T3AADw16OeKmeeeWaX/1977bVatGiRVq9erWHDhun222/X7373u87R/u+66y4NHz5cTz31lCZPnpy9pQYAAP3Ks88+q2effbbLBRVJGjFihD788MM+WqpPJ9p7AAD46/WYKu3t7VqyZIlaW1s1btw4rVmzRslkUpMmTeqcZujQoRo9erRWreq+43g8HldTU1OXFwAA+IS0sjeeSh72VOmuy/rGjRtVVla2j5em/6C9BwCAW48vqqxbt05lZWUqKirSv//7v2vp0qUaNWqU6urqFA6HVV1d3WX6wYMHq66u+9Ea5s2bp8rKys7X8OHWiBoAAPRD/fz2n1NPPbXLuCmBQEDRaFTXXHONTjvttD5csk8n2nsAAPjp8UWVkSNHau3atVq9erUuvvhiTZs2Ta+//nq302cyGeegSXPnzlVjY2Pna8MGn2EoAQBAf3LDDTfoT3/6k8aOHat4PK5vfetbOuigg/Tuu+/q+uuv7+vF+9ShvQcAgJ8ejakidYxMfvDBB0uSjj76aL344otasGCBzj33XCUSCdXX13f568WWLVs0fvz4busVFRV5jTINAEC/1i6fAfP9uB+GkpP2339/vfrqq/rd736nNWvWKJ1O65xzztG0adO8nlaCnqG9BwCAn16PqbJTJpNRPB7XUUcdpVAo1GUE/k2bNum1115zfsgCAAB051/+5V/U3NzxKMmysjJdfPHF+vWvf63f/OY3mjlzJhdU9hHaewAA7F6Peqp897vf1emnn67hw4erublZS5Ys0TPPPKNly5apsrJS06dP1+zZszVgwADV1NRozpw5GjNmTOfo8D3xpiTX3zOqjN9/yGMeVo13PWp8xsgHe9Q42sgP8qjxdyN3P3G8g3V3c6lHDWtZl3vU+JyRH+FRw3q/PndyW9v2Xo8apxj5ax41ur9DvcMJHjUiHtNk4+72kJFf4FHDapJb+4ckNRv5Wx41Pm/kx3jUuN/Iaz1qvGPk1nJKUo2R+1xdH2vkbR411hl5g0cNa1++x6OG9V7eM/LdD5e6D/TTnip33nmn5s+fz8WTfWhftvfi8bjztqHCwkLn7zc2NprzKChw10gk4maNYND9CRcKWZ+AUnFxiTP36ckTj7uXtaDAHjApFAobNexPhXDYvazNzS1mDev9fvJJX7uTTrvfr/VeO6Zxb7uGhnqzRlmZ+/wUjcbMGqlUypiH3RIvKLA/JHzWicV1zErSBx98YNYoLXW/H5/jwXqMeyxmH9vWfEpK3MetJDU0uFswwaD9lds6touK7NZ8MOg+1/k0Iqz3ax1zkr2/W9tNkgIB93movt4+Lq1zrnXuj8fs43anHl1U2bx5s84//3xt2rRJlZWVOvzww7Vs2TKdeuqpkqQbb7xRwWBQU6dOVTQa1YQJE3THHXeYH4gAAMCQVr+8qJLJ5NHCfkrQ3gMAwF+PLqrcfvvtzjwSiWjhwoVauHDhHi0UAADATtZfRZFdtPcAAPDX44FqAQBAH+int/9I0iGHHGJeWNmxY8c+WhoAAICPcFEFAADktGuuuUaVlZV9vRgAAAC74KIKAAD5oB/3VPnnf/5nDRo0qK8XAwAAYBdcVAEAIB9klHcXQ7KB8VQAAEAu83mSJgAAQJ/g6T8AACCX0VMFAIA80P6/r2zVyhfpdLqvFwEAAKBbOXtR5S+SCh35t4zfH+wxjzYjL/WoscrIv+xRY4CRf8ajxl+zUOPrRv4DjxoNRm5tN0l6wci3etSIGXmVRw3LUI9prH3sdY8aG4zc58tRs8c0rxj5wR41kkZ+k0eNWiN/2qPGo0Y+1aPGn4zcWk7JPv4f96gxxsh9znW/MPJ/86hh7Wc++4e1j230qPFfRn6tR41RRn6/kfMVH8ie1tY2tbd3f4apqakxKthNWevCXEGB3XG7ra3VmZeVlZk1gkH3soZCIbNGNOpuWRQU2DWqqtytoE2bNpk1XNtMkgYMsLZbx7Z3SaVSZo1Mxtq2rm8TfoJBe51a+1gsZrVMpWQyYUxh99prb7c/odraos48Eikya6TT7mUZNsz+5mEdD83NLWaNpqZGZ15VVW3WaG5ucuaFhfY5xjr+rXlIUiRS7MxDIXs5tm7d5swHDLC+dUrWfuazf0Sj7n0smbS+MUj77befM9+8uc6sEYlEnHlDg/ubayweN+exU85eVAEAAB/prz1VAAAAchkXVQAAyANpZa+XDL1tAAAAsoOBagEAAAAAAHqBnioAAOQBbv8BAADIPfRUAQAAAAAA6AV6qgAAkAcYUwUAACD3cFEFAIA8wO0/AAAAuSdnL6p8U5Lrad1/NX7/eY95XGzk2z1qjDRy99OxO5QY+UMeNU4w8lKPGo8aeblHjc8Z+Q6PGmEjt59sLrXt4TwkaauRH+NRw/30c6nGo0bIyF/yqDHGY5qvGfkqjxobjHyFR40jjNznnsXZRj7Ao4a1D53sUWOxkX/Bo0adkVv7hyRdbeTWe5WkdUbusy9b29Y6f0jSrUZe61HDOi6nGHlC0m0e8wFgq66uVnFx962laDTq/P3W1lZzHgMHDnTmqVTKrFFU5G7RBQL2p1NBQcaZNzY2mjVKS90tuoICezms+fjUKCoqcuaplH3pNhAIOPNMxr2+JCmdtvrduechSbFYzJmXlFgtdSmddr/fYLDQrBEIuNdpW5v9aR2JuL49daiurnLmLS32MZVMulvjra0tZo3iYveyGruHJKm2dpAzDwbtr7rWPlReXmbW2L7d/Q3Heq+SlEq516l1vEjS4MGDnbl9vNjHg8++bL1f6/whSdu3bzOWw9627e3u47KiosKZh4110WV5vKcEAAB9Jq3s9TDh9h8AAIDsYKBaAAAAAACAXqCnCgAAeYCBagEAAHIPF1UAAMgDDFQLAACQe7j9BwAAAAAAoBfoqQIAQB6gpwoAAEDuoacKAAAAAABAL9BTBQCAPMBAtQAAALknZy+qvCupyJGXG78/1WMeW418tUeNnxr5zz1qnGLkEz1qrPCYxrLdyBs8akSMPOlRo9bIY1mo8YJHjW8Y+TseNd4y8pEeNcJG7tONv9ljmlVGPsCjRtUe5pLUZuQHedSw9jPrvUr2et3hUeMYI7eOF0lqMnKfY99a7z770LFG7nNMHZGFGgcY+Vc8aiww8iFGnvCYx97A7T/4NEok4yosDHSbFxa6O1VXVdmfLKlUypm3tbWaNYZ+5jPOfNtWq1UplZW5W6/l5VbrVmppaXHm6bR9ydRaH+m0fYYIBNzbJZPJmDWCQffXEJ/3YtVobbVaFVJ1dbUzj8fjZo143N06LSqyP/EDge6Pgw4lZo32dnudtbS493drnXZMU+jMCwvduWRv33DYagFLkns/a221j21rX02l7OOhpMS9bextKxUUuI8p69iXfNa7fVxa76WtzT6miovd285nu4RC7hqVlRVmja3GeTkYDDlzn3PQTtz+AwAAAAAA0As521MFAAB8hNt/AAAAcg89VQAAAAAAAHqBnioAAOSBtLI3Fgo9VQAAALKDiyoAAOQBBqoFAADIPdz+AwAAAAAA0AtcVAEAIA+ks/zqiXnz5umYY45ReXm5Bg0apK9+9at6662uD41/99139bWvfU21tbWqqKjQ1KlTtXnz5i7THHjggQoEAl1e//Ef/9HDpQEAAMgdOXv7T0RSkSO3npBd5TGPpJH/X48a67KwHPOysBwRI4951HjHyO0nzksHGrm1viTpICMf61HjF0Z+pEeNpUZe7lHD2v4bPGp83sh9uvHXekxjedRjmiOMfKRHDeup83UeNUYZ+UaPGtYVZ/eT7zu8YuQneNSw9ndr/5Ck94x8uEeNzUYe8qhhnaesY1+SPmPkqzxqWPuYddzGPebxabNixQrNmDFDxxxzjFKplK6++mpNmjRJr7/+ukpLS9Xa2qpJkybpiCOO0PLlyyVJ3//+93XmmWdq9erVKij46Ij60Y9+pAsvvLDz/2VlZfv8/SB3BAIFCgS6P+Om0+5LgMGg3TpJpzPOvLq6xqwRi0adeUGBvRyfvMi463JUmzU+fiztTibjfq+SlEhYZ7GAWSMcDjvzWMy9vjpquFr6UnFxsVlj27ZtzrykxK7R0NDgzAsL7W1rbf9kMmHWKCpyf0r6bNtgcM+/2jU1NZrTWNsmEnFvW8leZ6mU9U1NikTc6yyRsGtYx1QqlTJrRI3zQ1lZqVmjuLjEmVv7hyTF4+5j2zpuJfv9BgL2+cGapqjI3j9CIXfLsrW11axh7WPWse1z7O+UsxdVAADAR/pyTJVly5Z1+f/ixYs1aNAgrVmzRieeeKKee+45rV+/Xi+//LIqKio6p6mpqdHy5cs1ceLEzt8tLy/XkCFD9vQtAAAA5ARu/wEAIA+0Z/klSU1NTV1e1l+5dmps7PhLZk1Nx1/44/G4AoFAl78+RSIRFRQUaOXKlV1+9/rrr9eAAQP0hS98Qddee60SCfsvuAAAALmKiyoAAPRTw4cPV2VlZedr3jzrhtSOLuhXXHGFTjjhBI0ePVqSdNxxx6m0tFRXXXWV2tra1Nraqu985ztKp9PatGlT5+9edtllWrJkiZ5++mnNnDlTN910k7797W/vtfcHAACwt3H7DwAAeaA3A8y6aknShg0bOm/Xkfzuc545c6ZeffXVLj1Qamtrdd999+niiy/WzTffrIKCAn3jG9/Q2LFju9yTPGvWrM5/H3744aqurtY555zT2XsFAAAg33BRBQCAfoElYBYAACAASURBVKqioqLLRRXLJZdcoocffljPPvushg0b1iWbNGmS3n33XW3btk3BYFBVVVUaMmSIRowY0W294447TpL097//nYsqAAAgL3FRBQCAPNCXA9VmMhldcsklWrp0qZ555hnnhZKBAwdKkpYvX64tW7borLPO6nbal19+WZK033779XCJAAAAcgMXVQAAyAMZZe/2H/vBnF3NmDFDd999tx566CGVl5errq7j4eaVlZWdj9ZcvHixDj30UNXW1ur555/XZZddplmzZmnkyI6HqT///PNavXq1Tj75ZFVWVurFF1/UrFmzdNZZZ2n//ffP0jsDAADYt7ioAgAAnBYtWiRJOumkk7r8fPHixbrgggskSW+99Zbmzp2rHTt26MADD9TVV1/dZQyVoqIi3XvvvbrmmmsUj8d1wAEH6MILL9SVV165r94GAABA1uXsRZXw/766s8H4/dEe83jeyCMeNbYbecijxjeM/E8eNf7VyN/zqPElI/+rR42YkY/1qPGUkVvbXpKmG3k23ovPtt1q5EM9aljvd4hHjXUe0ySN/GiPGqOMvNajxv1GvtmjxmIjv9qjxkYjH+5Ro9TI3/SoYW0XHwcZ+UiPGtY5xNrXJXudLvWoYW27Ko8aBxu51Rsk4DGPvaGvb/+xzJ8/X/Pnz+82Hzt2rFavXt3DOePTLhAIKBDo/qhqb085f7+gwG6ttbW1GjXsh2GmUtZy2GeG6upqZ97c3GTWsMYeisftR5SXlpY582i0zayRybjPlMXFJWaN5uZmZ55M2u/FWh9+78V9frPeqySlUu5pQiG71Wi932DQrhGNRs1prL6KPtsuEnEfd6GQ/RWzvr7BmVvHnCRt377DmQ8ePNiskUq5W1qhkOsbaQfrHBKLWd8qJPubhy0cdg82H4nYg9Fb5xCf7WKt08ZG97aX7G1XUFDozCV78H2zbeP4bNplebynBAAAAAAAQKec7akCAAA+0pc9VQAAALB7XFQBACAPpJW9gWqzVQcAAKC/4/YfAAAAAACAXqCnCgAAeYDbfwAAAHIPPVUAAAAAAAB6gZ4qAADkAXqqAAAA5J6cvagSk/sp6u6nX/upNHL3U7o7lGdhOW418rM9amww8vc8aiw38lM8amw38hqPGsca+XqPGpbPekzzBSNf51Hjc0b+jkcN68uPte19p5lm5Hd51IgY+eMeNd438is9arxo5CGPGg1GvsqjxkFG7nP+eN3IP+9RY6mRP+pRY6yRn+tRY4WRT/Go8bSRn+VRwzofWnlfdfFkoFp8GqXTaaXT3e+RmYyrNegnGCx05j7zKCx01/Cxffs2Z15RYbVMpUTC3QKOx+NmjZaWZmdeVmZ/OrW3p5x5YaH9FaO0tMSZJxI+LXG3cLjInCYSKXbmsVhsj+eTSNjbxfp08VkfyaT9Dammxt0ar6/fYdYoKHAva3Ozex+T7PczePAgs0ZbW5szLygImDVSKXdLu7W13qxhbX+f84e1nxUV2ftyY6O79drU1GjWKC52H5fV1VVmjZaWFmfuc65rbnbXqKqyl8M6H1q5tZ93mdZ7SgAAAAAAAHTK2Z4qAADgI2ll77YdeqoAAABkBz1VAAAAAAAAeoGeKgAA5AHGVAEAAMg9XFQBACAP8PQfAACA3MPtPwAAAAAAAL1ATxUAAPIAPVUAAAByDz1VAAAAAAAAeiFne6pUSIo48lHG77/iMY9jjfyvHjW+YOTNHjUuMvL3PWq41pUkneVR4z0j/7xHjV8beZtHjY1Gbm03SXrcyKs8aljLeo5HjVVGnvSo8RkjX+9Ro9xjmjeNfLxHjbVG7rPea4z8Xo8apxr5bz1qDNnDXLKPy6EeNYYb+Q6PGgcY+bkeNazj8qceNaz1YZ3XJfs8datHjVOM3FrnUY957A0MVItPo2CwUMFgYbd5QYH7zNHWZh+RpaWlzjwatVsnkUixM0+n7aNqwICBzjyRSJg1CgoCzryqqtKsEY+75xOJFJk1tm/f7sx91kcy6W4FlZS4t5skNTc3OfOCgu73rZ2sZa2utlsvra2txjwyZo1wOOTMffaPwkL77+XxeMyZ+6z3WMx93Pmsd9dxL0n19Q1mjfJydwt3xw67lRQMute7lUtSIOA+Lq1tK0mhkHua9na7j2k4HHbmVVXVZg3ruNyyZYtZIxBw74eRiNUitPf3bdu2mTXKysqcubW+fNb5Tjl7UQUAAHyE238AAAByD7f/AAAAAAAA9AI9VQAAyAP0VAEAAMg99FQBAAAAAADoBXqqAACQBzLK3gCz9pCJAAAA8MFFFQAA8gC3/wAAAOQebv8BAAAAAADohZztqTJMUrEjv8f4/W95zGOFkbuf0t3hcSM/yKPGECNv9qhhPe37LY8a1hPl3U+191sOn7+OHmHk6zxqHGvkGz1qjDFya/+RpHFG/pJHDevKZ4NHjS94THOAkb/uUcNar5/xqDHcyMs9arxj5CM9ali3WRztUeOpPZyHJNUZubWfSvZx6XNMWdv2TI8a1j421KPGw0bu817eM/LRRm6dK/eWtLJ3+0+26gB7KhQMKRQKd5vX19c7f7+mpsacR0tLizGFfUNcc7O7NVZU1P172CkYDDnz9na7lRQIuFsFsVjcrGFJp+31YS1HxuMew+JiV0tfisWiZo2SklJnnkzarXlrOZqbrf1HKitzL4fUZtYIBALOPJ22949IxP1eJCkcdu+rsZjd4rfWa3Gxe1/vWI4SZ15QYP/tPx537+9FRVYLSMoYO2tJiXs5Jamlxefbmlsq5V6nPtvWOi6jUfuYspajoqLSrGHtY6GQvX80NjY6c5/zQyKRcOaRiHv/8NkHO6f1nhIAAAAAAACdcranCgAA+AhjqgAAAOQeLqoAAJAHuKgCAACQe7j9BwAAAAAAoBfoqQIAQB5goFoAAIDcQ08VAAAAAACAXqCnCgAAeYAxVQAAAHIPF1UAAMgDaWXvYgi3/wAAAGTHHl1UmTdvnr773e/qsssu00033SRJisfjmjNnju655x5Fo1FNmDBBt9xyi4YNG9aj2mWSShx5lfH7mz3mMdnI6zxqXGvkYz1qLDfyL3vUcK0rSSr3qPGKkVvLKUk1Rh7xqNGahRpf8JjGYr2X//Go8d9GXutRY6ORv+xRI+wxzQojH+VR4ytGfpdHjYOMfIxHjTeN3OeYWmnkGzxqZOML8BAjP9KjxrtGPtyjxmtGvtWjxl+N3DrmJOkdI5/iUeMlI19n5EmPeQCfJnuzvVdYWKDCwu7vRi8sLHT+fiqVMudRUVFh1LCP6ro6d8uyuLjYrNHS0uzMy8rKzBoFBe47913rcqe2tqgzb2lpMWsEg+7tEggEzBrptPvybiBgvxef9W6x9zF7/6ivb3DmwaD9lSuRcG8Xa7t1sNd7a6t7+xYV2S3t8nL3MVVfX2/WKCpyt04jEXvbxuMxZ15aah9Tra3ubx6NjY1mDSnjMY1bMBhy5iUl1rc9KZGIO/Nw2P5GEIu516nPObetrc2Z+xwP8bj7vVRWuvdBn+VoaHAfU9a6+Lhej6ny4osv6tZbb9Xhhx/e5eeXX365li5dqiVLlmjlypVqaWnRlClT1N5OZ2MAAHorneUX4IP2HgAAbr26qNLS0qJvfvObuu2221RdXd3588bGRt1+++264YYbNHHiRB155JG66667tG7dOj311FNZW2gAAADsXbT3AACw9eqiyowZM3TGGWdo4sSJXX6+Zs0aJZNJTZo0qfNnQ4cO1ejRo7Vq1ard1orH42pqauryAgAAXbVn+QVYaO8BAGDr8ZgqS5Ys0Zo1a/TSS7velV5XV6dwONzlrxmSNHjwYNXV7X6Eknnz5umaa67p6WIAANCvZPO2HW7/gYX2HgAAfnrUU2XDhg267LLL9Pvf/16RiM9woR0ymUy3A1bNnTtXjY2Nna8NG3yGfwQAAMDeQHsPAAB/PbqosmbNGm3ZskVHHXWUgsGggsGgVqxYoZtvvlnBYFCDBw9WIpHYZcTnLVu2aPDgwbutWVRUpIqKii4vAADQFbf/YF+hvQcAgL8eXVSZMGGC1q1bp7Vr13a+jj76aH3zm9/s/HcoFNKTTz7Z+TubNm3Sa6+9pvHjx2d94QEAAJBdtPcAAPDXozFVysvLNXr06C4/Ky0t1YABAzp/Pn36dM2ePVsDBgxQTU2N5syZozFjxuwyyJnlHUmuDqfuJ3lLL3rMY62Rf8ajxjlGXulRY4iR737It64KjXy7R40vGPnZHjUsD3lMc4KR209Yt/ePXe8Q35X1VPrPedTYYeS7/3teV9aRU+NRo8pjmoSRl3jUONjIL/Wo8Y6RF3nUsLbNWx41Nhr50R41jvGYxrLOyB/2qHGgkfusjylG/iePGqOM3OdT4hdGbm03SRpr5LsfEeIjMUmPeswn27LZw6SndebNm6cHH3xQb775poqLizV+/Hhdf/31GjlyZOc07777rubMmaOVK1cqHo/rtNNO08KFC7v0XKivr9ell16qhx/u2HPPOussLVy4UFVVPmcp7Cv7sr0XiycUCHT/N77ubifaqa2tzZxHNBp15qGQ1WqQuY8Gg1ZLTAoG3fNpbW01a0ju9dHenjIrRCLFzryy0qf16tbYaLWipLKyUmMK93uVsrN/FBW5WxbhsN3ysB4lHgrZX7nKy8udeTBo1ygstPfDeDzjzAsK7L+5RyLudVJbW+uxHHFjOeztb207ax6SlEwmnXlJid0C9pnGEou5z1MNDQ1mjXDY/S0pFouZNaxehM3N9iDjRUXu20Z9eipu3brVmScS7u0mScXF7u1ibfuMxzlop149/cflxhtv1Fe/+lVNnTpVxx9/vEpKSvTII494HeQAAGD30ll+9cSKFSs0Y8YMrV69Wk8++aRSqZQmTZrU+SWwtbVVkyZNUiAQ0PLly/Xcc88pkUjozDPPVDr90dzOO+88rV27VsuWLdOyZcu0du1anX/++b1dJehDtPcAAOjQ46f/fNIzzzzT5f+RSEQLFy7UwoUL97Q0AADIAcuWLevy/8WLF2vQoEFas2aNTjzxRD333HNav369Xn755c6/QC1evFg1NTVavny5Jk6cqDfeeEPLli3T6tWrdeyxx0qSbrvtNo0bN05vvfVWl14vyD209wAA2L2s91QBAADZl1b2Bqnd00cq7+zaX1PTcQNiPB5XIBDo0hU7EomooKBAK1eulCQ9//zzqqys7LygIknHHXecKisrtWqVz42uAAAAuYeLKgAA9FNNTU1dXj73n2cyGV1xxRU64YQTOsfXOO6441RaWqqrrrpKbW1tam1t1Xe+8x2l02lt2rRJklRXV6dBgwbtUm/QoEGqq7NGsgEAAMhNXFQBACAP7I1HKg8fPlyVlZWdr3nz5pnLMXPmTL366qu65557On9WW1ur++67T4888ojKyspUWVmpxsZGjR07tssYG7sbVDKTyZiDTQIAAOSqPR5TBQAA7H29GWDWVUuSNmzY0GUUfutJCpdccokefvhhPfvssxo2bFiXbNKkSXr33Xe1bds2BYNBVVVVaciQIRoxYoQkaciQIdq8efMuNbdu3drlCUEAAAD5hJ4qAAD0UxUVFV1e3V1UyWQymjlzph588EEtX76880LJ7gwcOFBVVVVavny5tmzZorPOOkuSNG7cODU2Nuovf/lL57QvvPCCGhsbNX78+Oy+MQAAgH2EnioAAOSBj9+2k41aPTFjxgzdfffdeuihh1ReXt45BkplZaWKi4sldTzt59BDD1Vtba2ef/55XXbZZZo1a1bnU30OPfRQnXbaabrwwgv1q1/9SpJ00UUXacqUKTz5BwAA5K2cvajysqSQIz/WkUmSz5B3pUb+kEeN64x8rUeNA4z8TY8aXzdyn+bqvUbe4FEjYuTf8qixwsg/71FjkZGP8qgx3Mh91umjRv6ER41GI3/fo8ZEj2neMXKf2w5eMvJXPGrMMPKkR43HjNxn21nnmJUeNdYbuesct5O1H/5bJmPWmGWMV2EPTWp/Cb8380WzxoLAX5y5dexL0hFGXu5RY6OR1xh5zGMenzaLFnWcVU866aQuP1+8eLEuuOACSdJbb72luXPnaseOHTrwwAN19dVXa9asWV2m//3vf69LL71UkyZNkiSdddZZ+vnPf77Xlx+5K9rWpky6+0+YkpIS5++nUilzHgUF7o7ZO59m5TJ06H7OPBqNmjXC4bAzb262zy6VlVXOPBJx38InSfX17hZdNNpm1ggE3Ot055PBXFpaWpx5JGK1KqVt27btcY1QyP1p7FOjqcm9DzU1NZs1Uin3J20ikTBrDBhgr3efAcktbW3ufcTneBg4cKAz92jeqKmpyZn7HA+lpe5zTEtLq1nD2jY+44aFQu7zw9Bt7uNFkv5R7l5p6bTHSjX88z//sznNI4884sxbWuzjYecfbLpjndclKZl0f2sIBgvdeaE77zKt95QAAKDP7I0xVXxlPFq38+fP1/z5853T1NTU6K677urh3AEAAHIXF1UAAMgDfXn7DwAAAHaPgWoBAAAAAAB6gZ4qAADkAXqqAAAA5B56qgAAAAAAAPQCPVUAAMgDGWVvoNo9H/8fAAAAEhdVAADIC9z+AwAAkHty9qLK8ZJcT6deYfz+AR7zeNPIaz1qrDXylR41dhj5sR411hu5/ZR26fNGvtWjxjtG/rRHDaux/65HDWudveJR469GPt6jxnoj/4ZHDWu9D/ao8ZrHNNZ6r/SoMdzIx3rU+K2RT/SoYe3v93vUOMjIfbb/BiMf6lHDWtb3AgGzRoWR+xzb1nv5QeAvZo06Iy/xWA6Lz8WCkJFbny9Jz2UBYCstLVNxcaTbvKWlxfn74XDYnEc8HnPmwaDdHI5Go868paXVrNHennLmJSWlZo1EIuHMCwrsz4SiIvenZCrlXs6O5Yg785YWn/5w7mmseUhSaan7k6Otzb3dJCkabXPmfuvDvV2qq6vNGtZ8/PZT977ewb3eCwsLzQqhkPuTtLjY/kTfsaPemZeXl5s1rP29oaHBrBEOu4+H0lL7uEwm3ds/GLRaHvayxstd34w7FBS4R/ZIp/d8X1669A9mjVTK3VKyltOHz/EQMNrI1udLLOZzPP3v8nhPCQAA+gw9VQAAAHIPA9UCAAAAAAD0Aj1VAADIA2llb6DabNUBAADo77ioAgBAHuD2HwAAgNzD7T8AAAAAAAC9QE8VAADyALf/AAAA5B56qgAAAAAAAPQCPVUAAMgDjKkCAP+vvfuPkaq89zj+mZ0f+4vdYXf5sUXQ0kIkFkH54S2GKlZLo/XXNfaaay/Xxt5GEyAgmgZbEqlJxZqmTRssxpgQk4YuSXWBGKWuKa4QpQWUK9SUVItl/bGiAsvusjOzM3PuH1yWbpXn+zB7lj1D369kE5jvme95znOec+aZZ55zDgBET2QHVbZJSjrik4z37/ZYx0IjXuWRY64Rj3vkyBjxVo8cs4x4yiPHWCM+3iPHxx7LWKzO/jSPHK8acavOJbuNve+Ro9mIH/PI0RhCjpkey1j732c9Hxlxn/ZhtbPfe+S43Yhb2ypJ6434BI8c1iUWPuepa4y4z7HdZsSXeeR4zohf7pEjZ8St85gkve6xjOUtI36REc+GUIZSFBXeYAiX/yAqenq6lc/3nzGeTLp6g9KJEyfMddTX1znjsZg9cbumpsZYImbmKBbdR15XV5eZo7q62ljC7r0mEu7uv1XnkpTP581lLEHgjldW2tvS29trrMM+2yWT7k9SV/s8JZFw11mhYJ+943H3twafHDU1Vvuw93+xaK/H2v8+7SOZdJeju/u4mSOdHu2MW9sqSZ9+esQZ9zkeAqMx+5yn6upGGUvY55ienm5nfOxYuwfc1eWud582ZtWHfR6T+vr6zGUsmYz7G18q5T72C8Y5+x9x+Q8AAAAAAEAJIjtTBQAAnMaNagEAAKKHmSoAAAAAAAAlYKYKAABloKDwfgnhRrUAAADhYFAFAIAywKAKAABA9HD5DwAAAAAAQAmYqQIAQBngRrUAAADRE9lBlYmSXE+O/qbx/r96rOOyEHL80Yh3eORwP1FcmuWR40tG/F2PHLVG/C2PHNbUJ/uJ89KdRvxZjxzXGfHHPHJcYsQPeOSYasR3eOSw9u0cjxz7PJYJ40vWu0Y87pGj2Yi7nyh/knXs+tT7DUb8fzxy/NaIf+yRo8mI+1zGYW3L6x45bjTiGzxyfGTEL/DI0T/EuCR9asRHG/GcxzoA+Ekmk0omk2eM19fXO9+fy2XNdVRXVzvj2aydo7e31yiHfWYoFt2ftFY5JamysnLI5aiocPfWMpmMmSMWiznjxaL96dTQ0OCMHzvWZeaoq6tzxg8ftj55pHS6yhn3aR/Wfunt7TFzpFLuHDU1NWaOvj573wVBYC5jyeetduZuH5KUSJz5uPfNYR3/PT3u41ayzzFNY6yemHT0yFFnPJ/PmznicffXcp/9Zm3LiRN9Zo502p3j6FH3tkpSf797e13n/FOs7S0W7fooFNzliMfd30wCj3WcEtlBFQAAcBr3VAEAAIgeBlUAACgDXP4DAAAQPdyoFgAAAAAAoATMVAEAoAwUFd5lO8xUAQAACAczVQAAAAAAAErATBUAAMpAQT7PQvDPBQAAgKFjUAUAgDLAjWoBAACih8t/AAAAAAAAShDZmSrTJVU74q8a7x/rsY6PjfjzHjl+ZsSf8shh6fZY5i0jPtUjxx+N+P0eOV4w4hM9cvzeiI/2yLHDiN/jkaPDiM/3yLHNiM/yyGG107955JjksUzciFv7RZI+NeJXe+Swjt0rPXJsNuIXe+S4wYj7HNsXGPE5Hjms/V8VQo6cR46HjbhPW55rxP/ikcM6Lv/LI8cRI261wYzHOoYDl//gfFRdXaXq6jP3+Hp7e53vTyTsrmx/f94ZP378uJljwgXuM/qnn1ifgLZi0Z5Dlsm4z0CVlZVmjhMnTjjj48aNM3NYdZZKJT1yuHu48bjVM5F6e3uc8aamMWaOXM79KVhbW2vm6Olxl6O6usbMkc+722k2mzVzpFIpcxlLd7f9zaNQcJd11KhRZg7r2PWp966uLme8qso+Hurr651xn2M7mXS395qaoe//WMzuAVg5pMDM0dnZ6Yz7tOV02r2MdR6TpP7+fme8oaHBzFEouHs7VhvMG+8flMt7SQAAMGIYVAEAAIgeLv8BAAAAAAAoATNVAAAoA9yoFgAAIHqYqQIAAAAAAFACZqoAAFAGuKcKAABA9DCoAgBAGQgU3mU79v3/AQAA4IPLfwAAAAAAAEoQ2Zkqb0pyPWndmro89Ke0S/d5LPO8Ef+LR467jbj9dHQpbsRneuT4khH/q0cO95PNpY89cuSMuM8vtdYT1Ds8cvy7EX/JI8fNRnyLRw6LT/uo81jmEiM+1SPHlUbcfiq97V2PZd4y4jd45PitEa/yyHGbEd/gkcNq7z6XcVj7ZZdHjv824ps9clj7/3qPHPuNeK1HDutcZ51P+zzWMRzCvGSHy38QFX19GQXOqVPWvKqhXxQ3duxYc5njXced8WzW/oRrbGxyxvP5vJkjFnNvb3V1tZkjlXL3krPZrJkjn+834va2BO4db8YlqaLC/ftwLmf1KqXRo0c7493d3WaOdDrtjHd1dZk5LIWCXafxuPUJJlVVVTrjlZXuuCQlEu5P22Jx6PMqffZdJuM+7urr680cR44cdcatNibZbejo0SNmDqu5+xwPo0a598uJEyfMHA0Njc748eN2W7b2v89+sfZtPG7vl8pKa0TAfT6NV9jH0ynMVAEAAAAAACgBgyoAAJSBQsh/Z2PNmjWaO3eu6urqNG7cON166606cODAoGU6Ozu1aNEiNTc3q7a2VrNmzdLvfve7Qct88YtfVCwWG/S3cuXKsywNAABAdDCoAgBAGSiG/Hc22tvbtXjxYu3cuVNtbW3K5/NauHChent7B5ZZtGiRDhw4oC1btmjfvn267bbbdMcdd+iNN94YlOvhhx/Whx9+OPC3atWqs60KAACAyIjsPVUAAEA0bN26ddD/169fr3HjxmnPnj266qqrJEmvvfaa1q1bpyuuuEKStGrVKv3iF7/Q66+/rssvv3zgvXV1dWpubj53hQcAABhGzFQBAKAMDMflP8ePHx/053ODSun0TRcbG0/f0G7+/PnauHGjjhw5omKxqJaWFmWzWS1YsGDQe3/605+qqalJl112mX7yk5943YwQAAAgqpipAgDAv6hJkyYN+v9DDz2k1atXO98TBIFWrFih+fPna/r06QOvb9y4UXfccYeampqUSCRUU1Oj1tZWffnLXx5YZtmyZZo1a5YaGhr0pz/9SQ8++KAOHjyop556KtTtAgAAOFcYVAEAoAwMxyOVOzo6Bj3a0OdRmkuWLNGbb76pHTt2DHp91apVOnr0qF566SWNGTNGmzZt0re//W1t375dl156qSTpvvvuG1h+xowZamho0O233z4wewUAAKDcMKgCAEAZKEqKhZhLkurr6wcNqliWLl2qLVu26JVXXtHEiRMHXn/nnXe0du1a7d+/X1/5ylckSTNnztT27dv1+OOP64knnvjcfF/96lclSW+//TaDKgAAoCxFdlBlgqQqR3ySIyb5Pdmgw4j/xiPHaCPu00VsN+KdHjkeNOLPe+TIGPFbPHJsM+Ife+SwfMljmf804juMuCS9bsT/1yPH00bc2m+S9Dcjfswjx9sey0wz4u975LDKcqVHDuvXeJ/t/Tcjvtcjxxwjbp0/JOkxI572yHHCiF/skeMDIz7WI0e/EX/AI8dzRny/R46kEX/XI0e3Ef/UiPvddeT8EgSBli5dqtbWVr388suaPHnyoPiJEydbakXF4Fu1xeNxFYtn/kQ+9WSgL3zhCyGXGOUimUoqlTrzkZ1MppzvD4LAXEd/v/sMdvToUTNHPB434naXuqenxxnP560zrTR+vPsmz6fud+Ri1Vk6p/CLGQAADOhJREFUbX86dXe7z6TFYt7MYUml7JlzDQ0Nznhvr7vOpdPnrzPp6+szcxw5csQZHz9+vJkjl3N/uuTz9nxFn/tiVVW569U6XiSpUHCXpba21swhuduhz/bW1NQ44z77zsrhUx8fffSRM26dPyQ5Pyslv5mkuZy7rImEz1d/934ZN26cmaGr67gznslY3zqlWMz9M1I2a9+PrVBw12mh4D5P5fr9e3yRHVQBAACnne1jkMPMtXjxYm3YsEGbN29WXV2dOjtPDven02lVV1dr2rRpmjJliu655x797Gc/U1NTkzZt2qS2tjY999zJ4bTXXntNO3fu1DXXXKN0Oq1du3bpvvvu080336wLL7wwxK0DAAA4dxhUAQAATuvWrZOkzzzJZ/369frud7+rZDKp559/XitXrtRNN92knp4eTZkyRU8//bRuuOEGSSd/Zdu4caN+/OMfK5vN6qKLLtL3v/99/eAHPzjXmwMAABAaBlUAACgDIzlTxecSi6lTp+qZZ545Y3zWrFnauXPnWa4ZAAAg2hhUAQCgDBRkXensL8wBGgAAgH9lFfYiAAAAAAAA+GfMVAEAoAwwUwUAACB6mKkCAAAAAABQgsjOVOmR5HrS9t+M93/ssY46I/5NjxzzjfhvPHI0G/GLPXI8bMSneOS4wIi3e+RIG/HxHjk+MOI7PHJMNeJWnUtSpxG/xiPHzBDKYbVlnxzveCxjPTF+kkeO3Ua82yPHfxhxn2PbKqvr3HKK9Uv+Rx45rGO31yOHtb3HPHKMNuLWcSvZ51yffWvtl/c9ctQbcZ8ZGH814h1GPO+xjuEwkjeqBYZLoVBUoXDmFlksZp3vz+ftIzIejzvjdXVWj1AaNWqUM37kyBEzRzKZdMarqirNHJ2dHzrjlZV2jkTCXY6enh6PHO46jcXc65Ck/n73p3Fvr10Oa3utbZWkfN5dDmvfS1J1dbUznkzaX7mstlxVZW9LLuc+XiSpWHTPebTaqST19Z1wxguFgpmjocHdO/E5tlOplLHE0Od3Wu1Uso/dYtH+1LW2t1i069Q6Lisq3HFJymZzznih4N73kt2GrGNO8iurJZt1Hw/9/e5tzWSsb0enRXZQBQAAnMblPwAAANHD5T8AAAAAAAAlYKYKAABloKjwZqqElQcAAOBfHTNVAAAAAAAASsBMFQAAykBRUiykXMxUAQAACAeDKgAAlIGCGFQBAACIGi7/AQAAAAAAKEHkZqoEwcnfz+ynrLu5nzotr3X4PJm6N4RyWOuxnxYvWU/79qlPqxz209Ht9fj8ymrVmf3UeqnPiFtPtZfs+vAph5XDftK7ncNnZNRn/1tl8TkerHboczxYx5RPOawTm099WG0ojHOMTznOxbHtc1xa64l75BjqOnyWsfabNPRzzKn4qc+rc4WZKjifnDp+Mhn3GSoWc7f6Qt7+NK6Iu89QcSPus4y1HZKUL7h7UvEK+xPdWk/R47yUSPj06NzyefenUyxmb0u+350jm7U/Ffr63Gd9n32bN9uQfeYtFN11ajRjSVJfxr29FR51muu366yiwl0nfR5t2WqH8bj9FdPad9ms3dOqMI6ZXL+dIxF37zufY9va/8Vi0cyRM7a3GNg5CgX3MhUVdkPM5tzHpVXnkn3ets4fJ9fjbqcJjzZm7bt+o31k/v8c5NPfiwXnuldoeO+99zRp0qSRLgYAAE4dHR2aOHHisK8nk8lo8uTJ6uzsDDVvc3OzDh48qKqqqlDzAj7o7wEAyoFPfy9ygyrFYlEffPCB6urqBka5jh8/rkmTJqmjo0P19fUjXMLzA3UaPuo0fNRp+KjToQuCQN3d3ZowYYLXLzZhyGQyyuV85kf5S6VSDKhgxPxzf49z0/CgXsNHnYaPOg0fdTp0Z9Pfi9zlPxUVFWccCaqvr6dRhIw6DR91Gj7qNHzU6dCk0+lzur6qqioGQHBeOVN/j3PT8KBew0edho86DR91OjS+/T1uVAsAAAAAAFACBlUAAAAAAABKEF+9evXqkS6Ej3g8rgULFiiRiNwVS2WLOg0fdRo+6jR81CmAKOLcNDyo1/BRp+GjTsNHnZ47kbtRLQAAAAAAQDng8h8AAAAAAIASMKgCAAAAAABQAgZVAAAAAAAASsCgCgAAAAAAQAkiP6jy61//WpMnT1ZVVZVmz56t7du3j3SRysorr7yim266SRMmTFAsFtOmTZsGxYMg0OrVqzVhwgRVV1drwYIF+vOf/zxCpY2+NWvWaO7cuaqrq9O4ceN066236sCBA4OWyWazWrp0qcaMGaPa2lrdfPPNeu+990aoxNG3bt06zZgxQ/X19aqvr9e8efP0wgsvDMSpz6Fbs2aNYrGYli9fPvAa9QogSujvlY6+Xvjo74WP/t7wo783ciI9qLJx40YtX75cP/rRj/TGG2/oa1/7mq6//nodOnRopItWNnp7ezVz5kytXbv2c+OPPfaYfv7zn2vt2rXatWuXmpub9Y1vfEPd3d3nuKTlob29XYsXL9bOnTvV1tamfD6vhQsXqre3d2CZ5cuXq7W1VS0tLdqxY4d6enp04403qlAojGDJo2vixIl69NFHtXv3bu3evVtf//rXdcsttwx0+KjPodm1a5eefPJJzZgxY9Dr1CuAqKC/NzT09cJHfy989PeGF/29ERZE2BVXXBHce++9g16bNm1asHLlyhEqUXmTFLS2tg78v1gsBs3NzcGjjz468FomkwnS6XTwxBNPjEQRy87hw4cDSUF7e3sQBEFw7NixIJlMBi0tLQPLvP/++0FFRUWwdevWkSpm2WloaAieeuop6nOIuru7g6lTpwZtbW3B1VdfHSxbtiwIAtopgGihvxce+nrDg/7e8KC/Fw76eyMvsjNVcrmc9uzZo4ULFw56feHChXr11VdHqFTnl4MHD6qzs3NQHVdWVurqq6+mjj11dXVJkhobGyVJe/bsUX9//6A6nTBhgqZPn06deigUCmppaVFvb6/mzZtHfQ7R4sWL9a1vfUvXXXfdoNepVwBRQX9veNHXCwf9vXDR3wsX/b2RlxjpApzJJ598okKhoPHjxw96ffz48ers7ByhUp1fTtXj59Xx3//+95EoUlkJgkArVqzQ/PnzNX36dEkn6zSVSqmhoWHQsrRbt3379mnevHnKZDIaNWqUWltbdckll2jv3r3UZ4laWlq0Z88e7d69+zMx2imAqKC/N7zo6w0d/b3w0N8LH/29aIjsoMopsVhs0P+DIPjMaxga6rg0S5Ys0ZtvvqkdO3aYy1KnbhdffLH27t2rY8eO6ZlnntFdd92l9vb2My5Pfbp1dHRo2bJlevHFF1VVVeX9PuoVwEihLzK8qN/S0d8LD/29cNHfi47IXv4zZswYxePxz4yiHT58+DOj7ShNc3OzJFHHJVi6dKm2bNmibdu2aeLEiQOvNzc3K5fL6ejRo4OWp07dUqmUpkyZojlz5mjNmjWaOXOmfvnLX1KfJdqzZ48OHz6s2bNnK5FIKJFIqL29Xb/61a+USCQ0fvx46hVAJNDfG1709YaG/l646O+Fi/5edER2UCWVSmn27Nlqa2sb9HpbW5uuvPLKESrV+WXy5Mlqbm4eVMe5XE7t7e3U8RkEQaAlS5bo2Wef1R/+8AdNnjx5UHz27NlKJpOD6vTDDz/U/v37qdOzEASBstks9Vmia6+9Vvv27dPevXsH/ubMmaPvfOc7A/+mXgFEAf294UVfrzT0984N+ntDQ38vOiJ9+c+KFSu0aNEizZkzR/PmzdOTTz6pQ4cO6d577x3popWNnp4evf322wP/P3jwoPbu3avGxkZdeOGFWr58uR555BFNnTpVU6dO1SOPPKKamhrdeeedI1jq6Fq8eLE2bNigzZs3q66ubuCXn3Q6rerqaqXTaX3ve9/T/fffr6amJjU2NuqBBx7QpZde+pmbR+GkH/7wh7r++us1adIkdXd3q6WlRS+//LK2bt1KfZaorq5u4LrvU2pra9XU1DTwOvUKICro7w0Nfb3w0d8LH/298NHfi5Bz/8Chs/P4448HF110UZBKpYJZs2YNPMoMfrZt2xZI+szfXXfdFQTByUftPfTQQ0Fzc3NQWVkZXHXVVcG+fftGttAR9nl1KSlYv379wDJ9fX3BkiVLgsbGxqC6ujq48cYbg0OHDo1coSPu7rvvHjjGx44dG1x77bXBiy++OBCnPsPxj4/YCwLqFUC00N8rHX298NHfCx/9vXOD/t7IiAVBEJzLQRwAAAAAAIDzQWTvqQIAAAAAABBlDKoAAAAAAACUgEEVAAAAAACAEjCoAgAAAAAAUAIGVQAAAAAAAErAoAoAAAAAAEAJGFQBAAAAAAAoAYMqAAAAAAAAJWBQBQAAAAAAoAQMqgAAAAAAAJSAQRUAAAAAAIASMKgCAAAAAABQgv8D5kIQzVnSD6oAAAAASUVORK5CYII=\n", + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAHqCAYAAADMLNG2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtCklEQVR4nOzdeXhU1fkH8O/sk2QyWSAQkSUglE1RWcS4gYgsWtywLkVFa90KKFA36sKiFlwqLhVQS9GqiMVCXarigqDIUkTxhxvFBaVC2EL2zExm5v7+SBMZkjnvGzKQgXw/z5PngXnvvPfcdc6cOfccm2VZFoiIiIiIiIiIyMje1AUgIiIiIiIiIjoUsBGFiIiIiIiIiEiBjShERERERERERApsRCEiIiIiIiIiUmAjChERERERERGRAhtRiIiIiIiIiIgU2IhCRERERERERKTARhQiIiIiIiIiIgU2ohARERERERERKbARhZJCXl4errzyyiZZ95QpU2Cz2Zpk3fFs3rwZNpsNzzzzTFMXpUk888wzsNls+Pjjj5u6KAlRsz2bN29u6qIQEREdUpqyjggAAwcOxMCBA9XLHn300Qe2QI3A+khiLFu2DDabDcuWLWvqolATYSMKHVAbNmzAhRdeiA4dOsDr9eLII4/EmWeeiccff7ypi5YQs2bNSqqGjhdeeAE2mw0+n6+pixLX4sWLMXz4cLRs2RJutxtt2rTBRRddhKVLlzZ10YiIiA4LNV+W6/u7/fbba5fLy8urfd1utyMzMxPHHHMMrr32WqxZsyZu/kAggJkzZ6J///7IyMiA1+vFL37xC4wdOxb/+c9/1OV84403YLPZ0KZNG0Sj0UZt88GydetWTJkyBevXr2/qotRx5ZVXxj3ub7311kEty8CBA2POLb/fj65du+Lyyy/HO++806jc8+fPxyOPPJKYghokWz2fkoezqQtAh6+VK1fi9NNPR/v27XHNNdcgNzcXW7ZswerVq/Hoo49i3Lhxtctu3LgRdvuh16Y3a9YstGzZskl/IalRVlaGW2+9FWlpaU1dlHpZloXf/OY3eOaZZ3D88cdj4sSJyM3NxbZt27B48WKcccYZ+Oijj3DSSSc1dVGJiIgOC9OmTUPHjh1jXtu3p8Rxxx2H3//+9wCA0tJSfPXVV1i4cCGefvppTJgwAQ8//HDM8rt27cKwYcOwbt06/PKXv8Svf/1r+Hw+bNy4EQsWLMBTTz2FUCikKt8LL7yAvLw8bN68GUuXLsXgwYMbsbUHxttvvx3z/61bt2Lq1KnIy8vDcccd1zSFMvB4PPjLX/5S5/Vjjz0WZ555Ji655BJ4PJ6DUpa2bdti+vTpAIDy8nJ88803WLRoEZ5//nlcdNFFeP755+FyuRqcd/78+fj8888xfvz4BJc4Vrx6/mmnnYbKykq43e4Dun5KXmxEoQPmvvvuQ0ZGBtauXYvMzMyY2I4dO2L+f7Bu5oeze++9F+np6Tj99NPxz3/+s6mLU8ef/vQnPPPMMxg/fjwefvjhmEeo7rjjDjz33HNwOnlLIiIiSpThw4ejb9++xmWOPPJIXHbZZTGv3X///fj1r3+NmTNnokuXLrjhhhtqY1deeSU+/fRTvPzyyxg5cmTM++655x7ccccdqrKVl5fjlVdewfTp0zFv3jy88MILSdWIUlFRgdTU1EPui7LT6axzPPfmcDiM77csC4FAACkpKY0uS0ZGRp2yzJgxAzfeeCNmzZqFvLw83H///Y1ez8Fmt9vh9XqbuhjUhA69n/7pkPHtt9+iZ8+edRpQAKBVq1Yx/9/3edeabqgrVqzAjTfeiJycHGRmZuK6665DKBRCUVERrrjiCmRlZSErKwu33norLMuqfX+8ZxW1Y43MmzcPgwYNQqtWreDxeNCjRw/Mnj27Tpm/+OILLF++vLa74t7PzBYVFWH8+PFo164dPB4POnfujPvvv79Od9WioiJceeWVyMjIQGZmJkaPHo2ioiJj+fa1adMmzJw5Ew8//HDchgibzYYpU6bUeT3R+74+lZWVmD59Orp164aHHnqo3jFoLr/8cpxwwgkxrwWDQUycOBE5OTlIS0vD+eefj507d8Ys88orr+Dss89GmzZt4PF4cNRRR+Gee+5BJBKJWa7mOeUvv/wSp59+OlJTU3HkkUfigQceiFmu5tz5+9//jvvuuw9t27aF1+vFGWecgW+++aZOudesWYNhw4YhIyMDqampGDBgAD766CPj/iAiIkpmKSkpeO6555CdnY377ruv9nN+zZo1+Ne//oWrr766TgMKUP2j2EMPPaRax+LFi1FZWYlf/epXuOSSS7Bo0SIEAgHVe//v//4PAwYMQEpKCtq2bYt7770X8+bNq3e8j1mzZqFnz57weDxo06YNxowZU6eeVVNHWLduHU477TSkpqbiD3/4Q22spn63bNky9OvXDwBw1VVX1db/9q1XNqSuMXXqVBx55JFIT0/HhRdeiOLiYgSDQYwfPx6tWrWCz+fDVVddhWAwqNo3JvWNiZKXl4df/vKXWLJkCfr27YuUlBQ8+eSTAPR12YZwOBx47LHH0KNHD/z5z39GcXFxTPz5559Hnz59kJKSguzsbFxyySXYsmVLbXzgwIH417/+hR9++KF2/+fl5dXGg8EgJk+ejM6dO8Pj8aBdu3a49dZb691/zz//PE444QSkpqYiKysLp512Wm3PI1M9P973jIULF9aWvWXLlrjsssvw008/xSxz5ZVXwufz4aeffsJ5550Hn8+HnJwc3HzzzXXqrgsWLECfPn2Qnp4Ov9+PY445Bo8++mhDdzkdAPzZlw6YDh06YNWqVfj888/3e5CtcePGITc3F1OnTsXq1avx1FNPITMzEytXrkT79u3xxz/+EW+88QYefPBBHH300bjiiisSUvbZs2ejZ8+eOOecc+B0OvHaa6/hd7/7HaLRKMaMGQMAeOSRRzBu3Dj4fL7aX11at24NoPrXiwEDBuCnn37Cddddh/bt22PlypWYNGkStm3bVvscp2VZOPfcc7FixQpcf/316N69OxYvXozRo0c3qLzjx4/H6aefjrPOOgt///vfE7IPErnvV6xYgcLCQowfP178BWTfMmRlZWHy5MnYvHkzHnnkEYwdOxYvvfRS7TLPPPMMfD4fJk6cCJ/Ph6VLl+Luu+9GSUkJHnzwwZh8e/bswbBhw3DBBRfgoosuwssvv4zbbrsNxxxzDIYPHx6z7IwZM2C323HzzTejuLgYDzzwAEaNGhXzjPjSpUsxfPhw9OnTB5MnT4bdbq9tgPvwww/rNAoREREdTMXFxdi1a1fMay1btlS91+fz4fzzz8fcuXPx5ZdfomfPnnj11VcBVP/w0VgvvPACTj/9dOTm5uKSSy7B7bffjtdeew2/+tWvjO/76aefcPrpp8Nms2HSpElIS0vDX/7yl3p7NU+ZMgVTp07F4MGDccMNN2Djxo2YPXs21q5di48++ijmUZLdu3dj+PDhuOSSS3DZZZfV1un21r17d0ybNg133303rr32Wpx66qkAEPMockPqGtOnT0dKSgpuv/12fPPNN3j88cfhcrlgt9uxZ88eTJkyBatXr8YzzzyDjh074u6771bt232PucvlQkZGRtzlN27ciEsvvRTXXXcdrrnmGnTt2lVdl90fDocDl156Ke666y6sWLECZ599NoDqXux33XUXLrroIvz2t7/Fzp078fjjj+O0007Dp59+iszMTNxxxx0oLi7Gf//7X8ycORMAascCjEajOOecc7BixQpce+216N69OzZs2ICZM2fiP//5T0xP7alTp2LKlCk46aSTMG3aNLjdbqxZswZLly7FkCFDjPX8+jzzzDO46qqr0K9fP0yfPh3bt2/Ho48+io8++qi27DUikQiGDh2K/v3746GHHsK7776LP/3pTzjqqKNqe3298847uPTSS3HGGWfU9tb56quv8NFHH+Gmm27a731PCWIRHSBvv/225XA4LIfDYeXn51u33nqrtWTJEisUCtVZtkOHDtbo0aNr/z9v3jwLgDV06FArGo3Wvp6fn2/ZbDbr+uuvr30tHA5bbdu2tQYMGFD72vvvv28BsN5///2Y9Xz//fcWAGvevHm1r02ePNna91KoqKioU8ahQ4danTp1inmtZ8+eMeutcc8991hpaWnWf/7zn5jXb7/9dsvhcFg//vijZVmW9c9//tMCYD3wwAMx23PqqafWKWc8r7/+uuV0Oq0vvvjCsizLGj16tJWWllZnOQDW5MmT67ye6H1fn0cffdQCYC1evFjcnr3LMHjw4JgyTJgwwXI4HFZRUVHta/Udq+uuu85KTU21AoFA7WsDBgywAFh/+9vfal8LBoNWbm6uNXLkyNrXas6d7t27W8FgsM42bNiwwbIsy4pGo1aXLl3q7KeKigqrY8eO1plnnllne77//nvV9hMRETVGzedOfX9769Chg3X22WfHzTNz5kwLgPXKK69YlmVZ559/vgXA2rNnT6PKt337dsvpdFpPP/107WsnnXSSde6559ZZdt96yrhx4yybzWZ9+umnta/t3r3bys7Ojvms3bFjh+V2u60hQ4ZYkUikdtk///nPFgDrr3/9a+1rNXWEOXPm1Fn/gAEDYuo5a9eujVtHa2hd4+ijj46pF1966aWWzWazhg8fHpM3Pz/f6tChQ5317Wv06NH1HvOa8tdXH+nQoYMFwHrrrbdicmnrsvEMGDDA6tmzZ9z44sWLLQDWo48+almWZW3evNlyOBzWfffdF7Pchg0bLKfTGfP62WefXe/+eO655yy73W59+OGHMa/PmTPHAmB99NFHlmVZ1qZNmyy73W6df/75MeeGZVkxdbp49fx9v2eEQiGrVatW1tFHH21VVlbWLvf6669bAKy777679rWaYzRt2rSYnMcff7zVp0+f2v/fdNNNlt/vt8LhcJ31U9Pj4zx0wJx55plYtWoVzjnnHHz22Wd44IEHMHToUBx55JG1v2RIrr766phHP/r37w/LsnD11VfXvuZwONC3b1989913CSv73s+B1vyKM2DAAHz33Xd1uh3WZ+HChTj11FORlZWFXbt21f4NHjwYkUgEH3zwAYDqUemdTmfMs8YOhyNm0F2TUCiECRMm4Prrr0ePHj0auJVmidz3JSUlAID09PQGleHaa6+NKcOpp56KSCSCH374ofa1vY9VaWkpdu3ahVNPPRUVFRX4+uuvY/L5fL6YZ3PdbjdOOOGEest/1VVXxTwHXfNrU82y69evx6ZNm/DrX/8au3fvrj3G5eXlOOOMM/DBBx8cMjMNEBHR4emJJ57AO++8E/PXEDW/8JeWlgLY/8/zfS1YsAB2uz3mkaBLL70Ub775Jvbs2WN871tvvYX8/PyYQV2zs7MxatSomOXeffddhEIhjB8/PmbygmuuuQZ+vx//+te/Ypb3eDy46qqrGrFV1RpS17jiiitiesPU1LV+85vfxCzXv39/bNmyBeFwWFy/1+utc8z/9Kc/Gd/TsWNHDB06NOY1bV12f+17bi1atAjRaBQXXXRRzPpyc3PRpUsXvP/++2LOhQsXonv37ujWrVtMjkGDBgFAbY5//vOfiEajuPvuu+tMbFHfI+eSjz/+GDt27MDvfve7mLFSzj77bHTr1q3OuQYA119/fcz/Tz311JhzJDMzE+Xl5Y2eyYgODD7OQwdUv379sGjRIoRCIXz22WdYvHgxZs6ciQsvvBDr168Xv/i3b98+5v81XRHbtWtX53XpQ7chPvroI0yePBmrVq1CRUVFTKy4uNjYJRKoHqPk//7v/5CTk1NvvGZg3R9++AFHHHFEnSmJu3btqirnzJkzsWvXLkydOlW1fEMkct/7/X4AP39Q7m8ZsrKyACBmfV988QXuvPNOLF26tLZyV2PfBq+2bdvW+XDMysrC//3f/zV43Zs2bQIA46NXxcXFte8jIiI62E444QRxYFmTsrIyAD83muz9eV7fmHdaNWNR7N69G7t37wYAHH/88QiFQli4cCGuvfbauO/94YcfkJ+fX+f1zp0711kOqFuncrvd6NSpU8wPMkD1ALuJGES2MXUNU10rGo2iuLgYLVq0MK7f4XA0eIDefWdwAvR12f2177m1adMmWJaFLl261Lu8ZhafTZs24auvvhLL/O2338JutyfsB8h45xoAdOvWDStWrIh5zev11iljVlZWTP32d7/7Hf7+979j+PDhOPLIIzFkyBBcdNFFGDZsWELKTI3DRhQ6KNxuN/r164d+/frhF7/4Ba666iosXLgQkydPNr4v3vgZ9b1u7TW4abxW5H0HbKrPt99+izPOOAPdunXDww8/jHbt2sHtduONN97AzJkzVb0LotEozjzzTNx66631xn/xi1+IOSTFxcW499578bvf/Q4lJSW1DQhlZWWwLAubN29GampqnUF892XFGRR2f/d9fbp16wYA2LBhA8477zzjspoy1KyvqKgIAwYMgN/vx7Rp03DUUUfB6/Xik08+wW233VbnWEn5GrJsTe4HH3ww7hSH+zaOERERHUo+//xzAD83UOz9eV7TQ7OhNm3ahLVr1wJAvV+YX3jhBWMjyoGSiNlogMTUNRqSIxHq2/YDXZfd99yKRqOw2Wx48803691+TZ0qGo3imGOOqTMtd419G6eaimZ8wFatWmH9+vVYsmQJ3nzzTbz55puYN28errjiCjz77LMHoZRkwkYUOuhqfhHZtm3bAVtHza//+46+vu+vDvV57bXXEAwG8eqrr8b8QlBfN8J4jTVHHXUUysrKxF8COnTogPfeew9lZWUxHw4bN24Uy7lnzx6UlZXhgQceqDPqO1D9q8K5554bM4hWfT1BGvtLgsYpp5yCrKwsvPjii/jDH/7QoMFlTZYtW4bdu3dj0aJFOO2002pf//777xOS3+Soo44CUP2rXDJNyUhERJQIZWVlWLx4Mdq1a4fu3bsDAEaMGIHp06fj+eef3+9GlBdeeAEulwvPPfdcnfrAihUr8Nhjj+HHH3+s00ujRocOHeqdLW/f1zp06ACguk7VqVOn2tdDoRC+//77/f7s3p/HPQ5F2rrs/ohEIpg/fz5SU1Nxyimn1K7Psix07NhRbKAx1b8/++wznHHGGcbjdNRRRyEajeLLL7+M+0OYaT372vtcq3l0qMbGjRtr4w3ldrsxYsQIjBgxAtFoFL/73e/w5JNP4q677qrT84oOLo6JQgfM+++/X2+L+RtvvAFA/8jK/ujQoQMcDked5zVnzZolvrfmA33vshcXF2PevHl1lk1LS6t3OuKLLroIq1atwpIlS+rEioqKap9pPeussxAOh2OmT45EInj88cfFcrZq1QqLFy+u83f66afD6/Vi8eLFmDRpUsx79p2K7c0330QgEDhgv2zUSE1NxW233YavvvoKt912W73re/755/Hvf/+7QXnrO1ahUEh1nBurT58+OOqoo/DQQw/Vdknd275TMRMRER0qKisrcfnll6OwsBB33HFH7ZfJ/Px8DBs2DH/5y19ifqSpEQqFcPPNNxtzv/DCCzj11FNx8cUX48ILL4z5u+WWWwAAL774Ytz3Dx06FKtWrcL69etrXyssLMQLL7wQs9zgwYPhdrvx2GOPxdQT5s6di+Li4toZYRoqLS0NQN0f6g432rpsQ0UiEdx444346quvcOONN9Y+InbBBRfA4XBg6tSpdeqJlmXVPvYFVB+D+sYovOiii/DTTz/h6aefrhOrrKxEeXk5AOC8886D3W7HtGnT6vRa3nvd8er5++rbty9atWqFOXPmxEyl/Oabb+Krr77ar3Nt7+0FALvdjl69egFAQqa7psZhTxQ6YMaNG4eKigqcf/756NatG0KhEFauXImXXnoJeXl5CRm8K56MjAz86le/wuOPPw6bzYajjjoKr7/+uqrXxZAhQ2pbfq+77jqUlZXh6aefRqtWrer0nunTpw9mz56Ne++9F507d0arVq0waNAg3HLLLXj11Vfxy1/+EldeeSX69OmD8vJybNiwAS+//DI2b96Mli1bYsSIETj55JNx++23Y/PmzejRowcWLVqkGrw2NTW13kdj/vnPf+Lf//53vbGvvvoKZ511Fs455xxs3boVjz76KDIyMrBy5Uq8+OKLuPTSS8X17q9bbrkFX3zxBf70pz/h/fffx4UXXojc3FwUFBTUlnnlypUNynnSSSchKysLo0ePxo033gibzYbnnnvugDcKAdUfZn/5y18wfPhw9OzZE1dddRWOPPJI/PTTT3j//ffh9/vx2muvHfByEBERNcZPP/2E559/HkB175Mvv/wSCxcuREFBAX7/+9/juuuui1n+b3/7G4YMGYILLrgAI0aMwBlnnIG0tDRs2rQJCxYswLZt2/DQQw/Vu641a9bgm2++wdixY+uNH3nkkejduzdeeOEF3HbbbfUuc+utt+L555/HmWeeiXHjxtVOcdy+fXsUFhbWNvjk5ORg0qRJmDp1KoYNG4ZzzjkHGzduxKxZs9CvX7+YwV8b4qijjkJmZibmzJmD9PR0pKWloX///vWOK3Io09ZlTYqLi2vPrYqKCnzzzTdYtGgRvv32W1xyySW45557apc96qijcO+992LSpEnYvHkzzjvvPKSnp+P777/H4sWLce2119Y20PXp0wcvvfQSJk6ciH79+sHn82HEiBG4/PLL8fe//x3XX3893n//fZx88smIRCL4+uuv8fe//x1LlixB37590blzZ9xxxx245557cOqpp+KCCy6Ax+PB2rVr0aZNG0yfPr12PfXV8/flcrlw//3346qrrsKAAQNw6aWX1k5xnJeXhwkTJjR4///2t79FYWEhBg0ahLZt2+KHH37A448/juOOO662Zxg1oYM3ERA1N2+++ab1m9/8xurWrZvl8/kst9ttde7c2Ro3bpy1ffv2mGXjTbO7du3amOVqpiPeuXNnzOv1Teu7c+dOa+TIkVZqaqqVlZVlXXfdddbnn3+umuL41VdftXr16mV5vV4rLy/Puv/++62//vWvdaaFKygosM4++2wrPT09Zgo5y7Ks0tJSa9KkSVbnzp0tt9tttWzZ0jrppJOshx56KGY6u927d1uXX3655ff7rYyMDOvyyy+3Pv30U/UUx/syTXE8ceJE61e/+pWVkpJiHXHEEdaf//xna86cOVZqaqr129/+1rKsxOx7k5dfftkaMmSIlZ2dbTmdTuuII46wLr74YmvZsmW1y8QrQ31TV3/00UfWiSeeaKWkpFht2rSpnUp73+XiTbU3evTomGnyataxcOHCmOXqmx7bsizr008/tS644AKrRYsWlsfjsTp06GBddNFF1nvvvVdnezjFMRERHQzxPkf3VTO9LQDLZrNZfr/f6tmzp3XNNddYa9asifu+iooK66GHHrL69etXW8fr0qWLNW7cOOubb76J+75x48ZZAKxvv/027jJTpkyxAFifffZZbRn3riNaVvVn76mnnmp5PB6rbdu21vTp063HHnvMAmAVFBTELPvnP//Z6tatm+VyuazWrVtbN9xwQ50pmk3T8e47xbFlWdYrr7xi9ejRw3I6nTF1g8bWNRpaB6tvPaY6WbwpjuNNc62ty9anZrrnmj+fz2d16dLFuuyyy6y333477vv+8Y9/WKeccoqVlpZmpaWlWd26dbPGjBljbdy4sXaZsrIy69e//rWVmZlpAYjZt6FQyLr//vutnj17Wh6Px8rKyrL69OljTZ061SouLo5Z11//+lfr+OOPr11uwIAB1jvvvFMbj1fPr68+almW9dJLL9Xmy87OtkaNGmX997//jVkm3jHa9/tITX25VatWltvtttq3b29dd9111rZt2+LuOzp4bJZ1EH6yJaImZ7PZMHnyZEyZMqWpi0JERESUUOPHj8eTTz6JsrKyhI29RkRUH46JQkREREREh4zKysqY/+/evRvPPfccTjnlFDagENEBxzFRiIiIiIjokJGfn4+BAweie/fu2L59O+bOnYuSkhLcddddTV00ImoG2IhCRERERESHjLPOOgsvv/wynnrqKdhsNvTu3Rtz587Faaed1tRFI6JmgGOiEBEREREREREpcEwUIiIiIiIiIiIFNqIQERERERERESkk3Zgo0WgUW7duRXp6Omw2W1MXh4iICABgWRZKS0vRpk0b2O0H5zeIQCCAUCiU0JxutxterzehOYkagnU9IiJKRtq63gFrRHniiSfw4IMPoqCgAMceeywef/xxnHDCCeL7tm7dinbt2h2oYhERETXKli1b0LZt2wO+nkAggI4dO6KgoCCheXNzc/H999+zIYUaZX/reQDrekRElNykut4BaUR56aWXMHHiRMyZMwf9+/fHI488gqFDh2Ljxo1o1aqV8b3p6ekAgGkA4lXvFirK0F+IRxQ5NgrxIYoc/xXiXRQ5/i7Ej1DkOFWIlyhySNsSVORoKcS3KXL4hHhUkeOh4mJjfEFGhpijQoj/qCjHFiGuq46avSbEj1XkkI7bt4ocXwvxMxQ5PhTifRU5tgtxaVsBoEqI71DkuFCIv6XI0U2IOxQ5ioR4mSLHp0K8lyKHtC3SfRAALhXi5qu+2i5DLAhgFn7+nDrQQqEQCgoKsGXLFvj9/oTkLCkpQbt27RAKhdiIQvutMfU84OdraPq0qXHPw6KiPWKe1LQ0YQl57oRgIGCMp6fL116oyvyp4PW4xRx79hQZ4y6XS8zh85n3Rzgi15DCwrZYlpzD4TR/vagKSZ+igMNh/gTTzItxww3XG+PPPvs3MUc0at5e6dgDQJXQmzA1VTqPZSUlRca4NyVVzOEUjlsoKNf0A8L15FN8fpaXmWseKanytkTCYWNcOkcBAMI5Fg7Lxz4zM9MYLykpFXN4PObPak1nvnDE/M1XOs8BoLLC/M0nJTVFzOH1eIxx6T4IAFlZWcZ4RHOfi8Q/PwKBAO6edq9Y1zsgjSgPP/wwrrnmGlx11VUAgDlz5uBf//oX/vrXv+L22283vremW6cXQLxDoSm0+RDpGlGk9Wiqn1I55NNNLof8sSqvR9NZXNoWzTRPUg65mpGYYyt9IdEcF2l7pXIC8rHTlEMinT+ackrnuua4JeJ6SsS2SGXV5JAe5NBck1IVQLNPpX2maUSRcshVhMQcF+lc19z3pRyahl5NWQ/24wd+fyr8frnSqGOuWBJpNKaeB+xV1/N6kZJS/10oEJA/FVLEhkC5ZiJdzfHKtzfpC7/XK99ZKivNXz41jSgpKea7YDgs15CqxMYL+QuK9GXcYZc/nRLRiCLW9YT9BchfLqVyAoBDePxTc45JQiFzDvlakY+bPQGffZpySA0gmhxhIYe0rYB8joXD8rGXzrGQokFR+sFD1YgiXPuaRhRLWEZzXKRtke6DgLxPI0KDESCfH4Bc10v4Q92hUAjr1q3D4MGDf16J3Y7Bgwdj1apViV4dERERER0krOcREVFzl/CeKLt27UIkEkHr1q1jXm/dujW+/rpuh/5gMIjgXt3DSko0D5YQERE1F2EkrgcJe6JQ4zS0ngewrkdERIeXJp/iePr06cjIyKj940BjREREewsn+I/o4GJdj4iIDicJb0Rp2bIlHA4Htm+PHb5x+/btyM3NrbP8pEmTUFxcXPu3ZYs01CYRERERNYWG1vMA1vWIiOjwkvBGFLfbjT59+uC9996rfS0ajeK9995Dfn5+neU9Hg/8fn/MHxEREdVgTxRKHg2t5wGs6xER0eHlgMzOM3HiRIwePRp9+/bFCSecgEceeQTl5eW1o7hrfI/4syRcpni/NNaxZtYKaQrbAkWOxUL8akWObCE+PAHl6KHIIU3J+qQix1YhLm0rAGQK8VcUOa4TRlxuo8jxvhA/XpFDml54gyKHNE22NHGeZvYV6bgdqcghXU+fKXLUXz3/mWZ6a6kTubStACBNSFeuyPGCENdMottCiEvTSmtyrFHkkOaN0cyKI43p3lmRY4UQ19yzTftdc60QNQeJqOcBQKgqCIej/s9jaRrLatIMLfK0FdKsFFVVcsNjcXGRMe50SndawOk010w1DU9SOTTTmktTsu7ebZoIvlplZaUx7nDIXz+kWW+Ki+VJ6x999FFj3OmUZzwqE6bbTVVM6yrNJhIImPcXALjd5hme7MIMQJrZjKqE6Zo1M0RJ15NmW9OEqcs12+J2m8uqmRVH2hbNjDaFheap2qXjBsjXQlAx9bSUo0KYvhiQyxqNKmZDs5lzeIQpkAH5mtTMvONwxC9HVUhTaz1AjSgXX3wxdu7cibvvvhsFBQU47rjj8NZbb9UZhIyIiIgkESSuB4lmEngiM9bziIioOTsgjSgAMHbsWIwdO/ZApSciImomODsPJR/W84iIqLlq8tl5iIiIiIiIiIgOBQesJwoRERElAnuiEBERESUL9kQhIiIiIiIiIlJgTxQiIqKkxp4oRERERMmCjShERERJLYLEzarD2XmIiIiIGoOP8xARERERERERKSRtT5TdAFxxYj8o3h/vvTU6KXJIv9dlKnIMFeLbFTk2C/GPFTl6C/EcRY6VQjxTkeM4If6TIsdmIf5LRY4NQnynIoe0zzIVOaRzLKDIIe0zaR2pinUcJ8S/VuSQ9vnFihyfCPFTFDkKhbhXkSNDiOcqcqQJ8a6KHA8kIId0L9RcT98J8eWKHJp7UGPL0V+Rw3QuVzWgLIkVQeIew2FPFEoekXAY4XD953YoFBLfb7PZjHG32yPmsCxz3OFwiDnS0/3GeFWVfP1K21tRUSHmSEkxf6I7nXK1v7y83Bi32+X94fWmGOPhsHw3lfZHRoZ5nwNAZaW5FhXv3NubtM80+wMwn2TRqHASQt5n0nlst8u/m6ekmI9bICDXSgOBSmM8MzNLzFFZaT7X09J8Yo5IxHxsNfvD6TQfW6dT+rYpr8frle9R27fvMMY9HjmHx+M2xv1++XqSrsmysjIxh+Ye1NhypKbK32yCwWDcmOZ6BNgThYiIiIiIiIhIJWl7ohARERHAgWWJiIiIkgcbUYiIiJIaG1GIiIiIkgUf5yEiIiIiIiIiUmBPFCIioqTGnihEREREyYI9UYiIiIiIiIiIFNgThYiIKKlximMiIiKiZJG0jSilAOLNvt1J8f48Ib5BkaO3EJdnS5eX6a/IIVV5yxU5jhXi5tnnqxUI8UJFjhwh3kKR430hrjkuxUJ8iCLHTiG+SZFjgBD3KnLkCvHjhPhyxTq+FuKfKHJI56B0fgHA4ASUo50QN88+X+0UIb5GkWOrEJ+vyPFLIf53RY42QvwFRQ7puj5JkUM6x6TzBwC+EeKa5oMKQ6zpHoTh4zx0eIpEoohEovXGPB63+H6327xMZaVcI0hJSTHGLcsSc0Sj9W9DDZ/PJ+aQ1iOtAwBcrng1Z906ACAcNtcIIxH5TiqV1eGQv36UlpYZ45Yl7w+prH5/upgjHDbfM0OhoJhDOv4pKfKDAS6XeZ95vebzuKzMvD8BwGazGeOVlZViDul6qqqSv3H4fObjoilHIq6F1NQ0Y7y83FRjqCZt7549e8QcGRl+IUeRmMPtNu+PwkK5HE6n+RxMSzPvLwAIBs33ZOn8qc4hX3MS0z1Kc68F+DgPEREREREREZFK0vZEISIiIoA9UYiIiIiSBxtRiIiIkhobUYiIiIiSBR/nISIiIiIiIiJSYE8UIiKipMaeKERERETJgj1RiIiIiIiIiIgU2BOFiIgoqUWQuB4kmomeiYiIiCgeNqIQERElNT7OQ0RERJQskrYR5WIAqXFiGxXvf0mIj1bkKBLi6YocASG+UpGjgxCvUOTYIMSrFDmiQvxCRY41QjykyDFciOcpcrwrxHcqchQK8aGKHN8IcY8ix2YhnifEv1SsI1uI5ypySNeLV5FDuval4woA1wrxPEWOz4R4J0UO6d4wIAE5NPu0VIhL15smh2Z/SM+Waq7Ji4T4i4ocvQ2xIIBlihxEpJOZmYmUlJR6Y8FgUHz/nj1Fxnh2tvTpBUQi5t5Zdrv85LtlWcZ4RUW5mMPtdhvj0ahUCwMCgUohh7mcGpmZmeIy5eXS9srl8Pv9xri0vwCgtNT86RQOy43K4bD5/EhPN5cTkM9lu90m5giFzDVkaX8Eg1KNAXA6zV8LXS75a6Pd7hDi8rZK+0s6rgDQsmULY1xz/lRUmK8nj0fOYVnm69bn84k5pGtfs08jEXMO6XqrLof5WtDsD5tQVM01Kd2Dior2iDlSUuK1MuglbSMKERERAeyJQkRERJQ8OLAsEREREREREZECe6IQERElNfZEISIiIkoWbEQhIiJKamxEISIiIkoWfJyHiIiIiIiIiEiBPVGIiIiSWgSJ60FiHl2fiIiIiMzYE4WIiIiIiIiISCFpe6KsAeCJE/u74v0DhPjXihx5QvxLRY7zhfgnihxeIZ6myLFCiOcrciwX4prfNzsIcfMs5tWKhPhuRY7jhXg7RQ5pf7ysyHGqEA8ocvQX4k8J8SmKdbwoxPMUOXKEeJEih3T+FChyVAnxCkWODUK8VJFDmqG+RJFjjRCX9jkA5DZyHQCwSYhr7pW/FOI7FTm2CvFjFDlM91ub4v0HRgSJ60HCniiUPCoqK2BZ9X/y79lTJL7f5/MZ48Gg/CnqdruN8UBAzpGRkWGMV1ZWijlsNvPvmk6n/LtnUVGxMZ6WJtcYy8rKhCUsMYe0Ty05BSIR870qEpF756WmphjjLpe5nIC8P4qKisQc0n63FDskLc1ca9i1y1z7zc2VPu3la046rgDgdJq/WkrHFQBSUszrCYelmhwQjZr3aTQqf+OQrn1NDrvdfN1Go/L+KC8310ylfQ4ALpd5GWkdABAMBo1xzb3S7zffK8Nh+bqWjr/Xa77uAcBmM9ToTLG9sCcKERFRUgsn+E9v9uzZ6NWrF/x+P/x+P/Lz8/Hmm28CAAoLCzFu3Dh07doVKSkpaN++PW688UYUF8d+kfvxxx9x9tlnIzU1Fa1atcItt9yiqigRERERJaOk7YlCRERETatt27aYMWMGunTpAsuy8Oyzz+Lcc8/Fp59+CsuysHXrVjz00EPo0aMHfvjhB1x//fXYunUrXn65ui9eJBLB2WefjdzcXKxcuRLbtm3DFVdcAZfLhT/+8Y9NvHVEREREDcdGFCIioqTWdFMcjxgxIub/9913H2bPno3Vq1fj6quvxj/+8Y/a2FFHHYX77rsPl112GcLhMJxOJ95++218+eWXePfdd9G6dWscd9xxuOeee3DbbbdhypQpqu7hRERERMmEj/MQERGRKBKJYMGCBSgvL0d+fv0jaRUXF8Pv99c+o71q1Socc8wxaN26de0yQ4cORUlJCb744ouDUm4iIiKiRGJPFCIioqSW+CmOS0pihy72eDzweOofzn3Dhg3Iz89HIBCAz+fD4sWL0aNHjzrL7dq1C/fccw+uvfba2tcKCgpiGlAA1P6/oEAzFDQRERFRcmFPFCIioqSW+IFl27Vrh4yMjNq/6dOnx117165dsX79eqxZswY33HADRo8ejS+/jJ1zqaSkBGeffTZ69OiBKVOmJGzLiYiIiJINe6IQERE1M1u2bIHf76/9f7xeKED1tJadO3cGAPTp0wdr167Fo48+iieffBIAUFpaimHDhiE9PR2LFy+Gy+WqfW9ubi7+/e9/x+Tbvn17bYyIiIjoUMOeKEREREkt8T1RaqYsrvkzNaLsKxqNIhgMAqjugTJkyBC43W68+uqr8Hq9Mcvm5+djw4YN2LFjR+1r77zzDvx+f72PBBERERElu6TtiXIxAF+c2BrF+7sIcc2T2JuFuFeIA8A8IV6qyDFUiJcrcrQW4pmKHBOEuLStANBbiL+ryNE2ATmkqrvmuHQT4po5J1xCfLMix2IhPkSIL1GsI12IS9sBAOuFeJUix1ohnqfIIa2nvyJHB8Uyku+E+E5FDukcjChyFAlx6V6qWU8LRY6PhXiOIod0bKXzGDDfKwOK9x9uJk2ahOHDh6N9+/YoLS3F/PnzsWzZMixZsqS2AaWiogLPP/88SkpKasdaycnJgcPhwJAhQ9CjRw9cfvnleOCBB1BQUIA777wTY8aMaVDDDR2esjKzkJKSUm+svLxCfL90DoXD8idLKBQyxu12+ffGwsJCYzwale/G6el+YzwajYo5XC5ztd7hcIg5cnLMd1tpWwEgJSXVGC8tlWtZbre5ZqHJ4fGYa+qRiLxPpXPMZrOJOex28zKBgPkcBICiomJj3O83f8Jp9pd0rmu2tbKy0hi3LEvMUVFhvvZ1s7qZ15OWliZmSMTscdL9JRyWxztLxGdlOGy+B+nWYd6nDofcrCAd25pB6Y2lsMznoeaevXeP2X1J+6pG0jaiEBEREdCUUxzv2LEDV1xxBbZt24aMjAz06tULS5YswZlnnolly5ZhzZrqnzVqHvep8f333yMvLw8OhwOvv/46brjhBuTn5yMtLQ2jR4/GtGnTErQ9RERERAcXG1GIiIiSWtM1osydOzdubODAgapfFTt06IA33nijQeslIiIiSlYcE4WIiIiIiIiISIE9UYiIiJJaBInriaJ71peIiIiI6seeKERERERERERECuyJQkRElNTCAORZNfS5iIiIiGh/sRGFiIgoqbERhYiIiChZJG0jyhYA8WaZP07x/p1CPFuRQ6qyVilyHCPE489SrV/mRUWOG4T4VkWOQiGu2ae3CPFzFDkkXRTLDBbiUxKQI6DIsVyIt1PkyBTi5hnZgaMU6/hJiGtGWZDOn/MVOb4T4p8ockj79F1FjpBiGYlbiJcocpwoxDXllK6XNYocA4T43xU5ugrxzYoc/YR4uSLHdkMsqHg/EemFQiE4HPXXtlJSUsT3h8PmRkGHQ67m2mzmeDQqz0Dl9XqNcbtdWAkAm1CQPXv2iDlatmxpjFdVyTVXaZ86nXKD7tat5lpDRkaGmEPi8XjEZfz+dGN827YCMUd6ujlHNBoVc5SVlRnjLpdUIwAcDvMIDFI53G55f0nnh2Y2tkjEfP5kZGSKOYJB86dtZWWlmMPlMn97Ki0tFXNotlciXdfRqFyDTk1NM8Y15ZSul4oKuYaUluYzxouKisQcXq+5HKGQXHNNTY3XQlBNc02azvWqsOYbfhI3ohARERHAnihEREREyYMDyxIRERERERERKbAnChERUVLjFMdEREREyYKNKEREREktjMR1HOXjPERERESNwcd5iIiIiIiIiIgU2BOFiIgoqbEnChEREVGyYE8UIiIiIiIiIiIF9kQhIiJKauyJQkRERJQskrYR5TUArjixNMX7OwnxeLn3FhDiPyhypArxTxQ5hgrxOxQ5pH2Wo8jxrhDfqchxvhD/TpEjT4i7FTlWCXFpnwNAuhCvUuSQ7FYs86EQv0GIv6pYx2VCfIsixylC/H1FjsFCvEiRo50QL1XkkM717YocFwnxzxQ5XhLimYocLYT4AEWOAiF+vCKHdI/qosgh3W8152muISZ9Jhw4ESRuVh3OzkPJo6SkGKFQsN6Y3S43HLrdHmPcZrOJOSwraoyHwyExh1TW8vJKMUd6urlWkZvbutHlcDrlan9pqflTMByWG2IzMjKN8XjHfG9ut1Sbk49tWVm5MS7tcwBwOBzGuGVZYg5JJCLv0/Jy8ydQy5YtjfHi4mJxHVlZ2cZ4KCRfC2lpPmNcOr8AwO83H5doVP4cc7nM508kIueQznXNtZCZmWmMBwLyvaGoaI8xLp2jmmV8PvNxA4CqKvP2pqamiDmke5R0T9fkqKqSv4G5XPHvhZpzA+DjPEREREREREREKknbE4WIiIiA6t4jiXoMhz1RiIiIiBqDPVGIiIiIiIiIiBTYE4WIiCiphaF5/l+fi4iIiIj2FxtRiIiIkhobUYiIiIiSBR/nISIiIiIiIiJSYE8UIiKipMaeKERERETJImkbUewA4s1oPUDx/jVCXJ6lHJBmj5dnoQakWdnNM7JX+1qI/6DIIe2zNooc0pwOmYoc0vaeosgh7dNNihySVMUyO4X4SQkox/oElEM61zXX03Ih3lmRIyDENfv8dSHeWpGjQoi7FDlyhLjm/vJdAsrRSYhr7i8FQlw6bhrfKJb5pRD/TJGjRIhrznXT/UVzzyeihrAhXgOhz+cT311ebr6jRyLybFQOR7zaZrVo1BJzRKPm9Tid5nUAQDAYNMZLS0NiDmmfuVyaTxbz9kr7C5C31+eTP53CYfM+DYfN+0vDbpc75IfD5obntLS0RpejsrKy0eWIRKLGeFqafD2VlZUZ4x6PR8xhWeZyaPZ5cbH509zlkr++RqNSOeQfJpxO83qkdQBAKCRdt3I53G7zftfcX6Tzx7Lk+5xEuocBgN+fYYxrrgXpfqv57DDdX6LKfZG0jShEREQEsCcKERERUfJgIwoREVFSiyBxjSjyL/NEREREFB8HliUiIiIiIiIiUmBPFCIioqSWyEdw+DgPERERUWOwEYWIiCipsRGFiIiIKFnwcR4iIiIiIiIiIgX2RCEiIkpq7IlCRERElCzYE4WIiIiIiIiISKHBPVE++OADPPjgg1i3bh22bduGxYsX47zzzquNW5aFyZMn4+mnn0ZRURFOPvlkzJ49G126dGnQeloD8MSJrVC8PyDEBytyLBfipyhy7BTiRYocW4V4a0WOTkJcs08HCfF2ihxfC/FgAnI4FDmyhXg/RY5nhXhXRY7tQjxTkWOAEI8KcelaAYAcIS5tByCfH4sVOaTrtocih3SuexU5pNbnKkWOT4R4G0WOk4S4dP8BAJcQL1XkkPRWLLNFiHdW5MgU4umKHKb7reZaOTASOS0xpzgms4NVzwMAh9MJp7P+qmhZWbn4/mjU/Ann98tXfVlZmTHu8/nEHOGwuYdXJCJfd1VV5k8Ol0uusns8bmNcs099PvM+c7ulTw0gEDDX5qJRS8wRDJpz2BSzvjsc5n2Wmpoq5igsLDTGPZ5431Z+Jp0fDodcc5XOQ8sy71MpDiDutVhDOkcBwO02n4MVFcVijvR08zno9co1tfJy83Vts8n9CKRzTLNPKysrjHGXS76e0tLSjHHp/AIAm7AxmnuUJCVFvp6qqkLGuOZ6kq4Xu10+ttFo/HNZ+lypXY9qqb2Ul5fj2GOPxRNPPFFv/IEHHsBjjz2GOXPmYM2aNUhLS8PQoUMRCDRd9ZOIiOjQFU7wH1F8rOcRERGZNbgnyvDhwzF8+PB6Y5Zl4ZFHHsGdd96Jc889FwDwt7/9Da1bt8Y///lPXHLJJY0rLREREREdMKznERERmSV0TJTvv/8eBQUFGDz45073GRkZ6N+/P1atWlXve4LBIEpKSmL+iIiIqAZ7olBy2J96HsC6HhERHV4S2ohSUFAAAGjdOnaUjtatW9fG9jV9+nRkZGTU/rVrpxlZg4iIiIgOpv2p5wGs6xER0eGlyWfnmTRpEoqLi2v/tmyRhhckIiJqTtgThQ5trOsREdHhpMFjopjk5uYCALZv344jjjii9vXt27fjuOOOq/c9Ho9HNRIvERFR8xQGIM8CoMPZeWj/7U89D2Bdj4iIDi8J7YnSsWNH5Obm4r333qt9raSkBGvWrEF+fn4iV0VEREREBxHreURERPvRE6WsrAzffPNN7f+///57rF+/HtnZ2Wjfvj3Gjx+Pe++9F126dEHHjh1x1113oU2bNjjvvPMatJ4sAPFmAZdnoQZ+EOLlihzmWcqBTxQ5VgrxoxQ5pO09VZFjiRCXZ34HNiiWkUjriT8s3c+kGdU1v7PmJCDHkUJcOvYAcEwj4wDwkhA/RYh/rVjHcYplJF8K8XMVOaQO4PMUOcyzy+vK8agQv0CRo1SIuxU5pHtQvHvo3qT7y1mKHDuFuOa4HCvE1yhy9Bfimnv2SYZYheL9B0YEieuJEk1QHjpcHax6HgA4nU44nfVXRaNR+VwNhULGuCaH3W7+VKiokK/8igpzrdLtlnvh2O3m3zXT0nxijpIS8yeLZcn3kcrKSnEZibSe8nK5Fm6z2aS1iDninVu1GRT7w+Uy1zqlYw8AXm+KMZ6SIn9a79lTZIz7fGnGeHm5fB6npJjLqSFNdZ6RkSHmqKoyX9eFhbsVJTGfP5py7Nxprt1ocsj3IOk8ByorzcfOZpP7REj3F7/fL+YIh82PA2uOi3SOaa6n1FTzua65Z5uuF8vS1ZMa3BPl448/xvHHH4/jjz8eADBx4kQcf/zxuPvuuwEAt956K8aNG4drr70W/fr1Q1lZGd566y14vZrqPBERESWL2bNno1evXvD7/fD7/cjPz8ebb75ZG3/qqacwcOBA+P1+2Gw2FBUV1cmRl5cHm80W8zdjxoyDuBXUEKznERERmTW4J8rAgQONLbc2mw3Tpk3DtGnTGlUwIiIiApqyJ0rbtm0xY8YMdOnSBZZl4dlnn8W5556LTz/9FD179kRFRQWGDRuGYcOGYdKkSXHzTJs2Dddcc03t/9PTpb6e1FRYzyMiIjJL6MCyRERElGhhJG4Is4Y1oowYMSLm//fddx9mz56N1atXo2fPnhg/fjwAYNmyZcY86enptYOSEhERER3KmnyKYyIiIkp+kUgECxYsQHl5eYMHEZ0xYwZatGiB448/Hg8++KD4bDURERFRsmJPFCIioqSW+J4oJSUlMa+apqDdsGED8vPzEQgE4PP5sHjxYvTo0UO9xhtvvBG9e/dGdnY2Vq5ciUmTJmHbtm14+OGH938ziIiIiJoIG1GIiIiamXbt2sX8f/LkyZgyZUq9y3bt2hXr169HcXExXn75ZYwePRrLly9XN6RMnDix9t+9evWC2+3Gddddh+nTp8dtuCEiIiJKVmxEISIiSmqJ74myZcuWmCkNTY0ZbrcbnTt3BgD06dMHa9euxaOPPoonn3xyv0rQv39/hMNhbN68GV27dt2vHERERERNhY0oRERESS2Chg4IG1/1rCs1Uxbvj2g0imAwuN8lWL9+Pex2O1q1arXfOYiIiIiaStI2oryD+IU7XfF+afJETfUvU4hvUuS4UIi/r8gh/U4XUOSQ9keOIodLiL+hyOEV4kMUOb4U4g5FjiIh/hdFjuOEeESRQzouyxU5tgjx44T4p4p1SL+Bb1XkyBDimvM4VYi3UeToJsR/UuSYKsS/U+SQyqq5v2QL8TRFDum6flaR4ywh3luR41sh3l+RI0+IZypyUKxJkyZh+PDhaN++PUpLSzF//nwsW7YMS5YsAQAUFBSgoKAA33zzDYDq8VPS09PRvn17ZGdnY9WqVVizZg1OP/10pKenY9WqVZgwYQIuu+wyZGVlNeWmURIoLSlBVShUb8zn84nvdzjMn/jRqDw1uJRDMwhyZmamMV5aWibm8HrNj7ZZltyQarebP62dTrnab7fbjPF9x1Panxx+vzzFeSAg1QrM6wCAcNhcEyss3C3m8HpThCXkc0w6Lprzo6qq/uukRkqKuSZfUVEprkMSDleJy0jXUyLOY5dLqrkAHo/5G0dVlbwtRxxhnlEuGDQfEwBwu81lDQTkb6QOh/m6lfYXUD01vUlhYaGYQ/rhJSVFqqUDoZB5e1NT5Zqr2+02xqVzMFGSthGFiIiIgOrHeeQvDDpyhX9vO3bswBVXXIFt27YhIyMDvXr1wpIlS3DmmWcCAObMmYOpU39uVjzttNMAAPPmzcOVV14Jj8eDBQsWYMqUKQgGg+jYsSMmTJgQM04KERER0aGEjShERERUr7lz5xrjU6ZMiTsgLQD07t0bq1evTnCpiIiIiJoOG1GIiIiSWtP1RCEiIiKiWGxEISIiSmpsRCEiIiJKFomaM5GIiIiIiIiI6LDGnihERETJzIomrgMJO6IQERERNQp7ohARERERERERKSRtT5QeAOLNAi3PLg9saWQcAHYKcXlGbcA8aztwqyLHd0K8XJFDmlFdnrUd+FyIn6TIIR07TTmkGcS7KHIUCPFuihwrhfgnihzSLPVdFTnaCfFFQlw6RwH5eslT5JD2hzy7PJApxHMVOT4W4m0VOTYI8U6KHF4hvkmRo58Q19wbJBcqlpGu6+MVOZYI8eWKHLOEuOaavNgQS8T+3C9R6G6O2lxEScLr9cLrrf9u6HA4xPdXVZk/RUOhkJgjHA4b45GIOQ4ATqe5ZtK6dSsxRzBoLms0Kl+8dnvjx06qrAwY42lpUi0MsNvNv9Faih5xUg632yPmkI5tvHNvb+Xl5jt/ZWWFmCMaNW+wphwuV7xvRdWKioqMcadT/sonXU9ut7kMgLw/pONavYz52vd6pW81QEWFuRxut5xDuhY8Hnl/2Gzm7Q2FSsQcqanmGrLm3iDJzMwQl3E4zOeQTXH7KS01b29ZWZmYo21b8zcf6dgDQFZWVtxYOBwR3w8kcSMKERERAYj87y9RuYiIiIhov/FxHiIiIiIiIiIiBfZEISIiSmbsiUJERESUNNgThYiIiIiIiIhIgT1RiIiIkhkHliUiIiJKGmxEISIiSmZ8nIeIiIgoafBxHiIiIiIiIiIiBfZEISIiSmZ8nIeIiIgoaSRtI4odgCNO7HXF+ycI8WxFjo+F+CeKHN8J8WJFjk5C3JuAcpQrckjr2aDI8WshPl+RY1ACyiEtc5YiR2sh/ntFjjeFuEuRI0+Ih4S4Zp/nCvGdihzSud5fkaOLENcce2mfStsKAD8Icc09KlOIVyhySNsrrQOQz5+/K3KkCvFuihzthLjmnr1UiGuup5mGWJXi/USkZ7PZYLPZ6o2VlMg1pJycVsa40ylXcysqzDWgiopKMUcwaP6kDYfl5+g8Ho8xHonIOYJBS1hCbkWNdzxqBALy/sjKyjLG9+zZI+bw+dKFcgTEHFJZ/X6/mMPlMp9D6enmcxAASkpKjHFpnwOA2+02xi3LfOw1+1za1nBY/sYhnad+f5qYQ7oWKivlc1Dap06nXCMIhczXdXGx+bgCgMMR79tstWhUviYrK83nurQOQD5/9uwpEnPY7eYHWLxe+fxwuczlcDjke3ZZWakxbrfL19POnTvixjT3FiCJG1GIiIgI1d97EjWWCXuiEBERETUKG1GIiIiSGQeWJSIiIkoaHFiWiIiIiIiIiEiBPVGIiIiSGQeWJSIiIkoa7IlCRERERERERKTAnihERETJjGOiEBERESUNNqIQERElMzaiEBERESWNpG1EaQ8g3mzTRYr3LxHi/RU5lgvxTEWOb4T4KkWObCGeqshxrhCXZ/YGtgrxTEWORUK8iyLHSiGu2ZaThLhmn0o2KpY5Roi3U+T4RIhLx75YsY4eimUkrwnx7xQ5ioS4dN0DQG8h7lLkyBDiXRU5NgvxKkWONkL8B0WOo4V4uiKH9FzoekWO04X4CkUOtxDvq8hxpCEWAPC6IgcR6bhcbrjd9V+5kYjc4ldSUmKMp6WliTnKysqMcbvdIeYIBoPGeDgcFnM4neb12O3yE/h+v/nTSZOjqsr86eNwyPujqMhcs3C7PWKO8vJyY9xms4k5UlPNx1+zPySBgPnYA4DXm2KMu1xyzaOyssIYl4695nryejU1aLOSEvOxD4Xk/SWVtbTUfN0DQEqKuSavOX+kc93rlc/jUChkjFuWVHORzw9pHYB8bDXXgrTPKisrxRw+n88Yl677/5XEGE1Nlb/FOZ3x96lNcc8HkrgRhYiIiMCBZYmIiIiSCAeWJSIiIiIiIiJSYE8UIiKiZMYxUYiIiIiSBhtRiIiIkpmFxD2GYyUoDxEREVEzxcd5iIiIiIiIiIgU2BOFiIgomfFxHiIiIqKkwUYUIiKiZMZGFCIiIqKkwcd5iIiIiIiIiIgUkrYnyi4AnjixHMX7pWW+U+ToLcT/rMgxQYi/rsjxSyG+QZHjdiGu2af5QjxXkePXQnyRIscPQvwKRY53FctIVgjxfooc0o/Cf1HkWNPIcmiO/RtCvJ0ih3Q9dVDk8CegHDuF+HZFDqmsmxU50oS4poV7ixBvq8ixSYhrxjOV7qdHK3JI12S6Iod0XDT3W9N6Qor3HxBRJG5g2UTlIUqAcCSMcDhcb8zplKuo0jLBYFDMkZKSaozv2iV9agA5Oa2M8ZKSYjGH359hjAcClWKObdu2GuOafZqWZv50cjpdYo6srCxjvKioSMwRCpnvuNnZ2WKO0tJScRlJWVm5MZ6aaj5/qplH9C4s3C1mKC+vaFQ5NMe+pKTEGHe75WMvXU9ut1vMYbc7jHGXS84R775So6qqSswhlVU6RwHAbjfX5mw2MQWqqszr0RyXUMh8L7QUg84HAgFjPCUlRcxRVma+JqVjD8jHRTqPq9cT/7hUKY4rwJ4oREREREREREQqSdsThYiIiMAxUYiIiIiSCBtRiIiIkhkbUYiIiIiSBh/nISIiIiIiIiJSYE8UIiKiZMaBZYmIiIiSBnuiEBEREREREREpsCcKERFRMosicWOZsCcKERERUaMkbSPKMgDxZor+reL9HwrxNEWOIiHeX5HjEyGeq8jxmRAvUuS4o5Hr0DDP/F3tNiE+KAHlWKJYJlOID1bkkI5dkSLHciGep8jRRYh/KcTNs75XyxbiOxU5pP0llROQt9U8c3y1NkK8gyLH50JcnuVeXo9LkWONEPcqckj7vViR4yIhrrm/XCvE31XkSMR9LCnxcR46TJWVliFcVVVvrEWLFuL7y8vLjHG7Xe5wHYmYWyhTU+UaY2VlhTHudMp39MrKSmNcKicAtG5t/qSV1qERjcrl2Lp1qzHu8/kaXY7S0hJxGbvd/Gns9/vFHC6X+dhpjktZmfk8dbvl2ovb7THGAwFzbS4atcR1OJ3m/RUOhxU5zPtLKicgb6vNZhNzSMdNs8/l60Uuh7weOUdFhfn+4nbL9zlpv2vO48zMLGNcc3+R7uulpeZrBQACgcbfxxKBj/MQERERERERESmwEYWIiCiZRRL81wCzZ89Gr1694Pf74ff7kZ+fjzfffLM2/tRTT2HgwIHw+/2w2WwoKiqqk6OwsBCjRo2C3+9HZmYmrr76avGXWSIiIqJkxUYUIiIiqlfbtm0xY8YMrFu3Dh9//DEGDRqEc889F1988QWA6m7Gw4YNwx/+8Ie4OUaNGoUvvvgC77zzDl5//XV88MEHuPZa6QEuIiIiouSUtGOiEBEREfarB4kxVwOMGDEi5v/33XcfZs+ejdWrV6Nnz54YP348AGDZsmX1vv+rr77CW2+9hbVr16Jv374AgMcffxxnnXUWHnroIbRpI41SRERERJRc2BOFiIgomUUT/AegpKQk5i8YDIrFiEQiWLBgAcrLy5Gfn68q+qpVq5CZmVnbgAIAgwcPht1ux5o10tDIRERERMmHjShERETNTLt27ZCRkVH7N3369LjLbtiwAT6fDx6PB9dffz0WL16MHj16qNZTUFCAVq1axbzmdDqRnZ2NgoKCRm0DERERUVPg4zxERETJ7AA8zrNly5aY6T09nvhTSnbt2hXr169HcXExXn75ZYwePRrLly9XN6QQERERHU7YiEJERNTM1My2o+F2u9G5c2cAQJ8+fbB27Vo8+uijePLJJ8X35ubmYseOHTGvhcNhFBYWIjc3t+EFJyIiImpiSduI0hWAO07secX7U4V4P0WOFUK8nSJHmhDvoMixXYh7FTn+LMTPVeR4WYjfrciRLsQ1nbv7CvElihwthPhyRQ5pv2uOi3QOrVTkGCTEC4V4lWIdRUJcOiaA/OzgTkWOb4R4J0WO1kLcocghHbeQIsdnQnyLIofUD0Bzj5KuySMVOT4W4gFFDml/aI5LqRDXnB+bDDHNtXJANOHAsvWJRqOqMVQAID8/H0VFRVi3bh369OkDAFi6dCmi0Sj69+/f+MLQIc3r9cDrrf/Tcs8e6dMLsNvNnyyahsKysnJj3OVyNbocbne8Gu3PwuGwMW6z2cQcu3aZP0n9/gwxR3FxkTHeurXc+Gm3m+/Y4bB8N01NNdfkS0tLxBwOh/lrTlmZ9KkB2GzmY2u3y8fF7TafQ+Xl5nMQAHw+86d1OGy+uVuWJa4jEjHnkI6JhnSeAxA/X9zu+D0na7hc5mOvuJzE61azTysqKo3xqir5Woh3j6yhuUc5HObz2OmUc1RUVBjjlhUVc1RWamqEZpGIeT0ej3y/NZ1jkYh8jgJJ3IhCREREACzUDgibkFwNMGnSJAwfPhzt27dHaWkp5s+fj2XLlmHJkurm6oKCAhQUFOCbb6qbODds2ID09HS0b98e2dnZ6N69O4YNG4ZrrrkGc+bMQVVVFcaOHYtLLrmEM/MQERHRIYmNKERERFSvHTt24IorrsC2bduQkZGBXr16YcmSJTjzzDMBAHPmzMHUqVNrlz/ttNMAAPPmzcOVV14JAHjhhRcwduxYnHHGGbDb7Rg5ciQee+yxg74tRERERInARhQiIqJk1oSP88ydO9cYnzJlCqZMmWJcJjs7G/Pnz2/YiomIiIiSFBtRiIiIKKlVVVWhoKAAFRUVyMnJQXZ2dlMXiYiIiJopaaxHIiIiakrRBP8dIkpLSzF79mwMGDAAfr8feXl56N69O3JyctChQwdcc801WLt2bVMXk4iIiJoZNqIQEREls0iC/w4BDz/8MPLy8jBv3jwMHjwY//znP7F+/Xr85z//wapVqzB58mSEw2EMGTIEw4YNw6ZNpnmViIiIiBKHj/MQERFRUlm7di0++OAD9OzZs974CSecgN/85jeYPXs2nnnmGXz44Yfo0qXLQS4lERERNUdJ24jiBRBvlueTFO//SYgvVeRoJ8S7JaAchYoc0uzxPRQ5ioR4niLHBUL8eUUOqSf5RYocrwrxoYocaUJ8pyKHX4hrZkLvK8TPVeSQzo83hXgHxTq2KpaRFAlxzVMGvYX4ckUO6br+VJEjR4jnK3JI25uuyCHdCzXXpJTjS0UOiXTcAOBdIX68IkepENeMolFkiIUV7z8gmnBg2aby4osvqpYLh8O4/vrrD3Bp6ECx222w2231xlJTpU9qIByuMsZLS8vEHC6Xyxj3er1ijqoqczkiEfnCi0bNnwqackSj5vW43fFq1j/LyMg0xvfs2SPmkOZSz8zMEjMUFxcb4+npUi0MsNvNHe7DYfmubrc7jHHpuAFAamqqMZ6RkSHmiETM6ykpKTHGNcdeOo81pHPQMp8aAICUFPP+Kitr/HUdClWKOZxO89fktDRzOQHAEjbY4TCfX9XrMd8L9+yRv01KOQIBzbcWM+m4AdWP6ZqkpqaIOaRrzuGQmzcikQpDTFdR4uM8RERElHRmzpxpjJeWlmLoUE2zOREREVHisBGFiIgomTXTgWX/8Ic/4G9/+1u9sfLycgwbNgy7d+8+yKUiIiKi5i5pH+chIiIiNMvHeQDgueeew+WXX47MzEycc845ta+Xl5dj6NCh2LlzJ5Yv1zzER0RERJQ4bEQhIiKipHPhhReiqKgIl156Kf71r39h4MCBtT1Qtm/fjuXLl+OII45o6mISERFRM8NGFCIiomQWReJ6kBxCj/MAwG9/+1sUFhbi3HPPxSuvvIK7774bW7duxfLly9GmTZumLh4RERE1Q2xEISIioqR16623orCwEGeccQby8vKwbNkytG3btqmLRURERM0UG1GIiIiSWSIHhD2EeqJccMEFMf93uVxo2bIlbrrpppjXFy1adDCLRURERM0cG1GIiIiSWTMdWDYjIyPm/5deemkTlYSIiIjoZw1qRJk+fToWLVqEr7/+GikpKTjppJNw//33o2vXrrXLBAIB/P73v8eCBQsQDAYxdOhQzJo1C61bt25QwRz/+6vPl4r39xfiWxU58oR4agJyrFXkaCfENXXirkI8pMgREOK9FTkyhXi8Y763c4S45vyQjv9ORQ7pHNukyCHts/WKHNL2VgjxAYp1SPIUyywV4mmKHF8L8WWWJeYYZLMp1mQmHVvN3S5biEvXLAB8LMQ1XzmLhbh03QPyPUhzvz1diH+uyFEuxL9T5DBdDwHI5zElzrx585q6CM3SwazrAbb//dUVDMp3n9RU8ydHVVWVmMPtdhvjdru90TkqKqRP4uqeVmby55vH4210jmjU3F0tJSVFzOF0mmtzmo/hfRtR9xUIyOeHdPzD4bCYIzXVfFyCwaAih/kbQ2VlpZhD2l7puHk8PnEdEuk8B4CyslJj3GaTryfp2u8Zka4V4MvSEnEZuRzmE9XplL9GS8t4vdI1K98/srKyxBzhsLmm5nTK9wbp/qG53/p85vNQc11L57rmmjSVw6E4rgAgn8l7Wb58OcaMGYPVq1fjnXfeQVVVFYYMGYLy8p+rrhMmTMBrr72GhQsXYvny5di6dWudLrlERESkFE3wH5EB63pERERmDeqJ8tZbb8X8/5lnnkGrVq2wbt06nHbaaSguLsbcuXMxf/58DBo0CED1L0ndu3fH6tWrceKJJyau5ERERHRYuv7663HnnXeqBpB96aWXEA6HMWrUqINQssMf63pERERmjRoTpbi4uiN4dnZ1x/R169ahqqoKgwcPrl2mW7duaN++PVatWlXvB2swGIzpdlNS0vjuV0RERIeNZjgmSk5ODnr27ImTTz4ZI0aMQN++fdGmTRt4vV7s2bMHX375JVasWIEFCxagTZs2eOqpp5q6yIct1vWIiIhiNehxnr1Fo1GMHz8eJ598Mo4++mgAQEFBAdxuNzIzM2OWbd26NQoKCurNM336dGRkZNT+tWsnjQBCRETUjEQS/HcIuOeee/Cf//wHJ598MmbNmoUTTzwR7du3R6tWrdC1a1dcccUV+O677/DUU09h9erV6NWrV1MX+bDEuh4REVFd+90TZcyYMfj888+xYsWKRhVg0qRJmDhxYu3/S0pK+OFKRETUzLVu3Rp33HEH7rjjDuzZswc//vgjKisr0bJlSxx11FGwJWCQaDJjXY+IiKiu/WpEGTt2LF5//XV88MEHMc8r5+bmIhQKoaioKOYXiu3btyM3N7feXB6PBx6PZ3+KQUREdPhL5ICwh+jAsllZWaoZCChxWNcjIiKqX4Me57EsC2PHjsXixYuxdOlSdOzYMSbep08fuFwuvPfee7Wvbdy4ET/++CPy8/MTU2IiIiIiOiBY1yMiIjJrUE+UMWPGYP78+XjllVeQnp5e++xrRkYGUlJSkJGRgauvvhoTJ05EdnY2/H4/xo0bh/z8/AaP1t4OQLyZszW/ZXwnxC9S5FgsxI9V5PhBiF+lyGGeHRzQDKfXSYjLs3IDy4X4AEWONkK8XIgDwJdCPE+RY4sQ12zLJ0Jcs0+lcrgVOaRZ2aVtkcoAyOexPMu9fOzr//0yllTWsYru/ccI8UxFOVxCvFSRQzp/NB3dM4T4i4ockh6KZaRzMF2RY6MQP0WRQzo/NMclKUWRuLFMDtGeKHTwHMy6nsvthttd/yed3S7fz/cerLY+WVmZYo6agXPjsdvl3xtDoZAx3qJFCzFHNGq+yHft2i3miLcva1iWQ8xRXl5mjKel+cQcdrv5UzIalW9EgYC5FiVtKwBUVZmPi88nb0tFhbkWblnytkjnByCf65ZlGePStlRVSZ/Ucjk1j1C6XOZj73RKNSi5HN+miSngtZm/4joc8rUgba/mPK6srDTGpf0FyGXds2ePmEPi8Whq8uZz0G6X96l0z/b55IMbCpnPZelemigNakSZPXs2AGDgwIExr8+bNw9XXnklAGDmzJmw2+0YOXIkgsEghg4dilmzZiWksERERM0OH+ehg4h1PSIiIrMGNaJIraAA4PV68cQTT+CJJ57Y70IRERER0cHHuh4REZHZfk9xTERERAdBM5zieF/hcBjvvvsunnzySZSWVj+YtXXrVpSVmR89ICIiIkq0/Z7imIiIiA6CRDZ+HIKNKD/88AOGDRuGH3/8EcFgEGeeeSbS09Nx//33IxgMYs6cOU1dRCIiImpG2BOFiIiIktZNN92Evn37Ys+ePUhJSal9/fzzz4+ZIYaIiIjoYGBPFCIiomTWzAeW/fDDD7Fy5co6s3Hk5eXhp59+aqJSERERUXPFnihERESUtKLRKCKRus8h/fe//0V6umYCbSIiIqLEYSMKERFRMmvmA8sOGTIEjzzySO3/bTYbysrKMHnyZJx11llNVzAiIiJqlpL2cZ5NANxxYh0U7+8hxGcocvQX4hWKHJuF+NuKHK2F+HBFDq8QL1Xk+KUQf0WRQ1rPSkWO04X4FkWObkK8XJHjaCH+viKHZr9LpG0pEuLSuQEAfYX4TkWOE4X4JkUOaX8NUOToJ8SfV+ToJMQLFDmGCvF3FTmk7T1VkWO9EG+nyCFdt6mKHCcJ8a8VOaRrTvpcAMznWFDx/gOimQ8s+9BDD2HYsGHo0aMHAoEAfv3rX2PTpk1o2bIlXnzxxaYuHjVCMBCALU5s38e36uPzmT/Btm/fIeZITTXfoaJR+Rm4qqqQMV5SUiLmcDrNVXK/3y/msNvj7c1qkYi8LX5/hjFeXFws5pD2WXm5XMtKT/cZ46FQlZjD4zGfH5pju/c4TPUpK5Nrcpr1SKRtCYfNN3e7Xf7dXLoWwuGwIkeaMR4Myp+k0v7y+cznBgCkppm3pXB3oZjD65X2ubw/pN6SmvPH6/UY42lp8v6orKw0xjX3W+m69XjkcywtzXx+BAIBMYc0K5903ADAZot/joWr5OMKJHEjChEREVG7du3w2Wef4aWXXsJnn32GsrIyXH311Rg1apT4BYeIiIgo0diIQkRElMwsJG5AWCtBeQ6SqqoqdOvWDa+//jpGjRqFUaNGNXWRiIiIqJnjmChERESUlFwul6p7LxEREdHBwkYUIiKiZNbMB5YdM2YM7r//ftXz50REREQHGh/nISIiSmZRJO5xnkTlOYjWrl2L9957D2+//TaOOeaYOgPTLVq0qIlKRkRERM0RG1GIiIgoaWVmZmLkyJFNXQwiIiIiAGxEISIiSm7NfIrjefPmNXURiIiIiGolbSNKHoB4szy/rnj/ACF+viLHWiFeoMjRSYj/pMixQYj3VeRYIcTbKXJIM6rfoMixUYgPVuQwz7gOOBQ5pGEKv1TkkPZZjiLHeiFeocghkcrRWpHDL8SPUeRYL8R3KnJI3/+kawUAioT4GkUO6f7yiSKHVNY8RQ7pmlypyLFZiEvXGyCXVbruAfm61VzXUlk1g4DtNsSqFO8nIj23xwOPx1NvrKSkWHx/WprPGM/MzBBzVFSYP2k1Y/G43fVvQ42qKvnuEQhUGuOpqalijrKycmPc7XaJOcJh8ydty5YtxRzSYNDp6fIni91uvmPbbDYxh2WZn18MBEJiDpfLvM8cDvmrVGWl+dhGo41/ztLpNJfD5ZLLabebP2lTUuJ9M/uZtK26sa3M08hJ1woARCLm81i67gEgPd18f5G2FZDL6na7xRzSNVlebr7uASAUMp/rDodcQ5LKGggExRyA+brVXNeaskoikfjnoSm2t6RtRCEiIiI0+54oHTt2NFasvvvuu4NYGiIiImruODsPERFRMosm+K8BZs+ejV69esHv98Pv9yM/Px9vvvlmbTwQCGDMmDFo0aIFfD4fRo4cie3bt8fksNlsdf4WLFigLsP48eNx00031f797ne/Q35+PoqLi3Httdc2bIOIiIiIGok9UYiIiKhebdu2xYwZM9ClSxdYloVnn30W5557Lj799FP07NkTEyZMwL/+9S8sXLgQGRkZGDt2LC644AJ89NFHMXnmzZuHYcOG1f4/MzNTXYabbrqp3tefeOIJfPzxx/u1XURERET7i40oREREyawJH+cZMWJEzP/vu+8+zJ49G6tXr0bbtm0xd+5czJ8/H4MGDQJQ3VjSvXt3rF69GieeeGLt+zIzM5Gbm9vo4u9t+PDhmDRpEgeeJSIiooOKj/MQERGRKBKJYMGCBSgvL0d+fj7WrVuHqqoqDB7885Dg3bp1Q/v27bFq1aqY944ZMwYtW7bECSecgL/+9a+wLPPAgRovv/wysrOzG52HiIiIqCHYE4WIiCiZRZG4nij/GxOlpKQk5mWPYZaUDRs2ID8/H4FAAD6fD4sXL0aPHj2wfv16uN3uOo/mtG7dGgUFP89fN23aNAwaNAipqal4++238bvf/Q5lZWW48cYbVUU+/vjjYwaWtSwLBQUF2LlzJ2bNmqXKQURERJQobEQhIiJKZvsxIKwxF4B27WInaZ88eTKmTJlS71u6du2K9evXo7i4GC+//DJGjx6N5cuXq1d511131f77+OOPR3l5OR588EF1I8q5554b04hit9uRk5ODgQMHolu3bupyEBERESUCG1GIiIiamS1btsDv99f+P14vFABwu93o3LkzAKBPnz5Yu3YtHn30UVx88cUIhUIoKiqK6Y2yfft24/gn/fv3xz333INgMGhcb414jTtERERETSFpG1EKAcSrWvVXvH+NEB8sxAGghRC/UJHjEyH+vCLHuUL8fUWO3kK8nRAHgN1CfEkCyrFSkUM6/kFFDmk9eYocPwnxyxQ5XhTiJylySEM1BoT4ZsU6NgnxToocxUJc83vyZiG+XYgDQI4QP1aRQ3qyYrMiR54QLxDiAPClEK9S5LhBiGs6QDwrxDX7NF2I71TkkI6tZn+YcmjuLQfEARhYtmbK4v0RjUYRDAbRp08fuFwuvPfeexg5ciQAYOPGjfjxxx+Rn58f9/3r169HVlaWqgEFABwOB7Zt24ZWrVrFvL579260atUKkUiidg4dbJFIGJFIuN5Yamqa+P6Kigpj3OGQ7iyAw2GuCmtmkqqsNJdjz55CMYffn2GMl5aWiTlSUlKMcbfbLeYIh+s/Hj+Xo8QYry5HqjFeXl4u5khLM+eIRuVxlaT1uFya/WH+5MjKyhJz7NlTZIynpcnnutNpPk+lcaZCoZC4jmDQ/CmnOX+k+7Hmvi+VtarKfI4C8v6SrhUAkIbu0uxTaZ9ptiUQMNfkNWOMtWzZstE5pPuYZp/a7ebhWKX7DyDfswF5W0znh0M4d2pzqJYiIiKiZmfSpEkYPnw42rdvj9LSUsyfPx/Lli3DkiVLkJGRgauvvhoTJ05EdnY2/H4/xo0bh/z8/NqZeV577TVs374dJ554IrxeL9555x388Y9/xM0336wuQ7zKXTAYVFXqiYiIiBKJjShERETJ7ACMiaK1Y8cOXHHFFdi2bRsyMjLQq1cvLFmyBGeeeSYAYObMmbDb7Rg5ciSCwSCGDh0aM9iry+XCE088gQkTJsCyLHTu3BkPP/wwrrnmGnHdjz32GADAZrPhL3/5C3w+X20sEonggw8+4JgoREREdNCxEYWIiCiZHYDHebTmzp1rjHu9XjzxxBN44okn6o0PGzYMw4YNa9hK/2fmzJkAqnuizJkzBw6HozbmdruRl5eHOXPm7FduIiIiov3FRhQiIiJKOt9//z0A4PTTT8eiRYtUYw8QERERHWhsRCEiIkpmTdgTJRm8/75m+HQiIiKig4ONKERERJTU/vvf/+LVV1/Fjz/+WGdGhIcffriJSkVERETNERtRiIiIklkTDiybDN577z2cc8456NSpE77++mscffTR2Lx5MyzLQu/evZu6eERERNTMJG0jylYArjix1or3Hy3E1yhyDBXiryty/CTE71Xk+ESID1fkMM/sDWQocqwW4scqckjOVCzzihA/RZGjjRDvrMhRKsQ/U+QYrFhGMk2InyrEOyjWkSnENddCJyFepMghLeNV5DhGiFcockj3jy6KHBuEeDtFDuna/06R40UhrrmupfNYuv8AwLtCvEqRQ9pnmvtcsSEWMsQOqCgS9xjOIdiIMmnSJNx8882YOnUq0tPT8Y9//AOtWrXCqFGj9nvQWkoOVaEqOOyOemNOp1xF9XrNd/2KinIxR3q63xgvLjbdFaqFw+Y7VG7uEWKOyspKY9zvN5cTACKRsDG+9+DM8Uj7LCUlRcwhSU9PF5eR9ntaWpqYw+WK902imtfrEXNEIuabZmVlQMyh2V5JQUGBMS7tD8108NL5UVJSIuaQ1hONyh9m0jI2m03M4fWaz9NoVL43SNeCxyOfP4GA+bp2ueTjIl37waBcO9mzZ48xrrmupfM4HJaPbVmZ+duTZVliDmmfae5zkUj8slpRuQwAYFctRURERNQEvvrqK1xxxRUAqr9YV1ZWwufzYdq0abj//vubuHRERETU3LARhYiIKJlFEvx3iElLS6sdB+WII47At99+WxvbtWtXUxWLiIiImqmkfZyHiIiI6MQTT8SKFSvQvXt3nHXWWfj973+PDRs2YNGiRTjxxBObunhERETUzLARhYiIKJk184FlH374YZSVlQEApk6dirKyMrz00kvo0qULZ+YhIiKig46NKERERMksgsQ9fHuIPc4TiUTw3//+F7169QJQ/WjPnDlzmrhURERE1JxxTBQiIiJKSg6HA0OGDBFnFiAiIiI6WNiIQkRElMyiCf47xBx99NH47jvNhN1EREREB17SPs5zJoB4M1ZreiN/JsT7K3JILUy9FTm8Qny+IsdxQvwbRY7jhfirihwdhHixIkeOEHcpclwrxNMUOaTj8roiR5tGxgHgRSH+S0UOaZl2QnyxYh3SuZ6tyNFJiGu+Ip0rxLcrchQ0Mg4AhUJ8qiLHdCHeRZFDus9lKnIMViwjcQjxUkWOKiEu3X8AuX1Ac45tMsQOsSdhDhv33nsvbr75Ztxzzz3o06cP0tJi7/J+v7+JSkaNlZ6ejpSUeLU9S3x/RUWlMZ6aqqkRmKWmporLBAIBY7yoSO5J5fXG2w/VgsGgmCM11ZyjuFiuqbndbmM8HJbvhE6n+euFzWYTc7Ro0cIYdzjk34HtdvMyJSXy/nC5zDVTKQ5A7EmXkSHfw6RlXC7zcSsuLhLXkZJiPtedTunTHvB4PMa45jz2+zOM8XA4LOYIh821iqoqOUckYl4m94gjxBzbC8w1U2l/AfJ9TnNc0tPTxWUk0mVrs8m/0liW+b4unccaoZB8jpnOw0BAfj+QxI0oREREhGY9JgoAnHXWWQCAc845J+bLl2VZsNlsiEQOwY0iIiKiQxYbUYiIiJJZM29Eef/995u6CERERES12IhCRERESWvAgAFNXQQiIiKiWhxYloiIKJlZSNygsvIwE0npww8/xGWXXYaTTjoJP/30EwDgueeew4oVK5q4ZERERNTcsBGFiIiIktY//vEPDB06FCkpKfjkk09qB4QrLi7GH//4xyYuHRERETU3bEQhIiJKZpEE/x1i7r33XsyZMwdPP/10zEwYJ598Mj755JMmLBkRERE1RxwThYiIKJlFAMgzgupzHWI2btyI0047rc7rGRkZKCoqOvgFIiIiomaNPVGIiIgoaeXm5uKbb76p8/qKFSvQqVOnJigRERERNWdJ2xNlEwBPnFgPxfsLhXhAkaO1ENd0IvYK8X6KHF2E+HJFjv8K8a6KHCuF+FmKHNI+/U6RY40Q363IcaoQv0KRQ/KxYplLhbjm2KYL8c+F+GbFOn4pxDMVOZYqlpGkCvH+ihxvCnHN/aVCiL+hyJEtxN9V5JCu2w2KHG4h3kGRQ/oa61DkkM7jNoocpUJ8pyLHiYZYCMD/KXIkXM2gsInKdYi55pprcNNNN+Gvf/0rbDYbtm7dilWrVuHmm2/GXXfd1dTFo0YIBIOw2ervZuX1SjUoIBIxd62yLHkk5bQ08ydLRYV0xwfsdvNvkqmp0qcX4HbHq/VWKysrE3OEQlXGuNdrXgcAlJeXG+Pp6X4xx96P3dWnZlyjxpRDOvYAkJaWZoxnZ0ufxDLN+ZGVlWWMa46tw2E+xyorzd9sQqGQuA6/P0Mog/xpXlYmfRLLAgHztkrXLACUlJjLobm/RKPmD8yS4hIxh7TPSkvl/eXxmK9b6dgDiHufreF2S7VBeRlhFQAAu928P9xu870DACIR83EJh8NijtTU+PcGqYw1krYRhYiIiOj2229HNBrFGWecgYqKCpx22mnweDy4+eabMW7cuKYuHhERETUzbEQhIiJKZs18TBSbzYY77rgDt9xyC7755huUlZWhR48e8Pl8TV00IiIiaobYiEJERJTMmvnjPDXcbjfS09ORnp7OBhQiIiJqMhxYloiIiJJWOBzGXXfdhYyMDOTl5SEvLw8ZGRm48847UVVlHgOCiIiIKNHYE4WIiCiZNfPHecaNG4dFixbhgQceQH5+PgBg1apVmDJlCnbv3o3Zs2c3cQmJiIioOWEjChERUTKLInGNH4fg4zzz58/HggULMHz48NrXevXqhXbt2uHSSy9lIwoREREdVHych4iIiJKWx+NBXl5endc7duyompaRiIiIKJGStidKIYB4VaMCxfuvEuLLFTm2CnFNC5S0zBBFjkeEeF9FjhwhLs9yD/xSiMszrgMrhHi6Ioe0T6VyAsBjCcixXYi3UeTYIsRPUeSQSOdxf0WOrkJ8jSLHYCEulRMAPhPiXypySNsrHVcAKBXibROQI1uRo4sQ14wW0UmI/6DI8boQl8oJJOYeJeXQ3KMyDbGA4v0HRBSJe5znEOyJMnbsWNxzzz2YN28ePB4PACAYDOK+++7D2LFjm7h01BjRSASRSP3drMLhsPj+Fi3Md8qysjIxRyhkvlPabI2/+Pz+DHGZHTt2GOOpqaliDqfTXK2PRuUbgFRWzf4oLzfvd7vdIeaQ1pOR4Rdz7Ny50xjXHBdp3CW32yXmCIVCxrjPlybmkNdhLmdamnz+eL0eY7y8XP4kTk831+SlcgJAIFBpjAeD8qdxaqp5n2rG05KuF82xl3I4nfK1IB0XwBJzuN3mHNI5CgAlJSXGeM3ns0ki7lFSDs09yrTfLUven0ASN6IQERERffrpp3jvvffQtm1bHHvssQCAzz77DKFQCGeccQYuuOCC2mUXLVrUVMUkIiKiZoKNKERERMkskYPBHoIDy2ZmZmLkyJExr7Vr166JSkNERETNHRtRiIiIklkzb0SZN29eUxeBiIiIqBYHliUiIiIiIiIiUmBPFCIiomTWzAeW3b17N+6++268//772LFjR52B5woLC5uoZERERNQcsRGFiIiIktbll1+Ob775BldffTVat26dkNlSiIiIiPYXG1GIiIiSWTMfE+XDDz/EihUramfmISIiImpKbEQhIiJKZs38cZ5u3bqhsrKyqYtBREREBCCJG1GOAuCNE0tTvH+2ENf8nuUQ4jsVOaT6alCRo6sQl8oJACuE+HBFjo+F+E+KHLlCfKUih7TfT1LkkCbH7KfI8aIQ1zylXyLEqxQ5egvxo4T484p15Ajx9xU5pH2+PQE5NihySNdkuiJHQIh/qcjRQ4ivUeQoEuKaSWDj3WcboosQ36zIMUCIa64FyeeKZYYYYnyIpGnMmjULt99+O+6++24cffTRcLlcMXG/399EJaPGcns88Hg89cbsdnnug127dhnjXm+KmEN6PKyqSr77WJZljO87jk99vN7690NDlJWVGeOaa6WiosIYD4fl/eF0uozx8vJyMUc4HDbG09LkbwMul9sYT01NFXPs2bPHGA+H5e590ah5mVDIfP4AQEqKuaw+n/n82bNHrpU6neavhWVlpWIOlyvbGJeOa3UO83ELBORGdemadDjkb09SjkBAqg0CXq+5llVebr7eAPkck/YXANjtja/BxLtX1wiFQmIOn89njEv7XENzXPz++LV97b5K2kYUIiIiQmJ7jxyCPVEyMzNRUlKCQYMGxbxuWRZsNhsikUPwGSUiIiI6ZLERhYiIiJLWqFGj4HK5MH/+fA4sS0RERE1O7itJRERETSeS4L8GmD17Nnr16gW/3w+/34/8/Hy8+eabtfFAIIAxY8agRYsW8Pl8GDlyJLZvj30478cff8TZZ5+N1NRUtGrVCrfccouqS3eNzz//HPPmzcPFF1+MgQMHYsCAATF/RERERAcTG1GIiIiSWTTBfw3Qtm1bzJgxA+vWrcPHH3+MQYMG4dxzz8UXX3wBAJgwYQJee+01LFy4EMuXL8fWrVtxwQUX1L4/Eong7LPPRigUwsqVK/Hss8/imWeewd13360uQ9++fbFly5aGFZyIiIjoAOHjPERERFSvESNGxPz/vvvuw+zZs7F69Wq0bdsWc+fOxfz582vHK5k3bx66d++O1atX48QTT8Tbb7+NL7/8Eu+++y5at26N4447Dvfccw9uu+02TJkyBW63PCDeuHHjcNNNN+GWW27BMcccU2dg2V69eiVug4mIiIgEbEQhIiJKZhEAjR+wvtr/eqKUlMTODeYxzJJSW4xIBAsXLkR5eTny8/Oxbt06VFVVYfDgwbXLdOvWDe3bt8eqVatw4oknYtWqVTjmmGPQunXr2mWGDh2KG264AV988QWOP/54scgXX3wxAOA3v/lN7Ws2m40DyxIREVGTYCMKERFRM9OuXewE2JMnT8aUKVPqXXbDhg3Iz89HIBCAz+fD4sWL0aNHD6xfvx5utxuZmZkxy7du3RoFBQUAgIKCgpgGlJp4TUzj+++/Vy1HREREdDA0qBFl9uzZmD17NjZv3gwA6NmzJ+6++24MHz4cQPUAc7///e+xYMECBINBDB06FLNmzapTgdJw/e+vPt8q3t9DiG9U5JCewL5YkUOaMftlRQ5ptusvFTnMs8sD9yly3CDEOylyfC3ExypyLBHi8iz2wIVCXConAHQQ4jmKHEVCvEqR4zshvlKIS9sBAPOE+NGKHJI2imW2CnHpHAWA54X4ICEOyOeH5hwsFuKa4TKlY79TkaOLEN+kyCH1A0hT5JCG6shU5JDulZpBwD41xKT7+QFzAHqibNmyBX6/v/ZlUy+Url27Yv369SguLsbLL7+M0aNHY/ny5QkqkKxDB81dihLlYNb1bLDFnW0pFAqK7/d6vcZ4MCjnqKoyX9mZmVliDssyX6BFRUVijmjUfBeMRqU7HGC3m+9y+w76XJ+WLVsa41KPNQAIBs1lzckxrwMASkrMn6TRqNwDbd8G3n1J5QQgPnLodMpfpaTectL5A8jnckVFuTGueXRy9+5CYzwlxXy9aez7OGZ9qqrMtd8WLeTzZ8+ePcZ4erpPzBEMmgdAj0TkQcbCYfOx9/k05TAf+0hEHqhdum4190qpIiLdfwD5XHc4HIoc5v2umcCvoqIybiwQkO8LQAMHlm3sAHNERETUQAdgYNma2XZq/kwVLLfbjc6dO6NPnz6YPn06jj32WDz66KPIzc1FKBSq8wVx+/btyM3NBQDk5ubW+eJW8/+aZTSee+45nHzyyWjTpg1++OEHAMAjjzyCV155RZ2DdFjXIyIiMmtQI8qIESNw1llnoUuXLvjFL36B++67Dz6fD6tXr0ZxcTHmzp2Lhx9+GIMGDUKfPn0wb948rFy5EqtXrz5Q5SciIqKDKBqNIhgMok+fPnC5XHjvvfdqYxs3bsSPP/6I/Px8AEB+fj42bNiAHTt21C7zzjvvwO/3o0cPqc9otdmzZ2PixIk466yzUFRUVPurbmZmJh555JHEbRgBYF2PiIhIst9THEciESxYsEA9wBwRERHthyiqH+lJxF8DpzieNGkSPvjgA2zevBkbNmzApEmTsGzZMowaNQoZGRm4+uqrMXHiRLz//vtYt24drrrqKuTn5+PEE08EAAwZMgQ9evTA5Zdfjs8++wxLlizBnXfeiTFjxqgeCwCAxx9/HE8//TTuuOOOmK6+ffv2xYYNGxq2QdQgrOsRERHV1eCBZRszwFx9gsFgzHNY+84YQERERE1jx44duOKKK7Bt2zZkZGSgV69eWLJkCc4880wAwMyZM2G32zFy5MiY8TFqOBwOvP7667jhhhuQn5+PtLQ0jB49GtOmTVOX4fvvv693Fh+Px4PycvM4ALR/WNcjIiKKr8GNKIkeYG769OmYOnXqfr+fiIjosBYFoBgoTaWBA9TOnTvXGPd6vXjiiSfwxBNPxF2mQ4cOeOONNxq24r107NgR69evrzPA7FtvvYXu3bvvd16Kj3U9IiKi+Br8OE9jBpirz6RJk1BcXFz7t2WLNCcOERFRM5KoR3lq/g4R06ZNQ0VFBSZOnIgxY8bgpZdegmVZ+Pe//4377rsPkyZNwq233trUxTwssa5HREQUX4N7ouyrvgHmRo4cCaDuAHP18Xg86ueiiYiIqHmYOnUqrr/+evz2t79FSkoK7rzzTlRUVODXv/412rRpg0cffRSXXHJJUxezWWBdj4iI6GcNakSZNGkShg8fjvbt26O0tBTz58/HsmXLsGTJkpgB5rKzs+H3+zFu3LiYAeaIiIiogSJossd5mpJl/VzYUaNGYdSoUaioqEBZWRlatWrVhCU7vLGuR0REZNagRpTGDjDXEI7//dUnGOf1hiwTf/izn10oxDVPeKcJ8XRFjhwhnqHI0U2IuxU5lgrxKkWO4UJcM8/CMUI8fofin30txIsUOVoI8Xjn796kCT4/VuSQeud3EuKa49ZViGsmKv1ciGt+o5SuBU0Hcem4bVTkqBDixylySPegDkIckM/TBk7EUq/WimWkr06a41KagBynCPFBihymZ1wrFe+nxLLZYluPUlNTkZqa2kSlaR4OZl3PZqv+q080Krf4RaPmT8BwWP6E23eQ3H1pBsG1281Px0txAHA6pSq5XKvweLzCEnJrbFmZ+W68d+NmPH6/3xivrAyIObxe87Y4nS4xRyBgXo90/gCAw9HoTvvitlRUSLWK+NdJDbfbXIvSHDev15xD2g5A3ud2u3wOStdCVZV8Xe89k1t9AgH522Q0aq5FpaSkiDmke5DNJn8Dk85TxaEVuVzyeZ6aav5WGwqFxBzSPtUc27Q0czl8Pvnbtel6kq61Gg26MyRigDkiIiJqgCYcWLap/eIXv6jTkLKvwsLCg1Sa5oF1PSIiIrPGN68SERHRgdNMH+cBqsdFycjQ9LckIiIiOjjYiEJERERJ6ZJLLuH4J0RERJRU2IhCRESUzJppTxTpMR4iIiKipiCPdEVERER0kGkGQiQiIiI62NgThYiIKJlZOKR6kCSKNIo/ERERUVNgIwoREVESi0CeyrwhuYiIiIho/yVtI8oXAOLNnJ2peH+BED9XkWOrENdURs0zrgO/VOR4RYhvVOQ4SYj/pMhhnnEdaKPIMVuIS+UEgGIhLh17AMgR4u8rcpwvxJcqcnQV4kcrcrwpxL1CvJNiHb0Vy0ik6+k7RY7jhHipIkdqAnLcIcSXK3JsEeJfKnLkCvF2ihwrhfixihzrhfipihzS/tigyCFd15pz7K9W/LO9pCSCmzI+U2QhIo1AIBA35nBItQ4gHK4yxjUzO4VC5hyabmB2u3n8Hk05iovNtZtgMP6+qpGammaMS/urmnlbXC6XmGHXrl3GuFROAIhEzLXscDgs5nA6zV9zpH0OyMeuvLxczOH1mr8NpKRINTWgpKTEGLfZzCM0eDzxvlXtXQ6phiSTrqdgMKQoR4oxLp0bAGC3m/eHpqdj69bmWlZZWZmYIxQyb6/pHljD6TRfc263fE1K56m0zwGgsrLSGE9Lk6/rqirz+REImNcByNd1MBgUc1x00UVxY6WlpQBuk8shLkFERERNhj1RiIiIiJIHB5YlIiIiIiIiIlJgTxQiIqIkFv3fX6JyEREREdH+YyMKERFREuPjPERERETJg4/zEBEREREREREpsCcKERFREuPjPERERETJgz1RiIiIiIiIiIgU2BOFiIgoiXFMFCIiIqLkkbSNKLsAuOLEtijef6QQf0ORI0+ID1LkSBfiSxQ5ThLi8fbT3nZK5dgo5/hjV3P8XUU5fq1YRiId/62KHEVCfIIix1oh7lDkyBXi2xU5hgrxr4V4B8U6lgrxCkWONkJc85iBVA6vIofU/a6HIsdcIS5cKqr1aL7sbhLi3ylynCLENefgb4X4m4oc0v7IUeSQ9kd/RY5Wtk/ixprqUZgoEtf4wcd5KJmEw2GEw+F6Y1VVIfH9Tqe5BlRSUiLmcLvdxrjPJ9XkALvd/MlSWiqXIy0tzRi32Wxijnj7sjbHhm/kcuQfZ4yXlpaKOTIzs8RlJFVVVY2KA0AkYr5z5uTInywVFeYajuKwiOdpVZX5uAFAerrfGA8GA8a4dJ4D8rGNRuVPELdb863ErKzMXA6bTX6QQjouXq9cY9y9e7eQwyPm0KxHEgwGjfGyMnMcANLSfMa45npq0aKFMa6530r7w+mUmyak/SHdSwHgL3/5S9xYQMhfg4/zEBEREREREREpJG1PFCIiIuLAskRERETJhD1RiIiIiIiIiIgU2BOFiIgoiXFgWSIiIqLkwUYUIiKiJMZGFCIiIqLkwcd5iIiIiIiIiIgU2BOFiIgoiXFgWSIiIqLkkbSNKJsAOOLErlK8f4sQP0qRo1yIn6TIEX8W6mqbFDnMs6UDGxQ5pFnKr+sq58gW4t0U5SgQ4u0UOdoI8R6KHNJ+f0ORQ9JJscxOIX6MIsdPQlzaH58r1vGDEM9Q5JDOwXRFjkFCXPOognRv+K8ixxAhXqjIUSTEqxQ5pH2Wo8ghrSekyCHd5zTleF6IK25R6CLE/6zIYfp8CQJ4VJEj0fg4Dx2ugqEgbLb6Y9nZLcT3h0LmO5Tb7RFzRKPmpsW0tDQxx+7du43xYDAo5ohEzOUIBCrFHLZ4O/N/XH3kGpJUDo9H+jQHwuGwMe52u8QcLpd5Ga9XLoe030tLS8QcEs05Ju0PzbaEw+ZPaylHZWVAXEdVlfl6cjjifTP7mc1mfsjBbrfEHD6fVLuRc4RC5v0lxQHA7zeXIxyWP1EjEfMyliVvi8Nh3qdOp3z+yOuRyyHd55xOuVlhzx5zDVlzf/F4zNfcrl3StysgOzv+t9rKgHytAHych4iIiIiIiIhIJWl7ohAREREf5yEiIiJKJuyJQkRERERERESkwJ4oRERESSyKxI1lwp4oRERERI3DRhQiIqIkxoFliYiIiJIHH+chIiIiIiIiIlJgTxQiIqIkxoFliYiIiJIHe6IQERERERERESkkbU+UcQBS4sQ0v6RVCPFsRY4vhfjSBJTjKkWOYiH+nSJHFyFeqsixW4inK3L0EOKpihyfCPFjEpCjtyLHsUL8VUUOaX9sUeRwCfG5Qnx4AtahUSTE2yhyzBbiExQ5pH06WJFjjRDXXAvSefqZIodXiG9V5JDuH90UOT4X4pp7do4Ql/Y5IG+v5ro23ferFO8/EDgmCh2uclq2REpK/bU9y5Lf73Saq7FOp0PMEQgEjPHSUrmGFI2a73ItWsi1znDYfHWGQkExh9frMcYjEfluHImEjXG7Xf791es1fzppclRWVhrjKSnSJyBQWWmuhaekyLVOaT3FxSViDml/VFXJny42m80Y373bXEtPT/eL6/B45H0qiUTM57HLJdcod+3aZYzn5Eg1BiAUMu/T9HS5plZebj5/HA7NtRDv22w16TwH5GOvOX+k+4fm2FdWmu+VluKm7XCY79kVFeViDml7Ndd1MBh/W0KG2N6SthGFiIiI2IhCRERElEz4OA8RERERERERkQIbUYiIiJJYNMF/DTF9+nT069cP6enpaNWqFc477zxs3LgxZplvv/0W559/PnJycuD3+3HRRRdh+/btMcvk5eXBZrPF/M2YMaOBpSEiIiJqemxEISIionotX74cY8aMwerVq/HOO++gqqoKQ4YMQXl59XPL5eXlGDJkCGw2G5YuXYqPPvoIoVAII0aMqDNOxLRp07Bt27bav3HjxjXFJhERERE1CsdEISIiSmJNOSbKW2+9FfP/Z555Bq1atcK6detw2mmn4aOPPsLmzZvx6aefwu+vHrjw2WefRVZWFpYuXYrBg38eqjk9PR25ubmN3QQiIiKiJsWeKEREREnMQuIe5VFMeGJUXFw9X1x2dvVsI8FgEDabDR7Pz7OCeL1e2O12rFixIua9M2bMQIsWLXD88cfjwQcfRDhsngWEiIiIKBmxJwoREVEzU1ISOy2nx+OJaQipTzQaxfjx43HyySfj6KOPBgCceOKJSEtLw2233YY//vGPsCwLt99+OyKRCLZt21b73htvvBG9e/dGdnY2Vq5ciUmTJmHbtm14+OGHE79xRERERAdQ0jairALgjhPbqXh/phCXZykHpFnIP1bkGJCAHMcK8XxFjg1CXJ5hXLZFsYw0C/nXihzS/vhJkUPaXocixyohPkSR409CvIsih3T8bxXiSxXryBTi0rUCANKs7dK+AIBThXiaIke6EH9DkeMYIa55YOETIa65R3UQ4hmKHNI+0xzbNkJ8rSKHdG/4vSLHl0JcM6iq6fwIAFiiyJFoB+Jxnnbt2sW8PnnyZEyZMsX43jFjxuDzzz+P6WGSk5ODhQsX4oYbbsBjjz0Gu92OSy+9FL1794bd/nNn14kTJ9b+u1evXnC73bjuuuswffp0sfGGDl/l5RWIROq/MjU9lRwO86d1KGQTczid5qpwZWWFmCMtzWeMV1TIObzeFGEd8idcZWXAGLesxvZFA6qqQuIye1/79QkGzeUEgJQU8/6oqpJrrtFo47e3vNx87Px+qVYB7Nixwxh3u+V7oM9nPv6tWrU2xktLS8V1OJ3m60m6VgD52Ev7ApDPdWkdmmX2/SGhPikp5pqJ0ynX1KRr326X71Fud7xvxDXlkL+1SPtDc2xdLvP2au5zNpt5e1u1aiXmCASk+5yYAg5H/PuL5rgCSdyIQkRERAfGli1bascwASA2ZIwdOxavv/46PvjgA7Rt2zYmNmTIEHz77bfYtWsXnE4nMjMzkZubi06dOsXN179/f4TDYWzevBldu3Zt3MYQERERHURsRCEiIkpiB6Init/vj2lEiceyLIwbNw6LFy/GsmXL0LFjx7jLtmzZEgCwdOlS7NixA+ecc07cZdevXw+73a761YmIiIgombARhYiIKInVDAqbqFwNMWbMGMyfPx+vvPIK0tPTUVBQAADIyMio7W4/b948dO/eHTk5OVi1ahVuuukmTJgwobaHyapVq7BmzRqcfvrpSE9Px6pVqzBhwgRcdtllyMrKStCWERERER0cbEQhIiKies2ePRsAMHDgwJjX582bhyuvvBIAsHHjRkyaNAmFhYXIy8vDHXfcgQkTJtQu6/F4sGDBAkyZMgXBYBAdO3bEhAkTYsZJISIiIjpUsBGFiIgoiR2Ix3m0NANRzpgxAzNmzIgb7927N1avXt3ANRMRERElJ3l4YyIiIiIiIiIiYk8UIiKiZNaUPVGIiIiIKBYbUYiIiJJYUw4sS0RERESxkrYRxQvAHSd2jOL9a4X4ZYocnwjxkCKH9LxUJ0WONCHeTZFD2haNfkLcpchRJMS3K3KUCvGtihwZQvwNRY6LhfirihybhXh/RY5iIV4oxDXH7bdC/FlFjnIhfqkih3Qez1bkuEqIb1HkaCPENV9UpWtfOm4A8IMQT1fkyBHiyxU5MoX4SYocHwvx9xU5CoR4D0UO0z5L2g9MokOU3W6D3W6rN+b1esX3V1ZWGONZWdlijooKcw7NuEA2W/3bUMPt9og57HZzjdHjafz+AMzlBIDU1FRzBptPzBGJmPu8VVWFxRxut/mTNBSqFHM4nQ5jvLS0RMyRmWmeQayoSKqFAaGQ+RtDaqpU0wfCYfM+leLxrrO9tWjR0hjfvXu3mMNuNx83aX8CQGWl+dju3r1LzJGd3cIYr6qqEnM4nZoaspnHY772IxH5WpDOH4fDfJ4DgNNprsGUlZWJOex283rS0uTzWLrflpbK5QiHzcdOc680bYt0L67BOiEREVESiyJxj+GwJwoRERFR43BgWSIiIiIiIiIiBfZEISIiSmIcE4WIiIgoebARhYiIKIlxdh4iIiKi5MHHeYiIiIiIiIiIFNgThYiIKImxJwoRERFR8mBPFCIiIiIiIiIihaTtidIaQLyZtS9SvH+zEH9XWQaTsxJQjhxFju+EuHn28GoXCvHXFTk2CPFjFTkKhXiqIsdGIX6pIsdKIf5bRY4vhbhmW24S4vJM5/J+f0OIawaanN/IMgDAU0K8iyKHdB4/ocjxtRAPKHKsEeLxZ5//WbsE5JDO426KHNI9qLcih3Seano/nC7E31fk6CTEpeMGABWGWFDx/gOBA8vS4crhdMHpdNUby8rKEt9fUGCuAZWWloo5XC5zVdjv94s5QiFzOZxOubot5bAsS8yRmZlpjBcXl4g5KisrjfHU1BQxRyQSNsbtdvk33GDQ/GmcmSmfHxUV5cZ4ixYtxByBgLkcmm1p2dL8SavJkZJi3u8lJeZjqzh9sGePuZauOfa7du02xj2eeN/ufiadx7t27RRzSOePZcmfhhUVphqBjtvtFpawiTkqK83nsccjf1uQ7kEpKfK3FptNLqvE5/MZ42VlZWIOt9t8DmmOWzQa//gHgrraXtI2ohAREREf5yEiIiJKJnych4iIiIiIiIhIgT1RiIiIkhh7ohARERElD/ZEISIiIiIiIiJSYE8UIiKiJGYhcQPCKsYWJCIiIiIDNqIQERElMT7OQ0RERJQ8+DgPEREREREREZECe6IQERElsSgS9zhPovIQERERNVdJ24jyBQBXnNhaxftPEeLdFDm2CPHlihwOIb5TkcPbyHUAwGIh3kmRI0OIv63IMViIVylyBIT4VkWOFgnI0UaI5ypyhIT4h4oc0jJ5ihwS6bh8p8hxvhBfocghnes5ihzSMnmKHO0SUI6XG7kOAOgtxH9Q5OghxP+syJEmxLMVOQqE+HGKHNL1dKwix5GGWKXi/USkFwxUwhZnpJ6ffqoQ3+/zme8+Ho9UgwKqqsx3jrKyMjEHYDNGw+GwnMFm7hxuM68CAFBUVGyMu91uMYfTaf6kLSkpFXOkp6cb416vPDqTZZmXCYflGqPDYf6aEwrJOZzOeN9GdHFA3pbycvkck5ZxueRjK4lGzeUMBqVPWSAz0/xtoaysXMwhnetOp/z1VVpGcy1I+1RTjqKiImEd8vmTkpJqjIdC8nHxes33wl275G+k0j1Ksz+k69brTRFzSKO7paTIOUz7PRLR/dyUtI0oRERExDFRiIiIiJIJG1GIiIiSGBtRiIiIiJIHB5YlIiIiIiIiIlJgTxQiIqIkxoFliYiIiJIHe6IQERERERERESmwJwoREVES45goRERERMmDjShERERJLIrENX7wcR4iIiKixmlUI8qMGTMwadIk3HTTTXjkkUcAAIFAAL///e+xYMECBINBDB06FLNmzULr1q0blNvxv7/6DFC8/xMh/qoix4VCvFCR4yIhvlGRY60Q/60ix0ohbp7VvdpyId5VkUN6fsw8E3o1qaxbFTkuE+J/UeQwz3QuHzcAOFaIH6PI0UaIlwrxAsU6pOtJc01+JsS/U+R4WYj3VuT4WIgXKXJI+7SdIod07CsUOfoLcem4AcBDQlyzLS2EeJEix/PWmcb4bbZ3xBydhPg3inKY7ushxfuJDicHsp5Xzfa/v7p8vjTx3ZWV5jtlcXGxmCMjI9MYD4flJszMTHOOYDAo5qioMG9LixbSnRYoLy83xp3OeDXrn5WVlRnjXq9HzGGr/5DWstvl0QTsdnOSUEiqhQHZLbKN8d27dos5LMsyxqXjBgApKSnGuNdrjgOAy+UyxqNR83laVRUW11FZWWmM+3w+MUdFhTlHKCRfC0VF5m1JSZG/LUjHJRKRr+tIxPyzg3RMAPnYR6PyTxupqebtle6DALBjxw5jXLMtTqe52UCzTy+99FJjfOFCqaYPeDzme1AgYL4PAkAkEv96CAYD4vuBRoyJsnbtWjz55JPo1atXzOsTJkzAa6+9hoULF2L58uXYunUrLrjggv1dDRERUbMWTfAfkQbreURERPXbr0aUsrIyjBo1Ck8//TSysrJqXy8uLsbcuXPx8MMPY9CgQejTpw/mzZuHlStXYvXq1QkrNBERUXMRSfAfkYT1PCIiovj2qxFlzJgxOPvsszF48OCY19etW4eqqqqY17t164b27dtj1apVjSspERERER1wrOcRERHF1+AxURYsWIBPPvkEa9fWHfGhoKAAbre7zrOhrVu3RkFB/SMvBIPBmGdFS0pKGlokIiKiw1YiH8Ph4zwkSXQ9D2Bdj4iIDi8N6omyZcsW3HTTTXjhhRfg9XoTUoDp06cjIyOj9q9dO80whkRERESUSAeingewrkdERIeXBjWirFu3Djt27EDv3r3hdDrhdDqxfPlyPPbYY3A6nWjdujVCoRCKiopi3rd9+3bk5ubWm3PSpEkoLi6u/duyZct+bwwREdHhhmOi0MFyIOp5AOt6RER0eGnQ4zxnnHEGNmzYEPPaVVddhW7duuG2225Du3bt4HK58N5772HkyJEAgI0bN+LHH39Efn5+vTk9Ho84VREREVFzlcjGDzaikMmBqOcBrOsREdHhpUGNKOnp6Tj66KNjXktLS0OLFi1qX7/66qsxceJEZGdnw+/3Y9y4ccjPz8eJJ56YuFITERERUUKxnkdERCRr8MCykpkzZ8Jut2PkyJEIBoMYOnQoZs2a1eA83QHEexq3SPF+6WnbTEWOkBAfrsixRIgfp8hxnRDXPLXcT4h/pshRJcQ3K3IEhPhsRY47hHgHRY6XhHi6IkemEI8/xN7PThLiryhylArxQUJcOiYAkCfE1yhyFApxzfV0phC/TZHjGCF+rCJHFyG+UpFDOse6KnJI10uOIkdvxTIS6RzS3KPutL1jjGuup91CvIcih6mnhuZaORA4sCwlk0TV8wDA4/XGHXslEpH7TblcbmPc4XAoSmEZo36/X8xQWmr+JE5JSRFztGjRwhi32+Un8FNTU43xiopKMYdlmfdHKCTVjoFo1Jxj165dYo7c3NbGuNttPvYAULRnjzHucMj71G43n0PhsFQ7rm6INCkuLhZzRKPm68HnM9cqLEu++0v7tKKiXMwRDpvLqbme0tPNy2zd+pOYw+s1X3Ner3xv8HrNvefKyuT9Id2DpHUAwO7d5uvF6ZS/zqekmO8NGtGo+Ryy2Wxijn/84x/GeDgcFnNInw2NHc8rIty/ajS6EWXZsmUx//d6vXjiiSfwxBNPNDY1ERERETUh1vOIiIhiJbwnChERESVOFIkby4Q9UYiIiIgah40oRERESYwDyxIREREljwZNcUxERETNx/Tp09GvXz+kp6ejVatWOO+887Bx48aYZb799lucf/75yMnJgd/vx0UXXYTt27fHLFNYWIhRo0bB7/cjMzMTV199NcrKyg7mphARERElBBtRiIiIklg0wX8NsXz5cowZMwarV6/GO++8g6qqKgwZMgTl5dUD6pWXl2PIkCGw2WxYunQpPvroI4RCIYwYMSJmELpRo0bhiy++wDvvvIPXX38dH3zwAa699tr93SVERERETYaP8xAREVG93nrrrZj/P/PMM2jVqhXWrVuH0047DR999BE2b96MTz/9tHbWhWeffRZZWVlYunQpBg8ejK+++gpvvfUW1q5di759+wIAHn/8cZx11ll46KGH0KZNm4O+XURERET7iz1RiIiIklgkwX8AUFJSEvMXDAZVZamZijM7OxsAEAwGYbPZ4PH8PE2j1+uF3W7HihUrAACrVq1CZmZmbQMKAAwePBh2ux1r1mgmSCciIiJKHknbE+UzAK44Mc3sz/HeW+M4RY4NQjxXkSNHiG9R5JAGApRnqAc2CXHz7PLVThXiXypynCvE5VnbgWIhbp7lvlqpENfsD6kF8nxFDmlbNHoLcel6kfYFAAwQ4q8rcvxSiEvnKAC8I8SlfQEAFUJ8oxAH5Ou6iyLHUiGep8iRKcQ1j270E+KLFDmk7f1ckaNrI9cBANLXcU2OZLQ/j+GYcgFAu3btYl6fPHkypkyZYn5vNIrx48fj5JNPxtFHHw0AOPHEE5GWlobbbrsNf/zjH2FZFm6//XZEIhFs27YNAFBQUIBWrVrF5HI6ncjOzkZBQUFCtosOTYHKSsCy6o3Z7Tbx/TabeRmvN0UuQyBgjDudclVZWiYUCok5gPr3Q41o1ByvXo+5MdRul2tZaWk+Y1zaXwCQkZEhLiMJh821X6dTPj8iEfOd0+GQf0uWzrGMjExFORo/pHdKSqoxLpVT2hcA4POZj31JiVxrzcjwG+OBgNxgX1paYoxL+wJAzOOk9dH8cCBd116vxxgHgNJS89hfbrd5fwGAw2G+buPcQmOkppr3WVFRkZhD2t6yMvneIOXY+weZeCoqyhudIxHYE4WIiKiZ2bJlC4qLi2v/Jk2aJL5nzJgx+Pzzz7FgwYLa13JycrBw4UK89tpr8Pl8yMjIQFFREXr37g27nVUMIiIiOvwkbU8UIiIiOjBTHPv9/toxTDTGjh1bOyBs27ZtY2JDhgzBt99+i127dsHpdCIzMxO5ubno1KkTACA3Nxc7duyIeU84HEZhYSFyczV9OomIiIiSB38mIiIionpZloWxY8di8eLFWLp0KTp27Bh32ZYtWyIzMxNLly7Fjh07cM455wAA8vPzUVRUhHXr1tUuu3TpUkSjUfTv3/+AbwMRERFRIrEnChERURI7ED1RtMaMGYP58+fjlVdeQXp6eu0YJhkZGUhJqR5vYt68eejevTtycnKwatUq3HTTTZgwYQK6dq0e6aZ79+4YNmwYrrnmGsyZMwdVVVUYO3YsLrnkEs7MQ0RERIccNqIQERElMQuJG1hWMf5cjNmzZwMABg4cGPP6vHnzcOWVVwIANm7ciEmTJqGwsBB5eXm44447MGHChJjlX3jhBYwdOxZnnHEG7HY7Ro4ciccee2w/t4KIiIio6bARhYiIiOplKYb9nzFjBmbMmGFcJjs7G/Pnz09UsYiIiIiaDBtRiIiIklhTPs5DRERERLE4sCwRERERERERkULS9kT5BQBPnFiR4v09hPh3ihxpQlzTApUuxAsVOUqF+JeKHFcJ8cWKHAVCfLMixydC3KvI8a0QX6vIcYwQ1wx1uFWIH6nIsVKI91PkWCTEjxPiml+mdwrxTooc7wpx6ZrV0FzXfYW4tK0A8IoQ763IMUCIS9cKAEjzmmhySA9YFCtyuIR4WyEOyPs9oMhxihDX3F9M+yykeP+BwJ4odLhyezzweOqv7UWj8tnq9Zqv6mBQvmrtdnNtzmaziTkcDnOOcFjelkjEPPJRICDfBVu0yDbGi4rkO3o4XGWMh0LyPq2srDDGpX1evZ5go9YBAF5vijHudEqfXvL+cLnkHOXl5cZ4amqqmKO4uMgYl7ZVIxwOG+Nud7xvZj8rLTV/a/F4NJ/EZtK5Acj7tKLCvK0AUFJivl5SUuTj5vP5jHHNeZyaav5GqsmxZ88eYzwSke9RoZD5Xuh2a64n836PRuVHiNPSzPvUbpfv2RUVlXFjQcW9FkjiRhQiIiKqHlQ2UQPLJioPERERUXPFx3mIiIiIiIiIiBTYE4WIiCiJ8XEeIiIiouTBnihERERERERERArsiUJERJTEOCYKERERUfJgIwrR/7d377FxVdcex38ej8fjx9iOnYdrkhBzExFRSC4OSRoopSURqO3lEmgFf/SRPnSFWieQRP0DpKZBFVKigsqjjUKlSrT/pKGAEiAqbcPLgPJocOqrhBYr0FBME+dxqePn2OOZc/+I4uIS77WTOc4ch+9HspTMOrPOmXUes729z9kAEGHczgMAABAd3M4DAAAAAADgIbIjUS6RNNaM550e799lxOd65Bgy4pd55LCGTj/rkcMyw2OZzUb80hDW4/MXzgYj3u6RY44Rv8IjxxtGfJ9HjiYjfsAjx7IQclizwyeN+DSPdSSMuM8tAlcacZ/91mHEr/XIYc1i7zM7vHUM+lxfao34ix45Ljfi13vksGqa8shxixF/zyPH34249VklaYcRL/fI0eWIZTzePx5yCm8ECbfzIEoSJQklEmf/hunvt77dpL6+Pme8tNT6BpSCIDByWN+AkpFC6fQpM4elpMT69pJOnjzpjI9V69HrcS9TNlbj/CPicfe2ptODZo5EotQZTybtfdvb6z4+fI6xMuMDp9MDZo5Uyv1N6pMjl3NfvWMx99/F43H7V76ioiJn3DpXJCmZdNfLZ79lMu7fwMrLK8wcsZj1WexvQ+sYLC11xyW77j09PWYO6zpWUVFp5hgacte0uNgeV1FVVZ3XOnyWSSbtmp461e2MW+eCJGWzY7eqXLFR6/FaCgAAAAAA4BMusiNRAAAAD5YFAACIEjpRAACIsKzCGzbKg2UBAADyw+08AAAAAAAAHhiJAgBAhDESBQAAIDoYiQIAAAAAAOCBkSgAAEQYD5YFAACIDjpRAACIMG7nAQAAiI7IdqIckpQYI7bQ4/3vGvHLPHLsMuIfeuQ4YcRv8MhxxIgf8MixzIj/3SOHtZ46jxx781yHJO0z4is9cnQY8R+EkCPtkSNlxHs8cqwx4lbNff4yXW3EreNcss/J6z1yPGfEp3nksPbbFI8ch4x4xiOHdU7e6JHjmBH3qcc/jPhVHjkeMOINHjmqjLh1DEr2OXetR45uI/8LHjkA+BkcTKuo6Oyx8vJy8/1DQ4POeCIxVkvyX/r7+4z4sJljeNi9TGVlpZkjk3F/c6TTA2aOykp3q2JoaMjMMTDgXk88bv/q0N/f74z7fJZcLnDGJ0+ebObIZNyfd8qUqR453PslCOxWVCzm7gbPZu0c1rb29bmPYx/FxcXOuPU5JPucrKysMHOcOpX/MWjtt+JiO4f1WST3MSrZ52QY14aSkhIzx/CwO0cyWWbmOHasM+/tiMXcx1gm445L9jlXVmYfY7nc2H9SihX7/dkqsp0oAACA23kAAACihAfLAgAAAAAAeGAkCgAAEZZTeM8yYSQKAABAfuhEAQAgwrKSxnhsxHnlAgAAwPnjdh4AAAAAAAAPjEQBACDCeLAsAABAdDASBQAAAAAAwENkR6I0SRprxuqdHu+/xIi3eeSYYsT/5pHjTiPuc3+6e4bx07WyWLPHW+uQ7L9g1nrk+LsRf8Qjx70hbMf1RjzpkcOqWdojx5tGfI5HjgNG3NrOQx7rGDLiPufCVUb80RBy+Oy3jBG3zntJKg8hR4sR9xkx8K4R7/HI8VUjXhFCDp/P8g8jXuyR4zIj3u2Rw3V8WMfOeOGZKLhYlZWVqazs7K293l77ChaPlzjj6fSARw53U3hw0PoGlGpqJhlLBGaOWMz9d82x6vRRuZz7altcbF9Jg8C9rVa9JGloyF2zSy6ZbuY4cuRI3ttRUVHpjFs1l6TiYvcyw8P2N1x/f78zXlpaauYYGHAfy9a+HRwcNNdh7fuhITtHMuk+Tk+cOJF3jljM5xsx/+PYOj58cvT29prLWKy69/VZv+VJNTU1zrjPuVBd7c7hI5Nxt6SKPHZtIuE+X3I5u6WTy419fLhiHxXZThQAAEAnCgAAQJRwOw8AAAAAAIAHRqIAABBhPFgWAAAgOuhEAQAgwridBwAAIDq4nQcAAAAAAMADI1EAAIiwQOHdhuP3zHkAAACMhZEoAAAAAAAAHhiJAgBAhIX5HBOeiQIAAJCfyHaivCWpdIzYf3i8//+M+AmPHHPyjEtjf4Yz9nrkeNOIN3jk+KwR/9AjxwyPZSxWA/5pjxzW8KlDHjmWGfGHPXIsNuIpjxxdRvxSjxx1eebwqVfSiF/vkeNtI36DR45TRtznvM4YcZ/zusOIv+iR46tGfIpHDuvc3++Rw/osf/PI0WTE0x45jhlx6ziX7HPuA48crpoWe7x/PNCJgotVenBQRUVnf2xyImG1oKTh4WFnPJt1xyWptNS9HisuSbGY+9HPfX0DZo7+/n5nvKSkxMxRWVnhjGcy9hXAZz02942DXV1dZoYxDosRg4ODZo5Uyv2tcOLEcTNHebm7prGYPag/l3PX3SdHPO7+lS2RSDjjPvUa61w8o6Ki0syRTru/8Ssr7RzDw+56Wee9JOVy7mPQ5/pSVORuMfb09Jg5ampqnHFrv0rS4KD7nBwYcF87JCmTGTLW4Y5LUllZmTMeBPYNw5mMu6bFxXZLyzpfhoaslr77OmedByPb4bUUAAAAAADAJ1xkR6IAAIDTD5UNa4rjsB5QCwAA8EnFSBQAAAAAAAAPdKIAABBh2ZB/zsWGDRu0cOFCpVIpTZ06VcuXL1d7e/uoZTo7O/WNb3xD9fX1qqioUFNTk5555plRy8yaNUtFRUWjfjZu3HiOWwMAAFB4dKIAABBhhexEaWlpUXNzs/bs2aOdO3cqk8nopptuUl9f38gy3/zmN9Xe3q7nnntOBw4c0O2336477rhDf/7zn0fl+vGPf6yjR4+O/KxatepcSwEAAFBwPBMFAACc1e9///tR///Vr36lqVOnqrW1VZ/73OckSbt27dLmzZu1aNEiSdIPf/hDPfzww2ptbdXVV1898t5UKqX6+voLt/EAAADjgJEoAABEWC7kH0nq7u4e9eMz/aUknTp1eqLx2trakdeuvfZaPfnkk/rwww+Vy+W0detWpdNpff7znx/13o0bN6qurk5XX321HnzwQa9pKgEAAKImsiNR5khyz0btZs127Z71/bQjRrzaI8eHRnyWR47LjHiLR46/GPEPPHJ0GPErPHI0GfEDHjmsGcTf8cix32MZS7sR/55HjqeN+GMeOW404lOM+FyPdew14l0eOeryXIdkny+3euT4HyN+qUcO62/ptUZckkqN+PMeOf7TiFvniiRdYsRrPHKkjfj/euT4gRF/yCPHHCP+3x45Tjli/R7vnyhmzJgx6v/r16/X/fff73xPLpfT6tWrdd111+nKK68cef23v/2t7rzzTtXV1Skej6u8vFzbtm3T7NmzR5a5++671dTUpNraWu3atUv33Xefjh49qp/+9Kehfi5MLMnShJJJ62o4tiAInPFYzP5b4dBQxhmPx+0r6fCw+0a5RCJh5igtdS/T29tr5kin3Vdj67NKUibjbkEnk0kzR1lZuTM+MDBg5rDmJPPp+B0YyP+qPTjorunkyZPNHP/8Z5czfvLkCTNHZWXKGY/H3b/SlZba51l/v7teuZx9Q6i1HX199j6xzpfqavs3sPffd//W4nNOlpSUOOM+14ZYzH0cd3e7Wh2nJZPWb8T2/H3xuPuzxGL2Z7Gutz7n9dSpU53x48ePmzmsY7m6usrMkc2OPVdhLuc3j2FkO1EAAEC40xKfydXR0aGqqn81NHwa2M3NzTp48KDeeOONUa+vW7dOXV1devHFFzV58mRt375dd9xxh15//XVdddVVkqS1a9eOLD9v3jwlEgnddddd2rBhg9e6AQAAooJOFAAAImw8OlGqqqpGdaJYVq5cqR07dui1117T9OnTR15/99139fOf/1wHDx7Upz/9aUnS/Pnz9frrr2vTpk16/PHHz5pv8eLFGh4e1nvvvafLL7/8vD8PAADAhUYnCgAAOKsgCLRq1Spt27ZNr776qhobG0fFzwz//vfbJoqLi51DYtva2hSLxcyhvQAAAFFDJwoAABGWleS+E9nfuY5qaW5u1pYtW/Tss88qlUqps7NT0ul70svKyjR37lzNnj1bd911lx566CHV1dVp+/bt2rlzp3bs2CFJ2r17t/bu3asvfOELSqVS2r17t9asWaOvf/3rmjRpUkifDAAA4MKgEwUAAJzV5s2bJeljM+088cQT+ta3vqWSkhL97ne/07333qtbbrlFvb29mj17tn7961/rS1/6kqTTz1vZunWr7r//fg0ODqqxsVFr1qwZ9ZwUAACAiYJOFAAAIqyQI1Gsp/FL0pw5c/TMM8+MGW9qatKePXvOcc0AAADRRCcKAAARNh4PlgUAAMD5idmLAAAAAAAAILIjUXolDY8Rm+Hx/neM+BSPHA1G/C8eOWryXIdkf5aFHjkOGfFlHjl2GfE5Hjk6jfgxjxy3GfEXPHJYx1B9CDle9sgxZMQ/65FjthG39n2XxzpmGfE2jxzWcfpfHjmsmu/1yPE9I24do5KUMuJXeOSoMeIZjxzvGfEOjxzWuf+6R46kEb/bI4d1ffG5zk0z4j7X7IQjNuDx/vFQyNt5gPGUzQbKZs9+VJaUlJjvHxwcdMbjcbuZm0i415NOp80csVhxXus4vR73ZykvL887RyplfXtJfX19znhpaamZI5MZqwV/2vCwOy5JNTXVznh3d7eZo6TEdUWXysvt/WLtu56eXjOHdQWvqKg0M1h1t86FbDZrriORcNdrYMD+FrSO0+rqKjOHde739fWbOSZPnuyMZzJ2K6u42H1eJ5NW68e+NvjcMjs05P5tIZOxfpuQiovd57513ktSLFbkjE+Z4q65z3p8rnPWdd26DkpSUdHYn2V42D5XJEaiAAAAAAAAeInsSBQAAHB69EhYI1HCygMAAPBJRScKAAARlpPkHkTrj04UAACA/HA7DwAAAAAAgAdGogAAEGFZMRIFAAAgKhiJAgAAAAAA4CFyI1HOTPXkmlDOntjKnh7UngxKsiZI8pmC1JoYz2fKTGs77Mn37M/rsx1WDp/9Yq3HZ79YOXz2i1VTn2lArbrbE2zZ2+rTy5nvdkykc8GagM3nXHBPNudXjzD2vXW++NTU2lZ7EslwzierpvbEeXZNw/gsPvvFNbHdmW30mZIwTIxEwcVmpK3nmD7YZxpca/phnymOi+PuK9igxxTHgXGGZrMen2XQfUX3maLWmubWh1VTn2lurSmOfaaNdsxA6p1jrOmzvVciu+5DHlPlZofdyxQV2a0962vHmubW5/jJ5tz18tpvMfdnGR62Wgz2uT/gdfy49+2wx37L5dxFz+bs89rabz41LS7Of0pf67z1m8rdXVOfa4O173zaV3GjHj45XMfHmVpYeYqCC90aNHzwwQeaMWNGoTcDAICz6ujo0PTp08d9Pel0Wo2Njers7Aw1b319vQ4fPqxkMhlqXsAXbT0AQJRZbb3IdaLkcjkdOXJEqVRqpJeou7tbM2bMUEdHh6qqqgq8hRMf9QwfNQ0fNQ0fNc1PEATq6elRQ0ODYsZf28KSTqc1NOQzPspfIpGgAwUF9e9tPa5N4aOm4aOm4aOm4aKe+fNt60Xudp5YLDZmr09VVRUHRIioZ/ioafioafio6fmrrq6+oOtLJpN0eOCiM1Zbj2tT+Khp+Khp+KhpuKhnfnzaejxYFgAAAAAAwAOdKAAAAAAAAB4mRCdKaWmp1q9fr9LS0kJvykWBeoaPmoaPmoaPmgKIIq5N4aOm4aOm4aOm4aKeF07kHiwLAAAAAAAQRRNiJAoAAAAAAECh0YkCAAAAAADggU4UAAAAAAAAD3SiAAAAAAAAeIh8J8qmTZs0a9YsJZNJLV68WH/6058KvUkTxmuvvaZbbrlFDQ0NKioq0vbt20fFgyDQj370I33qU59SWVmZli1bpkOHDhVmYyeADRs2aOHChUqlUpo6daqWL1+u9vb2Ucuk02k1Nzerrq5OlZWV+spXvqJjx44VaIujb/PmzZo3b56qqqpUVVWlJUuW6IUXXhiJU8/8bdy4UUVFRVq9evXIa9QVQJTQ1jt/tPXCRVsvfLT1xhftvMKIdCfKk08+qbVr12r9+vXav3+/5s+fr5tvvlnHjx8v9KZNCH19fZo/f742bdp01vhPfvITPfbYY3r88ce1d+9eVVRU6Oabb1Y6nb7AWzoxtLS0qLm5WXv27NHOnTuVyWR00003qa+vb2SZNWvW6Pnnn9dTTz2llpYWHTlyRLfffnsBtzrapk+fro0bN6q1tVVvvvmmbrzxRt1666166623JFHPfO3bt0+/+MUvNG/evFGvU1cAUUFbLz+09cJFWy98tPXGD+28AgoibNGiRUFzc/PI/7PZbNDQ0BBs2LChgFs1MUkKtm3bNvL/XC4X1NfXBw8++ODIa11dXUFpaWnwm9/8pgBbOPEcP348kBS0tLQEQXC6fiUlJcFTTz01ssxf//rXQFKwe/fuQm3mhDNp0qTgl7/8JfXMU09PTzBnzpxg586dwQ033BDcc889QRBwnAKIFtp64aGtFz7aeuODtl7+aOcVVmRHogwNDam1tVXLli0beS0Wi2nZsmXavXt3Abfs4nD48GF1dnaOqm91dbUWL15MfT2dOnVKklRbWytJam1tVSaTGVXTuXPnaubMmdTUQzab1datW9XX16clS5ZQzzw1Nzfry1/+8qj6SRynAKKDtt74oq2XP9p64aKtFx7aeYUVL/QGjOXkyZPKZrOaNm3aqNenTZumt99+u0BbdfHo7OyUpLPW90wMY8vlclq9erWuu+46XXnllZJO1zSRSKimpmbUstTU7cCBA1qyZInS6bQqKyu1bds2XXHFFWpra6Oe52nr1q3av3+/9u3b97EYxymAqKCtN75o6+WHtl54aOuFi3Ze4UW2EwWIsubmZh08eFBvvPFGoTdlwrv88svV1tamU6dO6emnn9aKFSvU0tJS6M2asDo6OnTPPfdo586dSiaThd4cAAAmJNp64aGtFx7aedEQ2dt5Jk+erOLi4o89SfjYsWOqr68v0FZdPM7UkPqeu5UrV2rHjh165ZVXNH369JHX6+vrNTQ0pK6urlHLU1O3RCKh2bNna8GCBdqwYYPmz5+vRx99lHqep9bWVh0/flxNTU2Kx+OKx+NqaWnRY489png8rmnTplFXAJFAW2980dY7f7T1wkVbLzy086Ihsp0oiURCCxYs0EsvvTTyWi6X00svvaQlS5YUcMsuDo2Njaqvrx9V3+7ubu3du5f6jiEIAq1cuVLbtm3Tyy+/rMbGxlHxBQsWqKSkZFRN29vb9f7771PTc5DL5TQ4OEg9z9PSpUt14MABtbW1jfxcc801+trXvjbyb+oKIApo640v2nrnjrbehUFb7/zRzouGSN/Os3btWq1YsULXXHONFi1apEceeUR9fX369re/XehNmxB6e3v1zjvvjPz/8OHDamtrU21trWbOnKnVq1frgQce0Jw5c9TY2Kh169apoaFBy5cvL9xGR1hzc7O2bNmiZ599VqlUauS+wurqapWVlam6ulrf/e53tXbtWtXW1qqqqkqrVq3SkiVL9JnPfKbAWx9N9913n774xS9q5syZ6unp0ZYtW/Tqq6/qD3/4A/U8T6lUauTe7TMqKipUV1c38jp1BRAVtPXyQ1svXLT1wkdbL1y08yKi0NMDWX72s58FM2fODBKJRLBo0aJgz549hd6kCeOVV14JJH3sZ8WKFUEQnJ76bt26dcG0adOC0tLSYOnSpUF7e3thNzrCzlZLScETTzwxsszAwEDw/e9/P5g0aVJQXl4e3HbbbcHRo0cLt9ER953vfCe49NJLg0QiEUyZMiVYunRp8Mc//nEkTj3D8dGp74KAugKIFtp654+2Xrho64WPtt74o5134RUFQRBcyE4bAAAAAACAiSiyz0QBAAAAAACIEjpRAAAAAAAAPNCJAgAAAAAA4IFOFAAAAAAAAA90ogAAAAAAAHigEwUAAAAAAMADnSgAAAAAAAAe6EQBAAAAAADwQCcKAAAAAACABzpRAAAAAAAAPNCJAgAAAAAA4IFOFAAAAAAAAA//D083FemWfE6MAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1340,7 +1828,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Number of fire pixels detected: 1\n" + "Number of fire pixels detected: 2\n" ] } ], @@ -1379,7 +1867,41 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFUAAAHqCAYAAADFx3HMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhTVf4/8He6JGmbpittLS0UxAHZRECxqAPKVqCA27ggWAXGhfE3MgOjgxuLsquAAnUYEBeUiiggyCIIMqKAoINbldEZQJa20H1P0vT+/uDbSGh7PocSoNX363n6PJDPyeeeu+bk5Nx7TIZhGCAiIiIiIiIiorPid7ErQERERERERETUFLFThYiIiIiIiIioAdipQkRERERERETUAOxUISIiIiIiIiJqAHaqEBERERERERE1ADtViIiIiIiIiIgagJ0qREREREREREQNwE4VIiIiIiIiIqIGYKcKEREREREREVEDsFOFfGbPnj24+eab0aJFC1gsFsTGxiI5ORnjx4/3Kte7d2/07t37otTx448/hslkwscff3zW783MzMTkyZNx6NAhn9dr8uTJMJlMYrnvvvsOY8eORXJyMkJCQpTr8vrrr+POO+9E27Zt4efnh6SkJN9W2se+/vpr3HfffWjVqhWsVitsNhu6du2K2bNnIz8/31MuKSkJqampF7GmvnUxzwciIvr1evXVV2Eymer8mzBhgqdcUlKS53U/Pz+EhYXh8ssvxz333IMPP/yw3vzFxcWYNm0aunfvDrvdDovFgqSkJIwaNQpffvmldj2/+eYbmEwmBAYGIisrq84yF/uzsq522qJFi/Dqq6/WKlvT1ly1atUFqp23Q4cO1bvfu3fv7ik3YsQItGnT5oLU6cknn/SqR3BwMBISEpCSkoKFCxeitLS0wbl37tyJyZMno7i42Ic1PrvlXHfddejbt+95XT41bgEXuwL06/DBBx9g6NCh6N27N2bPno1LLrkEWVlZ2LdvHzIyMvD88897yi5atOgi1rThMjMzMWXKFPTu3fuidVDs27cPa9aswZVXXok+ffpg3bp19ZZ94403kJ2djauvvhrV1dVwuVwXsKZn55///CfGjh2Ltm3b4m9/+xvat28Pl8uFffv24eWXX8auXbuwevXqi11NIiKiJmfZsmVo166d12vx8fFe/7/22mvx3HPPAQBKS0tx4MABZGRkYMCAAbj11luxYsUKBAYGesr/97//Rf/+/XHixAk8+OCDmDJlCmw2Gw4dOoSVK1eiW7duKCwsRFhYmFi/JUuWAACqqqrw+uuv47HHHjvXVfa5MWPGICUlxeu1RYsWITo6Gvfee+/FqZTg//2//4fhw4d7vWaz2Tz/njJlCkpKSi5onbZs2QKbzQan04ljx47ho48+wvjx4zFnzhysX78eHTt2POucO3fuxJQpUzBmzBjY7fbzUGt5OYsXL9b6cZR+vdipQj4xe/ZstGrVCps3b0ZAwC+H1Z133onZs2d7lW3fvv2Frt6vxsiRI5GWlgYAWLVqlbJTZfPmzfDzOzUYLTU1Fd9+++0FqePZ2rVrFx566CH069cPa9asgcVi8cT69euH8ePHY9OmTRexhkRERE1Xx44dvUYo1CU8PBzXXHON5/99+/bFn/70J0yePBlTpkzBk08+iVmzZgEA3G43br75ZuTm5mLXrl1eX4R79eqFtLQ0bNy40asTpj4OhwNvvvkmrrjiCuTm5uKVV15pVJ0q5eXlnlEVCQkJF7s6Z6VFixZe+/RMl156qZjDMAw4HA5YrVaf1Kl79+4IDw/3/P+uu+7C2LFj0bt3bwwdOhQ//PADzGazT5Z1IfG7DfH2H/KJvLw8REdHe3Wo1Kj5Yl/jzCGcNcMU58yZg1mzZiEpKQlBQUHo3bs3/vOf/8DlcuHvf/874uPjERYWhptvvhknTpzwymkymTB58uRay05KShJ/Qdi3bx/uvPNOz3KTkpJw11134fDhw54yr776Kv7whz8AAG644QbP8MXTh31u3boVffr0gd1uR3BwMK699lp89NFHtZb3wQcfoEuXLrBYLGjVqpXnlyEdZ25LX5S999576xx5U9dQV5PJhIcffhjLli1D27ZtERQUhO7du2P37t0wDANz5sxBq1atYLPZcOONN+Knn34Slz99+nSYTCYsXrzYq0OlhtlsxtChQ2u9vmnTJnTt2hVBQUFo164dXnnlFa/4yZMnMXbsWLRv3x42mw0xMTG48cYb8cknn3iVqzn+nnvuObzwwgue+icnJ2P37t21tpXNZsNPP/2EQYMGwWazITExEePHj4fD4fAq63Q68eyzz6Jdu3awWCxo1qwZ7rvvPpw8eVLcJkRERI3B5MmT0aFDByxYsACVlZUAgDVr1uCbb77BxIkT6x1ZMHDgQAQHB4v516xZg7y8PIwZMwZpaWn4z3/+g507d2rV7ejRo7jtttsQGhqK8PBw3H333di7d2+t9hkAvP/++0hOTkZwcDBCQ0PRr18/7Nq1q9a6mkwmfPnll7jtttsQERHh6Xg4s02UlJSE7777Djt27PC0Cc9sS7lcLjzxxBOIj4+H3W5H3759ceDAAa8yvXv3RseOHbFr1y707NnT0w5dtmwZgFNtxq5duyI4OBidOnXy6Y9MZ97+U1VVBZPJhHHjxmHRokVo164dzGYzli9fDuBUB9jUqVPRtm1bWCwWxMTEYPTo0cjNzT2nenTt2hUTJ07EwYMHa90ytXnzZtxwww2etvX111/vddv7k08+iYkTJwIAEhMTPfvi9GNoxYoVuOaaazz7PiUlBV999VWteuzatQupqamIjIyE1WpFmzZtPI8wkJZT1+0/eXl5ePDBBxEfHw+z2YzWrVvjqaeegtPp9JQ5fZu/9tpraNeuHYKDg9GlSxds3LjRK19OTg7GjBmDxMRET7vyuuuuw/bt2892k9N5wE4V8onk5GTs2bMHf/7zn7Fnz54G3WqycOFCfPrpp1i4cCGWLFmCH374AUOGDMHo0aNx8uRJvPLKK5g9eza2bt2KMWPG+Kzuhw4dQtu2bTFv3jxs3rwZs2bNQlZWFq666irPB8XgwYMxffp0Tz137dqFXbt2YfDgwQCA5cuXo3///rDb7XjttdewcuVKREZGYsCAAV4dKx999BGGDRuG0NBQZGRkYM6cOVi5cqXnw7MpWL9+PZYsWYKZM2dixYoVKCkpweDBgzF+/Hh8+umnWLBgARYvXozMzEzceuutMAyj3lxutxvbtm1Dt27dkJiYqF2Hr776CuPHj8df/vIXrF27Fp07d8bo0aPxr3/9y1Om5jkskyZNwgcffIBly5ahdevW6N27d53PoVm4cCG2bNmCefPm4c0330RZWRkGDRqEoqIir3IulwtDhw5Fnz59sHbtWowaNQpz5871/IIHANXV1Rg2bBhmzpyJ4cOH44MPPsDMmTOxZcsW9O7dGxUVFdrrSkREdC7cbjeqqqq8/s7GkCFDUF5ejn379gGA5zkrN9100znXbenSpbBYLLj77rsxatQomEwmLF26VHxfWVkZbrjhBmzfvh2zZs3CypUrERsbizvuuKNW2bfeegvDhg2D3W7HihUrsHTpUhQUFKB37951duDccsstaNOmDd555x28/PLLdS5/9erVaN26Na688kpPm/DM25Qff/xxHD58GEuWLMHixYvx448/YsiQIXC73V7lsrOzcd9992HMmDFYu3YtOnXqhFGjRmHq1KmYOHEiHn30Ubz77ruw2Wy46aabcPz4cXH7AKfaImfud1WbrMaqVauwZMkSTJ48GR9++CF69uwJt9uN1NRUzJkzByNHjsQHH3yA6dOnY+PGjbjxxhs9HW4NVfPj2entuFdffRUDBw5EVFQUXn/9daxcuRJ2ux39+vXztOMefPBBjB07FsCpjrOafXHFFVcAAKZOnYq7774bnTt3xjvvvIPXXnsNhYWFuO6667w6uDZs2IDf//73OHbsGObNm4cNGzbg8ccfR3Z2ttZyzlReXo7evXvjzTffxIQJE/DBBx9g+PDhmDFjhudH2tOtXbsW6enpePbZZ/Huu+8iLCwMN910k9cPvHfffTfWr1+PSZMmYcuWLViyZAluvPFG5OXlNXSzky8ZRD6Qm5trXHfddQYAA4ARGBho9OzZ05gxY4ZRUlLiVbZXr15Gr169PP8/ePCgAcC44oorDLfb7Xl93rx5BgBj6NChXu8fN26cAcAoKiryvAbAmDRpUq16tWzZ0khLS/P8f/v27QYAY/v27fWuS1VVlVFaWmqEhIQY8+fP97z+zjvv1PnesrIyIzIy0hgyZIjX626327jiiiuMq6++2vNajx49jPj4eKOiosLzWnFxsREZGWmc7elYX33qMnjwYKNly5Z1xtLS0uqMTZo0qVadABhxcXFGaWmp57U1a9YYAIwuXboY1dXVntdr9t/XX39db72ys7MNAMadd94prkONli1bGlar1Th8+LDntYqKCiMyMtJ44IEH6n1fVVWV4XK5jD59+hg333yz5/Wa469Tp05GVVWV5/XPP//cAGCsWLHC81paWpoBwFi5cqVX7kGDBhlt27b1/H/FihUGAOPdd9/1Krd3714DgLFo0SLPa2eeD0RERL6wbNkyT7vszD+Xy+Up17JlS2Pw4MH15klPTzcAGG+//bZhGIaRkpJiADAqKyvPqX6HDh0y/Pz8vNoAvXr1MkJCQozi4mKvsmd+Vi5cuNAAYGzcuNGr3AMPPGAAMJYtW2YYxqm2WHx8vNGpUyevNmZJSYkRExNj9OzZ0/NaTbvn6aefrlXXutpEHTp0qPPzu6atOWjQIK/XV65caQAwdu3a5bVeAIx9+/Z5XsvLyzP8/f2NoKAg49ixY57X9+/fbwAwXnzxxVrLPF1Nu6auvy1btnjK3X333call17q+b/L5TIAGBEREUZhYaFXzjfeeMMAYKxdu9br9d27dxsAjMWLFyvr9MQTTxgAjIKCgjrjJSUlBgBPW7qkpMQICwvzaq8Zxqm2XIcOHbz224wZMwwAxpEjR2ptB39/f+Mvf/mL1+vFxcVGTEyMMXz4cMMwDKO6utpo2bKl8bvf/c5wOBz1rkN9yzEMw7j22muNPn36eP6/YMECA4Dx3nvveZWbNm2aAcDYtm2bYRi/bPNLLrnEq2197NgxA4AxZ84cz2tWq9WYMGFCvfWji4sjVcgnoqKi8Mknn2Dv3r2YOXMmhg0bhv/85z+YOHEiOnXqpDU0cNCgQV63rFx++eUA4BkNcubrP//8s0/qXlpaisceewxt2rRBQEAAAgICYLPZUFZWhu+//158/2effYb8/HykpaV5/RpQXV2NlJQU7N27F2VlZSgrK8PevXtxyy23eN2bGhoaiiFDhvhkXS6EG264ASEhIZ7/1+yPgQMHeg2NrXn99F52X+nSpQtatGjh+b/VasXvfve7Wst6+eWX0bVrV1itVgQEBCAwMBAfffRRnft18ODB8Pf39/y/c+fOddbfZDLV2l+dO3f2Krd+/XqEh4djyJAhXsdEly5dEBcX16DZp4iIiBri9ddfx969e73+6rpduz6GxuiGhli2bBmqq6sxatQoz2ujRo1CWVkZ3n77beV7d+zY4bmV43R33XWX1/8PHDiA48ePY+TIkV5tTJvNhltvvRW7d+9GeXm513tuvfXWhq6SlzNvXa6vXXHJJZegW7dunv9HRkYiJiYGXbp08Xqg8Nm2qx555JFa+71Hjx7i+/r27VvrAcPr169HVFQUBg0a5NWu6datG6Kjo8+5XXPmMbZz504UFRXValsbhoGUlBTs2bNHHB2zadMmuN1u3HPPPV45goKCvG4j+v7773H48GGMGTPGZ89z2bZtG+x2O26++Wav12seSXDm4wH69Onj1baOj49HdHS0176++uqrsXTpUkybNq3BdwXQ+cMH1ZJPde/e3fMwNJfLhcceewxz587F7Nmzaz2w9kyRkZFe/6+5sNX3+rkONawxfPhwfPTRR3jqqadw1VVXwW63w2QyYdCgQVq3aeTk5AAAbrvttnrL5Ofnw2Qyobq6GnFxcbXidb3WWPlyP0VHRyM4OBgHDx48qzpERUXVes1isXjtrxdeeAHjx4/Hgw8+iGeeeQbR0dHw9/fHU089VWenypk5a57vcuYxEBwcXOuBbRaLxWs9c3JyUFhYWO+H87nef0xERKTr8ssvFx9Uq1Lzxa7mC37NjxoHDx6sNauQrurqarz66quIj4/3zBQEnPpCHxISgqVLlypv9c7Ly0NsbGyt1898rebWiEsuuaRW2fj4eFRXV6OgoMDr+S91lW0I3XbFme0n4FQb6lzbvwkJCQ3a73Wtf05ODvLy8up9+PC5tmvOPMZq2taqW8wKCgqU+6omx5VXXllnvGZ71jzrzpcPIs7Ly6uzbnFxcTCZTLVu2dFp165atQrPPvssFi9ejCeffBKhoaG45ZZbMHv2bMTExPis7tQw7FSh8yYwMBCTJk3C3Llzz/vMMxaLpdaDQgGI9xkWFRV57k/8+9//7nnd4XB4nskhiY6OBgC89NJL9T5lPTY2Fi6XCyaTyXN/5unqeu1Cquv+6tLS0vO+XH9/f/Tp0wcbN27E0aNHffqBtnz5cvTu3Rvp6eler1+I6QOjo6MRFRVV7wPlQkNDz3sdiIiIzpVhGFi3bh1CQkI8X9AHDBiAxYsXY82aNV5tp7OxdetWzxfpur5Q7t69G5mZmfXOqhIVFYXPP/+81utntqdqcmdlZdUqe/z4cfj5+SEiIsLr9d/61Lh1rX90dDRiY2Oxfv36Ot9zrlMZv//++wDgmciipm29aNEiXHXVVXW+p6ZMfWria9asQfPmzWvFa9azWbNmAE49+NhXoqKisH///lqvZ2dnwzAMse51adasGebPn4/58+fj8OHDWLt2LSZOnIjc3Nx69wtdOOxUIZ/Iysqqs0e2ZkTA6cMXz4ekpCR8/fXXXq9t27ZN7BgwmUwwDKPWrDNLliyp9SCx+n5huPbaaxEeHo7MzEw8/PDD9S7LbDbj6quvxnvvvYc5c+Z4RjuUlJQop0a+ELKysnDixAmvnu5PP/30gix74sSJ2LBhA/74xz9i7dq1tUZ3uFwubNq06axvkTKZTLX269dff41du3ad1UNxGyI1NRUZGRlwu91aQ22JiIgaoylTpiAzMxOPP/64p90ybNgwdOrUCTNmzEBqamqdMwBt3rwZ119/fb0zAC1duhR+fn547733at1qcvToUYwcORKvvPJKvTMk9urVCytXrsTGjRsxcOBAz+sZGRle5dq2bYvmzZvjrbfewoQJEzxfpMvKyvDuu+96ZgRqiDNHEvyapaamYtWqVTCZTF63KvnCl19+iZkzZ+LSSy/13Hp1/fXXw2634/vvv8dDDz2kfH997fOUlBT4+/vjv//9L4YNG1bv+y+//HIkJSVh6dKlGDduXL2jcepbTl369OmD9957D+vWrfNqv77++uue+Llo2bIl/vznP2PLli344osvzikX+QY7VcgnBgwYgISEBAwZMgTt2rVDdXU19u/fj+effx42mw2PPPLIeV3+yJEj8dRTT+Hpp59Gr169kJmZiQULFtT6oD6T3W7H73//e8yZMwfR0dFISkrCjh07sHTpUoSHh3uVrWk0LF68GKGhobBarWjVqhWioqLw0ksvIS0tDfn5+bjtttsQExODkydP4quvvsLJkyc9oyWeeeYZpKSkoF+/fhg/fjzcbjdmzZqFkJAQrZEx5eXl2LBhAwB4pvvdsWMHcnNzERIS4tWwyMzMRGZmJoBTPePl5eWeqerat2/v9euPyWTCTTfdhMceewwWiwUZGRn48ssvAZwa8TF48OBav+T4SnJyMtLT0zF27Fh069YNDz30EDp06ACXy4V///vfWLx4MTp27HjWnSqpqal45plnMGnSJPTq1QsHDhzA1KlT0apVq7Oe+eBs3XnnnXjzzTcxaNAgPPLII7j66qsRGBiIo0ePYvv27Rg2bFit+2yJiIgulsLCQk+7oqysDAcOHEBGRgY++eQT3H777ZgyZYqnrL+/P1avXo3+/fsjOTkZDz30kOd5a4cPH8aqVauwbt06FBQU1LmsvLw8rF27FgMGDKj3y+7cuXPx+uuvY8aMGXV+yU1LS8PcuXMxYsQIPPvss2jTpg02btyIzZs3A4Dn+Sl+fn6YPXs27r77bqSmpuKBBx6Aw+HAnDlzUFhYiJkzZzZ4m3Xq1AkZGRl4++230bp1a1itVnTq1KnB+Rqzu+++G2+99RYGDBiAcePGoXv37ggICMCxY8ewbds23HbbbVrttH379sFms8HlcuHYsWP46KOPsHz5csTFxeH999/37Gu73Y4XX3wRo0aNQm5uLm699VY0a9YMJ06cwFdffYWCggIsWLAAADzbfN68eRgxYgQCAwPRrl07XHrppZ6R6D/99BMGDBiA8PBwZGdn4/PPP0dYWBiefvppmEwmLFy4EMOGDUNycjIeeeQRJCYm4ueff8aWLVvwxhtvKJdjs9lqree9996L9PR0jBgxAlOnTkX79u3xySefYMaMGRg6dKhnRI6uvLw8DBgwAHfddZdnmXv27MGWLVvqnPGKLoKL+ZRc+vV4++23jeHDhxuXXXaZYbPZjMDAQKNFixbGyJEjjczMTK+y9c3+c/oTrg3jl6env/POO16v1zzNfu/evZ7XHA6H8eijjxqJiYlGUFCQ0atXL2P//v1as/8cPXrUuPXWW42IiAgjNDTUSElJMb799tta7zWMUzPatGrVyvD39/d6urxhGMaOHTuMwYMHG5GRkUZgYKDRvHlzY/DgwbXq//777xudO3c2zGaz0aJFC2PmzJl1PlW+Lqonup85g09Nzrr+Tp8pqWb2n1mzZhmxsbGG1Wo1UlNTjZ07dxrx8fFG8+bNjaNHjxqGcWr2nz/96U911kl3/9Vn//79RlpamtGiRQvDbDYbISEhxpVXXmk8/fTTxokTJzzl6pul4MzjyuFwGBMmTDCaN29uWK1Wo2vXrsaaNWtqzXZUX/1r1vfMbRUSElKrXF37z+VyGc8995xxxRVXGFar1bDZbEa7du2MBx54wPjxxx/rrTcREZEv1NVeqkvLli097QOTyWTYbDajbdu2xsiRI43NmzfX+77CwkLjmWeeMbp27erV9hsxYoTx6aef1vu+mtkB16xZU2+Zl19+2WsWvbo+K3/++WfjlltuMWw2mxEaGmrceuutxoYNG+qcpWbNmjVGjx49DKvVaoSEhBh9+vSpVceaz/KTJ0/Wqk9dn/OHDh0y+vfvb4SGhnq1w+pr/9S0N05vO/bq1cvo0KFDreXV19apqx12JlW75nT1zf7zyCOP1Fne6XQas2fPNjp37uzVrnnwwQeNn376Sbmsmtl/av4sFosRHx9vDBgwwHjppZdqzRRaY/v27cbAgQONiIgIw2w2GwkJCUZqaqrX7IrV1dXGo48+alxyySWGn5+fAcD45JNPPPH33nvP6NWrl2G32w2LxWIkJSUZf/jDHzwz8NT49NNPjZSUFMNutxtWq9Vo06aN8be//U1rOWfO/mMYp2ZGvf/++424uDgjICDASEpKMp544gmvGYZU27x58+bG6NGjDcMwjPLycuOBBx4wOnXqZNjtdiM4ONho166dMWXKFK8ZReniMRnGeXqkNxE1Cffeey8+/vhjHDp06GJXhYiIiKjBpk+fjieffBI///yzT5/TRkSkwtt/iIiIiIioSam5/aNdu3ZwuVzYtm0bXnzxRYwYMYIdKkR0QbFThYiIiIiImpTg4GDMnTsXhw4dgsPhQIsWLfDYY4/hySefvNhVI6LfGN7+Q0RERERERETUAH4XuwJERERERERERE0RO1WIiIiIiIiIiBqAnSpERERERERERA3Q6B5UW11djePHjyM0NBQmk+liV4eIiMiLYRgoKSlBfHw8/PwuzG8TlZWVcDqdPs1pNpthtVp9mpNIF9t7RETUmJ1Ne++8daosWrQIc+bMQVZWFjp06IB58+bh+uuvF993/PhxJCYmnq9qERER+cSRI0cuyLSdlZWVaNWqFbKzs32aNy4uDgcPHmTHCjVYQ9t6ANt7RETUNOi0985Lp8rbb7+NcePGYdGiRbj22mvxj3/8AwMHDkRmZiZatGihfG9oaCgAYAIAi6Kc1Iyt1KmnEB+vkWOPENdpLlQL8SSNHG8K8Wc0cqzyQT0kzTXKbBfi6iPolDwhHqOR4yYh/opGjiohrnN8ZJ5jHADu0SjTXYiP0ciRIsR1ftN3CfEQjRzLhfgcjRwbhbjO19uOQvyQRo5IIf6DRg5pm0Zo5HAIcel6CgBLhHiWRo71QnyQRo4hQvxVIe4AMA+/fF6db06nE9nZ2Thy5AjsdrtPchYXFyMxMRFOp5OdKtQg59LWA345f56d/LTyGAwMUDdVdSaxLCwsUMZjYuRWQVl5uTJuDgwUc0hVtVjMYo78fPW6XBIfL+YoKFDnsJjlekjMGjlKSkvUOTS2aVWVWxkPEI4fAAgPD1PGc3PzxRyAeueazfK6VFSqP2kdlRVijshIqdUABAerW1I//3xYzBEaqv4s0hl8Vi18AfLzk5NIx3J8gvzNo6S4WBl3OaVWFBAUpP4cdWjk8Pf3V+eo1Pl2qz4O/f3l88Ew1DumoKBQzNGihfobjtMpfUMCiouLlHG7XX3eAkCYcG7n5am/MVZWVuKpKc9otffOS6fKCy+8gNGjR2PMmFNfw+bNm4fNmzcjPT0dM2bMUL63ZgioBYDq8AwS6qAzkFRa+WCNHKqOH0CuJyB3quh8iZQu1TpNf6lZrbM9JLYLVI8yH+SQvrro7FvpEqpTD2l7yB/TeseQtL46y5G2iU6ninRe6mx3KYcvjkOdJqdUV+n64at6SHTqIX1t0bnmSse7L/atTg7peqizPQBc8FsW7PZg2O2+uBIDcpcvkdq5tPWAX84fq9WKIFWnivDFWqdTpVL4MhoUJF85qoVvgDqdCL7oVLFa1esSrLEulRXqHBaL7lWwfjrbo6pK3UrSy6G+lgUEyK2X4GD1dTUoSN2hdorUqaLzaa3+TDGJn8R6x3JwsLqMTke7tBy9ThX1+jeGqBYAACAASURBVOjcXlshHMs650OVcGutv5+6swOQt4efRg6pU0WvxXH+O1V0rg/S9vD3lzuZnE51J6PUkQXI+79c80clnfaez28Gdzqd+OKLL9C/f3+v1/v374/PPvvM14sjIiIioguIbT0iIqJf+HykSm5uLtxuN2JjY71ej42NrfN+cIfDAYfjl56oYmEIFhER0W9TFXw3woQjVajhzratB7C9R0REv17nbdqCM4fJGIZR59CZGTNmICwszPPHh5YRERERNX66bT2A7T0iIvr18nmnSnR0NPz9/Wv9UnHixIlav2gAwMSJE1FUVOT5O3LkiK+rRERE9CtQ5eM/ooY527YewPYeERH9evm8U8VsNqNbt27YsmWL1+tbtmxBz549a5W3WCyw2+1ef0RERHQmdqpQ43C2bT2A7T0iIvr1Oi+z//z1r3/FyJEj0b17dyQnJ2Px4sX4+eef8eCDD56PxRERERHRBcS2HhER0SnnpVPljjvuQF5eHqZOnYqsrCx07NgRGzZsQMuWLbVz7IF6Ctfpwvvf1ljG00L8pEYOaYIsnYmaooT4AY0cvYT4Wo0c0jSjWzVy7BfiqRo5pHX5UCOHenI04B6NHM8K8fYaOaQJwy7TyPGVENeZLnuzRhlpffpq5JDW90qNHNIU4zrHcrwQ3yLEAXl7SPUE5P37P40ch4S4tK6AvF8iNXJIx+EgjRy7hHiJRo7xQlxnm0rX1AQhrp7A8Xxyw3cjTNw+ykO/Vb5o6wFAeVkZqt31H4/x8eqrXEFBgbiMuLg4ZVyalvcUYbpbkzz4OzBQ3WqsrFRPIQoANptNGS8sLBRzSFO3lpTIV2NpKtuwMHkkks2mbsHoPMxYmlI7MlJqZQNZWXU/XLmGzhTD0lS2Fouco7xcvU11puUtLpb3ndWqnmY2NFRuWUrbPShIPU21To6ioiIxhzTleonW9lDvG41Z28Vphh0O6ZvJqVnVVMxmeXpwaZrqgAD5q790buuMMiwtLVPGpSnqASAmppkyrrNNKysrlXFpm7rd+m2u89KpAgBjx47F2LFjz1d6IiIiIrqI2NYjIiI6j50qRERE5EucUpmIiIiosWGnChERUZPAThUiIiKixsbns/8QEREREREREf0WcKQKERFRk8CRKkRERESNDUeqEBERERERERE1AEeqEBERNQlu+G4qZE6pTEREROQLjbZT5QYAqlnDvxHeL89+DUQK8RUaOfoK8Q0aOYYLcameAJApxLM1cqQJ8f9p5BghxOM0ckiz0vfQyLFNiN+gkeM2jTKSVUJc52vNcSHeRSPHwza5zA+l6ri/xnLyhHi5Ro71QjxRI8cgIf6sRg6prn/SyDFSiE/XyPGlEO+ukUO6PnTSyOES4rdr5NgqxHWuudJ2D9HIIR2n+UK8UmMZ54cbvrtth50q1DjYbKEICqq/xVdRUaF8v2EY4jL8/dXN3fz8AjGH3R6qjBcXF4s5IiIilPGAAPmTtrJSfQVyueRrRGSkumXpcDjEHNK6BAYGijncbnVdQ0KCxRwlJerGy48//ijmCA8PF8tICgsLlXGNwxRVVepP2qCgIDFHbGysWKa8QmrhmMQcVVXqfVddLX/GFBWpzxmdY8hutyvjOTnyN6DqavW3xujoZmKOw4cPK+OXXBIv5qgQ9ktwsHw+SNcH1bW2hnRNlc59QL4eFhbK19xmzdTb3c9Pvl5K15iqKvVxWuXW6VH4v/polyQiIiIiIiIiIo9GO1KFiIiITscH1RIRERE1NhypQkRERERERETUABypQkRE1CRwpAoRERFRY8NOFSIioiaBnSpEREREjQ1v/yEiIiIiIiIiagCOVCEiImoSOKUyERERUWPDkSpERESklJ6ejs6dO8Nut8NutyM5ORkbN270xBcvXozevXvDbrfDZDKhsLCwVo6CggKMHDkSYWFhCAsLw8iRI+ssR0RERNSUNNqRKskAbIr4cuH9P2oso7UQ76GRw1+ID9PI8YMQj9LIcZsQ/0YjxxIhrrMuViG+RyNHsBAv0cgRKsTnaeTIEeJfaeS4R4i318ghHWM69ZhQKpeRzgedYyhfiDfTyBEpxHW+gk0S4jq/0Q8V4us1crzigxw3CPEBGjnihLjOMXSZEE/3QY4rNHIsE+I6+7aLEJfOhXKNZZwfF++ZKgkJCZg5cybatGkDAHjttdcwbNgw/Pvf/0aHDh1QXl6OlJQUpKSkYOLEiXXmGD58OI4ePYpNmzYBAO6//36MHDkS69atO7dVoSbNZgtBUFBQvfH8fPUni8PhEJdRXq4+a0NCQsQcgEkZtdvDxAyVleq6+vtLn/hAeHiEMl5RUSHmyMvLU8bDwuR18fNTb4+yMvlK6een/m23ulq+oks5EhKaizlcLvX1sLJS3qaRkerWi9Va/zFew6TepCgvl+tx5MgRsYzZbFbGdda3qkq9bwIC5K+Y0vGus/+zs7OUccMQU4jHe3FxkZijRYsWynhRUbGYIzRU9c0XCA21izkCAgKVcZ3rg8ViUcZzc0+KOcxmdQ6d80G6TgHyzpWWI50Lbrf+qN5G26lCREREp7t4nSpDhgzx+v+0adOQnp6O3bt3o0OHDhg3bhwA4OOPP67z/d9//z02bdqE3bt3o0ePUz9Z/POf/0RycjIOHDiAtm3bnv0qEBERETUCvP2HiIiItLndbmRkZKCsrAzJycla79m1axfCwsI8HSoAcM011yAsLAyfffbZ+aoqERER0XnHkSpERERNgu9HqhQXew9Jtlgs9Q79/eabb5CcnIzKykrYbDasXr0a7dvr3MQIZGdnIyYmptbrMTExyM7OPsu6ExERETUeHKlCRET0G5WYmOh5cGxYWBhmzJhRb9m2bdti//792L17Nx566CGkpaUhMzNTe1mmOh4YYBhGna8TERERNRUcqUJERNQk+H6kypEjR2C3//LwO9UD6sxms+dBtd27d8fevXsxf/58/OMf/xCXFhcXh5yc2o//PnnyJGJjY8+28kRERESNBjtViIiImgQ3fNepcuqJ9jVTJDeEYRhaM68AQHJyMoqKivD555/j6quvBgDs2bMHRUVF6NmzZ4OWT0RERNQYsFOFiIiIlB5//HEMHDgQiYmJKCkpQUZGBj7++GPP9MjZ2dnIzs7GTz/9BODU81dCQ0PRokULREZG4vLLL0dKSgr++Mc/eka23H///UhNTeXMP0RERNSkNdpOlWMAghXxcOH9fTWW0VWIt9bIsV6If6KRI06Iq2dxPyVdiOusSw8h3kwjxzIhfoNGjj1C/HqNHNJcEhs1csQL8b9o5HhbiF+qkcMlxJ0aOQZolNkuxHW+9kh1/Z9GDuncPaCRQzpn7tDIESrEqzVyfCnE79PI8ZoQl64fALBPiEvHOgB8I8Rr39hRW5EQb6ORY5gQ15lHRipzmxAP1FjG+XHxplTOycnByJEjkZWVhbCwMHTu3BmbNm1Cv379AAAvv/wypkyZ4in/+9//HgCwbNky3HvvvQCAN998E3/+85/Rv39/AMDQoUOxYMECH6wLNWVOpxP+/vVftVUxAAgNla7WQHCwqkUJWCxmMUdhofoKVlZWJuYIDFQ3u3UeL5Sbe1IZN5vrv4WvhrQ9AgLkrwd5eXnKuM5+kbaZzWY75xxFRcXKOACYzeqrel0P2T5Tfn6BehmKWytrVFcbQgkprrfdS0pKlXGLxSrmMJvVdXE65dZpaKh6/+qNhFSfNBER0jdGwM9P/YhRq7w5UF5eoYxHRUWJOfLz1edUQIDc+igvL1fGAwPlHBUV6nVxueT2Q1WVWxm3WuXzISxMve/KytTHMQCUl6uvD+Hh6mUEBOh8C/+/stoliYiI6Ddp6dKlyvjkyZMxefJkZZnIyEgsX77ch7UiIiIiuvjYqUJERNQkXLyRKkRERERUN3aqEBERNQnsVCEiIiJqbNQ3kRERERERERERUZ04UoWIiKhJ4EgVIiIiosaGI1WIiIiIiIiIiBqAI1WIiIiaBDd8N8JEPd0hEREREelhpwoREVGT4IbvOkPYqUJERETkC422UyUCQIgiXiy8f7TGMladYxwAKoX4AI0cx4V4S40c/kK8r0aOuUL8pEaO+4T4Bo0cUl1vMgwxh9NkUsalbQ4A4UJ8iUaOTkJ8i0YOlxCP0sjxk0aZ+4X4/zRyzBbiD2nkeFGI65xT44X4No0czYV4M40c0jF0QCPH9UJcdZ2s0UuIL9fIESzEH9XIIS1ntUaOw0JcqicA3CPEdwhx6bpPRPoCAvwREFB/K6a6Wt0BGBUlfwoWFhYq4wUF0ictYAhtj9DQUDFHVZV6OWazWcwBqNs3oXa5HidPnFDGq6rkEXHSdi8ullrqgF2o6333Sa1KYMmSpcq4yyXvWz8/dSs6NzdPzBEUZFXGS4pLxBzSMebvL39tczicYpnoZtHKuNPhEHPk5KiPoeho9TIA4OTJXGVcOj4AICYmRhkvLZW3e0BAoBCXt7u/v/oYqqyUWw4hITZl3M9ffmqHLVSdIz8vX8zh56deTmxsrJgjP1+9nMLCIjGH06k+lqV6AkBkpPo6JR0fFRr7rUaj7VQhIiKi0/FBtURERESNDR9US0RERERERETUABypQkRE1CRwpAoRERFRY8NOFSIioiaBs/8QERERNTa8/YeIiIiIiIiIqAE4UoWIiKhJ4O0/RERERI0NR6oQERERERERETVAox2pcghAkCJ+h/D+xRrLkGau17njvK8Q36aRQz2zPdBVI4c0o/xUjRy3C/HDGjmyhbi0zQFglRBPN5nEHJcK8UiNeuwR4gc0cqQK8YEaObYK8e4aOao1yqwX4oc0cswR4l9q5LhNiG/UyCGtS0uNHIlCXDpfAPk6pNOr3UuIP6WR4z4hrrMu+4R4oUYOaV16aOSQrkOxGjmWCfGHhHgpgGc0luN7HKlCvz4OhxN+fv71xsPDI5Tvz8vLFZdRXW2cdb3OFBoaqoyXlpaIOUwm9VU/KChYzBEQoF6X7CypJQZERIQr406nU8zhcqlbdIYhb/PCQvUnx5w5UqsCMJstynhAQP3HVo3i4jJlvLJSamUDdrtdGQ8LU8cBoKREfQwFB8vHh8ZmR3FRkTKus/+bN2+ujJeXl4s5wsPVx2FxcbGYw+1WlzGbzWKO4GB1mYgI9TUIAHJz1dchja8usNnU15isrONijshI9TccnXWR9p3bLbcfbDabMq5zLEvHYWBgoJgjLy9PGY+OjlbGAwLkZXjKapckIiKii4idKkRERESNDW//ISIiIiIiIiJqAI5UISIiahI4UoWIiIioseFIFSIiIiIiIiKiBuBIFSIioibBDd+NMNF5FDsRERERSdipQkRE1CRUAZBnstDPRURERETnirf/EBERERERERE1AEeqEBERNQkcqUJERETU2DTaTpUiAA5FfJXw/hKNZYwQ4ps1cuwQ4iEaOb4U4s00cpQL8e4aOf4nxDdq5LhCiP+okSNJiPfSyJEmxKXjB5CfOKCzXw5plJEME+Jv+SAHAOwV4jdq5PhKiL+okUM6hp7XyLFQiN+ukUO6hugcy4VCPFIjR7oQD9TIsVyIz9fIsVqIt9fIsUeIt9bIIZ2X+zRyRAnxrUK8UmMZRKTH7a6G213/mV1YqL6SVlfLzweKiFBfbUtKisUcpaWlyrifnzz4u7y8QhkPCJCb5dXV1cp4cHCwmMPhcCrjxcXy9ggKChKWoWrFn2I2m5Vxm80m5oiMVF/RCwsLxByGoY7r7BeXS71NdYSFhSvjBQX5GjnCxDLl5epOdZstVCOH+pvHyZMnxRzSMdS8eXMxh7SciIgIMYd0DdE5llXXMAAICJB/EMnNVa+LyWQScxQUqI/3hIQEMUdRkfqaa7VaxRzl5WXKuNlsEXPIy5C+/QL+/urtXlKibu1XVOq3+BptpwoRERGdjiNViIiIiBobdqoQERE1CZz9h4iIiKix4YNqiYiIiIiIiIgagCNViIiImoQq+O63EN7+Q0REROQLHKlCRERERERERNQAHKlCRETUJHCkChEREVFjw04VIiKiJoGdKkRERESNTaPtVCkGoJoVvK3w/qMay1gmxNtr5LhPiC/XyDFLiL+tkeMrIS7VEwA6CvE9GjkihfggjRzZGmUkjwvxvho5pIlLp2jk2C/EMzVy/CjE5VnagR0aZVoL8VCNHJuF+KMaOf4nxP+ukUM6d9M1ctwhxJf6oB5lGjnmWtTxvaoLZU0ZIb5Vox7S/j+kkUO6PuhMFiyVaamRQ9ovu4S4xiYnIk3uajfc7vpno7Ja1RdBp9MlLiMvL08Zt1qtYo6YmChlPD8/X8wR3zxeGS8sKBBzVFRUKOORkep6AkBQUJAyXl4ufzoFBKivxhaLXczhcsn7TnL8+HFlPDTUJuYwmdTxuEsuEXNUlKtbYxUVlWIOp1P96VJdXS3mKCkpFctYLGZl3N9f7rwvLlavb2xsjJjD4XAq49K+BeRzNzc3V8wRERF+zjmkeujsu8TERGW8tFQ+L8vK1GWKi0vEHH5+6nPb6VTvNwDw9z//XQxms/o4BuTPj7Iy9XGss99qNNpOFSIiIjqdG76bCplTKhMRERH5Ah9US0RERERERETUABypQkRE1CS44btnoXCkChEREZEvsFOFiIioSagCINz8f1a5iIiIiOhc8fYfIiIiIiIiIqIG4EgVIiKiJoEjVYiIiIgaG45UISIiIiIiIiJqAI5UISIiahI4UoWIiIiosWm0nSpXAQhRxFcJ7/9KYxkPCfF4jRwrhHhLjRz7hfgGjRwjhPhejRxThfijGjkqhbhqn9aIPMdlAMBlQjxKI4c0N8YxjRz+QryTRo6eQlznWP9Ro8wAIb5VI8cVQlynrlYh3l4jR6YQn+iDHJs1crQR4tdr5HjWoY5318hxWIjrnJeDhPgsjRyPCPEyjRzSdfkzjRzS9kgV4qXQW1/fu3idKunp6UhPT8ehQ4cAAB06dMDTTz+NgQMHAgAcDgcmTJiAFStWoKKiAn369MGiRYuQkJDgyWEy1a57eno6HnzwwYavBjV5IcFBCAoKqjdeWFikfH9FRYW4jOjoaGU8MFBuDufnFyjjZrNZzFFRrq5rcXGxmCMiQt1KKi8vF3NkZ2cr47GxMWKO6mpDGffzkwfD+/urW0mGoV4GAFgsFmU8ICBQzCEtxuV0iTnqur6dTnWM17DZbMq4zr51OoVGA4DQULsyXlJSIuYIDlavT7lwrAPyMWK1Si1CoLJS/a0gNi5WzlGhzqGzPaxW9XFoC1XvWwA4fjxLGZe2OQA4nU5lXOe8tIepj48TOTlijmbN1NeQ6mp5BkKzWX3ulpbKrUancO6GhYUJdZCv6zV4+w8REREpJSQkYObMmdi3bx/27duHG2+8EcOGDcN3330HABg3bhxWr16NjIwM7Ny5E6WlpUhNTYXb7d1wWrZsGbKysjx/aWlpF2N1iIiIiHym0Y5UISIiotO54buRKvKvRKcbMmSI1/+nTZuG9PR07N69GwkJCVi6dCneeOMN9O3bFwCwfPlyJCYmYuvWrRgw4JdxcOHh4YiLizv36hMRERE1EhypQkRE9BtVXFzs9edwyEPH3W43MjIyUFZWhuTkZHzxxRdwuVzo37+/p0x8fDw6duyIzz7zviHr4YcfRnR0NK666iq8/PLLqK6u9vk6EREREV1IHKlCRETUJPjy4bKnciUmJnq9OmnSJEyePLnOd3zzzTdITk5GZWUlbDYbVq9ejfbt22P//v0wm82IiIjwKh8bG+v17IZnnnkGffr0QVBQED766COMHz8eubm5ePLJJ324XkREREQXFjtViIiImgTfd6ocOXIEdvsvD6VTPfSxbdu22L9/PwoLC/Huu+8iLS0NO3bsqLe8YRheD288vfOkS5cuAICpU6eyU4WIiIiaNHaqEBER/UbZ7XavThUVs9mMNm1OzWnVvXt37N27F/Pnz8cdd9wBp9OJgoICr9EqJ06cQM+e9c9fds0116C4uBg5OTmIjZVnaCAiIiJqjPhMFSIioiahysd/58YwDDgcDnTr1g2BgYHYsmWLJ5aVlYVvv/1W2any73//G1arFeHh4edcFyIiIqKL5axHqvzrX//CnDlz8MUXXyArKwurV6/GTTfd5IkbhoEpU6Zg8eLFKCgoQI8ePbBw4UJ06NDhrJbzPwCq2bjvE94/W2MZnYT4FiEOANcL8UKNHIeF+DqNHNJM3b9TT/UNAAhVT+WNSI167BHi8Ro5pNngdZrfJ4X4EY0cXYT4co0cDwjxqRo5rEJ8hEaO6zTKTBPil2nk+FKIT9fIsU2IS8cHIG+zbzRy1H9TwylLfZDjB40cPwrx8Ro5pGP5Fo0c0r4bppFDOj66a+SQrjEhGjlChbi03yo1lvFr8/jjj2PgwIFITExESUkJMjIy8PHHH2PTpk0ICwvD6NGjMX78eERFRSEyMhITJkxAp06dPLMBrVu3DtnZ2UhOTkZQUBC2b9+OJ554Avfff7/yliO6OC5UWw8AHA4X/Pz8641HRUUp35+TkyMuIyhI1aIESkqKxRwhITZl/Mzpw+vidDqV8datLxVzSA93tlqlT0DA31/9m6q/f/37o0ZlZbkybjbLDU+3W70uOvWoqlJ3EEvbHJCPj4KCfDFHVHS0Mp6dla2MA/C6XbIukZFyS9wWqj5OASAnR10Xs1m+JldUVCjj8fFyi7+kRN2iq66Wzylpm1UK9QSA0tJSZbxFixbnnKOyQm45SA+Kj4mJEXMEBQcr4wf/d1DMYbGYlXG7PUzMUV6uvj4EC/UEgLIy9bdbPz95bIh0rZOOwYpK/RbfWY9UKSsrwxVXXIEFCxbUGZ89ezZeeOEFLFiwAHv37kVcXBz69esnVpqIiIhU3PDdKJWzm1I5JycHI0eORNu2bdGnTx/s2bMHmzZtQr9+/QAAc+fOxU033YTbb78d1157LYKDg7Fu3TrPl6LAwEAsWrQIycnJ6Ny5M+bPn4+pU6fi+eefP7dNQucF23pERET6znqkysCBAzFw4MA6Y4ZhYN68eXjiiSdwyy2nfvt87bXXEBsbi7feegsPPCD9bk9ERER1qwJg+CjX2XWqLF2qHptltVrx0ksv4aWXXqoznpKSgpSUlLNaJl08bOsRERHp8+kzVQ4ePIjs7Gz079/f85rFYkGvXr3w2Wef+XJRRERERHSBsa1HRETkzaez/2Rnn7pH78yn+MfGxuLw4bqfHOJwOLzuISsulu9rJSIi+u25eCNViGo0pK0HsL1HRES/Xudl9p8zHxpkGEa9DxKaMWMGwsLCPH+JiYnno0pERERE5CNn09YD2N4jIqJfL592qsTFxQH45VeMGidOnKj1i0aNiRMnoqioyPN35IjOvCxERES/NY1rSmX6bWpIWw9ge4+IiH69fNqp0qpVK8TFxWHLll8mI3Y6ndixYwd69uxZ53ssFgvsdrvXHxEREZ2JnSp08TWkrQewvUdERL9eZ/1MldLSUvz000+e/x88eBD79+9HZGQkWrRogXHjxmH69Om47LLLcNlll2H69OkIDg7G8OHDfVpxIiIiIvI9tvWIiIj0nXWnyr59+3DDDTd4/v/Xv/4VAJCWloZXX30Vjz76KCoqKjB27FgUFBSgR48e+PDDDxEaGnpWy/kSgFkRTxbef6PGMmYL8ac1cgQK8TKNHJcJ8bUaOTYL8bdcco6jQjxcox45Qny5Ro66J+T8xSqNHAOEuM4jGg8J8eYaOf4nxOv/Te8XeUI8TCNHpkaZHkJc4xBCMyE+QyPHGCEunXMAkC/E12vkaC/EdY7Dq4T4Jxo5HhbiOusi7TudCVCl65S/Rg5psP9xjRzSdSheI0f9j9I8RTqOKzSWcX644bsH1Vb7KA/9Gl2oth4AVFSUwzDqPx5DQkKU7w8NtYnLyMlRt07iLokTc6ieFwMA1dVyy8JisSjjhYWFYo6SkhJlPCkpSczhdKo/Ffz85Ct6VZV6tFtBQYGYIyFB3ZIqLCwSc0jHnGHI10yn06mMBwTILQ/naQ9hrot0HAPyNvX3l/dLZUWlWCY4WF0XnW0WEKD+CpmTk62MA0BUVLQyLp1zAFBVpT7viorkB2JbrVZlXOe8DA4OVsbLykrFHM2aqVsfRUXy+SC1EaKiosQMFot6ewDqYx0AXC71NUaKA0BAgPp49/PTOC/Fc1t9HAdonHOestol/0/v3r2VJ5vJZMLkyZMxefLks01NRERERBcZ23pERET6fDqlMhEREZ0vHKlCRERE1NiwU4WIiKhJqILvni/PThUiIiIiX/Dp7D9ERERERERERL8VHKlCRETUJHCkChEREVFjw5EqREREREREREQNwJEqRERETQJHqhARERE1No22U+UQ1JVbLLy/u8Yy7hPimzVydBTiP2nkkOraViNHJyG+QyNH6DnGASBVo4xEmhFcWlcAyPRBjp1C/HaNHNJM7200ciQIcfWs9qds1CgTLsQ/0cjRXojna+R4TYgf0MgRK8R1rg/SMTJJI8cRIX6bRo7nhPhVGjmkc3eDRg7pWveURg7p+CjSyBEoxFtr5JCOwx+FuFNjGeeHG77rDPHVLEJE58bpdMDPz1RvPC8vV/n+4OBgcRlRUZHKeHFRsZgjKEj9ie5wyFcGqa5Wq9RqAIKCgpTx0tISMYefn7pz1t9faokBYWF2sYzEZKp/vwPyNgeAyspKIYd6ewFAWVmpMh4eHiHmMJnU29RiMYs5zGb1J1xAgPy1rbhYPpal/SttDwCwWNT7xu0WUyAvL08ZdzgcYo7AQPU20bk+SMdZVla2mMPlUp//4eFSKxs4cSJHGQ8KktdF2rc6x4d0zmRlZYk5pGuZW+MAka4POudUVZV6OVVV6mNMur6cjrf/EBERERERERE1QKMdqUJERESnqwKg/uVGH0eqEBEREfkCR6oQERERERERETUAR6oQERE1CRypQkRERNTYsFOF3q229QAAIABJREFUiIioSWCnChEREVFjw9t/iIiIiIiIiIgagCNViIiImgKj2ncDTDhQhYiIiMgnOFKFiIiIiIiIiKgBGu1IlQkAQhTxL4X379JYxkAhfkQjRy8h3lojx2whnqSRI1KjjKS9EP9JI8cgIW7VyNFRiL+mkWOiEO8QLOf4qlwd36NRj9uEuHQc6+TYp5HjBo0yS4V4kkaOOCEerpGjUIg308ixXqOMRFqX4Ro5pOvDBI0c1wvxQI0c0jFUopHDX4j30MgRK8QHaOR4UYi31MgRL8TvF+IlAP6psRyfq/6/P1/lImoEYmJiEBQUVG+8oqJC+f7S0jJxGXa7XRl3uVxijtDQUGXcYpFbODk5Ocq42WwWc/j7S1djmdWqrqvD4RBzhIWpP41NJvl3W9V+B4D8/HwxR2ys+tM6OFhu8EnHWFmZfIxFRKhbOOXl6mUAQHh4hJBDaJhCPk4BIDc3VxkPDJSPw8BAdesjIEA+Tquq3EIO+WtqcXGxWEYSGKheTkSEer8AgC3UpowfP3ZMzBESos7h5yc/U006Dt1u9TYHAJNJvRydc0o6PqRrMgCcPHlCGde5Xkr1iI6OVsbLhWvD6RptpwoRERGdxv1/f77KRURERETnjLf/EBERERERERE1AEeqEBERNQUcqUJERETU6HCkChERERERERFRA3CkChERUVPAB9USERERNTrsVCEiImoKePsPERERUaPD23+IiIiIiIiIiBqg0Y5UKQDgUMQfEN7//zSWsViIt9XIkalRRrJE6Np6TmOYdnshflijHtlCPEEjxwIf1GOoEL9DI8cSId6pXM7xgw/qsU+jjGS8EF+n0TX6D41jaIQQXyWnwGVC/BuNHFFC/HaNHNJ5OVEjx3IhrnMsv+eDHCFCPFEjx1Yh3lEjR2shLl2DAKCvEN+skSNQiC/VyPG6EG8er44XV0O+YJ4PvP2HfoXcbjfc7vqHTkVHRyvff+TIUXEZeXl5yrjFYhFzVFRUiGUkLVu2UMazs3PEHEFBVmXc4XCKOaqqqpRxs1m60gInTpxUxp1OuR7h4WFCPELMkZeXq4yXlQWJORyOynOuR1mZRsNScOyY+li+9NJLxRwnT6q3BwBERkYq44WFhWIO6ZyprJTPl4AA9dfQiAh5u0v7LjY2TsyRn5+vjOscy0VF6m2mk8PPT92gDww0izmKi0uUcen6AQAWi3o5Vqucw263K+PFxcViDsCkjErXdQBo2bKlMh4cHKxRDz0cqUJERERERERE1ACNdqQKERERnaYavnsWCkeqEBEREfkEO1WIiIiaAj6oloiIiKjR4e0/REREREREREQNwJEqRERETQEfVEtERETU6HCkChERERERERFRA3CkChERUVPAZ6oQERERNTrsVCEiImoK2KlCRERE1Og02k6V/wKwKuI7hPffo7GMdkJ8vkaOMCHu0sjxhXBve6hGDslmjTKRQlynDT5MiL+okWOVEO+kkcMhxI9r5BghxLdq5AgU4rM0ckjHoXT8AHr77pAQT9bI0VGIL9fIkS3EHzbks+oFk3rL6+y7ECE+XSPHNiHeXiPHWiHeWiOHRYjnaOT4UYhL6woAhUJc57z8ixAfrJEjU4ivFCpSqbGMX5v09HSkp6fj0KFDAIAOHTrg6aefxsCBAwEADocDEyZMwIoVK1BRUYE+ffpg0aJFSEhI8OT4+eef8ac//Qnbtm1DUFAQhg8fjueeew5ms/lirBI1EpUOJ0ym+u9GLy1Vn5CRkRHiMqzWIGX85MkTYo6AAH9lvLraEHOUlZUr4/7+6mXoKCkpEcvIy5FaL0B4eLgyfuKEvE0LC9WfCtJ+A+Tt7nLJbYaICHULWGebmkwmZbx583gxx4kTJ5Vx6fgBAMOQj0On06mMh4RILSAgKEi9b/Lz88UcVVVVyvj9998v5li5cqUyXlxcLObw81M/DSM+Xt530jFitaq+1Z5SVFSkjFss8meln5/6OHS51NscACor1d+iSktLxRzV1epvHk6nfF7GxMYo4//773/FHJWVFcp4QUGBMl5Rqd/i4zNViIiImoJqH/+dhYSEBMycORP79u3Dvn37cOONN2LYsGH47rvvAADjxo3D6tWrkZGRgZ07d6K0tBSpqalwu081rNxuNwYPHoyysjLs3LkTGRkZePfddzF+/Phz2iREREREF1ujHalCREREjcOQIUO8/j9t2jSkp6dj9+7dSEhIwNKlS/HGG2+gb9++AIDly5cjMTERW7duxYABA/Dhhx8iMzMTR44c8fzq9/zzz+Pee+/FtGnTYLfbL/g6EREREfkCR6oQERE1BW4f/zW0Gm43MjIyUFZWhuTkZHzxxRdwuVzo37+/p0x8fDw6duyIzz77DACwa9cudOzY0WsY9YABA+BwOPDFF180vDJEREREFxlHqhARETUFBs76th1lLtS+39xiscBiqfspPN988w2Sk5NRWVkJm82G1atXo3379ti/fz/MZjMiIryfbREbG4vs7FNPScrOzkZsbKxXPCIiAmaz2VOGiIiIqCniSBUiIqLfqMTERISFhXn+ZsyYUW/Ztm3bYv/+/di9ezceeughpKWlITOz/sf+Gobh9fDGuh7keGYZIiIioqaGI1WIiIiagvMwpfKRI0e8nmdS3ygVADCbzWjTpg0AoHv37ti7dy/mz5+PO+64A06nEwUFBV6jVU6cOIGePXsCAOLi4rBnzx6vfAUFBXC5XLVGsBARERE1JRypQkRE9Btlt9u9/lSdKmcyDAMOhwPdunVDYGAgtmzZ4ollZWXh22+/9XSqJCcn49tvv0VWVpanzIcffgiLxYJu3br5boWIiIiILrBGO1LlEgCqGdCl2c8PayxjhxAfoJFjsRAfoZFjqRCXZ0eXy3TUyHFUiEdp5DggxHVm+5Ym2FylkaPZOcYBYKcQv0wjh7S+ozRyJArxn3xQDwAYG6aOP1ck5/ibEE/SqMePQnyWKVDMcUSIr9eox4dCfJlGjr5CXOdY/p8QD9HIYRXiOudDjhD/i0aOFUJcp5d/qhC/USOHdD4EC/GLdrPKeRipouvxxx/HwIEDkZiYiJKSEmRkZODjjz/Gpk2bEBYWhtGjR2P8+PGIiopCZGQkJkyYgE6dOnlmA+rfvz/at2+PkSNHYs6cOcjPz8eECRPwxz/+kTP//MaZAwNgNtd/Xa+Zlrs+TqdLXEZpaZkyHhoaKubIy8tTxiMiIs85R2Cg/PnmdqvLBAVJV3x5m/n7y18PKivVV1LDMMQcMTExynhhYaGYIyBAXVcpDgClpaXKuE5nc3W1+oFXhw//LOZQnQcA4HA4xBy+2O7Hjx8Xcxw7dkwZN5vNYg6nU70+L7/8skYOpzJ+5nPD6lIzArM+0nkLyNcQnWNZ2h5+fnIryWRSlwkMlM+Hqir19UE6fgAgP1/9TV3ntt/sLPXz1mw2+botnQ/SNvUTtufp/j97dx4fVX3vf/w9yWRfJjuLoKC4s7S0rhetC0KtaK3Xyq0tV1urXgSkIFW5tbb20Ra8rXUXW7XUqgi3VISqxeKPiiJEEfeqqCgKQkhCNrJNMpn5/cElEiHfzzcQyIx5PR+PeTyU95nP+c7Z5sw353xP3HaqAACAXUTVfQPVdrHO1q1bNWHCBG3ZskWhUEjDhw/X0qVLddZZZ0mSbr31VgWDQV100UVqamrSmWeeqT/96U9KTk6WJCUnJ+vJJ5/UVVddpX/7t39TRkaGLr74Yv32t7/tpg8EAADQM+hUAQAATg884L6mMj09XXfeeafuvPPOTqc5+OCD9cQTPteJAQAAJA46VQAASAQ9ePsPAAAA9oyBagEAAAAAAPYCV6oAAJAIuFIFAAAg7tCpAgBAIujBgWoBAACwZ9z+AwAAAAAAsBe4UgUAgEQQVffdtsOVKgAAAN0ibjtV7pSU7MhPMN7/psc8Rhr52x41vmrkDR41DjXyxR41fmLkKzxqWJct+VzWZE3zG48aa4zc57fAd438Q48a7xu5tQ1K0rtG/qlHjQIjH+BRw8fUWnfe6lHjaiNf51HD2qde9Kix0sgHedToa+RWOyXpViMf5lHjZCM/26PGx0b+ikeNoUZu7beSNNbIfY513zPyBR41PjDyQ4y80WMeAPxUVFYqPS2t0zwzM8v5/qamJnMemZmZzry5ObzPNaJR++wkNTXVmdfVGV/Ekvr2dX871dfXmzUsgcA+l9BBBx1kTtPY6D5LjsViZo3CwkJnHg43mzXCYff6z8pyb4OS1Nzsnk8kYp9FJSe7f5ZZ24+vjz92nxX4LPfi4mJn7rPcrX3K2j4kqaHBPY3PMktJcS93q52SVFFR7szT0zPMGtaxLhQKmTVaWtzbcmOjfbzMyEg3atjrJTc315nX1trHuoKCfGdeXV1j1rCO7db2EQy6eiM+N633lAAAoOcwpgoAAEDcoVMFAIBEwNN/AAAA4g4D1QIAAAAAAOwFrlQBACARcKUKAABA3OFKFQAAAAAAgL3AlSoAACQCBqoFAACIO3SqAACQCLj9BwAAIO7EbafKsZJSHPn3jPev8ZiHq74k+TyZ2nr6+dMeNQ4y8hs9anzXyH3u8zrXyO2ntEtVRv6oR42hRv41jxr/aeRDPGoMNPJlHjVeN3L3k+B3+IaR3+1Rw8fZRr7Ro8b/Grm130pSg5Ff6FFju5Ef4lFjhZGP8qjxsZEv9qgxzsgf9qjxoZFv9qiRZ+QnedSwtiFrHpL0tpFb+60kjTXy2428xWMeAPykp6UrPb3zb8OCgnzn+xsbG815BAIBIzdLKBZzT7R9e51ZIxh0n3n27dvXrLFhwwZn7vNZcnNDzjwpyT5rjEQizryqyjojlDIy3GdBOTnZZo2PP97gzNPS0swaKSnus3mfddvU1OTMAwF7mebmupdHRUWFWcNHbm6uM29ttb/lqqurnXlBYYFZI9rmvmQyL8+970tSm1EjNdX6pSZt317vzLOz7e2wpcW9zGpra80aoZB7vfjsUy0tYWfe2tpq1khOdv8CzsrKMmtY25A1D0lqbm525ikp1i95KddYphXl7n3KasOu4rZTBQAA7IIrVQAAAOIOA9UCAAAAAADsBa5UAQAgEcTUfQPMxrqpDgAAQC9HpwoAAImA238AAADiDrf/AACAuLZixQr913/9l4499lhlZWUpGAyqpKREY8eO1S233KLKysqebiIAAOil6FQBACARRLv5lQCWLl2q4cOH64ILLlBdXZ0uv/xy/elPf9Ljjz+u3/72txoxYoQWLlyogQMHatq0aeYTKQAAALobt/8AAIC4dN111+mnP/2pzj//fOfjEz/88EPddtttuu+++3TttdcewBYCAIDejk4VAAASQS8cU+X111/3mu7QQw/VHXfcsZ9bAwAAsLu47VQ5XFKaI3/CeP+FHvN428j7e9RY1Q3teMvIF3vUKDPy33nUsJaHzzn4i0Z+mUeNRUae7lHjFiPf5FGjwshbPGrcaOR/9qjxqJFv96jxVY9pLD4/be408vc9alg/i670qHG2kRd71HjZyP/To4a1PHyODwuN/AKPGtY2ssKjxggjt/YXSVpp5J1fh/CZD438SI8a1nb4PSNvkPSQx3y6XS/sVJGkF154Qf/2b//mnGbatGm69dZbD1CL0J3S0tOUnt75GV9tbZ3z/Xl5eeY8mpubnXkwaB99Ghsb9rkdTU3udtTU1Jo1IpFWZ37QQQPMGs3NTcYU9uPBGhsbnXlhYaFZo7a2xpkHAvYoBdbnbWmxz9YikYgzj8Xs5dG3bz9nvm3bNrNGVZX79sVo1D5wZ2RkmtNYmpqs7UMaMGCgMw+Hw2aNiopyZ15YWGTWyM3NceZ++7Z7W/744w1mDWt55OXbx4eaavf+4HOMaWtzbyP19fVmjYyMDGduHYN2zMd9vAwEAmaNcNi976aluXoK/q9Gs3s7LCjId+Y++8JOjKkCAADi1rnnnqs333yz03z69Om67777DmCLAAAAPkOnCgAAiaAXDlQrSRdffLHGjh2rjz76aLdsxowZuvfee7VkyZIeaBkAAACdKgAAII7dddddOv300zV69GiVlX12s+u1116re+65R4sXL9YZZ5zRgy0EAAC9GZ0qAAAkgrZufiWQP//5zzr66KN11llnqaamRjNnztSdd96pRYsW6ayzzurp5gEAgF4sbgeqBQAAu4iq+zpDEuj2H0lKTk7WwoULNXbsWB177LGqqqrSY489prFjx/Z00wAAQC9HpwoAAIhbf/jDH9r/+5xzztGNN96os88+Wxs3buyQXXHFFT3RPAAA0MvRqQIAQCLozgFmE+hKlZ/97Gcd/j8/P1+lpaUqLS1t/7dAIECnCgAA6BFd6lSZNWuWHnvsMb377rvKyMjQySefrJtvvllHHnlk+zThcFgzZszQo48+qqamJp155pm65557NGCA+znynzdQkusp2db54BSPeUzax1ySJhr5Vo8a1tO+7yqwaxxe5c4/9GjHCiPf7FHjbCP/wKOG1dYfetSoMPI6jxprjLzMyCVppJEXe9R428j/06PG/3pM02zkPhfZP72PuSTNMPLFHjUeNfIRHjUs4zymud/Ire1Dki408lUeNWYZuc9P0ReNvI9HjSONPN2jhuU4j2muM/KjjDzs2RZ0jy1btvR0E3qdA3m+l5qSotTU1E7zWMz9/k2bNpnzKC4u2ucaRUXuGq2tEbNGzPgwgwcPMmu88UbnjxeXdqwXS319vTNvbbXOTKWcnNx9bkc43OLMCwsLzRqRiLut0ah9z2RjY+M+zUOSMjNdv1qkYND+yRUOu8/E8vPtHwQ1NTXmNNZ2aK1bSaqrc59Jb99un2mXlLjPHGpr7c9SXV3tzDMy3OvFR25uyJxm27ZKox2ZZo28/Dxn3lDfYNbYutX9y7OoyN6nGhrc80lJSTFrpKenOfNAYN+Hdc3Mspfp5k/dv17T0tztbGq2fh19pkufaMWKFZo0aZJKS0u1bNkyRSIRjRkzpsPC/9GPfqRFixZp/vz5Wrlyperr6zVu3Di1tSXYqHgAAMSTXjxQLQ4szvcAAPDXpStVli5d2uH/586dq5KSEq1du1annnqqamtr9cADD+ihhx7S6NGjJUkPP/ywBg4cqGeeeYYB5QAA2Fu98Pafxx9/XOeff77XtFu3btWGDRt0wgkn7OdWffFxvgcAgL99uvamtrZWklRQsONytLVr16q1tVVjxoxpn6Z///4aOnSoVq3yuUgdAABgh9mzZ2vEiBG6/fbb9dFHH+2WNzU1afny5frBD36goUOHavNmnxtV0VWc7wEA0Lm9Hqg2Fotp+vTpGjVqlIYOHSpJKisrU2pqqvLz8ztM26dPH5WV7XkEinA43OG+S+sePQAAeqXuvG0nQe7QKC0t1cKFC3XnnXdq2rRpKigoUL9+/ZSenq7q6mp98sknys3N1SWXXKLXX39d/fv37+kmf+FwvgcAgNted6pMnjxZb7zxhlauXGlOG4vFFAgE9pjNmjVLN9100942AwAAfIFdeOGFuvDCC7V582Y9//zz2rBhg5qamlRUVKQvf/nLOv74470GzsPe4XwPAAC3vepUmTJlipYsWaLnnnuuwyjvffv2VUtLi6qrqzv89aK8vFwnn3zyHmvNnDlT06dPb///uro6DRw4cG+aBQDAF1cvvFJlV/3799f48eN7uhm9Cud7AADYujSmSiwW0+TJk/XYY49p+fLlGjx4cIf8K1/5ilJSUrRs2bL2f9uyZYveeuutTr9k09LSlJub2+EFAAA+J9rNL6ATnO8BAOCvS1eqTJo0SfPmzdPixYuVk5PTft9sKBRSRkaGQqGQLrvsMl1zzTUqLCxUQUGBZsyYoWHDhrWPDg8AAID4xfkeAAD+ArFYLOY9cSf3yc6dO1eXXnqpJKm5uVk//vGPNW/ePDU1NenMM8/UPffc432JZ11dnUKhkC6U5LpD+jtGnY895jXCyOd41LAe3LjRo8YgIy/2qGEN9/aqRw1reeR41Kgy8maPGtad8Ws8ahxj5Md51Mgz8rs8aqQb+YceNaxtzGeZHu4xjbWdvetR4yAjf82jxpe6oR1ZRv6+R40CIw8buWQfp573qFFo5D6XG/7TyOfFJpo1ngq4j4h9PNpxq5H7LNPvGnmFRw1r37aWeYOk87TjiSgH4q/tO78Xa2dLudZBxbdmsxS6/sB9BiSWA3m+96uf36j09M437M8Phvt5LS0t5rwyMjKceWVlpVkjKyvTaEerWSM1NdWZB4P23zqjUfe9e42NTWYNa3kkJ9vfLJGIux3RqH05XFLSnreznRobG80arm1HkjIz3etNkpKT3cu9osL+ZrE+Szhsb6fWNhaN2j/Z0tLSzGms7Swcts8sg0H32Xpzs70dpqe7t8NdB7buTFKSe1v1qREMJjtzn+VuHacaGurNGtZ22MlhuYPt293z+c///E+zxhNP/M2ZW+tekioqyp25zzItKHAv00gkYtZISnKvW2tfaGpq0sSrf+R1rtTl23/29Nr5BSvtOLjdeeed2rZtmxobG/W3v/2Ne2YBAEhgs2bN0nHHHaecnByVlJTo/PPP17p16zpMs379en3rW99ScXGxcnNzddFFF2nr1q0dphk0aJACgUCH1/XXX38gPwo8cL4HAIC/LnWqAACAHtKDY6qsWLFCkyZNUmlpqZYtW6ZIJKIxY8aooaFBktTQ0KAxY8YoEAho+fLleuGFF9TS0qJzzz13t79Y/+IXv9CWLVvaXzfccEPXFkM0qo8//lhtbQk42i4AAPjC2etHKgMAgAOoB5/+s3Tp0g7/P3fuXJWUlGjt2rU69dRT9cILL2jDhg169dVX2y+RnTt3rgoKCrR8+fIO42zk5OSob9++XW5yc3OzrrnmGt1///1qa2vTe++9p0MPPVTTp0/XgAEDOjxZBgAA4EDhShUAAHqpurq6Di+f+8+lHWOxSFJBwY7Rh8LhsAKBQIf7+dPT05WUlKSVK1d2eO/NN9+swsJCfelLX9KvfvUrrzExJOmGG27QCy+8oKeeeqrDOAqnnnqqHnnkEa8aAAAA3Y1OFQAAEkFbN78kDRw4UKFQqP01a9YssxmxWEzTp0/XqFGjNHToUEnSiSeeqKysLF133XVqbGxUQ0ODfvzjHysajWrLli3t7506darmz5+vf/7zn5o8ebJuu+02XXXVVV4ff+HChbr77rt15plndhhI9dhjj9UHH3zgVQMAAKC7cfsPAAC91MaNGzuMaO/z5IjJkyfrjTfe6HAFSnFxsf7yl79o4sSJuuOOO5SUlKTvfOc7GjlypJKTPxt9f9q0ae3/PXz4cOXn5+vCCy9sv3rFpby8XP3799/t35uamtSFBxkCAAB0KzpVAABIBHsxwKyzlqTc3NwuPVJ5ypQpWrJkiZ577jkNGDCgQzZmzBitX79elZWVCgaDysvLU9++fTV48OBO65144omSpA8++MDsVBk5cqSWLl2qiRM7PgL8T3/6k044wXr4PAAAwP4Rt50q+ZJSHXmO8f6NHvNYZeTFHjUONXL7Sd7SICN/16PGQiOfZuSSvUxrPWrUGflBHjW2G/lvPWo8b+RzPGpYT3K31r0kjTTy9z1q5Bl5q0eNizymmWLkZ3nU2GbkjR41rO19tUeNAUbusx1mGvkTHjXGGPn3PGpYv6HLPGocZ+QLAvYeYR0vv+bRjmQj/5FHDes49HePGtYQqdbP8yaPeewXPThQbSwW05QpU7Ro0SI9++yzzo6SoqIiSdLy5ctVXl6u8847r9NpX331VUlSv379zDb8+te/1jnnnKP33ntPbW1t+v3vf6+3335bzzzzjJ599tmufSDEjeTk5A5XM+2eu+9U9xmTZ+dTqjoTDNqnw6mp1lVcASOX0tJcZ7ZSc7M9plFNTY0zLy62z16tZdrWZvfeRqPug0gwaJ8Bf/7JYJ/X/yD727p+e70zr6ysNGvsHBuqM6mp7vUmSZmZ7rMGn/GqXPuBJK8r8vLz881pNm1y/0rKzrZ+Ech8+pq1biV7mVj7rSSlprq3M5/tMCnJvT/U11u/bqTcXPcyy893b2M+WlvtM/7MzCxnvnjxYrOGtdyzs7PNGtbxsKTEPk61tUWceV2dvV6s9W/tt75jvklx3KkCAADiw6RJkzRv3jwtXrxYOTk5Kivb0Z0XCoWUkZEhacfTfo4++mgVFxdr9erVmjp1qqZNm6YjjzxSkrR69WqVlpbq9NNPVygU0po1azRt2jSdd955Ovjgg802nHrqqXr22Wf1P//zP+rfv7/+8pe/aOTIkXrhhRc0cqTVhQ0AALB/0KkCAEAi6MErVebM2XE102mnndbh3+fOnatLL71UkrRu3TrNnDlTVVVVGjRokH7yk590GEMlLS1NCxYs0E033aRwOKxDDjlEl19+ua699lpz/pFIRH/96191+umna8GCBV1rPAAAwH5EpwoAAHDyuex89uzZmj17dqf5yJEjVVpaulfzDwaDuvTSS/Xuuz43xAIAABw4PFIZAIBEENNng9Xu6ysBH5Zz3HHH6Y033ujpZgAAAHTAlSoAACSCHrz9Jx5MmzZNM2bM0NatW/WVr3xFWVkdB+Q74ogjeqhlAACgN6NTBQAAxL1///d/lyRdccUVkqRAYMfTBWKxmAKBgPk0CgAAgP2BThUAABLBzlt3uqtWgnnnnXd6ugkAAAC7oVMFAADEvZ2PZgYAAIgncdupcrykTEf+vvF+13t3Gmfkt3rU+KaRv+xR42tGfohHjbuN/H89aqQZ+Zc8agwz8v/xqHGykfcdYdfY/Lo7v9qjHYuM3Gcb227kOR41rG2owaOGsTgkSWcZ+SqPGhcaeZaRS9KbRj7Jo8Y6I7/Io8Y5Rm7t+5JUa+RPe9Sw9u3veNSwboqw9jnJ/rw1HjW+Z+RbPWpUGPl4jxp1Rn6Mkdd7zGO/6OVjqvzv/7q/yS66yGfPRryB1Ak1AAAgAElEQVTJyspURkZGp3k4HHa+PynJfuZCKJTrzMvLrSOLFAqFnHljY6NZIyfH/a2fmmqdiUmVle621tTYR+OkpIAzT0/vfH34TlNebh/RMzPdZwW5Oe71Jkk11dXOvLi42K5R4/629tnGolH3QTU52a5hbUPRqH2JYVNTkzlNdrZ7O2xstM8s8/LynLnPMrPaWlRUZNawjg/5+flmjfXr1ztza9+XpEjEvf63b7fOPKSKikpn7vNZrFHoPz8W2Z5Yn9fnVtuCAndbW1tbzRqRSMSZ5+XZy8PaL13fPV0Vt50qAABgF728U+WSSy7p8P9tbW2KRCJKTk5WSkoKnSoAAKBH8EhlAAAQ95qamjq8wuGwXn/9dZ1yyil64oknerp5AACgl6JTBQCARBDt5leCCwQCGjZsmGbPnq0pU6b0dHMAAEAvxe0/AAAkgl5++09n0tPT9cknn/R0MwAAQC9FpwoAAIh7//jHPzr8fywW05YtW3T77bfrpJNO6qFWAQCA3o5OFQAAEkFU3XeFSQLe/vP1r399t3/Lzc3VGWecodtvv70HWgQAAECnCgAASACff/xmUlKSUlJSeqg1AAAAO8Rtp8oHktIc+RDj/fZT6aUCI5/oUeN9I8/0qLHZyF/xqPETI0/3qFFj5HM9aqwz8gc8arxt5L973a7xsZH7LI9rjPx6jxrWuv2GRw3ryfa/9Kjhsx2+aOT9PWpY6/9TjxrHGbnPuvuhkd/lUeNaIw971LAuKtjuUcN6SGyrR42xRj7Po4a1bi8xcsk+hnzPo4Z1PPRZHj838lojj3jMY7/ozgFmE/BKldtvv11TpkxRRkZGh39vbm7WHXfcoWuvtfZaxKPmcIsCgc6fm5CW5joblIJB+1Q2OTnZmRcVFZk1wmH3UT8pyX72Q2trizNvbGxy5pLUp09fox0Bs0Yk4v52qqqqMmuEw83OfODAg80azc3uGh9/bJ3NSS0t7mXq2rZ2KikpceabN1tnc1Jrq/vbJzc316wRjbrXS79+9pmYz3bY0NDgzINBu7O6udm9P1jLQ5IyM91npz6fpbCo0JlXVlSYNfr0ca//aDRm1rC0tdlfuvn5ec48FrPbYW1n1dX2vm2t24IC6xe0tG2bez4FBflmjaamRmfus1769evnzNuMfU4ex9P2Sb2nBAAAPaetm18JZubMmdq+ffeuyIaGBs2cObMHWgQAAECnCgAASACxWEyBwO5/NXrnnXeUn2//1QsAAGB/iNvbfwAAwC566e0//fr1UyAQUCAQ0LBhwzpcEt7W1qaqqipdeumlPddAAADQq9GpAgAA4tbPf/5zxWIxXXXVVbrmmms63DOempqqQYMG6fTTT+/BFgIAgN6MThUAABJBd46FkkBjqlx55ZWSpMGDB+uMM87giT8AACCu0KkCAEAi6KWdKjuNHfvZc6yi0agikY7PYUpNTT3QTQIAAGCgWgAAEP+am5s1Y8YMHXzwwUpNTVVGRkaHFwAAQE+gUwUAgEQQ7eZXgrn++uu1ePFi/frXv1ZqaqruvvtuzZw5U3369NEf//jHnm4eAADopeL29p9sSen78P5vekxzxz7U3+mrRj7Io8b7Rt7Xo8YxRv6KR41GI5/mUSPZyFd51Jhh5Nd51Cg28maPGkuM/FCPGmcY+bseNcYb+WseNao8phlk5CM8ajxi5OM8aljLxNpOJXufutCjxutG/iWPGlca+TKPGjVGXuFRw1oe1v4i2dvHNo8aVxv5Co8a1na40KOGtcw+NnKfbRDdb9GiRfrjH/+oM888UxMnTtTo0aM1ZMgQHXbYYfrrX/+qSy65pKebiL2QlJTU4YlOXZWXl2dOU15evtf1d8rMzHTmPrefNTeHnXkwaJ+WW1dlNTbaR6ho1N2rWlLi862w++PNO7ajwaxQUtLHmW/e/KlZw1pmsZjdg1xbW+vM09LsdZudnePMm5vtM8+8PPej4Zua7HUbidj3dlrbamamfeVfVVW1M991QPHOhMPu/aGpqWmfa1jLVLL3maws974vSRs3fuLMhwwZYtaItLnXXaQ14swlKRx2b2c+x5jcXPf28flbb/ekuNh9DKmvrzdrpKe7t8PaWusM2W5rS0uLOzeO2bviShUAABJBVJ+Nq7KvrwS8UqWyslKHH364pB0n7NXVO07qTzvtNP3zn//syaYBAIBejE4VAAASQXd1qHTngLcH0ODBg/XJJzv+GnjUUUfpsccekyQ9/fTTXn8VBQAA2B/oVAEAAHFvwoQJWrNmjSTpuuuu06233qrc3FxNmjRJU6dO7eHWAQCA3ipux1QBAAC76M4BZhPw9p/rrvtsRK0xY8boX//6l1588UUNGTJExx9/fA+2DAAA9GZcqQIAAOJaa2urzj77bL3//mfDLh922GG6+OKL6VABAAA9iitVAABIBG3qvj+FJNiYKikpKVqzZo0CAfcTRwAAAA40rlQBACARRLv5lWAuvvhi/fnPf+7pZgAAAHTAlSoAACDupaSk6Pbbb9f/+3//T1/96leVlZXVIf/1r3/dQy0DAAC9Wdx2qhwuKdORv268/wmPeYww8hSPGlVG/qZHjWOMPMejhvV5v+VRw2rr0x41Jhv5Hz1qbDbyDz1qpBq5z2e52sjrPGpsNHJrG5SkV418uUeN73lMU2HkPtvyIUZ+SZpd49ywO3cdF3bqb+SLPWpsNfJtHjX+ZuRrPGpY27vVTkk6ycjXedSwjlPPeNQoNvK5HjXGG/nJHjWWGPnZRt7gMY/9ohff/iNJq1at0jHHHKNoNKqXXnqpQ8ZtQYkrPS1N6enpneZNTU3O99fW1przyMzMMKawt5+2NvdO09zcbNZwfU5JSk5ONmtYnzcvL8+sYS3TurrtZo3iYvcRvarK/pZsbW115uFwi1nDWnfNzT6fpciZR6P2AbOlxd3WzEz77KWxsdGZ19fbnyU/v8CcJhKJOPPmZvf2IUmpqe4zbWuZStIHH3zgzJOS7C+8lBT3r7WamhqzhrU8rH1fkg499DBn3tBgnzlY27vVTknKynJvZ9FozKyRnu5etz7Hh2DQ3cXgc3zIy8t35p//w8qeWMfL3NxcZ+6zzHeK204VAACAnVavXt3TTQAAANgNY6oAAJAI2rr5laA2bdqkFStWeF0ZAAAAsL/RqQIAQCKIqfsGqbWvAI47NTU1Ouecc3TwwQfrjDPO0ObNO24Wveyyy3Tdddf1cOsAAEBvRacKAACIe9dcc42ampr03nvvdRif4Nvf/raefPLJHmwZAADozRhTBQCARNAmn/E0/WslmL///e968sknNWTIkA7/fsQRR2jDhg090ygAANDrcaUKAACIe3V1dcrJ2f15eNXV1eaTKAAAAPYXOlUAAEgEvXyg2lGjRunRRx9t//+dj1H+3e9+p6997Ws91SwAANDLxe3tP4dJynbki433/95jHk8Z+bseNYqN/DseNYYZ+UKPGhuM/H6PGuP2MZekh438FI8aVltv9KhhPXjzfY8aK4082aPGK0Ze41Fjo5GP9KhR5jHNOiPP86hh/U47OWzXuMTIN3u0o9XIR3vUiBr52x41bjXyCo8a1mfx+Slp7Q/WNiZJLUZuLS/J3u98jpdZRu7zPJgRRv6hkTd6zGO/2DnIbHfVSjC/+c1vdNppp+mVV15RS0uLfvrTn+qtt97Spk2b9MILL/R087CXUtPTlJae1mleW1vrfP+2bZXmPA497DBn3txkHzmCQfcpc36+/S2ZkZHpzGtqqs0aLS3uo3Flpb08QqFcZ56b684lqaqqyplnZbnO4new1l3fvn3MGg0N7iNyS4t94tHQ0GBMYd932dTU5MyjUbsnu6XF/Y1vbT+S1NpqnTVI4bB7mSQn+5zhur9E3n3XOquUCgoKnLnPZ4nF3KOu+2zLVg2fJ82Vl5c780gkss/tyM629yl7f7DO5ux2+LD2u7y8fLNGUpL72g+fdmZkZDhzq50+x4+duFIFAAA4zZo1S8cdd5xycnJUUlKi888/X+vWdTxpXr9+vb71rW+puLhYubm5uuiii7R169YO01RXV2vChAkKhUIKhUKaMGGCamp8upelYcOG6fXXX9cRRxyhU045RZs3b9bo0aP16quv6sgjj+y2zwoAANAVcXulCgAA2EUPDlS7YsUKTZo0Sccdd5wikYh+8pOfaMyYMXr77beVlZWlhoYGjRkzRiNGjNDy5cslST/96U917rnnqrS0tP0vThdffLE2bdqkpUuXSpKuuOIKTZgwQX/729+82jFgwADdfPPNXWs8AADAfkSnCgAAcNrZCbLT3LlzVVJSorVr1+rUU0/VCy+8oA0bNujVV19tv9x67ty5Kigo0PLlyzV69Gi98847Wrp0qUpLS3XCCSdIku677z6ddNJJWrdundfVJtu3b9eDDz6od955R4FAQEcffbQmTJjgdYk3AADA/sDtPwAAJIJoN7/2wc5xLnbeEx8OhxUIBJSW9tnYGOnp6UpKStLKlTtGqFq9erVCoVB7h4oknXjiiQqFQlq1apU5z1WrVmnw4MH65S9/qY8++kgffvihfvnLX2rw4MFe7wcAANgf6FQBACAR7Ien/9TV1XV4WQMYSjsGh5s+fbpGjRqloUOHStrROZKVlaXrrrtOjY2Namho0I9//GNFo1Ft2bJFklRWVqaSkpLd6pWUlKiszB5Oe+LEiRo3bpw++eQTPfXUU3rqqaf0ySef6LzzztPEiRPN9wMAAOwPdKoAANBLDRw4sH3Q2FAopFmzZpnvmTx5st54440OjzcuLi7WX/7yF/3tb39Tdna2QqGQamtrNXLkyA5Pktj5GORdxWKxPf7757333nu6/vrrlZqa2v5vKSkpuu666/Tee++Z7wcAANgfGFMFAIBEEFWXB5h11pK0cePGDuOR7Hr7zp5MmTJFS5Ys0XPPPacBAwZ0yMaMGaP169ersrJSwWBQeXl56tu3rwYPHixJ6tu3725PA5KkiooK9eljPzp1xIgR+uCDD3TUUUd1+Pf3339fw4YNM98PAACwP9CpAgBAL5Wbm+s1yGssFtOUKVO0aNEiPfvss+0dJXtSVFQkSVq+fLnKy8t13nnnSZJOOukk1dbW6qWXXtLxxx8vSXrxxRdVW1urk08+2WzDjBkzdPXVV2vDhg068cQTJUmlpaW67bbbNHv27A5XqxxxxBFmPQAAgO4Qt50qT0pKd+SXGO+/0GMeK4z8U48ag4z8MY8a04w8z6PGMUae5VHDWh4nGLkkFRj5tzxq3G3kZ3jU2Gjkz9sPmdC0de58kEc7rPXS7FHD+qnhs53+w2Oa043829l2jQvq3flvPNrxIyMf6VHD+pv1hx41Uo38UI8a1j5V41Hjin2ch2Rvqxs8ahQa+WSPGsuN3HXM38n6vLtfB7E7a91Z24fPfrtfRNV9j1Tu4kC1kyZN0rx587R48WLl5OS0j4ESCoWUkZEhacfTfo4++mgVFxdr9erVmjp1qqZNm9b+VJ+jjz5aX//613X55Zfr97//vaQdj1QeN26c15N/LrroIknS1VdfvVs2fvx4SZ/dStTW1l2X9GB/q6utU2u4pdN852DIncnLC5nzqN/u/nJqbW01a+x629me1NbaR/Ti4mJnnpSU7MylHQNAu2vYd/bX1zc486ysTLPGrrf17Ulenn32WlFR4cxzcuwOX2vd+VzFtn79emdurXvJXi/RqH3Qzc93n2i1tna+n+xUV7fdnCY72z2fwkLrG19av/4DZ37QQQeZNTZt2uTMMzMzzBrp6e5pfMYJs24/TUuz1399vfsY4/OdVFTkXu7WPCR7W22xNyFz37aOY9KOJ/W5+Nzya33eSCRi1rDWXdjx3SNJ4Rb7u2GnuO1UAQAAu+jOfoIu1pozZ44k6bTTTuvw73PnztWll14qSVq3bp1mzpypqqoqDRo0SD/5yU80bVrHPxs88sgjuvrqqzVmzBhJ0nnnnae77rrLqw3vvPNO1xoNAABwANCpAgAAnGKxmDnN7NmzNXv2bOc0BQUFevjhh/eqDT5XswAAABxodKoAAJAIevBKlXhRUVGh1atXq7y8fLfL6a+4wrpZDgAAoPvRqQIAAOLevHnzdNlllykajSo/P7/DPdmBQIBOFQAA0CPoVAEAIBH04EC18WDmzJn68Y9/rBtvvFHBIKcvAAAgPnBWAgBAIujlt//U1dXpkksuoUMFAADEFfu5awAAAD3s0ksv1eLFi3u6GQAAAB3E7Z97TpCU5cgfNd4f8piH9RT2L3nUGGXkeR41Xjfyb3nUmGPkEz1qvGzk/+NRY6CRb/aoMcTIV3jUcG07knTVOrvGUCN/xqMdP/SYxlJh5O4nsO8w2mMaa1ud4X5cvCRpnJEf5dGOAiP/qkeN7Ube7FHDmqa/R42xRv6iR41WI/dZptbPUGu/lezj0M88anzTyK1tXbI/73EeNUYYebKRN3rMY7/o5bf//OY3v9G5556rf/zjHxo2bJhSUlI65L/+9a97qGXYF1mZmcrIyOg0r66udr4/OdnaY+1pXPPfKTs7e5/b0dTk/mbJy7PPGisr3UfKoqJis0ZjY4Mz37q13KyRmprizFtbW8waaWlpzry+3vo2l5KS3H8ffv/9D8wa6enp+9yOwkLrV4UtEnF/4+86jlRncnJyzGmsbXXjxo1mjdxc9y+t9HT3upWkYNDdjszMTLNGW5v7yywWs7/srIfbBQLubV2yl3tjo33mEI26G5KW5t5OJam2ttaZW/utJOXlu49DW7ZsMWuEQu7tIxKJmDWs/dLa9yUpI8Pahtz71OcHxHeJ204VAACAnX73u9/p6aef1iGHHKKamprdBqoFAADoCXSqAACQCLrz6pIEvFLl5ptv1r333stTfgAAQFyhUwUAgETQJsm4TNlbAnaqJCcn6/TTT+/pZgAAAHTAQLUAACDuTZo0Sb///e97uhkAAAAdcKUKAACJoJff/vPuu+/q73//u5588kkNHTp0t4Fq582b10MtAwAAvRmdKgAAICGcffbZ7f8dsx7ZAAAAcADQqQIAQCLo5WOqPProoz3dBAAAgN0wpgoAAImgrZtfCSgajWrlypV68MEHVV9fL0mqrKxUU1NTD7cMAAD0Vl26UmXOnDmaM2eONmzYIEk69thjdeONN7ZfjhsOhzVjxgw9+uijampq0plnnql77rlHAwYM6HLDUv7v1Rmr4nUe81hm5F/yqNFg5G961Nhg5Cs8asww8gqPGu8b+fc9anxo5K0eNaxpFnrU+KGRW+2UpEYjH+1Rw7rD/wceNfob+R0eNYo9psk08kEeNd72mMYyzMhf9qhxspFby1Syt5Fve9Sw1v9IjxqPGbm130rSWCO/1aPG4UZe6FHjG0b+M48a1jH1Zo8a1vHQ+m5o8ZgHut+mTZt0zjnn6N1331VbW5tOOeUUZWdn66abblI0GtXdd9/d0038wjiQ53uBQECBQKDTPDXVdTYo9enTx5xHXV2dM8/ItL4Bd3TouTQ32x17LS3uo8emTfVmjZKSEmceiUTMGs3NYWdeWFhg1giH3Z/F5/Y8a5qamhqzRmFhkTO32inZ6zY7O8esUV1d7cwLCuxvyRRjW68ot8/mg0H7p11Skvtv6qmpqWaN5uZmZ+6x6pSenuHMGxutM3EpMzPLmVvHD8neRjZs+Misccghg5x5ZpZ9jKmpdi+0lhb3fitJubnubbXcYxtKTU1z5snJyWaNUCjXmW/ZssWs0dTk3sb6H2SfzUda3cfD7du3O3NrO99Vl65UGTBggGbPnq2XX35ZL7/8ss444wx985vf1L/+9S9J0o9+9CMtWrRI8+fP18qVK1VfX69x48aprS1B/yQGAEC8iHbzK8FMnTpVRx99tGpqapSR8dnJ+AUXXKBly6yuMHQF53sAAPjr0pUq5557bof//9WvfqU5c+aotLRUAwYM0AMPPKCHHnpIo0fv+Bv+ww8/rIEDB+qZZ57R2LHW30oBAAD27LnnntNzzz3XoUNFkgYPHqxNmzb1UKu+mDjfAwDA316PqdLW1qb58+eroaFBJ510ktauXavW1laNGTOmfZr+/ftr6NChWrVqVad1wuGw6urqOrwAAMDnRNV946kk4JUqra17vjl08+bNys7OPsCt6T043wMAwK3LnSpvvvmmsrOzlZaWpv/6r//SokWLdMwxx6isrEypqanKz8/vMH2fPn1UVlbWab1Zs2YpFAq1vwYOHNj1TwEAwBddL7/956yzzuowbkogEFBTU5Nuuukmff3rX+/Bln0xcb4HAICfLneqHHnkkXrttddUWlqqiRMn6pJLLtHbb3c+PGUsFnMOQDZz5kzV1ta2vzZu3NjVJgEAgC+4W265RU899ZRGjhypcDis73//+zr00EO1fv163XyzzxDF6ArO9wAA8NOlMVWkHSNCDxkyRJL01a9+VWvWrNHtt9+u8ePHq6WlRdXV1R3+elFeXq6TT+78WRxpaWlKS3OPMgwAQK/XJqnz36xdYz+YI+4cfPDBeuONN/TQQw9p7dq1ikajuvDCC3XJJZcoJ8d+Oge6hvM9AAD87PWYKjvFYjGFw2F95StfUUpKSocR+Lds2aK33nrL+SULAADQmR/84Aftjz3Mzs7WxIkTdf/99+uPf/yjJk+eTIfKAcL5HgAAe9alK1X++7//W2effbYGDhyo7du3a/78+Xr22We1dOlShUIhXXbZZbrmmmtUWFiogoICzZgxQ8OGDWsfHb4rHpfk+ntGgfH+qzzmYX313+5Rwxrjvq9HjT0PvfeZwz1qWJ/3Qo8a3zRyj0fO689GnudRY7ORn+1RI93Ij/Go0cfI/+5R42Ij3+ZRY7GRT/Ko4TN8wmtGPsijxlAj/2431JjsUcPap6xtTJIOMfK/eNR4xcit7VSSTjFya7+VpJVG7rM/jDDyWR41Koy8v0eN943c2l8kqfMbGPzaEfaYx37RS69UefDBBzV79mw6Tw6gA3m+V1Nbq3C4870qGEx2vt/nNqLMzCxnXl9uHZ2k3Fz39hcMppg1olH3jpeaal/Js2mT+/Pm5dlnWqGQe5q2tohZo6qqypknJ7vXm9T54NM75ebmmjUCSe6DYnq6/U2bkuJed3V1tWaNz48x9HmRiL1Ma2vd8ykuLjZrxDwO7k2NTc48NTXVrJGR4V6uGzZ8vM81ioo8Pm/M/XlbWqwzQik11b3+Bw0abNZoamp05oGwfR2DNeB6MGjv2/X19c7cZ3/IzMxw5lu3bjVrtBrbu8/xMinJfbZVW2Pvl83Nzc7c2veTg/5dJV3qVNm6dasmTJigLVu2KBQKafjw4Vq6dKnOOussSdKtt96qYDCoiy66SE1NTTrzzDP1pz/9yevACgAAHKLqlZ0q1kkzuh/newAA+OtSp8oDDzzgzNPT03XnnXfqzjvv3KdGAQAA7OQaABXdj/M9AAD8dXmgWgAA0AN66e0/knTEEUeYHSvW7QgAAAD7A50qAAAgrt10000KhUI93QwAAIDd0KkCAEAi6MVXqvzHf/yHSkpKeroZAAAAu6FTBQCARBBTwnWGdAfGUwEAAPHMfr4TAABAD+HpPwAAIJ5xpQoAAAmg7f9e3VUrUUSj0Z5uAgAAQKfitlMlX1K6Iz/IeH+uxzwqjPwEjxrbjbzYo0aakR/uUcP6LJs9arQY+cMeNfKM/FqPGncYufVZJWmlkY/0qDHQyH3Wyyoj9/ksrUbu87yLhR7TvG3k3/GoUWPkL3jUsPap2z1qWJ/lGx41Goy8v0eNI418hUeNZiNP9qjxMyO/xqPG00Z+skeN/zDyr3nUmGbk1r4vSQ8Oduff+8idW/skAH/BYLKCwc6PZMFgivP9SUn2UTASiTjzrKxMs0Zbm7tzLxi0T6mTkty3sqWlWWeE9mdpabGPUNbVX1VV1WaN5GT3cu/Tp49Zo6Ki3Jlbn1WS6uvd39aZmRlmjZQU9zaWmmqvl4YGdzt8Pks06l4vPjVqaqwzMam52X1mkZ+fb9Zoa3N3zR9xxBF2jai7RkW5fZZsfZbcXPsXodVxn5rq3j4ke9+1tlNJisWsPyDYt8KWlW1x5j5jk9XVuc/Es7KyzBobPtrgzLOzs80axcXuttbX15s1Dj/c/Wvt/fffc+aRVuvX8WfitlMFAAB8prdeqQIAABDP6FQBACABRP/v1V21AAAAsO8YqBYAAAAAAGAvcKUKAAAJgNt/AAAA4g9XqgAAAAAAAOwFrlQBACABMKYKAABA/KFTBQCABMDtPwAAAPEnbjtVCiS5niy/0Xj/Ex7z+I2RP+NRY4iR+/w1cKCRv+9R43tGnu5R40Uj/4ZHjYVG/gePGjVG/qFHjT5G7n4C+w6pRj7Wo4bVVp8at+5jLknf9Jjm+0busx32N3KftuYYuc8+NdPICzxqbDZy95Pvd5hl5F/yqPGKkfvs288auc8P7PuN3Np+JHvd+myndxn5Vo8af/zInVv7ZZOk//WYDwBbclKykpM7Px1tbW11vr+urtacR//+Bznz7dvts4K0tDRnHovFzBopKSnOPBwOmzUKCtzfYElJ9p39DQ0Nzjw3N9esUVPjPlurrKw0a0Qi7m+ftrYWs0ZKivunTFubfdYQSAo489yQvTwqK9yfNyfHrlFRUb5PuSTl5obMaQoLC515c3OzWcNa7uXldluTk93bqs8+1aeP+4w/GLR/6ra0uLeztDT7TGvr1jJnnp7u+lW7Q2NjkzNPMrZTSRpyuHF2ai9Sc98tLCw2ayQlJTvzUJ69nVaUVzjzSCRi1tiyZYszt/bLYNB9zO4wrfeUAACgx0TVfVeYcPsPAABA92CgWgAA4DRr1iwdd9xxysnJUUlJic4//3ytW7euwzRlZWWaMGGC+vbtq6ysLI0cOVILF3a8fnHQoEEKBAIdXtdff/2B/CgAAADdik4VAAASQLSbX12xYsUKTZo0SaWlpVq2bJkikdVM4FIAACAASURBVIjGjBnT4TaCCRMmaN26dVqyZInefPNNXXDBBRo/frxeffXVDrV+8YtfaMuWLe2vG264oauLAgAAIG5w+w8AAAmgJweqXbp0aYf/nzt3rkpKSrR27VqdeuqpkqTVq1drzpw5Ov744yVJN9xwg2699Va98sor+vKXv9z+3pycHPXt23ef2g8AABAvuFIFAIBeqq6ursPLZ6BMSaqt3TE46K6DZo4aNUoLFixQVVWVotGo5s+fr3A4rNNOO63De2+++WYVFhbqS1/6kn71q1+ZgwQCAADEM65UAQAgAeyPK1UGDuz4/Lmf/exn+vnPf+58bywW0/Tp0zVq1CgNHTq0/d8XLFig8ePHq7CwUMFgUJmZmVq0aJEOO+yw9mmmTp2qkSNHKj8/Xy+99JJmzpypjz76SPffbz1fCgAAID7RqQIAQC+1cePGDo9PtR4bK0mTJ0/WG2+8oZUrV3b49xtuuEHV1dV65plnVFRUpMcff1zf/va39fzzz2vYsGGSpGnTprVPP3z4cOXn5+vCCy9sv3oFAAAg0dCpAgBAAtibAWZdtSQpNze3Q6eKZcqUKVqyZImee+45DRgwoP3f169fr7vuuktvvfWWjj32WEnSiBEj9Pzzz+vuu+/Wvffeu8d6J554oiTpgw8+oFMFAAAkpLjtVFkvyfX3MmuIu6s95rHNyF/zqHGtkU/xqPFzI2/1qLHRyI/zqHG4kd/lUWOckVd51LCmGWrkkpRq5Ks8agw0cp8BiU4w8vc9anzNyH2Ge7S2D8lerj7zsT6PtUwlKd3IrWUqSTVGvtDIJanMyH/vUeNcIy8wcklqNvKHPWrcZuRvedS40shf9qhhrbsnPGocauQXeNT4rZGfbOTWOtlfenKg2lgspilTpmjRokV69tlnNXjw4A55Y2OjJCkpqeORMTk5WdFo511BO58M1K9fvy62CF8U4ZaW3babXQWD7lPV4uJicx5tbRFn3tTUZNbo06ePM9+40f6mtbbzWMwsYY5BlJWVZdawrkirrKwwa+Tmhpx5JOJe5pLU1uY+EmVkWGcEkhRwpo2NDc5cklJTUzzm45aVlenMfcarys7OdubBoN3O1lb7V0PM2NBSUuz5WJ/Hp4Zrv5ekzEx7W7a2oZoa64xQikTcy2zgwIPNGtb+EAwmmzWs9VJdbf+KOuigAc68udk+gykqLnLmuz71rzPW/lBbU2vWsI5TeXl5Zo3y8nJnbh0vWzz2p53itlMFAADEh0mTJmnevHlavHixcnJyVFa2o9sxFAopIyNDRx11lIYMGaIrr7xSv/3tb1VYWKjHH39cy5Yt0xNP7OguW716tUpLS3X66acrFAppzZo1mjZtms477zwdfLB90goAABCP6FQBACAB7I/bf3zNmTNHknZ7ks/cuXN16aWXKiUlRU899ZSuv/56nXvuuaqvr9eQIUP04IMP6hvf+IakHX91WrBggW666SaFw2Edcsghuvzyy3XttdY1nwAAAPGLThUAAOBkXZYsSYcffrj++te/dpqPHDlSpaWl3dksAACAHkenCgAACSCq7htTpbuueAEAAOjt6FQBACAB9ORAtQAAANgznweYAAAAAAAA4HO4UgUAgATQkwPVAgAAYM/itlPlfEmuJ0evNN5f4DEP68nT3/eo8amR9/eocZKRz/ao0dfIczxqPGbk9hPnJetp8C0eNb5m5Be4H58uSbqq0p1v9GjHh0bus41Zy2yxR40rjdxnmfqs/xeN/G6PGqOM/DseNay2WutFkg4y8hEeNdxPrvfbH7YZ+ZEeNQ4x8skeNf5s5D6XLFrHy3961LjayJs9agw18t961DjGyK1tzGefA+An7/8ey92Z+vp65/uTk5PNeVjjLBcW2t/ora3uo2Bqqv2t8N577znz/v3ts8aUFPepe3KyfUSvqXGfrQUCAbNGW5t1E6E9uHV2drYzLyqyT/g++ugjZ97SYn17SeGw+6geDNrbmOReZrW1tWaFwkL35/UZMDwpyV7/DQ0Nzryy0jiJlpSd7T5Lys/PN2skJbmXazgcNmukpLj3O9ex5bP5uJeZz/4QiUSceXp6ulkjNTXVmRcVFZs1qqqqnLnHR1E06t7OrGOyJBUXu9vqsy2np6c58/Lyco8a7uVubWMtHtvgTnHbqQIAAD7DmCoAAADxh04VAAASAJ0qAAAA8YeBagEAAAAAAPYCV6oAAJAAGKgWAAAg/nClCgAAAAAAwF7gShUAABIAY6oAAADEHzpVAABIADF132079sMMAQAA4IPbfwAAAAAAAPZC3F6p8r6kDEf+tvH+HM95uAz0qJG3j7kk3Wvkd3nUuMnIN3rUGGHkKz1qNBv5KR41phr5wkq7xg+N/HmPdrxp5D6Xz6ca+QkeNbpjW//UY5q+Rv4HjxpWW0/LtGvMaHTnH3u0o8HIJ3rUsNbNUx41thr5Bo8a1n7nsx0eZeTf8qixwMhDHjWs44PPfnmIkX/Po0axkVv7VIOkRzzm0924/QdfRM3NzQoEAs7cJTk52ZxHOBx25qmpKWYNaz5JSXY7Bg50n1lWVlaYNfr27efMW1pazRqZma4zbKm+3voWlWIx93VzWVnZZo1PP93kzGtqaswahYWFzry+vt6s0dzc5MxjHpf2ubZhScrMzPJoh3tbT0qy/xYeidjrPxh0b+8HH3ywWcNaZrm59lnBxo3uXyctLS1mjWjUvR0WFRWZNbKy3Oumrq7WrBGJRJx5S4v7GCRJDQ3ubdVnO0xLS3Pmefn2L9Oa6mpn7nPMtY4P1meVpNRU96+ogoJ8s0Yw6O7qsI7bTU3u7bxDLe8pAQAAAAAA0C5ur1QBAACf4UoVAACA+EOnCgAACSCq7huotrvqAAAA9Hbc/gMAAAAAALAXuFIFAIAEwO0/AAAA8YcrVQAAAAAAAPYCV6oAAJAAuFIFAAAg/sRtp8oGSa4nbY8w3l/mMY/Djdx+krfUaOTHeNSYYOQ/9Kix0MhrPGocZORf86jxtpFnetT4ppH7rJchRu5zidZRRr7Yo0aOkd/lUeP7Rp7rUeNTj2muMPLhHjX+ZeRTrR1G0hoj/6VHO6waPvultX6XeNQYZeQvetRI8ZjG8oSRV3jUOMTI7x9g17hnkzs/0aMdDxv5nR41Vhi5tZk2e8xjf2CgWnwRtbS2Kjk5udM8MzPD+f7W1lZzHmlprjNKOee/UzTq3msyMtLNGh9//LEzLygoNGvU1LjP6Nra7C7TlBT3N0t2drZZo7nZfSRMSrLPtHJzQ848GLTXi7VuAwGzhNLS3euutqbWrJGc7P68FRWVZo3CwgJnnpRkL49IxN4fioqKnPm7775j1jj66KOd+SeffGLWaGx0f9v269dvn2uke+yX1vqtrbXXf3Z2ljNvaPA4AZZ7Yw0EYmaFuro6Zx6JRMwaqampznzIkMPMGp9+utmZZ2a6l5ckVVdXOfMBAwaaNerrtztz67je1OR/xsftPwAAAAAAAHshbq9UAQAAn4mq+27b4UoVAACA7sGVKgAAAAAAAHuBK1UAAEgAjKkCAAAQf+hUAQAgAfD0HwAAgPjD7T8AAAAAAAB7gStVAABIAFypAgAAEH+4UgUAAAAAAGAvxO2VKnMkBRz5H433N3jMw5qmxqPG+G5ox1oj/6VHjUYjn+hR43UjP9Kjxgojf9ujxslGXuVR41YjP8Wjxiwj7+9R46tGfqVHjfeN/BiPGlke0/zByM/yqPG0ked41PjYyK19X7K394c9aljb8kkeNcYZubXfStKbRr7Bo8a3jLzYo4a1/1+1ya4RMvI8j3ZY0/zKo4a1XqxBXGMe89gfGKgWX0TbKiuVlpbWaX7wwQc73x+NNpvziEbdW3xbm33tVn5+/j7NQ5KOPPIoZ15WVmbWsOZTVFRk1mhqanLm6enpZo36+npn3txsr5fsbPfZSSRir5eKinJnnpWVbdaoKdvqzFNSUswamZmZzrywsNCs0dISduY+6yUpyf57eWVlpTPPzrbP1mpr65x5crLdjpaWFmdeVbXNrFFU5D6Dqdpm/2poaHBvy1lZ9ll0bq77DMfn+NDc7N4vreUlSXl57nYEg/ZP/7Q093a2fv2HZo3k5OR9yn2m8Tle5ubmOvOYcUIXCLh6IzqK204VAADwGW7/AQAAiD/c/gMAAAAAALAXuFIFAIAEwJUqAAAA8YcrVQAAAAAAAPYCV6oAAJAAYuq+AWZ7arBdAACALxo6VQAASADc/gMAABB/uP0HAAAAAABgL8TtlSrjJaU6cusJ2T/0mMd0Iz/Io8YKIz/So0arkZ/sUcOyymOa8UY+0KPGyx7TWNxPR5fu96jxVSOv8ahhfV5rHpJkPYV9lEeNAiN/26NGscc01jIZ6VHjRSP32YYeN3KfnmBrn+rrUeN2I1/jUeNjI1/mUcNq6zc9aiw08gqPGta6/ZpHjROMfKNHDWs+Psc6a7/sY+SNHvPYH6Lqvtt/uqsOsK/y8vKUnt75N384HHa+v7CwyJzHp59ucubBYIpZY/v27c7c9Rl2isXcN95lZWWZNSwNDQ3mNPn5+c48NdVeHo2NGd5t6kwg4P5G37at3KyRmZnpzNva7OvyUlLcnzcryz0PSQoEAs48OyfbrNHc5P5Z1tzcbNYIBu2fdpGIe5lYy1SSGhvd34Q+29Chhx5qTmOx9ilr3UrSQQMGOPPGBvtbv6WlxZlbxw9JSklxr7tQKGTWqK52n80HgxGzRoPxebOz7W3ZOpZZy8tnPj7HOmu/tJZ5JOLfVcKVKgAAAAAAAHuBThUAABJAWze/umLWrFk67rjjlJOTo5KSEp1//vlat25dh2nKyso0YcIE9e3bV1lZWRo5cqQWLux4nVR1dbUmTJigUCikUCikCRMmqKbG59pBAACA+ESnCgAACaAnO1VWrFihSZMmqbS0VMuWLVMkEtGYMWM6XH47YcIErVu3TkuWLNGbb76pCy64QOPHj9err77aPs3FF1+s1157TUuXLtXSpUv12muvacKECXuzOAAAAOJC3I6pAgAA4sPSpUs7/P/cuXNVUlKitWvX6tRTT5UkrV69WnPmzNHxxx8vSbrhhht066236pVXXtGXv/xlvfPOO1q6dKlKS0t1wgk7Rti57777dNJJJ2ndunU68kifUcgAAADiC1eqAACQAKLd/NoXtbW1kqSCgs+G0h41apQWLFigqqoqRaNRzZ8/X+FwWKeddpqkHZ0uoVCovUNFkk488USFQiGtWuUzxDAAAED84UoVAAB6qbq6ug7/n5aWprS0NOd7YrGYpk+frlGjRmno0KHt/75gwQKNHz9ehYWFCgaDyszM1KJFi3TYYYdJ2jHmSklJyW71SkpKVFZW1g2fBgAA4MDjShUAABLA/hhTZeDAge2DxoZCIc2aNctsx+TJk/XGG2/o0Ucf7fDvN9xwg6qrq/XMM8/o5Zdf1vTp0/Xtb39bb775Zvs0e3q8YSwWMx97CAAAEK+4UgUAgAQQVdcHmHXVkqSNGzcqNze3/d+tq1SmTJmiJUuW6LnnntOAAQPa/339+vW666679NZbb+nYY4+VJI0YMULPP/+87r77bt17773q27evtm7dulvNiooK9enTZ98/FAAAQA/Yp06VWbNm6b//+781depU3XbbbZKkcDisGTNm6NFHH1VTU5POPPNM3XPPPR1OvnycKSnTkVt3X7/vMY/xRu5z8vqokZ/kUWOukX/No8ZBRp7jUeM6Ix/RDe34p0eNUUZ+ukcNa9363L0fMvIXPWo8beSTPWpsNPL/8ajxLY9pRhp5skeN7xm5/TdwyXq46u4/yXZ3qJEP8ajxqZEv8qhhzSfLo4a1La/3qGGtW5/hQZcYeYVHjTlG7vOz2lpm1meV7P3f2rdbPeaRKHJzczt0qnQmFotpypQpWrRokZ599lkNHjy4Q97Y2ChJSkrqeAFscnKyotEdXTgnnXSSamtr9dJLL7UPZvviiy+qtrZWJ598cnd8HOwn+/N8LycnRxkZGZ3muz5hak/C4bA5j7y8fGOKmFmjurramWdnZ5s1tm3bZtSwvxVSUlOdeXKS/W29ebP7G861PnYKBlOc+fbt280a1jLLybGXaV6+e9021Lu3H0kKBt3LrKGh0ayxfXudMy8qKjZrtLa2OPPycvsMKBTKM6ex1q/PlYO7jqe1J1u32rd0RiLuX1qRSMSskWrsD+np7j8USFJri3u519ZaZ6b2HyQ+/924J9a23OJxrMvMdP16ltLT080aNTXuz+uzXioq3GeFKSnu44dkL7PMTPs4ZX1/WPt2c3OzOY+d9vr2nzVr1ugPf/iDhg8f3uHff/SjH2nRokWaP3++Vq5cqfr6eo0bN05tbd319zUAAHqfnhyodtKkSXr44Yc1b9485eTkqKysTGVlZWpqapIkHXXUURoyZIiuvPJKvfTSS1q/fr1uueUWLVu2TOeff74k6eijj9bXv/51XX755SotLVVpaakuv/xyjRs3jif/xDHO9wAAcNurTpX6+np997vf1X333af8XXrVamtr9cADD+iWW27R6NGj9eUvf1kPP/yw3nzzTT3zzDPd1mgAAHDgzJkzR7W1tTrttNPUr1+/9teCBQsk7fir01NPPaXi4mKde+65Gj58uP785z/rwQcf1De+8Y32Oo888oiGDRumMWPGaMyYMRo+fLgeeuihnvpYMHC+BwCAba9u/5k0aZLOOeccjR49Wr/85S/b/33t2rVqbW3VmDFj2v+tf//+Gjp0qFatWqWxY8fuViscDne4dPPzTyIAAAAdB5jtjlpdEYvZt0ccfvjh+utf/+qcpqCgQA8//HAX546ewvkeAAC2LneqzJ8/X2vXrtXLL7+8W1ZWVqbU1NQOf82QpD59+nT6uMRZs2bppptu6mozAADoVfbmth1XLcCF8z0AAPx06fafjRs3aurUqXrkkUe8BrrZyfW4xJkzZ6q2trb9tXGjNSwnAAAA9hfO9wAA8NelTpW1a9eqvLxcX/nKVxQMBhUMBrVixQrdcccdCgaD6tOnj1paWv5/e/ceHFd5p3n8aal1abW6dbUkjB0jDy4SyoYstkNMAWaw4+CE20xlQhY2IRt2WVK2C8dmdjIhmQDZsUlqN9kEBwgV4qQmxZqB4EBmg4MojMBFkcIGBZNUvIH4jiXZlmVdW61Wn/3DYxnF1vt73Wpbp+H7qVKVrefod06/59Jvv30uJ90hvbOzc9zHJZaVlY0+fcD3KQQAAHzQjOT5BxgP/T0AAPyd1qDKokWLtH37drW1tY3+zJs3T7fccsvov0tKStTS0jL6NwcOHNBbb73F4xIBAAAKAP09AAD8ndY9VRKJhGbPnj3md/F4XHV1daO/v+2227R69WrV1dWptrZWd911l+bMmaPFixef1oJtkuR68viFxt/v8JhHq5F/xqPGPxq5z0mzTUZ+n0eNmUZ+rkeNDxv5LI8a1nX6VR41qo38tx414kbe4VHj1FeFn2Atp2SvF58aM4zc2gYlKeExzR+N/CseNax2/yePGtb6tbZTSTr196Qn+Nwm03p+hc8R7QYjn+NRY62Rn+dR43wjP+pRo9bIt3vUuNzIP+8xzP8PxkHGZznmG/ldRt4v6VmP+eTbZN6oFh8sZ7O/19vbo+Hh9Li5dflRKpUy59HX1+fMq6vtd+PGRndvbbzLnt6rpMTd7W5vt3snZWWu3rEUjZZ41HC3aWlpmVnDEo0Wm9MUF7unGRjoN2sUFbnfOIaHh80amUzGmVvLKdlt5lej0pk3NFi9G7/5DA2595kpUxo85uNu96amc8wa/f3u9etz6aG1T3V1HXHmktTb2+vMEwm7F11V5f6EE4vFzBrW/l9a6t73Jfv4MDLi3tYlKRp1t2kqNWjWiMfd23JdndWrlPbt2+/MBwft5aioqHDmDQ3ubd1nHsfl9PQfl+9973uKRqP67Gc/q8HBQS1atEg//elPvXZyAABwatyoFmFCfw8AgGMmPKjy4osvjvl/eXm5HnjgAT3wwAMTLQ0AAIAQoL8HAMCp5f1MFQAAkH9Z5e+yHc5UAQAAyI/TulEtAAAAAAAAjuFMFQAACgA3qgUAAAgfBlUAACgA3KgWAAAgfLj8BwAAAAAAIAecqQIAQAHg8h8AAIDwCe2gSqWkMkdudQi3eMyj1sj/4FHjuhJ3/i/Ddo0LjDzhsRwLjfxvPWr82chf8KhxmZH/J48avzFy67VK0jtGfolHjZSRf8pY95L0grH+93osx34j3+5R41Me0xw08vs9asw2cp996r8bebVHjf9l5HM8alxt5N0eNVqN/HceNe418nhgH2SeiLg3Vp9LQW4y8vOCL5s1tkcecuYtHgvy7Rnu/Ce77RrtRj7FyAfsWQDwFCkqVlFR8bh5ELj/vq+vz5xHNDp+fUlKpax3fKm62v3uc/jwYbNGWZmrZysVF9snkFdWVjpzazklaWgo7cx7e3vNGvF43JnX1Fi9bKm3t8eZW69VktLGa6moqDBrBIH7zaeqym7Tnh73a0mn3cspSZFIxJn7bKfJZNKcJpPJOPOOjg6zRnl5uTP3WdbGxkZnbu23ktTR0enMYzH3ckpSIuHezjIZ+2uI3l73cWhwcNCscc455zjzsh12B6ezyaeX7FZTU+PMFy9ebNb4zXPuT3PW/iJJzc3NzvzAgQNmDWtbLylxD4Vks/5fQYV2UAUAAJzAPVUAAADCh0EVAAAKAJf/AAAAhA83qgUAAAAAAMgBZ6oAAFAAOFMFAAAgfDhTBQAAAAAAIAecqQIAQAEIlL8bzBoPVAEAAIAnBlUAACgAXP4DAAAQPqEdVJklKebIh42/n+4xD+sJ2U961PiTsSBTPGpYr+Vmjxp/NPJejxo/N/J+jxrtRn7Uo0aFkb/rUcN6Kv1ejxp/MvK0teIkvWHk/8FjOTYa+UyPGr/ymKbOyGd51LjUyH32h/uNfKpHjRlG3uVRY5fHNJYmI/+kR42/tyaIlJg1vmDkr3gsx/eNvDrykFmj2Mif8liOP+x255d41Dho5L818iGPeQDwU15WqvLysnHzbNZ9XlVpaak5j2zWPYzY3d1t1hgacu/50ajdpQ4C92uprq6Z8HKMjNjns3V1ud8Fs1m7Ribj7gRlMvbQbVGR+y4EaY+OViLhrjE8nDZrpFLuNrXWmyQNDAw684oK16eaY7q73b1kn229p8fuaRcXu7fVsrLx98fj4vG4M/fZHzo6Opx5SYndv7HaJJPJmDXSaXsbsVjLmkwmzRr79+93T1Bpt2mt0R79/fanuYMHO535448/btaIRCLO/OhR+5ibSqWceSxmfWK0139//4AzHzSW4b1CO6gCAABO4EwVAACA8OFGtQAAAAAAADngTBUAAApAVvm7UW2+6gAAAHzQMagCAEAB4PIfAACA8OHyHwAAAAAAgBxwpgoAAAWAy38AAADChzNVAAAAAAAAcsCZKgAAFADuqQIAABA+oR1UKf73H1fu0uIxj/lG/hmPGguNPO5R43Ujv9OjxteNfKpHjS8b+S6PGuuN/BKPGl1GfqlHjYMe01isbWyzR40pRj7Ho8aNZe78H4fsGj/zmM+rRu7zejuMfIdHjZlG3utR45NG/qRHjVYjX+xR489G/rhHjXYj99mGrPms8ajxcyMf8KjxrpHf61HDWv+vedTYauT9Rj7sMY8zIav8DYZw+Q/CI/LvP6dWVDR+Jkm9vfa7QkVFhTOvrq42a1RWVjrzomL75O+BfveRcv/+/WaNxsZGZ15SUmLWqJ9S78zTQ3bHoqvL3VuLxdxtLkmZTMaZx+N2L9qq4SMSsbaxPrNGNOr+SFUei5k1mmtqnPm+ffb2MWPGDHOafmM79NmnMhn3O+GQxzZUWlrqzLNZ+50qmUw68+7uI2YNa/0mEgmzhvV6jxyxl8Nq0/JyexuyXu8559ifCI8cce/bPuslnXa/lqamc8wa2ay7xzMwYPc8rWms15JKpcx5HMflPwAAAAAAADkI7ZkqAADgBG5UCwAAED6cqQIAAAAAAJADzlQBAKAAjCh/34Rwo1oAAID8YFAFAIACwKAKAABA+HD5DwAAAAAAQA44UwUAgALAjWoBAADCJ7SDKv9XUokj/7Lx93M85rHQyH1Oj37cyK/wqLHeyL/iUaPdyNd61Ggy8l0eNazXay2nJK02cqu9JOlTRv5zjxpLjXyLRw3ryfZf9Kjxv4fc+Q0eNZ70mGamkVd41PiZkV/iUeOPRm5tpz7L8a5HjcVGvtyjxo+M3Ge/fMLIt3vUsD5Av+5R478aG8BNA3aNV4z8sx7L8fdGbu37klRl5LcZeb+k5z3mA8DW09OjdDo9bl5fX+f8+1is3JxHZWWlMw+CwKzR3X3Emcfj7nlIUldXlzOfMmWKWSOTyTjz9na7p1VS4uphy7k+jrNebyYzbNZobGx05ocPHzZrJKuSzrzrsLvNJSmZdPfW+vv7zRrFxe6T//fs3m3WOPfcac68qsp695KOHOk2pykrK3PmRUX2hQzWthyL2b3GoSF3B7ekxP6Y2tXl3kbSaXs7TCTc699nvzx48JAz7+zsMGucd16zM0+lBs0aQeDetwcH7RpTpjQ48z//+R2zhrXP1NTUmDXefbfTmScS7n1fkoqLi515XV2tM/dpr+NCO6gCAABO4J4qAAAA4cOgCgAABYDLfwAAAMKHG9UCAACntWvXav78+UokEmpoaNCNN96oHTt2jOa7du1SJBI55c8TT5y4iO1U+cMPPzwZLwkAACAvGFQBAKAAZHXssp18/JzumSqtra1atmyZXn31VbW0tCiTyWjJkiWj101Pnz5dBw4cGPNz7733Kh6Pa+nSsXeoWr9+/Zjpbr311lyaAwAAIBS4/AcAADht2rRpzP/Xr1+vhoYGbdu2TVdeeaWKi4vV1DT2NtIbN27UTTfddNJNQqurq0+aFgAAoFBxpgoAAAUgX2epPwP8SwAAEvtJREFUHP+Rjj155b0/1tMYjjt69Kgkqbb21HfO37Ztm9ra2nTbbSc/S2n58uWqr6/X/Pnz9fDDDyub5Q4vAACgcDGoAgBAAcjm+Uc6dtlOVVXV6M/atfaDvoMg0KpVq3T55Zdr9uzZp5zm0Ucf1Uc+8hFddtllY37/rW99S0888YSef/55fe5zn9Pq1au1Zs2a02oHAACAMOHyHwAAPqD27t2rZDI5+v+ysjLzb5YvX64333xTW7ZsOWU+ODioxx57TN/4xjdOyr7+9a+P/vujH/2oJOm+++4b83sAAIBCEtpBlb+TVOHIDxp/f4HHPC4z8v/pUeN7ze785Z12jb828h1GLkkXG/l8jxo/MvLHPc5rWmecxT3DYzk+beS3e9RoMfLzPWq8ZeRTPGq0G/k/edR4xsh9tvVyj2leN/JZHjWeNXJrO5Wkfyhx54eH7Rrrjfw8j+W42sif9qhhzecujxpGc3hth//HyHt9agy4c5/t4woj/1ePGtay/o1HDWvdLTTyHo95nAkjkiJ5rCVJyWRyzKCKZcWKFXrmmWf00ksvadq0aaec5sknn9TAwIC+8IUvmPU+/vGPq6enRx0dHWpsbPReDrx/VFdXKxaLjZtnMiPjZpJUVma/w8Ur4868s6PTrNHcPNOZd3V1mTX+8v5Cf8nn8jtXW0lSRYWr93zM4cOHnHlzs9G5ldTZ6e6Jl5aWmjXeeecdZ15fX2fW6O1xvyuUl9sDxYODKWcejdofl4aHM87c5z5Sxy+rHI/Pa4lE7M76wID7Dd1ncL2nx/1OGIvZ+6XVJpmM3eE7dOiwM/fZDisTCWfe3e1eL5JUVuaeT0NDg1kjEnG/w/tsh0eOHHHmIyPu46lkH8t8to943H2ss5ZTkkZG3B8qq2uqzRpHjXVXWele90VFxeY8jgvtoAoAADjhTAyq+AqCQCtWrNDGjRv14osvOj90Pfroo7r++us1ZYo95PfGG2+ovLxc1dV25wgAACCMGFQBAABOy5Yt02OPPaann35aiURC7e3HzsOrqqoa883522+/rZdeekm//vWvT6rxq1/9Su3t7VqwYIFisZg2b96su+++W7fffrvXN18AAABhxKAKAAAF4L03mM1HrdPx0EMPSZKuuuqqMb9fv369vvjFL47+/yc/+YnOPfdcLVmy5KQaJSUlevDBB7Vq1Spls1nNnDlT9913n5YtW3aaSwMAABAeDKoAAACnIAi8pluzZs24T/O55pprdM011+RzsQAAACYdgyoAABSAybynCgAAAE6NQRUAAApAoPxd/uN33gkAAAAsHg/JBQAAAAAAwF8K7ZkqhyTFHPlB4+/dT5w/5nUjv92jxms7JzYPSfpvRr7do4bVHpd61Jhp5P/P4yvSXUb+KY/l+KSR2w/plJqM/N88avxohjtft9uu8RUj/4bHclxo5D5PUP+dxzR3G/lajxqzPaax/HrYnfvs238w8gs8avzMyOMeNf6jkR/2qGF522Oabxv5jz1qLDTyn3vUKDfy/+xR46+N3Od4+bdG/q9GPugxjzMhn5fscPkPwiKTGVEmk3Hk42eSlM3anZPBgQFnXl9fb9bo7u52z2PQPQ9Jqp/ink9q0D66WO0Rj9vvTtbTtlKpIbNGOp125slk0qyRTCaceTRqf0yJRt0XRfb0HDVr/NVfne/M9+/fb9ZoaGhw5gcOvGvWKC+33iXtC0AHPbahpiZ3L/n4091cYjFrWW1Hj7r3qWzWPqcylXL3Cu02lboOdznzoiL7HISa2hpnnslM/F3XZ7+cOvVcZ3748CGzRmVlpTM/cuSIWaOiwt1mdfV1Zo1Ewr0cPsfL6upqZ269Fp/96TjOVAEAAAAAAMhBaM9UAQAAJ3CmCgAAQPgwqAIAQAHIKn9P/8nXDW8BAAA+6Lj8BwAAAAAAIAecqQIAQAHg8h8AAIDw4UwVAAAAAACAHHCmCgAABYAzVQAAAMKHQRUAAAoAN6oFAAAIn9AOqgzI3elbavx9l8c8Xjfypz1qlBv5pR41vm3kN3nU+ESVO/+Xo3aNlJFf57EcVnv80aPGH4z8Ao8aNxj5do8a63a78xaPGq8Z+WKPGm8bebFHjV0e07xg5L/1qHG5kc/xqPE7I7e2U0m63chvyUMNn+VYa+RTPWoYm6FmeNR4ysgv8ahhbcvWcUySXjbyhzxqfMbIfbbTDo9pXHzWPQA/2SCrbHb8Hl8ymXT+/chIxpzHwMCgMz961O4kRSLuK+bj8QqzRmeH++hTXV1j1qivd09z8OBBs0YQuIdVk1VGp1JSUZF7iDeVso+U1jRlZVavUqqudi9rKuVe95K0f/9+Z97b22vWGBgYcOaJRMKsMTQ0ZExhD6un02lzmt7eHmduvRZJqqyMO/NYzN4fBgfd87G2U0mqr6935rt37zJr1NW5a7iOT8d1tLv37ZKSErOGte5KS0vNGt3d3c7cZ71Y63/quXbvtb+vz5kfOnjIrFFdXe3MffbL4WH7/cElCALvaUM7qAIAAE7I59klnKkCAACQH9yoFgAAAAAAIAecqQIAQAHgTBUAAIDwYVAFAIACMCLJ/+peNwZVAAAA8oPLfwAAAAAAAHLAmSoAABQAzlQBAAAIH85UAQAAAAAAyEFoz1SpkBRz5C8Yfz/sMY8mI7/bo8ZvjPx5jxo3GPm/edRYcdSdX+pRo9zIfb7ZnGXk0z1qtBr5P3vUqDPyj3rUsLaxmz1qHDZyq80laZ6Ru5/ifkybxzRWm1jbqSRZT4z3WXczjfxPHjVGjPwzHjVuN/IfetSwXssUjxrW693lUcPa/0s8aswx8v/hUeO/GPmFHjW2Gvl8jxo/MvK4kfu8v5wJ3KgW70dFkSIVFY3/HV9fn/udJZu1z98qKXEf5ZqarB6h1NPj7mj19vaZNaqqqiY0D0nat2+fM6+oqDBruNpbkoLAXo7S0jIjLzVr9Pe726yjo92sEY0WO/NYzPVp4hhr3dXU1Jg1MpmMM49EImYNa90VF7tfqyQNDg6a08SM+VjbqSSNjLh7Wu3t9rqztpF0esisETfesKuq7F5yfX29Mz948KBZw3ot0aj9kdt6vX19abNGPO5etz7bYSzm/nTS4bFu6+rcn8TKy+39cmCg35lbr1WSDh1yfxKzjoWpVMqcx3GhHVQBAAAncPkPAABA+HD5DwAAAAAAQA44UwUAgAKQVf7OVMlXHQAAgA86zlQBAAAAAADIAWeqAABQALKS7FvM+eFMFQAAgPxgUAUAgAIwIgZVAAAAwobLfwAAAAAAAHIQujNVguDY92fWU6GtfNhjXtaT3Hs8arifoC3ZT1jPTw330+Il+8nm9jegVntJ9ref1muV7HVnvVZJGvCYxmK1u888rDbzqWE9+rTEo4bP+u81cp/1b+2XPsuRjxrWsvrsU9b+7/Pkemtb9WlTa1nz0R4+26E1jc8x19r/fbZlq919Xou1rL758fers4UzVfB+MtrfS7n36mzgPpJms/bWnMlknPnAgH3kGBx0H0kHjdchSaWl7qOcT41Uyv2uUFRkf18aMabJZu2Hrkci7qPRyIjdW7PWfWrIfre21osPq92t1ypJmYz79UajxWYNa90VF9s1rDaVpIEBY1v2aNMRYxsZTtu9E7uGvf6Litxt4rNPme3hUcPqD0SL7Y/c6WH3682O2PtlUZF7W41G3cdCScpm3duyzzZmbUORiH2cGhw03hs8jlPWslr73PHjrU9/LxKc7V6hYd++fZo+ffpkLwYAAE579+7VtGnTzvh8UqmUmpub1d7ente6TU1N2rlzp8rLy/NaF/BBfw8AUAh8+nuhG1TJZrN69913lUgkRkeGe3p6NH36dO3du1fJZHKSl/D9gTbNP9o0/2jT/KNNJy4IAvX29mrq1Kle3wrnQyqVUtrjm7/TUVpayoAKJs1f9vc4Np0ZtGv+0ab5R5vmH206cafT3wvd5T9FRUXjjgQlk0k2ijyjTfOPNs0/2jT/aNOJqaqqOqvzKy8vZwAE7yvj9fc4Np0ZtGv+0ab5R5vmH206Mb79PW5UCwAAAAAAkAMGVQAAAAAAAHJQfM8999wz2Qvho7i4WFdddZWi0dBdsVSwaNP8o03zjzbNP9oUQBhxbDozaNf8o03zjzbNP9r07AndjWoBAAAAAAAKAZf/AAAAAAAA5IBBFQAAAAAAgBwwqAIAAAAAAJADBlUAAAAAAAByEPpBlQcffFDNzc0qLy/X3Llz9fLLL0/2IhWUl156Sdddd52mTp2qSCSiX/7yl2PyIAh0zz33aOrUqYrFYrrqqqv0+9//fpKWNvzWrl2r+fPnK5FIqKGhQTfeeKN27NgxZpqhoSGtWLFC9fX1isfjuv7667Vv375JWuLwe+ihh3TRRRcpmUwqmUxqwYIFevbZZ0dz2nPi1q5dq0gkopUrV47+jnYFECb093JHXy//6O/lH/29M4/+3uQJ9aDK448/rpUrV+ruu+/WG2+8oSuuuEJLly7Vnj17JnvRCkZ/f78uvvhirVu37pT5d77zHX33u9/VunXr9Nprr6mpqUmf+MQn1Nvbe5aXtDC0trZq2bJlevXVV9XS0qJMJqMlS5aov79/dJqVK1dq48aN2rBhg7Zs2aK+vj5de+21GhkZmcQlD69p06bp/vvv19atW7V161ZdffXVuuGGG0Y7fLTnxLz22mt65JFHdNFFF435Pe0KICzo700Mfb38o7+Xf/T3ziz6e5MsCLGPfexjwR133DHmdx/+8IeDr371q5O0RIVNUrBx48bR/2ez2aCpqSm4//77R3+XSqWCqqqq4OGHH56MRSw4nZ2dgaSgtbU1CIIg6O7uDkpKSoINGzaMTrN///6gqKgo2LRp02QtZsGpqakJfvzjH9OeE9Tb2xvMmjUraGlpCRYuXBjceeedQRCwnQIIF/p7+UNf78ygv3dm0N/LD/p7ky+0Z6qk02lt27ZNS5YsGfP7JUuW6JVXXpmkpXp/2blzp9rb28e0cVlZmRYuXEgbezp69Kgkqba2VpK0bds2DQ8Pj2nTqVOnavbs2bSph5GREW3YsEH9/f1asGAB7TlBy5Yt06c//WktXrx4zO9pVwBhQX/vzKKvlx/09/KL/l5+0d+bfNHJXoDxHDp0SCMjI2psbBzz+8bGRrW3t0/SUr2/HG/HU7Xx7t27J2ORCkoQBFq1apUuv/xyzZ49W9KxNi0tLVVNTc2Yadlu3bZv364FCxYolUqpsrJSGzdu1IUXXqi2tjbaM0cbNmzQtm3btHXr1pMytlMAYUF/78yirzdx9Pfyh/5e/tHfC4fQDqocF4lExvw/CIKTfoeJoY1zs3z5cr355pvasmWLOS1t6nbBBReora1N3d3d+sUvfqFbb71Vra2t405Pe7rt3btXd955p5577jmVl5d7/x3tCmCy0Bc5s2jf3NHfyx/6e/lFfy88Qnv5T319vYqLi08aRevs7DxptB25aWpqkiTaOAcrVqzQM888o82bN2vatGmjv29qalI6ndaRI0fGTE+bupWWlur888/XvHnztHbtWl188cX6/ve/T3vmaNu2bers7NTcuXMVjUYVjUbV2tqqH/zgB4pGo2psbKRdAYQC/b0zi77exNDfyy/6e/lFfy88QjuoUlpaqrlz56qlpWXM71taWnTZZZdN0lK9vzQ3N6upqWlMG6fTabW2ttLG4wiCQMuXL9dTTz2lF154Qc3NzWPyuXPnqqSkZEybHjhwQG+99RZtehqCINDQ0BDtmaNFixZp+/btamtrG/2ZN2+ebrnlltF/064AwoD+3plFXy839PfODvp7E0N/LzxCffnPqlWr9PnPf17z5s3TggUL9Mgjj2jPnj264447JnvRCkZfX5/efvvt0f/v3LlTbW1tqq2t1Yc+9CGtXLlSa9as0axZszRr1iytWbNGFRUVuvnmmydxqcNr2bJleuyxx/T0008rkUiMfvNTVVWlWCymqqoq3XbbbVq9erXq6upUW1uru+66S3PmzDnp5lE45mtf+5qWLl2q6dOnq7e3Vxs2bNCLL76oTZs20Z45SiQSo9d9HxePx1VXVzf6e9oVQFjQ35sY+nr5R38v/+jv5R/9vRA5+w8cOj0//OEPgxkzZgSlpaXBJZdcMvooM/jZvHlzIOmkn1tvvTUIgmOP2vvmN78ZNDU1BWVlZcGVV14ZbN++fXIXOsRO1ZaSgvXr149OMzg4GCxfvjyora0NYrFYcO211wZ79uyZvIUOuS996Uuj+/iUKVOCRYsWBc8999xoTnvmx3sfsRcEtCuAcKG/lzv6evlHfy//6O+dHfT3JkckCILgbA7iAAAAAAAAvB+E9p4qAAAAAAAAYcagCgAAAAAAQA4YVAEAAAAAAMgBgyoAAAAAAAA5YFAFAAAAAAAgBwyqAAAAAAAA5IBBFQAAAAAAgBwwqAIAAAAAAJADBlUAAAAAAABywKAKAAAAAABADhhUAQAAAAAAyAGDKgAAAAAAADn4/zGYTOjzgqauAAAAAElFTkSuQmCC\n", + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAHqCAYAAADMLNG2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwGUlEQVR4nOzdeXhTVf4/8HeSNkmTZulekVVh2FFZxKICIrIpLuDggoKOu4AKOo6MG6IO6jjiMiyjo9VRGRQFF0ZhUBRFlkEEvzAqgwuCQlm6L1ma5P7+6K+V0OZ8Tmmgwb5fz9PngbxvPjm5W05uzr3XZBiGASIiIiIiIiIiUjI3dwOIiIiIiIiIiI4FPIhCRERERERERKSBB1GIiIiIiIiIiDTwIAoRERERERERkQYeRCEiIiIiIiIi0sCDKEREREREREREGngQhYiIiIiIiIhIAw+iEBERERERERFp4EEUIiIiIiIiIiINPIhCR1X79u1x1VVXNctrz5gxAyaTqVleO5YdO3bAZDLhxRdfbO6mJLyrrroKqampzd2MuLnqqqvQvn375m4GERFRQmvOviMADB48GIMHD9aetkePHke2QU3w4osvwmQyYceOHc3dlGPaxx9/DJPJhI8//ri5m0LNhAdRKC62bNmCiy++GO3atYPdbsfxxx+Pc845B88880xzNy0u5s6d2+wHOh5++GGcf/75yMnJgclkwowZMxqcbtu2bZg6dSoGDBgAu92e8B+Wfr8fs2fPRv/+/eHxeGC32/Gb3/wGkydPxv/+97/mbh4REdExp/bLckN/d911V9107du3r3vcbDbD6/WiZ8+euP7667F+/fqY9eP12f3ee+/BZDKhVatWiEQiTXrPR8vu3bsxY8YMbN68ubmbUs9VV10Vc7kvW7bsqLZl8ODBUeuW2+1G586dceWVV2LFihVNqr1gwQI8+eST8WmoQiL0/ykxJTV3A+jYt2bNGpx11llo27YtrrvuOuTm5mLXrl1Yt24dnnrqKUyZMqVu2m3btsFsPvaO3c2dOxeZmZnN+kvIPffcg9zcXJxyyilYvnx5zOnWrl2Lp59+Gt26dUPXrl0T8kO+1oEDBzBixAhs3LgR5513Hi6//HKkpqZi27ZtWLhwIZ599lkEg8HmbiYREdExaebMmejQoUPUY4eOlDj55JNx++23AwDKy8vx9ddfY9GiRXjuuecwdepUPPHEE1HTx/Oz+9VXX0X79u2xY8cOrFy5EkOHDm3Cuz0y/v3vf0f9f/fu3XjggQfQvn17nHzyyc3TKAWbzYa///3v9R4/6aSTcM455+DSSy+FzWY7Km1p3bo1Zs2aBQCorKzEt99+i8WLF+OVV17BuHHj8MorryA5ObnRdRcsWICtW7fitttui3OLo8Xq/w8cOBA+nw9Wq/WIvj4lLh5EoSZ7+OGH4fF4sGHDBni93qhs3759Uf8/WjvtX6MffvgB7du3x4EDB5CVlRVzuvPPPx8lJSVwuVx4/PHHE/ogylVXXYVNmzbhjTfewNixY6OyBx98EHfffXcztYyIiOjYN3LkSPTt21c5zfHHH48rrrgi6rFHH30Ul19+OWbPno1OnTrhpptuqsvi9dldWVmJt99+G7NmzUJ+fj5effXVhDqIUlVVBYfDccx9UU5KSqq3PA9msViUzzcMA36/HykpKU1ui8fjqdeWRx55BLfccgvmzp2L9u3b49FHH23y6xxtZrMZdru9uZtBzejYGxJACee7775D9+7d6x1AAYDs7Oyo/x96XmvtcNPVq1fjlltuQVZWFrxeL2644QYEg0GUlJRgwoQJSEtLQ1paGu68804YhlH3/FjnJOpeayQ/Px9DhgxBdnY2bDYbunXrhnnz5tVr83//+1+sWrWqbljiwefGlpSU4LbbbkObNm1gs9nQsWNHPProo/WGpZaUlOCqq66Cx+OB1+vFxIkTUVJSomzfoe3QkZ6eDpfLJU7XmHlXez2SnTt34rzzzkNqaiqOP/54zJkzB0DN6VxDhgyB0+lEu3btsGDBAvH1169fj3/961+45ppr6nXCgJoDbo8//ni9x3/++WdceOGFSE1NRVZWFu644w6Ew+GoaR5//HEMGDAAGRkZSElJQZ8+ffDGG2/Uq2UymTB58mS89dZb6NGjB2w2G7p3715vyGvt9XS+/fZbXHXVVfB6vfB4PLj66qtRVVVVr+4rr7yCPn36ICUlBenp6bj00kuxa9cucZ4QERElgpSUFLz88stIT0/Hww8/XNf3OtzP7oYsWbIEPp8Pv/3tb3HppZdi8eLF8Pv9Ws/9v//7PwwaNAgpKSlo3bo1HnroIeTn5zd4CvPcuXPRvXt32Gw2tGrVCpMmTarX/6q9lsnGjRsxcOBAOBwO/PGPf6zLavt9H3/8Mfr16wcAuPrqq+v6hYf2N7/66iucddZZcDgcOP744/HYY49F5bV9sNdffx0PPPAAjj/+eLhcLlx88cUoLS1FIBDAbbfdhuzsbKSmpuLqq69GIBDQmjcqDV0TpX379jjvvPOwfPly9O3bFykpKfjb3/4GQL+P2xgWi6VuxPRf//pXlJaWRuVSH2rw4MH417/+hR9//LFu/h/cRw4EArj//vvRsWNH2Gw2tGnTBnfeeWeD8++VV17BqaeeCofDgbS0NAwcOLBu5JGq/x+rD71o0aK6tmdmZuKKK67Azz//HDVNbZ9apz+7cOFC9OnTBy6XC263Gz179sRTTz3V2FlORwBHolCTtWvXDmvXrsXWrVsP+2JaU6ZMQW5uLh544AGsW7cOzz77LLxeL9asWYO2bdviT3/6E9577z38+c9/Ro8ePTBhwoS4tH3evHno3r07zj//fCQlJeHdd9/FzTffjEgkgkmTJgEAnnzySUyZMgWpqal1v67k5OQAqPmVYtCgQfj5559xww03oG3btlizZg2mT5+OPXv21J2vaRgGLrjgAqxevRo33ngjunbtiiVLlmDixIlxeR9HQzgcxsiRIzFw4EA89thjePXVVzF58mQ4nU7cfffdGD9+PMaMGYP58+djwoQJyMvLqzeE+GDvvPMOAODKK69sVBuGDx+O/v374/HHH8cHH3yAv/zlLzjxxBOjfiV76qmncP7552P8+PEIBoNYuHAhfvvb32Lp0qU499xzo2quXr0aixcvxs033wyXy4Wnn34aY8eOxc6dO5GRkRE17bhx49ChQwfMmjULX3zxBf7+978jOzs76leUhx9+GPfeey/GjRuHa6+9Fvv378czzzyDgQMHYtOmTQ0ebCQiIjoSSktLceDAgajHMjMztZ6bmpqKiy66CM8//zy++uordO/e/bA+u2N59dVXcdZZZyE3NxeXXnop7rrrLrz77rv47W9/q3zezz//jLPOOgsmkwnTp0+H0+nE3//+9wZHO8+YMQMPPPAAhg4diptuugnbtm3DvHnzsGHDBnz22WdRp5IUFhZi5MiRuPTSS3HFFVfU9fUO1rVrV8ycORP33Xcfrr/+epx55pkAgAEDBtRNU1xcjBEjRmDMmDEYN24c3njjDfzhD39Az549MXLkyKh6s2bNQkpKCu666y58++23eOaZZ5CcnAyz2Yzi4mLMmDED69atw4svvogOHTrgvvvu05q3hy7z5ORkeDyemNNv27YNl112GW644QZcd9116Ny5s3Yf93BYLBZcdtlluPfee7F69eq6vplOH+ruu+9GaWkpfvrpJ8yePRsA6m48EIlEcP7552P16tW4/vrr0bVrV2zZsgWzZ8/G//73P7z11lt1bXjggQcwY8YMDBgwADNnzoTVasX69euxcuVKDBs2TNn/b8iLL76Iq6++Gv369cOsWbOwd+9ePPXUU/jss8/q9f90+rMrVqzAZZddhrPPPruun/n111/js88+w6233nrY857ixCBqon//+9+GxWIxLBaLkZeXZ9x5553G8uXLjWAwWG/adu3aGRMnTqz7f35+vgHAGD58uBGJROoez8vLM0wmk3HjjTfWPRYKhYzWrVsbgwYNqnvso48+MgAYH330UdTr/PDDDwYAIz8/v+6x+++/3zh0la+qqqrXxuHDhxsnnHBC1GPdu3ePet1aDz74oOF0Oo3//e9/UY/fddddhsViMXbu3GkYhmG89dZbBgDjsccei3o/Z555Zr12Svbv328AMO6//35x2j//+c8GAOOHH36olzVm3k2cONEAYPzpT3+qe6y4uNhISUkxTCaTsXDhwrrHv/nmG632XXTRRQYAo7i4WHwfB7dh5syZUY+fcsopRp8+faIeO3S5BoNBo0ePHsaQIUOiHgdgWK1W49tvv6177MsvvzQAGM8880zdY7Xrzu9+97t67yEjI6Pu/zt27DAsFovx8MMPR023ZcsWIykpKerxiRMnGu3atdN450RERI1T279q6O9g7dq1M84999yYdWbPnm0AMN5++23DMBr/2R3L3r17jaSkJOO5556re2zAgAHGBRdcUG/aQ/uOU6ZMMUwmk7Fp06a6xwoLC4309PSoPs++ffsMq9VqDBs2zAiHw3XT/vWvfzUAGC+88ELdY4MGDTIAGPPnz6/3+oMGDYrqA27YsCFm3622zj/+8Y+6xwKBgJGbm2uMHTu27rHaPliPHj2i+suXXXaZYTKZjJEjR0bVzcvL0+oz1PaVDv2rbX/tenFwv7Bdu3YGAGPZsmVRtXT7uLEMGjTI6N69e8x8yZIlBgDjqaeeMgyjcX2oc889t8H58fLLLxtms9n49NNPox6fP3++AcD47LPPDMMwjO3btxtms9m46KKLotYNwzCivo/E6v8f2ocOBoNGdna20aNHD8Pn89VNt3TpUgOAcd9999U9ptufvfXWWw23222EQqF6r0/Nj6fzUJOdc845WLt2Lc4//3x8+eWXeOyxxzB8+HAcf/zxdb9YSK655pqo2w/3798fhmHgmmuuqXvMYrGgb9+++P777+PW9oPP96z9tWbQoEH4/vvv6w0vbMiiRYtw5plnIi0tDQcOHKj7Gzp0KMLhMD755BMANVefT0pKihotYbFYoi66eyy49tpr6/7t9XrRuXNnOJ1OjBs3ru7xzp07w+v1isuprKwMALROPTrYjTfeGPX/M888s95rHbxci4uLUVpaijPPPBNffPFFvXpDhw7FiSeeWPf/Xr16we12N9j+hl67sLCw7r0sXrwYkUgE48aNi1ofcnNz0alTJ3z00UeNeq9ERERNMWfOHKxYsSLqrzFqf+EvLy8HcPif3YdauHAhzGZz1ClBl112Gd5//30UFxcrn7ts2TLk5eVFXdQ1PT0d48ePj5rugw8+QDAYxG233RZ1U4PrrrsObrcb//rXv6Kmt9lsuPrqq5vwrmqkpqZGXQfEarXi1FNPbbBfMWHChKjRMLX939/97ndR0/Xv3x+7du1CKBQSX99ut9db5n/5y1+Uz+nQoQOGDx8e9ZhuH/dwHbpuxaMPtWjRInTt2hVdunSJqjFkyBAAqKvx1ltvIRKJ4L777qt3w4uDv4/o+vzzz7Fv3z7cfPPNUddKOffcc9GlS5d66xog92e9Xi8qKyubfCcjOjJ4Og/FRb9+/bB48WIEg0F8+eWXWLJkCWbPno2LL74YmzdvRrdu3ZTPb9u2bdT/a4cctmnTpt7j0odrY3z22We4//77sXbt2nrXtigtLVUOfQSA7du34//+7/9iXui19sK6P/74I4477ri6D4xanTt3bkLrjy673V7vfXo8HrRu3breB47OcnK73QBqPjx1T3FpqA1paWn1Xmvp0qV46KGHsHnz5qhzYBv6YDx03YtVs6Fp09LSANQcqHG73di+fTsMw0CnTp0abP/hXIGeiIjocJ166qnihWVVKioqAPxy0ORwPrsbUnstisLCQhQWFgIATjnlFASDQSxatAjXX399zOf++OOPyMvLq/d4x44d600H1O9rWa1WnHDCCXV5reOPPz4uF5FtqF+UlpaG//u//6s3bWP6v5FIBKWlpfVONT6UxWJp9AV6Gzr9WrePe7gOXbfi0Yfavn07vv76a7HN3333Hcxms/j9RFesdQ0AunTpgtWrV0c9ptOfvfnmm/H6669j5MiROP744zFs2DCMGzcOI0aMiEubqWl4EIXiymq1ol+/fujXrx9+85vf4Oqrr8aiRYtw//33K58X60rhDT1uHHRh2VhHiw+9MFNDvvvuO5x99tno0qULnnjiCbRp0wZWqxXvvfceZs+erXXRrEgkgnPOOQd33nlng/lvfvMbsUaiOXj+Hqwxy0hVp1aXLl0A1FyUtvacYol0RXkA+PTTT3H++edj4MCBmDt3Lo477jgkJycjPz+/wQveNqb90rSRSAQmkwnvv/9+g9MeehCNiIgokW3duhXALwcoDuez+1Dbt2/Hhg0bAKDBL8yvvvqq8iDKkRKPu9EA8elXHG7f6nA19N6PdB/30HUrHn2oSCSCnj171rstd61DD041F53+bHZ2NjZv3ozly5fj/fffx/vvv4/8/HxMmDABL7300lFoJanwIAodMbW/fOzZs+eIvUbtSIBDr7J+6K8LDXn33XcRCATwzjvvRP0S0NBwwVgHa0488URUVFSIR/zbtWuHDz/8EBUVFVEfAtu2bRPbeaTVDqOstXfv3qPyuqNHj8asWbPwyiuvHHZHrCFvvvkm7HY7li9fHnWRufz8/Li9RiwnnngiDMNAhw4djskDaERERLUqKiqwZMkStGnTBl27dgUQn8/uV199FcnJyXj55ZfrfZlcvXo1nn76aezcubPBkaJATZ/q22+/rff4oY+1a9cOQE1f64QTTqh7PBgM4ocffjjs2ykfzukexyLdPu7hCIfDWLBgARwOB84444y619PtQ6n65V9++SXOPvts5XI68cQTEYlE8NVXX0WdFqb7Ooc6eF2rPXWo1rZt2+ryxrJarRg9ejRGjx6NSCSCm2++GX/7299w77331ht5RUcXr4lCTfbRRx81eGT8vffeA3BkT1lp164dLBZLvfMy586dKz639oP74LaXlpY2+GXb6XQ2eDvicePGYe3atVi+fHm9rKSkpO7c1VGjRiEUCkXdPjkcDuOZZ54R23mkHXrQaMmSJQCO3K8dtfLy8jBixAj8/e9/j7paeq1gMIg77rij0XUtFgtMJlPUaKQdO3Y0+BrxNmbMGFgsFjzwwAP15p9hGHVDlomIiBKZz+fDlVdeiaKiItx99911Xybj8dn96quv4swzz8Qll1yCiy++OOrv97//PQDgn//8Z8znDx8+HGvXrsXmzZvrHisqKsKrr74aNd3QoUNhtVrx9NNPR30mP//88ygtLa13tz5dTqcTQP0f8H5tdPu4jRUOh3HLLbfg66+/xi233FJ3ilhj+lBOp7PBaxeOGzcOP//8M5577rl6mc/nQ2VlJQDgwgsvhNlsxsyZM+uNPD/4tWP1/w/Vt29fZGdnY/78+VGnkb///vv4+uuvD2tdO7TPaDab0atXLwCIy+2uqWk4EoWabMqUKaiqqsJFF12ELl26IBgMYs2aNXjttdfQvn37uFykKxaPx4Pf/va3eOaZZ2AymXDiiSdi6dKlWudpDhs2rO4I7w033ICKigo899xzyM7Orjd6pk+fPpg3bx4eeughdOzYEdnZ2RgyZAh+//vf45133sF5552Hq666Cn369EFlZSW2bNmCN954Azt27EBmZiZGjx6N008/HXfddRd27NiBbt26YfHixVoXr6318ssv48cff6y7dssnn3yChx56CEDNrQZrj3KXlpbWHZz57LPPAAB//etf4fV64fV6MXny5Ki6zz33HPx+P04++WR8/vnnWLRoEUwmExYvXowOHTpg8ODB2m1srH/84x8YNmwYxowZg9GjR+Pss8+G0+nE9u3bsXDhQuzZswePP/54o2qee+65eOKJJzBixAhcfvnl2LdvH+bMmYOOHTs2eD5yPJ144ol46KGHMH36dOzYsQMXXnghXC4XfvjhByxZsgTXX3/9YR0YIiIiOlJ+/vlnvPLKKwBqRp989dVXWLRoEQoKCnD77bfjhhtuiJq+KZ/d69evx7fffluvL1Lr+OOPR+/evfHqq6/iD3/4Q4PT3HnnnXjllVdwzjnnYMqUKXW3OG7bti2KiorqDvhkZWVh+vTpeOCBBzBixAicf/752LZtG+bOnYt+/fpFXfy1MU488UR4vV7Mnz8fLpcLTqcT/fv3b/C6Iscy3T6uSmlpad26VVVVhW+//RaLFy/Gd999h0svvRQPPvhg3bSN6UP16dMHr732GqZNm4Z+/fohNTUVo0ePxpVXXonXX38dN954Iz766COcfvrpCIfD+Oabb/D6669j+fLl6Nu3Lzp27Ii7774bDz74IM4880yMGTMGNpsNGzZsQKtWrTBr1qy612mo/3+o5ORkPProo7j66qsxaNAgXHbZZXW3OG7fvj2mTp3a6Pl/7bXXoqioCEOGDEHr1q3x448/4plnnsHJJ59cNzKMmtHRvBUQ/Tq9//77xu9+9zujS5cuRmpqqmG1Wo2OHTsaU6ZMMfbu3Rs1baxbHG/YsCFqutpbyu7fvz/q8YkTJxpOpzPqsf379xtjx441HA6HkZaWZtxwww3G1q1btW5x/M477xi9evUy7Ha70b59e+PRRx81XnjhhXq3fysoKDDOPfdcw+VyRd0qzjAMo7y83Jg+fbrRsWNHw2q1GpmZmcaAAQOMxx9/POq2dYWFhcaVV15puN1uw+PxGFdeeaWxadMm7Vsc1942r6G/g29TXHuL4ob+Dr4dXO3t2ebOnWuceuqphtVqNbp162asWrXKuOKKK4zU1NS62/81NN9r29TQ7eukWyYerKqqynj88ceNfv361a0/nTp1MqZMmRJ16+FYbWhouT7//PNGp06dDJvNZnTp0sXIz89vcDoAxqRJkxps/8Hraaz1saFbBRqGYbz55pvGGWecYTidTsPpdBpdunQxJk2aZGzbti3q/fAWx0REdCTE6l8dqvb2tgAMk8lkuN1uo3v37sZ1111nrF+/PubzdD+7DzVlyhQDgPHdd9/FnGbGjBkGAOPLL7+sa+PBn8mGYRibNm0yzjzzTMNmsxmtW7c2Zs2aZTz99NMGAKOgoCBq2r/+9a9Gly5djOTkZCMnJ8e46aab6t2iWXU73kNvcWwYhvH2228b3bp1M5KSkqL6cbHqHPqZX9sHW7RoUdR0je0XN/Q6DfWVDq1/6C2OY/XZdPu4DTm035qammp06tTJuOKKK4x///vfMZ+n04eqqKgwLr/8csPr9dbr3waDQePRRx81unfvbthsNiMtLc3o06eP8cADDxilpaVRr/XCCy8Yp5xySt10gwYNMlasWFGXx+r/H3qL41qvvfZaXb309HRj/Pjxxk8//RQ1jW5/9o033jCGDRtmZGdnG1ar1Wjbtq1xww03GHv27Ik57+joMRnGER6zT0QJ6eOPP8ZZZ52Fjz766IiONiEiIiI60m677Tb87W9/Q0VFhdaFO4mIDheviUJERERERMcMn88X9f/CwkK8/PLLOOOMM3gAhYiOOF4ThYiIiIiIjhl5eXkYPHgwunbtir179+L5559HWVkZ7r333uZuGhG1ADyIQkREREREx4xRo0bhjTfewLPPPguTyYTevXvj+eefx8CBA5u7aUTUAvCaKEREREREREREGnhNFCIiIiIiIiIiDTyIQkRERERERESkIeGuiRKJRLB79264XC6YTKbmbg4REREAwDAMlJeXo1WrVjCbj85vEH6/H8FgMK41rVYr7HZ7XGsSNQb7ekRElIh0+3pH7CDKnDlz8Oc//xkFBQU46aST8Mwzz+DUU08Vn7d79260adPmSDWLiIioSXbt2oXWrVsf8dfx+/3o0KEDCgoK4lo3NzcXP/zwAw+kUJMcbj8PYF+PiIgSm9TXOyIHUV577TVMmzYN8+fPR//+/fHkk09i+PDh2LZtG7Kzs5XPdblcAIA/A0iJMc0ujTbEem4tn5ADwI9Cfq1GjflCPkqjxttCfo5GjS5CXqVR489CfqNGDZuQv6hRo72Ql2rU+GupeqoXPB6xRl8hl5Y9AHQS8kyNGtKyKxJynW1B6urq1PhJyHtr1Ngu5D00arwh5Cdp1EgW8mKNGtI+6nuNGp2F/AyNGpuEXJrnAPCDkOssW+l+Ck9q1LhayHdq1DhLkVWiZn9b+zl1pAWDQRQUFGDXrl1wu91xqVlWVoY2bdogGAzyIAodtqb084BftqFHH5oZcz0MVleLdaQRYZFIRKxRLYz0ysjIEGscOHBAmetsv6VCv0RnvyNt0zrzY9++vco8M1PumUiji4qKpJ4JkGxV9xgj4bBY4+abb1Lm+fkvijUcTqcyP7B/v1jDJiyXJItFrBGJqO8DEgqHhOfLy96abFXXMOQaIWG7TUmRej9AIBhQ5nab/NlVWlqirpHiEGtI63EopJ7ngLyPqhbeKyCvP6nOVLFGVZX620IgILcjKLQ1xSHPU6mt+/fvE2ukp6v3ycGg/NmR6o7dDp/Ph1un/V7c5x6RgyhPPPEErrvuOlx9dU2Xdv78+fjXv/6FF154AXfddZfyubUrbApif8mQvogDgLR5ybsBQL0rAdS71RrSly15dZNryLsjua06g2mllUXnvUjLRXqvgLz8peUGyB0anXkq7bJ02iHND512SLfXise2ILVD5xZf0nLTea9SjXhsTzpfK6Ua8dhH6WwLUg2dfZRUQ2c9lvYNOvNDaqvOh5W0/HWWrdwVkTtW8eZ2O+B266zdOuROH5GkKf084JdtyG63x/xSZdH4YhmPgygWoYbOlz7p4IXWF0fhS0w82qEzP+LxXqR9pM4BXKtwECWscRBF7OtpvBeHMI3Oe5GmSUqSP+GkZSd9odc6iGIVDqLoHJQUtludeW42S+uPzvbkV7dDY7kdjYMoFuG9AvHZJg3hAJhOv0ZaLjrzVGqrzvYk1dD57JC2a0CeJ3E/qTsYDGLjxo0YOnToLy9iNmPo0KFYu3ZtvF+OiIiIiI4S9vOIiKili/tIlAMHDiAcDiMnJyfq8ZycHHzzzTf1pg8EAlFH38vKyuLdJCIiomNYCPEbQcKRKNQ0je3nAezrERHRr0uz3+J41qxZ8Hg8dX+80BgREdHBQnH+Izq62NcjIqJfk7gfRMnMzITFYsHevdEXptq7dy9yc3PrTT99+nSUlpbW/e3apXPZWCIiIiI62hrbzwPY1yMiol+XuB9EsVqt6NOnDz788MO6xyKRCD788EPk5eXVm95ms8Htdkf9ERERUS2ORKHE0dh+HsC+HhER/bockbvzTJs2DRMnTkTfvn1x6qmn4sknn0RlZWXdVdx19EbsuyS013i+dM3u/ho1lgp5gUYN6TallRo1Jgi5zqDYp4U8S6PGnUIu37AOeEfIde5IIpGvyQw8J1xx+VONGg2f+f0LnVvldhPyrzRqpAv5e0Kucxtc6WZhP2vU8Aq5dEtxnRrqGzPWkOZ5oUaN4UL+vkYNabk1/HtutIuFfKtGjROE/EuNGv2EXL4BZHzumiSt6zr7uZcUmXwDQKKWIR79PABIcTpi3iVBulNIDfW94ZzC7WkB+dbCoZB8u0zp1p86dzVJT1d/KujMj3371LcH1bkLjHSLap274pSVlSvzeNzhTKfEc889p8wrKyvEGtJdXhyOpt81ye9XvwYAWCzqZSddZyg1Ved+fcJtlDW2BenOKEHhluIAYDara+jcFUea52HhltCAfFtxaT0H5LvzJCXJ33y83jRl7vP5xBrS3a6qquQaDuEWxjrLRdr2TSZ5fIe0ruvs54oKY39r9Wlsj8AROohyySWXYP/+/bjvvvtQUFCAk08+GcuWLat3ETIiIiKShBG/ESTyFyAiCft5RETUkh2RgygAMHnyZEyePPlIlSciImoheHceSjzs5xERUUvV7HfnISIiIiIiIiI6FhyxkShEREQUDxyJQkRERJQoOBKFiIiIiIiIiEgDR6IQERElNI5EISIiIkoUPIhCRESU0MKI3111eHceIiIioqbg6TxERERERERERBoSdiTKTgCOGNlqjee3EvKlGjVcQn6JRo2+Qr5Fo4ZFyLtp1Bgu5MkaNbxC/pVGjbM0ppFIy26QRo1vhfx4jRpBIa/WqPG9kG/XqCEt/5OEvEjjNdoL+QUaNW4V8t4aNQqE/GKNGs9qTCN5Xciv0agREfIzNQ5xTxaKSMseALoIeZZGDWldl/ZhgHxE/wSNGlVCrrOOrVJk0jZ/5IQRv9NwOBKFEkd1IIigueE9REVFhfh8q1XdeyktLRNrWCzqvY83LU2skZISq8daw+/3iTUAkzK12+1iBbfbrX4Fk/o1AMBiUX818PsDYg2XS+pBy8rKSpW505kq1pDampSk0/s1lGkkos4BIBBQf3rozFO7Xb3sUlJSlHkoJO/7HQ6rMvd4vGKNn376SZlL7QSAcFjdVq9XbseBAwfEaSTFxSXKPDMzU6xhGOr1w+WS1+OdO3cpc4dDnqc2m3r/kZQkHxKQ13V5/yLtg2w29TpY0w5151dnHVN9vhhC/VociUJEREREREREpCFhR6IQERERwAvLEhERESUOHkQhIiJKaDyIQkRERJQoeDoPEREREREREZEGjkQhIiJKaByJQkRERJQoOBKFiIiIiIiIiEgDR6IQERElNN7imIiIiChRJOxBlAMAYt3l2aHx/HIh1xmCc56Ql2nU2C/kN2nU+FzI12vUGCDklRo1dgj5No0aq4T8BY0aq4W8k0YNqa0nadRoI+RfadToJuS9NWp0FHJp/Vmp8RqdhXyKRo3kJuYAcIGQ36hRo7+Q79ao8bqQL9GoIW1zazRuUy9t199rtEPaV0r7MADwNDEHgH8Kuc6+8iMh/1Kjhmo91FgkRwhP56Ffp1AohFCo4XXSbJZ7auGweqs0meQ2uN3qPVREeI2adqi3q7S0TLFGZWWVMq+qkntqDodTnEYSDAaVeSDgF2tUVKjnR7t2bcUalZUVytxut4k1AoGAMk9JifVN4xdWq7p34vfL88Nutytzh0P+ZmOzqd+vtH6Ul6vnZ81rqNv500+7xBomYaMzm+WN0uVSb5O7dsntcDrV87S6ulqs0b59B2VeWloi1ohE1PuPykp5u05NVW/XgYB6mwWAcFi9f4m1Hz5YUpJFmVss6hwAioqKlHlWVpZYo7xc3XP1+31iDdV6aNJYRwGezkNEREREREREpCVhR6IQERERwJEoRERERImDB1GIiIgSGg+iEBERESUKns5DRERERERERKSBI1GIiIgSGkeiEBERESUKjkQhIiIiIiIiItLAkShEREQJLYz4jSAJx6kOERERUcvEgyhEREQJjafzEBERESWKhD2I0hdAaoysXOP5X2rUl6wS8t4aNXYL+RKNGicJuUOjRlDIpfkFAAOE/BKNGv8U8nkaNa4V8q80aviF3KlRY4uQn6NRY42Qx2PZStvL9xqvIa2n52nUaCXk2zRqVAr5fo0a0nrcQ6PGI0J+gkaNj4T8Yo0anYV8dhxqSNsbIK9DWRo1PhByaX4BgE3IpXUQAPorsgro7aOISI/D6YQjJaXBLBKRR01VVfnU9R3yp2hFRYVQo+H2Hay6ulqZl5SUijVSYsyHWqGQ+jVqGMpUml8AkJqq7gGlpR0n1igqKlLm+/cfEGtkZGQqc59Pfi+GEVHmZrN8VQOfT91jdLldYo3KCnXvRacdhqFetuGw+r0GgwHxNUpLS5S52+0RayQnJytzv1/qgcvbfigk/xjgcKjXY2l7A4C9e/cqc6vVKtYoL1fvX7xer1jDbrcr83375N6v3a7uIWVkZIg1AgH1N46kJPmwQnm5+luJlAOA2WwS2qFeBwHA6Yy9ftg19i1AAh9EISIiIoAjUYiIiIgSBy8sS0RERERERESkgSNRiIiIEhpHohARERElCh5EISIiSmg8iEJERESUKHg6DxERERERERGRBo5EISIiSmhhxG8EiXzHEyIiIiKKjSNRiIiIqEHz5s1Dr1694Ha74Xa7kZeXh/fff78uf/bZZzF48GC43W6YTCaUlJTUq1FUVITx48fD7XbD6/XimmuuEW8rS0RERJSoEnYkyhIAse5o/Y3G828S8q80anQWcvlO58BzQv6SRg3pDvSXa9T4m5CP0agxT8h3aNRQ3+kckO8ODnwh5NUaNdoIuc5vtbuEfLZGjeFCvkajRm8hzxfyezReY7CQ36lRQ3qvKzVqSNvCBI0aWUIurecA8LmQX6BRQ3ovlRo1pgl5N40a0nL5QKPGBiHfrVFDWoe+16jRSsh19i9LFZnOPv/ICCN+I0gaV6d169Z45JFH0KlTJxiGgZdeegkXXHABNm3ahO7du6OqqgojRozAiBEjMH369AZrjB8/Hnv27MGKFStQXV2Nq6++Gtdffz0WLFgQjzdEx7CSkhIE/A1vWYGAvMVlZmYqc59PrmG3x+pt1ohEDLFGm7ZtlXlRYZFYw2xW/66ZlpYu1jhw4IAy93o9Ta4RDAbFGiaT+r2EQvLIuqqqKmVuGPJySU62ClPINaqr1e933959Yg23263MKyvlT3yHw6HMCwsLlXlObq74Gt9u367Ms7NzxBrSe62okD+Jg0GLMk9Pl7eF5GT1V1xpPQfkddDjkbcni0W9LUQiEbHGzz//pMztdunbFeB2q3ud5eXycpHmR3W1/A1MWocCgYBYw2pNVuY687S0tDRm5ovxmXSohD2IQkREREBzXlh29OjRUf9/+OGHMW/ePKxbtw7du3fHbbfdBgD4+OOPG3z+119/jWXLlmHDhg3o27cvAOCZZ57BqFGj8Pjjj6NVK+nQFxEREVFi4ek8RERELUxZWVnUn86vP+FwGAsXLkRlZSXy8vK0Xmft2rXwer11B1AAYOjQoTCbzVi/fv1ht5+IiIioufAgChERUUILxfkPaNOmDTweT93frFmzYr76li1bkJqaCpvNhhtvvBFLlixBt246J4sBBQUFyM7OjnosKSkJ6enpKCgo0Hz/RERERImDp/MQERG1MLt27Yo6d91mi31diM6dO2Pz5s0oLS3FG2+8gYkTJ2LVqlXaB1KIiIiIfk14EIWIiCihxf8Wx7V329FhtVrRsWNHAECfPn2wYcMGPPXUU/jb36RLlgO5ubnYty/6wouhUAhFRUXI1bjQIREREVGi4ek8RERECS3+p/M0RSQS0bqGCgDk5eWhpKQEGzdurHts5cqViEQi6N+/f5PbQkRERHS0cSQKERERNWj69OkYOXIk2rZti/LycixYsAAff/wxli9fDqDmmicFBQX49ttvAdRcP8XlcqFt27ZIT09H165dMWLECFx33XWYP38+qqurMXnyZFx66aW8Mw8REREdk3gQhYiIKKE13y2O9+3bhwkTJmDPnj3weDzo1asXli9fjnPOOQcAMH/+fDzwwAN10w8cOBAAkJ+fj6uuugoA8Oqrr2Ly5Mk4++yzYTabMXbsWDz99NPxeTtERERER5nJMAyjuRtxsLKyMng8HiwF4Iwxjc5NEWM9t9YWjRpXCHlYo8YXQl6lUeN6If9Io8YuIXdp1Ogt5Ns1alyerM5vrpZrxL78YQ2ds/wdQt5Go4Y0zW6NGtJyqdSosU3ILxJynasSfCPk+zVqlAr5co0alwm5znKTDNeYRpofOste2ubu0qjxJyHX2VdKYwF09g3SNH6NGtL+I6JRwyvkp2jU2KrIfACmAigtLdW+nkhT1H4elpY+ALfbHqeafng89x+190DUkNp1e/4zTyIlJaXBaSor5R6S2aw+K93v94k10tLShSnkbnJVlfp1IhF5D5aZmanMy8vLxRrBYFCZWywWsYbDoe4hBQLyHj09PUOZ79y5U6xhNpuEXH4v0vphtQqdUgDJyVZlXl0td1yl5aKzfkinUHo8HmWenCy/V2nZhkLyQfhQSP3tSGc9TktLU+Y6y02i8/nn96vnubRcAcBiUa+Du3fvEWu0anWcMtfZV0rLX2onIG9zOutxMKiepzpHJaT9mLQPAwCfL/Y+2+fz4bbf/0HsJ3EkChERUUJrvpEoRERERBSNB1GIiIgSGg+iEBERESUK3p2HiIiIiIiIiEgDR6IQEREltDDiN4JE52peRERERBQLR6IQEREREREREWngSBQiIqKEFgIg34lCvxYRERERHS4eRCEiIkpoPIhCRERElCgS9iDKegD2GJl8N2xggJCna9RYKuQ6dymXXqeTRo3vhfxmjRr3CblXo8Y9Qp6lUePxanXeRqOGV8iLNGo8IeSnadS4Q8il5QYA0h3me2rUkOb7F0Lu1XiNprYBAGLfab3GIxo1vhLy1zRqDBLyaRo1hgr5txo1coT8Ao0aHYX8G40aFwn5PI0aESFfpVGjv5Bv0KgxXcg3adRop8h0PnuISF9lVRUikYb3ILEeP5jT6VTmSUnywcfS0lJlbjabxBoWi7o7bbPZxBqBQECZ//TTLrFGbm6uMrdY5PmxZ89uZZ6UJH912LdvnzJPTraKNeS2ytd3at36eGW+bdv/xBrZ2dnKXFpuNQxlareniBWk+e7z+ZR5MCj1OGU6y95sVi+3Vq2OE2v4/ep5WlxcItZITU1V5j/99LNYw+VyKXOdZS/NM4/HI9aw2WJ9I64hzS8A8Hq9ynz//v1iDUlFRYU4jcPhUOY+n9zTyslR96CrquQaVmvsfVAopPdjU8IeRCEiIiKAI1GIiIiIEgcvLEtEREREREREpIEjUYiIiBIab3FMRERElCh4EIWIiCihhRC/gaM8nYeIiIioKXg6DxERERERERGRBo5EISIiSmgciUJERESUKDgShYiIiIiIiIhIA0eiEBERJTSORCEiIiJKFAl7EGUHAGuMrL3G89sI+XqNGr2FfItGjVVCnqFR42Ih/7dGDZeQRzRq9BPyao0aWUL+hkaN3wl5ukaNV4T8Jo0aJUIe1KghzQ+debpNyKX1+CuN1xgq5DrbQrmQf6pRQ3ovQzRqnCDk0r4DAHYLeQ+NGslC7tSoMUfIde7Dsl3IvRo1pPnu0aghrR86y3a/kPub2I4qjecfGWHE7646vDsPJY5gIAizqeEDhFZrrF6g/jSVlZViDYfDocz9fp9Yo6KiQplbLBaxRlqaV5mfeGJHsYb0OgYMsYbDr54fkYhcIzVV/fWipKRErJGeru4hJyXJ87SoqEiZZ2ZmijXCYWmfKc+PpCT1/DAMuUYgEFDmKSkpytzvlz8B3W71twWfT64hza/KSvW2AgApKep10OVKFWtYrTZlnpws9cKAUEjdC7fb7WINs9kk5PIPJPv3q3s38Vh/dLanVJd6/dDZz0nrR2qq9I0VCIXUPwZFIvK32kgkdjtU2cF4Og8RERERERERkYaEHYlCREREQM3okXidhsORKERERERNwZEoREREREREREQaOBKFiIgooYUAqM+rblwtIiIiIjpcPIhCRESU0HgQhYiIiChR8HQeIiIiIiIiIiINHIlCRESU0DgShYiIiChRJOxBlOMBxLr79kUaz98s5Gdp1Hg+DjXKhbydRo2VQv65Ro3WQj5Zo8ZuIc/RqNFGyOdq1Ngu5Drz9Hshz9KosVbIz9Co4RByr0aNQiGX7rh+nsZrzBPyCRo1tgr5AI0aEvkO9fL8+FKjRm8hl+YXAIwU8lj7v4N1E3KdbcEr5NL8AoAyIS/VqHG+kD+rUaNAyIdq1PhRkfk1nk9E+pKSk5GcnNxg5vV6xef7fFXK3OWS92CFhepP0dTUVLFGOBxR5larVaxRXl6hzKuq1O+15nUanpe1MjPl3k0wWK3MYy2vgyUlqadp3VrqDQKBQECZ68zTQCCozJOS5K9BlZWVyjw11SnWMJvVA/8tFrn3Eg6rD4BLNTwej/gaBw4cUObp6WliDZ9P/UnpdMrzSyb/qGCxqOe5z+cTazgcKcpcml8A4HK5lbm0bgCA3a7uEUrbPSCvH2azvA5GhP1cOCzf/U9aDwsL5XlaXa3eR7nd8n4/GIy9bwiF9O5imLAHUYiIiAjgSBQiIiKixMGDKERERAktjPgdRNH7hYWIiIiIGsYLyxIRERERERERaeBIFCIiooQWz1NweDoPERERUVPwIAoREVFC40EUIiIiokTB03mIiIiIiIiIiDRwJAoREVFC40gUIiIiokTBkShERERERERERBoaPRLlk08+wZ///Gds3LgRe/bswZIlS3DhhRfW5YZh4P7778dzzz2HkpISnH766Zg3bx46derUqNc5C4AzRjZb4/mjhLxIo0ZfIdd5R18KeZZGjfZCnq5R4zQhL9GocYWQ67yXb4R8t0aN44W8SqNGrHWr1sUaNf4p5O00akikdgJARMjtQl6i8Rr3CfljGjX+IuQzNGq0EfJBGjWeFfIeGjV2CPl5GjWkG83qrMeFQq6zTa4X8s4aNX4Scp191C4h19nfSstf2qcDwDxF1nxjOOJ5W2Le4pjUjlY/DwDcLhdSUlIazPbt2yc/3+1W5uGwvNU6HA5lbrdLn6KA3+9T5klJcnfbarUKNSxiDYdD3WvQmR/p6eo9dlKy/F78Pr8yr66uFmskJycr80hE6v0AZrP6t2Kv1yvWKC4uVubBoHq56ZDaCQCGIdUwKfNwWN735x6Xq8z3FuwVa7Ru3VqZ79mzR6whLXu32yXWOHDggDLX2a4DgaDQDo9YwxAWnM56HAqpt1ud/UtlZaUy15kfwaB6fujso6qr1TWsVptYw+VSL39pnw4A+/fvV6TqbalWo0eiVFZW4qSTTsKcOXMazB977DE8/fTTmD9/PtavXw+n04nhw4fD71fvUImIiKghoTj/EcXGfh4REZFao0eijBw5EiNHjmwwMwwDTz75JO655x5ccMEFAIB//OMfyMnJwVtvvYVLL720aa0lIiIioiOG/TwiIiK1uF4T5YcffkBBQQGGDh1a95jH40H//v2xdu3aBp8TCARQVlYW9UdERES1OBKFEsPh9PMA9vWIiOjXJa4HUQoKCgAAOTk5UY/n5OTUZYeaNWsWPB5P3V+bNtJVD4iIiOhomDdvHnr16gW32w232428vDy8//77dbnf78ekSZOQkZGB1NRUjB07Fnv3Rp83bzKZ6v0tXLjwaL8VioPD6ecB7OsREdGvS7PfnWf69OkoLS2t+9u1S7q8IBERUUvSfCNRWrdujUceeQQbN27E559/jiFDhuCCCy7Af//7XwDA1KlT8e6772LRokVYtWoVdu/ejTFjxtSrk5+fjz179tT9HXyhUvr1Y1+PiIh+TRp9TRSV3Nyaqzrv3bsXxx13XN3je/fuxcknn9zgc2w2G2w2+Uq8RERELVMIgHBrBm2NuzvP6NGjo/7/8MMPY968eVi3bh1at26N559/HgsWLMCQIUMA1Bws6dq1K9atW4fTTvvlvnBer7euj0DHrsPp5wHs6xER0a9LXEeidOjQAbm5ufjwww/rHisrK8P69euRl5cXz5ciIiKioygcDmPhwoWorKxEXl4eNm7ciOrq6qjrY3Tp0gVt27atd32MSZMmITMzE6eeeipeeOEF8baPlJjYzyMiIjqMkSgVFRX49ttv6/7/ww8/YPPmzUhPT0fbtm1x22234aGHHkKnTp3QoUMH3HvvvWjVqlWjh+7+B0CsO1br/Ja1W8jVdyCv0UPI12vU2BKHdniFfJRGjZeEvOl3uQeGa0yjuis3AKzRqDFAyD/XqHGCkEvtBIAhQq5zhPJ4Idfpkj4i5O2EfKvGa0jr+nkaNZYK+UUaNaqF/DGNGtI259SoMUvIr45DO3TWwb1CrjNgXlp20jwHAOkSkdKyB4CzhHy1Ro1WQv6FRg3V8m++81/DiN9IlAgA1Luwp2qkwJYtW5CXlwe/34/U1FQsWbIE3bp1w+bNm2G1WuH1eqOmP/T6GDNnzsSQIUPgcDjw73//GzfffDMqKipwyy23xOk9UTwdrX4eAFRUViIcbnh0VHKy3EWtrlbvoUIhk1gjJSVFmVdWVoo1fD7p9s5yO5KSLMrc7faINYqKCpvcDonb7RanCYXUpw1WVcnz1OFQfxpXVVWJNaTRT1I7ASA1NVWZm0zyPE1OVn/iO51yz+PQa00dKhRS9+R9Pp/4GtJy8XjkdbC0tFSZe71yDekguzQvAHm5mM3yJ/q+ferXSU/PaHI7dNZBaT8n5QDg8ai3W8OIiDUiEfVI1tJS+YLhLpd6e6qokPcNVqt6e9LZN6iWv9mst59s9EGUzz//HGed9Ut3d9q0aQCAiRMn4sUXX8Sdd96JyspKXH/99SgpKcEZZ5yBZcuWwW6PdUiEiIiIjqZDL+x5//33Y8aMGQ1O27lzZ2zevBmlpaV44403MHHiRKxatUr7te699966f59yyimorKzEn//8Zx5ESVDs5xEREak1+iDK4MGDlUcITSYTZs6ciZkzZzapYURERAQciZEou3btivpFWfWLrdVqRceOHQEAffr0wYYNG/DUU0/hkksuQTAYRElJSdRolL179yqvf9K/f388+OCDCAQCvE5GAmI/j4iISK3Z785DREREKvG/O0/tLYtr/xpzMCMSiSAQCKBPnz5ITk6Ouj7Gtm3bsHPnTuX1MTZv3oy0tDQeQCEiIqJjUlzvzkNERES/HtOnT8fIkSPRtm1blJeXY8GCBfj444+xfPlyeDweXHPNNZg2bRrS09PhdrsxZcoU5OXl1d2Z591338XevXtx2mmnwW63Y8WKFfjTn/6EO+64o5nfGREREdHh4UEUIiKihBZC/AaOyhePO9i+ffswYcIE7NmzBx6PB7169cLy5ctxzjnnAABmz54Ns9mMsWPHIhAIYPjw4Zg7d27d85OTkzFnzhxMnToVhmGgY8eOeOKJJ3DdddfF6f0QERERHV08iEJEREQNev7555W53W7HnDlzMGfOnAbzESNGYMSIEUeiaURERETNggdRiIiIElrzjUQhIiIiomg8iEJERJTQwojfwY943eWHiIiIqGVK2IMoXwJIjpE9ovH8fCFvpVGjVMhjte9glwj5Do0aLiFfqlFjlJBv0ahhF/I1GjWqhfxWjRorhfwEjRqVQj5Do4ZDyJ0aNS4W8lc0auwS8tuFvFzjNUqE/FONGm2EvCoO7ZC2FQDoLOTtNGr0F/LYN3f9xRdCnqVRY5CQS+s5AHwg5EM1aowWcmnZA8DrQn69Rg3pMIPOPFXto3TWUSLS5/f5gBi3U27VSu6pFRYWKnOrVe6phcMhZW4ymcQaaWleZR4MBsUaZrNFmZeWSr1SRN22vCE+n1+sIb3fykr5k0V1i2wAyMrKFmuUl6t7Jzp394pE1J8Ke/bsEWuYzepRgFIOIOoW8A0pLi4Sa1RXq9chZ6p6nobDYfE1IhH1NJWVFWKN5GSr8BryDwJSWy0WeZ7bbOpvLTabup0A4HCoe/JJSfLXaJ/P1+QaqampylxnnpaVqbcnt1vuQbs9HmWenCzvb4uLS5R5ZmaGWEPYvcBmk+epah8VCukdHknYgyhEREQE1JzOI3+R08ORKERERERNEa+TrImIiIiIiIiIftU4EoWIiCihcSQKERERUaLgQRQiIqKExoMoRERERImCp/MQEREREREREWngSBQiIqJEZkTiN4CEA1GIiIiImoQjUYiIiIiIiIiINCTsSJRTAaTEyHZrPF+6Y7Z8R21gu5B/pVHjCiHvqVHjPSHvplHjNY1pJGOEvJNGjV1CnqVRQ33nd2CoRo3vhVy+SzlQIuQvadSYLeSjNGpUC/k/hbxE4zX6C/kNGjU2CPn7GjXShXy6Rg1puXyhUeMkIR+uUaONkL+hUaOHkJdo1Ogn5Mdr1HAIuc52HRbyJzVqLBTyVRo1flZkfo3nHxER6H1o6dYiShAOhxMpKQ1/qldXS59uMkNj5FUgEFDmfr+85aelqT+d7CmxerS/KCstU9ewS70foLi4RJxG4vV6lLnJJF+fKRhUL7ukJPnrh9msfh2n0yXWkJatyyXXCIfVn05FRUVijf379ylzt9st1ohE1CtzcVGxMpfeBwA4HOpP88zMTLFGZWWlMi8rKxdrWCwWZZ6TkyvWKCwsVOZVVT6xRoqw3bo98nKzWq3KvKSkRKMd6m0/GGz6sk1OVrcTACxm9diLpKRksYZk37794jTtO7RX5hXlFWIN1eeL3x8Unw8k8EEUIiIiQs0RJrmPpF+LiIiIiA4bT+chIiIiIiIiItLAkShERESJjCNRiIiIiBIGR6IQEREREREREWngSBQiIqJExgvLEhERESUMHkQhIiJKZDydh4iIiChh8HQeIiIiIiIiIiINHIlCRESUyHg6DxEREVHCSNiDKB4AKTGyf2o8/xYhPzFdrjG3SJ17NdrxhZDr1Ogn5H01anwv5K00amwXcum9AsD1Qn6VRo3xQu7XqLFayHM0apws5L01ajiFvL9GjTeEfJeQ68yvL4X8K40aFiEfqlHDFYd2lAt5T40a0vy4R6PGACHX2EXhWSHfr1HjWiF/TKOGtFyu0KixRsgnatR4SsildRAAtiiyao3nE5E+i8UMi6XhLbO4uFh8flZ2ljJ3OhxijT17CpS52SzvOXy+qibXcAhtdTrl9xIIBJS51Zrc5BpVVT6xRmZmpjL/8ccfxRrp6WnK3DAMsUZlZaUyT06WvwalpMT6NqKXA4DZrB7473RKvUGgpKREmQeD6k8ow5CPoPt86mXr98s9RpPJpMxdLqnHULNfULdDXgcjEfX71Vlu0vzYs3uPWENatklJ8r7hwIFCZR4KhcQaGRkZynzv3r1iDWk9Tk+Xe67SNqlTY/8+de9WWAUBAD5f7HVZZz0HEvggChEREaFm9Ei8rmXCkShERERETcKDKERERImMF5YlIiIiShi8sCwRERERERERkQaORCEiIkpkvLAsERERUcLgSBQiIiIiIiIiIg0ciUJERJTIeE0UIiIiooTBgyhERESJjAdRiIiIiBJGwh5ESQfgiJG10nj+P4V8QJFcQ7pzdzuNdmwV8hKNGlKf9w2NGtcIeblGjVwh76lR40chn6FR430hr9KoIa1D3TRqfCHkOncZbyPkqzRq2IX8TiGX1lEA6C/kn2rU+F7IpfcByMttg0aNMUJ+gkaNXUI+TKPG50Kus02OEvK3NWpI+7GTNGqkC3mJRo25Qr5So8aZQq6zjqn2twHI+x8i0peUZEFSUsO9reTkZPH5xUXFyjwYCIo1TCaTMrdarWINv1/9iR8O6xy9NJRpSYncZc/IyFDmkYjcjqQk9Xy321PEGsFgQJkfd5zUowRKS8uUeSQiX+BJWofsdvlToarKp8wNQ73cACApSb3syssrxBomk/oKDDk52crc55N7pU6nU5lXVMjtDATUy17a3gDAalUvt6oquafv8XiVuc1mE2tUV6v3H263W6xRVVWpzMNheT2WXqe0tFSsIc3TlBR5u7ZY1N+MdfZzbdq0VuY620Jqqno9lbYVAFBttvIWXSNhD6IQEREReGFZIiIiogTCC8sSEREREREREWngSBQiIqJExmuiEBERESUMHkQhIiJKZAbidxqO7sm+RERERNQgns5DRERERERERKSBI1GIiIgSGU/nISIiIkoYPIhCRESUyHgQhYiIiChh8HQeIiIiIiIiIiINCTsS5RsA9hhZicbzLxFyv0YNr5C/oFHjD0L+lEaNO4R8h0aN84W8m0aNcUJu1agxMVmdP1Qt16gU8s4a7fiiiTkAbBPy/ho1yoX8S40aK4X8CiHX2RZmCrnO+tNFyC/SqCEt+1j7jIP9XcirNGpI28IbGjVOE/IsjRr7hbyTRo1vhTxHo8ZqIZ+oUUNi0ZgmKOSbNWqcqciqAMzWqBF3EcTvwrLxqkMUBz5/AICpwSwclodNpaWlKfNIRF7hLRb13qWoqFCskZ2t3lPu3y/trYHs7GxlHgxKezjg+++/V+Z2u/wpmZbmFaZoeHkdLDMzU5nv2bNHrCEtO5vNJtbw+XzKvKpK/sQPBALK3Ol0iDUiEfW6XF6ubicAVFSoe4zp6elCG+RtoaBAvVxsNnn9kdYxr9cr1pDaajLJYwAKC9Xbrc78kNpaUlIs1nA4nMo8KUn+Kh4KhZS5zrYQCKj3H8nJcjsqKtS9cGkd1GGSdy8wDPUV8n0+6dsCkJoae7lYLHpjTDgShYiIiIiIiIhIAw+iEBERJbJwnP8aYd68eejVqxfcbjfcbjfy8vLw/vvv1+V+vx+TJk1CRkYGUlNTMXbsWOzduzeqxs6dO3HuuefC4XAgOzsbv//978Vf1oiIiIgSFQ+iEBERJbJmPIjSunVrPPLII9i4cSM+//xzDBkyBBdccAH++9//AgCmTp2Kd999F4sWLcKqVauwe/dujBkz5pemh8M499xzEQwGsWbNGrz00kt48cUXcd999x327CAiIiJqTgl7TRQiIiJqXqNHj476/8MPP4x58+Zh3bp1aN26NZ5//nksWLAAQ4YMAQDk5+eja9euWLduHU477TT8+9//xldffYUPPvgAOTk5OPnkk/Hggw/iD3/4A2bMmAGrVedqWkRERESJgyNRiIiIElkkzn+HKRwOY+HChaisrEReXh42btyI6upqDB06tG6aLl26oG3btli7di0AYO3atejZsydycn658Obw4cNRVlZWN5qFiIiI6FjCkShEREQtTFlZWdT/bTZbzCv8b9myBXl5efD7/UhNTcWSJUvQrVs3bN68GVartd4dDHJyclBQUAAAKCgoiDqAUpvXZkRERETHGo5EISIiSmQRxO96KP9/JEqbNm3g8Xjq/mbNmhXz5Tt37ozNmzdj/fr1uOmmmzBx4kR89dVXR+KdEhERESW8hB2JshiAJUZ2t8bzlwh5D40aG4R8kEaNN4Tcq1FjpZB30qjxopDr/B4onbmu06V2VqvzJzVqSPO0vUaNLCHXGfHeW8h15mmukJ+kUaOdkG9u4vMBoK+Qr9eoIb2XlzRq7BbyWPuMg10r5IUaNaR1PUOjRishl7Z7QJ4fQzRqfCrkOu/lIiHfrFFD2p/21KjhFPLjNWqo1kNh93XkNPE0nHq1AOzatQtut7vu4VijUADAarWiY8eOAIA+ffpgw4YNeOqpp3DJJZcgGAyipKQkajTK3r17kZtbs3fLzc3Ff/7zn6h6tXfvqZ2GWq7SklIE7P4Gs9zcnAYfP1hJSYkyt9vtYo2qqiplnpqa2uR2WCzyp1N5ebkyt9tjb6O12rVrq8yrq+W7YplMJmXu9ze8vA62efNmZd66tbw3luapzvWUkpLUX3MMQywBh8OhzEMh+ZMhKSlZmaekpIg1pPfr86nXY535FYmo36u0rQCAw6F+L0VFci8rGFTPU2kdBYCMDHXvJRyWtwVpXbdY5K/RycnqZS9t94C8jqWmusQaFRUVylzaVgDA6/Uoc5/PJ9aQ9qd2u7wtmM3qMSDS9gYARUVFMTOdfRzAkShEREQtTu0ti2v/VAdRDhWJRBAIBNCnTx8kJyfjww8/rMu2bduGnTt3Ii8vDwCQl5eHLVu2YN++fXXTrFixAm63G926dYvfGyIiIiI6ShJ2JAoRERHhsG5NrKzVCNOnT8fIkSPRtm1blJeXY8GCBfj444+xfPlyeDweXHPNNZg2bRrS09PhdrsxZcoU5OXl4bTTTgMADBs2DN26dcOVV16Jxx57DAUFBbjnnnswadKkRh24ISIiIkoUPIhCREREDdq3bx8mTJiAPXv2wOPxoFevXli+fDnOOeccAMDs2bNhNpsxduxYBAIBDB8+HHPnzq17vsViwdKlS3HTTTchLy8PTqcTEydOxMyZM5vrLRERERE1CQ+iEBERJbJmHIny/PPPK3O73Y45c+Zgzpw5Madp164d3nvvvca9MBEREVGC4kEUIiKiRHYELixLRERERIeHF5YlIiIiIiIiItLAkShERESJrBlP5yEiIiKiaByJQkRERERERESkIWFHokwD4IiRvaHx/DFCnqxRY7eQV2nUuFrIl2rUOFPICzVq3Czkc4UcAP4u5NJ7BYDnhNylUeN2IZ+nUaNayO/WqPGlkJ+gUWObkOus6xcLuVPIP9B4jZFC3k2jxt4m5gBQLuTnadQ4ScjzNWqcLOSbNWpsEXJp3QCASUK+X6OGtB/rqVGjNA41pEt1VGrU+EbIszRqdFFkAY3nHxEciUK/UtnZWUhJSWkwKykpEZ/v8XiVuclkEmtUV6t7BJGIfCGhjIwMZV5aKu0lgdTUVGUeCoXEGrt2/aTM27RpLdYoLFT3KtPT08Uabdu2UeZms0WskZ2drcwPHDgg1jAMQ5nn5uaINXw+nzK32axiDb/fr8xLS0vEGtK6bjarfxevqJB6UIDb7VbmdrtdrCGtp9XV8nosbXNSOwHA4Wh4v1JLWs8BxNw31ZLWDZ1pAgG5Z5GVpe69hELStxp5niYny9+MQyF1ByIlRV4/JDr724oK9faUlCQf3rDZYrc1ot5t/PI6epMRERFRszAQvwvCanYOiIiIiKhhPJ2HiIiIiIiIiEgDR6IQERElMp7OQ0RERJQweBCFiIiIElp1dTUKCgpQVVWFrKwsresyEBERER0JPJ2HiIgokUXi/HeMKC8vx7x58zBo0CC43W60b98eXbt2RVZWFtq1a4frrrsOGzZsaO5mEhERUQvDgyhERESJLBznv2PAE088gfbt2yM/Px9Dhw7FW2+9hc2bN+N///sf1q5di/vvvx+hUAjDhg3DiBEjsH379uZuMhEREbUQPJ2HiIiIEsqGDRvwySefoHv37g3mp556Kn73u99h3rx5ePHFF/Hpp5+iU6dOR7mVRERE1BIl7EGULwHYYmQTNZ7/ipDfoVFjnJCv1agxT8jP0KghvZeLNGpcIOTy3eOBoUK+VaOGpI3GNF8I+Q0aNU4Q8gKNGtId1b/UqHGWkE/QqCEtu3wh76vxGp8LeSuNGjuEXOd35H5CvkajhnQ2Q5FGDfUd6oE/OuQaL1ep83h8HXxDY5ohQv6jRg1p+etsC0Eh76ZR4wMhv1ajxnWKrFrj+UdEC7yw7D//+U+t6UKhEG688cYj3Bo6Unx+H2Ldd1vnujdFRcXKPDsnW6yRluZV5hUVlWKN/fv3K/PU1FSxRlGR+tPH6/WKNTwejzIPh+Xz+VwulzL3+aRPQJnVahKn8fnUH5IZGRliDZst1jeJGtXV8l7dZFK3tarKJ9ZwudTLPyPjRLFGOKLeeRcVFipzh0PumFRVqed5UpLU8wWCQfWneSAQEGtIba2qkrdJSSgkfxgmJze8b6p13HFy7/fAgQPKXFpHdZSUlIjTpKaqt2tpuQFAcrJ6+etsC7H297XsdrtYobxcvQ5lZmaKNXbu3Bkz8/v19nE8nYeIiIgSzuzZs5V5eXk5hg8ffpRaQ0RERFSDB1GIiIgSWQu9sOwf//hH/OMf/2gwq6ysxIgRI1Ao/PpKREREFG8JezoPERERoUWezgMAL7/8Mq688kp4vV6cf/75dY9XVlZi+PDh2L9/P1atWtWMLSQiIqKWiAdRiIiIKOFcfPHFKCkpwWWXXYZ//etfGDx4cN0IlL1792LVqlU47rjjmruZRERE1MLwIAoREVEiiyB+I0iOodN5AODaa69FUVERLrjgArz99tu47777sHv3bqxatQqtWulc0pqIiIgovngQhYiIiBLWnXfeiaKiIpx99tlo3749Pv74Y7Ru3bq5m0VEREQtFA+iEBERJbJ4XhD2GBqJMmbMmKj/JycnIzMzE7feemvU44sXLz6azSIiIqIWjgdRiIiIElkLvbCsx+OJ+v9ll13WTC0hIiIi+kWjDqLMmjULixcvxjfffIOUlBQMGDAAjz76KDp37lw3jd/vx+23346FCxciEAhg+PDhmDt3LnJychrVsAsApMbI/qnx/IuEfIVGjUFCvk2jRm8h/1mjRjchd2nUyBXyNho1qoW8VKNGOyEv16gxRMiXatTYLORnatSQvovovBfpR+E3NGrsbWI7TtN4DanGbo0aJUKeHocaTxlfizUeN3VV5gUa7fAL+f4quYZDyCdotONpIX9Io4b0fvtp1Fgn5J2FHJDnqc4ACum9vKRRo6ciCwD4QKMGxUd+fn5zN6FFOpp9PY/HC0dKSoNZUVGR+Hyv16PMy8vkT+LU1Fi9zRpJSQGxhsOh3qNXV0s9KMButytzi8Us1khKUnfrrVarWCMQMIQp5COx0utEIvIePTVV3bstK5N7nX6/T5k7neplX0M9P3Tei6S4uFicJhQKKfNwWN0Oh9MpvoZUIxSS1+NwWL1+JCVZmlyjTbF6uQJAQVKyMtd5L5WV0vxQLxMAMJvV2216htz73b9vvzI/7jj5+mDSPsjhlHqlQFVlpTKX9mGAvL0Y0u4H8rIrKioUa6jaqtEEAIC8Rz7IqlWrMGnSJKxbtw4rVqxAdXU1hg0bhsqDZurUqVPx7rvvYtGiRVi1ahV2795db0guERERaYrE+Y9IgX09IiIitUaNRFm2bFnU/1988UVkZ2dj48aNGDhwIEpLS/H8889jwYIFGDKkZrxAfn4+unbtinXr1uG003R+8yYiIqKW7MYbb8Q999yjdQHZ1157DaFQCOPHjz8KLfv1Y1+PiIhIrUnXRCktrRlKl55eMxRp48aNqK6uxtChQ+um6dKlC9q2bYu1a9c2+MEaCAQQCPwyVLKsrKwpTSIiIvp1aYHXRMnKykL37t1x+umnY/To0ejbty9atWoFu92O4uJifPXVV1i9ejUWLlyIVq1a4dlnn23uJv9qsa9HREQUrVGn8xwsEongtttuw+mnn44ePXoAAAoKCmC1WuH1eqOmzcnJQUFBw2erz5o1Cx6Pp+6vTRudq3MQERG1EOE4/x0DHnzwQfzvf//D6aefjrlz5+K0005D27ZtkZ2djc6dO2PChAn4/vvv8eyzz2LdunXo1atXczf5V4l9PSIiovoOeyTKpEmTsHXrVqxevbpJDZg+fTqmTZtW9/+ysjJ+uBIREbVwOTk5uPvuu3H33XejuLgYO3fuhM/nQ2ZmJk488USYTKbmbuKvHvt6RERE9R3WQZTJkydj6dKl+OSTT6LOV87NzUUwGERJSUnULxR79+5Fbm7D94ex2Wyw2WyH0wwiIqJfv3heEPYYvbBsWloa0tLSmrsZLQr7ekRERA1r1Ok8hmFg8uTJWLJkCVauXIkOHTpE5X369EFycjI+/PDDuse2bduGnTt3Ii8vLz4tJiIiIqIjgn09IiIitUaNRJk0aRIWLFiAt99+Gy6Xq+7cV4/Hg5SUFHg8HlxzzTWYNm0a0tPT4Xa7MWXKFOTl5TX6au3bAcS6Y7XOAFBp4OkFGjVmC/nlGjXWC3lnjRpSW6do1GinMY1kpZB30qjhEvIqjRr/FPLhGjVOEHL5DuNATyHXWU+lO6rLd1wHdgj5ACFfofEa0o/XFo0a0rI/T6PGl0L+mqmrWKNEyK/VaMdmIS/XqCFdmmK7Rg1pnj2lUaNIyHtr1JD2L9UaNX4U8qBGjSFC7taoMVqRVUBvnsZdBPG7lskxOhKFjp6j2dcL+P0wxzgty2q1is+vqKhU5h6PR6yxf/8+Za4zAqqyUt17sdvlUTgej1eZ79q1S6yhM88kFRXqTzCrVX4vFov6N9pIRN4RFRcXK3OXS+pVQBz9FA6HxBp2e4oyT06W57nJpJ4fZrP8m3YwqP4UdDqdyry8TO6ZGIYhTCGfQikt+9RU+ZO4qsqnzItaZ4o1In51jYwMuYbPp96uw2F5PZbmacDvF2t4POp5Ju3DACAUUnciHA71eg7I+xd5/ZHXY0CukZqq3vbNZvlbSXpG7M+GKp963anVqIMo8+bNAwAMHjw46vH8/HxcddVVAIDZs2fDbDZj7NixCAQCGD58OObOnduYlyEiIqJaPJ2HjiL29YiIiNQadRBF5wiT3W7HnDlzMGfOnMNuFBEREREdfezrERERqR32LY6JiIjoKGiBtzg+VCgUwgcffIC//e1vKC+vGZa+e/duVFRUNHPLiIiIqKU57FscExER0VEQz4Mfx+BBlB9//BEjRozAzp07EQgEcM4558DlcuHRRx9FIBDA/Pnzm7uJRERE1IJwJAoRERElrFtvvRV9+/ZFcXExUlJ+ufjdRRddFHWHGCIiIqKjgSNRiIiIElkLv7Dsp59+ijVr1tS7M0D79u3x888/N1OriIiIqKXiSBQiIiJKWJFIBOFw/fOQfvrpJ63bnBIRERHFEw+iEBERJbIWfmHZYcOG4cknn6z7v8lkQkVFBe6//36MGjWq+RpGRERELVLCns7zMwB7jGyQxvOlo0N/0KhxiZB/pVHDL+QWjRpvCPnFGjXi8VtdfyHfrlHjXiHvpFHjESFfqlHjeyFvp1FDGhW/WqNGuZDrrB+5Qt5KyLfE4TUKNWqcJuR7NWpUC7lNo8ZQId+lUaONkH+hUUP66rdKo4a0L+ynUUNa/iM1aryjMY3kPCFfr1EjKOT7NWo8pMik9e+IacYLy86aNQuLFy/GN998g5SUFAwYMACPPvooOnfuXDfNd999hzvuuAOrV69GIBDAiBEj8MwzzyAnJ6dumvbt2+PHH3+sV/uuu+4S2/D4449jxIgR6NatG/x+Py6//HJs374dmZmZ+Oc//9m4N0QJJVhdDYul4U+6eIwy2r17tzhNWppXmft8Uk+uZrSUmkmsUVxcrMyldgKA2azTa1BzOJzKPBAIiDX27ClQ5jab/GndqpW691JaWirWkNpqs1mVOQBId/zWuUNYQyPpDmYyyetHUpL6K1tycrIy9/t9Gq+hrqGz7KX1p7o6JNYA1DPdbJbnl7T/CAalHoM8T0MheZ66PV5lXlEurz+prlRl7nA4xBrSfszt9og1SkpKxGkkHq/6dSorKjWqqNePUEhex/YWxN5H+f3yPh/gSBQiIiKKYdWqVZg0aRLWrVuHFStWoLq6GsOGDUNlZU1Hp7KyEsOGDYPJZMLKlSvx2WefIRgMYvTo0fW+WM6cORN79uyp+5syZYpWG9q0aYMvv/wSd999N6ZOnYpTTjkFjzzyCDZt2oTs7Oy4v2ciIiIilYQdiUJERESo+dElXheEFX5VPdSyZcui/v/iiy8iOzsbGzduxMCBA/HZZ59hx44d2LRpE9xuNwDgpZdeQlpaGlauXImhQ38Z++VyuZCbK41ri1ZdXY0uXbpg6dKlGD9+PMaPH9+4N0BEREQUZxyJQkRERFpqh9Cnp6cDqBnebTKZoobn2+12mM1mrF4dfVLjI488goyMDJxyyin485//rDXkNjk5WXtoLREREdHRwIMoREREiewIXFi2rKws6k/nXPdIJILbbrsNp59+Onr06AEAOO200+B0OvGHP/wBVVVVqKysxB133IFwOIw9e/bUPfeWW27BwoUL8dFHH+GGG27An/70J9x5551ab3/SpEl49NFHtQ66EBERER1pPJ2HiIgokUUQv9N5/n+dNm2iL498//33Y8aMGcqnTpo0CVu3bo0aYZKVlYVFixbhpptuwtNPPw2z2YzLLrsMvXv3htn8y+8006ZNq/t3r169YLVaccMNN2DWrFniRSY3bNiADz/8EP/+97/Rs2dPOJ3RFy5cvHix8vlERERE8cSDKERERC3Mrl276q5hAsh3y5g8eTKWLl2KTz75BK1bt47Khg0bhu+++w4HDhxAUlISvF4vcnNzccIJJ8Ss179/f4RCIezYsSPqTj8N8Xq9GDt2rMa7IiIiIjryeBCFiIgokR2BWxy73e6ogyixGIaBKVOmYMmSJfj444/RoUOHmNNmZmYCAFauXIl9+/bh/PPPjznt5s2bYTabte6uk5+fL05DREREdLQk7EGUVAApMbKnNJ7fRsi7Na45DYp9h+lfnCHkn2vUUN/pXH6vACB1QSdo1HhbyM/TqHGxkJ+kUeOfQt5bo4Z0F/IPNGq0E/IsjRqrhVxnHZOW/0whn6rxGl4hT9eosUpjmqa243mNGtI6+I1GDWn/YdGoIZ2AUKRRQ1rXV2rUkC7ZGY99lF2jhrTN9dCoca+QP6BR40dFFtR4/q/NpEmTsGDBArz99ttwuVwoKKjZK3k8HqSk1HxK5+fno2vXrsjKysLatWtx6623YurUqXUjTNauXYv169fjrLPOgsvlwtq1azF16lRcccUVSEtLa7b3Rs3PYjbDYml4j7l//z7x+cnJVmVut+vsfdR0rsWTmupU5lVVVWINs1n9yWG1qt8rABQWFirzjAz507r24tGxeDzywVeLxavMU1Lk5VJcXKzMHY5Y3xJ+ceht1g9VXl4u1pDme1KS/FWq9pbwsYRC1WINaV2v3TfHkp0t90pjbYu1kpLk3k1FRYU4jUTaFqT1HAA8Hq8y17kOmLz/MIk1SktKlHkoJP9C4nA4lHl5uTzPDUO9LVRVSd+M5PXDZJLnR3mZepvT2TccfL21huTmHifWCAZj9+ik91krYQ+iEBEREY7ISBRd8+bNAwAMHjw46vH8/HxcddVVAIBt27Zh+vTpKCoqQvv27XH33Xdj6tRfDs/abDYsXLgQM2bMQCAQQIcOHTB16tSo66SodOjQQdk5+/777xv3poiIiIiagAdRiIiIEtkRuLCsLsMwxGkeeeQRPPLIIzHz3r17Y926dY174YPcdtttUf+vrq7Gpk2bsGzZMvz+978/7LpEREREh4MHUYiIiChh3XrrrQ0+PmfOHHz+uc4JZ0RERETxY5YnISIiomYTjvPfr8TIkSPx5ptvNncziIiIqIXhQRQiIiI65rzxxhtIT9e5rDURERFR/PB0HiIiokQWQfxGkMTr2ipH0SmnnBJ1YVnDMFBQUID9+/dj7ty5zdgyIiIiaol4EIWIiCiRNeOFZRPBBRdcEHUQxWw2IysrC4MHD0aXLl2asWVERETUEvEgChERESWsGTNmNHcTiIiIiOok7EGUAwDsMbITNZ6/QMjv0KgR6/VrTdCoUS7kOjdnvFPI12jUuELInRo1Bgn5Ko0aFwv5Wo0a44X8I40aTwv57Ro1vhLymzRqFAr59Ro1tgn5RCFfrvEa3wh5w/fOiCb9AN5Jo0Z/Ibdo1MgScum9AkC1kK/XqHGRkOsMGJgt5G00alwm5Ns1akjvN0+jxilC/oFGDWnZvqdRw6HIdNavIyKeF4Q9Bi8sa7FYsGfPHmRnZ0c9XlhYiOzsbITDx+CbIgBAKBxGKBRqMLNabeLzi4uLlfmh60xDDh7l1JDc3AyxhrQO/vzzbrFGTo66rZWVlWIN6RpBZrO8F0tNTVXmFRUVYg2v16vMKyurxBrSeykvl3rYwP79+5W5zvrh9/uVeWZWplhDWj8yM+V1zO8PKHNpfpWVlYmvEQioXyMrS/qUBQxDndts8nbtdKq/lUjbLAAkJ6u/4krvFag5dVSlqkreJj0er/AaQbHGvn37lHlycrJYIz1dveyk9RyQ90GpqfK3SYdD1cvSW0+TktTLVqeG2Rz7srAmRRZVQ2sqIiIiomYQqyMbCARgtVqPcmuIiIiopUvYkShERESEFntNlKefrhkzaDKZ8Pe//z3qF/JwOIxPPvmE10QhIiKio44HUYiIiBJZCz2dZ/bsmhPWDMPA/PnzYbH8ciqC1WpF+/btMX/+/OZqHhEREbVQPIhCRERECeeHH34AAJx11llYvHgx0tLSmrlFRERERDyIQkRElNha6EiUWh99pHO5cCIiIqKjgwdRiIiIKKH99NNPeOedd7Bz504Eg9F3M3jiiSeaqVVERETUEvEgChERUSJroReWrfXhhx/i/PPPxwknnIBvvvkGPXr0wI4dO2AYBnr37t3czSMiIqIWJmEPopQCiHXH6pM0nr9IyP+uUWOokP9Fo8YbQv6xRo0dQm4RcgCQ7mS+RqOGV8gna9T4Usg9GjVuFPKpGjVuEvJuGjW2CbnOPD1TyKs1anzVxFxndL90/4vXNGqcoTGN5BUh7xyH1xikMc0XQh5r33Uwad/QX6PGFUIubfeAvH7o1Ogr5E6NGkuEfKVGjROFvEqjxlnC8+dp1Ii7COJ3Gs4xeBBl+vTpuOOOO/DAAw/A5XLhzTffRHZ2NsaPH48RI0Y0d/OoCcLhMMLhhlfulJQU8fkdOnRQ5gcOHBBruN0uZb5v316xRklJiTLv1KmTWOPQEVb1yZ8skYh6A6+slPfoB1/AuSGZmVliDZ/P16TXAIBdu3Yq86ysbLFGZmamMrfb7WINv1893ysr5Hmamqr+FIx1G/fGtEPKdV7DZrMp85KSYrGG05kqTiMpKipS5lI7dUjLBJDX40hEnqfSvsHpdIg10tPV1wMLh+UPdr9fei9yDYdD3Vaz2SzWkOZHRUW5WMNqVS9/nfdy8N3+DmUyye8DAPSmIiIiImoGX3/9NSZMmAAASEpKgs/nQ2pqKmbOnIlHH320mVtHRERELQ0PohARESWycJz/jjFOp7PuV/rjjjsO3333XV2mM9KAiIiIKJ4S9nQeIiIiotNOOw2rV69G165dMWrUKNx+++3YsmULFi9ejNNOO625m0dEREQtDA+iEBERJbIWfmHZJ554AhUVFQCABx54ABUVFXjttdfQqVMn3pmHiIiIjjoeRCEiIkpkYcTv5Ntj7HSecDiMn376Cb169QJQc2rP/Pnzm7lVRERE1JLxmihERESUkCwWC4YNG4biYvmuEERERERHAw+iEBERJbJInP+OMT169MD333/f3M0gIiIiApDAp/OMABDrDt4lGs/fIOQnadT4VsgHaNQ4Qcgf06ixQ8h7atToLeSrNGokC7l8x3WgnZDv16gxWch/1KhRJuRva9SQjkDKdzoHnhfyizRq9BVyi5D/U+M1Rgp5ukYNaVtYr1HjFiFfolFjh5Bv16hhF3Kdkw1mC/kQjRpLhVya54B8dkepRg1pu96lUUPabu/QqPGKkLfSqPG5IgtoPJ/i76GHHsIdd9yBBx98EH369IHTGf1p43a7m6ll1FQetwspKSkNZuGwfO5ZVVWlMnc4Gq59ML9fvWUfur41xGq1KfO9e/eKNWrvQBVLSor0yQM4HA5lXnttIRWTyaTMzRb591erVd1jDIXkZZuZmaXMpfkFAJGI+nVKS+VPOGl+6KynhYWFytzr9Yg1pGUrNFNrNJ/Lpd6XRiLyUXibTb0tVFaqt1kAyMpWL/uS4hKxRiCgXj+CQfkT3WRSr+tt2rQRa+zfv0+Zp6a6xBplZer1VNr/1DCUqc42abValXl1dbVYQ9pus7OzxRpFRep1WdpmAaCqqipm5vP7xecDCXwQhYiIiNCir4kCAKNGjQIAnH/++VGdI8MwYDKZtL7EEBEREcULD6IQERElshZ+EOWjjz5q7iYQERER1eFBFCIiIkpYgwYNau4mEBEREdXhhWWJiIgSmYH4XVRWfVp0wvr0009xxRVXYMCAAfj5558BAC+//DJWr17dzC0jIiKiloYHUYiIiChhvfnmmxg+fDhSUlLwxRdfIBCouSBgaWkp/vSnPzVz64iIiKil4UEUIiKiRBaO898x5qGHHsL8+fPx3HPPITn5l7t+nH766fjiiy+asWVERETUEvGaKERERIksDEC+Y59+rWPMtm3bMHDgwHqPezwelJSUHP0GERERUYvGkShERESUsHJzc/Htt9/We3z16tU44YQTmqFFRERE1JIl7EiU7QBSYmQ5Gs/fJuQ9NWp0FvKgRg2XkF+mUaNayN/WqLFcyNtr1HhXyNto1Ogm5NJyAwC/kJdo1LALudROAOgi5H/UqHGGkC/VqNFXyNcLeYbGa0gD5nXunZEv5L01arwfh3asikM7SoX8HY0aASGX3isAFAn5Lo0aVUJ+sUaNvUKepVFD2q/r7F+kfbZTo4Zq/9JsgzhqLwobr1rHmOuuuw633norXnjhBZhMJuzevRtr167FHXfcgXvvvbe5m0dN4PcHYDI1/HtecrLcRfX71XtSu136tJenMQz5asxms/o3ybS0NLGG9DqlpdInD1BWVqbMrVarRg3161itycocAOz2WD34GoFAuVjDMNTzNByW98gmk3oIXzzWj927d4s1UlPVnz6lperlBgAOh0OZV1VVKnOLRd6efD6fMk9NTRVrFBYWKvOUFPW6AQBlwvxwuaRvV0B5uXodS0lRz09AXsd0tslIRL1dS9ssAIRC6nYEgxUa7VB/+Hu9Xo12hJR5UpK8jknTJCfL+yi73abMpf0xIC8XHQl7EIWIiIjorrvuQiQSwdlnn42qqioMHDgQNpsNd9xxB6ZMmdLczSMiIqIWhgdRiIiIElkLvyaKyWTC3Xffjd///vf49ttvUVFRgW7dumn9KkpEREQUbzyIQkRElMha+Ok8taxWK1wuF1wuFw+gEBERUbPhhWWJiIgoYYVCIdx7773weDxo37492rdvD4/Hg3vuuQfV1dJVw4iIiIjiiyNRiIiIElkLP51nypQpWLx4MR577DHk5eUBANauXYsZM2agsLAQ8+bNa+YWEhERUUvCgyhERESJLIL4Hfw4Bk/nWbBgARYuXIiRI0fWPdarVy+0adMGl112GQ+iEBER0VHF03mIiIioQbNmzUK/fv3gcrmQnZ2NCy+8ENu2Rd+M/rvvvsNFF12ErKwsuN1ujBs3Dnv3Rt/4uqioCOPHj4fb7YbX68U111yDigr5towAYLPZ0L59+3qPd+jQQeuWrURERETxlLAjUQ4AiHVndp0zoAcIufou5jVyhVznh8EvhPw8jRrXCLl8l3vgIiHfqlHjAiEfolHjUSHvplFjt5D306jxqZAXaNTYL+RnaNSQnKQxjfQV4g4hX6PxGlcLubRMAHnZfqRRY5eQ62yTQY1pJK3i0A5pHftZo8YJQv6tRo2+Qr5Fo4ZLyP0aNaT38o1GjSwhz9CosVKRNdvVNyKI3+k8jRyJsmrVKkyaNAn9+vVDKBTCH//4RwwbNgxfffUVnE4nKisrMWzYMJx00klYubJm7t17770YPXo01q1bB7O55rea8ePHY8+ePVixYgWqq6tx9dVX4/rrr8eCBQvENkyePBkPPvgg8vPzYbPZAACBQAAPP/wwJk+e3Lg3RAklFA4jFAo1mBmGIT7f6XQq83C44doHS05OVuY67aiqqlLmHo9HrLFz505lbjLJOwGv16vMfT6fWMPtVrc11SXt8YF9hxxEPZTdLvdcg0H1HtfpdIg1KioqlXmsda8x00jroI6UlBRxGmn5Z2dnK/PKSvW8AID0DPWnZLWwTAAgMzNTmZeXl4s15Gtdyduk3jRq8dg3JCVZlLnOdb1sNnVP3+8PiDUcDvX24vfL+wazWf1eIhG5g1H7GR5LICD3GJOS1IcvLBb58EZFRez1MFSt900hYQ+iEBERUfNatmxZ1P9ffPFFZGdnY+PGjRg4cCA+++wz7NixA5s2bYLb7QYAvPTSS0hLS8PKlSsxdOhQfP3111i2bBk2bNiAvn1rDts988wzGDVqFB5//HG0aqU+LLlp0yZ8+OGHaN26NU46qebQ8pdffolgMIizzz4bY8aMqZt28eLF8Xz7RERERPXwIAoREVEii+fFYP9/rbKysqiHbTab+AsRAJSWlgIA0tPTAdSMCDGZTFHPtdvtMJvNWL16NYYOHYq1a9fC6/XWHUABgKFDh8JsNmP9+vW46CL1WEmv14uxY8dGPdamTRuxrURERERHAg+iEBERJbIjcBDl0IMQ999/P2bMmKF8aiQSwW233YbTTz8dPXr0AACcdtppcDqd+MMf/oA//elPMAwDd911F8LhMPbs2QMAKCgoqDfUPCkpCenp6SgokE+ezM/P13xzREREREceLyxLRETUwuzatQulpaV1f9OnTxefM2nSJGzduhULFy6seywrKwuLFi3Cu+++i9TUVHg8HpSUlKB3795110MhIiIi+jXhSBQiIqJEdgQuLOt2u+uuYaJj8uTJWLp0KT755BO0bt06Khs2bBi+++47HDhwAElJSfB6vcjNzcUJJ9RcLjg3Nxf79u2Lek4oFEJRURFyc6VLuAOFhYW477778NFHH2Hfvn31Ll5XVFSk/T6IiIiImooHUYiIiKhBhmFgypQpWLJkCT7++GN06NAh5rS1d2VYuXIl9u3bh/PPPx8AkJeXh5KSEmzcuBF9+vSpmyYSiaB///5iG6688kp8++23uOaaa5CTk6N1lxIiIiKiI4UHUYiIiBLZEbgmiq5JkyZhwYIFePvtt+FyuequYeLxeOpuy5mfn4+uXbsiKysLa9euxa233oqpU6eic+fOAICuXbtixIgRuO666zB//nxUV1dj8uTJuPTSS8U78wDAp59+itWrV9fdmYeIiIioOfEgChERUSI7Aqfz6Jo3bx4AYPDgwVGP5+fn46qrrgIAbNu2DdOnT0dRURHat2+Pu+++G1OnTo2a/tVXX8XkyZNx9tlnw2w2Y+zYsXj66ae12tClSxf4fL7GNZyIiIjoCDEZhmE0dyMOVlZWBo/Hg+UAnDGm+V6jzj+EfFLjmtUgq8Y0K4R8jEaN7UKepVHjKyGfKuQA8J6Qf6RRY6iQL9eokSzkOje+XCrkb8WhxnqNGg4hz9CocbWQvy3k0voFAMcL+SsaNa4Rcp3tKUfIn9WoMVLIT9OosUPIt2nU2CDkOtt1T41pJDcId7V9NyDXkNZ1v0Y75JM6ZNI4BZ2v7BcoskoAF6HmNr+NuZ7I4ar9PCw9AXBb4lQzDHi+P3rvIR42bNiAu+66C/fddx969OiB5OToT4Fj5X3QL2rX7b/99em6EU2HCgTknY90PZysrMzDat/BdE4fKy8vV+Yej1esIb3fpCT5d0+/X723PfQuWQ0pKytV5uXlFWINl8slvEaZMgcAs1k935OT5V6D9F5qr9ukUntb91gqK6vEGtJFti0WeQefmanuEZaUqNupsz0dum89VHGxfP2pjAyp5ypvT8nJ6nW9sLBQrCF9Ljicsb5l/iIYCCpzaXsDAJ9PvX5YLPJ2HWsf2RjZ2epeZXFxiVijqqpSmUci8iEFh0P65iOTahx6DbaGeL2emJnP58NNt0wV+0kciUJERJTIGjl65KjVOkq8Xi/KysowZMiQqMcNw4DJZEI4HM/znYiIiIjUeBCFiIiIEtb48eORnJyMBQsW8MKyRERE1Ox4EIWIiCiRhQHE68TbY3AkytatW7Fp06a6C9USERERNSf1SXpERETUvCJx/jvG9O3bF7t27WruZhAREREB4EgUIiIiSmBTpkzBrbfeit///vfo2bNnvYsf9urVq5laRkRERC0RD6IQERElshZ+Os8ll1wCAPjd735X95jJZOKFZYmIiKhZ8CAKERERJawffvihuZtAREREVKdRB1HmzZuHefPmYceOHQCA7t2747777sPIkSMB1Nwv+/bbb8fChQsRCAQwfPhwzJ07Fzk5OY1u2D4Ase4C/ZHG868W8i81amwV8gkaNaYK+V0aNYYK+VcaNbYJ+ViNGn8W8t0aNZYLeX+NGscL+dsaNe4T8lc0aqjv/A64NGqkC7nOspXe7/tCfpHGa7wk5K00amQI+acaNaRlvzj2bd/r/Km06e2wCPk3GjVOEvLhGjXmCbm03QOAN6DOX9OoYRfyHRo1pO3lAo0aS4S8p0aN7YrMp/H8I6KFj0Rp165dczehRTmafb3q6mokJTXcFS0vLxefn5Gh/hStqpK3Wr/fr8zT06VPaiArK1uZ794t95BcLvVeUGqnzjQ//PC9WKPV8epP2mCwWqxRVlamzJ1Op1jj0NP2DlVaKnyYA8jNzVXmhYVFYo1IRL3TtFjky0taLOqvWzrLtqRE/X6lee71yh2koiL1/JCWCSC/18rKCrFGKKR+nY4dO4k1du/+WZlXlMvtkO4EFwgIHSgAKSkpytzlcos1Dhw4ILRDXn8sFnXPtaSkWKxhMqnX9WAwKNYwm9U1vF6vWKOkpESZS/McAPz+2MvO75ffB9DIC8u2bt0ajzzyCDZu3IjPP/8cQ4YMwQUXXID//ve/AICpU6fi3XffxaJFi7Bq1Srs3r0bY8aMacxLEBER0cFa+IVlAeDll1/G6aefjlatWuHHH38EADz55JN4+22dw+bUGOzrERERqTXqIMro0aMxatQodOrUCb/5zW/w8MMPIzU1FevWrUNpaSmef/55PPHEExgyZAj69OmD/Px8rFmzBuvWrTtS7SciIqJfsXnz5mHatGkYNWoUSkpK6q6B4vV68eSTTzZv436F2NcjIiJSO+xbHIfDYSxcuBCVlZXIy8vDxo0bUV1djaFDfzn5pEuXLmjbti3Wrl0bl8YSERG1OBHUnNITj79jcCTKM888g+eeew5333131JDkvn37YsuWLc3Ysl8/9vWIiIjqa/SFZbds2YK8vDz4/X6kpqZiyZIl6NatGzZv3gyr1VrvXKacnBwUFBTErBcIBKLOKZPO6SMiIqKW44cffsApp5xS73GbzYbKyspmaNGvH/t6REREsTV6JErnzp2xefNmrF+/HjfddBMmTpyIr77Sufxlw2bNmgWPx1P316ZNm8OuRURE9KvTwq+J0qFDB2zevLne48uWLUPXrl2PfoNaAPb1iIiIYmv0QRSr1YqOHTuiT58+mDVrFk466SQ89dRTyM3NRTAYrHfF3L179yqvjj19+nSUlpbW/e3atavRb4KIiOhXK16n8tT+HSNmzpyJqqoqTJs2DZMmTcJrr70GwzDwn//8Bw8//DCmT5+OO++8s7mb+avEvh4REVFsjT6d51CRSASBQAB9+vRBcnIyPvzwQ4wdW3PD3G3btmHnzp3Iy8uL+XybzQabzdbUZhAREdGvyAMPPIAbb7wR1157LVJSUnDPPfegqqoKl19+OVq1aoWnnnoKl156aXM3s0VgX4+IiOgXjTqIMn36dIwcORJt27ZFeXk5FixYgI8//hjLly+Hx+PBNddcg2nTpiE9PR1utxtTpkxBXl4eTjvttCPVfiIiol+3MABTnGoZcapzFBjGL40dP348xo8fj6qqKlRUVCA7O7sZW/brxr4eERGRWqMOouzbtw8TJkzAnj174PF40KtXLyxfvhznnHMOAGD27Nkwm80YO3YsAoEAhg8fjrlz5x5Wwz4BYI2ReTSe/4WQr9GoMUbIv9SoEfsyazV2aNT4XsjP0KjRWch1rqm/Ssh3a9SQ5qk0vwCgo5A/qVHjXiE/QaOGRcjLNWo4hdylUUN6HWn9yNd4Db+QT9SosUHIMzRqSGcivFwq18gSco0S4nbbRaOGtD2116ixVcgHadSQLsvZSqNGfyH/VqNGeyF/TaNGJyHXmR+qqz5UaTyf4stkij565HA44HA4mqk1LcPR7OtVVFQgFAo1mCUlSZ+yQFWVT5nrXHjY41H3Kn0+9WsAQChUrcyDwaBYIxgMKHOnU+oxAHa7erRPRYU8PyrKK5S59F4B1Lvw8OHUkEYutW7dWqyxZ4+6Z2q1yqOjDt0HHSoSkS80ZTarr55gschXV4hE1D2g1FT1+lFYWCS+hmGo30t6erpYo6pK/UlpsTT5JAjs379fnCYpSf06oZB8bqu03eqMrqusVG9PVmusb7u/8PvV+yCnM1WsIa2nSUnJYg1pH3TwxcNjkd5vcXGxWEOa76kueX74fbG/2YTDeuc9N2pNfv7555W53W7HnDlzMGfOnMaUJSIiolgiaJEjUQDgN7/5jfglpqhI/nJA+tjXIyIiUmv64UAiIiI6clro6TxAzXVRpJECREREREcTD6IQERFRQrr00kt5/RMiIiJKKDyIQkRElMha6EgU6TQeIiIiouYgX8mIiIiI6Cg7+O48RERERImCI1GIiIgSmYFjagRJvOjc9YKIiIjoaONBFCIiogQWhnx778bUIiIiIqLDl7AHUdoDsMfIvBrPl6aZqlHjj0KuvhN6jYuEfK5GjXwhf0WjxhAhd2nUWC/kOueGSfP0DI0aFiHfqlGjlZC/r1HjFiGX5pdOOy7RqLFUyEuE/G6N1+gm5LG21YNtE3JpXujUaKNRQ9pude4DcrWQ62xP0pfZco0a44Tcq1GjQMilZQ8AGULu1KixRmMayedCnq5R40LjyphZWVkQ8LzWqDYRUWxWqw02m63BzGKRPu3laXQuSrx7925lrjMiymZTf3K0aSN/OhUWFirz4uJisUZqqvrTR2eeVlZWKnOdaxXt2aOep05nqlhDuhCU3+8TKyQlJSvzsrIysUZWVpYyl+YXACQnq9vh9aaJNcrKSpV5KKTuVeTm5oivYbenKHOzWV72fn9AmUvzoqaGX5lbrXKNcFi93SYlyduCy6Xu3ehsTxKpnYC8fui0IxSqVuZ2u9yTl+aZ2axefwC97UVSVaXuyess2/POOy9mVl6u0wNP4IMoRERExJEoRERERImEF5YlIiIiIiIiItLAkShEREQJLPL//+JVi4iIiIgOHw+iEBERJTCezkNERESUOHg6DxERERERERGRBo5EISIiSmA8nYeIiIgocXAkChERERERERGRBo5EISIiSmC8JgoRERFR4kjYgyjpAFJiZH/XeP5JQv6VRo0ThHyIRo1dQr5So4Y0XOgSjRrbhfyebXKNDZ3Veb5GOyYJuV+jxgYhT9aoUSTkF2nUWCrkQY0adiH/UqNGXyGvEvJqjdeYKeR7NWp0FHKdZb9CyKV1AwBcQj5Ko4a07KV9BwD0FvJKjRq7hbxAo0Y3IdfYNWCokM/WqHGLkEvvFZD3cwGNGpeYXo6Z6WwrR0IE8Tv4wdN5KJFYLGZYLJYGs6KiQvH5dnusnmINv1/+ZLFarcrc5ZI+NYDqavUnfnl5uVjDZFLnXm+aWCMQUO/lqtZtFmvkDhuozAsL5eWSmZmlzA1D3hNVVal7LyZphgEIh0PK3Ov1iDVKS0uFKQyxhtRWn88n1nA4HMo8ElHPU8OQ27lnzx5lHgqp5ycA2Gw2ZS61EwAqKtTbi88n9WwBs7nh/Uott9st1pCWvfReAcDhUO+jdOZHMKjufYRCcu/Ebld/4/D75R6Sy6WeZ/v27RNrZGWp9w3V1fJ7kfZzkYi8rr/8cuy+ns7nBsDTeYiIiIiIiIiItCTsSBQiIiLihWWJiIiIEglHohARERERERERaeBIFCIiogTGC8sSERERJQ6ORCEiIkpg4Tj/NcasWbPQr18/uFwuZGdn48ILL8S2bdGXGy4oKMCVV16J3NxcOJ1O9O7dG2+++WbUNO3bt4fJZIr6e+SRRxrZGiIiIqLmx4MoRERE1KBVq1Zh0qRJWLduHVasWIHq6moMGzYMlZW/3D9qwoQJ2LZtG9555x1s2bIFY8aMwbhx47Bp06aoWjNnzsSePXvq/qZMmXK03w4RERFRk/F0HiIiogTWnBeWXbZsWdT/X3zxRWRnZ2Pjxo0YOLDmVqhr1qzBvHnzcOqppwIA7rnnHsyePRsbN27EKaecUvdcl8uF3NzcJrWfiIiIqLkl7EGUVxC7cTdpPL+dkO/WqPEPIb9Yo8YXQv6BRo1uQv5XjRqjhPyOznIN9Z29gZEa7Zgn5DrL9nghl+YXAKwQcp3lIs0PbxxqVAo5AFiamL+n8RrSPG2jUUNjFRNNFXKd5SbNj+0aNXoLuVejhrQPOkGjxlIhH65RQ3ovOvtKab731KghndjRV6PGICGfqVHjTEXmA7BEo0a8HYlropSVlUU9brPZYLPZxOeXlpYCANLT0+seGzBgAF577TWce+658Hq9eP311+H3+zF48OCo5z7yyCN48MEH0bZtW1x++eWYOnUqkpISthtCR0FxcTF8Pl+DWWZmpvh8q1W9zgaDQY02FCnztLQ0sYbPV6XMy8vLxRp2u12ZHziwX6zhdruVua2fvDeW2iq9BgAcOHBAmessW5crWZnb7SlijfLyMmVeViYvF2kfZTZLvQogOVldIxzWObxtalJ+6D6/IdI6GInI7bTb5c8RSVZWtjLX2Z4kgUBAnMbhUK9jFou87IPBamWu87nr86mXncvlEmukpDiUudROQN6eUlLU6w8A7N27V5k7HOp2AkCqK1WZF+wpEGs4nbFrmM16/RL2XoiIiFqYNm2iD33ef//9mDFjhvI5kUgEt912G04//XT06NGj7vHXX38dl1xyCTIyMpCUlASHw4ElS5agY8eOddPccsst6N27N9LT07FmzRpMnz4de/bswRNPPBHX90VERER0pPEgChERUQI7Eqfz7Nq1K+oXZZ1fwyZNmoStW7di9erVUY/fe++9KCkpwQcffIDMzEy89dZbGDduHD799FP07Fnzy/e0adPqpu/VqxesVituuOEGzJo1S+u1iYiIiBIFD6IQERG1MG63W2tYfq3Jkydj6dKl+OSTT9C6deu6x7/77jv89a9/xdatW9G9e3cAwEknnYRPP/0Uc+bMwfz58xus179/f4RCIezYsQOdO8fjZD8iIiKio4MHUYiIiBJYBPG7JkpjR7QYhoEpU6ZgyZIl+Pjjj9GhQ4eovKqq5loQZnP0zf4sFovy/PnNmzfDbDYjO1t97jsRERFRouFBFCIiogR2JC4sq2vSpElYsGAB3n77bbhcLhQU1FywzePxICUlBV26dEHHjh1xww034PHHH0dGRgbeeustrFixAkuX1lz6eO3atVi/fj3OOussuFwurF27FlOnTsUVV1yhddFOIiIiokTCgyhERETUoHnzau6pduiddvLz83HVVVchOTkZ7733Hu666y6MHj0aFRUV6NixI1566SWMGlVzXzibzYaFCxdixowZCAQC6NChA6ZOnRp1nRQiIiKiYwUPohARESWwI3FhWV2GYYjTdOrUCW+++WbMvHfv3li3bl0jX5mIiIgoMZnlSYiIiIiIiIiIKGFHolwMIEWRSX4v5Jdp1Bgn5Ns0ahQJ+Z0aNXYJuUWjxklC7tCoIb3fco0aQ4Xcq1GjQMj3a9TYKuQnaNSQ7ifRU6PGB0J+ikaNvUL+NyEfo/Ea0jp4vEaNVUJ+okaNF4T8AY0aLiH/UaNGtZB/qlFjiJDP0qgh7T++1KgxT8jP1KiRL+TSdg8AJUKu816k9fQCjRqqz454jQZprOa8JgrRkeT1epGS0nBvz+uVr5fz888/K3Oda+5Ir+P3+8UaoZB6y8rJkS+gHAxKnyyyWPOy1qEXgG6I3x9Q5pGIvBdxudSftBaL3HOtrlbPj1AoJNbw+dTLTuf26tI0KQ71PAeA8jJ1D9nhkHvh0vwoLDygzD0eb5NfIzk5WaxRUVGhzK1WeZ4XFRUq89zc48QaFot6XQ8EgmKNSEQ9EtPnqxRruFypynzvXqkXL+8/fD6fWOPAAfX6kZrqFGsUFqq/1UrbPQCEw+r9h857CQbVy87j8Yg1du+O/dnhD6j3gbUS9iAKERER8SAKERERUSLh6TxERERERERERBo4EoWIiCiBNeeFZYmIiIgoGkeiEBERERERERFp4EgUIiKiBMZrohARERElDh5EISIiSmAG4ncajvpeA0REREQk4ek8REREREREREQaEnYkSvL//2vIbRrPzxHy1zRqZAh5ukaNdkK+VaOGdNftkRo1qoT8A40aFiG3a9QYIuQFGjW+F3KpnQBwhpDv0qghvY76Lvc1/EKus1w6CfkdQr5c4zUGCblXo4a0Hr+iUeM0IddZB98Wcml+AkCWkEvvVacdozRqlAt5rH3owaRtcrdGjXFC/rlGDWmbHKBR44sm5gBwiyLzA7hLo0a88XQe+rUymUwwmUwNZj/99JP4/KQkdTe2pKRYrGGxqGtYLHKvwmq1KnOfT/q0B8xm9e+aHo9brBGJqMeslZdLnxoA0PDyqOX3q3MASE1VfwpWV1eLNYLBoDKPtd4czOl0Nrkd0uuEQ/JeVVouZWVlYg273abMs7OzhdeQl31qaqoy19kWpPW4uFjeJh0O9XIzm+VlX1paqsytVvX8BOT9i8Uij0UoKVG3w+2Wt+twWBqLKs8Pl0u9bINBeVvwer3KvKpK+rYpb5PSOqjzOj6f3I6srNg9eZ39NcCRKEREREREREREWhJ2JAoRERFxJAoRERFRIuFBFCIiogQWQfwuLBuvOkREREQtFU/nISIiIiIiIiLSwJEoRERECYyn8xARERElDo5EISIiIiIiIiLSwJEoRERECYwjUYiIiIgSBw+iEBERJTBeWJaIiIgocSTsQZRNAKwxsjM0nv+SkN+kUWO9kJ+kUaONkKdr1PhKyF0aNUqEvJ9GjXZCbteoUSjk/9CoMVzIC+JQQ5rnANBJyDdr1Jgt5Jdp1PALubQeS8sVAPoL+b0aNa4W8pEaNYqEfKlGDWnbX65RQ1rXu2jUaC/kOutgUMj3atS4OVmd31Mt17AIeZ5GO0qF/AONGls0ppEMUGRVcahPRL/w+XwwDKPBLDXVKT6/qEj9qZCZmSnWqKxUb9kpKSliDas1Vo+1hsUi7SUBv9+nzM1muUY4rB5rlpLiEGtI78Vslq8EEAqFlHlxsfRpDrhcbmVeXS1/OLk96hpFhXI7bHabMvdVqZcbAOzfv1+Zp6WliTUikYa3k1p+v3o9lpYrADid6m1u9+7dYo2MjAxl7narlwkAhMPq9ae0tEyskZml3vbLy+Qa0rpus8nffKT57vdLvXjE3EfW0tkWsrOzlfnu3T+LNQCTMtXZZ4dC6n1UmcZy0ZlnEtW6Hono/dyUsAdRiIiIqGb0SLxOw+FIFCIiIqKm4YVliYiIiIiIiIg0cCQKERFRAuM1UYiIiIgSBw+iEBERJTDenYeIiIgocfB0HiIiIiIiIiIiDRyJQkRElMA4EoWIiIgocXAkChERERERERGRhoQdiTIOQKw7OJ+o8fxdQv6jRg3pjurrNWqsFvKRGjVcQr5No8ZFQl6kUWOGkN+uUcMi5N00anwn5GM0auQL+SUaNdYJ+W6NGj8nq/OX5Fu/4zwh3yLky+WXwFdCfpJGjceFfKpGje1Cvl+jxj+F/GeNGllCXqJR4wMhl5YrIO9femjUWCSsY16NGv2F/Mx2co2XhZ1ypUY7hgj5Do0aSxVZUOP5RwIvLEu/VmlpaUhJSWkws9qkXhgQDKp3YMGgvNWaTCZlXlUl730qKiqUucfjFmtYLOoueSDgF2t4PF5lHgoVizUKCgqUeXZ2tlhDYrPZxWmCwYAyl94rABQVFipzb1qaWKOqUr38pXUQAHr27KnMDxw4INbwej3K3OfzKfOysnLxNfx+dQ2Ho+Ft9WD79u1T5tnZUg8KCATUyz4UCok1iovU63p1tbzckpLU22QoJI/trKhQz3e3W71ca2qo9y+x9qEHKypSf9Mzm6VvaIDTGeubeY309HSxhrR/iUTkXkpqaqoy19nvl5aWxcz8fnlfCyTwQRQiIiLi6TxEREREiYSn8xARERERERERaeBIFCIiogTGkShEREREiYMjUYiIiIiIiIiINHAkChERUQIzEL8LwhpxqkNERETUUvEgChERUQLj6TxEREREiYOn8xARERERERERaeBIFCIiogQWQfxO54lXHSIiIqKWKmEPonwJICVGNk/j+RcIeYZGjVZC/phGjaFC/rpGjSwhd2jUmC3kOvPjYSEv0qiRrDGN5Ewhl5YbAFwi5Cs0akjzTGee3lytzj0aNQqF3CLk0voFAAVNzAGgt5Av16hxuZDfoVFD2jd8qlHjCiHP1ajxgZDrzNOThLxEo4awCmptC/uFfNWPcg3pNJOeGu34Ush7aNRQradVAJ7XqEFEeqqqfDCMhq/Uc+CAtGcB3G71p2RSktzNTbaqeyZ7C/ZqtMOlzIuLS8QaUlvNZnnw+P79+5S5xSLPj1atjlPmoZB8UqDZbBKnkTidqcpcWm4A4E1LU+blZeViDYtF3YvSWcd27tzZpNcAgMJCdS/bJMxynXZWV4ealANASkqsb281yjTmeVq6ernt/vlnsYa0b6isrBBrJCer25GUJK+DFRXq9xsKSb0wwOFQz1OdbTI5Wb38pXbWvI56+VdUyPM01v6+lrT+AIDP51PmdrtdrKHanyYn631bTdiDKERERMRrohARERElEh5EISIiSmA8iEJERESUOHhhWSIiImrQrFmz0K9fP7hcLmRnZ+PCCy/Etm3boqYpKCjAlVdeidzcXDidTvTu3Rtvvvlm1DRFRUUYP3483G43vF4vrrnmGq2hv0RERESJhgdRiIiIElgkzn+NsWrVKkyaNAnr1q3DihUrUF1djWHDhqGysrJumgkTJmDbtm145513sGXLFowZMwbjxo3Dpk2b6qYZP348/vvf/2LFihVYunQpPvnkE1x//fWHMzuIiIiImhVP5yEiIqIGLVu2LOr/L774IrKzs7Fx40YMHDgQALBmzRrMmzcPp556KgDgnnvuwezZs7Fx40accsop+Prrr7Fs2TJs2LABffv2BQA888wzGDVqFB5//HG0aqVzOXAiIiKixMCRKERERAksHOc/ACgrK4v6CwQCWm0pLS0FAKSnp9c9NmDAALz22msoKipCJBLBwoUL4ff7MXjwYADA2rVr4fV66w6gAMDQoUNhNpuxfv36xs8QIiIiombEgyhEREQJLIL4HUCpPZ2nTZs28Hg8dX+zZs2S2xGJ4LbbbsPpp5+OHj1+uWH066+/jurqamRkZMBms+GGG27AkiVL0LFjRwA110zJzs6OqpWUlIT09HQUFOjczJuIiIgocTTpdJ5HHnkE06dPx6233oonn3wSAOD3+3H77bdj4cKFCAQCGD58OObOnYucnJxG1f4KgDVGdo7G878X8vc1anQTcp0ByJcIeaWQA8AqIX9Ko8ZyjWkkPwm5zl0fLEJ+hkaN/UL+uUaNSxzqfEWVXGODkGdptEN6L+00agwS8l1CrvFW8baQX6xRo0jIX9KoIf1m/YJGjT8K+QCNGtL+w6VRo7OQV2vUkNq6XaPGe018DUBua18hB4ARxlRl/oJptljjGiH/QKMdqnVMb6zGsWHXrl1wu911/7fZbOJzJk2ahK1bt2L16tVRj997770oKSnBBx98gMzMTLz11lsYN24cPv30U/Ts2TPubaej50j28wAgEPDBZDIazFJT5T1pMBhU5mVlZWINu92uzK3WZLFGWlqaMo9E5KsRSRdabt26tVhD5/1KgkFpj97w8oqm7u2lpqaKFUKhkDKvqpR7LxkZGcq8vKxcrFFVpX6dpCT5q5T0XqzWWN94fiHNs+pq9bagsw7WjjSMxePxijXCYfW3gaIiqTcIVFWpvx21bSv3jnfv3q3MnU6nWKO0VL09WSzStxrAZlPvXyIReXtyudTLPhDwizWkfYPDIc8Padt3OFLECqNHn6/MFy9eLNYQt+vypm3XPr88P4EmjETZsGED/va3v6FXr15Rj0+dOhXvvvsuFi1ahFWrVmH37t0YM2bM4b4MERFRi3YkLizrdruj/qSDKJMnT8bSpUvx0UcfRX2Z++677/DXv/4VL7zwAs4++2ycdNJJuP/++9G3b1/MmTMHAJCbm4t9+/ZF1QuFQigqKkJubu7hzxg6otjPIyIiathhHUSpqKjA+PHj8dxzz0UdfS8tLcXzzz+PJ554AkOGDEGfPn2Qn5+PNWvWYN26dXFrNBERUUtxJK6JosswDEyePBlLlizBypUr0aFDh6i89tccszm6O2GxWOp++czLy0NJSQk2btxYl69cuRKRSAT9+/dvZIvoaGA/j4iIKLbDOogyadIknHvuuRg6dGjU4xs3bkR1dXXU4126dEHbtm2xdu3aprWUiIiIjqpJkybhlVdewYIFC+ByuVBQUICCggL4fD4ANZ/xHTt2xA033ID//Oc/+O677/CXv/wFK1aswIUXXggA6Nq1K0aMGIHrrrsO//nPf/DZZ59h8uTJuPTSS3lnngTFfh4REVFsjb4mysKFC/HFF19gw4b6V4QoKCiA1WqF1+uNejwnJyfmxeMCgUDUXQHicT4nERHRr8XBp+HEo1ZjzJs3DwDq7rRTKz8/H1dddRWSk5Px3nvv4a677sLo0aNRUVGBjh074qWXXsKoUaPqpn/11VcxefJknH322TCbzRg7diyefvrpJr4bOhLi3c8D2NcjIqJfl0YdRNm1axduvfVWrFixQrwQl65Zs2bhgQceiEstIiIiih/DkC9616lTJ7z55pvKadLT07FgwYJ4NYuOkCPRzwPY1yMiol+XRp3Os3HjRuzbtw+9e/dGUlISkpKSsGrVKjz99NNISkpCTk4OgsEgSkpKop63d+/emBePmz59OkpLS+v+du2S7iVCRETUcjTnNVGoZTkS/TyAfT0iIvp1adRIlLPPPhtbtmyJeuzqq69Gly5d8Ic//AFt2rRBcnIyPvzwQ4wdOxYAsG3bNuzcuRN5eXkN1rTZbFq3ViQiImqJ4nnwgwdRSOVI9PMA9vWIiOjXpVEHUVwuF3r06BH1mNPpREZGRt3j11xzDaZNm4b09HS43W5MmTIFeXl5OO200+LXaiIiIiKKK/bziIiIZI2+sKxk9uzZdReNCwQCGD58OObOndvoOgMBOGJk32k83ynkfTVqZAl5rPYd7BUhH6BRwyrk32jU8Ar59xo16l9iLlqyRo0uQv43jRqjhLyzRo2bq9R5ukaNy4R8qUaNZ4T8Uo0aXwi5S8g7abzGCUL+rEaNa4X8Vo0aZwn5rDjUkPYdgDzP3tOoIW37OiMG1gu5tM0CwGghL9GoUSnk2zRqrDXNVubS/hiQt5fpGjVU+8JqjecfCc15YVmiQ8WrnwcATmcqUlJSGsyCwUCDjx/s0FtrH8rhkHtqSUnqrnAoFBJrFBYWKXOnM1WsAZiUqd8vzw+LxaLMA4GgWKP2tuWxmEzqdgIQRx0VFhaKNdxud5NeAwB+/PFHZZ6UpJ5fQM31nFRKS0vFGq3btFbmO37YIdbw+dTLxWxWvxed+WW1Nn25ZWRkKPOsLPnT3OVS91z37o19Eetfaqi3OWnfAQA2m/q6UDrL3umUepXydccqK9W9LGmbBQC326PMw2G51xmJqHsQB188PJaFCxcqc2l/DAA7duxQ5jk5OWIN1edLtcZnDxCHgygff/xx1P/tdjvmzJmDOXPmNLU0ERERETUj9vOIiIiixX0kChEREcVPBPG7lglHohARERE1DQ+iEBERJTBeWJaIiIgocTTqFsdERERERERERC0VR6IQERElMF5Yluj/tXfvQVLWd77HPzM905dh7lxmhBkUV0pjqVREQXRPzAEO6majaDa3yp6QxE2dWgcjUqmtSlUIuRWYWJWTmLAk5ySS2krhtSSulEZHxWGtFWOg2JIkctADEYIMIMxMz6Xn+uwfs8w6y8zv+5Vp6Gfw/aqySvrT/e1f/55L//qZ3/M8AADEBzNRAAAAAAAAHJiJAgBAjHFNFAAAgPiI7UGU/ydpvLtze6Yjh+/sLYXv+j7sWSP/b44aTxu5fadz6XdGfqujxjYjD9+RfdiPjfxzjhp/b+TWcpMk60731h3ZJXv5lzlqtBr5XEeNFiO/xlHDep/pRv6I4z3uMPKko8aFRv6io8YxI1/sqPGykVv9JUkXG7ln3/CEkVt9LknNRn6Ro8YVRu7Z375l5K86atxk5HscNazl4tm//EMg65K01VEj3zidB+erXG+vioqKzvj11ktLShJmjWw2G8ynTLFHFdlsRzAfGBgwa3R3dwdzTz9ZnyWRsPujsbEhmB84cMCsMW3atGBeXGxPhC8uDn/eRMKuYS1/Tzv6+/uDeSpljUqlzmxnMC8rs0ed1vuUlIR/0rW1nTTfo6qqOph71sFkMjwi7OwMr6OSdPJkeHspL7d/tXR2hvvc6i9JSibDfV5eXm7WaGtrC+bV1dVmjWz2RDC3+lySMplMMI8UmTX6enuDeVdXeB8mSZWV4WXX05Mza6RS4c9r7TskacaMukAbeszXS5zOAwAAAAAA4BLbmSgAAIDTeQAAAOKEmSgAAAAAAAAOzEQBACDGmIkCAAAQHxxEAQAgxiLl74Kw9qXjAAAAEMLpPAAAAAAAAA7MRAEAIMY4nQcAACA+mIkCAAAAAADgENuZKA2SMuNkxxyvTxj5JkeNFUZe5qjxRSN/1FHjs0b+JUeN/2vk2xw1/tXI/8ZRI2vk7zpqtBn5844aFxv5FEcNa/nf7qjxZSP3XAfhcSOfN8FckiqMvM9R41dG3uio0WHkTzpq3GbkLY4aG438WkeNw0b+mqPGLCO3lptkby/7HDUuMvITjhoPGflBR41PG/kRR42tgazX8fqzgZkoOF8lS0uVTCbHzAYGBszXFxWF8xMn7FFFTU1tMC8utv/eWFsbrnHyZJujHTXB/O233zZrNDaGv0k7OzvNGtZzqqqqzRpDQ+E9jWfZWjWyWWtEKSWTqWDuWbbFxeGVrLp6qlnDWnZRZF+tqqenJ5hnMuP9avLlkpRIhPvD084TJ8Lf+ONt7+9lLfv29nazRlVVVTD3bAvHjx8P5mVl9i/BgYH+YN7d3W3WKC0tDebWcpOkbDY8gs7l7BGOtewGB+3t+uTJk8G8ry/cX5JUXV0dzPv77XZ0d4/fH7lczny9FOODKAAAYPhgar4uLJuvOgAAAB9UnM4DAAAAAADgwEwUAABijNN5AAAA4oOZKAAAAAAAAA7MRAEAIMa4JgoAAEB8cBAFAIAY43QeAACA+OB0HgAAAAAAAIfYzkS5TNKUcTL7DtLSeiP/gaPG847nWC418gOOGj8xcs9n2WjkCx01skaedtS42Mj3OGpUG/liR41dRt7iqFFr5B9z1LCW3VZHjT8Y+V4jt5aJJFUYuWebvMjI5zlqHDDy6xw1/mzkxxw1LJ4a/2jkqx01/ruRJx01rGV7paOGtQ4ddNQoNfL/76hhbdf7HDVCp7t41vOzYUj5m0HC6TyIk3Q6rXR67NFDFEXm61tbW4P5rFkNZo2Ojg7zOZbxPsMp/f19Zo3jx8PfHLNmzTJrvPvu8WBeVjbeyPo/DQ6G9xLFxfbfX5PJVDAvKcmZNaREMC0vt769pO7u7mDe2dlptyIR/qn01ltvmTVmNYSXXXtbu1mjtzfcZ1YeReFlIklTpoT73LNNJpPhkUdZWcas0dcX3l4863F/f/gbe2BgwKxh8dRoaGwM5n8+ZI1KpYqKcuMZRWaNRCK8bNNpe7mkUuF1yFpuklRUFG5rX1+vWaO7uyeY9/baNaTx12VPGyRmogAAAAAAALjEdiYKAADgwrIAAABxwkEUAABibFD5mzbKhWUBAAAmhtN5AAAAAAAAHJiJAgBAjDETBQAAID6YiQIAAAAAAODATBQAAGKMC8sCAADEBwdRAACIMU7nAQAAiI/YHkR5XlJ6nCzreP1njXyro0aXkV/tqLHPyH/qqPG8kbc4avydkVvtlKRtRn67o8YzRn7MUeMtI/csl5eN/DuOGo8Yuac/rH6vc9S4wsitvzxPd7yHtVzqHTUuN/JaR41/NfI/OGq0G/liR402I/+5o8bnjfw+Rw1re6py1HjAyO9w1LC2Bc92/Wkjn+uosdHI/9FR46lAlpP0rKPG+WT9+vV64okn9MYbbyiTyej666/X9773PV166aWSpAMHDmjOnDljvvbRRx/VJz/5SUlSUVHRaflDDz2kz3zmM2ev8Yi9jmxW/f39Y2ZDQ/a8qZqammDe3m7t8e33yWQyZo3e3t5g3tg426zR0dERzDs7O80aU6dODea5XLidnveprra/WazPMjAwYNbo6wu3NZMpM2t0dYVH8hdccIFZo63tZDD39Eev0e+lpaVmjXQ6vB5GURTMS0rsn3zWcvHUyGTG+/U2LJGwa/T1hZdbLpczawwMhP9kUF5ebtYYGgrXePfdd80atVPDo9uZM2eaNaztqbQ0YdY4diw8EquqqjZrWNuCZ7uurg7vs1Op8PojScePHw/mDY2NZo2OwHdDccLuT4lrogAAEGtDef7v/WhpaVFTU5N27Nih5uZm9ff3a9myZSM/ThobG/XOO++M+u9b3/qWysvLdcstt4yqtWnTplHPW758+Rn0BgAAQGHFdiYKAAAorN/85jej/v3LX/5SM2bM0M6dO/WRj3xEiURC9fWj56Jt2bJFn/rUp077S191dfVpzwUAAJhsmIkCAECMDWn4Wib5+G+iF5Y9dXpEbe3YU5R37typ3bt368477zwta2pq0rRp07RgwQI9+OCD5vRzAACAOGImCgAAMTYo6fQripx5Len0c6xTqZRSqVTwtUNDQ1q1apVuuOEGXXHF2Fdj+sUvfqEPfehDuv7660c9/u1vf1uLFy9WWVmZnnvuOd11113q7OzUV77ylTP+LAAAAIXAQRQAAD5gGv/LhdfWrl2rb37zm8HXNDU1ac+ePXr55bEvzd3T06PNmzdrzZo1p2XvfezDH/6wurq6dP/993MQBQAATDocRAEAIMbO5IKwoVqSdPDgQVVWVo48bs1CWblypbZu3art27eroaFhzOc8/vjj6u7u1uc/b917Slq4cKG+853vqLe313xvAACAOOEgCgAAHzCVlZWjDqKMJ4oi3X333dqyZYteeumlcW9nLA2fynPrrbdq+nT7xum7d+9WTU0NB1AAAMCkE9uDKJ+UNN4dvMeeSDzaZUY+1VGjz8i3OWrMNfLDjhpXTjCXpDojD98JfdhfGXn4DuTDrKH1TY4aXzdyz9WSFxp5haPG/zBy+07n0hEj9/z12Xc38/HZP3ekXUbuWfZVRt7sqNFq5J71Z5+Rv+ioca2RX+6o8byRe/r0CSOf5ahxr5Ffb+SSdI2R/5ujRoeR/9lRw/osnmUb6vdex+vPhrNxTRSvpqYmbd68WU8++aQqKip05MjwXquqqkqZTGbkeW+++aa2b9+up59++rQaTz31lFpbW3XdddcpnU6rublZ69at01e/+tWJfBScB2pqalT2nvXovTo7O83Xp9Phb9qSEvsb0rrAcTZrt8M6GNjfb40oNWp7OpNckkpLS4O551rOVVXhb+uBgX6zRklJ+OeF5wDuO++ER8hFRfZeccqUsmCeSNjrR0VFeERYVGSPOq0+81xk2/644SdYy0SSenq6g/nAwIBZw9rmstmsWaO/P/w+1jKRpL6+8De2Z/9SVhZef6z9jyRlO8Kf19On7e1twdza7iVp+vQZwby8fIpZI5cL90dPT49ZY2goPArx7Cutz9LpWMdC/e5ZJlKMD6IAAIDCHkTZuHGjJOmjH/3oqMc3bdqkL3zhCyP/fvDBB9XQ0KBly5adVqO0tFQbNmzQvffeqyiKdMkll+gHP/iBvvzlL7/P1gAAABQeB1EAAMCYvLchXrdundatWzdmdvPNN+vmm2/OZ7MAAAAKhoMoAADE2Nm4sCwAAADODAdRAACIsUKezgMAAIDRPNfgBAAAAAAA+MBjJgoAADEWKX+n4fiucAIAAIDxMBMFAAAAAADAgZkoAADEWD6vY8I1UQAAACYmtgdRfiMpPU7W73j9ASN/3FFjrpEvddQY7zOccsJR43UjP+yocbWRVztq/G8j9/THrjy0400j/2dHjb818v/pqLHCyPc5aljr8t87avQZea+RH3O8x+1G3u2o8S9GvthR49+M3LNdX2Hkf+Oo0WLkFztq1Bq5tf+RpAuN/HlHjUYjv9tRw9q/1DlqWKereNZTa/2w2ilJVwayHsfrzwYOouB81dHeof6+sb/FPLfX7u0Nf8O1t7eZNVKpVDCvqKgwaxQXhy/9PDBgb3k9PeE9zMCAPfrNZMqCeSKRMGscPXo0mHv6o7s7PCrwtMNatm1tbWaN2qnhb9o//emAXaM2XCOXs0ZZknUi5bRp0ydcY2gonA8MDJjvUFVVbbyHfWJpV1dnMC8vt9cfa1vwbNfpdCaYV1dXmzU6O8OfJZkM7zske1239j/D75MM5tlsdsI1Dh48ZNbIZMJ9Wlpaataw9uue9bS7O7x+lJWF94NSeP1wfPVI4nQeAAAAAAAAl9jORAEAAMOzdPJ1i+N8XaAWAADgg4qZKAAAAAAAAA7MRAEAIMa4JgoAAEB8cBAFAIAY4yAKAABAfHA6DwAAAAAAgAMzUQAAiDEuLAsAABAfsT2IUi5pvDs41zte/ycj/ztHjWeNvNpRw7ob+pWOGuE71NufVZKajXyWo4Z1F/vLHTX+0sifcdS42sg906u+Z+Sez/K0kX/dUeNFI1/lqPHXRn6xkS9zvMcrRp5z1Jhq5D9x1LjOyH/oqHGXkScdNf7KyFscNSzWNivZ26SVS9IuI7/RUSNr5P/HUeNrRv4rR40LjdzaFiSpNJB1OV4PwC+RKFIiMfa3dklJaGsc1tfXF8ynTrW+eaSOjvAeLJFImDWs56Qz9nC7pCRco7c3/FklqbMz/Fk8fVpSEm5rOp02a5SXlwfzjo52s0YmUxbMi4rsQ8tHW1uDueezdHR0BPO6OvtXSTYbXi6HDh0ya1RWVgbzVCo1oddLUmdnZzCPosiskUiE15/jx4+ZNcrKpgTzWQ0NZo1DBw8Gc8/6Y/WZ1V8e1roh2duklUtSd3d3MLe2WUkaHAyfEPzuu8fNGnV1dcH8xImTZo1kMjxST6XskXxR0fi/Fj3ruRTjgygAACC/s0eYiQIAADAxHEQBACDGOIgCAAAQH1xYFgAAAAAAwIGZKAAAxNigJN8ZujZmogAAAEwMM1EAAAAAAAAcmIkCAECMMRMFAAAgPjiIAgBAjHFhWQAAgPjgdB4AAAAAAACH2M5EuVpS+ThZreP16438RkeN24z8AUeNzxr5rxw1bjfyQUeNy438SkeNfzLyqx019hm557MsM/I9jhrVE8wlqdLI/8VR4w9Gfomjxq1GvsXIrW1Fkv7WyD3L7SIj/1+OGpca+U8cNb5u5J7l9oiR/7WjRqOR73XU8DzHUpGH9zhi5P/sqPGokVv9JUmfNvJnHTWWBrIBx+vPBk7nwfkqUzZFZZnMmFkikTBf39raGszLy8cbSf6nqqqqYH7s2DGzRk1NTTA/ceKEWaO6utp8jiWdThv52H39XlZby8rKzBq9vb3BPHLs0Corw99OPT05s0ZxcXgdKimx1zGrRldXp1mjtzfc1lQqZdaw1o+2trZgbm0rklRbG16PPcstmUwG86lTp5k1rPX4uGObrKurD+ae5dbWdjKYV1aG9x2S3R/WtjL8HHtdtxQXh+dNeNrR398fzC+++C/MGidPhvu0tLTUrGHtbzs6OswaFRXj71+KiorM10vMRAEAAAAAAHCJ7UwUAAAwPHskXzNR8lUHAADgg4qDKAAAxNiQJN/kUhsHUQAAACaG03kAAAAAAAAcmIkCAECMDYqZKAAAAHHBTBQAAAAAAACH2M1Eif7j/lldgefYNz+yb0Vp38gp3AZJCt/oaVj3OWhHj6OGdXMsq52S/XntG0pJ1g3FPDfxstrqqdFn5J7lYtXwtMPqU+s9pIn3qef2xPmo4VnHLNZnzcf2lI/1x/NZ87EteNYPy7nYnjz7Bms/5lm2+ejTUI1T607kuc9jHjETBeebU9tQT8/4W77nFse5XHirTpTYw1zrlprWe0jhzyFJPY4aKaOGpx0Dg+HRr2fXZb1Pd7f9DdfbF/5W8NyeeGgoPLLoydnfCgPGLVkTjlscDw6E2zFotFOy+9S6jbIkdU9wHcs5+staLp71Z3DQMyIMGzLeyLM9JZMT3yb7jfW4tDR8+2JJGjD6w9OOgf6Jj/YSifC+0Npmh9sR3p66u+1fpNa+0tOOiW4LklQS+G441UZrrFcUnevRoOHQoUNqbGwsdDMAABjTwYMH1dDQcNbfJ5fLac6cOTpy5Ehe69bX12v//v1Kp9N5rQt4MdYDAMSZNdaL3UGUoaEhHT58WBUVFSoqGv7bW0dHhxobG3Xw4EFVVlYWuIWTH/2Zf/Rp/tGn+UefTkwURcpms5o5c6aKi8/N2bC5XE59jr/MvB/JZJIDKCio/zrWY9+Uf/Rp/tGn+Uef5hf9OXHesV7sTucpLi4e96hPZWUlK0Qe0Z/5R5/mH32af/Tpmauqqjqn75dOpznggfPOeGM99k35R5/mH32af/RpftGfE+MZ63FhWQAAAAAAAAcOogAAAAAAADhMioMoqVRKa9euVSqVKnRTzgv0Z/7Rp/lHn+YffQogjtg35R99mn/0af7Rp/lFf547sbuwLAAAAAAAQBxNipkoAAAAAAAAhcZBFAAAAAAAAAcOogAAAAAAADhwEAUAAAAAAMAh9gdRNmzYoIsuukjpdFoLFy7Ub3/720I3adLYvn27Pv7xj2vmzJkqKirSr3/961F5FEX6xje+oQsuuECZTEZLly7Vvn37CtPYSWD9+vW69tprVVFRoRkzZmj58uXau3fvqOfkcjk1NTVp6tSpKi8v1yc+8Qm1trYWqMXxt3HjRl111VWqrKxUZWWlFi1apGeeeWYkpz8n7r777lNRUZFWrVo18hj9CiBOGOudOcZ6+cVYL/8Y651djPMKI9YHUR555BGtXr1aa9eu1a5duzRv3jzddNNNOnr0aKGbNil0dXVp3rx52rBhw5j597//fT3wwAP66U9/qldffVVTpkzRTTfdpFwud45bOjm0tLSoqalJO3bsUHNzs/r7+7Vs2TJ1dXWNPOfee+/VU089pccee0wtLS06fPiw7rjjjgK2Ot4aGhp03333aefOnfrd736nxYsX67bbbtPvf/97SfTnRL322mv62c9+pquuumrU4/QrgLhgrDcxjPXyi7Fe/jHWO3sY5xVQFGMLFiyImpqaRv49ODgYzZw5M1q/fn0BWzU5SYq2bNky8u+hoaGovr4+uv/++0cea2tri1KpVPTQQw8VoIWTz9GjRyNJUUtLSxRFw/1XWloaPfbYYyPP+eMf/xhJil555ZVCNXPSqampiX7+85/TnxOUzWajuXPnRs3NzdGNN94Y3XPPPVEUsZ4CiBfGevnDWC//GOudHYz1Jo5xXmHFdiZKX1+fdu7cqaVLl448VlxcrKVLl+qVV14pYMvOD/v379eRI0dG9W9VVZUWLlxI/zq1t7dLkmprayVJO3fuVH9//6g+veyyyzR79mz61GFwcFAPP/ywurq6tGjRIvpzgpqamvSxj31sVP9JrKcA4oOx3tnFWG/iGOvlF2O9/GGcV1glhW7AeI4fP67BwUHV1dWNeryurk5vvPFGgVp1/jhy5Igkjdm/pzKMb2hoSKtWrdINN9ygK664QtJwnyaTSVVXV496Ln0a9vrrr2vRokXK5XIqLy/Xli1bdPnll2v37t305xl6+OGHtWvXLr322munZaynAOKCsd7ZxVhvYhjr5Q9jvfxinFd4sT2IAsRZU1OT9uzZo5dffrnQTZn0Lr30Uu3evVvt7e16/PHHtWLFCrW0tBS6WZPWwYMHdc8996i5uVnpdLrQzQEAYFJirJc/jPXyh3FePMT2dJ5p06YpkUicdiXh1tZW1dfXF6hV549TfUj/vn8rV67U1q1btW3bNjU0NIw8Xl9fr76+PrW1tY16Pn0alkwmdckll2j+/Plav3695s2bpx/96Ef05xnauXOnjh49qquvvlolJSUqKSlRS0uLHnjgAZWUlKiuro5+BRALjPXOLsZ6Z46xXn4x1ssfxnnxENuDKMlkUvPnz9cLL7ww8tjQ0JBeeOEFLVq0qIAtOz/MmTNH9fX1o/q3o6NDr776Kv07jiiKtHLlSm3ZskUvvvii5syZMyqfP3++SktLR/Xp3r179fbbb9On78PQ0JB6e3vpzzO0ZMkSvf7669q9e/fIf9dcc40+97nPjfw//QogDhjrnV2M9d4/xnrnBmO9M8c4Lx5ifTrP6tWrtWLFCl1zzTVasGCBfvjDH6qrq0tf/OIXC920SaGzs1NvvvnmyL/379+v3bt3q7a2VrNnz9aqVav03e9+V3PnztWcOXO0Zs0azZw5U8uXLy9co2OsqalJmzdv1pNPPqmKioqR8wqrqqqUyWRUVVWlO++8U6tXr1Ztba0qKyt19913a9GiRbruuusK3Pp4+trXvqZbbrlFs2fPVjab1ebNm/XSSy/p2WefpT/PUEVFxci526dMmTJFU6dOHXmcfgUQF4z1JoaxXn4x1ss/xnr5xTgvJgp9eyDLj3/842j27NlRMpmMFixYEO3YsaPQTZo0tm3bFkk67b8VK1ZEUTR867s1a9ZEdXV1USqVipYsWRLt3bu3sI2OsbH6UlK0adOmkef09PREd911V1RTUxOVlZVFt99+e/TOO+8UrtEx96UvfSm68MILo2QyGU2fPj1asmRJ9Nxzz43k9Gd+vPfWd1FEvwKIF8Z6Z46xXn4x1ss/xnpnH+O8c68oiqLoXB60AQAAAAAAmIxie00UAAAAAACAOOEgCgAAAAAAgAMHUQAAAAAAABw4iAIAAAAAAODAQRQAAAAAAAAHDqIAAAAAAAA4cBAFAAAAAADAgYMoAAAAAAAADhxEAQAAAAAAcOAgCgAAAAAAgAMHUQAAAAAAABw4iAIAAAAAAODw7w/Zl2i3vOXCAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1391,7 +1913,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Number of fire pixels detected: 1\n" + "Number of fire pixels detected: 2\n" ] } ], @@ -1437,7 +1959,42 @@ "id": "Hin2lrkHYshb", "outputId": "382b47a0-880c-4e44-86ee-fd57732bc362" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Conversion from mask codes to confidence values.\n", "fire_mask_codes = [10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35]\n", @@ -1498,10 +2055,44 @@ "outputId": "ac8f4ff4-f292-49e6-cd5a-571ff781c424" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e0551cd29f447eead5c9e184476c4f3", + "model_id": "d066f1802666466aa9fb23f7476ceebd", "version_major": 2, "version_minor": 0 }, @@ -1509,8 +2100,9 @@ "Map(center=[50.23128609777502, -121.58153879631847], controls=(WidgetControl(options=['position', 'transparent…" ] }, + "execution_count": 19, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -1575,10 +2167,44 @@ "outputId": "536cab9f-6042-4cf1-9800-d977cd136f80" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c66643e74c79427082b7f94950cff0ad", + "model_id": "b1180311a03847ed8059154885374b4f", "version_major": 2, "version_minor": 0 }, @@ -1586,8 +2212,9 @@ "Map(center=[50.23128609777502, -121.58153879631847], controls=(WidgetControl(options=['position', 'transparent…" ] }, + "execution_count": 20, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -1646,10 +2273,44 @@ "outputId": "80c2aba1-f7f7-43b6-9f5e-ce7d347469a9" }, "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e5804316d2a0494d978fa812b998c6e2", + "model_id": "5f89a2bde8d94c7e9349e07e4ef9cc23", "version_major": 2, "version_minor": 0 }, @@ -1657,8 +2318,9 @@ "Map(center=[50.23128609777502, -121.58153879631847], controls=(WidgetControl(options=['position', 'transparent…" ] }, + "execution_count": 21, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -1760,9 +2422,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "cyberse_wildfire", "language": "python", - "name": "python3" + "name": "cyberse_wildfire" }, "language_info": { "codemirror_mode": { @@ -1774,7 +2436,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.10.12" }, "widgets": { "application/vnd.jupyter.widget-state+json": { @@ -3863,5 +4525,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorials/Package/envs/cyberse_wildfire/etc/conda/activate.d/env_vars.sh b/tutorials/Package/envs/cyberse_wildfire/etc/conda/activate.d/env_vars.sh new file mode 100644 index 00000000..e69de29b diff --git a/tutorials/Package/envs/cyberse_wildfire/etc/conda/deactivate.d/env_vars.sh b/tutorials/Package/envs/cyberse_wildfire/etc/conda/deactivate.d/env_vars.sh new file mode 100644 index 00000000..e69de29b diff --git a/tutorials/README.md b/tutorials/README.md new file mode 100644 index 00000000..ead08f4d --- /dev/null +++ b/tutorials/README.md @@ -0,0 +1,107 @@ + +# BC Wildfire Mapping Tutorial + +This folder contains tutorial for getting started with building wildfire perimeters, including Jupyter notebooks for data analysis and visualization. + +## Table of Contents + +* Requirements +* Environment Setup +* Running the Notebook +* Using GitHub Secrets +* Troubleshooting + +### Requirements + +* Python `3.10.12` +* Jupyter Notebook +* Dependencies listed in requirements.txt + +### Environment Setup + +1. Clone the repository: +``` +git clone https://github.com/{your-username}/wps-research.git +cd wps-research +``` + + +2. Create a virtual environment with the correct Python version and Jupyter already installed (In our example, we'll call our environment `cyberse_wildfire` but feel free so substitute this with any name you desire): +``` +conda create -n cyberse_wildfire python==3.10.12 jupyter +``` + + +3. Set the environment variable and make it persistent across sessions by replacing `your-project-name` with the actual Earth Engine Project name. +``` +export CYBERSE=your-project-name + +# Create a new file named env_vars.sh in this directory for the environment's activation script +mkdir -p $CONDA_PREFIX/etc/conda/activate.d + +# Edit this file and add your export command +touch $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +echo 'export CYBERSE=your-project-name' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh + +Create a deactivation script and then edit it: +mkdir -p $CONDA_PREFIX/etc/conda/deactivate.d +touch $CONDA_PREFIX/etc/conda/deactivate.d/env_vars.sh +echo 'unset CYBERSE' >> $CONDA_PREFIX/etc/conda/deactivate.d/env_vars.sh +``` + +3. Activate the virtual environment and install the correct version of Python: + +``` +conda activate cyberse_wildfire +``` + + +4. Install the required packages: +``` +pip install -r requirements.txt +``` + + +### Running the Notebook + +1. Ensure your virtual environment is activated. + +2. Start Jupyter Notebook using the command: `jupyter notebook BC_Wildfire_Mapping.ipynb` + +3. Open the `BC_Wildfire_Mapping.ipynb` notebook and run the cells. + + + +### Using GitHub Secrets + +If you're running this notebook in a GitHub Actions workflow, the `CYBERSE` secret will be automatically set as an environment variable. Ensure that you've set up the secret in your GitHub repository: + +1. Go to your GitHub repository + +2. Click on "Settings" > "Secrets and variables" > "Actions" + +3. Click "New repository secret" + +4. Name it `CYBERSE` and paste your project name as the value + +The GitHub Actions workflow will use this secret when running the notebook. + + + +### Troubleshooting + +If you encounter any issues: + +1. Ensure you're using Python 3.10.12 + +2. Verify that all dependencies are correctly installed: +`pip list` + +3. Check that the `CYBERSE` environment variable is set correctly: + +On Windows: `echo %CYBERSE%` +On macOS and Linux: `echo $CYBERSE` + + + +For any other issues, please open an issue in the GitHub repository. \ No newline at end of file diff --git a/tutorials/cyberse_wildfire.env b/tutorials/cyberse_wildfire.env new file mode 100644 index 00000000..7f742862 --- /dev/null +++ b/tutorials/cyberse_wildfire.env @@ -0,0 +1,169 @@ +# This file may be used to create an environment using: +# $ conda create --name --file +# platform: win-64 +@EXPLICIT +https://repo.anaconda.com/pkgs/main/win-64/blas-1.0-mkl.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ca-certificates-2024.7.2-haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/tzdata-2024a-h04d1e81_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/vs2015_runtime-14.40.33807-h98bb1dd_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/winpty-0.4.3-4.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/vc-14.40-h2eaa2aa_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/bzip2-1.0.8-h2bbff1b_6.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/icu-73.1-h6c2663c_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/intel-openmp-2023.1.0-h59b6b97_46320.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jpeg-9e-h827c3e9_3.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/lerc-3.0-hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libbrotlicommon-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libdeflate-1.17-h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libffi-3.4.4-hd77b12b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libsodium-1.0.18-h62dcd97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libwebp-base-1.3.2-h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/lz4-c-1.9.4-h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/openssl-3.0.14-h827c3e9_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/sqlite-3.45.3-h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tbb-2021.8.0-h59b6b97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/xz-5.4.6-h8cc25b3_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/yaml-0.2.5-he774522_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/zlib-1.2.13-h8cc25b3_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/krb5-1.20.1-h5b6d351_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libbrotlidec-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libbrotlienc-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libclang13-14.0.6-default_h8e68704_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libpng-1.6.39-h8cc25b3_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl-2023.1.0-h6b88ed4_46358.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tk-8.6.14-h0416ee5_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/zeromq-4.3.5-hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/zstd-1.5.5-hd43e919_2.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/brotli-bin-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/freetype-2.12.1-ha860e81_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libclang-14.0.6-default_hb5a9fac_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libpq-12.17-h906ac69_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/libtiff-4.5.1-hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-3.10.12-he1021f5_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/attrs-23.1.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/brotli-1.0.9-h2bbff1b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/brotli-python-1.0.9-py310hd77b12b_8.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/certifi-2024.7.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/charset-normalizer-3.3.2-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/colorama-0.4.6-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/debugpy-1.6.7-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/decorator-5.1.1-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/defusedxml-0.7.1-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/exceptiongroup-1.2.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/executing-0.8.3-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/idna-3.7-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/json5-0.9.6-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyterlab_widgets-3.0.10-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/kiwisolver-1.4.4-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/lcms2-2.12-h83e58a3_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/markupsafe-2.1.3-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mistune-2.0.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl-service-2.4.0-py310h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nest-asyncio-1.6.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/openjpeg-2.5.2-hae555c5_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/overrides-7.4.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/packaging-24.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/pandocfilters-1.5.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/parso-0.8.3-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/platformdirs-3.10.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ply-3.11-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/prometheus_client-0.14.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/psutil-5.9.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/pure_eval-0.2.2-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/pycparser-2.21-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pygments-2.15.1-py310haa95532_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyparsing-3.0.9-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyqt5-sip-12.13.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-fastjsonschema-2.16.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-json-logger-2.0.7-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pytz-2024.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pywin32-305-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pywinpty-2.0.10-py310h5da7b33_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyyaml-6.0.1-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyzmq-25.1.2-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/qt-main-5.15.2-h19c9488_10.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/rfc3986-validator-0.1.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/rpds-py-0.10.6-py310h062c2fa_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/send2trash-1.8.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/setuptools-72.1.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/six-1.16.0-pyhd3eb1b0_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/sniffio-1.3.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/soupsieve-2.5-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tomli-2.0.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tornado-6.4.1-py310h827c3e9_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/traitlets-5.14.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/typing_extensions-4.11.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/unicodedata2-15.1.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/wcwidth-0.2.5-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/webencodings-0.5.1-py310haa95532_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/websocket-client-1.8.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/wheel-0.43.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/widgetsnbextension-4.0.10-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/win_inet_pton-1.1.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/anyio-4.2.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/asttokens-2.0.5-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/async-lru-2.0.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/babel-2.11.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/beautifulsoup4-4.12.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/bleach-4.1.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/cffi-1.16.0-py310h2bbff1b_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/comm-0.2.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/fonttools-4.51.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jedi-0.19.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jinja2-3.1.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_core-5.7.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/jupyterlab_pygments-0.1.2-py_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/matplotlib-inline-0.1.6-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/numpy-base-1.26.4-py310h65a83cf_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pillow-10.4.0-py310h827c3e9_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pip-24.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/prompt-toolkit-3.0.43-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pysocks-1.7.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/python-dateutil-2.9.0post0-py310haa95532_2.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/qtpy-2.4.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/referencing-0.30.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/rfc3339-validator-0.1.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/sip-6.7.12-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/terminado-0.17.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/tinycss2-1.2.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/typing-extensions-4.11.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/argon2-cffi-bindings-21.2.0-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/branca-0.6.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jsonschema-specifications-2023.7.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_client-8.6.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_server_terminals-0.4.4-py310haa95532_1.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/prompt_toolkit-3.0.43-hd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pyqt-5.15.10-py310hd77b12b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/stack_data-0.2.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/urllib3-2.2.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/noarch/argon2-cffi-21.3.0-pyhd3eb1b0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ipython-8.25.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jsonschema-4.19.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/requests-2.32.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ipykernel-6.28.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/ipywidgets-8.1.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_events-0.10.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nbformat-5.9.2-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_console-6.6.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nbclient-0.8.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/qtconsole-5.5.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/nbconvert-7.10.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter_server-2.14.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter-lsp-2.2.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyterlab_server-2.25.1-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/notebook-shim-0.2.3-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyterlab-4.0.11-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/notebook-7.0.8-py310haa95532_2.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/jupyter-1.0.0-py310haa95532_9.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/bottleneck-1.3.7-py310h9128911_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/contourpy-1.2.0-py310h59b6b97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/folium-0.14.0-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/matplotlib-3.8.4-py310haa95532_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/matplotlib-base-3.8.4-py310h4ed8f06_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl_fft-1.3.8-py310h2bbff1b_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/mkl_random-1.2.4-py310h59b6b97_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/numpy-1.26.4-py310h055cbcc_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/numexpr-2.8.7-py310h2cd9be0_0.tar.bz2 +https://repo.anaconda.com/pkgs/main/win-64/pandas-2.2.2-py310h5da7b33_0.tar.bz2 diff --git a/tutorials/requirements.txt b/tutorials/requirements.txt index 99d12a54..d2c08cd3 100644 --- a/tutorials/requirements.txt +++ b/tutorials/requirements.txt @@ -1,6 +1,6 @@ earthengine-api==0.1.406 folium==0.14.0 -geemap==0.20.4 #Backup version: 0.32.1 +geemap==0.32.1 #Backup version: 0.20.4 matplotlib==3.7.1 numpy==1.25.2 pandas<2.7.0