From d8501fa288cb2a8ed278a4cadacd912bed048d29 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:02:58 -0400
Subject: [PATCH 01/14] new docs

---
 .github/workflows/ci.yml                    |   6 +-
 docs/notebooks/plot1.png                    | Bin 33607 -> 0 bytes
 docs/notebooks/plot2.png                    | Bin 41124 -> 0 bytes
 docs/notebooks/plot3.png                    | Bin 29262 -> 0 bytes
 docs/notebooks/vn-ask.md                    | 381 -------------
 docs/notebooks/vn-ask_files/vn-ask_10_2.png | Bin 125336 -> 0 bytes
 docs/notebooks/vn-ask_files/vn-ask_11_2.png | Bin 78743 -> 0 bytes
 docs/notebooks/vn-ask_files/vn-ask_12_2.png | Bin 142409 -> 0 bytes
 docs/notebooks/vn-train.md                  | 269 ---------
 docs/sidebar.py                             |  62 +++
 docs/sidebar.yaml                           |  67 +++
 docs/stylesheets/extra.css                  |  33 --
 docs/vn-ask.ipynb                           | 572 ++++++++++++++++++++
 mkdocs.yml                                  |  40 --
 14 files changed, 704 insertions(+), 726 deletions(-)
 delete mode 100644 docs/notebooks/plot1.png
 delete mode 100644 docs/notebooks/plot2.png
 delete mode 100644 docs/notebooks/plot3.png
 delete mode 100644 docs/notebooks/vn-ask.md
 delete mode 100644 docs/notebooks/vn-ask_files/vn-ask_10_2.png
 delete mode 100644 docs/notebooks/vn-ask_files/vn-ask_11_2.png
 delete mode 100644 docs/notebooks/vn-ask_files/vn-ask_12_2.png
 delete mode 100644 docs/notebooks/vn-train.md
 create mode 100644 docs/sidebar.py
 create mode 100644 docs/sidebar.yaml
 delete mode 100644 docs/stylesheets/extra.css
 create mode 100644 docs/vn-ask.ipynb
 delete mode 100644 mkdocs.yml

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 83d8c569..ac2e4136 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -2,8 +2,8 @@ name: ci
 on:
   push:
     branches:
-      - master 
       - main
+      - update-docs-2
 permissions:
   contents: write
 jobs:
@@ -17,10 +17,10 @@ jobs:
       - run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV 
       - uses: actions/cache@v3
         with:
-          key: mkdocs-material-${{ env.cache_id }}
+          key: vanna-docs-${{ env.cache_id }}
           path: .cache
           restore-keys: |
-            mkdocs-material-
+            vanna-docs-
       - run: pip install mkdocs-material 
       - run: pip install mkdocstrings[python]
       - run: pip install .
diff --git a/docs/notebooks/plot1.png b/docs/notebooks/plot1.png
deleted file mode 100644
index 48f7dcf4b634c8aaf3e882151e62f1fbaa43aa41..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 33607
zcmeFZWmr~Sw>B(zDIiKniF7wegMf55(jZ8OboV7764Kou-QB6u-QC^Y{jCeVy}jT4
z?0vk)_w8@L?~mt)E{+v*&Nb(lW1QzX#=3lEq=cV6dHLkQg9pz<MFiv?Jb1|a-~p5&
z>|@|e$oG8&-~eSUC(QStpci}N!2|pUq5{0~4jS7DFyUx|L!ZCI^U8n(<b&g_dwF?z
zc#uRxN&Ma;kc$c;5qr8zdl2&m<Ku@8g))jDcn}L(Np*p9&Kjd0v2<J6k2@PAvafOA
z{g9a3HK?h%O4!T^j9}2~<oNLj3YO;qG}6ZhAp8fwpWjG8+5{fzhZ#nsKTrI+_8u1B
zV;%PQZIH7cbAfZ}CpAXY|G4ubYzpF^Ek1xQAp8hxHL{ga{Ex>U5c<4<^!Rt@Relc$
z+Z77qTKWDy2VC~Szx*}0U#I6OfpbdrW-sCY@i;KRhyUo|-vhi~(tpn&U_}46!Jm8R
z-<t&X-)`ooyZ^VN#{YLD`4xZvXJWC5(~SM@bck}X_JsUpD&45jj^i=tLhug^04Ded
zTe2ZZEFQu?m{GX=g23i>o0i?t#9e1nXXrzw^53_*Kfs6FN|NrBk`<o&`mJ`0pXm@C
z=cKm1$)(uo_6r|ar?T-2=D#0+!UEum$;TW)LJt#Y@qb{E{SW|n2!CAQ3WP0zqi*>V
zetZ)Kum&C!<Qb8FJX7QgJVRRK@SimXx$yu06F*=a)_QRel*+TgvVXv^Z%rsXATG{Y
z*ra9@;!u29)sBce9nsir%s6uHNo~6LDWWNs<Iwqes-RQvKj+BZkmMum^AKXuP?5m+
zYTdrwcUA|BErwA3u+K%K&nYMrEJM>oVz^YJTWtt3rA@=pj<yIqv@ZqsuYLnBV8RN}
zdG)#?qZZ}@!k0V3u>2VfB%&&3O$=^b<_mS6vzn<>XjY_QzjpX`{mu`SLU${WOaF^f
ztHGeCg@r}cIWn&g{tk8x$*UEVM<iy`&2M6Jz?`_)E@}lDx4=L4RXns5^xxgh6Tns}
zf>t`hl=SZ!cmi=aDCZFHC`%3cLfde~H_$k7k;^Cz)0tfI3wWo%-`+cxyFENI5Rh4}
ze<m&C1KX*&{h=c|U3B>y^n4)JSf6NrijdXq_UMBw8ih~4L8lgqMLw(?R5+EASx4lB
zO10%u>q8rP(9Tq?Qps97fgt=!7^8ty*RCtLqrugg#GqH*2Ol2Y3-$>z?<2pnC<&D~
zRs7Yv$}Cvb;$*jQ!C)uJ5zo!=uCQYwO4C7ucpJg=9Vug0Q}_E04UmA&CY|SfrfY1)
zX*KHbJ3>jKP}+hzrV{4DO{e%8EOKFAzSd1HGaZvvq}HT#KHX*k@7~$sZCt9@3j}-J
z2Ep=yj93R+?!q=Y#d@#tRMwf@ExTs9h1(B^N>hoqLrMDxC#>v4KyYs#3lR}zuS^V0
z>8(Z1%4#RO5-4mE0t-Ya{0bJKfh4MTFKTN{TE#4gLF85$K{R;Zva9d>DnN-gDZC5g
zOgNj)p(2b!QbM?#%LV)3Y*z9nUgBFh;rjjnczL?o`fw@_)9PlD*=RT|+ZU=ciL6$=
z!G&D_^bD8W_c>W8iz!EY`G+yx&Sg=n<#w%&(fTMQP`XGMefMn${%)yU&JSW=G^z@s
z%f4RIo0ate(dT4loLxJ<wq(Ajl&_~{eUVuTw(u<%Rn82j8yw%2=sQa%c1@2nu!0+8
zxp+S)RfJ<z2B{Tf(AtHPb&$1m`j=h%H_lZ#&RiYNZKOZvkiza#2*A36qma9H7L8}B
zUop78Xhjjm=oszU6R86sK8c-TH5Z9@IKa!g?b%XF=lT9Ul+@J`Y!<sx^RB^0o~6Ku
zjMek5^jcznNA0kADI$$$pdm8p;0$Z5z>oxk&OA!FIKR*SKsz%8+wo1f!$Ih!^AYvP
z-uN82eV~y{Z2BCIdZv(drUsMRNKPs8lkZzKx7H-{I=7v?>$5qAknypb>R5W!%A-4M
zzk#{6wmp)0V`L_m@%I-s(&qdEVZ{D%Y$}uGMkI}W2|H-KM4u5u5}XlY>C~&Oby>72
z%3#HUi3OuwDOCoi<uW?u+kBF_D~}^QufW0M#rbrXi!ILTei67k<j7_Ej&DPhS!sfZ
zzE_%y@49di>x_=ka4+?-=D@0!r}?Tkl#E$1?@hx+wk44hk#q)B+)t#@35V77cpf>;
z<#SROA+d0rEubkkg{@cI{_7lwTMzqp)L7FEvj;*)c?k`7{8p__Hj%sDol030ah}+i
zQYhCo0yBQoIwBs|u`!gJvJ58{OB@%T^-5#04bd6l<cwubv(eMJwKFiEi$rR=N;b=h
zlR{QMK27Z1t0#Tud--d9yXfWKah1L2<|H~*`eSrSK?^VUkG{eI{$OX)Swyi=m4YVD
zn_7xWF^4d<Eij7K+%|lpQR>7mnfKw9_!U9|u~a-8gULF+(TUKMvw)1ljPJIEuJ=#_
zuY?S&r;T(YISEyub@zHLK~^dDo8&}|EsgJK9i?I$V%!`eAewN6FIa-U?oN-yl@bY!
zhLkJ>G-agwb6TFQEM8=}pjHv}>6=k|i6hv69-0dDr;u75j$f0Xc(uu`L=7rrunB>1
z#u<fJ3LQ1Ig}-B=b4Y1ZsOiO~3dr=QJhs}|gljwA@iu~mY2kia9_`p#PAKw7`r=8%
z@<>hja#9$XUbi#~@z7CBI!{Bq)$aBLF#L5TPuP-%bs|z&<Yi<JAADqi;AovkNPsuR
z!9e0A^hpk8Kb+{6T&`Z*YU!qAiv^!Z?VC<iY{0XF^~IT@BrNS9o<}T_I_A3AB0Ej`
zu52Mk^!Xc?JDixyF5RQKmnclS{SPoX*W;Y4h&+&ZzkgSvo+3=d=j2W7^#FX1<C`b*
zaDeO4<N<kgBTgLFQB}jc7&>a4tYMu{*RLFHwa2{u0GRaf&K+cl9GyP;B@au#p-`(d
zVQGEw4r6Lz9AQmmzluwcWom&>2u%Qq5Ej|S{&Ne;C)mUBhlJ!ciizPU3eW`@yt0q<
zPu%XWqiWOm;0pvBOzU#Q8(bmM18)nQZ{PF_z1jv;hZ0|Eppj3&=)7<>_CX79KTtlA
zksn8Yvtz4hnkWOMD}MnY@uKqzp0M0E2f1^G!)g(@Z+QdR!2|M$-)3j%RchP=U;w_i
zV8{CoezrNo-SSDdNt*-vzK;?kD6!&5ID8N4RKLl9KW-!N_>sr~iE08e!=n+?I5$9-
z1AW8cK0s##z(oGK6?K-uGa6sp!$j3XE>93Z9bb}DoUnck|Mz|5*J!9~AVFK(j++6|
z2gs-iO#BgE|7-~I5));^Y07xOU|c{iW|#gknEMWcCB-HEPJY53pX7ZgQi<#E@EkT#
zxwLLGloesM?TxosdM(#Z&#_%v4iR&68+i_HLn%JI1^oX}0Bb=~7#jR$*F~usjZ#>X
z9KVdE6w(@C0RF)^QlFY(iG}vZ`71d0#CD<aR1@C<ZgqZss>H<&huzvZpIa%c=7t+e
zAXxGplr$2=e11+dWMyC>C*mSwQMZVI8-gAjK&C$negW=D$8Ff|21dGWizSQ7R4Sbv
zzl;I9%lpt~KeVpHpr!j|T`#DfzyG8C@c4TG3o;LA0)+m*)58xG)M8|yj|I=41K{NS
zDlFa$w-^r$B^mVtWReK8vSvU3b@k8j%E*rePv03rkmaKP|Mz9El9Fk6Gw6jQ<cL>=
zqvvgg%&7%rZjChYNqwUK=Lhs0ML;507&gQCQjkK$GG21@bp6W=(y$5wUNmvBc1y|i
zQZon{Ww{te+rtNLuz^PciJmu-49Tp_3z#+ZJi<Tc>i1&*VVpj|q{;}q^Vzl_(7fCS
zh2Ti-5VNr<i~V$|MMlf6Wi1*&uvMfnBgg35E5B|sM*P`k%~c4sTB1FPy*nb!R5174
z3jiTT_7xHtNadfb8Ov4PkpbI3o9d@Y+#A;4mZm!-7pCn>{1NsL8ULpR60#6-@)EfC
zKsNrxE04dHnuUg&g5?RYUu8d{MW{i{@wb`&)tX=DWr#B#4#c4I?l(EaZ9%r+&n^3h
zH8(k9|8e1$zbP@w7A=1BoCkCPi-e5&hUebyf{=(gu<3axG1?I@7)X&IYcTn64P+?=
zY+D(>a*+qfy2$eK=1qTXnZL$z@7;1fi0p!yfHAXJ3jOI{evZjR)mSbs2)OzN`stqK
zZ>RU$zqDthleSy}JuDOP2*{j2@P#8JZ6^Xj4kB03_a>?D|0{-xT%S{z#CqYG7Q>wS
zhxB}yjT$f3QM=WG*h0y)O4R^5;KkI6{QkGr0NIwH2c(ef0PYAc&z9uc89;Ylx@1==
zPHu?jt{pi<q<Z-CEoW}XdF<FqnvBf90k7YFC;;FQBp#4&`*DnQ+WW6R<VutY*zLBn
zpj`hmvhkcsk-Fnt;&o~H!~69R<YXc6;5#RlOjHn4x>R{iCTZUF{x%Dq%hKj+p6YbF
zzqcY?MN=_O?~u|sf;a47L-NsY?}j6EecAAbchejT>-0jhsE6I0GXKbAI6nRjRveW7
zM3v&1X6}dE`n!+c4~=ggulD&Qw@U*1S=)m%3_B4BV5g7nm%_$=w;2d`el8>}ICjr1
z%3+OXOUjSeFTDJ3Ez`<OW>%q)%gpyQIuePzQE9@Zd*j(@YR_&+u1<F%;@PbUJgASw
zezr3vvk$C2=jnZ*gM?(@8g+VAix6}H8gF`6c*FrprpR1jLwLROS$h`!5-t)izxUJd
zik;V;ek<a7eTg%xeK(D}MDMt_08ZRb@yoKwk7eBd+8bZnKow0Y$`Y1eOhM`t9*K^t
zDk^o<BC9uVlxDa4g(wx=2uzTf9FmE};zcIQcJRjv-i1+wk#&R+d8ezLX=os$a?6&y
z(v&(}c1)9qFnUfEd14b&QNLnHe%?ppy7FyyFE#v@(XFm6U3sE7lu+-~FpIYv!}4-i
zNTq(;7P(rhnxTf9P5M?Nls@+j#(5N}5UlE;GOgyMPBp##E~pD7yGzvfFcko@djRFU
z3B<m0{@m=x_j+2uH!<S*ikp>;L_eWQWl4IoFV>#>n62=cs`tTj^SK%dfGdQQZBU(G
zQB}w{c0~nt#_IJfZ;muY?y}-N^6(^a{rp<4sG0R1>nqWjlHMh#Vy2%LrFE2uc057B
z2_w9kPb@BR6}R_AAuCuJLla*V_qAFgQP}hV9$CZcOPZni5XBmX#VQTZlirY+QrqD8
zi`mL+f9|=g9hK^Rg=z~ewdj#L%aastr8!$$>vY)5JT+;fnT&+(@!}cKiqVgUXhP0s
z+mQsGFzx20`mxQh{4j{&$W7kuy<9Lo^NAe7`T*<N;38Zvw(0YpFj{Qu#ZRY{u=0nU
ztj=%5=6J*2{YctD5rvAa7?ql#Tb9sp=yTw6vP4@g=dD%Sj@T6(M_Ox<X_aJ6N{`V3
z6B5?F_@Zglo696lOAQLuOPG5a7&qpMpV>znF)pjT-yG7GE^@GkP2y2u>Z-IzB69t0
ztH$-Hrr9@Y-o3HWamR0&?v==38r|Mr;kew5JjhgiO2cf%_eaX!DUBnio*;!xSy1{M
z?5DWV0z(>%!d;(9;ga!<G{X(qUS!^@){a}(ha_g#pCUCUcH->QWEK_zpYz6zHd5GY
zYZmv;k3MsJ?Ml=UvW9aHP$)eVX-uhEJ%T=|^jMSeJvX(yfPqr-OZJP%5&06CUvG|Y
zyGceO+#6rwHlvD3?~+BWQTC0><MFd?x*ZOiP&UiO_M)$zX(L#sd&s;C^+NYfc?T=4
z9YKpn8}ytgi>nAHaK|E%J#5<oh|#MeB~2IJ_!c@ez&_Xo4<MU*zePs9<O8Wldy7i|
zaFns*-oGXX#|Usg34Y<;3_FP-;tw>%`UDYd%t$CgJRO}(;Q6?Hp7(5b3gWdrJo9TW
zA@Sz$>A9{q;OJp%YOlWo2OvI4TYXEg<poU~&rTq;L4fSc&0)arU74wN?*Vj&pu@Fk
z02N3@2(29J_x8>D=k_hep*5xw-wiZ__DNnRy}Vob9S7EDp(2}MftPav{fv+%svqU@
z^Z<w6m6c*g^hb<4>%%4%f+c`Z00NJcih||cbs+Tmxn*Ps{3E<*NtfK?(DsZ+<SnYC
zKy>z}G-f6I8vsKBlvkw_1n4AZ<x^L4)ByN3C2svL%KLXX{ng?V@YnPyes=1S3@`E)
zAu#|4Q>1v;LjA|^>Qog$EIlC!1WXjIe~jkWP<{uyZ~M5y!1#Zo@&6Dl1wdYiue263
z)8t!30dHh?ucS#QO_Ecsj)ehAS|nKcj01ywR+B-`)c67u+;Gr(VqK!m>&gzc%Uv<1
z{EJYQ-jnBhO8H6@5H0npbFd>jwXzct|00ZK)Aj%_P8O70UM{|nErBU%3c=~sL2L$H
z)OvALy7}P8&C>h}+|0?#Lc>fk`ctojFc?%>4B)>|Xf)|y*q`_B21fn_Pygg9{}QAL
znm+2734&x~NeBOH{s56p|AITe=lD;I2m1sMe`0}eQL7z6SR(j0u!WF?`w(~v1oSxc
z6jUq<C;^!?AKcx?e*&7{*bUc=q~om}VA2x;FaG07{{f_4)wTWCNDSE24~ZdoItXbw
z9tgr^bRZZQ@r};6#HN=|SOV&TD#jsh|0kEP2Ud3JCjjD**k<!hH;FI`rL^Vkx@k)?
z=LFkTf@q9^;FegVE?Ex1VCtpCRztwL{q&O)7yqK1zuy6J;*XIc0sJJ{rv?d_ojR?*
zaINfvpRC1x2TD3v5?<EI!{ftWwE%tr;Q$ep6F{_o_%BTWu`+a-q88XUCWQYDbR-lf
zaN7cxKm>y7{|QEc0dKnleB}Sos@*T%4*Wg$h@r<7kI)oTiXl8$$}BQMcPneb{YzPC
z3pBm(zK5_@1`9%J5SsR#@;AEw)9(Ky#E|oX!(L2BlJ1K)ByUGESWe0SN*u7YrrY9i
z3FyO$UEFz3f3B^~S?Ys{g?5C@`g=Cpg+jqP$p^R_ctuWLzla?R6YnF3re9u#{Me?;
zjtx*N-0%e}fQ9{IF{c)gcoU&;Aq&3)FB)bLF&N<%*(^H5J)OL0Af3QgBLgs?d&Z^C
z2!Yp!Ht6?TP1kXKStt(jUeI6eH{q@uAYwwo1cXiZ*TW;+Bi9TPz~usbrv#QVr}CGV
zlUcWXC=FO1r_MdB{|ORPYATj**C9${I6f~lfHN}zot}qQy$UH`_xGN%*(>UV#GPWC
z-2zE`z-JEB?57oxLsasY9B!fEbeaS3+s(d9a*bxD>{iP~7qt(;IAK+mOJWx#Bmp9W
zRDyn}CAMw2r7&-n7&p3OFc#kZ;bCUDg$*kNeu4c2JQ07Sm2wV50Tie)zhrmM&mDo>
zm0e}oZ_^A177uUQWlJ0epp8Zdi6e@I{|4Fxe*$f1!1=TztRZ_q%q7kBx9Y%Gh<lt0
z?54vLRQqv$h;Z!|FCO_wG^Z^o*rmGEQLw+E-kHQX5L>QH<_){`YT5SeS=9DarIOWZ
zw-*44@$M(2{~bR8L~<*J`O9gQ6!|Zr#{qj#fLJy~phRcPZKA<7Zn!|DhsxtK0w%fX
zlx;X#S5#*rS8Y$y6?jIt#%&Y_S@)~XuUIIv{uTOf-9kl~$FhqENQ*rWX%SZv%UEOV
z5~ouPP2jkz0}u;hxPUK;Xj}!(@?`l32E9XK6vp9vXSzaIr^N|%t%fYN??!35)o=ji
z*%m$|+_?>THwDw)0R~5~9W1KdW^=GEiQjs75({>2-$PSKJX2$7q&axrTB_co###XM
zHyggjz*+(Urw$N8R#_7OYI|c^9sB)zC5dR=wp`k<{XG({%)1lmeWyxOywqH-KB8P1
zCjOPM3EM`hU;E;yFNnk~B@OXa6#xXA#iP#wNN9Nyy4*3N1VBRbm^h&Ai$U3my02lN
zwu(gMwbPxrP)Z}C4yCk8ZdMvGTQ!Vfp@QjYGJswt?JZ6_^7)0I^DeeYBd5<Dj>RGF
z;L*V#1_V36Jy$7M%->=q0pIf8yJ(171?a?)G;y<$$_E8%1*`dSV=LKAC&bRXmG=_&
zrc0&M#g-MvX~(PFi@AkhX3{7yguh)nb{5K|=u&JPDhkKkZprVd4MZn@^@Qp4S>V@Q
zOY|hg<lDuLNtX@FIP*y!xBQ`jlqsPg(%HZ^Lr-Yfw)&>Te661x$3Gfh>m`MXmPe{U
zf2Uw!N5Xt=WWLfF#~Rh3FoWJRUuO7Yal!shuV>3YE_Nd0Ql1WSDyWDlo_8EF-nuP)
zPNqFP(|ntvizphZA1Q}M_8KBPkBDm`Ixjd23;bZ?SHOTJp^^ywi>z>?@#aP{MFP1Q
zwHi%xIcEn_ore_iRv+($c7-pRQD7-*zfdk9g{LH@a5+Iwxc)7XzQp#XP4>A*u?|`2
zU_=I+7-$2kbFA?0Lv`0|H43$gwQY#{1$WUsInkN+yRco^j(Mh~$asD#2`*^Z+FVsd
zPSecO?@c6gJY0_GO_=QJ#vIynyud|fGJFp<n)@2o?297&`56vz{;Z*M5bTq}wqQtD
zNqi&?cvl<}4@K%My0t#Da!%#Vlpu(B*pJWz@h*;!1OL*>#XzPSM{dIcGV#rF6`f4N
zzRAgg&z2`gP-J5P|L`6YgH?zT;vUkwltf!4`ntwkow_E=bL*8W&8H~G3N=|L7KTyM
z2+5CuoZQlp8Cyc=J?`K`x`z>7Ps0IZzwi-uu}D6M3xJ%CdeWAW_h|%f8+jm4VnL<0
z^trIJ6Rj%%_9cVi$EUc*&j>{X?0zPiU!?CK+`F&!-F;p=Hcnoj<l57Z_s*EQaHM*G
z6hgUK4vx_Q-w$~!2Z-a8x`O@%p}jPmoAo*35BwM5N}L77E*2od<uL1g$mpNh;WqK+
z2N{_IpcvpA6c|7K0t*cf#V7+HIqAvE)*}DHLVQ6l9ROea3q{z|c#)ACe*mz(1_ax$
zbl6qNaNbA4()FLZQU6R3^sf{}nbE1^am!;GV?wf^o*=ny@}JlOw?6;y%Nd|eO$-zL
zjb!@kA5!0I^&7~)K=glt=WXt~dHuGL2=DJAH{KH44RnKy#lToh;7_QHdP@8=cKxRm
z1870UAs0qY*V_b<M9^+{G-?{h6{4cI9VUkUFOVIHcY&@95Wi^nC`O+HQ$!*m+X(j`
z;iBIqWhfc$BZzDl{yVV!znAS0#8&|0L0T@7M-U%r_{Po~kFp#?58z!pw!UkC=>6XT
zlzbp!9wRpritZ3!xHb`x>-R$)Xqx%>7kT^>5cN0Z6FYVS#1KCY7Lx9{U&X(b%|E!t
z=QFlH=-{vW{*+h=$z49)L$$v`Fn}BZ<%{w0y_~oTfMyd_A32jWU`0a+ovN_@wzc1q
z@dDg`FOv)Y=>YBzWpwunt3m6%#11T%1O#>e0nYvhkoGT~{r+(J=pNy9zxWAn@c=Q^
zh(N431lWjze(MWn5Z&`1gaQKg))y2*IrUf}_WbF;!Jh9&0Lu$G{8IH3G4HceoJSAo
zfz2gA!6FCjWf5eq>1Tgh&F=-{nidPq+=j4x-&g;ob-Z^7`mfCE%Y&hGXR+s`V#MAE
zxJAdHf6<oFLc3&8JOJdLFH3WVsJbOJiX^%)1XLdlri&kn?QE79obAFU{ln$_+~~L$
zn~8X30)Tn|mqEWoDz-7Gm#!F)1Hd~>l_H1g_{%fAY?%U7pkX^*Zz7I(Vc2^@1Ytsu
zeO(54`;sQdRe+$Ys1{m>J%iXU&rJDQaGqMFP%N{N;qLaOk-gDSfhT7aK|W9sK{lQF
zFLMYbS~pT513Zv{G&kP9q2P95<#Pg0bWN+|+Tma_Y;#a3)D>ZKU9u9AL%aQQ@E`F1
zpb5fF{WwR0@qf|;%wGtaIcnVUx%dR-5HUo5G;RN1IqOZdKUq5it(m_*u%56VH<t?t
z4d+>Jbo;;EuJ!_gS^IkNQo3S~af#j$spyf5`z!G(SCZo8_8YTsbl8Dwv()mcRAK#&
z3#tz!W_6&*u6kF=<rsrl@j=}_Wk@{(C)lj;`sPg8H){N~XWUq!$YxuPXl!QZh4m2i
z*v@K?cnNsV{yE12T2~(kW-hX-a!4$4d*@!Y#hvDsDwvt2vRnkv=*avQ9I;NTV(6;@
zlzXgtcV%CSeP@tDEE3;s#ayUaO)i~jN}VmYb}ytloNQ9CyBL-=i&^woF+)^cxFy{P
zi5N}bDo_PtJ_cKjc82GR!x6ZWGh3agoY*(0vDhN6eXrasAEaAtZgcu3y((TYo~?3v
zm*`qkO$?^~a$h4NjuF%zLZm|?^<&?@V_NeLfXSkM%_Pek1|KdVFD1!+ygkb<vq)Tn
zy~=opJ#JD>ZB~{9vCmdYkA^$5DwmU$wbkA$F5U%S{3}hI#y_gyk;nlfx;@DNEU6AL
z08X{muAB*6A5wi(YQ~jr8)p~N3c48kkiqi1{^`CD-y3K=wBeQAH8F)kj(?r{jbIp#
z*+M8<WJ%LN%dZ;nUr*ctEYNSce*J={@vc}TQ6yn<+VSF0FIy=yV|)4{6R4dr{^u6~
z0+4J|v8QhPzCW>4DBB>v91VJ#=|B4Cc?w{b79<BZ^uNC&0LJBm30PG00`5+u>fXp$
z+ESdkXlR<KUeD$Tg9Q&ayUjjN*<BzvMl>B5YU89uDU|lzYj%hEkNz)M1S07)H~SO<
zPixYht}Qq2dhk0UID+CioTXZWu!xr00s{8m&lwg9JjHmyVP^uV9Flh|&M~YRthROw
zTi}Q3@`A_EuF?-WUBg5XD1t%WCTQLT4yz)qpM*K!FYXEnJg)C>1XY_v!!kuX<kDB#
zLz+rVx6mn6^QzLMZqlB<?4NUPkWKRfoj=2w+or~IIrderbC8XsQzKL<)eoaqDHZMS
zL>sJH$SpvEdi}j8nt6=+TH%^RGF1Kv1_foN)D0D#QXwUov?}*ETA5n@6ain|lbW7T
z20gKfI-}J1H#bS))Cxk2&AvqDWhSIuku-3_8G_lf{%{2FZ?>VFWtzU@3PclOqNFhS
zRxRrb$b4)xe0RPz&!T;fv~e{OH9LBIU02CuJ|I@(cI|!uV!NP}D~rBnFwMBWSVPE`
z&G%E<moJok`#Ip8H<DU|oF<NA?fs9US-ntVQQf9h9H9phv?>C<iR?ON&ZpJ>49>eQ
z)owensC244W-~P_%LVw>t2E*2)mGw7W1F3u3cMNl2TN^HF{NvmTGxClhgR?J-Uu_k
zmq7ZC%U8p8iod$_!kXBcSjQtZv)<bbn{fT>z(t#<^C@0rBLYq+Ms7Gbna}!8nfUI;
zUM!ZyY#uM7JR7|ftckBuq8m|HUDA27HMVyVfyli}`3$R`_Tosla%1c!b=-dLPG)xV
zI&j!!<IzNg=@wT+XB=x1GE}-aYKTr-;H9vaX_jDQo{HYWBHH0iWmEcDRQ>LS7a%os
zCe<RguW{9~-=;p$@qj(W_u%^U6l&ZP7Bb3bZwrY01VE4WKjg_@Ji=twk3X=YR%N?$
zkK{b+F11=%e8g^lYVx3xVKJx84^12ahn)aY!w8TYZi~`e=iO;X-K$g6K)vK=YUOsR
zMw%VkUO!AS&7Mux=#{2oKE=JvuT#&h(Cs^%eyFXCwfp!nu&(d0oq^ecSR-JDAYtk2
zH!KK1lJ#4(OPyK$CByrEnT{|<@haXq%1@7<VbapXGDjY*^|k5RnqKWR3EzciaMgAM
z5j7&7v1Z)97H>GO^ER2N>!@&Q*8Psfx)<zvbt>k0S@=mU;P&BTECQz8OnQ11g(<hI
zwgGO@;zbe?`@rsnTcNPAI8k>GujQG_xsrTbdX-l?e6X(DydcQf07Z{Il%9Ze4WQ4a
z0>Rvk2_l;r#fUX4G$~bhH)m^!U4|8Y?98~jbKe{FPBxP*DsMI-s}OMJLXGL<ZMF$2
z8~Ze=HwL-Tb}P6~Ji24Kq#wHt^%Zw89CKCf^^5vpP$20)hYff(*<hWtJz4(Ncq|Y7
zTO^*_2qp^O_<KacanI;;o>h^b^CRUj&`&NP!^Gp?LC7@94|A#5qY1`8iZG!1CX81{
z6-FA!Ix=jc<#@OnHozU|-(f7gW!`u+3o}^VRZB`!rQZzinl2K;$6`7|0i=7wRts4f
z?$R)u-&~)+-MA5y25LBk%0@{to(xqb&8_xEMNmbGcdbg|jw7I#>3b53#tR&-^(^Es
zw!PyHqfd1UM<EMrlP^y_v1i^D7VJ$I$4Iy9iNf^(U+T{z9qCocAN-gFf0)ek+MXy?
z8!b@5$+z|G`0?T|=kuiar}K%954*moMCQG{wxb@F?E4t~Y6Anv7D8$z$27flCk9&>
zlJCY!^rmR5Z7xFLe9qKAu$s`X387L%kMV7|TYq`XXYaISN@RSxJ3~Y!jU6>g6W0-K
ziIOf6V<m@gj<6TW+w&qbW+~jAG|-|`p}|EElifH^<=XIZ*@v-0@zk+Rv4Gg}<=lpw
zbiq<mh;lYG9ZNUH5Oc&7Xxw_Nnc(rwp-I2@_T6Bb=!Z|eF^mSwac-`9dx<kCd={H@
zVJr3auj5WPF&S!1jc@T9#iv+RUw?+u;cL%r#sxVC2U~|m6Y)QP_)3^T__cn@myFK<
znTFGqz(~bSM5j>`U+q>|=?OF?wp=9Ezj~XXI-)n!`YgkVMy)brm+KAdh9@)2@>0P}
zw+aIh_<S@i3gK8B;~Nf#ZRGW%C!OI*WS!DF!d<ug!g|-zI%&dZ(vn9E`c4{=)bI?L
zKi=Fd^Ow3(nm4#GTvf&}7@V5B2l6~87Qx?{Y^2cZjAZms#<+&Zpkv+1Q7_KB06z<#
zIbGAZ*c)z?`>IZneaNSfeP--BQQ}y-0WUSqqOum@B$sK%C7MWGT_;!j*@f}F&#*&v
z<Z|b2-Pl#8fp^x70|U(K9^91Iq<K$NeYxHvw&Es=C272_KM9Oyze#$E$sp4k{|0AY
zM@N3got;59&}Q;_|CM!`zN$?u7pRU``0Yc0z=8(n{0463&C87FVi@0;=45;>RP(aC
zt>!mwybfg-kXaH4#Jy2t&~*^fzkV%QW3y|xJ3^yd^Da-gvH+_7U3VBEi_PRZH#&91
z(>_iekF}HBXfqTxmvg$N`Tp+@<w`HVSOL+!Y2nMP>&nyu|HC)=WxFs*ugvn4VBH4G
z<H}6uWHqwXd&{hEf9M_VHQtFFE>rkF$kD8fR6@-a0ZNcd*P+>i=}w^E)mybtf#A_8
zsfP@DLvA(CLca1p7BWQKly!I`9tn$L4uXzrZw1ZBy-eg{)05~w`^4pQ;3uSuSbK`g
z@b0p6rK?rvvO{>!xl+Ei1vi?AF^*{qxd+iKn&@nMmIisk^X+OoPju6E77<}PLXMkE
zhQ60t9d$d%NBYh-C!Aci)8&L#wk+8fN>=)#S&W=?h*`kP*VoP$d0WCI&S$h6ho{bR
zc@A(C(R2n?Dr?utz9EXdmArWxm7<}flKK_A8|g6Z#`>>r_I$aenKe@5Cm3S*1;KYZ
zAtvKRz40VRgW}9R9z~8rt*b>NJPkrFta3T^^8EUDEaG-M*Fz>>`f0*qRqGwQMh8pB
zqDae6v)|rzPCLS{_zp{p75}(MGcJ#kh@H{QxTfA~oFWNEb|@9dSF06@q*XDg%dlK*
z4uQU~ina4HK=ekyVVZhO2NZVeiJ?C;d>j%0w=mHJEEWzU={kHf?ykNhd>3vgnY7uP
z=##Chh^JVuMH;R*KNwA?WkYH{O7y!{Upl`JjK|)+-Z!3!ddDdI*#PmSzD$;dR$F%n
z6j$|yjH5s>;{NrGEE?Bd{apxW6n*Lh*6mRm+~LC2UbJ!JMD~}uyM;D}U$w+WQw6CK
zv20T4v?^MQ6hKWmspQL%volg5)kd;J5t{mjb(&wG2eVLmLawFT8W6)7Vmz5lEBwC8
zrFV&JD;KYne-4nq?wKex2tay@fDm{Lq%a@PJXWcZQ0X{!(XX~%3-k@CaX3iv#ha|r
z37W2Re4C?~jjvRo&f?v5d$cEt$*KFPn$?C73T$p5aN?ZLOJp=zm(F>$Z5>Lj!eBI-
z_Lcfw4V$`iG^=?a^}B}2X4G{U=ot;nbtM5EK8MqO@cet>0JuwpVwe!0?S(PSQc21S
zbV)2MtN}zm9iclz?e%GG#O@G+4(1=RcsB6WYO5kRbU#YGJz)^p%mSYtU+idY2EjVL
zForsnINfGX>l>RBsaMj7oOQkI0Ps&MM_R%5SR6|f;;ge8=^f`lnXzNPYU%ud&5yPq
zys+1FN~~(>&^Lqr7E7cOk-JH*Kt(VYN#Srl8O~HCJ>2upV2(itXC}*!8m?E*UcrB&
zQYwhP+wHF?w=c$C$9{8H5`@idCqXK8E=qdGz@O6~!#m8MOyOm&-ne_>zaAM?yhPS9
z!Dv9-q7&3H&pXE%>_{i0Vpt~=fuRwOurnK6c!l_M4EGp5Ss#7aEg3x8?JRZvDtV9Q
zI9jH_r3H59d$x{;)i+!Lz9~=rXqQwy#;{jHTuU*fy3BY1x3^b5#Zau{53QHU^y6Fv
zjy$ne+s%caGGi(=mBNtqg}A@2<d&#M=0)VE`IvN}Hz{%CB^^eTr&+0}SfF8!-UuW!
zA}<S>!`<edhO(+Mvv#1?oSduI)Qx;cP7LlZlsMaWJNC_J-zAv?v#K8>$-aZ-yi<2t
zq93BMiKX93pfwjOq-zMZ<PJce!PrjgIvN3A9Hy_jq+6{}wo9Y9ostfY*V$&O*V~Pl
zgnbx3w;ek6MQLS+b2kzfIDKW@%_i$Elf`4!5x(J=tx_6!ynPU}^g=)v(F_x%$UB(Y
zxaQIJ<_Ogx1h!rbl1!A|6?Mnc&vZXDD~4HZudO8p3_=Q<d)JShfx+3L3wxsqZm;1n
zfk*u9=e-X}HI*YokURkU%^dhpU~?FPGFNhEle!@Ia!xp~{fk1UbCU5;g=gJBMS^;*
zon(eoj0q>SR2An2Utbcpd4okxyKJG)<F2*Ngf?QS{dj`3srH8Rk|1KySa}b{ykJCb
zhc$O=2j~z{FTaSDtB_QQ5!<Oa{eYo!@*dhuH4=UUbcv)}Bh1&=97K=pw#R9?oLwld
zPIsR*>(9Mi+uzojETbUBS2j%ru&=ri;)q7xi`D3lTs~|gxMlB#^sn{p9;#Pad?)T0
zFij=9V?X%FwQlAP*h}c)3RQdYQk#HI8&I>=R;=SOwc5VF3WMf*))!({3d8l`;Ff(b
z`xI&aF^(t@tE9k93uV$=xP`1AXua<)yG*=}9H57Z(%?{zHwU)FQFscRf824{c7me%
z5{}{~gqA;vSGF^oT-T(DMRdmJrWJF02gbjG`VM@kKreZ0!S3+Bky@={*d%NS-|^XV
zyC3O4GL6eO<>~}P!{DS*jI!+afjakevxL|TUy8Tsq0Cz>aaCVMQCd61nT^FJ%Qn)~
zHx~7$KA{v`?eNxn#!B$D6g?4Oo%BpBOrQPUuLFHLkKo+jq_3H+q`BIisAu=|lOAHM
z)7?e4O850wOFJjU1X7t82FFm8&!AGOZ#&ky%12E%)@fL)-d8&dx9oBpbwfMfk%e%C
zh=6x@EtNHiB6Brsn4XaEGkmwa`8{VSQ}QIE_qJ-wfYkkmHRhmD@$t7RF16F`)ei;$
z5|3s>uD5Y+2cTk4#jARzxasaWH`bUDbeed)7tg+E(=dDO16j=FRK!_k=}lhGSehb-
z5NJ|Go|dJ^o!XVNYU^$mOfrp^MCm)!ni-#r60v|m(L>qPy|nzR7Qp!%F6U`~o}+lF
zf-)lJsRMYmN0YGQE%8}kgcKG=G?CzsSfUv=?rCn}ngQH+?KvO(%sNrLsjq9W`KqO|
zp(N6@dkr(9Ptd7N5R`i2sB+gM>Fb&JgA+*(w}*_ntN8)!8G$=f8_W1P-pYvK!ObKW
zKq^+hjZ8GsRgp19C&qkrcIWCKKAvOVu}RJhM!31<G%Bq$ouYJV4aH^4^(A6b?6x+_
z`<A0XC3#BDWxbYpz}@vFq6_9aMlA8vXz?Ta5qf6}JVx3kJX*SGEkZ%5_f^{`fH3~R
zr5^W8Y)bcKJ;vA0R6m<)s)FP03Nsq?b7MMEe<_f-u<<mM+Z;hS5KcCMDB=ssns+|{
zta|)S+$>VKfcK?UF6*{EoewX5hP)ikiur7({~Y$@*dLEo=*`aPTa5w*;SxQ!QME%q
zg)L&0lI2x_173b1kp!j9SQ_0;_E=6M50}|oXQpAo)i3?lVN!{l6u!?%LoHFr;*PWe
zvDr;1S3CUPz5>%ys8?nAUt9W5(AwTy+D=qy)iaq-k|!fZpY$u8HD;hH1qGXd`>Ucu
z=D;6rCrU{+mk{R|JDw}%&lqYGGkxB?27td~p&4oP>;6KrBnhGu4c8u%fZ<OBW@X;}
zI(!W-kBYoSwzYPrCrAUztlm1aU7jHuO{8SA`>^*H_MawOe+M9X8X#F_s05`;P++l`
zMkObsk$!H^*5Q+1ZO72aTOGgn&M3U8*x|DZLpH^~&OVrbinOj1JBo+A{HfBAAM1Fl
zffTO4)C-~`NW^kV`k_<N*6fckei~l4{mKE!;EmJ-h?ei9-OT&RlW}rUT(&PXN`!ty
zr<r>-Th#IeJ=$i{$?b<1{95|Jhm$n92#jSws?q}z{j>5@EOn7DDCEvw8#t`0gwa!)
zPL{0(Pr$GB#o0_s#+AP^`pjW(Oa}lW2AIOlNZuR1?F0N)k@VCH;bNHW??dT?CEh@p
zYV`SQNy-p{rc#FY^8m%Dz6B%!!`(=FMfIRWO_48(<|5v9`FbNcfR@12o;EmkUJU%M
zMU9(8e-M8+BKsp}iy*G%@%PJ1h(y505bMirBUEXaGK(!=3`h_0gx$>RxN0OtN<Xc1
z#0Ub?haM94`BwBrsoRZwA%IpJiKZ&e;T<>y{m{ekgo7AWLXRhl+!E?kD<kX9z6%c?
z^z<GMeu-G_<F=0mtJT@0>vkX4v41+gzOZI+m}g};iRysr<9Vo=*%xg(nGuzUrBG=n
zX&o4@k2+mzA2h*|86`|@s86xOh{akE)oWhC8j}Hi^8-)`yn~xzwI-T$g1Gd1(FUHz
z#u^IJ-S8yiJvp9VnW{AF0E#|Ef_9T0*HA=X-mzVhWdk}!n1USFg1P-JIk@{Of&QzK
z{l$E$v^qEUd&J#RZyxM%BwqLPQC!P}lc&$PsHHK^(5Mtb26Wo6f`ZqkU-YpP&Aho$
zHk)gpc{l6UXA;zJ)0N0H6jaqYaBJ<9oK+!MnrS4q(=%n)(HYUzGm2QxBp&LQJg46i
z&b`_b5}7~wf;V}M9w>Fj+&S^}g+58hkV=@0d#P6GQ?J_S9!@LU97kfdSy)PJ-f+E&
zKMB#6+N2VCBJs&ugx@1-BaFA;?v{J^PkD{JQNZ3FFV~bxxKwJmuFI6qKMkGG$UgX-
z<aVef5p7X+m*Lc9z1(i}2DCA1*!t;9H{u=G25|Qp&OWE^t*y|=yevO#wFhd()Ef7r
zC^g2Jq&)>I_om6FDosx^<VSCQGznefPn2?!DHUqiVt?lK^cL??El+>n5I;+!38q%2
zls0I8U#C;^qTh4WrtrAdym1BAy#IzymN9c@+FHgf;q;49s>UXX4D#?<E?qrEYvau=
zSgy`Nw9ORea326!MKA|$*iRCe<tp1M%!Z^Wm8h3)EQ;KQSQr&IU8QPYpzzI-pMK;r
z<o<>Wt@DW=^r+SOFizF@fy)m8-#P=hXPBo6S?d%4+c^kbPgmnh6gvw?r3{|BK0}dC
zW6=l!;MQwC)Qzu(7l#<H)(qCu*E(Fznt}#b@&g%e#<ExUIAe}E`D9?42lYB*9tC@c
z&D9Ni=lNvx%mUKm*i@zdjlM4ySph0-bX#~9pG;-fqkMJRd^HwEaHjXMMvcP&vKmP_
z7orZLN{N0%=3qJoSHO(*;{pB#=thTat?lndIvx!^C3;<P_Bl~zF;itL(kfN+h~|od
zC-}yjC;dyGhPD^9T0z?jIZLbU-T=rF0T`njy{MoJoIr46BLR0o5-w?_(+p`T&2CuG
zEGzTK!y_hNzCPTfj;y;I{Bq4~s)sPo7-38|wJ8i&o;cPYd}vi$3>WX~X1CwXJCle3
zK2MIewqbG;scag_c_(~{_(Hp)ZT%FY2*yUg%=95}4GMVKNUM3WLs!V^)KiOeono(P
zbm+uLp_K9I`l?U#!gdwA)K&=Nc9XzlE+YbfA<Yys->?f_#Bd$&4)qnuIrlfbvT5fr
zzxH{{BcP9H_5y_|z#>~tFO6pwTOX@f11J;fK*>&GYC|BFi0(f)MVg4VI4|V);2O4V
z!N!c?0^~my>ooXP5petxpy!_}LT5=iiA3*Op833#40GZ*uRx`WpVRdp@+xX=&UztZ
z-e0!S*fCC@ng-$Z!<|04s(^UIZh2U>JyAb3ecp5@Bp!j0^HN%QkXTf2qLW#FN*!RG
z-KXEta!0$e!FM4*al-4*?rtr)YK09zpc^d{9opE`s<qa?BQ>`()ag|mj7|Y$x^OOM
zyDqvR{g>vdfq9tq9nA3$hzOlu017A^@tF(0L+M+LFo!e%bP2uUSn+Ge%~2}c@T2F|
z$*@}O+~E?D_nMn0Ad+BVE{9_s=hp>5R<K%;_h^ah6w9gzMo-8sOCKPu?*xD>T$!9l
z$&&2CoC@nqD*QHX&(04}fckGyy}Jh2!2(k%%!3(`FwU<+<&<*uLXu%BCUbW%a*r*B
z>J`TFap2Ku0M2@AP{Ly*;r}G%!&pH~OG9fPDy>{Iu~a`}v`v@t7VBgO;#`mg-%-73
z|2RGx`{hWjRRo5F|M);E7|W8$q#Zv7po-m^RT7<%w6vFk%7{sEr(L>xO4elGU`-Kg
z?RS`ptv7GP!$|X0up7^$43_Axcc-)tB^w(Gio5|SgDd2XPU~9z;&-?k9<FbzGf8Y_
zZ(JO-Nt;T&8-uXzuA`GRWVRQEMAk$g)G5t*O$7X64$$`Y(Xr)VB){gtWH}8s8BcDz
z&mD&W;(2G$!kl>apq_;I$%Ed+8E$6GQH1R|Iy~@kqRC{{cVtu>s_C|OwZ4gI`BM!x
z@ZA7qUXGY#P6Ixb7%X!XKRT;<F`8$r>2^{+!7zG}k5FQDVRf<B_%?7p`G<5%VXH_s
z>wZK{VXTR}twy%NEs%lS<P-5qCY9>vHzM=D6BP=2x$#04dlDB&P#D)GZxXm(AGEDZ
z;khwQt%dUgLY(eU#xvl}eOf_iUgA-Op*GU#QRqD{vG$_hmWUg-cC%aS$28!?aM|o#
zcrCSowh46IzTuuS2-i3S9(%VS5VqsZdhl-*0pjIE`G?GjCz(-+Mbmq6-yvC&LxnlF
zR{oT$73P()L`K<q)fE`@Z=3A>)<)1LFB#2JP^p#2v2k<45+6$ho!g~J+&X&XJ$b^Q
z)@t)L6PMr}(jC2dL7CCaV&dxK*PfpPVxt|tmZbZ|Fs7B|*Ypon`5?}L+v1rD)yojG
zd^jx^t5E6W=5Zfio?XV1H4ye+^5?YSvAQ4DpqU*95lNmfzbk2#%;LelSbCu}&JXAZ
zF(oUy{lN>X5)^3to4gyh6J+{VChJ`tr^&dytp0EVT8Qp%NDY%(AvqbrXd)dmAz@Gp
zwsYHEiP_Z)K!sXb8Svyk`A|u#%>@jZKI;o#0@Bq9o?!|33Z0D1>E6@_bUvpSb4Ps!
zk%xNXkEwIZjD|W6lgmjhJ)BxrdoOy*Bp-!1Jw9CSF&H$?ebCR3w$vOzb+p<WvP=;g
z_k!rAwjk*wIK}JGX~+_W&_A6@vFk0cI(v;+v?#4N#0I_bEQ^KwZI#PSLA6emGMiUp
zaJ((D)mCT{i=Y6S{;HfuM|Z&mcwi)-9#-33;LD`C(d3ZsbKBSnX#4ek-lN$WUBra|
zI7$m!=ivh#;dHTdE1~_(7{(gO;~y9B1;yU`tsopKuG3_d)r`Jas-3BdNC5d&b>eo0
zQ><mtLpdWkMzat4o_@o|WaP&rB-gL1T~#{Sj)wC59NUCui&&RPS7zApL^O;gLFIZb
ziO^xc-+U!~lUeuf*7Z<#lPuk3;`v~nBbCv3mG7BJ3Xf;z#z$rqJ|Iyc0S(8cN$wmN
z&!D&Y)Y@n9=76V0W;9PUR!Yq?cWWe@0`56!_<#<X2%w!WcW(^2fBxn&vd8_t2=Ksx
z2M!zT6uBOX?G@Z-osm6pkdLQv4Tm~Mwn!WgQLT0+6^LM&bCXHs+1#$HY<7p=%)c=7
zQY&*JT7I?AhRe7nY~&w3wM~#m|8;GxUNB5dK1ZfC&Ta0<V@4Y>iuT=8dkF_f@(jEn
z$8L9QUiz*G-1vsUwzIFq=EC>_0G!Kb)ur#W5T&poI)n~W3ZRM)0Me(9J}f_|<*EJH
zO%AP#?bX}rLo|utYc=zVuo%V+XLiF;rW?wFsK+B1l<Lh60qEUHWX#5+p;0-CZtpEo
zeUL`B(h2ovTJwcoK+*zJPxY34-3<Z#L6qTZ2Wo~yqHcxM2F20k8c!qV)6d{5&pP?~
z3@xPB=$%6tO!^`yFzXc<CkV!$>oW&4S+m<8aw!r6<+u=)IQvx2c5KqqK*9%$F41JV
zu8EjmX7BTwRUFqRW>RwaAT9^a&#}t-9gAL}++bdndZ!4R&2g4~Z&0x@q7*LV9nG)@
zus6^Fani+x|0Uu2K=EpnfCTz0NqDEbDDcfox2;jrus14Ra@7nik_?XmQ2MQHU$W)_
z3;=hZK_Ze`<y))w`f0(0^;%cvJMPetT#q`_!H-60E-&eZQ&zBAk3wkF>@Kdm-jLR+
zd)t|}r+6LhsSxJ`ANsWMY`v%aERD@gs_8Z`q-HBUO3tOs`Zi;&hr?}W<aLQzlOhUh
z+7uZ0Fl`hTwlAGtucqY{65Teh1p4>y{K6t9IT3pR5i5ZhI+u&hbu$I&lx`}iq~7w`
zTxWO8kmRds4bR8NQNRxe%nh9+0Ehq!r3i*zEx8Gx*!qC3c-pt=gMWp21dk58J|-1#
z)$gzJ5{6-|QbqruP!!dMBi`+1m`3K(YZ*``NpxBzTE!XcdrgF0;7;%dX`tv7T|0<j
z&gW+;SFY{?BBAD7XbzTISk*c-^5kY6f^S)k^VqG03TJBVL~oqRp%r1L=eTUPmP1!^
zB~GgfuZ|<TV@gFPtX2ZZx4A8R*gq*%hHkJtpCQchP!=2*b9IhuNkO6ACRnD?M$~4Y
zH2wj5;#TotNX+T@k`LkTB<lLS5pNmD5Tx~XjYuB8IKlnkk}%l=po$1!)3jHZswKQf
z(B~+hf;jy&Djh@*E`g=2&#-<%(Woc;pqjd)#F%E_D}GA;&u&!NNiK43am+*5WgFE@
z%1%S03Bc!6+8g5y0cjF3gSt3zY+CW6qB!eOYgA)bd$u8upS=|K4NaH8R#<tW2Yh6g
zJG&|wef%Yy_O0S2P#Qg&r$Rym#-=imx+4Q{FYsdu8Mi<Jf__S;Ve`g|-GD-)&H>RR
zX*i$Pska}9vJ#s8zQvAT6bF-Usm>h6pwaF#zdr2m9VYykA(<he@w%JcE32bb$!z6<
z@Q$+eYNpXV;XXS5Ol6d!b(pki$3wBvwWI@FU7W0nZ_!AHt3?18)oJPu8DNbCzHbU5
zA>ks1y0K!nKIJU!5pBHOa?hCyd_f8DStg29=C{i0h41OcvM3?HY5>mkn6LK7e8^(N
zXQ*2<pLEy8sZ#0`L9Jf$gWAPr4(#y>P6As3c)%0Jb%`rT^kFA+(RKAxBfP_B=Y2Y{
z7h-)<gFB%~c3Vch7_qP1^4K{K10s8LHwIfWN}Sg9fn0t%fJbL{KE~>54R~A}+C{P6
zWbz`)qHGg@UY;U_itw8*dY;WjIvz!}1I65uR-c}rQ8|~2WdOhJVEE%B4o8J}PZVEW
zQ%!>5SwmwQko+KZBM+tnpgTd?cpKoUQmr}pL4stGork_3&5l${-AY{!2ViE$F{EXR
zG6sghZ}()@dFGRuv6j1I7-u^)OIzi0)CE`ju4Wu$p%3J=D$VCKHU{!@?Rl3DKt?GK
zdLq#;u@lT6BhVKMIPGU?Yzk&8T%nbcKN;pX92q(~TGmW=DyLk1ukvo#@x}T=31#@}
zvJW%>hSi_U`=JF%JFf@33t{Js6*&dOuFe73nJstfPwxG6DNVRGUGD+iUbpqw2nvgT
zEtiW;OG1XuF`?#UIUR#4rU3vxt&-6uoK0R&mQVEqsWlr?{BgKNJHx3rx#Fn$cfOC&
z^P1v9(%=Y;!mo7${R17bkx_9_DVpq{oo0hGdV2wdjMYK4FFfXAYHyZlXs_<f-DdZ&
zz!z;$@F0}rOWMU&fJxz0>ZN<mNKV%ok+3L$sU)Vu4GtQu`*@cy-|qPW%39+9cg*P)
zq3R<6z`b`?mm1(HFq_`tpf%Nyh+sG*=5A%qq)XN!tnM+{@p&5Cil?7G3LyJ1oSbN)
z+}L|s!<B>Q(~T>1yPpqeH9aQT@`{sqPT+wpcbn~?oCdq=Ks0BI%jjgxmQ!3d!bXV;
zm057*7mOo3_(-wK%%sR^c7`}><#;nhAn63Ya|JnPsfibPcXx--#t`NAvisoYrd81i
z!R0BJOWm?N4r1qQRNKIdYyv5+Q|dm^fLOXX`KD6+-dBl)Gu&JkQ5*VHGs{V2t%ftH
zTWyWI-2DzNR{CAbG;)2jkl$Hy{A$I{4&JTHGLY~JYJCb+4+$uO^22~q53w&90jaq!
z={0)45|O28&K2r5?-OLuzGN-d8nT0+#{<|+kM#rKI}9M|h2C79cI2^xMLuUTirm(*
zYuD`#D7d$8Yqb~cEw8AS_xw;E%4xj1^*&Twv+ouLNiy$#qGE7vk7bSnU}{iXrt-pd
z>+Z?mCyLZof0VvRm3!vm;l}h0x5(Rfsf}K^MmMnRbsK?4Ug%=O3zFnaiaYzwa3zot
zdK#p-!M?_Zp_q}wZin^D$NpKU0A!Uq!>=}ux%~d4Ts3ZWK%yx6sbzHuw|Pag!>8G6
zZnr3we6{u;EnO?s{xNA5-#In<g3L%dqbb6|sTIj<a*&r+);-oBdG+yr-V9oxXu_nz
zWuw;oMo0}scpyauB}__<j;uw(ab8##F_wC9jiT}8L18hmlcTo4aqwin(WuU~-ldGY
z&-T~1ZFU7OP=<#x_f&V(f}ZyyLg$W}gm*>J#T->Ksd!**6Qs}+G%@zQM;!Nr@bI(l
z5XDS%fnWu>X^d15)799w?@hW#83C)^@uBHraZPAb4FiK514;$TLZ>@3A2zeeWXz{a
z_#wq6>}o_h8EY$^h}<lTTEjs^53N4Pe}3B6zNp7*b$JZdznX%lQ)JAx6i1~YuVI#9
zY&8_ySZI3eJU23m<E(pDkg%GE6HvH0x?~-uVGU#~7?#G2=r5)4PTOD*ZxoG33Um+#
zdw|c4jHJhcxPz0(B!k~MBX*pcs;vMdsIFy;ovKr~^6^Ic0U8>mVrX&%l|W^{qeXUc
zAag8rypbqoKAC&-|5S69ZE=Kclg3>GBv^2F*C2yC6Wk@Z2X`k75L|-0ySr<E;2K<m
zyGwxWJg@Bjh2?9{O!v$|_kG<}XO(_+(YQ`Zr125Dp!Z(n&S@^NcQU^uole=r_0|GF
z9bg5Ld(V>M@YF~mr++#a;dHPGTKp~UVbb^DXfoc%%i&$3RT|M?dmBnD-~#R<Vjn{q
z6>X<TBdz!yjI$@>Yq7N?US~Q&nMs++A@U#~EznC+vCK*_%s_wk-4UkkHvf9%TrRD_
z%4{a&k_O3u_4eUprCs`H0U0@D(dOp&rAn6=bv+i-Khc;_a6PP8_3hQ9gWAydvDN2o
z?E>FHRgEzR)lZ0)O7rZK)UfN>T<<`q!e7raeixNaiLCNh8}z~r-e85$l1g3PU-4$;
zR8}(uP8U6XBN^1?*wBD!8)J?4cl(uhxhXjmUA*bRcfA}k5>SX3b9ZuE$cwM{b~-{k
zJKPqfYxdMoN@KGcsqGB3T8Y*9Zy1bR0Nm4MA3V^^CLv0Lj`WLU4yVTT+5SJU*=f+I
z@%2Kc)1M=}1j)}kL;v*v0VZ#kNFhr-Fks$sSXdqYFdnZf{qE7cB(7x=gy;PLh>rmC
zmx*34fs7+tw>whk*SQRxsz%fCNDlaHGsFa0LJ~aEN5tC&k6Xt3GPFy<NrNa9!zk2e
zmo_l|FTN`OkdEnUKd(RI>B@fTf*Yps&%62erY}XOPG_sy4pSXN({nzpO}y!8hP)GB
z{w&!4rVw<0J&byp4j1Jd(eLm8aT)Z~ql<Q9l{YJV=o3+V(EcX{K;8sQFE#%@^F$%f
zGHC;-*}aCEYPF3&u<{kV99~sjVt8zueyWvdtF)gAczs>t``%do=){bJnD6M6W$Wd&
zH??x!;ZS#2sns=xcZUVUf-GW;fg5bOA8@}F`{0BkK+U+vg_mw=jtzh`|GskK&A}uZ
zH{3S*#`dG@)nBY7;?l#PYety4%<r*x-*!H5M~3udy+F*?&z%dMi|@>p|6V28D4I8j
zJvxs7)ePf(Ew-g!*8AaCnvUs6eXmMQeP}XGewQ7{Cov@b(^YK)XDS_!E~gUP(%x%y
z;~xKDj{)D<ez0A=P}gq#(n`r^xknj=ql!RCT9gWNd(Op}HWXzwgEU^YSRpI!;QhAh
zD+(B7f1)yxU9j2;%?_{BXWGm->-E7KFNvj`raPgxG+9c`2yMM26ofd0Jk~+~fn8kM
zFETfcuHy#kU0ncKcXx!#YAj<b@jJiD7-aflPe$?mPUs_f9>0qFP|F}tFQG)RWC<a^
z@S5GDSqI_JmLSa}4&NTlC7J-$c16toqyNk>fJ(cXnYpQr5qWKqCCf?9qQ@a7_L*EF
z3Jm4ZtXk#pUC?uoJ1`xIm%X19j;l418u?+@zI&DQ>z<hIS-UxFrcF`MIj>`AfX`UO
z;~(nSyZr~iKXm?u_m)uh!--~Xwf~H2av9`(|G=8ISiXX2F`h-6xp8E)ouBcJG7l1|
z;awVv9h63*jYF-*V5swsTIqz)8_7Z8H;~|?_P&TjeqyHvMoyYjuN(kE2!;eU3Es3y
z1P+mZ@-8vhF`MRG5TpG(t#(DI+2S%n;hC@QJgY`KfF-p^OfU@muMk_A`F(vN)&_W3
zibllZvAD1tQKG?8hXOd4fSDeRP6Uht3k>wRYLc|~e9{Y%>y@A<GrjH`s|Yh?H}+cu
z%ZgZp$yZ@_r5^KyS#cFZhh;GiiwTN+zrUa+yA|trgoC^2Da7wbqD4zLZnhgVuGZ@A
zYLQ_qs|KadW#Nd=ChNrY)GDkm@7lihlFron5;+*oFn?Aq^j|I@R=$1Mi4Mn}MzG$F
z1<ZVoTIDo4@ouN~agshl9N+<XmHzS!Bb!cBdC16XzmD|#Bm&b0bNTFE_(4Xe(Vmeu
znv@gKHuN<B>oDNNf*0^wj|gNEXrcgQWm0#Aq_ZpW9|1OaRrsgp)i*i<`_e4hB?8!3
zO6#POX5dN_tfye53S|g+4}Eqn_<68|v2PK~Js&O%^8{Z5H0PO@2k$SpctWTY5)ZP*
zv;}(Kc=j=6vp%&ZGOG5mvvVw)k5lki4uADz5!X3)!+bd^Trvds5~B_{`><32pBvI0
z^bDZHY!=VJW=iHJgFqPuns*?~2s3V_|7@*Y;SD_bGtr7u@sl>-sf-?wN=t3@>>^T2
znqy`$_^sY@S}ndRYU4Gi5O!%SVp@~<s%v#yrOW!|5J=s6JsqO$1;@Q+(kwZOM~2O_
z_m1DO`K{t>j>W|RP}9DQ1o$SZG;!Agj!Q6&#Rc#n>?R_oIi2Tl=723qotJuSbJO9h
zh}|7*`JyPMj_XXJVHX$YR7>{Iu!X(|2gKYB0R9MWyGaWyVkY%)DD#%4U!TttJM{9)
zaG7=Vh9c7~JE+tdk~sH~TFK2vHNB_4ffsC-6us_5J1OcRQ>Qa_1&dXN3EPq=tFwCO
zBnt{(0(}l_CGN1=YOQIX@H&iM^=KN~5?IE`bSgY#uh|dw#?$vY*iUyPQTDJEi%&xF
zvC9F$|Ni2n7ulDB!uzW{v6;kO4ykIUfHXx=hEZ<=xgJa!YqwjbX5<Hnx8f0K8YO)9
z$(J;c!Uvu-B|)so$ncX}8#0e`;TMHEq?e7z!|pVycWv-Ybt&{~w5zwXXYo{4DocPL
z*758{yHxM(ZYpx<{#FGkRmyx#x2#AsNTcZh0til9ecxnEB)DeRt2xc(fgEi5;CYY3
z)5wis@smDLrP}ZZZ+svs;Vhgm^iv`A)5vcXG6P`2K4|jbII_C<`{ZiV`BuOVX)~H(
zruHft)BU)TYF8ZSCTWV9)nth_xGM6VfHlRdU(C=8Tsf4P`Ffs+M)0X8l0MMQYAkUG
z?#L0^OTWuU+n`)im&<-kE;4Kg^KfA$qtz*Wmm&9AmaMjhgC@iRb6NVI=u)6?+ft$1
zt^+_Y(_hgV7(aRc6IE>XhQm&J<@6kLmVrLIsfwg0snh@#ANgc@T0o}ybaC5cyL822
zzipZTV(M@Xb`kOX*HQ=|1vEueShRw8B5m;Y0E~Hczafp*KfKakw)8(Nz!wQFbIX$l
z*{ewr+CRW-S!h<y6VEUIo?eBnI=mHSpd4sMDq3#)Bgx9hPSHkI2Cl8UIapAiDU!En
zLQLg^z}(bm8=io0m>Z5SiY~Jbw?)9SNDwp3tk()39)}fbT^<Jxf`PMcm%7E*3)#g<
z1u^VS>B$q6fnz^!q_t2$kxUmazTO?%UXv?-t0INFX$7<_`K#TLu@+#*cs^PXz5|OL
zxP(wlGV$lvkCXupFUj}fS^%*3=y=2De3s?~N9ujTp76C$@p#Yt*eFLI`yUo3zC|JV
zC)tWK3gUZLk*ZSd2m6mw=iLJ5uuna$J7C&pP@Xp<GCG@*tpL9#7ITuovxMje_M^vX
z$&4W+_zmPA6!6#UsztBf|E$I@(m2Q^A7ry<`)Ob=xh`u0B%4U}>c`E-)5hT>yz5L(
zg}zD*MSWz>zCSvf6}(7>P<~IH!H@e#DI_QhAD&WrLD^L<SEr15DYaDm?teM8y_M3P
zRz0{yV;C3P50U>M$`JhqNHuC@e}g<X+Iqep%)n7T8E*jtY(_xOfaodE-81kG1D|Wo
zBU0Sk^Ts5WgmtP@SCfGA$iHYjE!t30^qW&5ajz&5_UEy=F@o;Vx+I&il;0&FA<7@~
z;(VT?E{7Y{F|vy1A&eB>;PZ!~O2I!1<LN3DGJf^J6#8w&rsGfJG+7K_5tP-p^%P3V
zn0&QM(qSNs>eOc`Nt7p%0{}KxYnUR0F=2jxrUDEn7X?4Ay0W(TL9YRuuE>us`2Y=R
z@SYh6EFW!n7uP>Buc72+<z9+JMY-hS7LE$_rBkk8b{S1`B#^ZDEXA+u9DYz)Ln#7W
z2|_?je{6GbaE7uWGl&}u<FZ@m^AK|R6-iQ8>S)p?DZ_bDiZo+N$f!}7j10ITKtvaj
z0w#QzM2uI)M7*p+OPxkJjSLnMlT*RT%wL$SxqJ03??&h-?`*^W4Lb^Z4qrehfWJb1
z2Q65Gh1ZeN@aD{>4&$g*L8;{jVkNhUVFsV$?n7<<JrdDJBKI?X%cjAjN0Tgh6RYi^
zaFgxhx&ESBSTDMBV1I_GMTI>WRsv!Ar^DIYEanDZO+(IwY6L}pCef;hSaFQOZ{wv3
zS#~crth5zsN#+;`kWK(TlC@g-mnPgjK+z}UvSkucPTTCHozjx{Nn9G9Y_HeNLaRiK
z*|3-XB*i1GQ;X<t&qpzwy@BCc9~I!`CFS!b;(68@x%a(@1{v%SL#z4P)@V~OPQ<Lh
zcG2-DPi0c1V6GeXlaj+^L2o3Jwi+8b%>^`>cwt*uQ#r$fOFZrO6%Wemb>`snTLP<>
zYw{7db;QuOxoXXSxVc?ClO>8%r%Ug(QnJ!Ir-yAxnVn?l2g<y_ytaAiZ!uYn>Ht>N
z>hvc9s62gmTNcE;U?{gmuWp@mHI>SkcEo}ZB&`=vb|Q!!bkf6#A!7-Ygw0KPvj&3U
z4<)_M>DcHx85JWs1Gq8;w>u}>Tb{@GN024naXn{rW?N)o^U*%u-@m=Bdsp82ZoF%Y
zz`<3O1UU?vBQu9~H(y>PPd#s<3-pq`??c-Y@LRQvvC;WHyl@2!d&B2`_lEJ@x;(CH
z^>#H&%8}vflu+>$cKH;4o*He0XUVXBciF^zdi#q?_*cK>t3eu<{lOwvz~u6RVHjDF
zMRix-O99IJrH)b(OM*4;n;G)~DoGXtzG{Ez9+%AvN4q|SDSVCEx=2D!1572;u$9K}
z#I<(!<vThVF~T^P!&jE{rZcsux##oKcx=j_4BtlE54i{lys!fQ023&kIKu6spIuW_
z$U5R4JS9{xu0z|w*phQ2H)s#-ZK@M@4WADSjE%NXsoF2+993`<r<TMRqOS5uOP-LY
z#ICT2Cs!!`eiw8uzPc}5Soxg=sm{*KX)(P5X|8fn)RI`IUJ5UU+YQKOnEoBWmrdBy
zUaIviS220IJKJ)n?6*!G%!(4G_&aaf*<^SOS&P9`$`_TWZJ}ZBdf6lT<CCti1tgu!
z`a@l>G-B2n-e>dqRggs65jk>GfXS8)G^=$E9nnILdUF>HX+2BGz_eE%=;$nzvVWBD
zFbg3{rq_f$3mY+PD?);vJ1s}r<%09AzaR*iExR97OhQdcR1&J&rZr7A?oDJ$(<o<F
zoj;Eq)*jJ44(?}rH@NtC{Hzipgle>1pWAQuc~59}xlMhGrN_1*Z{20Q60pwAZ=Uwo
z<(_u3EmV>P!p|UVzS$CP&f!pHD|{^>$YXM+2jWwnayd-+-UP~7B+{f5gAd`(W?<7|
z!yp!50l185i}fi9UOPS3kIRj5_6~Qk3!hI5ypq@$(YaC#SMPhdQhD%5g<<o981h6Q
z>TG&-wuN8Rn$*}Cvx6Z^l%9xpq<nemW;X@-QZdP+>g85D)-^SD53`?z4}962;Y7Tm
z=N%p*tS_c833)~wqJmL_{Eh`T{rn>&1E6v=vn|(7HiszT?s!Y^6X~=CjJPOlbrjRM
zR4+xuKmJ*;jqUKfmYtW&b-LO`Hl8>rtihDR5u0N3+0`0J7U^yz(qHxd&O+ukYD&Q2
z5%8+I&r)5U8sa`#*s?*M6AkPE4F%LAd^dOW@Sm^<4?eH;p-1;3An4D5VLQ8FxZ^7<
zYWv_T3jH41d8fp(3m{q}c_jBTW6)XtTk!MfW+Q3p0&ZT4qY#Z)wNjN4z^>!Q7xq0$
zR6{|n{o^KbAs`FG##^?IR#s2}i~Jd}G(PKXS2dN-xFV8}{UlIiBNX%NfjBEX`dlRC
z&q>Q}Zn~hUB2|&c0vhD890Fe4?T~{cp0Sl@LSwiAg-r6)nYXomKQbr^><}xZ)g$_i
zLII>-L5-YPQeW<dEwU9EZ`K3N#N<(iTEA;@L*?j8l0`muVse*hBo1vUQg_IPn2w|=
z;*_}icQIPc3h#^O|E+ZV3Yv28MO-~su0_Ic16lzEcVqk?@|6!s7aM3_A3`!j{FO?<
ziO=G{k``KP*uEk~SkL#-dS`s0CEV{DcEKR!m%{Y9c;hr5D}c0<tZiHnhyILCr{cDr
z*JzV2|ABo;95)n|&9vmaoA?cNJ+9T+{JBMbDX4$-@q2+<DaW$H<=hC)GB{bPoxjdJ
zj2FJnZ`NY`voZf!AQ-{__0dANC~ebK%n`W~{CRL)(A_q<s@hc*+aoKv?#VKc!)ziC
zQ8cKKcjLhNrK6Kpl;-c6`f(x(Keu^2f{5*zd@|FFca&7v(T1S2Mfr=c|6b4jng>Dp
zW1r;rk(oi%BmwgsvYz4@kf`%MM9?}j#@Y0e0$ykq^x<ma?_izhtQ5T}j|3y!kU24m
z@vq?px$1ts9;v6A>CTRJ+tM^LQD2kFpM+_m5Yy@FHxC1py~)B9ETp{r-7M+*L#rLT
z8252C?^K-m&d-z(d5DsJgU&81dtb8EV2$&=uwoI2-XbS~+^WWN2Z6Di0&|)2@gAsr
zlzBoUa3viCha2S_AFnkuLQTR>G^E5#4Wx61M(y~W!w&Js6w4Lfdu$IlUX3prmY%&U
z1<6@=oCJ{(Wq)!Xk0FNc_a0&{Gk#gV^drp!-(d50y&1Tju98ptdY35$^<Q*hVvGP!
zURT%<xjA6sIex+fx##CWS3*QFzuP)I;RJxU4cdGfQNAEUbxQUGL!!aPOfD(a-LG<e
zV!w1o5J`pHg49ZN^j$@{)Fdcto%h|c_XGRMv~sZzS8FqESK74SKI%(G5#B#Vt09%s
z;f*FWsc_DBm@yu%K5~0LvHDM2WWbUN@SWFM{ZjJW8vJk@yW`tJ%|{Wt++<d-0$M-1
zYfB=;ZeUF*#r0{8CD~i|cWAZ_T=yw2Uf!Se_<%m0x#HfS(&RR7Ergo}QXx0&f_bXS
z;jGZ09+OKRd4+|@ydYE`JO_|vHBPrT6CxVWIRVW_YLFU!he@>vT#aqDxsoy*1+nT%
z9sW5vaXc?GbbKy_kC!qoV<|l92$)CJ&4eolX6IE4`^FbJ&?*&Lj#jfxog_iIqM(lh
z`ti08_lwnxNgfBA&<m;G!7mxY&e7J^t=U3t-6S#e(C@dluvH3mT<0g^6;w_Sh#aid
zGhKs(oPhqTnF`r_>8@hhdsZ3C7_KCaF_72o2@9iU<*X={&Pn^PWUnCO3@cf>Kxm~#
zJKg364zinj;Q^(n>HAESr#borF2^r~tO;an%seW6&znIxyMCOjlc@M`oA)?S7ky4C
zHoq^_F}WjT<MB>kHCRariMdig0guPmPy7wlN<Sy`UGqao?emR<&&GFq9C&;Z4nKKs
zMT}+hF0!t{Zc)9TeOqnT9PDqx!06rZdyZ0;EH^Ek;jnV5us2Pi0z+R`y?Pvne5GL0
zu86Ii?LK$iVfi5F`-8Us@Wq(NgUeY>N(K#gIGxj=nq>t<Uj9+g?uY4QoOrNaS&`bP
z-@_KfLzPmt&g|L#@u{4(P;V)|Nm;)-`&kf(zGPGVyi~Pl<S-}3LC#9!b|?jLKtK$G
zaD$&Pd3YANWOH<z?L8OZf=q%wEp+7eOIzWnXTf8%SOy8WoKUQ_-Geg#q=p3^_5BRg
z)?8_VO1YQWaW?$AD_!kU-9Ffw7%%^L5s(#ypDt<<G=MBF&7i`yCG#{si$R-Mo4dE-
zdsZDIAq0g0IXZ~<K@i#m#)^9vYo=i1_011)5m}gTLYJ36RYwlkcU(zRdANu6BaLy$
zs3bc#5UV;(imPTyf7!IX|I)Cv=D}asfe8#3hxE>iPwC`FC63^}oDR0_s|<EEQ7)z1
zur6}jFc;&ZT_NLD{P~&RpA<-uN<I(0!zUbAM%SG~XEMKn>z-X{f6K8CJAl9#*JvxI
z3W)Qz0XBl{ck?Y|^9Jvmqx^AoyZ2Jh?G~0j3soCT{h=5O`_BuN>1n6HB8gO`QxBq1
zCUmHb^7xXayOSjqN;J`}P5Z!d9Ke6Vs@I_hf4{`hosvSDzAXaFjY8WhhbP8`L?y0N
zugxH;FVHx9%&Oaz!DGNP5l@v;l9D1){2(j52}8tfpBIY16-8J^j*?W3$GFJwv1Is{
zC$&k@SWrIQylFf&cptx_)GFJ1LI>5#K}!LXo<Uq_<A{ccx8hnBuEu;y6BXU6bo-l-
zp^)2^$x@eH`M!4Ti*^7;Ogdp3+pI;TyXk(koep|F%4kMzd@`NRlnI^Kw@5ibbEZHp
zt!E5k;oNx>%YN=M^+aNRLpk<yU{HWLv~qU#EI<NQ$EqLM79y`Q9~ehproJeAgC#eO
z$?{cW6mN<lL0OMdM~0(I;>`Jl@185|H9hjTKUYffo``P4=cSQY&`m-v8F_lJ101;O
z$GOoG8iy{%7}S#mGCSydyuKQ;$*jmnc6u?rrX3t8J2Td?RR}`DVFG#9bfWAz1ey9u
zM-$RE9xteRX^DA3b;)D>9l$A_2QkGW-lw^HZS{FN9qr04)%aCfwB5|~*u`6Ke`hWF
zu-dO9&7&!fjWH?mdXdkhbrEg&*;DQ(S~FX`NQJ}m{W%a$MU^|6E2U;?i1c|J{6Gkm
zA4SGDppV`D!rOkINUKu(Lyw>1cmo?>MKY7iF#~WnXbYA3*KY%%-G)z~D<EnC2dJ=S
z@g&wQ$inx{F4m0WT_90~ys>mKg?CY943nXUx)wxOp&xr)V~E++ihe3xD&!izf%;yt
zb*d6+tt7s^Y{ubmSQ?4EFtybV{?edRqSCT;!J`^}+}vbueV$b=`_?NHY-(JL@mY>w
zfFdmbdr|Z?y@!saGbQI~@aE8Lx({BXEz(P*nJ+q?j!4j}fCjdQoc+AN`u3!q>|jxB
z`6Vkr6sp~J01&_nJ~LzS#5lrVnBF&?c_=rs4ZTYY<^-a!lfvZ?=n{|%QFCoQkIzL`
zXTJJ*KY}u>_AFAgxW45#w)yEq2K_sO{6+wkGH;ZNNYKU_3A?gr>AOdzvh}k>V}`+S
z(fdht(qJVs(tBB2oOQ>(R%12MGN_m-EbsJZv~tPt{0Q+{6lm#9jLI6Txkths$93+*
zGMQhFO2fKz4;Umfx@}W*dU@g|n5wScp9=oQ@`Qzkz$aRt^;-rt2xT^3(~w?MSgou3
zwe#ltSz#}l6f`kZuD3CL*LiS%8FfMLNzd!Fjx4pd==GZIQk_lyaxkKBVq0UmZYovK
z6YhHr*=Q1>6Hg2U_%*d(sUlL)De@^1NP7a7-*RFc!-|4>){S+u>DS@!0<iOkkae){
zdUWQ?EjeP35RoO$DhXOpXLQ4iQhH(|j6G(N=+#<E&OV-C!VNW{myv=+*%2RK&Pg@h
zTUsh9WvD9kyCv7Coz2@Va(V(-knCc)0|!O`F|NRO<?R5~uK&wmnQK`#D!r;0s}TD+
z?C;2QEJ`!+(Zg$(?FaT$fO=?Rl0Dl3)*Y$2myR6q97Q#6&!fX)A3_PIi+&J8KdQg#
zr<!Enz0_{GB)LC-R+s9%$oeGd46}%#13wV0#~SBz!76+e2fJ+cW120DS&@_>BKkGJ
z9FUi3ROPtzjjESD+9oyy_Y$Xe=OXuA-YtMrAA7&Wq;lxLrqM*TMPkb=f8y)N5PGg9
zaYI9}HC;XbmCPbLh+?**$U4QPN^GAS%x+1zT;(gB?I(MX$9Is%-OI;Ffa<hP&hr`q
zLr;_)lTRx=V*&GQiSYhNO@RTDq{^(Y8aQFU9z<>3{*jKSFO(*edgnST2jL?g0*(}~
znD`mM2g(6f_w7rs)6>GZu7+*}&ci(^mxNAZ*wnxVt!5W^t;A89>;2y;nodQDPtY@~
zkMG{87+5u}N1_mIz*eOiSsc`S7Di?jN41+N$^FTO5XBtjkuDul-cEr$zf@oJ3kaOr
zWwv2{d;p!p%0dBQpttUYAJ;0C%dYCq;n6egUTMSuEo5~3U>6a}66_upLLIE{YA16e
zI@_<CJ)a-%mERVGDMAr?^2|rqvBz~Ri|D{lG)8#3m0pUi9+yE}CAy4R3B;JgfWus1
zCE+}NHZ2$e+Ecp>w`5`k?f|a%m$y}m(`&ff<8s#SM2p#?B--r12`IZbc|uMXBeCrH
z5rdtaT`e`B;s#eyqHkBuudDpV{gkj_N_`thYU7Ee9x9ijB0o8e$|&|W<wLK>mXv)I
zBoE5Psl&>2$k1Fw@ZkW&+K_$#j=$w6x6Sfz+HxB%RWM^IzFyl+_*5h(R_I}+S;%F_
zM*GGFE3d=)#qaMsV%qf@AN5hO;&!T#sYl_)0s~;%Qlf|!Y$k=u{EdtVQJ%{^QUjI@
z@s^}MMbZ!4o$3}!O0-lV*TBmqvE=&}N19`~kGwrDc7IAr$ZWr#sZeGNo?@}vpd`H!
zu2I^XG!%6^UoL&(@8=*lK2l^?s<P;T2aS9yc;*L1L8+s2c$)_CuNol}V!xK1EL~@1
zyguad5QM<mBP=Pw?My-8bCK9i*Ciof-%!-DUk?^Z77-D`+B^Ds-(TdS#6KS62#Er4
zZ`q6b(PHHx4jGoh0+4;953*a4ctS5wc@hsL^Rhls7}qh5?InJ>6=x^<gg@@-{lh|s
z7^Ni3h-<3WH*wo^h0UA{NQO)YI}A?MF@#17zME0_3=-3tBsV@yQ=buOYff5bXAsdc
z;l#x7-26fa*)EcPqs~HKKqX{wLYhcs?Vd5sorCX7gBo<0{qfNntLGUE<R^tr{`|^Z
zyEcgB61bg)Z*@Br^gOBEut7-akBMsN30YTX@M*MO{A|ppaTPWo8{vDu*399)PEnbo
z3Y{m=WIt}*8wNq+!&763ywMC~f#;5}j)>yoFR7*Kn@YGk6GyJrY;SAA3KR6O|N0s3
zgE*eJCZc}4Fz1w%V|u;al!)bUO<WtRlSpf`Rs|+8R;3p`*Wd|s2aehppY+AYembNO
zp?L2fQ_nqJ(%W!yOrhkf4ioQgG&q89>m0fRb*Oc_e8PV^o*QSwe}EHWays+I2;@T|
zJBqYk1btvz-P9^bZwyNWnl~8liCzVR;a`J;rOgJf%w`(p5gSJbI1+mHF-u=_)}LBv
z94%`cYXT|%c6jcD&IoQt$2#RMTlr1*J+`HKV%C|3YCyW+<RYUKrLp;(p}M}lW&p*Z
z+$0Dtsol=|P0IPQ!lq@RrhV8`^;<YtgvsRTS%?RuEeD0q&muQuIPO#hsoO>YMHL?5
zDk_E6+(Jx=EZPIJx_vZgNIqIP9Hzrm^6#0!qw>jB4kcA=Z4RuS-V12jU0<R!CR!HR
z6KJi!QN;o?ug*IOwTNj6$@@dRb59z2QBs;cVe`2#4>f)mxPw8p_dxvA>d!NjS;J=!
z9HCtdf=}S`e5zsljW%j>vxss_V4@Bh;4as+t`Uz_PziSr+{>E^vR~_<mqhtf&%rJl
zA7)Bwa*`4!e9m<&IbX(I@Z}G~vPDFzDz{FvTa;gxZ$5adZ-(!aSTJRL1U}tw9<2?X
zMyqn0zHQ0tdA*U}ma|-qRy&$EpLz&I9ZLD@EglcdVa;NIjf+uomY}l1q@VGGvJni=
zjqY--P4&9}-NKl5-DuYRM#6;@I>{3|pg@R=?{^(wd9cBR5$6WPK61fAbE{*+gk<m=
zs#s9%ydSh!UwIDnfwb#2%3;33)8F9y-lahKcCMJvFoN^*S&jQE<njC`$#tz9x9V1`
zs8nPWO#6KD_5RiIr)06>GiUAfIiCC^cDG}skj^M}txZS#og4)`?5N?*T*}5EaFOX}
zWh}e?j?U^h&(uAS@Og#Qb7!algZZz!cIoZi$Au^g+*~$AA8xYwaY4}O?>Ij*57Zi9
z4siDpp+3RscR9(zl5m=LzC;7^%D9DMk7B)<Dba{wPL75gzDs)ZywEriEXOiwc6UW3
zJe#6XWHz59gL)OkQhmX_eEwi0g1ch+^T>cN?SjK{Q4v1eubWhmZi`jF*L;E(?>6^_
zIOo+??#|WWe7Rp^C{Gpk)Ie#xr{F%Qvdir>O|24_&_OP+LE1|>+InN2QPU?V?R&Dw
zJvg-4exp(;0jN?@RW0H$6Ei*gE2+|EIt_7q=K_k2a)@j<w*j68-TKc;%XBz$SebQ?
zf@wc<NyYg7c8k1KK*vo-gE6F3RoW!5ZT397QNQgd+@hvo-mq}^r8l3=?A2a$?qIxs
z0HE@+dVDoxuan=xNGO;jt<tWg8u>*CBGp_aJDkkKJ0$`C1c5xAX0=gNtq|UDaIObg
z<bZWi2^!YJW^@SK!|!Rz1%ZRXP6zzboNwD~F~Ni&7SPmD5@Q1gF`5m`NUrs~&4ECe
zAQhr+&>E}oo5Cn0@!dN7K~P0FIASA<U)+2wixH?_xo1zWdCBDS-0Ps>Ws5M1#OK!d
z8X+&kh!S;jaLEa6T-4{2%VoFn*frC|7JJz=*R|1E7?0t~044;hl8Zm@e8fsXqrSLb
z^k>GpmpS9LAg$;{{V-O3-c_2GU#^hMl9`2?GeqEwZc-baiiXz+Az%Rt3g%YbiDAMe
z0$?##&27JK`QxA&;f-yPjza}$IrPKT8H1@TD;CPk>Lp%(B)+i21W^A1hP@2_Mha2a
z5ENwq-roM4F$IcDXVb3Vu?-VPz?4}^c!t-s;8L|D84mc_s9<JdGv8J@r8@%dvE`Au
zKvev~r8*^RRW|&_*%K7dtKn55LY&i+i%dlyOY0zv4wIv34isq6Ex<W%N}r3~WtSn@
z81_FkQu{uk5u$l${$yVv1A!~PLdSrgK6H4|-{qUuS#-Tb&pZo1->A|*IFb9(9L<+v
zpQjmPj_J0jrB7?n84C0wjMKZ-A?u|yhhEfA3MXNlE>k^J)%#Cm2^um#K1<&JSmG>R
z;aP*LPIm1U|H%R{X!M2N*ksYf!dzLB9%ScnCzwRM4vTPPBhY7@O-H$Z<bK7O6#u!)
zToDEtXLr3&*SRKY%)h9k<6M6Q<{Wmq)=56N_yDM-3<1|;8<7x2qD6Yi$XXyP*C<JS
zY%J9c9bD-7eOUSnd};_i)i2H3Z=sVfkNer9E$sO|boM}B$yi1{1Ztq4IqjRS6-FF>
zPNX>s+CgA%?%q%oQC4-(;45ZKiM)YI%S3qVkBuWvM{d<Ig34fQpKA-RQYOPTEk#%u
z$FERQlwy=ijwaGpu57;-;4r+_1>`V<E0U*Q5K9xNI#u|P;+gWcI6{#Fd1O!|B^toX
zTnGZNPxtdoe0bNfv0ztBN+a{k9?Jsx;=9W<8w3~{DRCs~8T_Hx!{U3~IqQ=GS(+IW
zjH82txPDmUWnpKi;4pJ$b(}`q!!Oz`Mp=_xSZLl<^AkVfDht866wBY^yvGGVW)=Es
z1=5s7FTqOLvm|1#F3sV-e0o@kS_P~7#4sa~JrGE=)zB|+UrqF`<o<aF(J1wGwW6a)
zbPm)gnV6Q`8q;f_FyGXac9ysZZtYUN`2!f_fq`F?`Xy)Em`jyWvs%+)kS2=At4P3N
zT}%kggBBSE50R6#nda|4hBMTVSGQ&DHX$yY4&H&^<W&)~;Jop>1h^;L(+z)Ca?zbb
zQBp1P^Oa_40k@MpZNCK>+jvY;0jlGLDxmn8S7%9vm;Rm^|6azS!+No_7!BJpPl_iX
zG`38u5QQ8ldpv}MF2aK_(KDa(#L29XHe)pkEFFErN9^r>cj#NO{{x0g(Wp+F3r-v;
zt*Iy{hNLu4Ak0?9C)(?8M;;hjV}}eFtX;Aa&aUB{3#B}h%(aV38%z)D|CFuDUQV+K
zCLqtITCV0lmoxCHw<5g10JkA1HHanX2)7+r0PQ*DJOW+qW0}&VU`aYJ2c*p}bE@H1
zyT#G_CF8neJH1_%>+tF-p<0Dh=E$+v3as)Jz`tu%HP<*3MsdG_Vk;d&+wI#U_QIi{
zV5VgyKx)U>0jQl`r&5icrm?p+TGc-`x{w!?c><Ahf_qP?bIsEN1<qTp#pp<v801{B
z(KxySjgT(o&kVH&M>&8B!9V?+RfgSF3%x_yXUTt=bVZK;T`xp-;B=*VPA)4L%caJM
zfDbY>FcAxs9F0bQTq$sdG=aGN&p7XWz9>}CjMhjL>5Hn=z48bP+Q)RbFB;h4Rtf#+
z34W{8yR6bFp>+jrxKgCHb3wTHFet8;ilw?=XZnJFc@`A5W84j!;h-C^_`U#zL;MEW
zxbj7@Ov&MHO!GUX4XhG17|k@R?bp*U2%|u&!0zytc<&RP%$gT^gPhmiO=(V^toO#n
zYU{P7=))MN|Lux1lO<_1Svp@YW<_|6h(LnvxRX8>t|?|*dX;z&`6kv^BtAG|m^(7j
zpj~DE*LuBfxACm+esG#cYtARwe?9IggR!7Lz`<`Rx~sbV=cO3XkbwVwCmbgX3lhp+
z`}yA4e}B&Z9t6st^{{Y5c-It{{`VyReGqF53HbIY=UwUT|IZct=O7sp_E!)XYu$y{
z?0--4@A80yqHL6a^lH@gY=8E@C;6{y#|R{o05%aIkJ+`vkN;l!KbQCKoxPC(s6j!G
qXYH+m|MfZl_h8Wf4_|Ea4Qk>P?%QUPu_hGoCo8EWQ6**+^nU=mBOEjU

diff --git a/docs/notebooks/plot2.png b/docs/notebooks/plot2.png
deleted file mode 100644
index bbcb9334dff1e94fb6b858631039b94d4d30a453..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 41124
zcmeFZbyr+Vw>_K$2sBQk0fM^*w*bN2-8Hxd3lOYvcL@%G5Zv7zf@^Ts;O_9-ob#OL
z=G-svzJJ^?_893=>CsfJs<qafbFJFJ^0Hz`@VM|VUc5k(5EoW_@d8TV#fz6_aIb-p
z==Nh|;GdTcieiE<N`~=wU%ViCAt5ZF{8@KD4aQMf3@>2WDkhwkENTV3K>V5du!O!!
zJya-EC<`Nzq&rP9haTBq-`d_KP+tJdN``v1|7dFSC}UqY;I_n-7bs}5HSEy>+K>Hu
z)AO^lQwRwQO!V?!PahF<5tYCjvhgo6{~9NH8T^7g2;B!--20D*NC+(x`r{9~vyT#g
z4tqmW38X@ieR%cf^Csj4IhBxq3ZvA&hRHsF*6{!LB;<h~ctf-BMdN?XK@xTQ1t{vz
z=R*L=2hdOX)vbY;KZjp{<RP4}|C*~eG&9CaN%;VH4!wjwmhe1pa2MCV=Smip1t$+-
zR<66L_;U%s=QyI_e;bU*2T{Zu9GBHGlt}*X|H*{5NB-AbUx19MUd3f1V%oIO{d*OF
zX&wG;K=J=GE%^Tf(`pXC<l*6=(>$ep1yySBJ5GXdF;p>MI6Av~WoIX-(dBUEWL=DK
z@$w?%Esv8xcyjeS^EJ+e23Ms$&ka_`PoFxPU_$LTe|{WHx~xq7&Yhn^>q4;c^D9EF
z&Eh?oGxr-r9^yX^$vdf6Cd2~1fyiR5N3XwNtn4b~=^v(kJu0>|GV%@AdS!Rk<AnJ3
z-u|IwDXTFMmO-~AB2O+O^UG`uA-+~Hn4HOUNpPb-<tV<vq8b;4z;9){A04&KdJp!_
zwZ0=jMoXbZP~`kzQO8+J1H~=>({vFZr|Z@$0=_TaKQVt=%!d~_d&0o$@0QX=^SBVG
zYiQ)ws^lwkx~_44mrnOa*dFQstwb2_esLJ+hJ?G87u{*UJ1*k!9^&z*tL=DuYlzFA
zVbPCytwgEma>%7OjUOE?HJ|;=kh^mQJ6oZAX2dN|wm;~3`yK&Fq@KCEx`Rp#;^(N-
z^a*NscvxIox~tk!4UOOu@#gf7SS%tHRd2cWO3!ikJie&h7#d_TR>5X6oKD#<r>q=D
z#xpjiK&4#=_i4Ky!C%maB~LC(C6uCKX7}4^vQvtDy`;*QCmq}SYS&mkf_A<?qmtu?
zHafB$>mygj4Nw=2WO^#!Q5O*(XDD|mwvg0l*jI<q1{oe;E1{|_Roy>wmXwqvwc1g4
zbaswCH7->MTI_<!ptmJgtb;zM@i~F5wKxLRAI9SLXC3qp0){@{ZUhUE@93O`fXOUx
zE13Vsy>Y_5yCtI3voy+o%VE%KBCg%bXlvsmzg>vb<!y=Q`(Qe}@6UUO+}=5%1kO1w
zdk69~RLrhwma<a2dl+##K0QsC3q@%Hfk5MuLv4=_sDy-!Q;C(}DwijNjVoGjn6vHY
zUFXNymr(kiB{8uzUQb*u8JC($XWfX$@676aG#9<}r~_91W@3H+-a6nMS&%II+qZK4
zCH&o+WW_Rh;(KOGg8O^;52?12l9Dksbwg>q=qc<aUfVcq^Q&DN-@Tr0@P@RiAgEmB
z9n}}5LpaPoS|@8vin){6J-%1{zHkb3E<LBbohjebd+&M+9sc{5=XPbl!#i;E-Iu_b
z8FdW$xT9i0T3m!TU@dqNYK;O`EILhiy=ANMMln%Q!!d|!X;Wj+Nso+{{aP2(`R>$1
z{5BzvD;63WnwffO!uhr#=BG)y^)i#8BXFTb#;>R~k|meNh1n!t%K&A$Ae+i9dIL+#
z(4-_BvU{)eBHij&t@L^!9<UK>Kc@z+PXY~acs#Qm8R!_;u|_iZ1J$SYXV>v0&UG2G
zM}ALP8s1-zX=~iBxFFH~Ppoe1MK7ZQeX_G_n?+E|jfWy;$jXviU0<j5c!xQ^Rp6xx
zT7$Z7C#BT4wPjQQ$B>1fhJ!^A#OJ?u$(<`HDju)hIQ*ET`Rr~QZM<`T<6yRw<D;w>
z0UiE^15KyFGn7(};G4n&Hyncd<r3UmZZ~lKr_F>7avB=2jm_b>DmSt9Pzt*=|I;Zu
z==WqjZI4V6-34P!WG)$HCyNrr?iGvI*8q)H>BJt---99&o?UnRUIYyNS^A$Sci1hy
z=x(O1Pl!i-hv3Ab3K74~zCXF63B%zN{(W~_>>d-OoUhKHqnKkqm>if;JTETz>zmdu
z7e340LtZM?qHD1MBma>2GMi2;YE=?v`xE;Z#NcJi9&!Q-Ve|RRMO&S(=(J&L9`M+G
zq~V3Ot&cd&`+?_7A+FKM$u!LwREAEHsZyF1`y7+`T6%7JOo?4y+4n6LFrGR!!rWry
zb0MXnPr_)541Sd|^Ne=CH$YY9Q*;kpxSodlhPol@75}pZFF-p1-XapC1M|bbr%M<-
z`Y>quU{Nx>Q&Li@B+ES)aV27woG8TM1ZOKAXBxLN96JniSC7k;#sha3xGE&Q7=REX
zoW|!OVL_QgymLvf-SXv)7&2j3N!omFd_-dC^=_-W02(-tdQHf=`4*}C<JtFfYll*)
zsOyz4H*@s6Pz{`VWU8gY`Kra-s!#Q@;7-VmLzdVGAI{0T92^KFIwkqIJAztBuz63r
z(u>x)#MQ_OCYu>f;i2UfT1Y%-?TE`~$w7I7Io*t#DSb40Ti~Jl*2{V}?C9=7^60GR
z;4a24*ff->sW7$mvkbUSR?j0C3ii^&u7{A<UQ`oP^JKmhhu6YSxi!_x)oP(h=JqM%
zF_#=|N)*!dbL2;KXSvNmhN7P3FI&;vpDMas0~aL+c8sCl)W^_i#l<4<10o|)Y?kVX
zhmhI}#oL>9X~UslQM#`lU?mELinZ7uRvIf`{ZEjJ`uoH;*ip;Jq|dSOyOV!B=U8-G
z$s1d@dtA^kC*L$0h6b4zC={~8V^G0m6t$R5=H!!MC!-vGA`|x$5{IaxjTe0|7bH`K
zRV`MJI9V5M{j?<VrCE8GnM$vP<kQwq^5UR41|=+PhE%c2o{QWqz|`U-?<|MEnEQY8
zTud$<gdilAc6N8ebi;3pr8w&uo+q7*TS%-2IO%ER-i%JV>N#_USFxI_tNo0is3AMN
zcQ37Sk`9WdTC<9anwqb*$yN;?S-Pv6cOeun{4A);7bmH0rPJg@xe;$_&ixB+fN>&E
za{gCUbmlLS5>H=I^(IHI64=+-x@o`1zwwa?jC6J?G#E#7EV*9s-zn6IqYY+o@bE4+
z1muce6M^~5{&h4XfTJlt+8j8p`t4UNc@V~c`{i3%InxI|5ZKhN3qD{5>#9bv*g|BX
z)kSSua&+J!$kTGFz?b>sK$iR}$?kj~yX}Ja%ZEEjm2TJM8-&ChuY=9YL`FTq_18{I
zGy=)iE=MT@^vP_3E7gVLl1V073D<TEhdjyeY^thWU9_C?f#w=KI3(j~!UdpOI(v}z
za%^N%`53JwF!KAlX?{NXibZqiJw{6I(KG+9Z){xOyF9Sl8TGk}kSe;inge^UtlV7}
zeY#QmZ83~xjWR=%_Hx`G+WZ!^(2cDyZzvu`VzhBQ#L`bv+&mxbzpB>)sd6J%ef2O9
zH@fJ;<4*Digo%PvkAn_A!(VF>ZCRMr1(k{md2C#pn|Xqt_(0=DB|%dN<xYp!<)n44
zX900m0#?<x${;t7rC@qv!}y)<P;4rdCe*HvnSl|hQ3aq?wEow^nr3=>dV^nU#cwNJ
zB%-#8!ckw^_iR{yJncFe|C(bpTVd3`_Hi6O7L{K{qsopzIL#$KGMXs*gJ7(7mV4w9
z4wprh<MhrRvfc+P4fJ3r;cQ=&_|_+0Z$W>Ayo`@-dLGe;hTR4HOK#sKDyyZf?Dywx
zEYrlJOyZ@m!DLHP#_i~|PKJB)qXwiocNr8iIDy@vTV8PJt+Idc7NXea;54--p!mvX
zP2^seOZ@S6nmio3+1h=4D04-vrrG?nMGU4HsemC~T2w(T=8$@q2C@B;xC7JvEKA;4
zh3on`MY12#Q7q9=O)GkDWR^|}79lUD@b@}mA+IRpOD}QxB}##06~c06l8p}-<#S|7
zA=cJnk@%wV1sSWgn*;B*@}ddxm(TS~q$Hq(1304bS9C;<og6<wW{_`c8XUG6MJG&#
z%8kcfNvFQU>JCk8yVQAVahlrE2}aXhM!o`eCzW?1?8=BC=`FuKJh$_267pp#jfyz3
zv*bz@Lg;SzKbcR(^EN+VmLcRyB}Ug62GeUKXLC6ak7HUQKP-D4D@!6ABy#l9wsi&S
zN55Fzbf7Yv+Q?{zC2t=Wg~+BgKO<*xt#aKF#9v-*`iMBJ&;}#vSysD-No?+XnpGCz
z>%9?cp*8dqy%fX8jt@0=?rIR>-`h}u5fc5_UG@0H(#a&o!bL&S8Qdb0clel?Y3ZB-
zlW1QrUfC|iFY&5f(jBD=AKiW^o$a__|2~jV8V4<f!Bi7D<V>L|I;;mD2mO1r9cpJh
z-#5-cMoD<wPo=dqeq13G6NAY!I=9537kQ@DHd0vzZalY;BezmLJ3^c_6HSguHJVD$
z;Yz-6+WKUms9v$B=~rc^M;LT4eOP!3t5hOA7np1~2^5TeFEU&1f#-I$PqCNsHU3Z3
z$@d&8qPF%UKRXelsg-K?Y)@IXm3|N~Cl@7yK_&bmf)@Ph{rmSh2TE!s+5!=&T)F4J
z*3xl^c}aLLb|)xv&u2tJFl6}ozlB4m@p{30ZEhla`T2Z@*k+*)8QT;agF#UlOsgPV
zU>41+S!qH3d#TRzZ6pD|aDGhg#DsRMExGu4rQHcLtJS2iTY^53qAxa$GLA?nW}@&1
zxCqgzu9|w5JXvCP1}rwqsf49Fp+a$75cnaK3`vbaPq4;nR=!!3K6q^K&BQy)t#dUK
zy_S2=8JCrybJNm1$m1yM!Kn;K*c%>!0*Z<qohCa1CZ;h(X%Sre6X|Hq4`ir2Q;mcH
zk=F__$==plx#w$ZE#&qkJDbq2vl)p+NpAc(T^s<iL>(-YKxh8-sVY9RwB^t*I5tl*
zyJma2)xgv?a$PJ^QVUlkWZxwXH2!W>yy^O3&%B$zD_D>6k0^Bg`4twqz*_a*w550b
z8Fq7wzl@dpUAB&t1P!YQ8DSFZ#{x$)J&Yk|R^s<~wb0^)Fv%ngYmUy&(R|XOLRW$W
zth1}aKR4kwC7ToLX12&w?YnZ5O0k)02*r>)BMx5f>VZwYlG&bYc~Y+B={E$dg3&d8
zb<sppt;wc_#M68;y|T?wp3e@7hmHo78f}-9re2^Oxty%QP*-Z7B^19iSQ{CC6PFm;
zH$wrYY&w#~m1(dg#$D4$jz<_9DTr^CFwa?5W!1t=VKa~N92x7CRf;CJ9gESMFv>Nj
z>>(PK3U-`<gi?`!AW>O~z2wFRg^cs!hIgOtMds|wf93?YqUKS^q)33t##KT|7%VY8
zT2hm>@9UE&8y{z{dUS*a)QS=ql&8*V!Mf7vth$oE55%Bx@zlOUwMLWb$nH+JKYg7U
zlvE7uvBTTVg&n<gyD(ch9ysEHS$?~kLXTIX(;VZe7pbm;+Ci)u!k}A6BoWCFa;?w6
z{O#rj^MkQ5G=omlanD<U<n18)__M3t&}~M$jlL|7aZ|6s&%z|I<#UclOK%rioTR|b
ziJ_?VG34XWhvS=}ia)Kmx~HZvF=<p2hD-5zKkcM#rx$ptB6$_fMy0384YTN$&|U`%
zBhNZ)#4(>Y)5fL+Wz3{gGJNH=zu)1>m9>g5RL+;2E0{g`wp-{o7a=zx8>VDjh=735
zxyU0xxVY%k*-Nf)IN#V<71J&FM<~xEe1%0TaNFLkTTPtF70YISuTH1Y^dW_Tt|gp8
z!&ki+JkPH2r;>Co<_*r_ui1a|VK}wk?s|sWJbrVN4BGFE=A}JjlzQ{+!LM8#mRqs4
zKdJsG=}XBdg4GI3@x+c0_b6dicKajnz&r@?E#E6$-6b3jlSx|B#J<o!l&KF_fC|=N
z`jg<#cmhmBI_U*@pPz4MR`kCWubuQ4<l<M-v!s9EI^Y}LAoNV=uXc8vtp7_)TLi{;
z)2ZFb{%|Bfh<j%Mh+OE%$bq7N7zvQaGTnjkMV60|f1VZKGljG_*tny8b@Wdg0iPY^
z05iFN-;e%dNr1-H<_Ab~(wv<5xc_UKhrqbwNF48<;sOA=lHLJ^1HlFgk^Xy{qrAZQ
z;nxbW|FtS~iVq;>)fGFl|2549$`7D%UZqR%f3Hfv128fLK0b2zzo+?s#(&<P|1<vc
zDf+*Y|Lhz8e+)Y-D?g?zlxa+T(U!UJuKT~FvO^!f&NI9(!twLBoY2(8W8ygdbsF$3
zP*GQCnjPK;o46c~>*kfJs_Ly*i!WGJ7CFE*;c>YqJ0nvyKPw^>b}bh1GJWj`8S9Kl
zKdO~+5DG?2;*}^6I+*R?y7*Pu3g-+v6<whCzeY|3w8igHn@!MzM>;N^h=m5jZ`VVK
zZP^&D1Ael<rm(YGwboY0Gel)lFdjjyEeSU`*w<gF-B{lMi-!jbZItq4xm`=!D9v7U
zFTWYKaa~>6pl_td!%6?3Xox}5S^8$<2vMZ~_tL`s1$<{KRR&echXNI5MU4K}U-2qn
zP1}*E1YRREkoUE<@t@eoWy(RDwGScD2yiv6jMZWm>EP2R{rK3VY2k=ZvSlr5A^u}Y
zPyF6}ZBq-4uij$kLE}qX9(oX5W5kM<7UHSEFYYNUSEJB&g@e;wC{q+SO1t?-62mw&
z;BUEky<u?!@=aTN1uLk*aS<7XaK5e8_!YDJcS%-4-fB^kNM$N|eKl-y@kU!zl@Q#1
z1&bM1%|kh2YJs^SBq>`FP{lc%<&$SX0#R#{qMc%+1;2g`D~=By@-}Mm7g-Q9&Pf%l
z0t69pA%@IsQ`F_Yeu_SAC2m#jomVcUAOUTb{Ev6;gGv~EMs*%1w{Ya-;(SxviAr|v
zD)^Zdkm3}~5YM9^vAY;lXPP(2eDK#!pS;J1?l*(LWL`F$^K%9k-6nm9`#!Bgub7^G
z5?|N5X6ZaKbKcQGH$qDLk0!e`<snrFLB7rO6{crx#Y7LKndTfFa=^529Rm{Ppve0;
zqjRC(BsJ!WM}3amTKtr$v?tD*j~PCZi2u$xfy2sL1!wW;%_G+aVm18rN#i>x^y!0j
zDuGj1-6T|~z#@3#e2dT^%X~PVG(;6}RBkdoNl8vyaT(I5S`7E8p+<SgMz5_{XL{du
z@|$Q0ke$lhdfPXx>jg@Fj3+q;rtMP!x;i&?&t8g22$+l?=U`s>!_{zxkhHH~m$Bns
zEg0%{QlQ_E3l;56;A7`6lIwPdo3|<I2$E6v-kkN^hC2l<$NecVfgI^=zwPm&8qJVd
ze=ESMMQHc7U-WLcSU~8h1bRU5!2T}Ki$H7^tGic%HOic3p@K6%m#XqQWY1$Wj%JD?
zrUz)Or)0Ivw7l<X^K-i6l#F_x4l>BEJ9nV_DdX(ZK|yahS3kzow{Pp48h(Iw#fj;I
zuqN-^baSMX2i>27cR9_@xopDeMxYt$8)+lOj4_%CyQUPYV6=yiNUH;@;&HlmR$RI1
zWMx=QEpQ4|;ePhQ&tJ@_Q_obsQqur~F$QUR8a|cF3q=IsX6?3^G6wFedlqzm<VvZU
zDT(Roevl^`l&K44>ViG;CSF2-V02B2{^pL;wa2~af9zrZN)W{S&P6IZa|egE>LB*5
zR>FJl<}_T`2p+@JSB&@fo#=5iF+mfF`{nxal%6S%egCu2)%?2mY%-7{4AmfysE|UI
zb$P2YQhbjhw5xZRKB2&7|9AzDARZ>qFJ>TJIEml=OD;iI&nlc}(E^SlbupaZCM`P0
z%)K+6s>vCm{hmT415Cz<?+<^iKQ>r8mN_NeMM)+V{<O#qx6QEBTb9Az(JE~tO|S@G
zoiY^ls~j}_9l9SOB+VE6lBv~5IhLBU{w$SDNQ!afgP;`&_r`DkbQbO`tHqdWW-%1k
zw<-G8l2P`M|E!kC$9nX$tzW==N2~FB=eKr(vxcBLRI|u0T(S1NeaHtXBH2oNaQ|~?
zQ}LnlQm2pU418CLgXPJgRHwbwT($htBm%Sq@HWgl59~hmX+of>F{kTBO*rQs?(i7+
zz5HM@szrvZV9HL0VZykp-zw3viNPE#{HSqCz-OgUO9Yln26JlKzNYb3p>Wsnhq8ro
zNt9endOLqf?=HZv%e8f-ai)L+jzTN!%;_K(CSUACj`;Mz!&>#E=;mI|W-}0qne?>y
z$ttZ?D<=D+nx}xyUJdhZlCBf5RKvfQ8k0#mQp9AfK(XLu9QyO)`dI6pgEnGSX9?8s
z4@Gu@DVnZikMHP!W7tLo?e*8)ST@Ds2<#g8XG7tioZB&{6Uacs6!45~&0uqB(MkJ=
zEkS@9<l@k5tI$PCYp4{nV*IV^I}i34ot*uQdhQUcJ%M;C0`s;YD2A{(4exG!Y#n>X
zfe1B?M>)EtBVU;&mD?Tr@#E>r@S^Ds?~cn~$FKz0$e`jh`kLOyh$EWtuJDOkrpwZ-
z9}AO&jh>64Ul*~BW(qv1R4Q>=`lfYsdnwdYz{aVW@({#9Bs?pMe|iBHW61j2cEU~p
zH*}tv%C{gBE6j4_@S1hSewhx6;pgbG7>x@V$|<%bL0`zW6pI?_f2+5_=-YazD<~i5
zN~wq@44m0*kxJ3rcbP6a)J%{W@UQY-=JP!Tg!ucjRn<`?>C|#46oQth<?`U_Oz3`;
zzK%+z=vGI9u3oaX_E`e2ry9cQ){@tjc$WDre;eWo*acZ=YJt~VHvQl#k5crA3@5)d
z#c;PNBl#?4h|lit$LBm{N)tmYyeR1(kCYQnBqbh6|3e<a=V236WcR3BkD3_cM>|3&
z@UW|c+YAdVj<~G4I-oR?=MXl~@|Vw>s%&5?G3rRT4cU=Z7c$0>JBM)-<DmokkAZhC
zQv%Si-^opx|Ck6h*zw2*>2<_adx0K7+pI+Ra&4XAg$W7<Eh=LgIy_Qs`^urgk28%T
zAJE>VeH@YNdvsD|xTP5H_Xqn1>p$8;X{qZjwBBdROU<u$m5SVQcW@<!H$}*lv6GAI
z$}`V$Wr>Z^sM~G6BZ*m4Xy?IBP&s-r|77YKA}RY}-Ya2Ux5_n75OCfU?BqEoODuoA
z7P^_ot8Pa$8tqZoE1?cFY}2KyA@ikZaL(dFnM;KjdutI~gPmL>@?a(=ka+~Mp&v5b
zw+40X936%2jy;-1I~2)wwsgpEA2xiw^^Sz{q3168BiO^UM;i>{x@>oGUGO<q{rFAz
zCu!w8Tx3BpVw|@&@UOPJJG~kz9SNi*W1<#uZ(1tEB#UqbyvT^SM8ns7Q#YKfAkSeJ
zGR~={AYD57s(V^SFhtW|Xy~?cc<wc+>}#S{EfYsZMVPFUF|#tGEWiXsfC)T5P()bx
z6vW?;<H@E~<2APyzce-F`7zZNiC(kPccOL5!(NURM|AV@#!%hCF>O-!_KJ*{0j+re
zS)}!5Ia|1zB<M4iKQUV`(MEu)X%?pP^QjDA&@}!GqS0-FPAI*93s7V5$j*)#P{6`@
zIbYM!`UM6kh8$oH1J%Kui9);xe7+n^FCeII7-!o5(#9DlMXWCD$)2s9WpY)g3c1dG
z=sI+Z0z>tDY%hs#qTDf}3`xSf=*1RVvd|@*@7nlH-kWddsZ0ld;pknMfh3C(DwvfX
zVb>p9bBc}`2iXf<llM$6><`yD^adsubW`starMe+t`?V4=xANC5e>)P1e+Z?Es^{7
zyF57}jRv~Nv`pNu^5CiGkR8McTjesZzrW-T<A8l2G7*pqQ0=d4TXb`z4+Ld`iAw`O
z!u!kezF^d5TmzI0qqCy7KbA`1LsY4$(qOr3x54mgblxeZkau-kIR8y#F{|V|JHae=
zpBx3_B{!o|Q^Q)H7ExSWP~sRg$aEl{_)Lh;wS>ckdM5Lqj$J)HZLQLvViFT-Fqy9B
ze$k*J&Aw+^hS9pL+GIX1txjBW)C*~i9e>IZt1`23qhijllB7VOiu6-|D0ixX=&8X%
z4~Gg}23#J~rBeu?T#=ESn=wm9Iw$-S9D-0Yq*hVJJVzu`ZCMawM;?4Ho)R+&L<%x(
z%SRNxJdgo1mj@t8lYUU#47#V4PqNH+DI|Z4gIR7IFKhn5da28H#te>x!9zdX@Vx%L
z8E8u-$OcSqrkCd+FB3>chlhli{UGdQ_?q9|a~U(tiWT&6FRts_dv%w(YV*QI6F9s*
z!D0c4nY2E&XjqqsQ~ZTwA}ibGt(i_K&V7kIS`E<EHnSLca%pibk5{d*E33Ocryr#(
zFqx!cGOwX&?>UDM)NHuL=>Rl$d@AiPo@Q;0Bu#jO;eYz|O4kO+8RqGz2_XX$hFP-Z
zka!u*0M1{pri0uw1+B^?xf#h05uc+@3}HL6=jOWtD-UXs8qA_&P6lwwq4tN}!C3_!
zcjDA9ZYXJ2DK0d|fFWF?xnfz^OMZv<9GH+&P@tvFs|h5Q7OZS*G?txZ44948u{O9o
z;v;FMTs<g2;K{|87LI9SvCm{>M4>hl6@Q+Ggbx_r*R0~`+P)fobVu97i|a|E7Xo~^
ztm0A%nz;!YiGUmbp#{$y=oisHNai0cbm6y}Z-DWA{Uwn>fHHzm=<{csPaA_U<sPzD
zf%E0OA3DswNuzs5(hEZPN`G|Rc5k)56+atZ`!bsQf#*GPwa>U}I6fcsb<r0(?bIRu
zU$Ie{jBee;`y!g$vL09}7Bs)ZE?M>t>~Q(=gDu|k#`yJVQH#4}B``=i9V-$IY)jT{
zu|4I$t?@=O!gu6`%Vo*$c-ge|zO`viX`ky>$WR(3^7u8PfYT}YOF&gjP5t31xSs|S
z`F%sMKyM9^M7%|m{mve-AcO?l3Wi|sDch`C6GpCdyf3-3p+&cs=)p#N3SoHoQjvRq
zO{8LdbshV7=yya=ALnN`PKj+F(THWksPdgN;0Fkn7D4{k)LH4FBoaPN(IP83>_;QG
zULr+Z>zR2owOer95jLdO{!%h3tAoqf@+CGB3-uUbM}=XNEHV!+UK6{o*6=r%i<4q7
zN}t*_j?n>I$Dc7qvhA_2-kjMP_s3ugDz+TVf!wd|V;P>Sif9?AD7nR8K)FBO*P!}6
zmH+Z&JAD@6XEMPWA^j6X?s)q>kH&#?bA>u)MYTd_4>RBL_jN4rr0WmfZ1BQ40c69E
zQ~7ZT$(4Vg=*slX+RI=@W$|#OPNtN{r*@96yQasmSSeq7_efm!8p&pUz9nkR2pvl;
zKj>z}fvIT%i2@9=obNknSy==`WK^Cv1T($Ay_WL6lXWh!<26;PFir05ZgM@Nvz!dg
zj>RD~4&U_b<tToIR#m1dE6vw|5sO^~Y`r<qpe<dJPTLict~WDtyH9~{sH5$VJ))-e
z$$v<UG$@ilQ!@!#y=tLme$i~=B<e5v(f;mU=YGMSfnbUG$ok4qciA2Vx+0exBStBm
zzm7PMd#^>5s8edR8qdY<q{H>gYzgL<FJH=cOJ7{ynh5!P;ZmqjHm7Fl7?@xEv^nhS
z8yIQSpAD15YM;6f`Y18KN|KF{)cO;>cZ7?Gi|as9+PzU(xezsQxR^A$zq83Jn|3L1
ze$`m+<otE5TJQReKSmv9O@N*$ES1&9!)D1tEYd{G{OX21mdmTDV|wpBG`Zt<?25WZ
zECoXcb|x5fP$=>9t5r}og;hRsEk#%kl%w-h$I?;G4(m!<AI(6gm&1^WZ3Y9NTPumr
zDWt2yH8dfK*Cne87X$5N4G9ExvRMSR1HEEn<(=3SH(DXk!GpZZh(iH>!n9w;$iOWc
zO7A@EO^h!j1?0=<i!d#U?l;jEbW|$dd{u;!jJg~{1skth`6s#O%aa!>)YXz&rA-*m
zf`Le&i&4p0x1wKp6rGd|NuJ*#d4Dp+(<NJt8@958ZT2uyddkgSJ_lf#m*q98L|(eK
z3-wos{r&lN4o+<g<_FQFDS2_khvQSIh<E0sF)>3=ffm4*9oB`aE4NNWOFCxlKW*2e
zsIc9XDnY`~vk~b9UfmotqM*LT^#2~dC#AJEZ8HNA^oRdumi1+qR)B<OVX9D#C@0?`
z(N;eH6DH#RG78W=l=zknNXjc>H9PEs*mzieZByhjj#x#P-jXoq`^T^JQ2GMa{K4<C
zBVCstWk4~!-4l3lpo)=fZ(AAi!y<_f8$%cvyW4QEwhy-G<DQd*%Q4{dlOkc6aOmz_
zGEyeCH`TAU1n*nFhtVma9GoT!1YgAdLmpo#7E8ViBb>#TnHv&Nc6{ZjH40PjVA2E7
z<LIe*q_vL8O6)_U<H*ye=6DY9!!ICH8__XH6whV9zr26Eq?K?R-tl|AJT1sl8v)p|
z9kAs(G<m0#eC+q3cNXV$=Vu>Q4GhNFIfyxJ8!4&S*|7!^7&?INg6DJ+O*Hf|Un>E+
zbBx%!vL-4MJ9-*tmIKkUww^@46oFAHo=J*sHJ#|B!9r#33o3YH#|UY8Zf!6OlVD%A
zZT&%lYI0GbL8xy50oZ70Ht?k92>iY3I;}7TdFIKmNRXtgl*c@Uo_W}rtzU;FW#8UR
zm&J3c%rQQ}PdYnGyv`mleD8@%z4)eTE%KXs^I_fOm^Yu(Xq~Raq(yRq;C$-y51%vN
zxEUV!cEcfoIwxh%>`vOI)VKkZzurG*3+_7x=LnFfy6ztwpy7YfD?RH{Boo(8n9CMJ
zj-yTYPC&{=MK5g2x%qnH6be^m2@YpT+<#{g!127c6gmNj;@Tu92hCQqt##roJh|5j
zuK@G+*BF24Qt=v;qNC#S;nof-hL({s7cKEIB<H+MFHO^7)<@>ja;CB^v`hyCj6OL5
ziA*qCUftm7l6a=_3AaaXK7v;Z*5K!08bGn+fB%pTC&6L*fp!Fn3B;VvuQ?8-{&*RT
zX5n;==wagGADYJkVOZ$wVl*Y$=phY$O)kEbqkq8xbo3&=r=}BuK-VDr+CN@*JUY*T
z^FO21|9LDwGoNq&l!bKonpUA%G4(Gxuz*Y%nWqUO44eD$7JfD!?oK*{;}BYr>gBe!
zHYi4DdYo*>UK<0x-n2cVnx}JYtCi;)mM(ADY$D3f|13d>+2pg5@>3BigDyxQJ@u>o
zq2jymBa7kiAI}W?t}f6X-@ks_qC?Yagl^d$Pjmn^?xv6Kh&zvE7@8^`$$L}CWyYUP
zUfXFN8AsnufQf>Ff*}6hoUgo!3<RE3QuL1Mt+D$g?(br9CJQ;P(GUiWKf2T2YcpHv
z6wv|w3-eTVJgH6f(fz}qyA+Q=&H1f04Z%5!tl|#bWsCwpZH9Dptj~x73I?a#Y|n@M
z0K%*pBtHc~r4?dK+-5X9c_?Fp^E}pWjF9<(Nxm}y$&#l!9@@AxJMkb@2ZG_61T?-j
z{%4Avi87O&={O>&z~yl=@s&nAL*FuN_Mk|$wjnmmmZkpVpT=(lg+a{696@h*Bf!R@
z?aV9kfH>IcTvjVmPBI(K;bKBYMzMZ7L|JFQ7kv3PSzSsp%I1}!rD^C9wxiI{rOF8j
zEBNiFi*cD=(S845v@oa)u(AGO0-3;e$&AtXy>w87tAk~%-l1?9AwE0`$5{d~fU#_&
zHaIbdBO`pYUgBX~Pp^iDE(=#cC%&KVQ&f4v4*Q8$e-EtsX3#T#0bENWRDS#$E#E$0
zdUnP5Zn=9*K>}0<^h>t3)?-OV)r-nLt$&B!%_y(u^8pBXAD~wbE&_f*CTezTjXYU|
zA6gUsZDlX*m8B&c7>rrxp%=_Gz)Suznf)~Xzua;Hos??wxWFv*eKEf7?#e2E@Ml1?
z%=I)jgyu4)-<2LsV&N&jbe?M_pwvW$G@iC{fm34qD)6cYny3Tw`1TYb8)HMM{crHp
zE_yn98IM(JbLCrW1oUzSTfo<FEL)HCrAFvQKr|(cGj|sw-MAGR+^yUX?`bx1?%5Rb
z;jGxqxd(_F3_vVjX8kQ`j$ROvzYZIKylsVPEf3TpY6b*e((i6Ycc-ZTNJ5`2$bRUf
zz%Hoc!e-z~ZkU;6EJ<t>V=SnH15YQk{~|E;fWAZJRDs>GP*9xf?j56Sj;;5&SjUmx
zBVx4wRcA*b2j1c%qc|wWN9Dg7bf4KrO_gTmM*Z~y-I#mrmfIH(0gpF7U-X8X1)Of4
zW_u2N{my1bFDe9zft86Rao0?|xi;PO;lO3&=0Hm4J2cyykolKB0&E8rtF%uk>_*!-
zHA*y#mL_{y;y_Ot!%WoxrsWnN>pO!*z6dZ`WS%HQGSWfto)oi$F+}Y9C-%PiVFFcn
z+V^}>exvIW($VxNg(5k9j|&|9SZa5#a@nN?1TE&4--u};w&mwtF|Ev)ATsKRHP8mp
z3J~&h(MdqQkKEw--cEIvE7dX??r%B5h5t^7V(wD0HD03iTl1#^zE&$TR6tLofBwDQ
z%<PFgCU*RB81OSKlcTP3YoHs*i}XBc3GKpa?my%w3>`x<%BLQH4Irz|yw9tKnY=$S
zWV~&sF{rGkg5=~^w%(H4ELI9F%dVO!-aWYV;NZ0G_bNa(h}|_HR%sYPaMC?Pn<r(8
zFOd1BgAf$jYa_t3drvON!b|AVdF*PCjc&o54!#KssuHpH-9fQ0uLmg!U&j{(OKd;3
z7o_9?T-Q#rnqC4j=cpNU`teM^&*j4YVaw<o_nJqUhRqXa1~o&4!8@SX)LfviDj5*5
zyT1u`GAETiz_Pj=`OW;O+GBU7Ebi`4+kV$@qda+_{MI+|N)!<7{+m(#|Kq}I+M|!_
zvYd7uAcK)&@|U0NWksAbj9E)CeZl@<Bx$v)$ZtS`zHNXGo(2Tx&s7{C3C77j?WNaW
zC8^1&|HHdV{Amou^XEp%1Uzx@g6Cd35J&jf0hIzdso2a>(=oHL9K@C*4J~lf-;7{&
zv^)ieZI$uHTN-c&aorF2I{0Oq-S7*ow=Y6rO9jIj3o}jbM)W_z;A?x~Z~l(=>(KN`
z_}T#E+h=O}&+f!PzrjgUAP@txkj~)I1{Ir?PVrJ7B4sJ%M5zpDoI#WXO;9DH=`#kN
z|Cs@C%!}X{K!|hIes90g|Mq~JJz7;djEE66nMJ^mTwFYg3J`=>8q=$z`X}BrJ~fA_
zSVoevO*OHEhg<=&R|;OXb4t6+*ui$`_!F-Nrya~`LZ3hPTmC@J+@74vN_(?)`~M0A
z|0v!6p|&ay>torTbNt$jiQzmt(flqXl9)_KQ$&Ahp+7P)W@fb7nNq6ndrW{L!$0x)
zR6jK1_x4~ksGWG#);J*cSL`kTmCUh80ht}6P!q0pWLadUvr5XL*t#e>IVM5B8$hRh
zoC-OAM;3X<uvf+In^8MRM;C}}G<gTVrsCd6@!H>|gApi`uS8q`(78;MA54?_7A<ta
zdVfWS>3|`#(7_Px>bTXbsB1RU@FDFVVaoSY!IXZgI~F88aJqTyvvnE+=UX>I7KX#v
z<#G_9PkOk$YdKQE!yMQY`SgjV=CH|IW`5YyEstUp3Mfkv&G5{Urs%0c>(u4xz?zJP
z01=$%uLwR)_QU;dTm3YTk^<Qk@`?OW>w?Q^j9}fwok^r7?1p?x^x>pCsx~<>O!d18
z+o1wY$zYJsti*6xjTFy~y@!1=ktvOlZ(mA&5R&XiXU?w%m45D!(|VJhhydO(gCogQ
zk4ux^_aaks?aMsam7V=bcnNkCKcxFplh|A6yPWHQEX(99%%WVXi8|7ey}ECO0_(1I
zU;YT4P{c{*8)mMW3&=17*qzDW_Hr)Ao$LJSgwGjxFdnwNLcvoZL~9xt0h9Q?QFvP(
z?G>4T0Kw1UI0gadAcQdAma&57%7~!nuegjhMNts<ZV=fDb39fauFBA{o^~U`5x$b#
z8RZ3%i_4!kV?Ymwi`~3o*e!iqM}*AaiqW^!Mvz4rbNrcK$=GW@b#$^4xP}o|NoAsJ
z<0EKEnbZ1sf(2E+GpA70WDhPrP3Z7D4Oh6%Egjf2hQD~u2Jk90TfG3E%of<w2nv<z
zXa&IAa{CAA$B%iFW0UsQ@)e(*CoS9EAsbQEveo{2($t*!LwB+@-aAv{Sam~{&Y5nF
zG*p_onN^sF3+Yl++T|~7(m@?7$wnKQO#KZ2BKP|{eozUNFwoHH9R)bOJfzZkPXKd9
z0RU~5g80Z@7oG9Tqh!lfXHM5>sbHnm1*-D5!vss1*3lUG9sVGuzKLl9-A75Fl9jq!
zO)miXX*}%1Z|NfVEiDuk1M@W=Eet~~9x=I?S*t0z@K#+rxn)*gL$IbIbGQj`cI{DV
zc^f%U+K%>Q^>=>?&0xR7S<kcXeH8kY8&RM_?QKt*e3nk+s%`)RE06N?Z>1;seJ^<%
zjhaG)HuL6*a`>nb5*<#FWtA3#L-<a+LF^gw_i>{A?LCrFZJ$@_NIiA7eaf)mpWy|A
zHA(dBL=y@F00O*x{r08X)|>mwoS_xhi5@g9;#i8}RRJu+nTwS`BmhrKn`+IAK~s&}
z=nJK=#6zhacWGB$-8*q@_L+-wT|yhf0(NjBCdQl<h^&#F1>MVSl%aSD#oS>v^!N5F
z$4-Mf6)3V1l61*aXooftX5%&yf8mDOPC(Ms``VP`V!@0{)#@jiE7;xhk;!x34zZNu
zrRh_1&?%Cn(O^OrU><diJ94012ucnXpn-95RXh+2<q-eya35maV?by>&=-TrCHbui
zZ<XpTooj8dm+H(E#mRz!UKFDmJlOn>333k?GL>1MQ5}$%hHe;(KDIupNzLZ`1fGhH
ziU~V}{k0}w<p<2_2N1qJ-)ZaYmw)lZ4sx8$4w6zt2gj_gWX2sL;PSfCBEM~>eg@bA
z04$1XB~e|oA644da)5p-Rx2?8pIFfGwUsebdoiZYff{F7?ag1`1;F?^wBKL(i9`Uv
zRElJPisdX>{o~F6sJcJCX8H!C+CeJy*Z4H#;_fplv^QB6-S>T4>popM7z-$%-sEsf
zG%SK|9(fd#G0#<78Mo<pFtK<rnj!kJO!Uhgwn7#fRvOye!N>Y_?e|R=&-LADAoQks
zKUaEy>drHg$+hIQyH6#JiJkBqXAB8-fXAH*66jTpE@M9{Gz1#M9$p6nS^f+mzwa)$
z*@lN*&^C^U^aF>lm?C75NL&<`gj}5GxJDB1dSf7Dr44q@N&j{6bFnu@fxNH3AC#W{
z_4xXPG$$vgZFm^@p!Ii95H@4k$1~A&)Uh)qpcvfc?2o)`8VHm~Wh}+oIV@?4Florh
zG}bS5w5%33L*`VB##(_w*_Zve3cr23etVh)b^OTp#Rsc#>oQO#&UKM#NTt)2ek=lq
zlCV~`Gw3Q$ZY%?deTZtbS})J}nsj+SP)q{1rTB5kL$}*z2$S2pX9;Q{>1&NyUfCkC
z%x229Krct2!NSPPaV#naM&QtpP*t=|9ciL-!QYZl6N4gc_}lf)oVDUG6d+Y8co}m)
ze}Jn@7Aceqv|)ffSzqmht#jjr6ATlct+hpIaNIx6KQjGv04(j0w@e_Cu)<)kLSMp9
zm$7%4TmLp@aHi>c=<b6w1J%(RQ~)7~NX2LORJ+<g!>8ghwokQHfoa=bg?_;4e$VzC
zFe?7mVe}-Ti(Ok=x(ilQI^uJ9Ai`_V4h(=Zj?JHn5$?)nh9(Nh|M;M~8>1|TLfO?t
z*3sXOe21dfJ3~Fc;bLV76yQ&x#=R6=Sbyun=2Pbfg+>I120FM=Qr2X2|M;%--y(g8
z0{PBqwH6$5OQh(9<+r~(-C5af)L|KIZI$y+-<)m^o8Z&9eE|+-q}|0R8?gUB(0;|*
zdr6UiJD-V%?>^Fj{$7s0Gv|SwCQxVv+SO(3$4jPQ1lNt^t@r5YslSS{0L+Oq$QTYF
z8G?<&p~qyb@RC}V`wKIKa)P8MDzzWYv|FLwytL4fv{J5`P@hXSTcQ+taz!3xI6R35
z-GhgrIX$#CgYC_Q#6iJ9BF)2WWzIjb?zz|GT>mLe8!CeuJg#1{+s=7s`NDpvq>1B~
zbADD%du7u_0vYF5`V7um$!|ADHAA4yYdWc|r_6LYa5b7^4e~Jh(TeQ$N&xAu>e{o$
z@4&9K)%p6yc;Sf_ZS67B%4uJJ-OQgd&{d;gVb?%{R-lrR@bmUwt9V%F-2C>&8dLr)
zuzjmPb~3Qh#j1sizfa@_a8<e+Uc}fkS)Gffa(ckRJX9D0WqE~fC#?UOa8u@&r5a|@
zlHJILY3m6*SvVZzQv9!D-zN3xP*RahUBs#`b}9a*Ud*!cVKe}o+iCYjWi3)e;ILU1
z1A1cb2jV^e*EP|~&Ir$UrZF2`4&EWZ;pLqI802j}Jv!-*V}g1%H0Xl`CaT+e5b->E
zmgK8_X05CZlqYNRQEFi*=bkROQ~g$3fY7H)H$Io%zFb<p^$XV;SsOv3Ec>h~c70n%
zy0PkT-*5}pP*wVh)*rLwutoasxI)HAR3Ez4Ha^g*-+|3yZ}-4NEwqpf8;XXD9{^OL
zKMXvEj~cm&O;(yy{<#bmlVO29_JbVv7hN0aoSt+Ebh_Re4p^BY1FA8o{sDY!f2|>g
zZ0Dn}Idw(x%6^Vvh!y>IM6P7i>p&Wf@NMi^1M5<6F{ZOtZNSlOvqR}^>vfn{Z5->G
z0!&m>0N>Z=N3;sMtq#rQz~}Nrczsb!n}#4MF5T0$%kx<-O1kK8Z3l+3x^OVzyUN3_
zLYC-CJ7-}(QNi6zzi**XJ+%)of$Rjm07P0JK%*ZUEdFMWq!~H}^z?Xt_oWbxCnDyX
z@cJ5lib=BuTmZni>6G7%N5<!4_!wllRF#FSJ66?DM)p@<lPt2u#z4HWW|R{rE>J{A
zQR+i3df^|wl@oZ+H<$&GX8dg9YbHfVm62}or<WKEJH9$kx}wLvRYlqLpG*Yp#5o7w
ztBG=>0+q82ytPl0FQwcvjW4o;B4yhG-pn5#75JX=FrQ#Oi-~<dz~`s5?w{RAi1`Rk
zPELA=4Knk9vrbO-VyIzL@TtVWOrBIV`<Is$)<R3EH04)HckosO%TfIMXITTWT5^jU
zX5pV+fN&Om;m*8(w-vu?V{w<4W4y0NpT_68Khs7P!T|c1&@^}$I{511>SwTqidOs7
z^h+Pc^p(P9+OhT#!s4^|j^aL3oG(@gid~NqEI`;g@Z~7-f{LS#M{vM8Xdgqbtv>1#
z)>4E>v%aHvNB7)VqOS~6q={FrcSE94EkFeB;7%2)KHq?|dt759%Om>++)jR-OET_&
z&7g?EQ36ZC&8^8eQiB0%K(`9jCG|M@HLlM&leg)P%QU5RTP>Qap4w~}i6`KEZGB7H
zY{#mc2Y6`Cx{#9n%{FJ;Z9hn|wrX+)=q8H7$cH${T6Xa&2*l@XeFZQEJqb_h=S|Wf
z*ftgO$cd~gg~17Ipxp6!mWPyv>m@_Y<qYN*B&bO11c~0N0wqXQWUnnk!!y>|KZsYa
zSR;B|uv5GnmM#N&%5>$m-=~#ttRbc@c@VTZN(~@ieR^}MMX1f~hy*k{=>1n}z)^wR
zqTq+UgbG}d9kt%*`-))s>z-I*6ophQ%e1uRhhlkZ9H+o?u4eV`q*gO(ZJmkBVVeg_
zgqFQ|^v6wF{q-%iBZ{D)pbr_ki&ev#ra+6rK>|>pzF9e%x|--@F*d})piT0YEha6u
zY(<|wvI8($QWHQMsD8`BmoSD2-IzZe2(`9wBFl1N^o@<CQ&)T(3`{K4?2wG2U=l3$
zuK$dK2g>chHPu4t_ML%aohe7PK8^1wQ><37iFGx7`3>5ftN$e&2&}crpyTT8$!oEi
z;i1N49<WI!_7~6mTIp&i(`T4J_PZRf%woSVk$QxS4>WsfDneUY@?ZMi{R2#<`bAJk
zNTF2LNxKds=wQB90-V#2{HxZ*1=?!9K#lo7ca9_zs~J-H)o^_q8(|NZK$3|>Oy36*
z8HrsE7l3;i+=fO*IXOsk7ywR8Qm3u@{T2P8G2oj(IF4UyS&!O-2h;KVHqfF$M=l=P
z4}j@7jI0j-lX5EVHZ<AU;w)K}^@SaE<I+;$gaQD{W1R`ImP3PX0qtf>#X59tk5U5T
zw9dGrM6`JnK#=%f9Pzr}dz7`vs$pnwC`d_u9}5HLc;K^wS>47}uM_)ysf{$B+h5M#
z+`}p=4Y{Y}Jku%;4&Z91s@rd;d>^jnL=ycm{@pazJte|sQx^k(UHpZ0MdLFw-BHR9
zO6hS%TaUEJfBff8kuDSk^bfN!L#iZx?3fr`-jz}fki}vJwQPo@R>ITWGSu<$`KViA
zI?!IIe=_gJQG{d{2w=TzBdZ)euZ#=0OJ@sUS(VdZGV!L%3laMucu5~qkX9F;cszsj
zlvN}GZ?s?UovU0Fknf%wmTo@H6PBI!P}3p24?uEiBnhkxjH9<1-t^tkD#FE3RUI#g
z;=%^P$PO1b4U>&9OTNOh1RIwGNfD6CS$22hB-JBeTtGn<>rHR{`A;QYgj4{KUj=LP
z^|An7c5T!_QFLuyJUPY@JNIp>jRKIga)FkRGC)@Xq>*ouqx~${D=RBOiromS3;u;b
zmB<hw88r&HCx?oOnXAUk;R}h5iGl3wP}SAdt(|-e#5wlR({6BN@*v;oIx&JnL5Z!|
z4~{1-e{0iw`J%YzBXF_hMG&I>b}47uA{)#UZBP3U+d-bw+F%qXIvGG1>VeAK{Z8<{
zUF0Ph@tP>SRa)_ik`m}wlR0%cX$j?X^>5>$L*O|ZuC?ylnVV*uYhZ9OcYd>_Rd3|{
zea7T=<o?P3yIJ&htI9cFAcuaK7u2q{{1*%6fVaybUIf~|?l{kHyr0N+zVZ>0UeG`C
zo}3oH$k1jxf28x^Z5x^rXuwy&z&3Rc3av9*2kW_N?^IHKnYYbt3D7U|1d18*t#kre
z#0EI6)|@o#455@RLTHXB1V1_GeDU&Zj6PH={OMQ9tpcQUx((WzKIP@*0_rm?R7Dtl
z`<wp2_28@twcFaeJCt<6)HBe`B{moxJo;D|F|O{Hgh{O_&5eHk{yqK)=tO>wCbyi|
zoucM=D(Z28$Cg?nTB%TlD)xx)G0BLw@GUJ~pm$WJt!NzycfZmRlz2#_fIlB{pB7u}
zQbsrI7j7S=0fLo70lb-+?;qPIOoOYXygjyYO&A3r3TgZP@+7g0?925@o~H7AzXt2j
zF$1bFXt#9ypvjBgzsQ4r7zv%+Ae*6STG>>ZZOVG^I%l*EtPH|-J0K^?SQb`3C#QOQ
z?xo>49x86!oH$!_1ai}XKo6ICS@_lnC3g&uA#;pC8(3`Lz#)Ipzns`C=|xiCzVwTa
zZz3%4U#i!?JhB<Yepdh;jBPtw#?&L1MAz?M$3aC*{Bj<u#;`B*Q9l2?6;@q*^xn0S
z$w_jK&ncSB;38vhwDOK4CJqF0bLG)4S#Y&GKDMXRsCp4g5fS^AM@kc<SvChXTS@WF
zJdH!m-TA;pG(A;<DsH6d2z3o`80r#9h4m93vbwFx0I75iM&a<5#8<hEubdB0AF~rV
z;5#R`cm+<mus@AJj8$kL*&Q1k?6Fu2$ax-_`1{tmmHZO@`ExFY9rVxo2xpCR%?@V+
zl4|&(_ePhoYxq#nU(WOHo7Ct)DLt9EID}YgWvG$Ub04n3`BBr&YDm-Rc>d=y@Gc5I
zMU#eK<l>X{PL$BSk%S_>$a;MQ1-asY;)baSr1^Z(^i1PbwOR%^DkUrvpi(g1L@C~b
zSPn2TYI}=RJWMF6Nh<bHPz2v}DJq;cDguBN;V)Q^taa9MsRWoQYQ+!rKl;;Ji;2%K
z-V!dJi>`m8f4$<o!Qwb~)d;xxbLUs1_x0wPXeh<UsO|yG2xLiN;huF}JDh2&_rX7Q
zpbxm&%Ae(km-deKA1owk!0SVIumyx}4w9pRaJ$=kuM;yR;|qzT66gpo*nvHh*mgSC
z@H<v6RY0)TWb2%ulq)lwBJ4|H<d;mOd&S@SDh3+xZM9NepIR3z$HP;kE}p;3%q__!
zCq_NyKn~><4?gO>*53}fD|>v})-GpOZnU6--;n4yakxz496^{*+~e=Q>9zY+gA7o+
zXyE+_Voa98OVT1IS+Zqk*S1sJH~z*88j0SYVs-ve9U+P|O6*0&6EM|KTN38wBGmiQ
zFepYOx$cmjTMpr~1#<aMofrT|PzU;L@4ds`EMc$}V8#qXbpzeJg#tC~@SL1f#GVY?
zm)q7eUVTj?As`w6+BgU;5Z2S0BgsOicJE**<@QWmMu<)?n7e>OPB(O^0w!^3{|mwq
z83gi1bYhIxj3j~A4FGQ)cuXqL{AF)%-@fdQOr%w_uSh7^5P<Y1C>(FP`64|Nc-sb@
zRs&qCwA@`loEA{&v{|kc$xvvSX*lQGKbW9my<_LmoD3D+W{<AJF$-K(YAUxRC*LvJ
z4k9mxj>ld1<ME;(Vi)!&dB9(dBA4;g)t2cwP&qk%x@mRy<4cIlp90WGsQ9|J2vf5n
z0){3Jar0_7d*{hr@kEld0b|#%JQWL{4n_|hpvv&=xknP8+4NJ-_o?P`iy<a}n)K0z
z$Jb1&bDmimUpNbWtEv2_{|%y8BuPB@{yl*Xf>&e|o;h~ulf4&l>SEe4=MHt#Cu2zX
z`0Jqs?*AktAj$Yj$pi1Hh+?yxj&#$C_K{hp6-f4h1D&2;_H-j`Uo?=90NlzL-FB7*
zmL@(}?9L>b(|wk}5=uKuk$SYmo(wtNQCKnrGeO$*UZI?QN)o8(V!s)Zl;5?NEvu;%
zT!C<Q1>}&J8o6_BR`oozg7vp;VE!L_Zy6PL_jC(JNJ5ifjYDvU0KtO0H|``zg1c+b
z(73z12Z!Lnf<uD4YY6TT9Om#m@Bhww@2pwt&U~Huloe?DC+D19Rl9aowK9T~a6k!V
zZtq|F6JbFgqEWT_1yb)rC!4k`qa|saf_KxEkH~+Hi|n}PDOhOFUdq@rfCZ1jpcl*u
zU>7?Rx4v&%4QOFJFzqe{S-PH9wSb|w7ODc{HC8E$HjcyY^UcuEjO5$U2RV0JT@47W
z|50;+U4WO?0vv?EwGmd7#J3z(6#Uttc!!v%8Pj@Q;?5fM<B2T1n0_ZI=lnVVsSc(S
zD0?TR9!JrvEar>)roni|&326ZZV2~QqOS*XA;;+kH?!b@iG7-7uiB>ikWux?BfHwf
zV3Co(x-guO2)6o%`-a_kF({sze+b?UHcBJY1Py0g_iW#2I$p%p)m2rs!SO!YQc8BG
z4y*hZe_J((k^n-p8&^jvarQJg#@tZ5nyHWFNO7gxrDy+sjW0B}tLamWIs{i6euIQ5
zxbPi$`Olxf;uc1CEXW`R!p35ijwV4*1o{|X-fu!`<tp`@1%@XWQn#3YGH#?@AAA<;
z)^Q5<eM?Ef{da#W)IQ{K$OWsBa>0-bEXt{1kyDMP530+EfS54o7#+KWZbS)U_~-CD
z3674DZtNwTa>lfm$qxI(UtguZmblYwYJCQf0K?-_MnPDZMahLqlD~86g9aQSNd4+|
z|B1^+f2f<fa3p0Nj%c>8budcgsGdFLW=w&U|G|&1&~eZ!s6UZwBTeXSXA+6X&?As&
zO1NBb`$VptTBK5>Sn2SZ<@2UMS3}F11Z0#$_hb*GtXnF_HhMwkdj#YP_UfC9<G`9m
zrt218XW2Xx=oIhPok%>JZvFf9bQTbXVrg;{N7{Ml-~Ehz7hR}&5r-dx*aOtkBjVtw
zhZ3<r88hk^uCwMQKb%#yxS|*Q&f44B@5K>9@FHSA!;BVs`bNv!ub7XyLX$H!ZJg6-
z^0B`0XOS!gsRt=DtC#CfH@JZeskCG$iH>@ylC){Xl3FKE@PVZ?4G03WX;|7l);Caz
zsW}4UvNnQjmCSZOK8+wJ>$_3EdnoLAX)B@d*Mg`X3$y5-l#20xILBVj<uE#-)t0nY
z=Y#eicOH3-&R2i;!$JA?k>PduTf^;FY+p4orpmPcWe<Ryd0Uq9L7}~`dY+3~qy7B4
zok^a|bCb~jtBLtd6Ai15C|!lkDh6K^n@k<pv_0?bslMKXawvZaNRw_qIVq$$4D)G{
zldXOrMLrp+Sp_}k3X#-YTvdvW%vNht(`D$3tS7Zvt{ectpe*nJ|K~cI8+Qs)X1s-~
z(oP_gQTV2T0xVh9{b9|6@Zn$bB-cX_koTeRyUPmwKB6t&$UH0%1(TWm%VFIuHe-0W
zItE<apY2S3>O3U<di9?DrqamAL11WGl|EENTwcBg6Edn5&uw_29Lt#erCZy6d1FOh
zv0Cs0nXmNJ-dhV6WrJTy;_(&G+^Ed#+ok@yzhrNp$^WI!>U>L0voLT!j7upwxGV1Z
zuHH`_RsZk0PdS?!T}fq&l{&4d@TKh7e}qr}yHzu$#BG!~#)4a!qLcGF^{%JSpHIEc
znUZOljZkTf2a8|tVMY&}_%3>m!`086Me4<&pg$F<b9$2o=(dsk&fHt8!7fL*LCNK~
zvq||)D-j7$Jss(22VDGEQ1xTJ&Cp%Gc(XbG4yyXAORBudsF=QX&$cbO0ad^;9KVJS
z9J-Y$$>Hk{L9cA{yzJutM}3RN<EuQoU(Sn9PqWH@xg{Sx2%9RIRDQe&G4c$1UTOrx
z$qPO{m=xl4KH~Sktwz5yw9`M{RQtMM;r~zYK`D8ii3mYzI6`ZUSPJCop(0~>gU<&;
z5w}p8HAZ<Lkk>?qze3rJb`db?v=Ba4TLzJd1?z#vM`#=fA>W*b1U5k<kTr#oHD!?a
zCIY2x=fv(&sU=@ZOOY0nlyX(G=FWF*K+TNLcfTyF8V$bDajz+W@1g8a6{8zBiXIp;
z!3)6tfWnb;1k?RzA6(85jXv@p{@j_<ocjcFmSFd?(so|*yp)X6Ch@|4lRkl7lPnhi
z%M)Kmx}?~`yIFHh<#$E}S<Eh9ML-L)YyiQy_;6FLIQ)U<vP#mfyjXSM<ebZKZqRjc
z`E}!^0TljRZH_7nfKa;PnVy-+^7QfNbUdaY5|C>ooE{CPl!^?Lb%$fs-mSqOG*4{(
z*tPG>42F_JvCnc8n-sEV0wRDr>Pve>r<H^rpd^rd4;u<tOa;mYveQ3PANesbGm=Ar
zKRblb*OR!|{t$)s4~E?yZ63Yc<w6S_BrKBDTv4IJ0=V?@p5?R6#y;yQ(djjHBuiNS
zgH3%gCBvv;OU~d^5z|PnQb^Y+K`q&e)8`CKI~o>In3|6Ef4KnNkYGiM-fpVB?9SNO
z*wZ>}dcnOG6VxS(nF`N6d|zJ#f`GvE3^P+`uCbQ*K|0jn6fJT05slESpa0BC_1fQB
zwRke20sOf3FN=<OorrqUT0KO+hRY=wRE~!NG==1uZM#u;T`q*3mqW)fC?$zpqKK}0
z9G~WjcL~sk`c8|^b31Ru$)(S``GXMuzxx@Hy%bc@B!R6>x5s}XJyq%A>fQISfjEv5
zX_Z=#OnDx3hv?4A?kP}$pCYQGYAeGXUb2I-id;mj)Nd*Gd4-^6eh^uDE6f;P9g<sG
z%I@wlZ!5s5^>2xX<TXjy(!1BB97MW(k*fcM2SCaW32&qPYSsK)<7x-#Awt2R4vkxM
z9gQ{JJXDo<E#QP{JeVpRk?s*08|$0xcZ?ShO!R>G6t!*0X}`l7*3w&qc5YO8w3>_}
z1}*QV7T^0z*xp)R1QC$d2Q2UJt5w(6DO6)R&yHdj2!>$OnS@}{V=^efYy(zN+F}Gr
z+M?0w&bd1puOoz5cxKXOR+5+)W^&H0os9RnScHryOp~%fNXyyN)wy=op<(dm#;BTO
z3*Cke>F!02!kzg}1|v{JI9mm>3kA%De;L}rF=?^Ss-|>mUn|GHwOvUfrb@fi)M>+)
zmW8k|kO;$n#`eFg6qmG!@i_M+DO+&yy~w2wHtjMe12v`Zap$WHBE@~O$(JlLvkH8m
zxpHg_j6(V?xFIX#;yF5L_%0XAE#o^?8|5VS@o#8!I;E4zI6iMXoNmpbh7nA3Sz22=
z_9hmpHA^b=nrk}X{|@3SCZ-~HJoKgaT!_Rg_B!<0)6_{erE1#J0UQ(2=w=0{Rw5eG
zdArl$_A<hhR*-}{aKv2jm3DOXeN*q5gjUo4YGtDG&tzN#?ZamY6*-*IRc6`7*d+1$
z#DG&3*o_R++x?2VvKe`CE-VwK`EB)W?LH?{s{-<$he|3~8Jz2_<D7;|+@SG1C;dAr
z?8S|JUAZN{!-f^=e?L@+ff*t_ocj6YaKkT&!=DLb(`zqU<a5~t9nDo^?$nyaWi95b
zk;wy4+a?)O#!2<_Kb%ns)z;efNp^KL&s-K8L?QNP#JcD9%9so&frsLsTy|r2si%al
z+}ZYi=p#xmO<mqR`jZN7XM@&mQwmO%KI2ELs=2yMZvBe?`v_vLeil-qTIqyl-SE4x
z)OC9xEMj(cbnGk(BVRthpfnm-Vra%NIXUn-q98%UWBpFzEQczSSc@znr*Z#O5qN6$
zA|+T$S9X-Ugu4~S>!iH(+dkg*Zlu2rX;{{K125`bP8s=M%kRJFrPuH&q!rpm=vsvu
z;6ltmg#x1vXGC(1*;+)HX2toE*KoNtQ;=}uU&4yz0<qE7uB9`FO<8z1GP1k5i<Y*Y
zVqU7_0h$Da<#z7;*z6UNRfypDFPGnD%YjX@ghw~RYy}-jUsU9w<A>$Miqy`!?wU1}
zWlb)jWp3&ujQm7Ps@6VKm%%wd|IARKjmiP3Uz5gonIgg%wS!=clRY{iA-!Sxt);Pn
zgLC(nsNzb?1qD&@u1xcTu4AOhPk@<g%8V^mN3uti6>=^YLOk^N`)7VyKnfrIs_2r<
z!mUB+12tR4D$aj>m|Li_9&quG_wLRgxw{kTZT}8R<aNY9UOy4tK}}gbUYCaY5qs%`
z*6z(xC$kiwq@R|nT0>(;9qLaD@^yk@Nep+pV!j(2>n~T4Ke1Ij8udrivqvZcP7(On
zZ({7weX-(C?(2U>|8O#qbwm!#AiLdK=}j~55Z!_zT%NjL31^)VtODHyBI>Jy%^dQl
zUbj-bXf;Buy7VKh&U_Ag3bL*dku}7?sG*lk<kRI_Ttn0B+=DZX+r%Nz1IYGA&sQxv
ztgmZkRYi7QW&HQWqxjyidR}8P{<X5Q2RL_K0R#MzcWJctMq2d_grHW7=6y*fw@SZ8
zu?~ggciYc~0VPQ>@&T;m{2@595E$`qy$;`kp3Z#45t}~KkZ2$6v4T%n(ktDF$IAqh
z2tiRKq(ZASDU_()s#gBHgLoBZca(2hoL(^>P2Q#eg4S6l&@o4kJGC?oc~IL0k%NO;
zg=Qy66-YBKll3oh&5=)c-lHOa7>ri0c&_}Qm+qPwz?<_?TN&A-*5L49Wm!M`VO+)E
z=Iz+?wrWG(gs+0u|8^8rcJKTDct$ZS2vmD-rWkd5yfk2Mu9jjJsj(}d^sURL&F-}`
zDt3QHF$xyzWDyR8g`7+l3&_7zIN2s}!49#Renb<?OtAk<K)RMSwJEwfEg59K_;oI;
z^!~)k^(OI=>*=rA+?*21Bv)$F^>%bTd(YCaa@WBzmQ`{Ij%b8V6+bew>x|%9KH|{r
z$Lx<=iY~Wwn4sjxKar)*bvxtu<)j7*ERy@NqAYxTtL&;~TMV9^<DGWRN+MAUwllPh
zUxT#<G-;u#;HHU(=K7E%XT6LiVHKQ^ii#x}d$P6so1||rgqq3rJ~+bE&x9A?ZrUS7
z_?v!hCaA$QS!0Dd1-6`<o^Eh_@q>WUF?5>D?WcJ?&Nqpm$CCo<d)mzp+lzyR>-#5>
zG5&gj(>Eh!Hpj3L&xZqo8?<G!{>z2zx1+DEY-AI(gqoeQ*HzDOD_#lyM)pS5BbMZ)
z{Zt4-kmtpV>5e{Tov9r-0NfUmO2wo4x_7V3KJP`=6~;96tHp!&#`H;VVaOX$4m77&
z$p;^3n5wYy9!l-h{#xu$pI(z7JoC#L=n?4qWnl<#<@gDePWaVW;lbhIcP6TusylYw
zgKa)gP1O*k1Ae_F#uB!^DFz>%)-IM8hkUz2OD=sHOH!3pvkeD-+`jSKAmXvd_FCmV
zy~V7joQ@GaFj>(!6>l0?boV;MT&_qIT!|yoQNg<($wPRb*qBa1L-yoCKj6j94WUAT
z87}_#E0JY;&D54nI6QrXM*Gdrc89T6ZdjzL%$oihIuUL_ukleuWki57wkD@>9ni;U
z5S2#&Bljjeyw<6A_jmA@Lo{v6SV4%Alg=g=2c_iDi0UK<ERw}D|4%+b5^S*3-8DM1
z@T6+xf{VjtJq%vn%Ew*zsyp6`g^YVvE&F63QgFN+-H43V(%?btBhq`TF|UIco;Y<B
z#KL1#E94z6*Q+ur<e7!v|DceG)g$71+i1jtdDe?Ehami#5GN$(&Y5}j!YJ^*?vD@D
z!1a_){ZRPM{e2{<59^Z*zvan2>hIH7gMvUVbJdV_o*GNyNM>OR!9VHJz+}=PlWo3r
zKSe}%(fT>VR|ln8GIE-*OjbbthHV`Zj2YN{lHjz-PKEl-IH)Uo>u%bS<f&Y$W7|B$
zTF2A4^aUW0ey?V)*;=_H@&?a!RK;PWR?V(%-ze0tS4tQtyb-qQ$r`u8F*y8|@SlS%
zCOPCMr=NHJ==Syy-|EFPGCIcRc&}3xX*K!TdX+H~(goUkuGN0hYv@00kEf&GKYtFz
z9mhpMaq44fb;t52)t_9Bx~IQ<X8z{k@`Ag&dnA+3nvoD;%=-5;d`BzB#F^SuM|Rpf
z{4_$_okOcoht*TA-vcR3vdyL1IY>7*?qji&AD~-+dz-iI^lg}_G#w#_G$-Oud48eJ
z4@D8JIYxK++m6B~z79g(NkRc|M6A`mTE8i~#SJc6YV7FV9~kGzAdCw1Bn)ULZd~3*
z&8l#&6bka5Y_)&=uyqyrBp#QTokEH%(|wjV0}Ya{G0VM2)(Nt9yYYab(Res?U+Ot|
zKArzjtaqFv4oM*HmbLZ*cI(H&0^S5YPJ5tt7?3CV4K`!<{cC@Z;n57%*d-v#*8KV`
z;4TCmFWn{h_D4hWaQ4y*lbsP|;H}BXLX@a!uoFlezZa%`I3p8cW)^I`OV_ws(Er_s
z7ZT^?`swy#(%Xvbm(}Ljp<z6HHpfjb|H!)*5nfPL`-0N`4;N#cT1i;J$7>7Av6lnY
zy*%a}qz+$goN*A+gWyAdX;jkVh5o%zG!BqI^XiyNF_clyoQw-vmHV4YmG!ZmnPGK|
z+wKj2J+tWSqD%)(h3BgkP2KsfMA$6YHDmS?#%N%XuRnajg(P2W;Er1;KdWS}ys#fc
zDZy<eT5ZAsOG+f4FDD1EaHUF^2})7n(Mm&)lHU78YbNK2V)*fGWAl%L6h1WcOCwl^
zy3do53hXI_yfaLU4e=A}UzrNcyQTx#4Gu@PNA<j{n6@K=e~VB8ArTTkj!ZE3_d`qK
zULW2lvF(>ZBx+{x*r%KtkU>h7Jl=+T-YR1U*zv<entC4296Kj@xqz4eWmxG82%QQE
zkJ_7EAKi~79qZ<veKhXuMbG%ZeuRSZC06gq+Has+R)_@3kOl7b_1oCuk4P)!<P|Rc
zbT`cw#FV{ksl1TMoBwD5`s2QQ*@m*Y^xCjljbd6^^<}(r-Ww$<*J-KN_)%-M<OgW?
zOtrJ0E~mYys>P~3`3zo^Mfae73zub+^)-)cXRgzh6ui@9xLX^~cIkXz-{!11U`@3G
zc~HwvtZNj#H@@pT4rj<CdkV=rQ=&6E6z6-yo}KH;3dd@p!SCU{=l2J%f`bA@ED)As
zw+3jU*nul?IkE=Kcv3Tc01<`c=|Ke6(@1&%kQq(wV?RELO7yhP%sfv2Tt#9}rEanC
z`SA(PzU)UAx>#|D((`6PQ+fAhCj_LplXm<21Q+)W2$DL@k1d;@6)jT@s&SdLOM`+3
z{24I$s?Ny<MMcHHkPx4$s;bka<O#Z!J`ArA1d~6zpD#Ao_La1yC{1oS^dEY&W6~%*
zVr|Lr86KYc`k^pYYHu_KAqnBfPZmXZ$(v8u7L1gVcovmnPE^$D2zDVBF+#web~eJV
z9Ljy3I|h@BJg1(Xn<J%TdG0+VQenIEes{)e!a)4PPe}+Y!{oso{8)ku*Lr48@`fT6
z8q2S-^h-%4F7ww^6FN3_@F3yr>U1Bg$x<!lU<OaffTnY%XrB^|c6J4@Lygt~GU+VH
z^q!jjEw@+HF`06Nv&;Qn1$ni*Gj51URR-cUKi6f=Qqn2DE+sT5R@rg#?<KoWrGIWU
z5}H|!GEw3fr;z*5Ckl*IP<^7y1#z%&ce|4fQ=<Ee`p6f|HvI;_q8>D<J4u8|0ZzVY
zjc3+0N3~@e_P>1FiDqmrjtG++s^d}#$W7>pKA0g>(s<;oyyuNj$vi0S+0v{)%Cpr+
zz{-58pbFogKkxW!sd?Cy7*&6;7QrMy><2paiHsRBRP5HpZH|=Ehri}BP-Ai2p6p0=
zBw#*i+&cW*;<rw(4xUPxT7LQR#Q3oP!0(&kFR8H=r@eVyrN&b-A-(gueez@7ne&K9
z0c#l+>{iQOUwvb(O1*H$drlCAr2S#mJ>nEtVgE!B!IHDEoXm3+U&n#%-`*YH*wL4R
zq%9d)-24=OgWkK9NK2~n`lG4^e9(_R`#Ar--H{0$F#VpK(cuU|rQgWOIiVC8zwhm)
zySOtqcaUsC>h8`G!UPHf$gp0n9(+9S*yv7i)Tb=M@*WD47?q49dT_B6RaD_k2Up9}
zBORM_jW4WRmU;@6sfP=UovSUUhy?DMrfJ0f2*(Jt;sB9RxR=v?SeDQAnoqZ^a%?8f
zPzE_K+3RqW@ZNYno+nSA4wp!Y1hyKVy`e4sd~{^{RjHqN$I~e`PToAIe9^8m(X^q`
z_)J89?0LkH9}%HWmQfy}R{bAeYoqnyF6<eP?(bxr?H#+Mfx(C(r7Qb1DjX>@J1pwY
zo<n|Wb)yI^R?=Lr-#Z0iIJVT|hPe@tDXjB2+q1Xnt*75jyl_6B`LWn`v$X!U4!8dA
z<&Po>xLtkyn&ce%A?nL+^@7?phadNzJfg#=6hbTXe>*70Zw}gn!-C*3B1FG?mFM&}
znz`s$N+7Pk@1c*qNdv>M%;B%2nB<MLOCd<EwlB+d(gS>|E+rgte00botQm_FGHEqi
zMN4Z{!wMGWJwx7pl9M;+{Y}M?mpHHcPR>F=KYVO7+i>xh!_#+{EHG)2->-)}tb3&f
ztECXX(g_(4wSFek$WwY>vQ&XrV>Z<WFiRm<QjwFJJ6m+*NnmIwo8~Z;Oe);-_65u_
zm?<V8;Ds;l=cVsK#5nyOG1T(8Vdzk~fD<|ew19~8&e5)y%=%X<(_EZ=W*J`#gk(Rh
zL3cd4*RH3DZoB_<%|7!SeU4~rEBK2)-9$$Kll-dXN02>Z;*s>bT`j9y5D0O<#T?Q}
z_9FGt(t49DM`tzB*nvm!wcUVYUK7V#VTm&q{|{0^s`W*46LuI+Ye3Gn%ntv(*he|W
z?;+AD=|3hXZ#Mj8_hk-oM;D7ICEuFwsXkw$;}D^ez?pZs#LSVmXuFNv7;VU+h9F%T
z60F`1v=&CxryC3?LK==aA{_}wmGnCHZA1h<hR{zfH90e`WYsOK-0UCtmRcSswC6j^
zSmanLa()d}m5xM%FGTHBo}YJI7<M96;}45MNh*zQ5>|eVm<cKeo->^?aZoiMy>H^R
zt_wkQghVk2RgU~=l&IxIz@h`Y{X?B;NV{K%-W{qvppL>9?uot>7<(eTc(GRSOyJX2
zw4agK=%x=S0<6oZ3<tvyG7SoqMz1pbT5o(KBbN=J6wsxXjgT1X2+$)n!k|u`X>6tQ
z`n7B5&lhfuF4d+`_=$Sz5m_%v%N+{MdrqXqb3%ph8kk1zcqA!N@hmpnsZA!h6kk_W
zIHtK~mb=^E2I74EW4->W?#9Wbp5cjHl7&Kb#ASx>PxFSG@p)V!epV5bBfW85!yOTs
zD4uOEoR6vV{@!^z;EQB(U8ix|4%0LJOO00UKi)?NK3T$`ILW=Z|LvNHqMoB_D6@F{
zESaaJVG62r>fFhFQ)7dQ9rl5C?^WI5t_)k%ff+sp@;YE(9pPC;2v`hiuXM9?N1ev~
zMR--QgjK3FY*TsMx-XR8NH2e$bKtDxnFn(%qR1uWOgS0>qoIG=t2^CfnzL&JoI}x`
zE|cMYu^F4Gp2rRLou7_-1)Gp6JCYfQZ0y5g#C=%|Lt_RcrSU){lpUo2e?4zO`VQt&
z!37<<3yDXvJFF0jN*}ag`gB()eEfk?0BC*rt9-dS-F(Co%zbsbirWUev4_ZXItJQ;
z%;5%~CVUVY{`CkCTTT#wN7!CECyz#ij(q-V@T*Q9n)oY=(27GEhy5DK=XjP>>%d~K
zMzhOfmz-;dqP)LeJ}Xu@O`OK#qjqjfmB-N=3idH!t;gfPE#q+peoR~;1{$ylgQ=~d
zbBl|ce-#Tvg_wIK=O!5*D*Hp8?OH-(D;{TMWnDPV==G=Q&#r3oNkw)&$<Y%7RKuZu
z&g#+f5F+O0?kk?2`vJ>vq#zLo8{YZjWH0={ChU~-WT*jmqc2yN+DuH5d*I}=pUa;`
zY4GpP^sg{WlxQDT{bF+9mwsnvHyQyM1)oj}Qb#1S`C+fXC1dWfxe^C(`}ptATBIXM
zW9av_T)vFfgsdGc6!dD-ywG`uKrUS-GwPZtwI|z19J7Rfvc4=Cc{$xuY#<AJ$T3%V
z^jN*RC}FyrX_h8rF)E6Ch@*|@;{VrhdMrz=Y}xPT@*9ayO4VsN2{WC;{R->Y%W)04
z2YCQysS2WUU4);+-_UydJ0kIklt3!Jot%XVY|h$swn@1;ixE7LW4FlK*Rh$^wy*=0
zBFSNR26o#5-_z|$^GD3z?C$38o&MU`*odyvsjjT9!n6H&(J^A&uh&ogKlL30<Eg0l
zW7d*rbBvM(ujRVs@1e(TpzB1(o1n=zj=*&4H}jsbvn1387}IYUBpp~H2Dp*(7?hjc
z5l;NB)6xOfjaP@PCh-YQ!e~1x^AfRO(+wGW0top&NOo4&yMJZ{!v7r|iL0_jWw;Cv
z$6|mM2=%f{Kx2dRr(B$zxzqZj5WTSB<E8kOIz#F4EWPfBAc3^pa>O*!IGf=c@-#}i
zP1m0VyrYvk`F_b!7BN7?*oM1e1%xd5XZI(R*$gDPn}r+<A~w}SeU3jGNB$?KqbvyF
zL8&A3hI+|J$J?4Dxtgr2J|A#Sa%O$~nc*G7!``p6N-NIsI=Dh>d@3O-zE-7M{MJko
zBbI3`NL@%5_i}>x@W_p{^;6h7=!A<Mc~|9{sn%%Ln>zLs#0Q8-uew_%Br2@Bv9&{=
zJZLn=29fg`RH8^ka-8=UL%?VO-SOTm*tIVECE!`tVWJfJ#E0`J@=pkdvp%Cecc|O{
zJP-Eq$5Ozu)?Z3<77g4kxqT_?_Xu+zNQ-Q!ehRnhS)LqytCC`Qt7!n9I*s5t1mB(Q
z(x1f=DOPOFy=%njTxlM;c7IDAe9wlT<n2(rqRU@i1TQO|5b-luwnbr6MO9VT`%08t
zQKI>#TTv*fxd4C$^7_+bEzCDD#GZ>0=*uUsumou6gCd)K_`tT#(!BEy4F7hACjxx%
z4RP1s;Dkb*1a~nv_S4a)%5<1_8ofuKCP%ZJQVGfK_%&fk3|drP<a!)$*}*Q}b2EWZ
z>FDr_hE@`uKN80La$+C$k?oJ9%C=sefyd8y8kg56aOd9>=7*dkJoshciCopo4yR32
zZtU}$;Ozf!H6)b5>)orwu9;#z#JSolot4hlxT&qDX!_Jv!V|D(hYPvkCi6~Z;Nyu8
z)DF!vn48{A+~>sMKW?eBpXGku{7Oo4S-FSKc`b%*d3pJ;HZpy3-#J*vDrp-Bn-8A-
z9bq7q4;745N!|4GscW{*k}sEE-r33dhl%5W%vNz9X)X-}%Edh-EGl|>y4F^!6#|_f
z|M|N2h2%g(G@z55j0796X*bXLxgpJ`0O-?;bP_HDOTH@dli_f++ixm92op;!%ca^8
zK_ML{y$W0=Yzgt;Rw=rIe|JV-@*N4KaG@P!6stB@Q1E4dv?J>Vai(~jaN@fx;A;}8
zZLaVMoi&cP*PoG(v~TH~o=UtPbN2ArO@E(<lRL=A`ONR9Tb4)sBFmNu6Bl6J5`nL?
zBzI55=XNHfpn%4x#ToG9%cCtq-pk|9tM5ON6sgb^r(CA{A3lU6o>&t1_F^3$CR;Dt
z8e3e!G7HG)v2E_pBKq=$`vFP`b8iO@m>!pEYN!+AyV1Z%5&wJ342IU{mcIeUHE|j^
z+I1{WiYS`KI7Xc2PMX6M%zUH0?#}b0Tz2oF*C-2u2m3X7g*HHNba626p;D@XcE0~Y
z?=X@5AIdTOp~aPp{4lYnG$8qfZrFaS*BkeJ!K(A@tXbnYQmrz*s91V|+hFhrbU%yw
z_cV_~f{UOIXWfK_Q-&~Xsqt&#Klh<1Y1}y;bMc&B`z724{VISXrXfxLV(f$nsS(jF
zr(so8F4urXy6)EKuu@9ypeq#s&hT=6uD0ZhqE8BpfIN`amhZ()u<lcS!GR(_+v|O0
znT*Dlo)J1fnKbmdz&Uw(e0khvGTE5LtS{s6>bdF_6t(O!+qC?-$xJIme4L2-UuXbk
zOqFu8B|-p9XJV4|kameJS3vjLyLka5f*n8CTZ=@xWoot+;raKeAl1>B<?8oV2A3$X
z&f><HD*F#ZJT$h&J?CSO$S%o7{Lt0MWEcdtWG}*$rwAhWTo*;N^!cR2;f)5<XBt9`
zfCCgNy3?f`-_v;7HY9R5)z0T~Ea)}&^&fPN{iCD`XVm(RQuhi^A=~7!>E@hGiB99=
zvuzH+ko+*4+bi}wk8u^xW|)Fegof6+6L3F}jl51UiSX`m<Yk`;8tH?_{?hfI6rDwe
zUiTMe#X|wyE{1RGx_(5H2z|TXCa3^!i<*{FOy2FWh}2+j*uJ7)S7Enci+TFf{~fW~
z55Pxoy8O<+5oS+(;Qkb5Us?G>Cqh>1%BNN?^>>yS`Dh`q$gK_k=+q)uqy{R*<TJ?Q
z<C7CG)`LkQTU3gZhi7eZfyYFnwKlrNl%-sUvX|Z(li!RmG%2KNrJbGn=IshC?}^5J
zZQKKZ=KSC0-oQ&)%NGYP&3(I-=?)Wc=YUT}V5#R?`|ahdm}5pdJ=^l0r`~;lx#WYh
zuxA_oFChpEABi;6fS5N+dSG~H_t)<j%O3mbTYjc*slh?Z)X;(_*O>%yonTAm@Pe=t
z969}doR6f+`7#xil~J`l{4Sq}#Uoz(4=d~}Qqtr_ZUbUOj(;`r$leL_FjTy*b~R1#
zokmUHQvzqhPG|k6pvhq_x3LrV1Pm09C^gY<uEb0FUiXliQ@Xj-+QD-I!07>&N<Ip_
zNqi1=JAj&s&UW8=(iw7&CVtCuI{rzg5TVEUD<&$+#(l2iOL~hhHD}<w-5~idC&t1@
zBm6)^Xw7RY6xzP;->iKU!119Kmmm-jL;@VKzpLvJJVtYH^1V1-$`VZVl%@m))cYYo
zq=rwja3DyZEkopdc$e^sc)4;a^#=8eQK%_<PY;8fpYY9Ndw)$h>Yez3{yBwv_0rEo
zE`aqhEoCo)37sM6vHEl=Q_eQ@K0D6#r3Ev))l>#~<)<Tliv?Sq=xo&xelef;s^9-2
z@|X`9Meq3}x%-?U(euGQKNNCJy@7Gr3lG?F0#k}kh$|OJ^;Jy8A{6@k`1X*c=!BL@
zbEHzb=>4Wv57%HTKIcZ4!2wktG!_dy-HPy74*}rOrl*B@4}~Lkigig7kOdB)|MW@|
zdf$fMI}nD>hK7Lr&ilc1grhi3S2?mh57Y5US-eYRu6$}XMFZD%W7Pi}aW84^M;A8~
zfs*ki_CG#FSKA2Dz*W->URh5rqs!$fmJ{Qh`jzwE-wDM$)6csf-7uHVFBJa=?O7x>
zjH55U3MvW@cF&UT<)~-h3K5EKY5oIMaX!>qQGMhnSke-?OmC0@bp^{H2}H(7C&EY}
z6YZcZV1S|g`K7cTxh@IF$?bel)V*=PBj2o0Z6oI!Ako&<h3<9l_H2NkhM}2B(sj6Y
z-?y5vcNU}-nh=eCr99j5NN8eJ){x|!bv^yB2LLc?291s1pDcW@`hg?2KqLa1TW~?K
z2fF+GlOYI4pj|7N0$#~w6jqMV#|Tph(@@E%oJ}!Ds_1?y(dfR-{cdYfie(kBi$lmF
z;l5)lGE8EP59`w@&JKnPea3k5B)z3-N}xX_?C{X$pA<SQGU-QhAwc4!AKRJW9~8KW
zKcfP?|B))S7$^`zHK@VH$~#9`xH$;l@-yLlIA+UVsf1`PLo-pH{F;P8zP+)|s{zXj
z9k=#`MSAKN=NiY7P@bNqB|vizF6g!hDJ3C%V<+IdjE$9m*DN)y@=Fw=gxvgx9&{ey
z7cF9ogyteS6@QI|8er)v<$>&#YDLE?biC9J)t$p01)rlR1Oy=4rysgL&<fGDb7TQ7
z95TEZ^CmX)oMM=zQ3?_b+2w=DL0lu?3{}OkBuSuGNJAGTP1>wwO_u_^gx(>RWG6U*
zQd1i8jly!LFa&DASNY9BnpP;D%8Kty5k4LS`f|3<(+XifFRK8F9N{nAgL05jTN^Bg
zFlg?h^ua16xC7CrXA3z9v|kEH=qV*1^D2J>Pn4CfL-fDeFvogLk<wTa^T23s%Up!Q
zjx?x&?mkF|Jyq8LuYy#N(6|6$i?bf-J0L?J$#1-;72-y%fbT29F@GpW#ywn)7W^z<
zL754aQj+iQhw>z7?ipg?7(ZaD=1a5GV3F*iQfcp$;NvTDkZ*6DVUd2`^d;fYT(r#a
zDj-yOt@TX%pZh#1i6u#Up&@imBZRa}+Y1Ai8;S)#Q~p|*5CF|3ax0yZfsDHPj++uw
zN)ql*D$rB*;%Dc|5rF+-QvfnwJm97Lz*3WdC?P8J%z*nuDT9|i+~?S5a2JD5OETSJ
zNuC{I8ss57wz0Dl4vNmRxnI-<Gy?sPBv&<<!ggqNEa+U2XJS$eG_#gnBJ`zM2&R<K
zS#uD)xiOExK$qoh(beXJOjYyA93dZZ@vFPLh><*fo{I}!(FwDOO4DB-gUC*{C+J_{
zo#KTP^64pcg24{D$_zm5!+x4vo(RpoL@OK>ghkR#mu4%$B2|5*;>4BUDsAECI&ja#
zd)6|YMmQL}m;IpzU*nqv7s~EZi2U^_8*KQ(x_k9!+%Fo1%tuD<0xz<%$`xyrxMIk}
zAuNy-vm_d!qO2+Ru2_<R0Li%L58r5o6{iF*A(JU$i+<R!Fa@RE7pTM%@g*|~Ei$$_
z2#(vs&yDYR7$_I2&e2$m`$Em)ex+bC|8MSiWjIvN8EC*K2%K{jGn`5_aVa;)`!HPY
zZt!?d+_EfY>_DbLo5wlv|Is%J*lgk=VKKr{Q#`)xOqJtNZg!n)AVwet<oJ+(GaL&4
z@#7Jj`6$}z0TI{BpTVh-ncI08y0=V&-;S9pxe<I3&R(y5$*g!~WG(2R!nqwj=r8P8
zmDJ3rmYMpaFb~!CddXyZhKGjfO&pYL;c=bkz^9FUv%lXpyjh+I!`nUQUiK_=8a~S-
zb=I<A(@K3wV!X(0Dmg%5hJonn`En>D4c?q{S$<zx-Vt?BNj<;HTC`v}neqIIGjAC=
ze*uPtg~e#(m6sGeeK8>}JqQEC<zNZ{&*rAm_NCcmQCL(*z^9#f+0hJS0&<E}lnvEP
z5)@*-pu7+qz3$UO8@rQ8M>z<jNSzYu^~Nb7E+S}xl!W5z+%OF<D$9MCm4yr&Kdw5O
z-?pK8K~;$=ws%a(!OH9;PDM>sOx#dxr!5x?$y(+lI4{fZIU^!7m&JHK5gg9$vV(}D
zjocjX_i>5!!=u_g(WB^Ha%KWa#W<Y!50I!Mnu{h*N*Z=K{L33Bf9b$pTuMzinTQYD
z=+hmGZZ{?%>ZzS>IUzPpo(t6VsqmOn)2C35COKN!b8F%Je9Y<UbT8>N&P6EqjzyIf
zP+Ub9?Alxf9j4s8MeN~YD=H%8m%-q-C!|WH-l-@BC|6*oqY!d=!~Kx-C(l`Ju1=-&
zG0U`CeC^ihB{dB~7FNo%8-rhS*=0Lt$mgNwjF1ON@%-%LqY<(TDoja-<}!LQOaZvF
za~L-#`0tQ2^#D1$OKy<w_DiTJD18Ooj`#JfWaQ*A&D1n(Y?!T#nxUWVjgtPicci^O
zg0wzBmgM?xS2RLDFSh<oezP}QgYbN2iw_u=1N3*zUJw7H?YmrzK%n(DhUvf}X~)NZ
zi9nPhnkUVH&EON>t_G$N#o7ET;BAl<l?uW@;8?E=v<(knyNpx}@DJhZ+HNcf;R|)4
zsR#Vq;svO^@mOt`4;J~v1qpyR<_}g%fOwc@+v`~fg*`eu?4X#Gh}3Zw;9Wo?`#7*{
z{xpSS;t#M3EW@7%u(k1<0QmQ0+|~&e8SYb@Y5stJ4(R~3Pae^45<S?3X8^pBmXo5v
zoguNG9V@`c^~=waX@x#SL~`%t0DG{2Zw6!qBC+G9<PWg>Ad~>F1h>9@8{FsPZB8Ca
z$(}aVVfKgn<Q{@SMn8YSasZF}C>;*K``MvP9}L3cm+bl(U}xo&>p(0?sf1+OUtq;n
ztdMH}LXpC@t3mH+ln2Yu0A9)~EnUZ062C`|scF#MwPm_Z{D=EYGtNWU;{Ad29X#$M
zc_9GkPh9c=k|znvHuJ`koK2fI8^Izc$#dnd!G&z<{DJYEM5A<^l?1Qn!7}{+=JNl&
zxupGK3<Gcc|KHaCAKKQj;`<Hu8{SnRFZY)kQ@UT%QUjD~H$Li*B?%#~OGcs<Qp2DN
zc?Y~;#d$SVJj&jpcEgcwAg4-f+A#l*79e;|1CNphYk%gOVb8wTIXM`tt@LxM{9}$t
zV|=~iNxl?%4nmTzY>iAT$;7aEiykcUk4P@;DXmb^r@CMmxCA<tD!vp%=@}1=P@&Do
z23NxE@xp-G(&RM|-A}tMBR+YWo~?U3OC=TxHGsaG0NL|@><z6@GHMhZGVo{N3v_e<
zzr+$%OerWOv36rK$19c&TO#i7c>HuS+}}_Va(F@?is_%EH<0*>?*jpnw9LXO0O(8e
z1^}D!IXOCW{~fxTAD~NjC@NE>Uf|FJ{$J)>=_k-juJvT#<T!=V9iE)T5duK8Feoz0
zL?{gYI2NZ2XCow<zz5*<e+CllAdo<Dg$?u6&rMGYN)Dsi8|#A%S8i+=zX=?xcrw#+
z2fN;7h1U+djE3Is$kvu7eS^Pc)0&)~7^7HZxkdgBcFADq@U#VRcT_ISF)!af|NPT6
z@gH~R%XzvnVtq9F-*CB~FQxN*(HhaFIo>?eR5z}g>OzV|4}2LSxZ6h1i<TnvUdXhU
zkbuzd!o=9cfHB>FTqgUS_f(r_VE9QuPRQj@ST7D!)W{It;8B^GbIMtP_m8pAh!qtQ
zYT)mTJ@`B6i_IkTd>GVV<{4}~6b)K!aKv<BbycVIGnZV*jxvy%<bN8nMnegdWa5#~
zSR{c;s?F1_n9YTplvum=PTI{WugpGkc&uMY!~ZgEE*6@JkSA<2k$m=5yOD9W+Jb5i
zrS4!^QLM3p78&;>=6{|+M?((o#4p1|V0fSJI*P%~iPq4>goeAuIt=)fwB$qc58i*J
zUf0p#%2VL|#{|YfZS3tuj-Zsbd)ru|;^N7rIQ}@;0`4}%fORw~4tSQ5@I}M?eUXZ(
zseV#sW~M=0-rt7Lnmwb+WS<HT>bbUdvQYp0*6;fkf=%zAn5faklu>7p@;-qdOp_bM
zRhJ*Sv2nC#zoaZQE$QCv+vj&daC5sBJwvRd2Xkkko>WeiZda#}tJB?dnTzoB3)IUK
zH{Hu}X=cM?1pW7*#7Z<Gy%`+}g|kqG;NCOlV_Gd%qp!8%(chLDmCkC^o8Wyj7%-E0
zh&yD`IZ-t0EMVi|zQ|`k&;R(<@Q#Wvk4|Xz#?r>bPNS_=clJhhD@e=8ys}zs@-A<|
z4Wn0QB%sH^`8HwBA=n$Va(H$oR9BX^ymq2+HP+VAqxjVZJ@xW{joZ<L{FcFb(Vf%w
zD)rR*$XO&gw;7+$F418z@Nc!%*x)oy)cy#$z<80)d+w#q4S)T={Rf99@+Wy-!6!F=
z`94n1&Sswl$l6{W=T&>_7a1T#cT2kW7|W!<9nICHO{dE4F${mki(Ik<;cN<=x&<dK
z$@a8=^b}no6RULTE2mMaPQ=8p6%`ZH9V|J>b4)1oNFTklFfnO%MXqpNcrGd-kt5mW
z9=gnfh}*JcJaiKfzNbl`%=qD$p5I~yKLCaBZ3~pF=D_6=3F~NT&`YVr@}TuT^W&0E
z_mEPfRqkYZZmaYv{@HSyhlAPD^P%)-uvRfZb-tZcZ-zbN{k$46enrBf)$%9oR|4Z|
zjFooiC6CiK{PT&I@H&!V?y>TBr{K;eMoQFH4QU1<qre>N1ET5HgO6MH)UtQj&DVcf
zJ@30}3`g2Ca+e<2s+6h`rqtdTzER-ag|^NSJ6c5mhGXjhvPQy>gQ`$xF`Kxl)2Se6
zwxMNqPIp5(A^-*r-sz`)4Oo5gd%BYR!g33`w&WuM&r93yG!8)7@5%NPkS1q~$(Iq)
zFrlG~XEKzb7w-ny&^HTB2rr&x*>$mW4|R%d#}GB=61M_3Shww_VbmBxDcPHQp^NnD
z)sMq0ADgqEhT~t~6JSuwcMT9s9nBOp=Q&YW>T9{b2Epucx|sBP=Pt<<+%5+vTcHlu
znq0-?>Q2ertvf0CYU?@Z`zj-mxFXe&;`4%sSs}l$!}4A{UZwiG9mb<nA`ylg+!271
zX<GFM^eBH!Mn<Mk=D=KdwECw(uuWL$syl3ZwYH7}=+HZll#MZ@A~pSAUAT`2iW0WC
z9PxgrHS;+z9_VUmc6+OTRR<=r2>pt;%ys-MTrGC1TBH`knEI4|C&cS~_gy&j?DCWq
zNSI`=>go}xn@E+#|K9#$SlwLR4)(qk5G&JaVAdVQqzxx~zACP_K%7DWVd-2Dl$0DU
zIWS&M$iP`1PkPxKO-bJZ>he&C`F(@2==FPtR{*MafB;D8mN)NYMq%g*IVF#P=EaK_
zp|ANxT@%~M4WB>^+YgIg;NakFUB4lE{hHq$jjz!wHvgbLQ0i=(9YdAP=1^h0Oc{`P
z$UXT29FiG%P77$Lter<?e{nq%W@|1Lg25zO)uXd|$n?q3(x~&tYLDabtx@)`4nggs
zJ{i?_AVB<XcM1LOH9s?*AeYvtw~s22ZI)+;i0JZjCpwfVHqaTgc*=W$0djj>+xDUO
zCw`daQW)KBpt~CAq$GZOh0JWa%2}dySF8x93cW_+u+oy~5GVfBJB&VhP)E~4BDBhH
zxD_pic8-zO=<bWpZcbY0P~bF}=TuIX(<o!s1qM~Bz2;R;W<*$vI5TJ7-(iX|l)su8
zdYO=ISUd?DjMOpj)s3|#FtUubq=g2><l|dgh&{25g31s1_Q%p`Kc@`AinS61BarIf
zmulq|f${b_Ei&WJL1SrC*Z#&?6IjO52Cv&WalDnz&Ugu(uB3G6D-Ht48Y3f3Ktx*m
z$;MFbw^umT5sglrL2Essftv2qNFfP#{(Ujs`d!w)C?H5E5TTLmE}Q#1zG{m_PB93S
zWh_&t)F3OF)!N%3ie9n$%aPQlQBlKR@g0K;Zg~V8woi>YQC@RDe<1-nSY1eNXdRL1
z9Gnzpemx)yhv*vwR*~MBg6cwti{-Z4(M>y;gjq%iuhfw75yuE4^J<;pNruT{Hf5(t
zF6WR-uFQ`^0+RIh3?66k*;9#Lk%Tg0>DH-@p^Uf|Y17+q>XNQQq##SpI!Qfq&QZGs
z$x=SrTgIUJkQc-v&(9KypybG_D*-M^4V<I10oAbKxw16gsb~xuoos}=1?OoRus+LM
z821LPC#x%gDVon?8C1t<g#6z>$sQjwW`dy}Zcmgksz#6AdUJYRpYBnIeF~0}vCUmi
zb(?BN(!cUV%S31<wte?k>E=tIsnu#>!U~!^P@jeP3NWsAKZpX+lu=%B43pjZNl)d`
zBBt@w##!+?-P90*vl|=CqNSC>Vd+cWBd6P!{V_M8pDGr#mb3nGA0+UB&GJ<3IGd2^
zV^gG6GO~n)#T)+Z(G|Xs_~ZQ+S@<GWPOQ~CQEAUBL&%33D{`sIL|3I!*D%bk)j<z|
zt!{(EA46d6kWjkI(!6wUeEUYPYto-Rry_v-Oc}yRV5IU~YO7PGYVV#@OSZzmMf-BL
zGqt?zeGBq+7G!T}r4;h}lSl{InFoYZcUsGDMeq$V_f|<W1eGAk_iMsij*tCb{*JRs
z9U~LEMtL2T-%iL|f!gS_|HJ#~_2KHJy}rKEwHAd8NUscB?>3w$)~T_-BId$hg|wjQ
z*q6!2$Sd%0y=ol`!MS_GmsGBj#U_`|AF<xbAO<SnLZPvf2lZLTddbBu3adLOXvjNL
za^ox2S{zE|5xSUe8{w_Xo0}wIyunf1-N-wzRr>H;@F)Das&E%=*!AaB1-RU6f#8%n
z;^hF)EW~Ru#hDQw#peg2EqmxT0fnSYl7RjGH@0urmzx}{&y=D`Y+LP?dOo`TxSmMR
z&vh{6+E{cXlyQ?!8chcNMhTZIRkb!)U1}>*$UCyl`}f3K-Ae9M`7F)umrrJ@HX>mM
z3snSi>70zWt+<PeRR?JPDEmx(L$!pBd8YPyd{LaQaMYQfP)s5QrWi15|5=So>1G#N
zeSWz)(qZj^Z*dWYapKj*Ytccf!;*5^ZYF%b)cD3aCeyiV(-KONPw9R+!GUJKr(UWP
z0Z1H*WIEF?^!XF>4SUGUmR%%5dmri||17+C&MQ_<v=A*7Y3#{ln&sZEzl)P&do?a~
zx;I6fBktuLipL5g4k=93bB$ZkOO8eeyLEm29GS={6`Nf2=BlPRXi~7rnc4@A62kfC
zoQ|Zl>-ex2f!XYOEJEPZ{w~K(<tPwxUZp1LsDMhfHCOKx4lBW%yTE|Ag&vICQc`fI
zd$&ixUWoxM>xyb-=INvE3KS`!1jm$#Lmr0w&>#Y3TZY5lSSfr<tkwzts7yXL)VwVo
zM!_Ic<JF*Mm+X%@W`3ds3%O_CqdvI38oTJ^qCrtt=P(#d#Ve3Y7n~a0%WI{K%N)O2
z_Sm7~t~RH<eV1p*{kmM*^!@`yY$o+x#L;>BZBV`>K5Sdy)7x&@M2ga*{uqvOwwm|6
zU$M?<^_mM?@Aa!qXXaf54r`OhrmPn_N>ey;P3KMd{;vzpSF>fa+9NUl=AG53%=akE
z`LF4f@qQr*Qs!({ZcEX3@eFP#TVxb}6hqFqfz2-=K<k*-TXDEXNehKiqz?*sTwx9*
z-&j93AGHD$9>m*2I^J1ocuw#19puB|7?~-BB=0Q_m_WxM2vhDCy?M|fC1*#2scHLv
zgQ{C3O0dv4Iv^b4E^`j`z6;Pj%h75)e-vWcQfYJ?SzD3VXoOqm{b-6~=Y#q9U^I>%
zy#c`y;q=k2xB%WKWZ?~V8*PB)Qz)?VFy;3OGsDV5*R%~(hXk_YLpVgyIl5Q3N)ovn
zE&9mx{Z<czeZM<g;_mS{wKr55L;JQG`Q=^tLkL^T7MemTD&F$m-KXd?&r*m#@9ag3
z_>BO)lOyQVTk}7=(Ce2p)s7T`k6sbtup>gsR2#!j>4I_zB6}OGnu`B{VX?o;`Em(H
z*nxzaF+hmmq0wyS$L6Tsn^Eumt~Yj5xo)5DaG{@Tl$%3tEdE{=2Hr~v2KJ6029a`0
zn)jjyf84vow-%u!@A}ZH6gpdDtbUx9MP;%Vt4k5Q?E~l3i7<9a|4)TD=t^rInhbwe
zKqchQHPq~S-ZgHzBsG@USxsddSg@s+<2zT^9L9hqptNf0Q5V5Y8BG%PX~vqK^iN>O
z77M|h2K6nc<wDC#FsM8lJB8}?7W!7#a9tu1ARW<`Dc&zp3R#CJ!Z--X-u1|*`?+LO
zi~kl6eeE-n;T1%*@O`y6N~HUPW}WHF%6OSK7PlS~!J<GTna1ZO79G|9{#&jT{MCkN
zyA>W|tbbRv6lL#Qd=hcI&ae5LqG@Cqr1Dqjo&qo!C!yT@{LRUMkZGmMfLUDbLETC!
zvrGhr$}64#ygyqZi3GWQf_uYJ7`@T#DGoVFvm0dcqbD;qMEK&xV#!UH$5M^z_)cf8
z0%Wm&b*N%VNTc*r>Z}jsb4OBq|3OsJv=yF=YD&8@f&(*oSgW+&MxDotaG1GP7qX2K
z1XhZwH!j!@N86}NYi_n(2-@^X%%`*(MBWK`Kvk~z!)t4eV%ou{m88+SmJwNOM?Ze{
z^}U~cKYBQ4<swK$RK{j9Of!P06l@O9mx-B#;~oFk3QcL|*Q!0NP*`fvo?J0P&}v@6
zSz04(hptSg86MYKF6%T#pZ+M=)Or=ts1Zo>P8?07e-&+qrL#%v$iVsRfSwWpom<`)
za8a4X1gb6FdYhHkW|Jjh*4^?lwLJ4+=vP=Xro10?(IRE~_MC2R&M82eLEJwDxzeL7
z(f(tho#E;3g!(MuK9Kt7?v*1qG6tc0g9EY(T3MJ(u8Q=hvwn1?v!15oT9J(WVjW3w
zbPth$ckbJK3?)jU;n#Dn?~+dFC>DHdx;+Pao93SXl1b;5owb$IlIg;@&u#1oIwK|I
zc9MIyO`hL`!0Qoh;&9T;O^WI8ZY!BY<aHNKc%mEyk%h%lrRIlNUcKp0^~N?m{<4~R
zBb=n1!ottID%TrahF9+|m}hGaXk^PV3CvFqrmoX6LXdHlxHGyKeT3Vg;a3K~;t4kx
zb-IGrTVZqiCz3KGSqPMdF(4#9CggBG@7(=js!UByw_kZr{`*(L$G?u`x}=b~7#nBK
zBhBCIs*f_fF0t(X^i#@?cpR->YB~o<Z#l!}BSS_EY~5L{$ezE#C)+c)*!k9FEl#3V
z=ABWFiqHO)Jdb(z!_S@3xmLwhH%1*sCMTzqquV!ZCKukPJa5XD{AKAn<uWjOyvVgh
zI{UwHJMQSNUX)jwtseuKun{8Y0QzC}ncU4FZvGziJYm_6#6qrHWU1ym{ojXeCevRl
zckLPT+_3JfnuviXd?1k;)*MSNL>80SqxszdZ@%7B`#T;xVtAI|QLH#`Df--KFkwA(
z@lyz!-ebpW6v8kl#oc7Csl8N1=l3Tar0K$Pxc6AKmNWh5%(-J+m$l~zdDuC=nw!BP
z2`=Y9OEo!;))S+G7V*w%&#m3(^KxvnzEKDX35{NnbdWBhQ(!9=tn&#8w~L40y<UY>
zuAuEq=F8wS0X}VuPiWOhT*gOQqo9|5kZZ)b@@3TYWRk=zgd&b4O1Y#FpVy%NsFBa=
zhQj^br%2o82#v<G%gvSP7RzFaVYk0TqHV%{VHqJToo)r+oy@4y^bfAIESytM-Lau>
z45(L}Zv2TLTy{=&a@Brbvu?!)v8Hh(LZmeZ^%qvbXRfq_dK7AbL1+dIQ^+Ep0fJP-
z)m~`bybF?5Yq{HgY3gRcbpU}{V$9tV<aY<B?12gt$*H#;q(ApZ8=7rl3`-cXSLf{&
z3^kIpo&{aktx!2H=_@d?=#fa%)Ide;+buAuKw_Rc_2vM6N|NU~fz&;Nu*%xu27g!b
zk>0YM0;N*Bg?2*=c1~A#o=97g24+XklACnxIXgQ`jOcZ(oE++YE3{RcFFh~YA`7R4
z#Yay@2c@Xmzt&Smuzh-a+J~|AEReTaN|1MfL9>jvy<IrZS(uWqb0FX4b6HApF~zvl
zlri9d-no_DtG!?4v9b!zM%4?>kIZ{|eGWT7w*NocyRxVzuPvO&AnCO%gO@81kR&8b
zf`D3)K|mxD5RuAg8AJvV5xhzTs>~6YLM1U$l#75!M8Q~@QzXR%Lj{2gDo_+FprkQQ
zR2c=*9TK{P)xP(kYn_KYoSbv^KKtL_+27g!zhh!tYsNWo{SZiC>mCW-Qp3^c9z3(*
z>5s9KHxx1qYV8B}&g7Wh@EXM<A3#kYml3|7q{{n3^V-?`u4O-!koo0d-b4TOBE^DT
zD+syDU~obNjg-4ccKNJCnrV4gLSf=|m#L~S(V=a=PS7tv(vL)c@kc-D4<7|!5Ij$3
z=0N#J>?e(EvVu|k0e|l}R9FABRi=W{47n{k>5KD8$GNf=>Fjor7Gm+oa%GF&4llH+
z9thG|M&0#fBZ&G<<SNZ2vtp4ISUXfzmgz0pvT=l@WEDmLVW096(l9sK6CxL&ar?<j
z$4U8s2eQwEZj`=c_2gzl&??-1A0aFq$L=H=sKm8Sc{^mvmQ5e1Dv4~-x?AXyag25~
z^ZAOAk7Mm}G-`7<d2g7So(Y1>TS<0cD26*AQ&jUR_|w7UHoQdU=8Gsvs$NCn{&c`l
ztc}e&Gcz+tmCpU)YeAj4%^{z@ph3~&o3^?@2l-pp@`Ubs#$G1t@e6zLe{<L!&Pe-H
z8fZJ&XvM_D1SFDSSS(ilCef+c*$43kNp(klHWQ>Pl>4y_+wu$zD_n?~wir{T5j_{a
zqrc^|=b0nUSwR6Z^_T)<Iu;_`Xj7GZ>rjoE_!)ICF-HZ6!vd;HUgbV;s?ox?uLokA
z;qbxZ@#MO@yCr<{$?+*Q$dm68=(!g0;EZK<<R?V1MWc9IvbV|p;SrWr8I4)mD(0ok
zeRL~3?D_oOxwSYP&ZmANHr{;BmtpLy>|6IXwX{@+%jK@dV6w07nJuH0L+!kgJCu*0
zK~0;Ny;^VHs2_XTf_hl)`LCRpef;XM6uxEs+_?G1&`zr2iHMCovVFnAc8xhK%F#dG
zWy3IV|Bob?W8P_cT^>-XyCrJiOnJHftNBxF+ZYBEE-7ocZqj&jl*gX77y(CHg4vSv
zglu%F3l4Xu9Nv#TF6gAVhixDiO;1ld+q++N^;hb?4t0QrhljuaZSsWvmsJGULhF>|
zWQ6rt5>@zs`RvSOLU@g{W(pFSk$sjo`%U!N;QgQbKL`}5>R<THRC-*4oP_a7mX_M)
zVr`w>GRtCMFUd)z$VB<wj+bLaMd^EO6<c+~dvs*_Im<69xP5(&&W#BI+j6%OJOt3E
zfuAnhmm2e?|63eoW>=^Z%@PtK@{DE_HZk|yeaz&cP%89?OwZ^iP0?2H2wGT_#Gy@u
zM<aS89R^R16NM_5?^0yXfjshC`7!H7#cfTPxLh;uNR@9AH5{MY^6J$qx9f4Z;Hm>W
z$D#KoKXRWtjobnzBRsEIwLR%Bm=g7cHE^&^;(1D9!l@?r)OFL-8jgjlF0>|YQ>LV^
zYV8ZQ{Vt}uF;TSc_R&H6YTeJ(LjTnArlQ}+Kr*cyd^Ln}wu@I!M<2)aBF~$+Kgnmt
z{*su#@r30;mx3%}b`p*7D?dkcXzqY}@I?lbS9VpN-OxZDe*Y^?8~BIaDwl!#3lwvb
z)E6fL!_bt<M|OP%yr$_~<GzMtbCws)BlGoB`iqNWixPc)2*Jr1^%8qFJ#Kn9jS)3>
zrlTAV|24upz##qi^{BtRq9S1+*N%!+Sh<q;)tV0*P%{mW^`;Vg{lY!SRAqH#Gp!9}
zzyPrieC8Jta;2ukKCOzVc337b*&$hHyERVg6I9Tvt!}Cs`Z;{Hqk6VJG;ZE#wP(d6
zI|#I{d>!=J|F-9~WVEMhk6u35G0@ZQNeO78w~#d}dMh0z)SNioqK9=9!hy8!yph+Q
zoW|(f-j(`faPS!9Dm%4}b`+*TL><`i(zA!J1QE9i(K)D#vtus?KKzgkl&%?f(U+oz
zEu>)bE@nkgOW4!dqV6is2w>nf)^HN%G$Ooj(zh6`ZUv^JyG+!|@7m9a&y4c7axTDU
zl<s|D=)(!Btx>JpddVgs_5OuwvRD;k_`K~rCg^jzk1e4Wt*#6=H@|FaTp);TjXy>b
zHO#|xYe_XF5~7k(-+FeIegn0UfnyG`+3b>#Td6(DG1fAtiN#4QGhVuLaqE$AJM!*+
zk@n=9r+3fk&EM<EEbKS*zLw>9cHPhr<)cBKI~=U!6%-5x3U_B*P#a>O5b3sTu8-9s
zWvlWya*jC#>rHRV<j!Rvh#3O;1&^Q1Qc~;HEvsWwSe6}~QtbK(u!5eJohgN=8W)L^
z7nlU_3a#q9*}=ZX=I0}I7TmEL4M8N6rYbKk1C`&v-{*yOYAnMz4+30ip=~O3KfzUy
z?|W-->Mt%-?_3I5NL8R|JWh9AUp9)-9zf7<Mk{GcC$%F%ETTG8y=ZPy#bJ@{YXA^0
zSwt+u^M989kJkS-1|xjbnSwwd@J<ffJ+Oam_s_(L(SsQ^$bTP=g5C%xlB)yDJ}~un
Dm}P2j

diff --git a/docs/notebooks/plot3.png b/docs/notebooks/plot3.png
deleted file mode 100644
index b00f51af35baf7ef6cd95bdeeea03bc6511a2ad5..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 29262
zcmeFZWmsI<x-FdG5G)W}D>y-dI|O%k55a;v1P`8|1qAot9;9#!POt=*;O_4BEt1|X
zdw1`%&$;LM?)}k!x~W<PSvA+3?;PVDW6bvoa^fgR_(%^PJV23@5K(&Y09x?DgNLsX
z;DC1`KkuUg|9j}5Brf!zWPotv!2{9<k|KgCZ}hfj;61{|@8I_%unH?B6?vSCCdypU
zMJ(B*3bnLHDb*n6u^-K2o<1%+qcyi-GZYQQRm3Vz1B>k3ZMk3XS;dMxJ>%urU2|>p
zDrK)7bQo}*ohxj<vKw%)W_EYKiklaFh@|iq>Ph+oSn3zRk1b*_QA{wC64|avzrJ^W
z`7Opvghc|M-#!Su`HALXAZZdUhfVAs-UdGC{=2{U_XqzT9;hdOPl})G?C&-6k4gj7
zg}*1o-;?6+?c>M(`}b1#?=1y5qy~=*jGib87F(FAaW-M_&S<iW%+J38RG2=f!-v;x
zeOQVOedq<a<mlJq20EO4se%%j0>WT1OJ~tvKUpOELP#Oj5~5JN%WOfA*dI!@ehEi7
zc?2sA?hIyuF>5zb{}l+eOu^v#hL$1-gKzPl!)$PvM*Mck{QeRn@LPXh0#M}Nqw)9L
z_<wjg_>fb)G>t<HkUkZ!JLZZSshNxU%<p-K9yc)9>UU*IZ!e83h;0z2o{21YuqgE*
z8qXIaATsP1o;0iLGm>ACE|rpf-jXp<?;fq@VS2}ZNdWI$DcF5Cpkegk-~KYdnG7v@
z(T$3l!)Nh)9jV24{Xi1UT<%#v85sFJsWR;C`0WEMFdOP7zf>9@a=I3DBg+Gz)|`xg
z;}Hg<8V8czeA$lt$-uz=u)r01VqtLEEw`H~!cayZdX|0ypVCi07WL@?aHYc#fq6_{
zd=FWW`vacu@v{o?pA7H?2KGw?=BhWyf}NLJ>nR|KAZB5(m+`5@&sr(b3I$xjjsSIQ
zcoQ`OH>F^LFjU${Omj~g-$F@hyajbnEHc61ZIx!a1d<YcK^DA>nI!v3D@hR_J%_>5
z<^{gmjnnY}dX{hk@THl5{n7^aUpl1g?=SuLlm2^p|87mU@G$Hju1J$h$8HlfOK&yu
zNnf!5>&X4j*3mxdqi*>9A}*bSCeH(xbB5xpvE92p<lXO6W@V&bfMLDC`;)5C!b3+2
z%2O!Qvt{5pBx;i0YGP|P%(UIOmI)-?Vo>%K??V6ZvX0yV1RxtFii+xL@BC)%Uuwc$
zFi=kpVvG=&o8V#z9}0shoQgB8fP&=o5@E<@;74g_P`)o4anYdeb9@bZ7-YfN5lDCy
zP<O@`iiN?Ae$eH{{eiu4j0-){RF``#!ESxA^gKgZvLP*n>aPf6lowhNP*FSYc4tCP
z-2##Ez*O>j$$ai`hdxg?L1={2lamVvOI_dedK1|Q>{kZDw#G|9oab_(p1E=<+?^IH
z%ga5{g?D`Jr*xeb+4`<K9U(Z8dU10&3_379%2_RwEMBFJv%ymB89)icMt_M={=l3!
z$p|5sN&|x@1w{QGi|%2YF@n^CDQ&%|dGwK53m0U<WyA|xD{kxWHQ{nZ(@RP(Uib!{
zIHld@X%%y8L0(6tZ_&Fd_No<stG;`olCOap2kobjW2DIYX8(m#0*$hX<zyAKX1Pa}
z7b*&h=uysY&H7%cSBXwGZ38yFB1kN}P@N&u;D-Cn@p`0I^G>~EHn%t`BEBE|Y1^T(
z^wXJvGefF$tNPRKG^(JBv!Okowk|NGEdJ5nHKWd3cR%h(D9M1}m`@%nTC5g};h0?!
zqUP$Cb7dB3m%2NNrJd*pV6gjggtA7}2o6~w3R5$y)g>LP)!6sz3jeIz8#lw9P1RUB
z=;@pXutf?$Nk9Jx6mETJ>2ToZsJgLl?7%$WCZ~pRI<F*K7QR>zhG!aaKo{Db3vwqz
zLp~)8&q#&FycT@3x?P*6)<~Hgf<40cSUjScVPEX^Yg`X(`u6Jp{>aW6+epR&wc>Ef
zu+62}M)!#(2gY5vIl*FlRh7crYliu`uDg#uNzbG><NV_WG0y1@TlX{kR6pSf*p*+N
zjTWlCJQ#|xb!PDKy|B**M%f;VPOAYqUnyJZGvzCUD7^Fy78Aoo|1wV3Mb5gjb0lau
z6h$lgL%qC9{xxsdy~eZD%d<St>xq4ved9Q5bL{mmE7ISDzSe~`XQ<>4ZED$+!bS>#
zNA60es~5KF5zL0OI&$czBk5f2KhW(OIYE}*0^QPHq~|c2V`s8jrU-7B*;($W!U{vh
zGfCmepmo`7jJ*b!0Md(>L>TrYG0#4Pu||EMQ7%ZxsIxv{y1Y7w^lj}KUSnG6A{hxX
zOAy_hwjmwLmJZ65Ph0$&0ex<KDsy6>&kqg?2*`JS7Q+~ZjK|z++G7t<*}gbh<8)ho
z&cF3ljlMA&Z4sioMaoNu42y)V)J$-*Bf)z3+V>EPwjj+rg##XV{Hi-WMV*Tj&lIvG
z6i4^M=c@D3sd|UA=yBqZIGwktzt8a5vaD0`;*YiE?RBQV@bN8Z6tIB>#iS5z?+}fI
zerZ22oL_Un$AN;fJ6<>N7;7rt6mJ!cv*rU+sjDsbB|N%9yLmYH8G63{O{AOW*6EDx
z`PYXG#!@eL0_itrrMPg^O0np*khQCJL`sQuKLIm)Wn)<dSGWF5<OXgxQb=K>TF`2|
zPGf$>PmYKu&pkR*qim5{sS=k`{(?pe!Tx+-c)2eUlVz>1ExIcrGk~;<*Y&`wGgPC(
zs{-G>Js~~MlZ4k^=Z1FE{prDMf#rLkF|7u`iKS<4=tdqWbX-t@q|%#O;?n>g*+Sn#
zCnxy=UGlx94^P0LwT6i)yk<B~cfUXHn{D5PxobS34~Mnk)JTuU{+7;p%A*z%@rakJ
zp&Qg|i%{z0Zm*|vU}NcY0~#(44YuR=M%eggAC;Nj85j*Di=M=hiOW@9)}XN4OuZ$Z
z;TASA-5haJt{~kSFBPrc<vaK$u4%WWhVIeOsPckVdjR%=u%d9y(r8k>YMbl1>k!OI
z#oE`$<_U3q$?;QB*_IfumoE|($$|u9*RkyFecdxVHELfaT;|>d9BrOxR^${?*o<4>
zW(y^oeV0vSZ<7}oRFhsq;=)q<++Hjvdw!*_aK>i3>!DJr_(&9KCBQ!@2#vV4*jlz?
z^dy}pp7{b^CWX1@n&;rU(l8fS7%Y8(MEeHo*>0#ZmAr_y95stHLA7Os9apmBC(kb8
zEQ!dcoh!D7b#!;yi(8n62>2}4Pd7)3;o*bOzU8{0Sx(gm-qpw71I<8SRp5Oo<u?7-
zUE!SzLR3OPzqZTEuWy@ZU$i^6WBbNlGIT~7=6<r-BR<}k!SufK9RDsd0{l~by$8ys
zWiM}eu_TtkO-E~t4|1WxX=^^vtIzU=3}u?y0L8`xRlnAO=hfWj%=0X(XOM-K4VK%9
z8UrG)>2gWP=vHCVCzns+7v&VH+E~w26)V&gIUayb_2E$Pa!j}wbQ|9zF=X5BrFp9m
z9Lj|Gr@zbSU?m%F&-6)jidwP8c<1YDU0{(Tm-H}#QdTuRGTVN<L|<4r0?q{9Y|vuC
z!-M73Iza$wM5pX?kLBvkgsiP`sD;_|5?6Lv{7*&*T8++RNZ9s5Q<Y{+t5-Iv-7#(a
z?hkMFOzt;N+^753lgdWDQ-mE-w`bqeLC|Fja)T+vA=B04q@o4tgQ=942Xt&w^)g-X
zs2v!MX6(4tZ~fB^gX-otdgD0+g6jh&2El`T`BBE=v2-zWRWy2OFMPg!BE5F7;n*I^
za$mx}JzHDh;E$sc!vTh!xgVydFUVs(Y~vk0jO>jahDqP0D7|L%(n4F%xk0PONrr$q
zLV;c*CH4h_GRWkvsd4lAn_;JLs$^8QiJ~xgLz7|{S*0@+&u;aa!g1>mwpB=2ReND!
z!CW(C0|CYJT`)s-CWNB2ek?yIr(Y{wX0lwuDh{7Yj!>Ad8qPdn>NE7!$o4xz46W6^
zR3AG-vBEUNM8pF1+(6e%|2!5!G$G=2uSTs^rVba%ZpRF>jhR;@HpoYWM%IH-pze|P
z5qtJ3`C2Hh4yMY@<<eK1T;#-0(p%~o_YXTBEz|GA2FKyu?#>m(%q~n~&Mj<aUzk_R
zNfXj2Pi4MxVg%Oze3M`jhA-;Q?%PkF{H=Jg)Nz=Tl9&u>o-p!pmMCA;1;FfHJE6xh
z$cP3%p_!`*qKXijJJ(6Y)g_$;NhET5AJCHXb|Xu*3p)!$gGY*7rLojrX`xbqB*M?;
zy!H8(4xQ$1!Nu9eWN*!eO+SkDPf_bFkJ9;?QHrNhFzZ&o8s+{#t1Fg5!UhA`+s89<
zRg(d&ht8QnqP6z)W<FW(B)-N_oQ}dY3d|NQ9LrNHh8sveP#zrYE-xGQ%Kc<|#&A>=
z#Ea>;+zoQv{wfFId9_?^-sbae5C#QrWR5WLBOm5+Jbbp)6UFgFlPQ@&m;^ZdY5SUY
z9Aqr2@Myan0%_!>8wi4_ZDQ%#XL<z;RZXhgcf!ICwK3=IIhURdtk`yrw?vTvFMd=?
z9n{=rR751f^0LqSk27r#ml2WiCeT12P~O~EU8@B8`nH|9dUblk=>4ZYnRjnL(<*ci
z*1PPetf7#wi_p(RnVRCevWk_pUVLj1eTJ2~S*O-jVLE6>zh98p<9fM_$iFv193CDX
z&ud(#HAUImwTS6kWjXt9*p#s#3}>qP3ilz-&B9oE#uQA(5e|`IGGdf{w+R{sozX?g
z_S-6x6WS9GCE!uG7b<1r<JZ^c&n$S&K^PBrZB4Hq6BFlDb;QmrG~h6@?V*nEMx)|#
z7(^x3YC`O}VoNmq7CTb<>)U$lc_v@9I!s7FqIKTC3K+>j#b8}tqg5?5Tpb*?Jz7Nx
zJzwRiv>uk@t0yB+=mzzU1oOnTd>P#u4V^kL^v)};l|7@(aB9mb-n2oRx$~a39=3mh
z2q}M-Qqyy!P`=@BHXNMYt8Uo88DnmiK^GKF-(q~my^ETAhsNZd_4XTpiN)044g$#P
zVedV%DsLM5$_*eZS^!z~JikK0g>i)w=O<4>odl=1QCW>R_a1^Yt6XB2tZkn&oA!K6
zO^QV8Ct$Z>@iq;olTYG1GKHA=dXNfu9FrT3Gjka^x7WTw?9-mNy5)ar*4s9NQf+hh
z-u0+aK`s^X@=o&uu;dP5vrHLv#Ks3wRGOK|%D+zIBruz@M`*IYem&V>S6L-P)qPl9
zwnX_+2hS7&5-Hw{8SQ-Z7|j*iw0DeX)tQ32(sI@3Xl*cm*hq8EgOQ{{_2s-O7UwcA
zA{TQ#MG`?bh=ei_74P+|q+INBzy7(oI@d60u1lrZ-nH`e1ry~Brz|YbaM?+9|N7y|
z+G?6{e(JFSH~D;gY?17Z8D%1y&EtHl3$KqpH&=OcJvk`lc%to@!u4Yl^)4LFdp!OP
zu15*_QO03u-ly-U_I=@Dsb6Z}Q;qQ?7T`a?YzDx5R*6$(KYA80nNbCEGNc}Kr;@=l
z!0Ln^KW}PaDDA;<{StJV7vxb>C7purqh2cFE}LqF_y|o|TRjO?laf+jj+TYk#=TpK
zSJNB^-S%+=iGbJiYTx+Uml%SLp<EV$D@=$1qJhiqcR^d*V|W5%nTtnHRO;(RXW~Is
z52adqqB%&IjlcL;m|pi)@V<9eE@LGJRoF&;1SpMKg&Qw`A*TTmjJav|{=Wa|mTic9
zkI}+aZ&?4~1^A_n^Og<q9+9H}2*=`O&tm|BDvfhb0lgS~cz}7W{%8fY@K6A4A`dQr
z@Rj;dhyy=M>TbPG0!eri;rbpY{p|SceYj_DEB{0G=JRXQYG3Zh4axmqzM+3lCkd8t
zTE09_LBdhfr^7#xekt1)$4J~CO~p8n$_IV%;_(TXQ4~^95pot+|HbLz5Jy2j$8F)7
z>m;D!fGdhhJ{%|;b_XB5Lp{5k1`jqu)&QU*seDh5>VS^dztAI27^mGSB4~Kmr%szA
ztBP|qc0?)MRbAO{-@?rFjC)>YnnN~UkA9T&Eva4>rPqdt&D}yPX20UnK}8lyh!XAh
zd8(Y#H&Jc{Uv6|EfdXP>ebS#)xAd{O`LfnNreI&IQX~MEt3<ChH1K3={#&Lv7`*s{
zCx+uN>b=}=@zQ9rl+2pG@Y;r{v>GSAI9h&pz}{Q?p$jNrcALwHtXAI@QpgN%4GvW#
zz>&iIc@p)0aL1|wHkUgtShi1z(Mb434xYk}lx7jz4>F5!jTLFV=hr_|xg#Fu(=Nxh
zOadS_!#%{_`uwjD8=Q_lvM?MDMq3F&BWhO|6hx@?CfN<+eLms98R&-EJ~dj1;Yh_|
zIw%U+WLwaweEDM#{&Rjf0+zebZE23U6NTnb|6t32$e2d4uelrmFww%7EMAL7CwqnJ
z#Vw23&la|IpkR+ylzj4(R%kUU-{2`_O9hw?rgq@^8nK%U-nP+#Q+e&a6Z-O7&tPNG
zs<rmv4Iiu(la7W1VAy<{nXJ-v3)QG6xr5Nss0d9+=$-~Kx49f1yIRhj61bhL2lL;+
zrHc>F0tJ)lmeUQ!Zl;35;&T<y5#0jpGR#fHf3mEBZFTLsl$3m#pH`ikz^t7{IY))0
zeXDM?YkjXv90}>r$L&jmK+CknLnG{bn`R%0I0m9re$QaxAk_J|NtV$d#{>w%qesd+
zYP9<Jc+5urgHbEy`4d1Pwma?y=vhXwmK&8|QI!Ree^5Zii_b!vE}6|l@5P8^6`F)Z
zPmW5DR$nfjmlg0`ylj5cgY<+(N#&$|>CB3@z2}hCthXZ@Dx8Q1$;AcjJ8~UjMBvHu
z&3Yzkh4gfDd0!D)9-fJ5o_T-~#&ddwA|d~t6Pf~C`fIi}+Hy|}7MH_n>#eYNi^Kkd
za|XREy}3G14nls%x6%n18ubPtb=67(0izb8A=quPRy^Md#c?b(n&n)%xv<2>cli{X
zecUV2$xBK2-7wB}Z~Q7ZhCt^7L=FhSm(GdYR&a@|7U3V|E=K4+_>*b|su$Z|yxwcz
z_k_>WBu&7Ingsm-_H)%XqGu)goo<6n^lQU+WB2{@xA#+4cc^qP=wEwLAOPm^JHqSK
z`XsP;wffr`z9O{CWvri1Qp{Y4KN>xJ&IM)jy|Xeux@>;DcAp0)-2}jDACp5K>F91{
zSS4X=lsjS_uJ#6%88#`8pTA*LVIfRlF;%=->5jxK=C}6iPhw9OuO0wTCU85=jBIyZ
zo>+V<c9-`!R#f|5hXq4o!-xg`66+wy-?eQ{GZC(P1*UgLl}Tk4yxHb*go&j;QLT8M
zQ)NVx1d|AKxC}<R4a_AqKvYyU9Oj`h&tmhvFZDS~_0rfZ>a-4>cUJXj+Y>rxvdmbn
zkB=-NjwN7a1G@b~AMKRH{j=uuU5kP57kPS_*uhV}g!qYvFD>{5*%oRKTRQQrqvpum
zK2*+?VZM{&71)^o2zXS>2R?UHl@bN9{udojeEDy-9UQN(A91es6q=+r;W4Q|o`EEw
zV&4S#`@ifcr=ZRH0`lpZ$t+8ZWG3=X-ft_`uKqfbDOhwy_{359j_1cN7I?p7h}rDM
z|LK#+0~!FEZ56!gPai(bA*({K9C2X^C*%q6bU#a%-%CBe+N)os{Kya#y(Sl)#vKBC
zw3h$k)#ZGufcHaAEL)Y&*_O43tC~+VOV}nH;<-Fl26o<g!bdDdR~3&0Lgx;i8!iPp
zom=%%j;fWGUbfDDCSK`{Rk2bnQW5Rf>tU{ZCq8V_&-A+cIolCM1qe$=YGGF3E>C&c
z6%SGHv9L7ItDrq+J$RjNl44Yw1oKpx6a04JTUI_2Yq`qq)QJVHMm*{de(0bPIoI{X
zH)k;34-REUv0e<T`$z*L?-i0@W>=_qTVUAy{zA~^tTClHYQhbzPR+YStSDIm@)uI^
z1V=a3=C#@ZNHHo3EJQ=MnftaQ`MP{#?y+l8vv=#wTgT1C_sUAT@_ffpZg*-UR&WgA
z#|rIJEW!Ej`DHaHYqVJs316NvFs5Y-#nM3{x%-2#&C<d;8TPj)n-Q8S;2EPDFSjEn
zg04lyE?Gqt@;h7GtrK?|GhTc>k>zwT!Bv{dc5Qq17R=*g<G~;w$^i6Dj1m!<JvG7+
z*{aZ4Pr4-InYM5sMzW}y<|l3bWt+m@Bj_rPZnAWTx;a99x1R2!7l%H2|C{vjQ~S6$
z8(D_&z&0K(he_onS588@o0EAwhtxZ6%wy8!hnwSt#>B%(128>sC>dxZPuJDJb!t#y
zbVpZ95oG7b(d^%($XJ9HP2EbUHW4v!=cMn5rQ+x=#aIMO>rD~e^M{)U1#Eya5r)v<
zaRB9d=pDY8t$$;Tg?0mFDjzB~9}^&v`ZPe4TRxQzAod&KXR{8K5?7Y2&OTJ~Lg=<$
z*u(<029IeG1y4^`6thoXg;WlTEny?nH9e*ZKNbuAK(oYuaX0ve5c{xm?XZ0v>Ht-6
zsQn^D9kd{5qVSZs{3^je%cNhs0BxFyJ}4TUyz6SOxir=8qRz&<+wZ1)+kEOcAy2WQ
z%GHH=SSFlT+NjRDqriz;wJww!An)dL3oM~{9N)g%w4*zA?y;g0@(0c~))~x9v3(=|
zSVckghSk~^yI3nz3xdz-(22(7uq*;_UE8U>C#T!9*|DcRpg|ZSE_(zbo=Rnb2;2+$
zrtKm6Ar?VlxD$?`oY#XeT&sfl7@{MPoCNk^7Qq~!PFBqO-Z3X9XZ&9FtL!i41Y1PS
zHeKWTP7%%#%+nP+XMB;V^1*M0HX#IxpTN<HC@g%K<b!Also$c$QV>wYry{z|@Es+P
z-sT2ERZ+CulhCBzg`bFZ#rB6zP)jK1O@#5p*T~RsflO>+xd#)M`BR!(YL=I<3&gl;
z8@1YdPY)6*+ZqBBehUp(_yQ!bHw#ft;qaJ1*J;MiOHDCb{)XFuv?hLpU99q^U`vZ=
zFqN+h(o$$nxwa8ab>3j;&dJUF>hQycxmgk&Nr*hcRJkjeTv}ruyWZ=$T|*e1;~;In
zKyyt00e#0%J4%T!pd`L-3{Fk2YO`MFBF#oAzO*L?;F;M1mHfcYU2AifnmL!9kOrRb
zc-}zEE#Iol*oAYiLmJ?mkgF`{PT6>WgH*py<}3Dex@BTk+E!CUa<S7ra2NnLFGyLI
zdh#sG#QoK!Tuxr^f)QRS9mfZXcg$BSI~5`U$x<u5^QSukWhOI}GIwUQs6^jO>5LLm
z`)b}t(4|E8(^cJ8;pv}jV_Uh@)a+{BY5yp-V)vz%;!eN$&#?$|pBFS-K7F+DmdP*(
zZNlX|3#CM-$sgdZg*z!LH3WpAeVXNYYbMJHA5fC26Pj7XV{`jcFDj;3KUWSXcsz&`
zHW5z_iEC+qon74{i>l)NJ~I+@{zs-+el$7xDDE4?foinWlCSZ1OcT6fpg7H(LfSjm
z8J_gc-Z*(Q5FJvWu10_;!n=IsQ)M}0V6AQ<r^SBM0<^tH%*u;wn&KiRX`k=Ye%~5b
zWTC^bH*%J)Dv1^5mq8|C{@M_oOxKgtygyoEpCg=l_ufprIu9fvBwK+^-#^}iJ-yWB
z8ByzCl0VlIs&{$3(O=qIW0Yir2(dpV;lyoh-Zk~|ys3kn7nrJ_IOv=e-4*|kw=?gp
zJyCb1`v1ysf?$G3hZR=ZY)=WfY-#2{x=yOJj}K)@W)e?DxOL0fIOi*q?Qh1sF72rr
zGFUJ$-!dNt^|mk9TUpO~T%CL>e<B|{1q-92(%Xfx)gAMUV<=nR)a#VWydI-<_j|41
z{5;RMx(`e%j0y^#lV&4fc(W!R<sypCZ=*j^u)J2Bj?I4Odbp~}GcJ0}enP`yP=3AN
zdg1VG^VwRv)1VEDv!3)rByyA=NWJ}Ek^24^Na7Csi$t#xea{9*?_ulzK+F5zW`h&S
zE$(<oq{HGdk-PyZ{WJA!-}j@b&}^w*^Q7|Mq=^Osz5T~yZ`i(|KVd8(cVQM*h<c{k
z0N;oH#HPHu=`Coz7;zHtQ=rGST%8W&X_?|F<+?&{_|O`m&h}E;Zi$KymgnlRHvs(c
zwCKS61BhBrM{?IFFr8ez{0&+>h<et@#`B@@S8dF4z}!Fz0LSzif4VE6Lu2e&oZ%Em
zYLVx=(h1ONE^P}lz{%iE@e8e<NWOPiPyoH}e>g0{w){ZdobI}OfMX)+wlu98RqzxQ
zwL6xLfI+{>pGrP;y&3x1ref0@R@tdaCa;G@$iw-z1~BmOUFX?Z0KR{b%Ii9cllWyQ
zDo@<fsyD9pOI&d(j|;n4*hs!|rUHm6nQIAWX$w$KgRb``D@>W1^vYGtk`H)@mf~tU
zod(rZh*3LU08;?^;2}^6{$bAOJOQX%a$`v<U_p_j5<=Mg4&i}AJ@ofzVJG6S))CJQ
z-?5`1B^7iz{9jTweNtu$gIY^}<E#>~ba)<dB`Ry(2a6q#kclVIdgJKdS6Csc5^&gX
zR9~GR7&^@WqTeWFXf9B8TA{l~@`es%S{A_}7Di~26LssdJ(cTKqI)!oE7Qezgq>bx
zq01(QD48ptA~M{GvP2k1vDH!)opb*{oPK9{`R4}$)Bi)uY$D-#`2Q<m&2E*NcHUw7
zQ^HDJRTY9w4>xE)b^w5@8uv4X9GNRTK*JE*h!P#O9A2go$Pn#~SkNlOzpvJa0@v@x
ztfn$_%uKIu&UBFpZc%{ETNakkmG2dT`BV{Cj%-?h;v909um0Lclm035@6cCgih|Ed
z+^dY}C!B{c?|nZezy|S)@2A|(6PPNdrG=*Vgvkcaci=)_P@>xtAOY+{@04?7@=XFa
ze`Tyx@@ZWkNW9-xk3)6SDb0C7M>6Pg^Lk!B2|^`mVXQEH^=;936WUcnBi_7P>0+oG
z3?lQ0rBj#g004V<ra0<S1*+BP5D((3|3JwcYV43!OP7fJSTF}*4P}rVlwak_qSC{z
zaH4?vdU$KN8GrFMH{6pM+$You3Xn5^&1aQY_%${{%Ml6$zF+EU8Qf!KfPq<D|JHV1
z<f%Ox;UB^<<3=i9QUuO6|F4xy$xoBzR#X7>_eI$n@0fBPF?L{BdG>N;^MqCbkeA;9
z`(|dcwChn(OdmVFW)%{BqU-zwiTDD5^t%(ts7wYD0BM0l97!;xY1`LEEKF>AjNTS#
z*sxW#5LA!KL{*YZ^L14w%in1y@oC*x<g)vU{HL|VD+HY!L^b~fr7!salQNV5bLpKd
zNji~3lNPbb<pVyeO(V9#c^8HU-h_O<2`o98e@#}~Q*VMIxg4-Z^}`9dzHKhCPc)c8
zyE$$lC#2*nkE2k@6aG8Cy2(YLc^dQ2bd_XN)~ZK|9g%gsR9CsT)98IF9hHO42<|g=
zI_10LW?Q{Rev2_j$nwrqf3wOvmauxsVUzQXwMp|09Z+s7AO=HMbF(e%c?-^rC)XY+
zHj2?dq4|IVA3@mF29LI&R-H4s>GqXKCgB=7M=s%s#k8Ox2ib*uGOK9+ad&8V-?qeh
z<X0+#uj5?=yToB2>D2;N29k}s9iCHCK;Z$TecnvR{cgl=f$G~T%>c!+BHhg3!?2yy
z%y8+u=|n!Qr2C=AGWhGES1Ho4vz)DizVDm;DN8lijNN!wM<|yH;quy~!|qEn^$Hig
z97t<^kc`AxFt1dl<9b9V6_MJ=G~s|Nv+&HtT6~-5&6BiBt88{cPR~vf0*<0K8*TP{
z26xX<oKw_OYW=D#^TJozwC1N$u^FPgMrIS~ptg~|@$5nl#n0JKc5jX%xJ6UrB44~j
zqCezu4Hxs3$Bck8ACru&mn3Bl@XH@IX~~pSULK4VrjMz2zQIp)V}0&Iv*SviT)N9u
zRVAOoYtWQq-FO*)wIzhbAUmki(>Ff0Qx7;LwF2-G@{<mZSdaSRHx}cCzzvkWbF``j
zA5$r$()b$_Z_H;35)ws2EOhW#*2eCvO(N8uy^Le#p;bv4+(Tr}6T<KfC)z+IcQ=ZB
z%<F#oBtf7k%#v$MGs}}5zq(~7y}0ITkReMZfp#|<(^jlJ&P=hYmCj>cf$pLDQB*Y+
z7~S!>CGO4P_SiH#*3!u#PTOAgvp^}f2D%}Bf-r5;^-IcRK0X+louPKm!@IPD`Q5Nz
zl+QDOs3edkT;KwXnklgp+c)Qy6OqN_=3{J8&%yqJ@QF-_$9e?5Z-IL0d(oy|m3NcP
zHl^I&$MFYX(<q~S%@K4XH?^K8zRV_l?^xCtGqmFv(XsIhrjXFk)O$B&#9yxqt2ojS
z71O)UK;-xU8x554msnBr`VmgMMcmC=Hih01RN{#siYER7JVY1=lfjl6rp(bnrhb^w
zLglswMWK;|ba)V&LbD$IQT)dNn8p$-<-8~gn_jh|&pXrJA59=qtGcseMbrM*ut)`9
z>Rx2yOz7HNMjp?=ooO$YGaO}v%@b7;WWw!y-?YAKi55auBkHkYUBA-iP2w%S-kKqk
z`M6hy0-Se<S+YquG3IXo``B>~FrbciIB#wjM@<;sdp5i|AWUE$6*~QXf?01?bruNa
zJ^S6a{&PL}spuDuhNoV+*%GObR|;<dv?Wj_!lNzpHL@`cbglUEBLuGugebVztdFf~
z-h8RkCfp2k5W+Z5#Pze@b?F=Nx}9$_F1wP;+{>tST)&f1$^Iy#qD~IgdO^E*%v1{)
zB^gg5y!^>^*@JOt(g&FOm%A%Oa<<fpw1Skfd-IMm1Jh55_}k*`F#B)BkOj*-jsO$X
z*Lro16G8sX#}MFQWZGd?z8=LNEf`gpmhL@bDYx9NoTJ&EY?P+oi55<c;Idyv=XQRb
z>qX3Ts0~?o(QfJ+h`ecoD*G)J(Z0`5i6S`9LYBqqaT=nV?(`uEJtEuDs(Zdw?bdi9
zky(;`zA~V7)r^;BPQ{Xv51th1R%pTE4L?@?A^HPK;fsvxyZ&`T9y_>*G+wm|t+E-G
zG(@Qhl1`TkT81E&syZE1(|i9fKyQP9&DNGH+3vK?ZPlJrcj)dUIvt&yfB>0<2?;=l
zEnuG;bPNpNOO%<>*vWF9@3)Qaqs;7xj2N7kXt+gC0oM)g<8n^3`v$_cH(Kd#&N-3d
zhEJX)lk{s>DlO!fSU3Uejc^>Qv>+ilS3Y(AD12vOef?dJa!z5kRk;TpKj?MuY8a>I
z=|?1}ooUa|w;{K-7GD*te7|0Vgfk7mAV$-HqA6_4udRn;cQh*8V%+#?7D2t8{}Z|k
z*Ac>#<PsE8Y=s!fTu9EsSYG+{3IFZI8VOdg*Icc7KMdrerglo<RrlA0^|8h{S3{U#
zF>C^ME78LzG%6ZVR`teQ>6QowuDOg%W{YpGc|8lJa9>?~ft-6@sd*e+<eKN}SpH;f
z#hQRNGqL$sfVbHgA*vTpS+im#vZYSuE)6x=M;D^mH#0mY6N;2p)U`$CP*BBI=`=?i
zSPppy0{f@?=B&tihfM~r@ygA7`<@c<yD9BxQ3myebK)@ixISv=pA#pya;>S)&(>##
zR{EXFO4#=&-1kv83oCsRNBCIm28`w{yYqLE56_m0*!}ZV8_Ttbu@As|@KfbZLAAP*
zGbP3>XvqTJaw(L(m#gj<@x?L~EcU6q%H$Q=<rPVU7)C!eR)(r7<1=<m0Q!LUETa0+
z2#=OKu3=|s5qdxm#o1kOnJnL3x^Bv|d@FJdk%;R(9WO_z@)sqUTcN#{(1@b&KSYj#
zkuakwaUZ)=Gl>}c;WBsnoy&ab62Kt?dg_D7f^}J#Aee+iFk0KB!*WaZ+mO}bVzQ=K
zz=PNwbeI>keQXlP4M{9}=hpoP&f6<#190A;79*NeI>;l0nmlJ|=^`@qlJ636{3#cc
zX?Z(R2=xwYsJ?!CB3nwG<OZU?VgTb^Uapx6-ytT~0ptO-X;-RcYUQeA(asof*?wXc
z&Al0Z<}YuP31)-jhsQiB@yCAtS1bS!PZ|4(X<oMdaJZ-a=5S{(K?6Adw$lk<qnAzu
z6i-$_yhr(AW%u~af;(Bm58Oh<_$Z4on86GXVTS+_mi?zu|96(#KMWyYfRzSh*omKx
z{J-Lh{}*ly6G(saaFS||S=ImnD}a1{yhAO@>$03IC;KOYDt?KfF}%-W)cuy%^>A@}
zlI6|Cp>bt>aPiLZ#&G6K5S0$6H^Z#{?WIp6-{DH{-4vrR<f$Gi#lJ)W{xE(UA_#&h
z_0C-_f~gWI+>lxb0Y^!ua@T3i6LfGo&qbZQw@R@ZQLz@Q<kyqfhCJiKvGr+h(gGE_
zpk5zAYUOfjV%|6Db$uUbSgI_iedsj#l>~wU13$VdyXYLBsSBu=C}HV^#I_6!$lZ9H
zd@*J%(ua>A<`XJ6>Y4v%3AKj+(%8}q573fC8_)NpXuu9p>NTLBPU^fnOA@wHZzH}q
zUhA;mg(z?opFKC6E1!`s4t;d-P~BRjptQkueg0wPMa{i%BzCymlL?v0H-z6l_e`RY
z{#+HEem@~a|7t=4eFCG?)6;LcM2ooMLGnC{S7n&CQ^z<{|L_8we-%VNA@m1doh{6E
zL;LXs8Ro6MDAH}D6?9>CIMq=p)WaMQeMGtLCarh81!dzO82H)rn^2$rI;L6ZBb<wm
z=A)ahhw}J$XX=A?c+M8B_lZUd6h%=sKFq;hU!Ci-+B%3Lu0`!1YC@%n>f!P`KA)<x
zh&aHcD)iQGG>64z)I~I1!=R35j6)JBgUoCd^5b$&V6u3n2IdRMwRS6Jf*=<FyV{;@
z#Dsl>)w;)XW&mi8oSv6i3F0P6fGgcwqs*LW^_H1H9F?SfP2W)rppD;32h}wo_O;yV
zLSMg;1u?mg4X#?)%r?Bg_thyi31z)q-qgamCr)B0n~Q*dQ##hyib@b@Z5W1h{+1je
z7>5@I-*2bD;-R>S1+6FFVfp)i7hgd#CJW;<{_<hd&rY}c68GljTtaYRdE+Sla0zYy
zRO>;4XcXG_jiKx|;7Qu8e|>n(>`sYIua{$j)7sjqQXlgrP7E-hFH{)SYSErvUpSm(
zT>mG`RXpGUm(j-TKODHFeHs$)uI3uu3;r_)uI=JElMJB%oR?Rw9f%ZNJc3wlK{(u?
zty%E@z=B(+F+E#jT(9*-ElWYqfrz|jdlmw%+jI?R;oOxLVU6xCT^GA`_B+@Bc#S|!
zt7H#Kcd}47e0j%jr}yln(fiJObslF8miKeceQT7S1DMOd<c%zKNPs@V<klw86^lF8
z_9sQ;IuvwY4NZG)@I4+^oQ?%*E)*Z7E4ef_s0Y-Wn<JYN3fnvoFjxEF+U^*^WFS7=
zo`J#EsW_<0O6z6MkZN}lBS~lYg`DovQX{(iDT&x>pQeg80N+FkBc@*-<)Ey8D`qir
z&XLpQNanR8{P$j4=k2K=%Snfqhgpc5rh^$|pDgoB69bqa6w;IAUv-+DQ8L9){ph|u
zTV94a6ALS|?_fTWzk9Scx>aE!t1dlTGIK2*z&Tu##A+3o=9O9;JAh?Ri>z6`s+LQ6
zeZ!b{mB`}4Uof7R-P-$^tm|O^vvAF5u~}6eu_L@P<=xwSWy+4JQ^2PywD43^afBxA
zVk)yserd1yPE43X-2nj!waM?(R|OatopzT@v8UAQCY5zP%p!>Ia=cbx@+<sB6Gkt$
zN}E+~jJR}0G7WPX4|ZG(zZSi(M+)MlMpwNDJZCU}{Up*~bp#t8jS=Cprk5h2GZB>q
zq-QsU*ey@cY){w2d%B&q&w0<WaXfb7O6Ik2xE|4@ix-fG#o)@?yS{kTlK(aniNUxx
zhGX#K@%khIP;nC4)OWv!Pq^$;^P5deS#jE4h6=D-YXr?zSt?nbToy2H6KyL3K9o_l
z4k^`<?HD@YkT(E9BJ>MHR%X$UE14C6jZ>;Q8x+`l;+i8aq|m-kI=C*eZ?^dDML&0s
zJqMyl&OVdV6!IHZv*2r2`@A3a+mK_r@X9raZByOa#1w-{H==+{YA}FVCu)yeII$Rf
z@!8B5S_6(~VT}6|W%)uJsm>XV`oNDVq+`@73|FLZy4r%!`m3o2ncqh@sMU$wlTn$*
zD$5RhwkygrjRHqJfF)t?OjW8>h~^0EMJIf2X(_ZV)$h8#I^*xlxSQ!CE>>${xDcmS
zsNqq{{_+xH=n)5xjqe5>$Jj4ezI>;(%&yPt9jH?~^-+UH{-*-S>28l~J*xwVZOR><
z_D};7r_4k;wEds&jlH&PjIP=b5e3E1ynVdW#O|c~s;#t3;+k;>z_WNU7H(8x4whsO
zp#;Y{TK7g?X33n)Rh-(fVO|av*T^kwl_9iWC6Erwfcrc`FK(xClfvm?dMcj%!f!z&
zo!;@!)ja>4-)`38XqscQ!6c-rGWWkQ?u&nHI-oC9&7hx`fNu7TmsiL069-X72Ablx
zY{$x~Wv6lOldqMUk3P_7W9RQEEw#S~cAT*n^vXPMUXmDLLUEDj^(F8@FLj2h33Rby
zs+7v19El++n)(v^^S-!ogY+2&11fD@6@`k^#uT)^^F}bM*-!zP0_3!1lQe2ylNZ!e
z;XOBNt|pB-No0MN>Ia}gzRkKZg~6+K$8J<dX1{9FGr8_n_#9!OT>rs$XH=!x?gEeQ
z<`rA$z_csk-6^>gN;z&3v~URiK{G;M!$#k{w+%VIUF>k+<gOAg8xp4f(JPqW?%A`u
znR*2n+L?be8-k7S=9P>YgcYE+F_tiZCvoc3p6Oi*4E(n#F#54q=TM%`)@ZpW@g*!d
zObY)j35`<Il*pEB_&#`^gDY&ULF}H}PW_(S{)t7H<b<GRX{+f5G%e68_Fy<?P$Vo7
zqSzqu&?)>Ek1!S5QE!od@-GhI&d{XSyBx0&xR+e;;ZaG1|KSoQymtxn;&TXws1+*~
zYoVNc@*W`MihL@Hlzhq)z*p~*pY3Vi%_1lsPAJrcx-&9JCgv5wSnn8eECb%2FhTlL
zeydnL#2(NxK9kvZ-W_f`7mn|9apa}g`)K8Y%r#b;-Rh0*17-us8TmBs_f^H(dHRyY
zgL*YZUgPDihPR;177N%K!hs16__($o>H<U1a0ajo01WqDUH}+w+_Cq~y{)wqu1!3&
z6%Z<(8@&|p_xDf#4>a794DJ7(gloA%n1)_yd?c34@2+Uo@U>~C%N#M`4+?HPIqCng
zfICuRDXm@vgo6iGXBHOCwS|U93)K}WVxIw_6+{Dr4D&Wvu4UJpvsrg}D>2ZtU9U_$
z-C&_s59~rjtKIp!BxGc#Fm<M{7h?sF6p<~4R{b-MzVl~!W$*TE>4&)7*90DylWX^+
z&0HQ;Gni`dwQ8XbF^A3U*SlTg2uZQ~TCeoGsO=xroZrZ;;7@Y<(?e{#a!5g^+oa_Q
z{=JKM&5qr2*5r18P&1X?eRXg%!#zP0jJAqO;+0ntJ^6TTk>a_HPqizL$zQvOnU()p
z+I`dwhr%2JG-8Gk%df4rYu;0<cWPQaQ7CjXh8zgB3!7;CRCb-KEhhV**9Oy+a{=GY
zg&x1jv*9Cv-TI>^%tX=Wu7D>~GKAq0U7|t?trAiqv(4>O?gAd2*BE0So#FH-L3a6?
zlsvmZgWNr<C=P3VO4#M~IwQgZJxM%C1t~ye01HZ1yxrKDxtB6S$vK5(Cph<Rr<XYT
zKDAgD^Xe~}yK?^MM&?5NS*C-L&~Z=<iPcr%=UR!ZW~BNb@lU|n8h<9~vJfAxWW8rv
zB9%Tc%1_yjJv~2I5>X!fouJ!>!3zkw(38dVn;^p|Mh-rwLy<~=-F_d3?8H+s@}JK`
zpQrF=`znkG`(|6FlLqyrcQ_7gJs{`BqSins@pxG}B`;GbB5W!wDRlqzng8nPQ@uhM
z5-_^Yn2@vGL*r+E1&sk;w0<I=QcK{E$T<IB00&ke0&WKUHG&`6@bkaYh=6QWHXtNh
z{tSTwJ;p!P83742&LpA~3*3)S$Q&aY{J|{W2;7pnKaJpN+tCpH@)epNh`LO4X`EPC
z;kqGeaS~Zjvdr9u-y|@dqgtxKlo@8DRL8f8O5*PM<Wl{8ZuM1IK=;DLzHXCjVN<o|
zw1C+D&J41knr^l~S~!S$!C7)eDlk1uDc?UV8bobiExADp(DPAXh=6ozCIZkNx{Li6
z#d|ByFIx;yM`<*-%;ErTm;R@=8%SE{jt01`btN&JULXs;|6&#s#ss5jtchWz0K614
zgP;KY2F8BvAX0aDc%$A#lsHEH)@UmE<2fI!lX!Y<=Pb!2_D;sPF$UaN459P$^Ah?{
z7WiI2L#?ypUK#lwcKInOx}o|SiM+1%PZ)PYLvU^~8yQLg{r>@Q!oV3spOs*`W;w)S
zB}8X1g@-^^tLYsCu#<0kt%O)&y4g}vXV|}YAre+t)YLKrjxZS0h-oLn1YWvnX<Gm<
z)gs$T(14dooujXOg%#FHW|(ZjRLg#!HfrpaxVfDyBcvZbv^ybK+R{JUh$t8>$W#rX
zM68>Q!hu+h;(K19iNpl2*m6BbFqXn*^WGo)9my6(_%Fk(Zg6cb8&Xc;gp7I(E%QD%
zpFAd`B&v^YCJ<jwm+&2~^*r7<dquev<-Dv>VNP-BF{6Cr9#_Km-0@uE$N~tT;BvKM
zTBw%>JLq79vRltu6CW*gMU2J=q7fC9oE&QUCbC&1b=hB?rk&S_DtEh+Ho*%kcywUg
zc?71nb3k&i@qCN&@ni8G0V2LmakeTT;^+IXbOH~WYkC}#{O?`Mtlr(>dpmu}d^n>8
z<Nglcd=DB&7T50TS_m>S4E8lE(T{L0MevteMVs=pAl!+p1rhFNy9QSSjWq-w@DOtq
z#U<_)mxp)!w>T)@brf4`vyjmFLmE`l!T*_KSrkc-`O&{I9_u^q1_OBrgVVk=0~?zN
zSiKNcQd;f0H_1!1T9vrGL1FD^n4OCN+mC17F;yv2!OND$R%Ovt&bbY(SQ~gb`elV$
zzv<~}UrIy@Pt{V$pg@=lFzXj(W7lz>!%%SNtFm>Y8>y~*>VApqOV?`77RC&tDN94g
zjvh!F@~x?A0VW{b;Z_~}m#FKA?UxTUqkRg$vTQ;ABKeC0_&4tKZ~LB}>~Ns}k!9yx
zeq!vc{&SK|$Y+n6=JdKSc2*L-a7PP%!N7o8;S>0BX5B{oW289dhf)Q_o9nFxF2Ipo
zWG*k%_79%@OVX8OGy8wavpY?9rVG3RQSRV$>rP&z>S%&`drnC%p;P_fTU-vFo?HUj
z*us7Ww9c0gEmJ7kBaJck3`Kg;`(?({a>twBU<t-bl~d*90=_}q<wtDhiD_U?Hh5n2
zLt!y0Jpdf`D&zWfZkWwBbHTg1&7o?Jwc?1MFh22LQd<-)1-q327IckTw?-t3kOmwv
z3-|F<XxsDWm{Qm-!Dsb93@Y!v9ttabjMh^10}7rhY6x=Ry_rRAm|7S-`l0m|v;jgn
zuGJzCK~^BPU4b(hI7h_n40{j63<03Qktx>3v{txcU=K4}6K1ANW%#+&VZnvrMZZd4
zG855?j?Vn17Mj&`WlL0cA(%s-Ka}VwrLMEf9dx=a5Zaeek#}pq-2GmSr26x!EWy`I
zZPV^;nUp%~`?&R3seXv{jC%pvS+zCn=dNjK*sSsu9q=F%&$8d?pE;XJwttg~+wvmY
zNPGK{xVSzyDjF8)l*!x--?h4)To!2#k49BnaNH?@23U6~Ws??i(@YDq9RiY(41MCz
zzHg5BH{ZcJ=`&j>{d=w0=r-kz*HoEu7CI|HE^FLb)iOFAukBjVs;y^)fN<wG^NPKB
z#qJ@#jp{0k8I3Nilg0PZIq6PG&Uv~Ow1C^<$;L{h+3@0aKrdjUWbE`>a?@sk>7X#W
z7{~Lav#~Tn1EO7<TN^;wCZa;I5!hlVO7ERxo?|(wi+q^>rEdJ2yBTe}OFpH;_u@!}
zG*bAVmE&MKSb}Y?KEfvZHD`a1{k#7t{#uSqzxb_E(*YTuS*G8kM@ITr2Ck_`38H@W
znh7?Pk{D&AD4NbC`o$B#udPeA&;e-1Sg(!pzeBdhp9cIIeSKX7l89YU%~OyJz#j%>
zY%0Ft)Ui+vaYW0}OfQ@B4&tgXjgMPswAOjdSfX9Zzj|Az06QL^IzCnFE^xTQ_%_hG
zgwy*rx$c-R$kOK8+UxX~>2P%?xKFdU`GAd=$qsfP?e<|rstyEbYGg}AV##$}whS;B
zE}|wEH%7i#_p_*Z@*JA+z&w_(ECOdR4I~}w)}2yq{EDOhbXH-0DrN<6&A0$A=tGp!
zcWY*h!x>;@#)dd1d0xiljrXAaWjh2YhHHPSLF=DPuQ^mEE{8Oj^Q_|D(rfKg?-EYB
zzsV?(u-R<7vs6cWoN7FaW_NN`(m?#f3LTXY!8GShkSS~ldc7GD{oHVj(Yz;-usl>c
zl_wJIMp0PdWRtC|+a&>s>FR7pbuEIJMUQ^te=kh?iyK<hx8vUk${6mH-A_=*i}V8c
z8{PA~WCVAdmY7j;0D}shb{SmxfndLR%!q^J<A{5^=UOcJ*AmUfp=%|#tD=KTmP6{}
zCM~3%He4SdBLXtsti;~BUI|%ybFkPf;DWvN4y9R*)HPTI`%&!>kcW~VMRr%>(`)kZ
zG3tpr_4ZTB@_<}~Q=sM-kHiPrLG?uEiZDOAz00~b4!q`?Hwb-ujTa*SAWAXtW{=Sj
z?kfBkA4uk(dEPFnO1uH%eRvnN?L`U7*F1`)Eo!eMloJ9ImhY7F{+hFu9IxD9QOq>4
zItdLS%t;`0jqP@v30B=w09rUsUL)uuO>L&QEY=@u=idDY+7fblAUC=@wbel^KE^Pb
zYuo#ZFHye!R=`%ET9^^*wgMb5K%<n^V%DrYQQ;n^HAVHiwCxQqkhVQ9m#&uhcX8Wc
zdrrU=Et+zekd_&hvSpMBb8nJfi;iW`ECRR(QLX)o+8_+D9sqjN0{CM`uqRHoM#C#%
z>tJG?2)vb(I6ZDu&v0euA_d4AP<}g;*T+SMR1hS=&W_9f>WN$`uMY_NO0Y_=<iAeh
z!i<-~7X0_3xPuMtR4`VP4UcmN^;9ZQ{!9>-EH<uy*My?#-D9_!L`{&5T#E+0>(kmX
zw4+}qW@L9z&#p>5BVB@cmLm4|pF`*YkM>&Qn|xQ78s{{}mKwz9=Y0;~DKo2$V75&j
zZ<$}BxI)h6(LdeK>`q`=5<>oKg&ovtAR7vJajRd~w}lbiLGzp4<!jw?oW)J9g7hCD
ztMsDFcQ7*`<}n*mNS_<Ub{%sx++80<Ac@wW5sS=vT#V*mVmy!y@|T^IO9IlNKaZ)p
zKd`Sz^?pRHbLQR(n)8@U)=fHg2f`5Xn`IIwbI?aejqk$2lR3oFZPwylyl65wVm~??
z>^@|jY}I6!1#4!tiOU0fn|=58JBI^|`0AGFYfq7(*r56(tyGGNCo9Vd>33<O@3}F_
z^<U7UZM*Dzmppk^f&Hk_Gm^%^<S2fH3ujV^+gv*b)97M)!VXihB(!1*{iE8+7xSfn
zcR?NkUt^1T`gXqTI@2e)#-~L@8hai!di1IJ_^2=FHHRlQMuN!z>Gvv;5QF`fc&&-y
zDx(LaFnI&Kx0tVXF?z&u1CJ`US9+JUpxJCq-?TZY+E@h~;s9Y19uZDmi88HwMG)7=
z+f&||7nE<4U>B_6KJ5B9jzMcHDRt@NF9$*2AKPr@1K67}lVIL%bJ@=;wTK=?6}>CX
zmW-zCWc>OeWp-OBSFHj`5p7b9n~qn;O4o|pC}F}69u3G(hgFxv({)5=J3oAggXuIT
z6dRu{oi=d2EkEM(o61`ckEeVK1q&n+-@hhcX?JR4)~1k#VN4dlDTcGteOB7VUcynE
zy7tSlYd;<!DGg$S6M~c!M{gOB!2I>}#s3%1l0|&d{maQkfL^t9Gb4w%9Ti8R`0$Tp
zFlt?QV(b&3FrnqPirVgOCy3neb4@EP&wRo8hyxsx0{GY-V_*oOKSKv6a&lpH-dvp>
zjO$kyzZ4<#RlHA)_f+T?VxI%aO^@$&^iT|!nI#rs5{5TG)DsAJ1f%hvw_IOoSNkf|
z3TfUSi8E?3!g|*vRI9Xl*Zn1KN)LdX_f}!RB)NaYV>JpVX>40oyF2CZ0LZ+y0Kq<{
zr8Tov?aL*9lI4)pAXil1!KaMz10imMH<upSP1~-3({VLUui;IG`FM^h3$NQTg0r)8
zK}pUM@Vl?a+I4RxejbtZe&lX^)>B+kb@>tDUE@jF$45_n-$p4iM~T^kE2ZGx`?iC4
zDP*2X6T*nX;@HN;kop?+q(3!_$Fq;h@&_SrJrxx6ebnV3;<~23Yh`_Q?8vd5>h5%@
zeMikQqwFN$Bz!|V15a{%t#_wqR4r%EOwn;&<h;YpY_ouIv5}j$ywQ5$#kgJa;plkM
zMr3Q61FJ7i8=Fpx);N{s*~*tEXO|}e1G-VwvxJPpx9qCNQ#;?Ylh)46n*hxRkCn9Z
zsN!QsaKe@b4_8qZ<HqhpQ`lO^T+>?b%3c#DpL$eORaQ^iB|#E<NgVM^ea+&kNKS^H
zMNkv(LaobegR8O>7GqTB_UX>F{q;E$9yhfdV63zZ)(4I$D&11plGEqq-$<!8x+ss}
z3(8yTUKD-Q2eFcGnydE8b;421kimaC=g^_g2UmBt-a9y##xI@9pw;*Nh|LVXyS<u9
zqD?F;`&E0zhFVDK;6hZ@?u4P9o`Cxp@_Q1NA%}^LndoP#bkC$?OP-%OJ-gX&Lp$uO
zd81kLGW8;|*+IrTm1+=^*=6=AjbeG$TD=yPTT>_@|HyUdnqy6}YcnyGpu(F`4sn8y
zEs>d26b`F>Q8dbwG}?9X-)rpJJSv2{<d_$BBtN1ga&$H`c%Qf3NkmijXPfS+XUX*B
z_M<rVO&kp6JE+s>F4BApYKQ^80)^pXSAt?D5P_5!>@ESt21dYQAS|2nNkDE>X;eq9
zfk@<L&-aUvzPo9^bOGa@r_hF(jpf{L_8+m}rwfAl$s>q(Xq~o3<C<<h$`Xk=Z&~t}
zX2M<0-yBCnm`SUeUz5oZOizKQAPzwd?3SMZ9Zxoq)rwL$Fbq5%h!UmxEH-J6L96^b
z>;AD$$oowT{1x&$sHv8jDtb-+c&3>nAN}3yr_)uGy{#R+GU!?3g?wh{MzEi?NElr<
zU-^#EX_m)tRawtmGLy1P#nS7(!Y|Y(=AoEUCM1}VkHWxQzQDo%!V{g-9U*YLelhK)
z$9KHnHnbL_r&MG67>~=X$f!S2H5j{x(Xgx0>~MW5-%p)ONqO)coH8C;fLpOyP)prO
zQa`oZ%+zQ<byA}qK&)s6)e6Y}zxK}jAL{Lo<I-5l*Iv1nVY-s7k}NSA3|WgTm20n1
zO+qz`tiu%QChKG(hAcy5r(`FDtTPxhH6vNaTEiGwzn}a4e((Ku|A+g_`Qh_;e9n2E
z_u0>RpVx7(<D3Nl%SJ{g0T6Kt!9f~C`bi|~!LRK~6&4z6m(f!^JmQmoyb;hv&}f>0
zUjB3iJ|H{M(OsV78B{nvH@pmsOlk0ceTuK}gE5!r9wOT56+e~Gve)Z~s;a%(#YYK%
zIVV5AL!Lr+*Clbg>W|hHJl9k8e3^X~v*^7OwmI{u!fW$QY;f9rFadKG5rgOd^>m3R
zcfUC&lpT0sWFEVcQars8k{2i{IT|Ym4(Qt(#_wx9xhzMC6_wZbUmDIa|5x&bkrG`l
zhC{VKyjV8WhJ+roh4sTFKv7O%$g0DFH$@rU!<p8oT_>OJ5G;X9+G$^9BGT5E4j?`)
zDXH35B}nsqBbdhrF+N)gP4!Q3<{!5CC9&eMcx?D~_1QD7R=*p$pL|IEmUx9X(v1Tz
z6sEVD5tCj%5a`T~TJdo-sn|kozDdo#CW>1{qHj4}NX{63@R@W8Nvpf@_Q&>8n1Ibh
zG3Kcnu|Lxqrd)LS1R?Tn6TgEe*yuR5)Kg3G;aYBFg<-Ca@yHqU0Yp1Hk6dOiNwM@N
zm%+<SMLvz?Q=2a(gzUrZm%88TRRB*~1Bpr>P}VHptAuHWum&2dolL9jCrIp_SW)ku
zS#kEbfL3qk%k5AEt+4uhD%56G4l!8qY#(kR=%Hy8P#0dccl273#9b?0luW(&<S<%(
z5M{qlN=_wix|u71;9KC?F|s}3SH4WVLEsWd7`H&Zn-%=s>F8L$KrJ_Yd&Z1b;ZuoP
zX5VX`!!8F<rlO*s=8ih@wT^3lhjvguTsR4ip72mm%rTFD#?QGGWZoH8s<|l@hP~mQ
zxi&w-l?$o9fR)~$3;t;GNMr-9HVxg0$6a;%FPaf4<7k<`iY-(xun|z>VVtLozCo5s
zGhVs8!u`1Zj(yO(S2^=z;8?i&lS93P<NIEi<r~qGn;^4;3$&>(<6cLfL+`C8gjQWC
z2ewCSbYFW)nLJ*%4CZZd<6I4LxA?yFSrZlo=p-a_UPw&kVT!%Ke^9T-WdUMaAAusR
zS0I1SnQZAv?X^r8z8`$dLWEYgTP9sz&MUv21QR4fl&4my*Y~H`wp(kk@aHmuoq^*9
ziXx5V7a}R=8)0Uxo&_HmUT%^CUn(c}8|~hnTM5TyZ3q(yG~~1uf#7+{k%p3Sn^L>9
zjj_AAJ;y1`F=~8TmYDOkw;+kBys;Lqn-dX&S!P2cbc&q1>*J@rM{fypT!eH4$^D23
z;BXWvX}2MSTh*cmoeZ14jTBk<Tn@V_hT0m{e0O(ZiJp$fOCm^ptg&j+`#h)kmL(XS
zmhCwH=E&_+if#M$y_noocOnmA^#tGoBH(A0Hyrc)<`0pyZZ4(`OAId`^va!aBq|f}
zlex#`wHl&_$lQ$=XV7VYmP+=SODd%|!b$?fv~Ms?UfJiQNEbJZ%~(Y@+<(8`EQo8Z
zVe6xId4si>HRDLiXnAn7@5Qi@W4DJ7&??`ybqFU}$OpA;xyG>34PBFg%4yh5A;23}
z_5@wh$0pGrB}vVqX~V&#X*BlMx+n<u&PBM={(Ve0y<hiH-)<9Tu`pF6&ryC+5e|r-
ztPYi5Isyg{u%5_(+-p&T=aH1^U!_i@6Q*rsx~D#l1z87(;;acL6f=v*jy(|Q=uT=E
zqQF|wvJyvtBTEPU?DPZ208h`ii|p5)KSX~!wcrF;SNylS%?!`*#M=I0L483okJ$s2
zj6*p&!t^^M{8c25tmGdp#NnmeEA42g&C*cU0R*kS9Px0fZ{^|bPiaSjnX?7iC6bit
z@XHf4`2v=LYvZbyR$;omV*xcy9;>1V-_Xy%K=04`UN3Y2=A-pc#bXwW_<@d9gMbEA
zY*@g(0f=Skge$N?)Zl-Cw4RYB_gek|BczJrL-r(DKPw#WDR_BQxH*_R=dVjCcc|fq
zD_P^U!4BIStGX@yh1K)9z=d|wihVNiLeze#M0J8j$m{98RKJqL+wPILsI%0s*FUZm
z%v#3nxKU%AySQ=`U!Z+|c4%B+aEu$N*UF&11yp}M1u3|l9@X#z(LBp}<q(^S(CWdt
zy1)P4lzJ*vf0v#x%wG&+xlI}w?c!FS{I0o@gr+Am@!NcGz-=b!gF?R&a5G99Ya&|@
zZOv_PpqCwGWE!7zD!MvS;jGv{EkK{gerev(hTD~~?rg3tX;S>EEa-var76rY%Yj&K
ze%Jcl@8P1hvg1%6TUqa!CjA?RIj|2<C0mPVO9UUUO$-I?Auj%`r<O;ZC6hT+s_~qq
ztChdY0I5K?%`H&YgrJUC5tkg}4KVm+u|r<kSR$m?HGgn5tom)fI7xV}$f-1~+O&4b
z(ouy{aOxT(I=Gls9wP%{p}fKS$nra@=D3}$P}5YMkP?<1*;jisEo*lKRda<azo}mk
zX;+5<PqvTvc>~gA9vPnFG9a4}EJ+(dce5p>pS-9KWFNR3M<5tf>G*Ep09gC%;;zRI
zl_N-Y^IlQQ;qHSyDtCk7c0g@-If5{+4}Z^j4z!%=X?_1D-lCDvqj}bZ?`dC2PnG<(
z=5W4?=+zAJ6<E4Oyvzx}tKV7@<P6)Q3l%)Mql4hd9jk0KMSrd{Rw-GFcIL?F^tuT9
zwauvzmo4qeAf30)AiP{pJCz-xxGHhoB~hzw(m$w8;U{y>tmQswK-ao?$1^2P-zk%R
zT;>2QV|#3^#HT*qe~S5BXWOx5o(1XLZ@A!i?KP{Ywg#rD*`jVd7(DuJQ>bfgHpc;2
z?okXBz*@~iRx@#nO8WYP4{oC4X0x~Ar^A0Ki!>J-vgCF5eaR0GE@d<#Gu`U%Fk@Hq
zq(H1HE%%jtPD$5ehzdR=-v3EJ0N$4-ksR3RrGGEjk11XPPw0!TL9dX~&-|D_k(yQ&
z7r0DU1$*9-)E2B*qPCyIC-k4btqCR!t2vzygt|5DXr2Nj6#6@pw?$sfxQx7xf1Y@s
zNReKlB{J>B|2qNL1FEt|eH}9DIbpwc99d_!hF>qA$TO=nKjl4pNA<UYgw&0c8l{%=
z52Up)>C$hgX6%`MZ1VL$y$p%LLi8u?9K)C<>%;&JcRVnfIcjhZi~U{%6Rfx~t|3Uy
zc*Nh%V5m78mDasKsP56~D-&lJn*4S-1#o7vEK0GlX<i5j)MLnpv~_CU`_e3Ry~s1n
z!t#BGO-~A~)*yYyDW6WW2)j2O>b9n^<zSc&JJ%5_6Rw~py{SI3bf@x0-#57eV3=sm
zHn?5vQP&4D7~I~p969Ff(^c{8I_R>&Nt8@RKt$5%07I+KwUmXe%MI3MmCjMNAr#_N
z&GYc2vY_Ppfr9dSt-BS{<&|&7M261!O$`<!ElRrwSa)k-!R9u=iXsvdLm8A~fJ?5O
zeTZVoATTjSp82G^l{g54rq1b+t~7Atb`qzdv2k+~G{3<y{d<cWIxBBcF7pphcci}R
zyiAT$#g?iIUW^|s-^<ISplgenW9WH*25O@9#|oL<K63q5=F%2PXubGA9Ndl(EbQH9
zAw)*$&ej^bC+BM&K|R2&LP?>eMn%ac7PM930x-R6%0sgUOhr=%gWM_372c{W%4uuu
z1bSLJFu%)Trt``H{nRg)p)m`d&2*VcOmCqF@=Y<9e>SBP7(G*-*F=&AeU<!-+vDZ0
zGVQ-C!{D-#Nxj;7?&q#tpg#&=kTPhs&TlzK7%w8?CPBzyn`7GR->SJ%AljJ0)n{!x
zM98MLOvZyoWd9zmY^Ne~A6n(|l0oLe@;<UXUs&hd8uc<+HQ9c9qm%v2carfq;3K{(
zxn3j`*p^EA(b5w>=6)~0M0%ML$&}2sFbHkCx#EA+S2((aD*KC+5}+KU{mYIyqVQ7b
z)i<gaU`TqbUM`oIC9>!e@}@@Q5CCE3J#3;^udIUiJw6(O(=Hee<jK&x>&7qoC^2W3
z*+=KXjG#|{%U5iKU9ErZ@~#zGv1wp|>b?eupEfYHyu-%BnUWXZSyxAJiI3QMHXcwD
zpNuDInT;z2VJ}iVN^J!{0He+6#VQr&*JV_j?%=S<Mm2~URCf|$x%;SOW-z4K-|!kX
zK9h4oZ96vZOK+;d*gV*D1VFJAUOO|cpYffj3W7_Q+Uox*0ICu%7OgoarNQn%2-IVj
zoo9Kslvk#8R>l^W<2D);r~&0$wIZ{r6;qQV#V?49nC1NR4Q8f<(z#Uoy>koUpdWGk
z#`JgW{1^q@7P)yNtnAD~j0fwO2t$9U(W*Tl2Ze97+Jl2AS9b~R0f`y&{4a2mf(YJg
z*ssFFD+r1BGtg5t7Msk~4LbbS7f3|JJTC}d;<ShFuV4R&M43+zmp*h<<EI$K?zl%l
zIyq`tJU_(<`I5^6Pe`UuM*W$_AE}iHiGkjE@E!OQ=08~J2LK|67xn*V6f<r{1L)ME
z2;ToQ0z}CGk?pNysh`nnP5|h^2km(NM&tkxS^2R|eolxApu3gw?*A!|JiNC1#X$P6
zY&`ykUJIblUozhFH==)x`HwMyI`&V^{HK}!r&H2X{kALN`h3End(Ttgfk+-JGuyKz
ICRcF(1};8regFUf

diff --git a/docs/notebooks/vn-ask.md b/docs/notebooks/vn-ask.md
deleted file mode 100644
index f6f4bd90..00000000
--- a/docs/notebooks/vn-ask.md
+++ /dev/null
@@ -1,381 +0,0 @@
-![Vanna AI](https://img.vanna.ai/vanna-ask.svg)
-
-The following notebook goes through the process of asking questions from your data using Vanna AI. Here we use a demo model that is pre-trained on the [TPC-H dataset](https://docs.snowflake.com/en/user-guide/sample-data-tpch.html) that is available in Snowflake.
-
-[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)
-
-[![Open in GitHub](https://img.vanna.ai/github.svg)](https://github.com/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)
-
-# Install Vanna
-First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.
-Here, we'll also install the Snowflake connector. If you're using a different database, you'll need to install the appropriate connector.
-
-
-```python
-%pip install vanna
-%pip install snowflake-connector-python
-```
-
-
-```python
-import vanna as vn
-import snowflake.connector
-```
-
-# Login
-Creating a login and getting an API key is as easy as entering your email (after you run this cell) and entering the code we send to you. Check your Spam folder if you don't see the code.
-
-
-```python
-api_key = vn.get_api_key('my-email@example.com')
-vn.set_api_key(api_key)
-```
-
-# Set your Model
-You need to choose a globally unique model name. Try using your company name or another unique string. All data from models are isolated - there's no leakage.
-
-
-```python
-vn.set_model('tpc') # Enter your model name here. This is a globally unique identifier for your model.
-```
-
-# Set Database Connection
-These details are only referenced within your notebook. These database credentials are never sent to Vanna's severs.
-
-
-```python
-vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database')
-```
-
-# Get Results
-This gets the SQL, gets the dataframe, and prints them both. Note that we use your connection string to execute the SQL on your warehouse from your local instance. Your connection nor your data gets sent to Vanna's servers. For more info on how Vanna works, [see this post](https://medium.com/vanna-ai/how-vanna-works-how-to-train-it-data-security-8d8f2008042).
-
-
-```python
-vn.ask("What are the top 10 customers by sales?")
-```
-
-    SELECT c.c_name as customer_name,
-           sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales
-    FROM   snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o
-            ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c
-            ON o.o_custkey = c.c_custkey
-    GROUP BY customer_name
-    ORDER BY total_sales desc limit 10;
-
-
-
-<div>
-<style scoped>
-    .dataframe tbody tr th:only-of-type {
-        vertical-align: middle;
-    }
-
-    .dataframe tbody tr th {
-        vertical-align: top;
-    }
-
-    .dataframe thead th {
-        text-align: right;
-    }
-</style>
-<table border="1" class="dataframe">
-  <thead>
-    <tr style="text-align: right;">
-      <th></th>
-      <th>CUSTOMER_NAME</th>
-      <th>TOTAL_SALES</th>
-    </tr>
-  </thead>
-  <tbody>
-    <tr>
-      <th>0</th>
-      <td>Customer#000143500</td>
-      <td>6757566.0218</td>
-    </tr>
-    <tr>
-      <th>1</th>
-      <td>Customer#000095257</td>
-      <td>6294115.3340</td>
-    </tr>
-    <tr>
-      <th>2</th>
-      <td>Customer#000087115</td>
-      <td>6184649.5176</td>
-    </tr>
-    <tr>
-      <th>3</th>
-      <td>Customer#000131113</td>
-      <td>6080943.8305</td>
-    </tr>
-    <tr>
-      <th>4</th>
-      <td>Customer#000134380</td>
-      <td>6075141.9635</td>
-    </tr>
-    <tr>
-      <th>5</th>
-      <td>Customer#000103834</td>
-      <td>6059770.3232</td>
-    </tr>
-    <tr>
-      <th>6</th>
-      <td>Customer#000069682</td>
-      <td>6057779.0348</td>
-    </tr>
-    <tr>
-      <th>7</th>
-      <td>Customer#000102022</td>
-      <td>6039653.6335</td>
-    </tr>
-    <tr>
-      <th>8</th>
-      <td>Customer#000098587</td>
-      <td>6027021.5855</td>
-    </tr>
-    <tr>
-      <th>9</th>
-      <td>Customer#000064660</td>
-      <td>5905659.6159</td>
-    </tr>
-  </tbody>
-</table>
-</div>
-
-
-
-    
-![png](vn-ask_files/vn-ask_10_2.png)
-    
-
-
-
-AI-generated follow-up questions:
-
-* What is the country name for each of the top 10 customers by sales?
-* How many orders does each of the top 10 customers by sales have?
-* What is the total revenue for each of the top 10 customers by sales?
-* What are the customer names and total sales for customers in the United States?
-* Which customers in Africa have returned the most parts with a gross value?
-* What are the total sales for the top 3 customers?
-* What are the customer names and total sales for the top 5 customers?
-* What are the total sales for customers in Europe?
-* How many customers are there in each country?
-
-
-
-
-```python
-vn.ask("Which 5 countries have the highest sales?")
-```
-
-    SELECT n.n_name as country_name,
-           sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales
-    FROM   snowflake_sample_data.tpch_sf1.nation n join snowflake_sample_data.tpch_sf1.customer c
-            ON n.n_nationkey = c.c_nationkey join snowflake_sample_data.tpch_sf1.orders o
-            ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l
-            ON o.o_orderkey = l.l_orderkey
-    GROUP BY country_name
-    ORDER BY total_sales desc limit 5;
-
-
-
-<div>
-<style scoped>
-    .dataframe tbody tr th:only-of-type {
-        vertical-align: middle;
-    }
-
-    .dataframe tbody tr th {
-        vertical-align: top;
-    }
-
-    .dataframe thead th {
-        text-align: right;
-    }
-</style>
-<table border="1" class="dataframe">
-  <thead>
-    <tr style="text-align: right;">
-      <th></th>
-      <th>COUNTRY_NAME</th>
-      <th>TOTAL_SALES</th>
-    </tr>
-  </thead>
-  <tbody>
-    <tr>
-      <th>0</th>
-      <td>FRANCE</td>
-      <td>8960205391.8314</td>
-    </tr>
-    <tr>
-      <th>1</th>
-      <td>INDONESIA</td>
-      <td>8942575217.6237</td>
-    </tr>
-    <tr>
-      <th>2</th>
-      <td>RUSSIA</td>
-      <td>8925318302.0710</td>
-    </tr>
-    <tr>
-      <th>3</th>
-      <td>MOZAMBIQUE</td>
-      <td>8892984086.0088</td>
-    </tr>
-    <tr>
-      <th>4</th>
-      <td>JORDAN</td>
-      <td>8873862546.7864</td>
-    </tr>
-  </tbody>
-</table>
-</div>
-
-
-
-    
-![png](vn-ask_files/vn-ask_11_2.png)
-    
-
-
-
-AI-generated follow-up questions:
-
-* What are the total sales for each country in descending order?
-* Which country has the highest number of customers?
-* What are the total sales for each customer in descending order?
-* Which customers in the United States have the highest total sales?
-* What are the total sales and number of orders for each customer in each country?
-* What are the total sales for customers in Europe?
-* What are the top 10 countries with the highest total order amount?
-* Which country has the highest number of failed orders?
-* Which customers have the highest total sales?
-* 
-
-
-
-
-```python
-vn.ask("Who are the top 2 biggest customers in each region?")
-```
-
-    with ranked_customers as (SELECT c.c_name as customer_name,
-                                     r.r_name as region_name,
-                                     row_number() OVER (PARTITION BY r.r_name
-                                                        ORDER BY sum(l.l_quantity * l.l_extendedprice) desc) as rank
-                              FROM   snowflake_sample_data.tpch_sf1.customer c join snowflake_sample_data.tpch_sf1.orders o
-                                      ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l
-                                      ON o.o_orderkey = l.l_orderkey join snowflake_sample_data.tpch_sf1.nation n
-                                      ON c.c_nationkey = n.n_nationkey join snowflake_sample_data.tpch_sf1.region r
-                                      ON n.n_regionkey = r.r_regionkey
-                              GROUP BY customer_name, region_name)
-    SELECT region_name,
-           customer_name
-    FROM   ranked_customers
-    WHERE  rank <= 2;
-
-
-
-<div>
-<style scoped>
-    .dataframe tbody tr th:only-of-type {
-        vertical-align: middle;
-    }
-
-    .dataframe tbody tr th {
-        vertical-align: top;
-    }
-
-    .dataframe thead th {
-        text-align: right;
-    }
-</style>
-<table border="1" class="dataframe">
-  <thead>
-    <tr style="text-align: right;">
-      <th></th>
-      <th>REGION_NAME</th>
-      <th>CUSTOMER_NAME</th>
-    </tr>
-  </thead>
-  <tbody>
-    <tr>
-      <th>0</th>
-      <td>ASIA</td>
-      <td>Customer#000102022</td>
-    </tr>
-    <tr>
-      <th>1</th>
-      <td>ASIA</td>
-      <td>Customer#000148750</td>
-    </tr>
-    <tr>
-      <th>2</th>
-      <td>AMERICA</td>
-      <td>Customer#000095257</td>
-    </tr>
-    <tr>
-      <th>3</th>
-      <td>AMERICA</td>
-      <td>Customer#000091630</td>
-    </tr>
-    <tr>
-      <th>4</th>
-      <td>EUROPE</td>
-      <td>Customer#000028180</td>
-    </tr>
-    <tr>
-      <th>5</th>
-      <td>EUROPE</td>
-      <td>Customer#000053809</td>
-    </tr>
-    <tr>
-      <th>6</th>
-      <td>MIDDLE EAST</td>
-      <td>Customer#000143500</td>
-    </tr>
-    <tr>
-      <th>7</th>
-      <td>MIDDLE EAST</td>
-      <td>Customer#000103834</td>
-    </tr>
-    <tr>
-      <th>8</th>
-      <td>AFRICA</td>
-      <td>Customer#000131113</td>
-    </tr>
-    <tr>
-      <th>9</th>
-      <td>AFRICA</td>
-      <td>Customer#000134380</td>
-    </tr>
-  </tbody>
-</table>
-</div>
-
-
-
-    
-![png](vn-ask_files/vn-ask_12_2.png)
-    
-
-
-
-AI-generated follow-up questions:
-
-* - What are the total sales for each customer in the Asia region?
-* - How many orders does each customer in the Americas region have?
-* - Who are the top 5 customers with the highest total sales?
-* - What is the total revenue for each customer in the Europe region?
-* - Can you provide a breakdown of the number of customers in each country?
-* - Which customers in the United States have the highest total sales?
-* - What are the total sales for each customer in the Asia region?
-* - What are the top 10 customers with the highest returned parts gross value in Africa?
-* - What are the top 3 customers with the highest total sales overall?
-* - Can you provide a list of the first 10 customers in the database?
-
-
-
-# Run as a Web App
-If you would like to use this functionality in a web app, you can deploy the Vanna Streamlit app and use your own secrets. See [this repo](https://github.com/vanna-ai/vanna-streamlit).
diff --git a/docs/notebooks/vn-ask_files/vn-ask_10_2.png b/docs/notebooks/vn-ask_files/vn-ask_10_2.png
deleted file mode 100644
index 0a4fb6011d86bdd2e24a21653f541d704b370544..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 125336
zcmeFac|4Ts|36-d7L_`R5KgB>vP_bs!E{<^rBe1SLS>mGW^6O1#i=Zn5MnAtLKCtN
zLqb`TkT6CXyP2^Lv)$k8=G0rM&iQ<LKOW!j@A2!eGsjH#eci9?wLV|Z*L7bxsHeMd
zzU2HFGiEH@vwP>^88Za2GiC^M%@qQFIi44$H)F={GxqHK^9a_muVr4Ag`K-PlXdx`
z{LFwO8!rC2+ImAp$gD*R{L(i1>hXG<itj0{yYF{++vyV=lbOX^+h!ao7E8E#)#ltE
zLko7Tx)88_@4btQSFc{(>J~)XOYNXYQPR(_@;Tw1-9xXvS>pr@R9`|f)zXr<z16+v
z<_D3Pvu4j-{QI_ZGrsunOwYQ&FVkJk&H9^P4+|<{wdQ{7A1*$Ta83}tPq_2lH@|&K
z9a%8_Zs0F>AI=gZDJk8t6`i&g@NI!#gX-5yoVd*Su=&Q!jAy5V4t(_hlQ$8ztp4)3
zCjUHZw&{B7!lpORH8y|o)Stcu4=3==<^OuP>0<u1bJKO`ms)<qe16&7bl3LFq5N_v
zQ?%k&oSW`TXZ{M}(-X8`8Oju^`P+s3$}Ok+(q9hcf8kKH8f_tF5+T$*CZp<+74G=}
zWS-AY4`Dax$7p8X!SIVO5Tms?eP_B>&OxX;T3g?}<3<s*E4!t}ZfN%ERid5aS*rE0
zJXU_=*0YL)jhP;O^Tz8AWQHC!vT%Qk;iVIC54k*DkzOn4R)RsfT0^CTPyfv|`^r3;
zD%P_oZq?U48JbKj+SA|_Dr33XZk=Jt_RgEXcLOm}%=yx}J|n&Hx7-QZ&c-2X^~SMI
zS#3Hz$IE8SQ5?QQB;SbQOGRF;$Ytkf*!8?k0RLp$H_E&{v$PANW;b=bL*qMhY1v4|
z8}cPgetR;l6ty)Cst$%`qZtm@#1VA-dJKi+xvynVn?pAWLbeU<<5kFEo47}|Ag767
zn<yw9ql`mUG;5Pg%x+Ow!=wCW*V2BPCz7!R8(FH1C6Yc2rnZbChw+&AnPd}fCjUa%
z){#r$=7-|+t;o$hf7Gp4264CQjI8pEnL)>n<*7}(NkP`qr&Q^1JKsTd_t8E`G0J5$
z30L5_=v}<|nSot9l(G66<Gpq)t<gS&tGKecv3+Ip14ZMfck%sIxqYVj?(e&Kcsg&5
zldg<!k{}}lamDDj>F&lj?wlae-}az&uoi259;2(DH%>#~4q2wM==-`gM@30_f{bEu
zi-X$UAH+EgJ|hnh;j4nTkf3S@-f;6qx1q{8s1#1QluHVA<j#`mm*2hkDfPfMXUC6r
zMwVvvCJrt90W0qPma;n<<P{!;-edkEN=6n#*9PCFH_-83n2xyWbx{?!4^_qZ;vjbd
zcT9ygBo}i~5!=MxxkY`Ngtpbf+hBQb+1Y&c{B9+hZ7D7latXIQ<2sJwklFJX+%bLT
zs2B<DHDp#^Q|fac-#<|5o74BK){TSzv+06}ws8zE$sugbzOV(k)aV>az_PRcl*?Zg
z+shTsL*xAiY)9%T;RRXZU{6?UWX6T&2nm&qxVb2Y$m!D&$1%S2MKpDCw%ZY53T0Pb
zgI>hOhmZwHR8CJZk0gr1_>8}m3+i`Rz?w&KS8w$AD3Ig#)oo6s7ckKIkLx-y*jWd}
zo>HC9xEsE1)b<(EEkDojLPIUMGxfn`NXlr(%2v-u;JK7FyL|m`U1(*UFKp1{GK=hn
zDmN=%6H}6OEzBJ}WnlQ)!b|EagRoATEyHgY`0`QsLf(Y;c^zcj(X|I6kBA{G%`+O$
z*h2_ish;XoF_P%o{p;LZNa;zbW$St2(OzZhWyfUML(dy9Ob_l#H_r4L=_CL_PCo0O
ztKH^iwT|dDqRlJ9am*moMOq)Jb}~LDKtjS^t*uQQnO4e8?6pdVTjN8WA{_t%X*W5&
z_p2qJn{j@09{7rAe@rfBvvb~=nukWCWYtVo`ux1&K0iU>n74kJtnL<ZdWLRxFNUnt
zVCh|XSVD|+Y>nv7>7m40ex@*G5o&QOzY0_ChM_z}FyE1vI-9I6^7X@P(Sg4^?h^gg
z*8INh_oD@V>Y<t0ZE5z-hj7^XYWAEy-{|K_5mC2b<?*%_rgYTTzM7um<j4bvrZOj-
z5bcJGNa?oc<)YY+R+Sm$4_{icMiHyK`pnE}YCYrpG63x4ZqJSyut(B|?+l{j@kIP>
zD4Rt|tu%}Z?y+`EPB+XRWlOOeVz`0C(BKuLg@^L!HN+EHjC@X6y_u%t5u)po=@*_k
zYZdU^K~5j%Pm?nI<4uPFTz13Gb=^0=4N$Z$M5f+QnEsI9FRyn4x$1-!-}~mb8&b~+
zGG6LDneHIKU$(6RRxD*A=KsgHz_EgtK$})cWq)lhla~qvF4Fn9$%?Dfb`0M7|GN)+
z;;#Y_|0K`c9F?&J;Wf`6b7q=c&&$m<W_qnNUAe)tOtoxlt>x>hX`4r`56Nc5HoLKC
zv>UsIBE5EYPM3_a9*{R}w%hns@h;ypn4b4dx3nzzA<LkS_AY5g7A@cmt(bubR`jx7
z(GqI5@@vVSH3K`{G=eT}F=Lk8dgZ5Ha%le7>T-7vko<wim(vyi9hMrhHfEM=**on@
zoA!V!?WsF0CQNzZ0E}db(Wb92WF0VD5nDQ!(iCJ_AcxgOt2Kv;kyL^XPg9ixzk%I6
ztair^R;Jr?ihjH-W9C|I0Ws2*to!pmL7tzkXuBGyst%LlF$|(V(krp;$unx8>#gly
z`-2lV0n8inxJ_{f0ANcrm;ZQK#eV7o5+I(vST+r(UA_veSjCT(5i8D|N2xJeh<PZ8
z4v1a)^@eW?0iuXHvd}>Sn3{S=;nN>43p`ylSm7T}PJDf#g5|&|1}!0FO6Q%^X9iJD
zWhp3OZC5<}S`xD(fhd|DoZ3=;9qgux$mJg|D}{Q%M@SJX>bh$hf?cw^zz-8Z&Fk+H
z^zp+C8x~odER<?rcj;@(d%YTnV(rl)lgq$113fn={%~2>1koQ<tqY_6Qi%NeLK}3z
zifv~zoOKaYQBrKCBz><iWx1~W*8%7JS|Eze36fPC9{^cZTsZdQWr3$7fEDgEubFls
z6`+68tFUOK*GvLcI<M}uk?9Y0K5QlMT(&X`e!MK3!l<zYKv_RrUHi2e2HXICae1M4
zQ;qQ0Y(`h|<=i(v*7;wiIO!pNnc|nG7?DElud}zd{=MVebhkP?40wA?_A8S0E)e}o
z{&G;n&RLseYVYEC(8Mk@LB+rCM44K+v?WOWPMA<?*tyPMdYgl*tP9OzJJS_*0-tqR
z!?qB4>|tHGC2=cpe@yDJij~O7GbIVV;kq)O@BA`jM=(ua8rEGM5FvD`9gY41=D8pZ
zI3Qb{tAgmukN1Cho7W40S-QN<uEPMwVxSF-sx)A!FlE8fh_9|E1^hzGBez5bFqSwU
z*k?<~i;*NAZ~QV2Y*PomHuq4cVJq;(`^RBFq<UBpt9r!l%R1=13y8rUu~o_W`#{tg
zGyx`W|G=1O|EO&Bm-gBMikW_$Xfxk%a8FtqaNQNVQ>c{(L-%|cS8`SYmm9b>ldTL~
za+w2gN4IYPCvb0l$d@ke><%CpDR-9<3*csMRRhacS+&Niu!)1Qr-c#@mla$LX!ls_
z_UdM_U0V?=^!)krRn2KqYo;#hQ*IoMOaagM3Jw9Phc}9mdYzf6sRMEN2-oJS<9znz
zka7l{3x49To~|=hO0VHG!lORfAU=Z{D4#j8H+xI`FtrZkM5pwkLlUL^`#b8wWei<n
zhU|nXRY#fwrwZ?GG}wy%B(r!uXRu{1pSP@zy<eE(wPW5F8+RQ6{5-l(dOdKO3Ns-V
z?LRv=5+Oz!x%}Iw@ICR*ezyYJ*7^>41cYY8SwKQF*2ckJ)NrR6(~#;Z|3#LOv;jQF
zGM)awm?Yp)Lqg5i?%JQ_Zb~>=Xog;Q{tM|3f>jI!nvE=SOiIx)Az@u3P<Whe75p6Y
z|IKqWcVXVyHFSoOz1pM7law+PYvYoQ3@trre9z9xD5H#bJ|%}82%4T}G#K1#bMTwJ
zM;mFccPz5(;4NIR;Feoe?%n+nsX9=k89MLbil?oKVNFG_jb8RS|JguJ`Nj#N^X|?5
z!c1O*0<==yr4Q*d{8wyQ6T~i9S)F;J=6>oc)i}gRZv6ge(<j+3Rn%&)YYqJw5l88H
zoiQs_DV|hsP_}8<FfneORZ3=+@13%>6tUq^6~LmME<H46KH1Pi^NLLpL^Dve+yv1s
zp6p`Y7s=jv6bQ2(%spKTOIo2e{jxAKmpU?slG>Kj`veqSZtmH<jHa@H10GM`y!pfh
zP**Z@%0BAZP4QNII5Y;X9qz!Vded6w<lF8pP9#Pd#OXzE9YYFJQheWmq{4~k?~M_r
z*w?Rxt)Tk-o{;)=1`U*)2=(Th21>Z&e?}l#Ms_vNJ&(!BEH}>HfBWfSd9l*aI8nBH
z$~ofk;VJobImlUa?^w6D4U)&3E|jnI$34O;uv#!yp6!sYMRrF|q7Etjo){^Q(cAC4
zK9d!?D43U4ozDqv*Bj#=Mx{}uZ)_QvB}_R&d3;)!vOfQrxGn<gJtz9<o5ywp_2w{-
z4&~XX4UDkCG}%5A8Iz?fivfk?P1%~>y*tWk<MQqbUp&dec8|{q^K?Ullu^`0?=%Cl
zw!6`K$7{>Hzf~7lzist4206eA)!FfequoL|;}PEJWQAkpwg&BOOA)3h5VJ^5nY=~3
zhUn3LbeISUy8CdWGU?;hjlOI)jgI2p+aI&>VNyQ3r`Qj3q~fHw2{W$7a1JmK(YV>h
z%($n9{`QJkIlViFGg@g`8+~Jqju43DGxLf$zAQ`eoUtfPyV%q!uUt$-I-Am2otq4b
z4m(hEh#YaylHB0>Cep61F2-{0{@csL8jJ6uw8xqTnSRhb9wzQu5Ithjo|wxPMtciU
zIO=mkMSPe=JP!YPC(1}0*H;s}8QbT_x)nmU^k}uM=KqFidw$8TzT!X`sM^^kNJgsT
zc>T$E7N~2(pGtcUr-+ea4Xbir`>9uFY;N?+G~CcRB1Y19k`AD~bU#mGuqBhdh=1F(
z8-g9a1g}*tu~%WF3qwmw%Dgq<6czM9ePMLReHEo!7ZqU<!|OBQr8%Y5b=c*d><yJB
z3^k{A$3=~Zr<1wGBeYhi|JfVPzIqv`b3mAK4Uu!#XY>VP6v64)W2LMs<BEj{)$HzU
zyN-@15u6PxT)o+*u<2Zn6jSoxMY|O%Z3~))8yV}(`cEHmL+1#}rBR*jZ-C_9B%G1}
z|3`{Pj&SdeULOk)b15=>@{;xYaGlA}AwDyA=sC)yA7PTLSOMiXf6$t!z1sCbjONyz
zeTU59mi3m^)|<rR4={Q~Wq6&X`CV=PvdRS1z{SCCJlp?astlQ`#Vzs=OMEiE%d_Xb
zBMX&>bgOl^b-=!2okO)Y8OqVeac|>-1ktK88wD&?dp5k4-zcOhOksPOG3%x5SHt10
z<T#w&>cn?JHTPXT+4wtl#}A){7)l;Sky)k@DntD@O8d;~pZj-)Azd``6z6jn@vBzm
z9Gf+}BpvwJEM<l$ntnM7jYtH@&|xyDLNi&Y#N>?khoSJEU|F}b<Il-HF3k79$o_-B
zRer+XCa@RHG3o_cW3`ukH%~mWO^g&0ukHI{zGmv_KTVuN1Iy?Lq~i-mi>FTKDd#Z#
z%lt#HB<jt#^*TWjpzR`R#>2^nvAy_(sx9spQhOrx<pl&px4YmAWjjLy)%l635A~Ub
zo|bNnZM4y*d<#QM_cKSUViA_9$6ZY}F!+O~@UKim9nghHPDNhXdIOuDH^_?n{xZr<
zePhAeBZfyK4&yvJu9f-uGZYmLn6k+ZnvKRh=vA2#Zz~T4BK0n)`e1VPTc~%T>Tes_
z_!14fMTiX$p1ytOxovP+`J0o0Ejo9I#fu%u_iKxSy!MWl>id$Qqx17nd1P$=JAJNg
zBZkbI6AY1}F^ZUGS8oU}dkQ!{PX@v{YNOp={2oo$4=?yP$6i!RTWOD6vE>k@TncmP
zYny_0r&9|#<ps~x%IOH+z+VkH){V3BW-{20!RsA0om)1<dDFA9`^E<eCQQStF#|-Y
zTj}a|OxEr<PT1J3kHAwYxn*9pqw;1h_~W}RjdncA?psA;VF)H`QENI{BZ`AH57YC8
zN(OrxTHhaibDcw9i0$Ndt)V6KqF3B(5RSmGEbPjigHou;OQU&3dF2J`hsw(mlMh7<
z$A|YqD+6{x!5}xPfmDz5s*XTjMFAHB_ykwIh$3Mwzaw$+lHad`suZB|FW!Y3S!Oqn
z^&;82x!omFWih!Z{7YLL2ie+>pP$L<?1~LqXEpvtoDGoxhW#f4`CtV%Uu1#(NdAXo
z0Pd9G%2*Mo&Ly=}QO(LnMF-=V^J47lOXRSTCgB14%(2<%{mH&?UbPjhNG!0t7HU^q
z6*3I%uFOgb;LBpR?ulIn*Xw(;g9-*gZmdi;NwjjURl<br30WHo<#Xt%ybQAio(N7~
zCSHR+CdwfrIq?pmnR&FpB4w=H{@VvTnz6l9Bh;O#xaj8g8w1ilU_q~iDI?{pf;Cr+
zhI<a@OBQ38^$kcia?DFE5)LG?Ry7BYu4pYZD-LJdv=&B{aUK+nKynAd`P;$&>2V)W
zwn6yAPTh#IE~wjoR0!ln#^*uCrLZ`69(tt9Dz%<-t3R%~+4|+G{-^DFv{o{Q$7d*$
z``)BN`9uJ)H*sjCLA>Lh?NOA&6Tt2}A03eA@U1fh(W2|E*bpMp$dbz+e0hJ)^F^Ef
z&g!d;HXXSt$y`4(#L}f;pI>r7<#OiQ$q=#yEZ9U!n6kIv0odm~PiLmE@iT0;U*r?c
zNiL44fdqoqz&Kst5>Tb>mp82V6UU4tgehe<KZfjsdAOF+e2x@<kXR<CJ)+N(jsApP
zE)gf?k+b?Q<@O(<vs=*R=?#`?Z!1Aga{GPIu(A;8#>EmkONf+`CQFZAh^<W8S8@(y
z)dr4mp4PRLhcexytPcgJ1?+zVtx{`G1=iTyy&7~QtouNcSDG)RFg*KH@2Lh~ErnBy
z?@R9#CNTM(R@jq`r;7sFD13PoA05F<BLrnprRi%Gu|_AZgpb<`k?h|ddt|Vj8EGN~
z{Alk@6)LC?-oF2#PJwM&?hW$M6k_3gRN+G-bAx&dRyU88NA2tk$K(w;+tHh|?RpFd
zruoA(VyHC6OAo?iw&Kh@`O3(JF=!L~tM|Lr0fKe&_0{pbndsszs0fS-RZAkB+pwHD
z7)Yo<9$$bJBk9NertcF7r;BH=@@17I!{eb+6P>l)(2Yn}6A2!Qe)cBFs5gwlFpAZM
zWjMe7jMjU1a3vyPY~g4zCDS8dSGQopD41dTC^xzsjdP0^WXvZXtdf#so-to_cp-Ml
z)d2}161MiQ7XdRteR6*zNEE*c88`W|2@>I<HBh^r+!e6*wjj$#j;bvW5v{nB?WxfX
zI(Xf+4fy9AE069qG-vd9B0t_smgA6|UcbJ<62Ak|4d%H}Zn#iu^qCY)tFK+JQjFRg
zn*JCMZXUi(&y@EjaplT+riih$b2EwA`WI#rBhpo<YH7+60x_WINrsD_Sc75cL`{|^
z4^_2s;~psZZ9qA&nLG_QP!iLxOCRXr?dsLi4U_hr(d=Oh%0elFt0@{UYYE!PeWday
zw1_CD!%y-$BG0r5c7}syL~!M?uz@FVmA8Rf464E9%#Fa4EyRvomY6qr*N1R9`R%*H
zd0<jz+rBbW{YFjtUFrQf<3?5rB30xfzsw8inDR;(<uuf~V?P(@$nDbS=fvUqu%H}7
zlTFk*5S%AAS0ywR6qo^eHBjuX_Q7FjOZm&yJk()T<$bWG>s_ToHJu^4cNM_qS|psk
z#;66gFjj~J*USQzmqF<;lStXHs_<O+J;@LWEh<Qw+-o4XIvj=;fbxt-2H*Y(LRjFd
z06L@+e{=g?Z*ZxWM9*IOyK~|OAZvij^qGhq>DsmDjL^4lSc4UUAImU@q1!oK6FC?g
z58sGy1-`utIe>&hhXvg>*t7Dr7I-px9myTzRB%l`VkQEF%VMw+P>2;Is#omZK(&K^
zEP`d@_gf4@@S1rja3ceV2)=y{!iMd}SPs4-;lbjr7!XQXrzknd&D7#s71Lw|?+p0y
z9I*3o%4|HmW<CMjC;@5!lI(&c9;-yu@K7B`4$nOcGOSE*HFS%#6w_v}eZe&lqEx_2
z>K!DRJs^lLz)t*FAcik%AU-X`!(zK#(Z!c_TQ5I5M-Ei@d6Aj)poLhKHLBBeM2Ix;
z<C(xKC0ygng8jV@<Wuj^1Hl>ui*3LCStwW|bm^=XQ2;7fR+?c-g-Ew=N-%A}7QrhS
zi4Y=zz&RV<%>DMm=YVa$ofcMS1F@;CRn37)@9dp_o(>mi#E#@#TLH`cuNGk8G#OqA
zd%u8X-Z33Nu$kb;UIn#~ZO?tE6zDZ9pOFYQ9{v`H4QNUWWUII4(l!<hofr+(x1`KO
z#2x>oR=?Ehms<VuR=>Q}uORp<2>!~ge&trba;sk{`~UkX`z=OH4$g%8vd9jU!K?FG
zjEcBwoKfQ`|Jdz=Ig&O7j`p+(IE8VfW}@nGoTz$0Z~cEzi-Er856U{wzWw*bCg=(O
zz_-Gk+rQDoe=d9AcJTKrD7b0+3A+8qx(<fQzh5H$64n<*@c+xg0)1>;R<mZO0<ea=
z+I@J@wMoxTHFhq{yhL+Xd3mm(`LXT<B9S~Yfk;fME@)$eBK#lA>`8rto7fWbrWgNk
z^MA4l{cnJh3G=J<%ltNcGie4&Sh(%*FLl>+qUG}qq-4_IK#%#~l>bxZF&&hcG^uCQ
z<bMU=Op(VoGU}<q{70;0sywD6IFsf%Da?OHyQa!xI#@EP+mpilM__5HJiY;UO%>+<
zE#+!E&%s;R6UOhSo~YqI9lIhLf2$v(mA}80Njnx{vEb?i(igvbqLnlCaRC3|A5g>3
za@_HluJVZs0CWug`<GbOKVEmdM_o_J%q6An5#5K8=b->5N%W!juR`R)hpNa}rhA$L
z!D50}-m&1Dv<jV({NTKo=Q5j*@5nEhL=UGbANc%Dcy!Y2;a&O~^9#R*$bGy&DueQf
z&IQvR#`LWAQGU99#MX3kx0XAF4I@HCK)X=Ont}77B1L@kHTqWRF5qKf#6Qs_DzL{_
z39v3sz7Su|)LAW=CcFS^tApy3GGlH|Qx+qE*2Y9EhGFeVFEj-g{g&LvseYO2TX-MD
z8$=YC?1nxguWOAktAP+bet{8+ksS+Ksrn?}MK5Bj`(r`$ju;gI%N_GoUZ^YpU6eoo
zq`RkpuC)bdSDT6R$l2*N(BFOQi9drriW}qYtGSzCvT)<b9*ve*0@dQF^`DJSAq#bR
zG83~im!{0l(E8FCI9isdHu-HepmV%^D=#j|JZ!vU`$Fu>fVP!Fq|<M%Zxg00F1dBR
zYqC2RF%A9Q-3#TeFp5JDUkzA=fuT)|P*vb>bHPBwLLuiJ<}dtMWeUoOCTH>v$U~nq
zs$M>af`5HD6W6xJ2yQeWFi@L_-QX>GyOBC02L88qMw<d!L~RPBkenNo#&ha7U%%s0
z&Z%#vugY_Le=f6kz>a+xA=};0!!1AG1@|~QTmd}#B}~3D83K%oaD^PmNOt#(^Fe@+
z<nffbM3`cr$M<UV4c6l9YrZ5b9%iDdE}y4Ao5i2#DVW7aQ=m?Y)pL)JHKnG^%~TCl
zs@mPT<y-tdH!x1Z4Gi}}fL;qzdTtI2d`lQ&q&gY^`|IZXw(V{#K<K3vxv|0&e_31>
z={Q5H>|>n~0`JomObfGuauiLUorw4&n0NIu#gFyjn({h=*1$DhFWKu&c=-+86<|4O
zI4_ro?D38Zgm*mJ!c4%M{d-wJ_mrM5mIF&nGyif~pyRVR4)lEhu|%*JI_h&0q1Ow6
zRjFN@wyJwBJU)kkfV_It%i^JKSs~O7PM3SI6;p=awxj%L1NXkBdw)8op{jXU!Y)KY
zwX89%nnC^;B8!Ui;lB_Cq(DGd0Q{dXTW*^{%gs<+)2kqjnyh>UPzaBi0*qhBY*`Xy
zH1IHQ%f#+9D1Ny+MM_v%+E^u;u2|jVS<1J%zq#3ubpVZX)L`G%A4X{Kv-HEGJ-l2z
z=~cP6=E(Xy)#R8|E9SL1WeGCM5)VkE%(^CPa-`na*1nNv=MacZ77kN-ZN{|pZJbkH
zaM2FG*V~gPW0LiN)D_wp_R2s93LjBoc%N-!tLj;hlb#Kh!72Ag4{<HhT}`*N%+O?y
zE$dek6IU8pc^PN-cZ8Jh4KZA_vWwT*_Tf_SEhBPU#&yz@%foX>vUH2J`^|sTdHV52
zXqg8RN@IW~d;dc0P-p9rwMm;&;QoCBv|~BPs^%_KYCK8bPyzG}&;{JP7qTK9Zlr4v
zM#GbiiaC0+p(4D`-N6>pof+rtCg@v@TRy%P36(dfUkACjq|-#mkS{*rS(}bjsPAYC
z*@;{fbYWkdFb;?FEb3jfe5qs)m;ke~1pK6pU^I}A82}x_6o~zKpo#1O<dqZUgtQS9
z)5PK<o}NffZQ6(1^dVi@IAa^SAea9>woFprOg*4G2I->gozHa;BZb~~xRdjziFa&-
z-Sdl~>qGd%gLCM4iAn0tgjCw7?&Xi}Y9D*b7a{Oj99_FXgZg<ZjkzyZ(I`l?A`!<+
zUg>GEup1B(_+t<4de~C_ODb|XPf}?az{m`*j*2k^5-Si2#0(v~Hw4QkkpG5JaT1V@
z-DHn61oTk==jFi&G(lfbtOu>N)>faRv|LY(nX}44Yi`6zam~}x81K-Ke2+8uJx!b-
z$^k-lA(auHPSyH6an<WZZ1PD9oI|e0013Puu@5jle@R5kc<lk>%s&1b+2Bcykzzi{
zWyjj3t2HdJ?NQn_>Qk%%KYyM+Gby`D$j<ut#j*#eJZ|t1T}dhldY?*LBt}xZYh>kN
zJl=w?UYDpBVJfOR_I}MZS@}G?gC$Q$m?HTauwkl#tq#W}@t#HAerU-l&2}rVNBWfc
zWgb2|8sQzfO8~N1o1E(PLjep!z*5c7ta-weG8-j*2qLsnj*Pol>YXb{1<fBVDgDJ;
zSlnx6B~qv~XsEOA>4EItC#@rpCm7$FC%X2QhC0R65YUJD?(s2$foI<N^GVDRX;LNj
zrOzDn1mVbMj+LroJ8}$gF`hA~L(-%=!C?L(Z9sRhxQRPAtt)nt*NXYt%RXZkwTx!!
zA@g95%G<Z-9pfl1bss|F3ueO`sEVSrnQ*A1nt&P;1C9*)5`?!$7X;C6z09!?3DCPw
zd<I;5W)2mUxxnG>0lnL~wSWp-dm_<q1cJ$Z@gsQPf+KgapdNvFzrQ{N`j<gsxU8mp
z=1qmN;qG1*0*-m*fVie(&K%Xw<2-K}U5DY(GimP~i6-kQewh*?5x{-*fWBb!Rxqv>
zyLrNkjtDH)g56j63&6A7pajy<z>M{PC4CjqU(Ci!I=i1f3lX)i&zL2>4734_+pNZ(
zw{TjC-t_D=f6`FiC~nXA;2tXmL_a@AW?h=S%SLQVYX1FWtG5eNZd^31U?^dY0)|37
z#RVuKhsyDRGZC$0uSgeWGG0AOzTL1>1ds$&+^5B}>4~s(;`ji87e3hIJE}y6cosCX
zR?T$tvu%R3tK|rV+WII<3NMB%PxNh(Vhd9#1Y2#7<A9Z;4cJq9F-rt2-Gom9Fu@tl
zDz3p<1)#mb?m93becCopPw0&+Wi6ONXPX)<FwUOE`&gzu8^QF&p5#WdI#n%G8&ELn
zOU^Y^<iI2had^&d7ld|k9)|4ebs)4o=pWnHuZe}!S$fd{+tLI<E@MGp*7m1#TGIX^
zqaJJ8wmU4s9cHDVQ%|=&AFPHLvgMuH-p!&E@6Qy3PC0zLBW;zx@986*-opx#^jt=M
z>WEmiWSygo_YHlfqI%<X#B?UW--Vt&6LiD>Wpf=0^2W=*4>NPN*xYzrr?E?-dL5=2
z=bb(F;aZszIX~O=54a1w{8txPLjIr01<g{-7`Av*Sc{d1VQ&@Xfq)b<@<`yrY8cr1
zU+UsSBOVyd4|@6_NBs9p19-ab2c!kS|M>S*3cz^!0V@Oew13~!hi3)8&kukN_g}LX
zehKTBu%^&OereV(Gn}A*9WLA2n`AbTHbiMT+C%fQxP$x3@plGV&I}z;_h4K(L6rvH
zacS}QDP8}@JDzvVrD_dW<sXTG{94${`WMcvZamgISc>8g%v**lMYbMYgyjCU@!0c=
za$Nc|G(OFT%A4cPNI3Cs;_feg{_c6*VaW0adqUXDcq5hSp)FQfy`qnEi-M4$cqGpo
zl!4X}q2!*&3gy~FpOdVZ0HGFmR0|+5-=k;!EBCuRT$u7HJ(NxANCYJ5Gb2ZhwD0Al
zRr5R>kC((<Krt5nhM{=snt1n<*Ci73+0^P*Uusi%1ZoV&iV3>h46kG5e_<U6+;}3b
z7~yF`j{KCvd2P3YJ|JQYpJcJgLU>#evE!Bz$%&C_UFgTJhL0w(>$KnxC$xGqvg4g{
zN78axXE%Ke0!+^N$G*?Y1IztKwqQY)IWuOwJ*`~K%&C#sA&0{4ALm|?)4Z3;z*V<~
ziQvYVg#>b6v3FQ65gK})$+~9Ma@Nemz3wQdfpj9cGh7Otb<bOWw*dVei1Ty5&wPVv
z!2ig{3n&Mtr-WM^jXPjQw5s&A;tigmEel88OKsgUVn(}!XwHL%TDcunspW1N_~&W_
z4gL$TP7VuC;gr{V;kzSI3YK6BuB7>A)ij%$hpVatCA>WElnbftSt@qmgWQqPHwsVW
zd!KNI`PF!Kh-`Q!dE|h8R!1e;*IT2f%a((JCP!fgI`z38j6)K+NH8UsqW)dF<G)Ic
ztj(3N=p0(r#*=Rz48GnW66#R-?!?Q-lrtPg*~NLHY%;RvWpG$XKDSuTJhSuKsIr`I
z|3`jxHIi{>u!QVm!HT&qG@-gn{tK$>NF?7&O0PHN>C;EG3prybDU@5t89Lr_%UHXe
zFPZL5;b3U5MWpM=bbkjNnbaGNW>7@moPz}+4+xdtBeueI*FVy2+s}aElV(Er0eh$S
z#10C=>)3eR9gTfQNAF$`k)K0`1bBpz%l-~d%y{A{ESEru$9NMyfCG9yknb1=X>~lJ
zYpq<EWedFIAKxz+V4nOxl36z>i<7JX(q49L)XS9|DQ<!N)3e2K)a-GpxaFB$5!${y
zezgmkmodn-@Q_R$M3K8vQwxQpM)4T<0H63f+>!t4QleZkOf<Yl$1l`rj@&}uiskcH
z*_8wwD8DDGP3p^NlDR-e(p4d%51YVmn-^;3R;gC528|>ZGP->$XL4@sQ_g?%-?U&f
zF~Grx;cwT}pCOxZUszmOu?el3SP_k6&1>-OR<Kg=CXYSj5fG-&9#y=<^7suJV`(2i
z9co(v$id&C;Ql)wpD9c^SzE7wV!!I!=-%_z&Txb`2XY?IWcYCAkz2bYq~IpVBhdH&
zr%a98g@^H2zIOjT&kpWxDKDoVW3Gp4uNX{<P@NN=o<{&63wg!py&Yu|ty;b>ui_zp
zl)Ra9`UsUl;n2y-tq=u&meGCU<wSU$&TaqPh5UEHJ&)@9><)a0QZ8fQ{zlKTk7rua
z8^WT{Ij-;a%ARGew9D(R<unZE$Fw~a@xAM<uXAC-Z!iBzzkL==`sJkt5n(e=i2q45
z|HP^X@#F_g>VF+i@;TB6EeGF(j{wZZ7G>y?I}-MAy>|iR>D=hZ5NF{%Dr$7Ykn}9y
zmu2KO1oW76I<tjC=5T^#Ea^GDm=^EtlBY|7f7<n3Km%@r{Bwy5`*D3<2c~QYq+U2R
zf41<OzXQ8RKg5?td%KOlGC=`%@yU1qiZw!PA)8|ht8-ZwH&Nkmf7SZu!aX>=Oc32p
z@B-TO+xNNi|H=tk7djR;jm1;Iv+w*#^)Y6Geh)t(6U2xc6UsvabJ+;cC{q*=5Lh_?
zklf9_qq${<$Q8?OHq<Q!gGCBxfLU00#e=3Ra2%(SC)oLu4d?I745U+?xdv$9-T#=J
z)R^qKemV5<ADx=)vrY~xPGb#x{oIqy=`Uvn{^PJF$qe6_uW0bg9MI1LiQ1LP;QTEf
z&VP2}hvb>BH+HhoKRJW*iDEHDQ751O+p{Q^!juvem?c(OvvDGK`6f%{KiTEv^M7YT
zMvN4Q?*W>-_xOb7P6~E%Zs!}mZSwiQIbc!3^JCrfmsy_&dG-<18qCx7-`;Q!ik;|1
zfz#Y}81hpZ^7!eTaACxl=hsQk|5~mESyoJ)(6@f-d(Vu!fdc?qogNuYW)D9hU&^8S
zW<SiWgY&|H#@&^iKrg3VE@*!G=XV5DOte}*`Izr--Feq+YRjp_<nsC^Cn?j)T8M|V
z<8#OFMLgF56FA7N@i(4qqz10u<U!7)N+UUKl<~*=w2$C;i6LbL1>4@ul=}w52dF`M
z{X~m*Ds|*5qkuD_7KQe)d^o*gPko|E=FMlO$=6!*9lp>agCU*>_JAi}*rV6VwW0=Z
z#pjS2^siINZ&81~HsbGaY#1BVQ0?9*#U__bUub@7A<_dn16sH5z^oJKW>0<8|LNMl
z@?}#gHJ``J{^cUSZPWidk^cXCSsg8SH;vAUyz=|IL@pNV-`Voei9AVW5Gn7oIXDat
z$PO)?JSt%-p9=o`#YEh<J@zD%O+uIwx>ipaNoO~vQZ6IPx14c+N9}+~=<5CpTF^IL
z<)r%l&1IQBOgKqKn<NT-o{)pV4sftQj#FB{M_ru{%Nxo73>?sv{*+H7stPKS&&@=S
zS6=qIG&NlV=e~f+#s3k@2R8k9+z^uHS&jemgqjj|heo(U#kov#^KufHjQl*S`40~=
z5sCi3^OT`FT@yE9%AxIR%)$KOpK8-8>A$z<J2QwI*<|u@wYbBd2O8lVESUYSv>cpS
zD{ETWAoEl|LbWq|(mxhRMc3{&l3?omCYjqR#Vo19Wnnh|JvU1}t`t{4N&1~$9fI2c
zxAyS<rwL3LQ}G}Ms9?Ae?b_;Nbz($(3!hdZ<zl=ZJNWSxjWmRi;WqX)I)v{K(ZEKa
zwKr@ySf#=61C#+to})|NNZ6SI9MP0sB*_ema(W4<PhSl=UYwXN2G8~V=l)_r6C<J8
zAEjm4_lnBk68!?XSIGvEJACuu6W_A83AD)Gjs^TAb*yt{Wzrdj7HdJoc$Gk_!6MGf
zB^St1NQ_J4se1czC6@v-7r-}Jp1Lf|roimj+wu_|ArkF_=`nE!c)nVNc5PBY;i2a*
zh9$S_Kp?qGIPzIT!MSnwI`Z`I<$Do)%lin?7IZSicOAdjm)km%rdo=3N${4c1m~3c
zsp6S=gLHvbl?UZ@4VCf+@p>SUdud=>;JAC`<t>*#Q-l7VZJxBY={=(BH4w-_)-Ri)
zS>cC<;7RiFC^9muFSUHA3}BLFSl+(+j3%7_AfuIsi`a1Nd59@f*^-n6B{X{ubtsLn
z0qcXf0`t5xoE-s<5$wkoEN7O~<FhcJ^_sRBZoRItooM8`Pk5AXKnY(f3pg6Y_EbKf
zEp>|w*b=md2=84cph6G#k}PTW!@PesQs#*wXTgWb(%|d|#jg?BhgNCgsJ@Y#I5hc<
z*&-JI&gau^NZ&i{#t9NAIj5e%2mSsLt9sDQs!TGOJQkq$d&$K#p=~8o`+3F37-PMd
z&;}BHgm>v<D!-4+P$;K`TWocSxn5^zmTZ3ZRp`X9z8B$nOXpF9LLNY4%FSA}9}6<%
z<?wlZ`K2+wX`lFC!eWYDWRFe@52e<v{lk0|i~n23s$lJUzs#BXK{JUncNv!e-0E-g
z-K*sj*}gPP5%>n02oBAF6a0kFL&vWh1<~k;@lmq&(~8LSUERLb^n-XWE9B`>{i^kH
zcbE|{v>ucg-`>{<nQU$Wr{8#cF>;|CAIKZ3v3j9gJ%tq(K#Uoto%y)Lp9PI45n{~j
zUGm4NavpfkA|)}>Laf&U?80?`u<3Sf!wXoribnrq;igktj+I6Wk&Q64P$QYt_j&rU
z{7%o#Th%eA&AWXU7Gk+>ZyNLfC+Gx&pUfMIhf;hxYN5AKC(Yt3!We-Po!zZkwpP{t
z7T|lfR&zd<2Ft_8;eawdARbV+1GX-3pAX6?M_@<x7857k+%^SlZeYVxU^u9n;#t~w
zG|Z9nYVmI`S6@FUIO~l!!{YaIOHV%6n0xj2^=p>SOqjWB>FgudgS>9V2s}S@Bk1tM
zxx4qwI=_79W4}%FR-V7OIKTD%`0{xX$2Sf&tDAUJ9QhhI8+#)$7S$!3=3u1b;Qm1r
z<Mp4XKca*!D<8ZaCu%HPy5N?>-6jM!QFpG-uz5>%XH0I<yjEP3tWB%$Xb;o9lI>?3
zgwz(2J$s^kOuYr`yCMs^rMvO0dtok1n^VHl*G_lkX*duhdY|OtlE{UZRdC!fW7q68
zvFpJ}e!T-O_o#KYi@+zOzkW=BpHa1m#(WuY_awl#5hU6xe<YX0UU=@;a7?XwH8iwH
zdbTb<jas*VZ!{EX@MqyRPoW%|U#3@nAC4mu)WUk_mQ!7qytk+|Mn>Am+|@*rQ=#hG
z_&QOtmQf{4vA}Q`TZWR{q*&u`L-b2Fo1wMqkogJ(YVwR#x>};XoKa`ZYncw!F@d_4
z=BN1@uIz;P{o^L8*qudw`;u$g$nK&gWND=kcBy?+^V>E@&%)t_M+DIy{|dR^$`vl#
zlsE7}RpkVyDK?#9v(f&_T}S^#0pr@aHp3@Q-e~3{(fPj#Bc8b>rPg2h%`)NoF_DE=
zjI79OOgV_(4{aE~Ao8IyJSHf56sz}KVcFqjq+E21wvb|K*8akGMpi*b8#L9#ES-=N
zX**v_t2;|;c?DmybQ=w6)*eUHET53lc0MwxBjO{Ta__=6@bT2`=vNS4Yv^`||MtQe
zLUAgumBdL#Tt;2Wt2lxqrWrxzR*&_gpIjkWVR7veDRm8(rJPq7@!9HuP;<06DOhuK
zXN5Y%J)~uZ&8-%>dIca^w5~_CLDyRNj;s>GLT#$lz{?_$(p*Lmdgv{_;M{Wl*rO6w
zqE)J)*8O|zt$ly3YG<wrI%Rvbd0CjnAK-lMw_~axHycCC%(v9)cukRChaI`IP>>ko
z29&@}xh`R=0n@%i*_c@s@G!_~2OraS!Z6Q|OE}u$z;$~Cc~xEF5<AVeMnSN;=<3yT
z;myZ%g*Ln>iE?_sIr`KM@A69Zl57WPlcmqVrIT?Pg_os@j~YQ41D$IWvB;qeUtW5H
zO|qJyi}^-S=kMFMFTjhP-PMwdX?Nd2%u>9(f<w532tLsj;M(dqt`Mo6X|fT&OV#nU
zn-+doZM)h&ckZ$SGBwwu%Wn17;dh1TZaUGio$si*b=^mD(W#g{{7&hubHT^QmlLY+
zl?ivP?`jI{0_S80`TU{GrXfD4Lm2n=h^GXuO(Bw}&aY6!CMM!fmz^A_%Oi_{qu7H&
zjf}UJ1WGjs*%g`vLpBq((I4#x%%brivqwW5$gT6aUuM4BN~jkpHAs$010OWR!3Q_j
zk9c3kt&n4PDHBrh3O?~DW(nu@1(8iLBHj!w{Hdt@^1_tyjwlqnQmx@^>y0{FF^~72
z;Uz2)<nZ0)oBL9hb4Hs6*u6wGzLOWQiF_kpFP2-B^AaM7TfJPxX6y(Gu+p^n`_B0p
z1#3K|CNoxOdu{|Pa@bXv*lE5(Fj${?%KpHFI25tchC`Fi<abEgP;I|<VdB7CK>-ti
z7SJ|eHM^BkFNg#p=xnQ$f?560_JkhMxXjkk(k-2Rsy6&_@pT_0NYZ&GIqZG)TR)^y
z`(M6}AM%|~iEqzVKwa`{SmwxgT!+P#T8z(IN_t|<Is4?0xTY8>GW!N38N6uzIOA!g
z!%fK3f6*-P@$s?8Lso9<*DYUHy)Dz6iSr5Ar<Awfr}rtk6i}I@larJC^~Um8lxrFt
zw_^wL=-dUAAPNPj%f`3Ot?|@43~njOtLie?gKT&Y!b>0#_oBPl-pbNg-C&uUJ5s5k
zCl(A^wb%T)5<Kb`Pwmck)DsjGph<L%3R8lE&!$yo{3Rf=b#=X^LrYg<nnP}_4AR4i
z%Y8o7e&32`^SJY67_%NeoFjgJVIspv{tNSfl^*PL{=}BUdk-sthPW=jfu*M*A=Kl1
z_mLn&H}=HIlUIm+>6rF#Kc&2i)PCHX2kf^mt#kvgDkzgzU$%5LX%F{zXAv3EV;A1B
zq&R9WZsE}x!Md`Z*vDp1WPDX@K6aH5EO3o$T%TXJwcq<nH~0j$H#yTLJv2Nj!BLxk
zU!FiUQQh2157V<M7lc%{fu-i2|3XDSti$^F8L2vcTPmM*VV5!%rJT$zK6YV_>>I2l
zgDb4~`bqVv>|EYvvyu?~pbB;eTX{K<hv3P6^X-MT*s}-MVHYKOt`$UpD0P>r0eoDK
zUn#hg__y!$S^n#Ag`9yKh_t>`*RITb=?fXnry@H?=qa2hu8=P)jI}7CP#T1l1?T<Z
z2fFSaWUc`FINuU>q=jzAbsMI}qG?{Xhud&x{(PY_Rd58}R@GLYYf84vKmA`sIwrSZ
zEfK;L6Bc5Quw|h4{1_0)wu9?cs>)+w-4v`ocC_foq~c!xvEt4ENBi4bY7sHj2*xt?
z=F=9W5e7c|zqM?Zttz8|Xw@$MB#$@RM9ULB<x{GNRV%tjJqcXfQceFl%@DtEOxN$Q
zVAS@z7upskMhK4+fvB!S@P2?-T6X;of0T^d3aQ2W`JEqJaJEU1@xC`nD)C8%m+k#J
z#Gc%~o7W^ER*02bm4?F|_o{J~6XnUaqm2$|9}aAO@i8kT=Jc^fu(Z(da&M!zeL*J7
zQ$jzr?Ohqd6td>lKg5i!3rlv&9f(}2pqRUJ|D7$akLMW?>V27Q$5N<%gp-)Tx?XZN
zgW?Jp0Jm6Gk7_2A;lj@-0~~DYY%)!mxMBB!UE}~!vNv~AtyaIT!wVU2oZV#uqV`BG
zdwqH7Z57)xZ_L||6Hoi+&nS6Um@ws2E@m59*Dhvgic2Vo$D+nZ8pv9*ZWSuJ?ZJtR
z*0b#k2k=H#b=YS`$8=XnXnBu1`7r9uT(0u+2hs;A(rVeZz?c4ckhw`ldg=TaIItC#
zBhM~|ZBH^ThnhmItGL8%0M_^t532^Z8hi;p9$jcKH7jE^G;o#cTdj*qHu(duvp{3?
z(aE*B#dniGeAq`k!5JE=Mj~-%--|Tyv%M}e&^U~5J0a08rR-|?i+3ru<=*~psjy5g
zZ~Ix9AQ}0HF!NL0C7VRF#?FoL(#cWwsj_&@BG9n68MhN7bc8=`@hBzOMA(Hpnse$9
zczJq0r)rS0QY{OX#LAzQ1m@je@iqmTL!08V>w6SRdx_-DmB-P%c8e75e1%PXpBI0%
zr4)IX=?_Krs4VoCRiV|AQQEw>TNur0W&b@f#6x_W;hwt00rQrJVpb1Y612w~$hwY>
zj_uyHoHb6!e$qbh5~XTMVm6)CP_lAPzZC`fKnPO--0SS0@m+Ax4Z?L?g3~NudMaTi
zXKGHynfemFDs`<m^faSpP))>nwp8W%s8ngQo|h1ef*l^o)D|?vqd|wPL_<&?#MXPj
z+jm4PC6RW_Iq%mA2X$e%OfY|m57eD=iHiYV^%Vqv2|fac{ke28Q^v}A9mgtWQ5_^}
z&23UH#d&7X4b9M^WK!3gjFZHy=9?-m%~>bo@MQ_8s}q5<8t+>NmDK3USpN3}VCmg*
zAf+VIQ7z6B6csN7I|-_F#}PRn2bVvi-EyECUTXnoXHptQ)OjlnE!@*fGGWVT=MGgV
zGo%k+K-w23O3eCMIf!TsGq((O*-F)}K;e9x^1Ck&lqn$8`JU8*UF|U(*{fk;VI`<m
z&(8joYD@17<oJ?Rx~0u-)h%NbszCk{b;@a9PsVl0W)&cJ;0)kQ3xqJW>IYOBNP9t;
z01m){Y0NzJk2x_&0-Hec^ayvwl%VY^DH^@u*!E`c>Xww3e_Sg$Q;v|WW1-mWK^bTn
zi!u~{axJ;v!|E>r?}L#uKA*qU@kKcTN+V%*FQnfFB_g;ptO7tOA{`Dh2SJGld=|*S
zm9Zd(fgDK<c(K9O&-Ekt2%>H$x#P&e4F_Y+yJS<7OU5dBA_1cLZXXuNZMAv9e0MBY
zKKRtw$A+g%^o!4VcAVr6I1=+E9f{d{JsClf69V}C=LFzUXcjnFQ0V_6WryAg%wve%
zppZiAh<ee4CTmr)M7EBZxell7c+cm8fsr7_3KZ>zh>tH@2nhF%!B6?+5x-2yPOo0{
zVsAzoIw`*-vc{oGdmtFkU*(cNa2a+vamap-tj}sO(-UnO40IO7R5Rw77(chr&uA6l
zry^p%IEfbcjMD<^&wlxz(I1eUYYYkFMo}s6dmLY==t|en5e~hpgTkvX&J-i5t~|Nc
za(iLaygg}MYnGBsR_9-k-3ON_aJjk9ef?zqqV^B@3z%s6SRp%BZW~yterLnS+gV^M
zwtA`|7+1k9EK)Z2tNo1LfonwH(GaHS%@-xz5hQN2+4)mJ2F!Gx=>SrZ-_JZFMw)d6
zX#Q^pK<wV*^xM9|ee*Y2=oPA7S!O+v$6AA8Rp<Vd?fj@0Yg0br58v%RGuXP?@Z8Z(
zGIjUw8xB5z*R}#2YyN3%e+cTYs@Zvu8UcR4l=NU*Ep4f0i1AEA*w*J?2KDdiNN`E`
zR(v_ZNM$+bfQ_KBJ6||x_AG&2k|2G5m6As7f3Tsj+=MxQ^<n0wUrYNXwf_(6nzc*A
z=}+eZ{4$9jI}+99oGWtCE6mVo&h5**8R@#3T3%<5;4=o-CziZIZBe<bHG1L(I#Qn#
z2U7h2@>pN`K$k#kkjUD+*qJ&z%bk2}5~UeI_4(Ic-CpAd`|qt&;KH{P5OMvt!Oy8>
zxsWP(G$+a?P_5w<$tJi36UbrYX8v~)2;eLgv5wFa2ausH`I!vuoFKpo-jjQQ9CUX6
zOvz(iSniiO%J2e}%aTJslPefAQ>n?k+!&B!?fl7D_y3}Z<S8RV6`6WY8T|_nxYp;$
z3>J4jxuy&GV0|`pOE)etv+or(>&IfAjauw4QCzYUBoJ?5Ku#D|zy!UA6X|6dNX&nT
zf;^=HB$tEHB2eoB{`#rx3E&CdI8Wj`7moCsT65dV^!w=6{DoCAxeQ5GD+V1o@9q#t
z4?QR*-bO!_N=$*&*GI1vwoItfD+Jfw+i=!u|9{ld{wOm>+SgTPSY>;;liQ0bZ*7EK
zm{2T0OFv8^a#OKCG17D>79d&?Z~_#u)D9~F;ISi9N=y@G$M*{g@VY+${!OCFpYc5y
z`si7*u*rob*u5!Oi`@h=TGDE}Sy37Sidcs#16|^Ms{8R1^}Yl@_1@;{F7UpK<R9dN
z!jx}UlI2pitb7;}7zbI*CvaqPLEl3ozw_*a_LQ>|rS-<2dTu}?yAUCA+aYGl@arO5
ze`!om9_#%oogkn4-}G*&)XE>=ID+WUouetvlO?Lk08q7$JHgkMm^T`<CfqcqKbLzm
z{TsOE|9s=D3ptR3HUI+K3kv6ynmQ6im6VifNur<!l!Mm*<xcaIa_4_8>1{ROJ(FQp
z+WGG9GHr*HG6J-H+0T$XZ~{-MsJ^C*RjUILJ5q-a{U(w+xpm(`X(vVb73y^roU~G1
zr!_`J7lXGLOAb|{@VTPI`Nge-akB-|UY_Q-?qU`2R*XT4gjx=)N5`g^>g3ZcM|PlH
zI}Z?o_k>Vxv^n%PO7=RPwNxa%^8g*i-zQ2JPw^>jj>&ZxGq=K6_$MU#;0w?beL^?N
z&(ZJ8V>QHiJ#q1Fml=6$FwmOYztpxQK%UWZuyz7fSTH4Kfp<!Q>bc1e(>`R|wky+p
zMfUPZxR2yM1!kGtWVpivpy1C9j(TB=l92PV3nE*O!!6hn3#BuO`n^w5I!pt*Kedb3
zGolZ+Puz9Uw7ZItCc(uUP-ONLF#Ma32V<)ooGp1vPgi>!$Gioc=<p(s)hyk4hgZ9N
z^j&NUI1!{Yl+0f!Oo_~g<gt;3)5L6D*gJ_KjT65>vL`KHkoZLl5AInFmpR(B9{@eZ
z$U4M6@4gz{58^2D2AAydl7#%szuSyqg6IRS&{EAx>nY&C@xmwojz6WkPxcYG4b!pH
z>AMHczrjh!;URAoFlXc;R{_pbL;K8+vDcm!hrc7YiSC!55;VRhvD-Ca2<7|xjOFXz
zZUe{uoXSAw59pX<TGCzVji|r|E4=e#SKtm=xuCj_5Sg+u6JT4RA#-evBe;gJ%s4@2
zkHEIC+npI)hr%eC@U2kooLT42Z(n#8OpTqtAaZ3@kmgpek)Arbu@$y$JnKx?vVlY^
zzUJf30gzRE|7PH*o>CB7KjOVsgCcgmGk|X5HVdwW4A@TMO@jnMw3mGkS6_DS459gI
zupY=(o{5jfTtW9?tN|_OaSec#PU@I1^S`l*a6&T*LnP8`$N2r3yp^LZ4#e%Pi$+M!
zK#t1b<wDhsoZ`EPW{G59@wyeM2g}lTprk_N$a1-yp4JFEL(L6_7M#_f-M$zEe1pto
zpugCCK5;?{^FX}XE_F$ec))r7et!ILqjClfB}^HvcsoweUOZ#L(o=WM5Li^?Nd_ga
zU8+^{_tCLIBb%CC;!$mn7-R<Joh{2k*cbVBC<Ewb_7*XcQrgIsWDgS3lv6d<s!%C?
z)@nYuY1%`$E1m%wT<Th<-3wPiwX2R5CLTHwdmY-GF27-%@WvtcT^MMF*Qy$H;@R6~
zY&iJn{2yW@SwjDIVWk!RKE2F$d|{*x#OF0hbH)bR+n*rO!9!IVi39Vj^6isng3tqq
z9$$fHW}v$R_A`fi1M0r<lv=m$*`b&CsP{{6bM?E^ES$>mKn@ZA(I{8Y*sS&(QL7I?
zOMC2eBE9O2<B%ws6fXtXHnxm&TCb(pmWr`AN2F&SD6Aa=dGePXHfsfd)77>g7S|j^
zY5gWflDxEe{y5qoYE}p&@0)SWc^uH>wN%~t@glQl2waj}=LI@>5e!nfxKwqog(vOk
zdtXcR$h*ru0}ERQ9P`IJf_qfNps~_@=_D<%(TYHcJ_YK@E`}2*8qi+mJ$}0Uc-`lI
zMzODTRzl9F46FxH534;=lpydHGKaV-X!!gL>$?X*`hZdy)9AdTn$Hj9fm=#%VWP-e
z9_NDAz13z`C<urU|4mHF$D8|hIXd<p5$;!S#jaA$`*<I2W!nORp+RGUr8i4U<QcC~
z8q+KW`mAGTp}GWIeKe+398gXiNgaSx6WEfUWg8D2jitJqn&g7F<kf-p$_hbrV<>r9
zVv;ARJ*#+wuBMMofQ%>Z*|TRa>DhJ}8aAC;gz$mAvl{_phBDl=$AbA18r}_p=F<1;
zg1DXGNgbtt?+mh~rxWU#HAOv@v7C`!aUMtHM8NRFaLa(lzn`T!-q<CyIi?}EGNY-~
zh)nVhSgt}+xNT~Y)@X0`0=x*Ou`NOd@3YhASW|MGmjyIaz-FvH_B}soFsGwOVORQ6
z7ltDwu;}VaIiJjaGZ19195ph{C?fD)i63NcO-^b7uP8e8Wk2!V#KN;c9mmxVelYX*
zud!M)!1Xy0ye}H+7MNME?H){QU|ogswr*}5b_=|*2oO+Q+ZQ&7Z>5|>bJ~Gx8`tVf
z(X}0WdTijB&+-c(97#E49ctQz(i$ptt&c#R<aFvQV-wNM*dlk8v2*B*Ud+4pSet@#
z^4CUtt_d=de5DRE?UNx1-dUK|umi>nC)I@tC$;KYH-*l9-S={u&`;&h`Uz*E_lzt>
zrO>G-Z6C}Lp&*`+>8wjZnD<SVcA-bxpUDy=S~*qMv116414Dj=bEG9pSE$p7?nVS-
z%CX$!Cd*oI9*<YRj**0Beg3SRo`@0$f_K{y@TSnTQRm%-QR#dW@E#^;SWgEmui}g4
z{cSzMmY>aaKfmd1T;XSj2~NU$U8v8<NOV{n42Ul!nTb|88EsyU>A6(j;T!&-sHk`G
zVf0v8N$C1=o+eypp~iL}3C_ay*BQm8qg%Ub<3$M6=wgN%SPXWC>e#@S%!r;N({uj`
zLfKc@I(Q)~rNRMQitNiWxPvJ~fR<D56Qm7;*jGab8(fYEtjt{g*7!p{#OI{E8QfP4
z8g-JyWSODUb#-KCZf8&U)95jtfibh5>I<Y$xH!&jHoRf6%GkPAY?nG~<G^?{gV?!H
z{Z&Fqknd(XugGP9J{Eplj;`TNHui28wrM*LjhiWK#Qu3V*QHU#5^5mWk#AoYBz9Ep
z_)maKsDgTSa&Ojg&5c1tk~3EkYhmAJbJq>7v#N|TeMbt;Un_Be^1N60yga7D=}Xg1
z|LfiHB6lhB19~hm7<K=iDN~!-$$1}EC~h@ezGWcSK&Jn6uPoy#&B*v(zi6(0AP(dV
z3n>~)Ns<e|t22H5Ust^XD8~x%$s&`s4oi^8I^dKw{%|C(d+nA+lx3ENOg>~bP{^@8
z9v^L6b;+hSnRqSVO=+!d*xa0v_anB=?;PwhEqTFzlqX@WlX6D)z<DEJix|kkY!M^C
z7IA^uB94HD?CUU;aHo$ej9(IkPO*EIk&(e8^`y*i)#kp=;?R-tTZ`nxNu{!wvznW^
zuWma~Jf#Q}3tU98ZNkIwpeA}&ylcxzl%|F<iP{YE_=JGeB3VFA+OaFG54>dCAuNH=
zCK3mSFjz~94}lk&5$z|zn)^Vo0+I?(aOO!_@0SF%ixv5t84I>~`<LniR=FH@Xe->x
z6E7S<F>|Wsiwm?gf@+bj*%FbJnae+mS4{bM*qL}|)5*i!|HIyQhDDh)?FxcOR8c@c
zz=S9Wh~%soP@*V7NuwenIm3_<1SG3SPLh)_lGBhxKtMnw40(ni8HSu;PCuagx~^{c
z_Wg0rcf2lkoyFOir>ncGtM0n%?j?TIJK{@zx^_cvCD8`P|KS|YzA$eT<8Ifm-n{MP
zO0KoBGMhPICVf?@@nH^z;myn^hN!vC<?1VlPHMk~yuy@9)SSy0eKJYkU}fn+^G4oa
znU)TersqXi0k`V<9C4ISE1F#6<glhm=4f*qv#W0LQg5blb?k0yf2DRY1;E!kKN+Jn
z_&FHiFSxc8e0s%Xj!0osIJ+h4R+M?83W`jT5Ie1w@851SGC}t$GOdq+`;;<lq$YDF
zw!01hThj%mX(6qHiy<Y}Otn)1I7;7(zgva1O!oV=U{1_dAP%aeU0>q9HRlv%b1T9h
zCbOll2!4y(Y%0@rJbj4l?p?awy^a;aAjzoazMl=lEmkpT4ZUZ{3hB~tdLQFa1C@Su
z4~Mb@shg!##~n&V=v`bd^hNorz&2I7L%Tr&gFYfS9y;2cZ(M2K6eS9AoJ=cLN8XJk
zMSUu;x=Pwd7_1t1iDicgx#t~VLU#O|33+Gcl&><O@m5pDAyHKx(mv}xduD3QM<chj
z0Z%uynapk!IG07WIC&i5`H(#QG?(RJY55vCJJ4aV*YGSHH{*8r&HDk`4~nSL&GGuo
zF4ZJ($2(ogU}AclB-XT9ztQpfr<e7$PM+1(F2Nh90>xYJopKe({ehR>dC7p_Ud17F
z7+W^)UOQY~uDGXY(?x|BD{6)2oi4*_Qf1^tv^ZK^oy;6jp&OxxGNjdXK7HYd1!|-R
zgXx1Kj_(u<5otl=5N|{=dQV0vSU*#|I%o<FnXS7w7sB<cI_$f{h3(lnLrNc~V#wF)
zxtim&>(mdyn2@-828ESCo;2WmT3Kvowl%gIClI?5#$zgRwr~<<vj=u__zjW2??^NQ
zUH0N+;7Qp+<QhGB02+7Hs%zec7@>G=5b>xFDVwvfaU&5^xli?eI(gH*if|s)O{xad
z!7XYKHp;w6RF~V5=Ha780vI$QOkyj|R}T&$qT4UW;eZ3`i7ky=uXuLO`Ed%_8%$&^
z|7Ab~l&X=8exFXABh6lVEj(t79j>OTdcU=$=?aKh=@AUJRoYxb9k{dhHhZu#rL`Y8
z2WjmeRuCiCXze#%1im{bW_6|s#3+il;CrIGlKqk#_b`F~{^0)o@%UYW46L88$|tsf
ziEar1ofYAOz1C=1^Dw-b*^#-7?BP^Hf87vp{1qiJMVP7DTVfGc7V8<5HSdib<~LIB
zP6wGo4Ftl4T(V1g1w0EM<XPMxW}ada2p~a1eJ9}0iBuQzfu5%bysTiW2p!Dd`Ho?q
z(*UBm%n4TwW6_+;Cgl&xYeV?}fzTvt@%&Ee*}8h1&w&%}@{28CDZ3v-zI0)EdFHCZ
z%sYuI0wht_;tyY{I7mu0u!BSke2+w9-s3v$7X5Sii;hy$3A{HQx*xI(nor=X3F4O*
z`R!KU?%MM(5+KOgjhkmzYuBg51sEMyV&LE??%rH2-b78CR?9c(+GEr6`@GteH8Z9x
zxm9NxM;`)o<b{I#{H5<r0i5i^ZN$J{tO+CQ7eQ$JTXl~aM@UJ&cMg42$@wIBDZAHl
zE8LHmdUtOh@U2GT11ZKcr9_N=k9X661?j|*Q951+pQ#Y9(ef9g1bj&gaKr(Uil1=q
zW^59-(_Eau`fF}*3<fOkB}A0E#{Y3L0Lw4*uWPLA2E$D3aN(jUmMFML9{OQ@iYB-K
zQ#eZ*i@h~7F3j{>90p<kq~Hozhy#o@cn`?H?hqLmdQtTpw^(vZ&i%11J%}u@tMBEv
z<MPdYBB!a<CbOrqz!k!Wbs|>-1aQdgq}44zX<z^tnbF27Xq2F2ArpL<*tpz$f=+Dp
zy+>$~K<w;UjLopxHp4Nr<OwQQ3lLt>`GinLw#`%ia-6+)YIt4yL-xrk0iycEA+iVL
zz>U!ve44OZ9H**h&$oa5W<V-)g;M&RHz)EVoDbU)mvq)-V&O_fi_FitW<LT9zTZ`V
z1-;BUMcZwV@1PZi7N0GiokT~UG0y58^#d8^y>GzE-!r+s16zJZnQfdrtfr<0?NwiZ
zoHb1{BaNsJzryIoe}m2a^AF}C?Sod^34bBJAWf^z+oRm1R~AVtZI>oHLssmtB{Yb#
zEmh>q#{4X1x07FXlTh4jk4owIJ!b$@?EW66_>B|v9iH<;X5u=y%Nu0olH!7F5Ca+<
z=`}L4E0NZHo><V`u`!Ixh)O}tA4fn5GUvbgrU^pqL%^UeTWMofV7DorTU^%JqK-!E
z&4&n>-dEump?eO#<Lb$O^&Q=W#$}G11N}8oPay`gVXBe>1cGsy4IP|aXo(vvEW?RD
z#I~^o!5rOgKkWQ`zjv|S+l^Wko@!kIWu&n6alp6KY28^X-ymiGd`j~*X137A2ye@F
z4TNFrzKzu_fw`x~Ro<MX=PJ)&!6mPz1J{$@+0Qqjmx^48urw&x^7;<p5Txq+|A1|M
z<?#%aedz=FIrkQVf}kK)-K_Itp01|ZEMmY8O?$qj#SqY;Js24o=Q-b87z_iM1AG30
zj?S8`W->1z7OuqqjN*C%_qVu1qMJ23)xk?4bGO|T<VC5#)Mm@cTV+;>(OYkgZ9yFG
z!7g%?8r#;af3Q$PzY7u%(2DO}0h{OdnebO;?ce;`lG&i{`=BvNS7yG<x?7OZ9@C@|
zHmQ9H;nn0|G+&(yvAH+aQgKt19^PhqPQwMAm^1+T@?!$E<d**5VQj6h1jyH@n>SD?
zaoq+yIyziF8;pp_?Di4M52n7-h{CnhYHs`0wFPppgc^TJ?*U%(?{M~_9r`~fN5u&P
zY97=qR4md)&fg`Fv9V}OhZ0|VUzu4i*KHkI<)*=Zp<<$_*dKQNUye@Ltd+Yt-xyuZ
zVhwUNZjGpM{$=rVax0CVz7tMPQ`iB}Nillfo3z--*#%{34Pd3|9zd{>ferP4<pOk@
zpjJRTf{i)sN`*Q7v=9u!V=|gtKwN4L;?n&7jM-Y;_Fr!mlUqk38gUuXPuRF_<Uu5~
zl0|>(syVjTA44W7x(&hkM27wJ(#djGJM*)0w6VG!;NlO=)pLw}GocME@ZXA1|AV~>
zq{b{82{Y?ytPN%6OYN|pqGdU1Ni4#5qihB$%E-L?O6>SEdO<on=tdKT<?$e$0}IK<
zgX-rT`M-HoL3pis<NBR$9{H^b&slNtvNyL{N+#r&Ybd2T+6o>Hyz|Wb@WR__+*b27
zH`t^F|8|q6SHrs*oV>JyG%~oFQ;(`|POuFE??8zKS7ehVAwNm6)pU+%ezY=N95`5J
zEup@Vh64o>g#h71jP9PFQnLTnwy~-xF2^UWj%Kpufetplwq>-FxKYupI~*WY1D-XK
z?~;?Ed`cbGt60-AsM#_KZW`oOy}GUC%bR3Nqu7K^j~c8;?N}k{U-^t;O#0Qr_24C+
z7AO0M3*g9;4q)JZC}WV-FQl*u(BMeuuoL}P2hjwfF>fO{SOgl&W@s|oyCyy?SU{Zn
zVD*Li<fvY?K+><E^S}C<b<pK<LPMu_aiC*R?&%d8wX=K3LRg?u1K(8Y1s^7HF-@n<
zT)6$a83D)lT(j+EIE}vIm_%z(y(V-2X$k&stX;1=Gmd6CC3eexN-AoieYO+mSzyS|
zvZbEWAudU@)c<N!plX6DD|DJHXyNeHWi%h^=hADv^;tHLzL$$oo?GUdD)H}|N9JIE
z+5GZ5NHXjzB>CU@>}@D7d>RTfpZ}C>@;Aavkc4cP#K9!_`23qmx;+!bKc85v1p<l(
z|0bXSP$@E$zn1}oxF_QN#m)oS-RB16*!Bvc{Z}gltb190O(uW;!_T88se)mY#$}sU
zVY>nC<1{?dy1kF;-wgNT6b&-<`PYW1R1*^+5ND%^LGSCCfAi1~+z^_LiM+1h9t@Vp
z&3_dZfG%V}PLG6JZ>%glSYG**0c}5B3g<@pR~XAb<-Pok1^68>U}RAP>bU3r&GQ0)
z)rQ-+2s%WrUi~-G$ys=PxJ}EpANZCn@{j$%|JuC@1^>aCrrHL1oz%X%j`I`i@0g5A
z3X!!|agg=h|7~oj)_1sg8S(`43I7F80GFyzI|14!+Y^QDA}K(lXA4iF7{n_354w;b
z6u8r774{c++E;G}kguP+-@ntZ_3MNFx~J`zjegk(L>9mH8h{^v()Rgli~QOm|1WHj
zJ5<Or++r+9gC!Z4aK!A{4F`m=t4JS}<4*zBp8{xJkOa*)=>87r@jGdcuYnnO@B2S6
z{=Oo5-}lP@h+F(MRD{|*zfBT$2$^4DP=Gmo+s?Q{Ec~wP{tbrRc(|o!79xNdm#$ug
zWI2QQ0P&{!+eZ4GXZT4Q?N5eE8g2uD=1|Wfja3I1HEqG84}ceC*c5D!+gu(5qAQGO
zu>mzM`wp#^5M4t<-(sxItEnbz!C;;M0PK?V-`E;`{sHI77xaeZWLa^33yJP9k$)n+
zuw#_pw{e0j%dKJK*`<B{K&~pUvUsb%7VRI6o7_mzM12va$rDfWLWQLv4ng$CV&vvN
zfz$30Grf6OUs_O%*U;^xa9U!4fwZrs4w&nugWe&aH<DO%OZ+LJagv3D9w#HHyPJ;q
zs@23_$G&$QHV{?Qiu7&tcBAQ*1N{N<+x-AoK)?G<f#iqWRqzFGLY?d@))z+0s%QEu
z2aM&#8R!ji6kcaH+BPT2N4q~yRW#&%)B?9%80EVZtquzE1+(rG_h<0X2B?8IHIh}%
zc)PnwYh0|`OFK`)v)ge#j!;uf_Pq+Vra~agGNPV(3$QhDyT7t6c2M&jv+dADe-mi{
z%f(<=7&}+B@`(}VIp}fZVAICbnC|qJdpPcJ+UqR6!6v8KY|??30rFw}F4lm~<}3f%
zk3raqRe2E*ESBG<Z23UEsccYqOb5)s#YORwfK2cV9{@SWoZ~mi66o1FpWzlGyxDR5
zV&c@A7Tvae76B39(!>BVFD)xOz_Tmfd@5}1sz%nu%2B%DRei<DX0#$DDs+8Tent#J
ze1}!_`8BN<5eT2SQil#j@zE_JCeJI>w1*KTYkE0LQ{5{M&XM*tHb`vhkwk%-v}8p~
zq2i0vaH(*ipmfaaQ}=~upiC=2lPLLV*EbB~uS{7$`>RR#hW1Cwu(1GG)3SWNfX>yj
zvb4F}OK&$>s^2XwUWzFhn3D#4@;$sk1#O%<YPzcl_uoDt_C*=J>A!0F=Om>+vdaFN
z^awJyQB0C`Hw$iNp<^O#ou||RD5gWqmry{MdMu8n8PS;Wu3qLW9St@eu=Y3J7*WH)
zRnC^ZB{7WdaL`-G1`RkfVp<hyuE!wZp8Z{dv|z~$X8p!$1^mG;#KE)hKO;kuGT7VY
z_jYyB`TN3IZI`EeSC&rEXV7zkI-SK|aD^KF!xd8V=LhPXwjW|jZb6bd^q|T+a(|l#
zx?2S*<NpofDFBQlh|qn8=s6EzEjKC^1N({oGLb{Y(^-{@oa;j;=zzdo-})pyT70#&
zdZJNq{ljhR-bJlVaz3Bg!I~PcdUjeR!SH66e9Lkjp@{PMWtPj)g4F&E`6UTo$UxM{
z6O6Q!q9Y+1iDM<1*mps~+g#xQE@^^IqtWsZ^9-9<NC2oidS<%g_I=Ni`+>Q*d1*>!
z%-f@tj6ximw*6rt4t~nDkxnc9Lm}suraE++a2xw{C{6A?OU3kB&hs^=<@!%HqMeNI
zzb>4n&78U44Yj!$m6_IuoSRJuF<d%>yJWiLz0pJ$VJ7;0zw+%lTrY9v@S6DN;MdGV
z?V%e?%UG2c;=c7<&X31vK^K@^+&#?OXxw=qp;#wj-BVzi+1Hg;1++DivbH&f74H?A
zE~85w=$i(nK%q+Oy5(;?AIC2|pGsnx!#JxPnQ^9YL-Si6h|h#A{5PnO&risCInHyQ
zZds`IZhH4>${0|<d2FXXKITH}sQ56lvqP*Lw9S0rZFo$iR$#8&%NZ#*GP_6DkZWt~
z&0S7-o-Poj$+&dEVlt=398yCA2632J;=231N}Hs*bj|E_(Qpc&&RoS7=uV6_+o>;v
zWy4<Zd^Ved#b#z=m~p%uZHMMyhKiM-V#c`hvSvbN3pWv3V<CQ+a?iPQf#6U;9vgU_
z-Q=%f)ti3rK2%re<#QbvYmQ6e;w~Y?Lh2_TOs0z66KvHa^&AHRPRZ(R&;seJns6Wa
znN}?dAiV|tH0QH-Ns2Phw0H54pOJF!1zM9IKI|Jhh~(Bv8ALt9F$jk#A&%m70#|8q
z>R)x4g2xpjYn{X@)X;)vS;PFm?XT*D6uE9Ut#8s;8JtU%$2giMO=$t~kE!!X`535B
zsUR<oTABp>QFZD|ew$5igLP&SubwOp(V3}Jth*@UDxaZ<KSXO!>1+0Miq>Alm0y%?
zk$VNc$Jq8H`L6HR$B!ZdU*QbKIFklrN2ZC_#hO5GMQ3<=#jPoSy|&l?kgRcqngfm~
zDS{f-yROe=GdFbG#w~%~-)3dh8wh{(Jpjaq-)&h5h#<Rt*nAf){YZ&pJI3*EZ*MP{
z9Tu<NuJo)!G;y)A&krFTil&d%fOi9->rIAvSCDga;z_Fnz@ghBAx31#ZixHQAHV`y
z%*>UyX+MC!I3lryvgQM)jNp&-u)sH#jGPefjrHcB=I`048AX>lxo*BCZK|<~X5wk!
zRMf{3H9e{jj&lVPUjCWV7f3XNa~xP{6lTPz8X~uj9YV^ntt)c8!Z@&o6)#+BjmGpJ
zL~77g@_gHW^CQj#@J(+YZhbsasZ~KJ-cm3z&PAfLF|?3O(z;M;R5s;5yJ6nMR|*tW
z3(;o}A=euHe<z-GGg4|>MdOQ<+Rv5c&caE<SHDP9gpL)90mAv94^wobi*=%J+p-(<
z$&hN<KT(bYr?#EgT#M)zzNb#udJDJH5r{ieJuwnxH+`7P%wkX+_Ej9rYaY;MQgt>n
z^5)FAEgNcJ?^xj5Oz&@^;cwMJHi;SkM!n*HEl&A=T}@#-TadMepzd!Im~W>H)Uf}$
zV*fRN`Tra0-lUjK{>laTGi|J|Aj$u_64kHe^nG6Oo&MynD(7FR2L4(?zm`za?=Z06
zOTPULdgret^lJ(IU$%rYNcx;@RQ%cVaF<#lOXP?^SClT@t!Suo;Xl#&KZyHx_yFI*
z&cBb^0EYROq|Tq<*S|jK8~N^EHu|-W0QctCUi&i~;{P9iREKq^@Tp~z@nICTy*ATU
z#{IR+7GRkB0gTNe{{u`6$cg;qa)3X27gEhXQQL-8M1HJu`!xgqPX+NFP&oOyASzS`
z`mt{J*YF8c8@~`Acf|aEB8UF%)f|7Q$?Y&7fqvK*D&~$Mej+9fsi6Gs`ikG=Y`)?q
zK%xB$IdsPm9-<cNBHZIDSujVH$mB1A2u(~Gckw|_TIF^n;cG+Sj#+=KaI{18{Qkp#
zre(BajlU=Bv}2r|LhT>x!8?QaNxAj=E%ogH{!keG_IrK=`vQpP`|13dxY4)Yvwexk
zU(UkL0I<l-<$}R#cCAnGrswUOq8zl+eH%e}u3Ph);^?+Y|IWhvS#flmbo=AE_#!z3
zgiwA^2md0l^Hulx>wfqik@{BO2dK>aps}bN+%@x!K=7aQcXxz>e*8gD^QUcIwGe$I
z4Jl_{<ly@%AWIGN5imNm`#valR!M{(Se}aW^F&OoH^67BXzq8X=Z8$QgEsu?-er-G
zOPk;tTy{UPxtX!jQm6@gq<8rWx^$BcVKZH*qm|D&-JyF0f~fVE@xNz>yToB;$)Fp2
zfUw37^oEWA%?cInGrx&9Z3C`JMT2<r9}X_}EZ<m|Kymgtu20?8uF_7_kH<OVac#^h
z7@`s16wpzVPURQ5hMr*a9E?ANaAl55)mwE55F-9iJ$FH!(TMKyX4uwhw1;F@^oN1$
z%I~ks`2NPB?dkL9MX3sx=F|jhjU@yFF%dP<htUp8?rx1h!$Tk317CF5zMQ{1S735h
zf$MJhE@~vNjlaT--ub6ieiwlkHh@}2z2mm!>Q%Q9^*;v0en7k^E%fEL^>E{1(}87q
zXjXi6r;%)=eW2x$Uo24AYO*5*4wcFU)_X{k*0{wgg!Rz|Kwfyl>8g0-Z;`y@_T>n<
zKT*m5q2;wc2C3DQ!f;JVMkpYc4>gS?f$Q8yPwe9tBUX3NfZA1(jhXlYYqxco?>xAR
zTpCYn?#ee_7;9kxy}(`k^n}LkYdRHbFkFi;RN3V=KeXKqy+dUA(s1?X$IvQ|wTQvH
zTMDAy`P|Xp7PzrxILFsH8#lS`y?wIB&Xt_sD=lNoa8O*O>`D6CJ5ZsygS#4sX;`C`
z!4g1)ng86B@{jaDv`PDjw(McsdLT$|&Nc0bmEJ*m+-kdcA5}f#jYKz#RW#k^S<*f_
zWYcLl@8P!=e&FVjomt-2WCR=oG>{Hkj3i%$?T`&f!HYrxaAk^hUG2FW#$eM;h(^nQ
zw$Rulz|Ph%F!+-@ogWUh?yF9+4u(CPy{$KvFqkJitsAkP!xVLdM$^RT4Q5lZx}$$z
z48}6~QBaAq3x9oU(+m-4P2RbS=Wkwgau%Mwr?_G<^gktOcek(l6v<Iz!vDDv3-os{
zg=HIi>|t>_cV=x-O$;ImQ^4v;6OCW7!YjATWELKUo@`mDSZAsR1!*cEUIi7THH0nh
zerQiq0fhKVX6pf`<eoAIZ`wlYA75{p8i_6xc^F<2eEH%c+T&Y|fjCTWj^$U0frs9_
z{42U=vpSZb`>RqhzVyrak3!RvhL#|Wg+J)?Y#;cOGF$TY%M1<s++6U;WVC>esj=7l
zvv4+tZ|>Au(>82-G43+o<k=!GnsCqhyYh0FFkkoZ@NdIBAsKOKa~O6bam<${+Vf&J
zy3vJSccClByBZm-A*QPOP#UNnY&C`>-n}KAI+FI<GWLlI>w^xMA5gI<7X0abT1K6G
zd&tx!67NpxBi^y<N4y1}nxl$b9u?)VZRq5@9%d#8?$YYGJ@W!b7pzCJir`D_hm`hq
zUJhCUnT^E{T18A`#JdlN)a@eG?At%~pCWR2Ew~`-YZ-YpeiRflcT;N?RT3j{eJdd)
z+7&=3LQUwaP=u)1q%hZrx_K>+lJs*RGZH{({OQpmaa1AoZ64d4oRimYaX48|hG&kJ
z_k#NQotcMEDAwzr!B?YE)khqN9-K2oISQ=0CT~S{>dJ#_H)E74isyq2W3kA2opZM|
z)~A6-?&?Yc>PbK>qdNWmO@EZuQlG<%_%p$fx`;0!=PJT9CGi<fFOH586poX(UkYjJ
z%;C_ujqqurOF)_+@qD>UF#l!SitbOJDC43WIUv5r8^Hyy`up!Qad%ec$e`jZd=G5<
zE-&a$ol5Q%urs16b`%-JUHx@_yAtZp^9SI4A{;JXBHXArlT@X$yrn7=B_jBn@B>i2
zfG8t`2u5>oR-py$=b&12qZjbH5aS68WB@>|6V#}6E^VRAIfk4>M+U&J`p&RaUMK-w
z`02~`Vu3AZ{wV8UX+({Tt~)He0gAm8R1H}`sp?_q8tv9yh>@~g-u~USR^N}ImIbJb
z#oRp#iRrZ8<uB08#6&*d187k20KjYE@>r7l?I8LGE{dss40N+mZLZ@+g7@@VjfiqV
z7iI}#kq5(#i|%zd+0QrdcR4DkE_!Sdkv;AA_t&$>L83{6{=&A2jer=I$kPeCT#?N-
zJ+}{Z#@vZqlpu*xG7j!Pgycxeh9z$i02L<?N&lVR0)g51fI)p2?xBaZV`HaIHLbW<
z$&@8fnpaew0LB^@hOTnkQObgj+kc?04|s~RB?q1MLqd)e*p12T#;1_3L>@{hdX51q
zGe>ilO}-Gg_nwR4d@7Co0`az}oU)otVQA6tAScjsg@n@n(5}A4WH-XVa%DDW_B@-H
z3rXzIk&`14=5k(7UvOV*6qKR>x<G<Dei7#TDfS;Yr11PSel>bMrPR8nq*&BwxyaUd
zX?V<O$Vw+_Y^#0YrBe4T-(5`vO0=?LyY_9tsySwG=a0xHm*c`;r6P!Nh^CKE@Hfhc
zQ_qKe+JYsj+`z*dIdH)RWy80x;J}IU04`d55n8`fiu*C4;QgMv<fCJV2?^k*lItEx
z5y8P{Sv|%D_dk*#+(Hv5ImoU!Ik=xXgu%()2yA}2ggam2Lb6xDe-|aPG25ox_b^_R
zPwjq8tqD(z3-nA5vIOuoGTGBd%egNqUA-k#?urY}B;6<@lRU^egFBTxuKyM{!Oau1
z3uo+->XVp*3m&6VyijgK@C;)a)v(*>-QJl8GVZ(N-Q$R<pl2G_KVIIV^GE^@FKT;0
zc#IomJ{lODwm{g8$2k6rO0a`lFlYcPP6rjWc@j3uWDu|L@f%M#6Cmad7)?%Gb!O2z
zPXLDuwEax5gLqM5mkyHbosoeCL@@(CYZ4#FS=s!A1TxxM*bELD0Ax+pxHD5YZCgUB
z{U(ffC*hGg^Um~Kz<2@2$^#$+LC>@nws&TMHtfa)XB}uj7S2RCPA!@hC&<E((b`Z?
za42X1kTq##b#a_6Y{|~f^Lvk0Oo)UN^*lX*sSP2+i-HUUJyRR%vU3tNgZLub1KKSD
zKC8GKR}U<V4;iiW)J7RJ0LYqP#@3xeH7^npL`d!;)*R^+!Cdv(C13pjSP>ZLBJ@n9
zr|?Cf8HA=A42S_!fvfKz+=4+ChK#nz+mBlW18|0{dG%Hou6}`p^(aOJ|JsaD(=Z<Y
zePFy(mz-H313}NU$a?@Y24>Lt*Ao1HZVA$=&_#ab0{mKzzdYhEkNC?Y{yLO@9m>Dr
zLJ&v(iVJ_mg}+jhU#ZEj?D+qW?D$UhxdWT?P0<TLdDHX#e8lz07((qvfKfH29N#-L
zscS<3U&<j}mfFEEcy}<2Ycpa02xNJN;e{}YpPwz1$bSZkoP<M|!p|`R7XrjT12Kp-
z|2(HZTA}~XKnEAppTj`^GZW4)G&5T8!reQDt$X4|VDP|HM_Y|Da|&euyub#fw}GoX
z_Z{GBXGqU6ZGRJY*?A&Q0>saNp`A%OUXk`Up|vlwPOSMe;N{CKx~TkJ=xS#YD3L$I
z)_ymHzXJ{J%+g6X1pUAlx_JjK3`CbX(F8cnR`H*fd~Evi+;u`OSr(G(+m^LH@a^*d
zVkzi5{|X}eb}A}vyYS;wUY^sva!|wS3sh!4@jGbi%K)L#{ylJTXG);?`7`u#dp`aN
zwgqh>0H6L8ZPeOgVh+n`V4lL|3KQV%H#rU9K?c2*3v_(o^w9qSJa~>86LZ-$uP`3M
z^9%z{<NXmKtO&tLx~O!k1JJhk(*9j|9+UvIjd9->e-D7RnbbcxmbCB~DUn^nFCY*z
zR~GDiG6^k!vQ~f8Bd)~h_j6liapC+45P1#pn`KrWM|a^<Fauch5;@bgN(dHZKM99m
z)Zd|mK7{aVGkW3Dkkdo)5mO@1@AXY7$I)L(V<y8P+?qOSt2e~Km+}QH;kp=HcI_2-
z37}vKUi+iu^Z*LZeTE7A9vKBgKUR@u$gvGpcb~jAQ+Jdn5kQ$_=|Sf<%BaP(Sm@_*
z;7hw@x^Vi|d-0EAZa~;$>rA2t!}3)ASYL1P@!*TjEG`FlK`%9(0(f46w7k>!B8E?{
z66`#0_n$oPwmnFt*PW&)F76^YA_Z_#54yg0Z#*cNt}sgl#lmL?TFje7C7m`GX?lwm
zPc(!HMm}tcVEin7yxjYI(G8aSgoytRIIC{|u1OpxlHU8q?YvGSWz14UCwGc5mQkUI
z4<C8@9;r3u59auP1k4w%Jgt$BkP1vwR4Vdk6pd|5Q~o%1izUV6`F+I{GpYfCbNN<=
zswr4|!@V>1%)_hj{}w=QK6?OGYU`?L^O;KNMGX8ozQtg*<pdoSt8(o1TMv`VIAJ7-
zH<`Uw>>UW;VkhR|0OkJglp+d8pX#@6gk1G!K=7y_RIg8U<&Y(nVKE9)FHWYciKqpU
zSu8g)M6UtVnnnEpBLK<&I~4{Fp@G_4IyY8H0$)B1xVos@-QLi@;Ng2%Ho7$<P7M1g
zMU-75>wS{g(eim>8nBxRHc~;I1W`~@dKg~>p|HAmfdKAUHPuqJ?HHnGDslCgxinCT
zfSKAkaIH9Pzh%X#Y+z~Z{--T;lK0?U;2ONao-3fu+51|(B+6{KE}iG*Dd}rYxJ_$;
zlGHZ+k1B(wQkrTUc*Cyx9v*H1c>U@VQcz*wC`$#8!DfWubl=saujnYcA1?}Kx^BS*
z?MyVw1}Oc2$HT{AReCgGWLxO%w``#i1r9|aIk@Gq0fEB=7s`)26L1>sVaG3CI`Zn!
znOkRk<30Q4la+EFnT8eL&0I68noDTSbfAyU@Ptea3K1r&N}y7*JstwMX58Gw<GnK*
zUfoIF+eeF7zXvY3;<E~<MSwxB-Jij2zhwruW0lP^d77FE;JT=Rhc)GXbU?s#T%?4a
zlW}t$TlP|<cAYUd>p{cS2|fb_^b|Tjc)WG%z0h>Y%g*B^TTK2;pUj;~u2<E$J$iM;
zcNYq?zGmR$#n5DaT#Pl<y0lD+nRPNAg}z1^*kam<J9s<$G*?N$Nd{5e2I+Ab#@<a&
zF?boPc3rbP6cXzAEyhM08^@yt-+u^o!mWBtZ<)BIwr(}1T)R@;fY+DNpglHqx%SG!
z?V<c`afQU!uBY#P^12@;cZj4*F)YgNv$gGNZpZOT4;)R!wVzh(N>^~vh^QBZrxh>k
zB6thRb~OBM)Q?+6T+RT^;Z&a8!H;HI#Wv2JFzhP2<v`U&fQ>HOymI|k>!<Ow7I{Y#
z@sR0W;j6~g%MnlgNupuK>WL4|Onj{8ETh^P;$AUv_deOMi#!$U<I<jI99@pzeSHx#
zqE<ZC<Yer13hq>LKxXWGUfU>@90-l=EH=9n7UTw=<x8IIs*HAu&qvov8<z%Nm1xYQ
zLzQVrAdstGk6dWBU^pumsLCY;s$7Teh-$1ji8>}Wy5sn-D8o=R&>19VeA@ZKWl-g-
zDv7yr7Z;=TQoxjQ0ChTmSq`I+b~om2j>)XqV(*%zeu`y%V!LVIYfRhtQMo;MV6}h$
z^VABQ4_AwcKR!Mzvx~Uzuz|W0nc-%l;Y&etYRi<TdNazY>TaiG!V>*L`Lrp?8C#i%
zHJuI<q5k+uyYRyIgG2U|`vv~{C&2>KiodhTpWJCqb7Ph=p_Q=y<yonU3Ytm{q;x)G
zYpUgYwpxevg?Pd2hbsuz0?NJ4yMFxh?k;%1>brw$T8|intrPeRg_EUaLq#6DlQABi
z&Z5tseC0#Sozlb>#CBz*F>+B7WkUY_7=L@#r?bFlzO$$Jgv)_OLQ5g3$|$&)E3Vjj
z`i7qY?HJk#m&*}$TH$_|^~`CoaOcO@4ep!|ncCk94m+@fe(+O%5h}Jm%akRzoN{M>
z$*a%D>@+?^Jl>uV$J+L+?83z`9vh)5hjqin-gwW!M;*^95{vLOe)@nWN1)h8$7~fZ
zNiM*>-LOL{^L|y<JKS;^E=8#%W2tf<`d00Iw^2Y?n`3Z3{$q;)OMVF?kPB}HYn=Ss
z4SOU2#p~i}UAYBDajTbN8FzRU$M%d(T-x`eF>Mbt;u<*HSyX#5Auy*+OIFp_0tvFg
zQGSeqGDQ0(CGVq-8een$$&3kvLj~<T@vHmrfv@@T&;D{?H}boKF%v)j`|ba)@f3)#
zvZwr;fA&paqy*=H#ddeVM~g~`kxO0rit}-*FF73c*be%3SWI=N@z}Ln*v?=cmk3Wg
z_bDac_RM<NAcu8&_RI)3$IX8GoPUO+c@^G?{N?=znWbdF*_voE_Nk=|w;n7PDRR-9
zx>1tBm_CHuyn4^onU8Lhf@Y~j%e4VX@n}c8Yij()v7&ZXo!QwG<5U}E4!*uRp`wPn
zamMn+CWv!7le+XPPIg^{CHRj=!AOiP)OMl#O$k7cz2JCHt}w4|my4$3>gOAS>uB7T
zWUz~??yyfvj=|W#VScOPeaSaJv+|gHyy3OJ)ZJgSHs2(ECfo<7N47az!(_!I<ui^}
zGcLIjSM3w`BB5@76Vvh%(4B61Ug`1Z!{`Bv$<gPBd8aQNCL8t<O@AluV$bV%K0!KK
zOr3~H)b?_BzERA9N{^2X;o=?UySQ>xW^hZqXQQ;2a>zHzM5o@Cyp70AGQ{AfbZHhy
z2qq=KQYgNSzxnh40VRu^M0h@-!emG0CEpQneM4-prtO(loeCPxPm;W>EtMYowBB`0
ziR`5)$~Wky;-H-a3oq439Bd}#<xa-v_SB1Dm*&ntyDx)IRZf!w&!0pCv*-FGn0<fs
z=6FY`tPgE*B$11t7HooyLCj0fY3)uj#hky#hSt;K=>8Ekf1^m<*;v9Q1{tz(TJW&G
zp1|hdiCu8{NrsTkX{Mp6Fm#Q2?5qKJ0s1u3ubA-UomD0n1+BvR97h;<sVNFjuQjhY
z*jnDY-ouZ!4+zUQkd1Cnkv1KyR;m$k+z3fk;*bZvYPaKt6=V5^n>2{^VwGtGZPu@(
z4W}CHVX+oZ(eR+-)00SPiO)5t@jSq>&-tO>g)WOR#ev?yyErgex<fNDdTzojX)ltl
zT{rBudPNe*s+QJo+*2UO>_vT2jJn|n-UnK91Iw2a{01_B<&$^PvBV)<$kITv*u^Tj
ziG-R}hFvW;W`mGKHLV|&aYxorl^<1jw$b;=E-*gh10wZb)|Z=|o1m6_cR8-Rg=3Uz
zZ-+0~eOB3f*ABiRXn);(xif3z#^%TqD3lmmvqru3^$56Auac1vQD~Ni1q@*Rx?th(
zHO?@R$5vCq3hRE6f#+Cy!+BEWyYmfa;V~J#cBw;8CpyB~*ji?_BtHuiUdgT7{MdY}
zU2l1Qq)DMcFA(xZ{i7#kLZ0#&^%(`W3plJDQcAf^eTe)(c?1`M@~xnWsdUxs3aOsP
zD8b0J#i`E<xp2>$JPyN0^tDBT1!#qB;~(xbvAs+HR-BD7=FUTTz|jDs>0$doYuB}B
z3ms*35pkj154eonIHiwC&L=)*Tw>8fA3N#!9#Iv<t|8Ob<)BQ@rFYgrJuOdYD4Z=g
z<#MJ39=}nswSf8X*&N3fzO?W!r;SK<_eLG2!!$sV^7B|r(o0Txt0KD*zg`bIlTEea
zd!*V8VX}+sAWwQJtP`Y@QRe{eV0cuYcU0>6`9L9^zMjt3Vx4?v`utvDA7FOU*?q1s
zB3OAriO^RrK*H_J`zaLD-Nhba>kETAR(#s2tvUBv_$DIOEGKTWIZO%Gl}~~-Dmvx<
z{nGv7F7S$>Y&9e3Vi~^sE*5-OguNu9bS-t<e8g`G*>_>8qc;1H_?F!`a>K^#?xiF5
zz;%aNuIC?qh*z{}Ga7VXL>9em9m`HOC?py0z}sB^_+ji;iO@bG8_A=W-1jM^>lvwg
z#lV|g7*&crlm_QmSmYvAm>J+zcGU~VYBhNT@k6-H&N2rIS&m(W<>(?#8sp}?*Dk(O
zy0mcz)z9=A&dq1!LBaS+UMz#7lf6d20@uAvU7r0RD(^AagBk@YA>3d5h>IrJgT!DD
zs?@)N;az%lZ!obnAAO+>9qm|j#m4O6Vi6W3jfr>6hg+t5FDhcQpS2+$ohJ}5Z6vlZ
zQV;8|v^X;coZ7Nf!~}D+klk}fyOn2I4=Ku|OH_^voR+}%4$e^Il_*Sy<p-(e8;tX&
zb7`^MSPWxQSk8#NaiUXSuaDuW;2=ZNsK9uS8(XTMaQ?6?eKYt6IbHp@vc|JM;?Rd+
zZ^xB>J493E<L3vRasCks7DpcI+_AW^JPo)@eWr8E3L)HEr=~X-F}M;Pw-X=`cnab!
zja~R*V0WQqI<vG@SmPuqk`UE?bJtC)Ul&60I&|R3kMv`74w@iNSb=yTRkaW)|6a&q
zTp~$6GWJzuw*#0DNjc2GXZ?2l!7HRAD&f60-I{h&ykR_+dw7%8YPxTkL<AF@(?Jq^
z9;tkB^19SIg?lUhh_7Hv()H<E`{srkBom~A6CUqgTeD!K@Qc{B;WXqEJGfV*KGwC!
z8t|l+{Q}DT-$u;xn_@GFa99SGBZT-zXPBVKpWoT})MM@uPK5{o)7FWsv70P$;#(`1
zZXHOH-fw~?43Xx(oRb;$F85Wx=wslVpJzB)--<MuAKsVBLmVc$_ikfHCB;3vS)1N9
zp3(Yy<Ac0uDhl14svX&J6x$2i*AH6Q0G0Uu9K;ho2o`o@`$aUqOL+=6%~O5XtJ>Ou
z>$^ySw_^~picw|{`;@LGz6Ts3J=ZxLDwxj|jJ5I)_eKRH)Fn697jN>OZC)T&$Mx$l
zQw9dMO{-wLN?5AAX`*c{CN@5hcP-dWk`Y2qqi|R<_fczzX{xz`jr2PQ#Ut;C2&Z0k
zawm10zrkx~0~?Kwtm(X6mzy0Sc+74vq!z&Z0}!<>A-)w9c0{JTmJ$*?j$>*3XoqEf
z1yuWPb}3$u>lqnjX;MJ0%(hA0?Gvf%w#`&1y-Ox;IxwWGn0b?mw@zZ!yv3Iu6~{9$
z#yxUl?EL4}!iF%Oc=mAqtJjHGHYLlcFp;8m?yQ0PuD@OHD$wkCKA6<zuCK0=bD=My
zR0^|l4ov!_jkF>NRZhu<#t79gI}6m(2P&uA%F+oN#R^%rd3|mz)tE?rk2%7R51tvx
zFmpB=+IP_NlY{eq$MUaKj^5P)p>tQK(5Tvl{T(IP{mk-F5{5%n*H1Z4^`P3bl;{WA
zp7!`Lh)RG7TvEcX@i=zQV&!z|=9tcSOR0nHr-(bph$&&J<2<^L)*DOS2`Au|x{Y6+
zxumD9!y}51GU~bMc_%|Sa<!62fl{r|R`m0SK()yA&#&-!ETygukg$(~p~N;e4u!7H
z(Y#`=S5A>W(oyCwwi%z;6g;?EO`nULt)?HRRZhKpugGjQt4T=U7!Sbm?D`JCgE}Gi
z5BbAA=G9SvL<v00N4EWMxWW3JGGJI>Kf2dmb;O+Ryg~f<M4xE!*t}4#{W!ldo#oO*
z{lZ*5XIfh^@GuE5M`9Z{2Jj?(PPpAd77OuGjeTWK(OC~<CbB#HUX{EQl6`NZzWibW
z7CUw@r1&lu6}zfB@#1)M;BZs;V8Cf(x?F=QI!lVCK=n@Ubqg_yC7E63)uq<eW9Aiy
zz=d^z5e>n@#ZB7wYvhMz$m#f$clQ)&ALKRcDKB*;e-#CMW6SOD2h*<!evRTArQO@{
z96GCWNY)OS5coxkNN>~$5TQX_l4N79V<)<285JwgTt&<&?>kW&C1MjX-CHt|o7b{0
zLd0@UAmYaLdzeoo>h~+Ul>rPDc1|};Xrns~eIxTYp-5C1hlXun#E9AMM|}q{VQr9$
zPlMasdK=cpy85nZQI!XlZk0}FF;nj7Pcy9Y3B(r(jsh3w{dNueSVwF)C<dmsJ?eRK
zW;{#%MZEghz`{)bB}7rb7<y}CUcN5uOk@q^1q5=AB#`4)P&-0xB9McE<QSl#HVNZF
zy9%&fqpbQh?}1&#_uH<5;8G2CS4YA_kB?vRN>L(4s=n+V4`fTWMi`CfZt3I>ow@lb
zLzJl1M%_GEA8RXhwaSwoCH2&oj?3qi4-@?j``EN>Ab5I;LCh))-2Y+O=7#a6NinS~
zTG(9XkLqO3BSNGO&ld)sx%1M+mD5&a1oQmh%X9aR=b9?G7FovXC*xW7MwP7HY#C-(
zDqD?W`dH@A8h79hvCmc6Foo#S-K{oFUGeGQ)a0>TI}4;a5Af=La$drA)0_Cj##M%J
zH(%^6);H>-zD#@GKAGYn`cu4uD1y&%XpUkdj3pmL-k(-XwL~;cCJU}BrrVMiIc^FA
zzc12TVqR11C%ADMTG_k)WHEdbxMe-8mjkC;JQPZBnZ%CYG&#qviF9s^7M3<Hq4KyH
zFLRwcNj~>Qfm%KmBrGjygTmGZlJ!9xO9ESj-a!g6Z?Cjk50=u&Mhsm6lgd(qGVGAJ
z9&jpKZe=V<El2OOnbJ+yfWnkpNin^}*3FC9j1;XNSN}-iJcY`&XglQXUR&}<7);D~
zvH3{j%__45<isJrn*`%fsJgZ<%kl8)1fpzo^m%0tyxG3UX8shjOvp2k%uuNo-VYUu
zQaNnKps;290FfFk=;R4R`QjS2ir+YVM4oWoIgjfc+^AsD2TO$W3=@F!`Goa%Qdz_}
zZOkSvx?Wv6BB;CA_00E};Jt8m={^3vaxYGvnG!X*+)!2H&y;362!V4JWL!r9KigP7
zyZ=kPh~fZ&M=nTUc7p#%DEMd5f5i!ce_YL@w(-T6=auyQwN@9G4C|h=$E{^RF{s@%
z{vwv1KjT)+#xeS<Zib=UIx&mkc`5$b-r^)p#FhET^7u0?DH2zj!cns%H#78WJ<$L<
zNV8SpEL}Nn`j*Qsh>Q{DHk?HkVPL=5rlORUdAC%3yiJz}z1IX^ug`_qt2imop_^K-
z=S|d_9ypOeg8GaOB^`V=mLsyuP9$ju4N+U{jS?+RHj0$D2bNaeJ_AnhJZgPnyEvT`
zr4Xg+VFkM_?sY`KK7x{2>NQ2$@*Tsj65;oQf?p93tgRJRf^@hkcLZYydCqk@B4{ga
zN6)~0A^^{ON}qm#?3;8>fdI-fB8x0k@aCmCOCI=6&CBaI_mvd4p{LWV)09#!u*e@-
ze*YC=T4Z1;66pV|w;@D@nB3fK##&5v9PqcK(mHgzq2gSP<L*5QefET{Mspc?CKV#%
z&FR@|+1Alptp&Q~i`YBdi3&K!5>ZXdp;5$Woc|?Ck2K}8NlR0z9zq<_?FKJTUZ+&*
z!Ygi*G!oEkP%FE5LMrI2O)^zU=lLX+v_m%9{h!nL6-%@-PK1fcn)$Pl*~mo**(orW
z!3mGEj53M9odpjT5{oeQBLpiKLr7^jq!6V`bdh3~H#a+6sJZa^BC<gct(c)s=tU!5
zYKh6!N8fCgSZzgbkPYP16ljzll1Y$yf+VEOE5voY7r#mMKAgMtnEk#7P0w8&H)bV;
z948;eYb!<=@k84fZ_75Qa2U|%mzVLtzg}<H#Fq_|ZIl@+yWy67Y5ex!B|%*Ry3{rB
zO*!X@Y%`OM0dLOcaV56aMYQb%yV77_cdjwwX7k%s(WSJdr0C|4{c)|<G#vKneC?*W
zvj>wv_OFy)W<zxbb#e-oPZKHVP=_5P%ON#8eonHn=cULM5~cMvrS+ACPVYmYu%l#l
z&M-BeG2p4eElt{*>op)=NkxSUj=lHg*HFu}bx5X4S;nH1n7wH}e&i%NCOA;#`<6`n
zLx`tQ?^<)$g$4(XnQ;kC?a`EmsQhPMG@L1=;1b&-<n-qcn^%(#_Z_*f*J!VqFSba3
zPN3CG(J}4b!u$Sq?w0T^!NtQ{Tqo3)j*LUs-!i7Peu!B0PQIN<Ng~}a9yr#~e1h>n
zVU*2=cA(T}MVCnWV2REw_NTysX-C#H32r^lRB19wZl0(j2QeyP{3C&Pt=VK-Fm%XH
z<3LCl_YBUq9pIsZ9@!U<o&tFh|0z`}tt?TzK6S(8KG)RfC}pR)k;xoE;t%vsOy}~h
z#n>xj`r>q$^x9(sdF8hHax3U@;r#ao8!SY4w-P{hzx+mm!=?C%il^EA$`&a;)EWJD
z<3xkbtTb`K7%{tHi$&utrO0|=lg>TzQ{bM|*l{J+tGDYO!xFBB5;eJxwI<LzG@pt;
zd1<rA@{!6%KNF(4J&MQ!g#4Ph;UE%f=Mpj>?zJ9lHZBv52T^t9Qd7|A=&Qzv{)Vyw
ztHSm9`bA^L`ikA_P{eZlHIcXA!OSWRZJG|2lhP68gO8`WtYeoLF7;{NZO_$jd*f&B
zRDW`^He%GUJ^mQsRL`^mjg@By2vwVBU(QX32{oNxal#&!{Cs)^mwaQsNl?ffZ1@OY
z46Y&5?fl-3NGQI@-@it4g4krHp6x=Rsf7PTzS;iizS1K?F5~vfDh@eDQ*>*wO576@
z-oc2Jh8}pEE;g$7(P|d6V%bHl@sBCqf$BXurlPrz+69i3Ra|ms>uqCGxiKO)_2#+U
zVF`{rqzk`_--mwXlv(|uc^Y;lomr9=WMS4F62opwMLrC*{p|6!l+6PUGZjRwB|1!X
zuvf3vA|}>?&M5f+?2WlKa5cBj%{#ay1=Q4R0^F~adt{QbSPQ-%%(HEi(nBR`7ueY?
zmtN8fIAa8&=tN)ocJB|gTU^7gPdp!uKD(G|K&1KzU&#DnLy@fB;+cG~#8U%1wd;c7
zqDs~eARH|kxE-&$_b!l{4|iI}3aj;<e!=f!VXVF!Rv&6Ydu)lhGu!dn@^qh)$4sLB
zIt8N=&T(btSlc?1ZxcR$%Aq;0WR5B0qzI~F*tR3e0vrp{>1up&Cp`Aut1CF*jLXMP
zy_!GkisRQ&S#bhzPM{^^2RJsLHhJLqYpCmv-nE8;@Lq{gm=AM#1vgQ1k5S*oV|Q}e
z%M++{rN>q-1lX3CI2KQp?zz;99C(;g+nHjl(@ngkDVSqSMCT>G>i%jra(?6P6y;H~
zL6wLyI{KRfkLjHphgNhG>e=3$Pn364^1L_w=0IHar<z>7H2J~}d~S8*qte{wF3(#d
zW4-X%*5!LJJ4S9Rd?m!{^R*1a@SvQBZBo*`q8IwZvI?_wVp-&)ZljsRZ5mS(R$rr1
zv?iZC1ue)z;~Q1RuTd*Dx&5OGmFcL)uT?=skv4kY@rV@Vl2g76{9F<mNnMo=JwoQy
z4hPR^YLBnQct;zPQnR0s8!#K3<5pq|-seUSnIG01TctbgQZ;^bxGq69Q8qN5Z*hoE
zt6iN{sp$2Zb%*U>l~-`Q;5>CIHqWqEMwYHEpQBn_xgoObc3b7cUf@36Q;&%Q+=x{p
zF+x(~L-79X1n8hel=cj6*nk9Q?3bRA)fn*@he}|YT?N1Ekf0@)l!Nd~wY{6(nFKeJ
zu3t(+8IdTZ1-fd>A?LhU<=&dni@Xt+4Hr6dh-f*?^WH&Ebxr4bf*BGtClUFplv}56
zrpt>Z$b@Ep^k8~;vM)Cze4_X;sespREk}Aj!#Ez@7Pp%if^||(<Xz^&{s16nYD=aZ
zKfElIiM)OYF>MJ8?aee-(QC<b?c(tXSVBG~L?oBO`}Na?_MmEq2sl;Y_)2N0qZF|k
z=C1x2rAPpk`m?50_}T=YRzBTBq6-`Gspmkhh4Bw*_1<JA(W(^L$Di03VTw3dd~Z`#
zuPs(Lna!XB8F^m2?ltAA2<M6<*9Tf`G)3iApG0{*6tSgCnx+8Dqr$={$>}E6j7yH=
z9|#vO9d818!n`{x(_mM5gM;P=Si#Hoj5}A5c+Alw*HP<HHIpa$0sae%)Bz~#o$$A~
z@Xz#0mXU(HaZF0%eUV=g1uiIP<!XpMEPvquMwWDK-^vTGz|+?Ol1h$RhB>Z=nrSy3
znKoZ;^Fj^;>mQqAWm92ODLuZ(BoJaY@;+AiPGqqOv!X`F8#briBw^7)-2m8I8y%E?
z3QHpI4iW7BjDi_^ta$~{AtlyImL<kDqQss2QWekAkGIXaO3HnliE-6!7+1>CosbK(
zu;y)V2;gSR>}?h~h!HA|uxJS2j}C0L6gR6M_SF-6Vp#ftR%NbELu(>Pwl&9ecgSa2
zg4pvq0{4pbu@@&i4rb^ySf*?EqNO^rac`u~&DmE*%x+S@RxBjpHC`p0?J>ofzDsCb
z@}?fQIg}?GCFEMCk{mBKe4ZRxn`GxZgQ%8IRDn5MX~+kl>CJj&Ly7B`<0sbl-XEp~
zNl>o7;`S<?0zqq(sUl*3;I=Kh`l5j?McIxJ<8!$|wyb(_ShD;eMz&30rO#<JB=G1E
zx$%mUg^@A1Oub8>u5E3J{u(*G$7`!WB}IUU<ngT!G~M<-=pKQIJg3VVcxD|v(GY<#
zyn&#I6t?EW6oxYHA~Hnkb|rHSCQDR33(TD#X^7DjElPFbhKW@xNx0VQPxh3+($|Kn
zKl9fGu|5ohn{>LB4Q7$6XQKiw`U5R{i!9;;*@8kDm3=;r1fDP*EHw<|zUO#{J0T8K
z%rx{HXX^AavL{nV>hB|6a!liFEpUA$hbtO~jvf!^z89?xVSJ(4BX=w{@{PMCfd9@e
zdMbEAhrKT+`$5Vl9;3I1nAfJ-jFWFa$8RTm+x4(MPvfQ7r9F$H;)5&cZXnOOQ<I(E
zi8HzG;Te#WB70H8H(+rx_-%V|Fum*t1qk?OKVcVCfs>5x#o*%nH?uR2bOIOPFIEhG
z$7H8YOR#YrcmStQ)wvhSN%1#GY;);&l^SaGlvtCw;Z*dfA$C~a<z$t2y%R-qrhx1K
zQ9Pa$OU0dPNR~(Afvh)MhsL2f>rV2!Od1V~p<|X4ystDJ*3#Mv)Qdv`MtT5FBR4xx
zwNELdf6BTq#<1I3jn`7Jwm$rFVWTPDP;aaCl;B<FJoRW;@e+HkL3;>?`byXH*ABEi
z*-@g_#{lB&dzFk{;$XEuRVcS~Q2Oz{{?3xjsY2zkU{|7}x}V*i9}nY}l#hs^ZAo-z
z6|H=|O69~MU&%gM{UU^0bJz0RGXUndyiDP4n@_Q*J#KME;C5s!n*%uFUjU$ke*8`@
ze5~$9_+@I&o8_s46GbP97In%>Wst0GC8nY7U@gGak4<V@Ggux5sB{B4gxh_=-?ssn
zFZla~7hrk5;E5r`mmnxOTRzC*KQ<jHEM+=2*Y=Vh<_M*`tm;SQlhdHIWo?luUTly`
zS@#w*d7%A(5`}u~W88%5Sa*yT4cq>ac%{;wP6g_6(r&KG2ekoe#Lr)*+-zyoSXXq(
zbL<t$VSD6}@V16g%+^a_S3jTj90A>V_}%0*gWl5cPYLn}v2YNa2A;X)ce|xcC}$l%
z&8FlHDbov3vKF#i^0CYT(H0I*v(UEW(|};XgIWo_uGa}lS26ABOiB*gIq!*|L~_f9
z<-XD^S#Ji_%`1W+p&hSDfC_)Zh8NqtmgcmjKB8dJH4&ai%wPIpZl26&E7%~@5<ehp
zWuTe`KV~`AbL{0QW4KDP$$`brDpHzcgR%QDrP$6iPF};ln-0~+ks=OjPrQOpYco{R
zKg~0uEh;s8DKzCA0M*nUKvo41Nht(tA)qqbc3x%ykn%L?{Uff<OnYCWb7Yy{6c~0D
zM5*%V9~n<&Q%;XlFT6xq#+#}XJ6PkViuPyV_e@nn#B5m+P9OPTjcpExYh(Sz`{Drt
zxqj~u7nU+&?}McbN^;&bC6d4gLu>buYC`#M5E8-cDvuN8q7zEZ<$F|8RDJjCqm8MP
zc+m8sf^};D{Aeh{b6`H9TH=GJZZf>yNi(knUZdqVC7Eq}_a$!)XShJ7WNpavzH-nu
zLmd@3QCy_z9R$0P&v=X%-YXq5gAU;yHX`Xu*m^gHQ1T?)I`&2$G0kH<Z7|`Ye#%v4
z)C@nQOg=~;zEL1wz;y5vh*R439gQfk7R@ivJXO|TZp>OR{JikMJ9X{t1E_Eve+zv?
zO+y<xfDqE+1M~eL!fjJ<$Dv|8%rBNZLZzW-*^ejo@0E0RA`~~9<e6<8?pbNu6v`FP
zQeH9oQXnZ!Q_p;z%j&J~Y3B0$;4^<F@kANgn;u;=-n-}dHJwhhRtuJ6>G785Xw+RE
z>w~9!Mvtf_?_#)lX|?XNv|<+gp7h3tRp~=4az_@e0W2cXcIlyAf_yX{Go3y6mE^cM
zA)S@nw~t*tSlKfa8uCnybz2hR($Mw?^%!+6TAn9ys3Rjts7XReBYHM-l*uQyu&oK<
zsj>}*ORs5L5%TgMXvKS(Bc5r)22zPj;m!Dgqo2FlH#)28QLX#r<)g)vjJ*oN*2nuy
zVZMn9C*0k}xr|TJS~2HEyB|8iaj*?Kt8L~hap5{g0@*HGHkRWg-SUh_%5m$}^)Sgw
z+`2bU#%}y!s3a4`m9Y!|I6*;P|6Jh2Yn8P-FZGMJmS*@TxaEROC{b-a2g^i@tz!u1
zN3M1RgCgY3roPRmt`c(Rw&3%LtZbN+M8tdN`_HaHu~AH=q+8cn--C1;;xb1bnG80#
z7dW!zbM)HYNNYE2D=VZh>lKQ=e9cwm1qG9!`^w@X>V8$Mu(e}CuD)_}L1vuN03rK*
z{L)6+zH=V1TO%i_5jTg5YLRt3vDKgVh;1%#d*L+k*XI4jN9R6E^9<ELwpeSu9>PqC
ze?rpf3X{VI+M$X5+8pchYmmf^?3*9qCoRQoxi^{bY064QJ4X0uWZCB`z4dU)DY74<
zELoo}UNAz!r9xD4=DpO7HXafqf(EUyeWJOw_b&U6pfJZOQ!Z3UfH_tNARxbx*~&R`
z#twhSwK3&Z;VEZs2Ztao$`vPE&*2%|R{!LLl6@pdQcEfQ)@EmL3OYJ-GAm927BS@b
zTTtIT?)IS6(W4U1`V3~h8mNbtITR=|*j}=yyeREiQJO0xrA~7)e~}8Xe?~+T@iooI
zfx_~d{%G@03HMh&EdW}U_kwt$*Nk2-I6xKVhR(btZ!X#5C>yX}Q-5O{89Ko<Kk*@=
zXRZ~B3Kr@4@+fPjYu<>aDxEQI+wGU4&RqR@Dx&|g5Ya@Ba{6t#sqWk*_-d=}r;k0W
z-s$Hl?(MT}FQgpwJVS>}p$R_GKSwj|J94F^n*7m--?Miy`M`qbLxo*os0c3oD5-a5
zS-mB*!_nY$%;CE?$bY%u5P5zz`9$-Qp_+)5i=n9f&}}a&Hsu1WU}zJwd=NYNtjePU
z2WOV<?7?Bt#e28VWk`p@Fz~5cXqwcun*WFwu<~5|KWx2qRFz%S_A7`;mmno2Aky94
zp@6ish;(;JNePHZN_VHkrW*n22I=nZ-utZmJkNW+?;Yn1#^4XefB}nptu^O${jPbp
zwSp~t!D^?6i6n($@A%6oJ1>^b&cJgk)s3F-`sKyZTsV-xKknEq)rXAbU}`IBlqx(C
z@K~+uu`1WD4Xrd8&TLr|OV)~oLbq`@`nB3-DZj<^NTY3rvf<Km6cD|PrdKm9I`a@#
zNEL{vd^%k*U*l56Eub{ZWBsCXX5^cNn)$L{3%TrKjlL|r>AfKPiC%~QS%r30AC*8U
z(ED<y$9a3%pGabOo(+^W_h`4dc4g1XS62qnIP;V@9D=x}Ukf|le^U@}TpObUYHWU;
z!<s6PGE0%BDzaq@OfUL2k?{j!`9~Nv8eY)KM+f>qZ|F$)Kfczl|2(tBA7GZauXu9U
zcv2u=wHZsV_MDs5^~pg_=(CnemX6}m=`w7OnkR-$awZA{7k?2%zT2!RJU_Esc(}V%
zZ8#^M(8Vf?#xa(O$fz)u>BD-7TqJ$Tv_{nllZ{+ifn|qyebS1sh93tqBlB1AwrKZt
zCv0z|vz`*C8LWGR0klp4g@~#R;;Ee8Ok}aV0P#|`oGFSB_}(w5UaFS{hh%o2(Gl^F
z{=p=D)0@zz;q^1-D=-eLG&|~xxB3nJp0nx~;=Q~N<2n*)b?Efm`_T~;KDO_HKFP2Q
z<W=JsA%t<bfP{I=k>k2O(fe!%XdpsGKuynyR-LcIkc}uJD5cQ+YXHy$2#?VH{kTrG
z+mWsRBEN1&GJJ7hM^QKEKUG&=QpxKtGDTW-hS=OEov#?@Pj1@GZw{o%dwX5|!V0H=
z3C}io|GZ_7^8MBKgD2?L{|PXEKv_66be^~<)DNae=u$O_+_%CKy}YFD;Jtb+*T#1+
zSi=~V7Uu`t`QuXA_V>d?IhJ`h=en;VjM}IYRqXY`KE3riLPxlZ(XBt8Ax{%A#HLKc
zLGOs$CG0m3k^Tp_mA=}g;z@fWUj3byLo)xv0yt4jf?sj_;Y#!!1t!Vg$UNoL7q%mZ
zjGy~|()%lZ<FX4s6!ua(drn15JkQJE{F7O?3{f#v<c+s84C>t%CmhqG(b7ar&>H4*
z((!~rw;{oF*xvIK{9xOzm#wj$liuO{l+g;k4OgXAUaxqzMyHh9r%_aNghl>W8OTQ{
zZhEKq^cFxT+jY8f<Qe5GYHMYH3*<yIRo}d@U`M`p?XbJ_`dY1T@TbG;jp`-ewXb&C
zyT=IfK($a93w)09H}Fw;n1JhP$?hO)>;2oVaQuuVpF3vtqj}$xw11JnCF7&|lt(`a
zmg70JB_Mrp<InvWtHETqd{iGnU!d+qcd?{L-0NDi=F0(EL_YE1Qmx1`F5ktJ0yi|X
zBAp&Uzi85Y`QrKx*fbp~Gu1A1C$I45Un(G;xxxG1+f^F-_-_{CS}|hqKb=FdO-0Ci
zG@77DiM94nUvM-l=&X}ozr|D1hU=!JlI}BJt3wB)GWDD@N0`3LgazomxZOShp$xWN
zL3ZzZZhy5|6g5bE?Q8eCkK!?mbr?U4l2RHp2=vh-2nflz_HHeDbk4n5Pq^$BUo>1E
zXiSbj%O5J%9|d;AKhiVqP2Km@M%CmRvI&0qXU&9`vG9gqK)X^Ez)93XOQ!F$0Bwfq
z#M1i9<V+@s+eyG-P}8<aMYmVgWTJI%0xCCIbUqRN>Wz}u6@{kZ39_`FMCW9kdRrxd
zmHBzWO2P16K-aL3_ss0^9w=D>6=qTWc?Pe+_b9EXzTY3Ys`<ZCJFt(G$BwS7%l+t3
zzb}d3yI@Twf>?HII6WH}-FG9LW)vhdDN*k6C$HosLn3l`N_BDO$eA4xn@(M)(;jQu
z=r8)&z>zbLahVM*%m0Y)z<4GDIeo#9Yg}ME8n)i<7O(i|wO27Y3c3p*LPag--=-7H
z0F8F3`pL_w5YS~^4mUW0{|i*qa~~N-Aw2J(fpZ)TT7|`T9qg1ien@<5Y3x>IaZKw}
z*7Lu<>+slR$*k#UyWIa(DN-p_4W!1HZBFOAX*YQhO{?^Qtf#n=Z>0;??6rku(jQIr
zh+bOxXEKkKys+m*1s-)%h5F$OZFMsq+Zl0UPSY%S|2dictpM|dP%K~jP^orIFoVjz
zW%J#6ez#(Bv1moZv=^xp*~kTHt!kDOEbisXZ4Z#$Xs@RKgkTcCjd}I`?Dc?46r8YO
zZ9b1yz~3B<8x&yCIuxq@I4N-9HZpWDk+EpD=r*(>D`GXYEz(bPFm=#KuYY@9wCU3R
zxqf?dkm7~XeB;WQaPx;zj<}SK?)yr!hj$NkqlIsHZ?hD=E<C=M5bppP!wY|dLh@P`
z*LH8JER$7-yR&LQ@E(`^39KA-WO?TphP+}a2a+ajoS(rKHEL6d1&jNVF9jJf7+$Xt
zv8{_!HlQA3Z8m#eWvdses`-EB*I50LTwFF8d|_3n5uQihm?)q~GK*WS>`hps*H(wB
zR-iCxxhv>H@Niv0eSW^97Kh=a%p-Gkec<Ws6H%kw>aSk?-obLVuBAx1cMuZ#(`$@(
zpNP-B)qY1;V=K;zI$u6figvmF#A=96+1KXaZL9H}=EYI}Pu9`>M9!~nzhu35{F5jq
zvz{~Sj>qIH7k;c)-TiP?KT_$j_AYs`z8IJ+p|fuLB_e2z+R0uv(u)~DQMVmEn5(sb
z&d)d>>dDCyRDVU4;xcniH`(aZ0#=)85xUbC$GaNl^A2>@5$MC+L^8H=nvlPCnz*0u
z#4@k2`=Yg8>vuqr<$ibdb>Z2cqd0Ud6F9n0^b&Ru>OZ#={J&=`1%eFQ>ryb0NKst|
zOm_;VRu}s}Z7hORo5u9+EX1zRJo7WTm(TGZRD}e#PiHT#ax?*PV{zn9J%u*$i_U4R
zLcY_p+RIIjS)1z!wQjfelyL|&wioZu-2e4@|CmY}Jv%=v-}G$Q4PEP*2(!_W_<NVe
ze<yd<5RXncpk^Z9QG<lKnEw#+y>PN|fLASeLi51tio`cf4(fTw6UV3~F*zV}7U4Hk
z^{spzYH9nIv5G8TDN#-mIb?!L_AJfst{6fwU7{e1MS<q#2o8DkjvR~KvtOc?E83gF
zR)&!iiSQzH>=Nn@3<2$%Gr4PD-!b5>{o@cUy}xthx^HEzwr4{513VP1c)AHO$`2@Y
zt=&f!0V##!W-2p|1QYHZEtZEZGZTQP&`=z^TJ(x^-0GEeSpBWCW&be;nCR6`JvDwt
zA49&I_9jIDIytMM(q_-pa;(6oz!so)JP}0Pn%;oxAm~e<D<a<YVX-T!^%zHn)T@-~
zdAwGft)41cG_zSWeTwXQ5U|JX14YPI=&H=*`LmXqQv37(;)CPhJ9)qH(@=Bc?KQV+
z8ljbDdDc_x!(z<2x?t{~{41B+qtpy4)s&jrckYk3h5F~U5>F%bo1)VWqF8+q`s3%x
z$`bc=5_gTSUU>1f^0z@;ZlGoq9alAbn0Ub*#jCt_n5v>*?XAWe_)GPxbRI~DIjU+S
z;DRx)8Gv=+`uz&b1vQD^a0?WzcHOT^;F>aXtT-hHxDRDyP?iG3Fldiwt;$CM0HS#y
zwYYAz5oU4@qDb%NF3Cy-a#99XX|nbvp?I`!#!L9A8gpUComc9Vc0=z1XI-|X4g>>B
zK=ZMJ7{{#76pY8k%cPZv+|mJvA&aic+@jxz)ANJCAaPj%lv*K8Suq*k=lM#~X}1l5
z^0MyYH@vosWjs@Bnhl?D8}MIP+v2dlOPo0?l3<ByXDs1I7-lSpp?xD>I#;bm%US0Q
zd%)D_nVfVt=Jq*=nG4%^Q)qn0Gv#(K+TLWzXxDPTTSXs3_W@E6d8MSDZUO|x=cz(Y
z{?`POHD;Gg#M|uwPp2l~PHNRA%R5v#AFMp36GIzQipK4~osC!fii5h<nrmAWsZ%8e
z@_<=Y4UNv-9v4X0wet^5C3KHZY&OXfFau81Y|td=);YiT5r8^OV(^|{#T%$~$+f_$
z_vo%eL~)0wU=Go7?AZ`}4y@0nQZ>g|nb4GTpDU#|7wk4Uf}WiT_@4|f#I;IQ%6jKA
z^{o_=xaxJfAP#E+aBwIf)Qi_yiIPRTrcdEENH|=}Ux`RGUIvT8(z~lSnyOQ#sI|U@
zak>&?PT?oL?6}#G3I(fSO`uY`fcz1yoY-{hof549UvJQ*HR7SXsIshMVUQ|qctOO|
z`jcQAy&8X;zBB)Rp5rD*yOi~Z%iGA^1V(TK{zhGUZ87%g{QAULr^cFnq16rBG&E2Q
zsJu>uOnF(-;fyAWT#>xP=yUT{5w%w13c`0_;;xN=>pBW}7bCjs$rr!7NS`z;QO|WY
zZ}n`nG!uhgu|hNq;3_p7LrjB!mE-)r3tuyZp?wb(5BQovLf?=<mqb$>z!Wt)_^Lg{
zvFAfjYQh5dAA?4j!hI4yug`_=@FAt;c!P9-mZcy-4&gpr&;EaT9_r>Z!q!ZHFnHa6
z=lw*=^9hGpho};b2sGdkNnF|S%&ouhj++oBc(qv6&P*eAc6qf*o_RcZ`SZ~-K~Bm&
zvmRxn&JAhJiPCRjud54p@u|%~yM<wqirwxGo-|Y%rIf&6EQ(yb<AF3%I%Bi9=@Qv8
z80aozw~BMG0g1a?CDPn5KF?p(5!x_)b>=K>K)+P2;vH8f8=m0DI?TZm*<POHv}UFX
z>OEmJR>S&ua02a}2(tKgh<<b4nIH!%{D@BG_MB9#P&L0o^WZd+YN63ZlW|2KbC?6R
zr~njx(3-=kht{U%W)e`{=iGaxfS>&Te${~+q*Ms6Kz6}T+RsY4<vC+~4?#f6FJYI<
zEKmJJEl<!)gaXov^t(Y&Se*G-Eb*?Bk|*#2pK65D%a481<oMRwS-ict<ldA;XV7$w
zYunb<+dZ4^lZR9fUL6bU9DGsFRgC5<14IB!_));1?@PguRo*fep;j6F0x{djnv0g6
zA^vE?v$eSTlzsHMFnoHMv*#=-6iZDvk2i*6I;j(Y(5=#?K*dPJzjFad8`XVY<MF2y
zG}X~YDSmeEYO#1&&QGU2r>efux*iEifjq)H%l|0DV72ehcv(^foWzA&6JP-B8Kv;O
zm+y_Ht5ujgmIv&8ZrFx`#|-C-Zc+33mWS}32=WuA@RqyBP|@4JqI-S+;96H`K=ZBn
z59ft@7nq*Uod8cm>SP@n<>#k@$Z0kVj~x_P4J7acA!8jk;hq03Jevv||3&*k$9MEQ
zV2AUfHB;DnfABmJ_Bj1*-fG;yH$5c`2k;~uqNCnCa#!G)D!5^fAQv=Psk2|PV$c#;
zpLDhbX#s>%gIbk`pSpiN6WCKT3s35YgGeSBMge@@sULRGL#ybn^lQOgsZPPf{s)K2
zEfa%5Q;xu}+Mt!1cVusa9(Lm1ODC_X;DE#7Ch*(9374u(re8dN;K&Tk61N?RP(K#}
zi4fRFlzNyJ1H_o_!OB4}UJSmlQ=s1<nO$=U^<z8^ZpwyF6@2Yv{EHHY8xgMK*$7@1
z#CQbJ(c#wPi~aqFpVYUgKgqKJ1QV9q06@wMbS_AC&w?*R^8raEU8=_S2KRllE49fm
zZsq7ghW~^4?L_a&AN$jvZ}{NoW1nrV0zQ@&dZJ+jbaNJ)Vf4CWGOz8B3<1iX?KFM3
zyWAOqrCJ(U<RRp+0q`YGE!&HQp8?1t6ZFqI$+l+g!)$&sIs8Ght}eh`u5Y9LRQCe&
zj7g>BU4bJV%OqUo`JUlD{CTt9jt}yml|CU5R0U|!6JfyW8Lq)a{(t#AIF0`0eRqqi
z_%LD&sNMZ7c+W|Y?iD`#7iw}DoMKKM1A($m{dBiV;kyeHNFqu3&|sV}=fmyZfqf6S
z`Qt^(G<3bmM_<|akm)@#91upm067Si!xvN#gU%Z0<JO#8Op?OL8x3b4T4C$8-z;|L
zU9iUkq~38%27G?KQohry-cI_>-LR7SA9QviIyE07cK1QcS+e;pzvjR2X;DNfgGbgj
zh2Ep9Ht)_z;3cW_Zz>9XH{B}pE;3-^W%209Rqo&^W90Q6RlPXb*XArRO#eYqJMx*%
z&n)q1;NAuKzO_~E&XsI{c**_d%>17!39187@2b-+&??=;@RV&JfxBLyy^n|*#T?K5
zF4fI^Y<=fkGlehH;K1!?Dwm0XMgdXfM>l8_|3tB@R;1Pj4cj#H+VluOvz2_IH~FSV
zDc%Cpiw84}6x<f-kyvCxI9SMY-wg@Ye=}DNCDH2_M4ai-P1yZSxWy(af$D+Voag&k
zQz@MK)6;dkt0~2O1)aBgIbEg^06KY!!=g|;+B|se7&ocMTmKIFW3t6ug}UwRLt6%w
zrCKkbEj*cU)&8SE8`^5MS~EXNqq#Tz&7x&209xj5<FII{wAa<)cb$Cu_?KWQgzb?2
zaUlT93U?v?3;Tdfi51~F6B}qaNE2Ko%f;I?k>L3i5Knz4UjUk|R6rZ#YO(~|C?-R4
z(wZeLuaFPsl`waMtT8q%;okiwvyRFtjr{hoC^Q4!CwyIz?1+2zYjW9UF%b~JDlPX^
zs73#wk{uTb2i>$U+^L0qY=l9mIFm>FO(FyL#r`B5aLm;-U#jy-H62=B-*}!Jx!AH`
zHCFQEVs}B=<rwHk>JUed$W;9nN9K*87%lJVdSgMI8fS-sH64iUo812RY$Q~?kq57<
zoxc^-T#morMUv9a{tWi^>~`|^4fF)#bv5!8elkgb)K#a;k93d5D{}SprDiADLE@`m
zerh|lP%~oDHP4G3W$h}{d|*+Gl<L-+?`<j;afQ*P(~5>A<fDKsl&mm7EY!b#fDU8?
zbqQRk;g>98Oz^Gut;BO;lmC}1!H4)iq^6IX^^%Ou7(tE0#~)UPr`;+kQcOR1^NTL}
zBDCm-61XGB%urHk94z+X0g`gHe&dBDzkrP%EGHYSvJ(;&yuQh}e>J1h$#ijX!2<CG
zf!(Eh(Z;GR=A4gR3hw*dbLEz~r$tSVlCF^4vFs%lxCu`;hLmb;ABdFvtQeglq?Iq%
zC?va;Q?jB@jYx;f*|TLvw2Wmvmgrv;qMYwf{!HS*F3jz}Xs=hQ%dat+W7+eV%vJM(
z?2<Wk&nxEKF|DPY?A3#4h_arYkhRzCIX$=KF+T_lPtQ|+EZ_iV31+b%yzu)=0A0e+
zLe;qTMGZS8X@FnC9?4>(i*U21)_X({=a;bm7>ER)CpxK%mK(ypqY?gDs~9$JO_H0m
zoKRmnVURM2_!9v$yV?$|`p0v*f<rNwd()~}zeDMj7w@MO1e9JqXG}?lUaw)#aaO!}
zicQWhj`}Qk!n*Wd>*}@M^y=@3Vg)|?u>h+k)8S};a*@vk-<=GF`%r%<l1`0-Vc3d6
z;rO(RC-J0n**Y7i=NHpk2OQROSDoJ3?SLjyogN|+x|~_?x!9Y^)E5_=aJavvqw~3O
zk+g-U-qIGtW2wzp`ci0%bxa1CvpoB2p5iN#t&g$O4eR~dl&BflnaqneO1|S{wVuHk
zAm;2I_l~c(d(_A1!XM>zk<6(6>z$E?Rbq_xeWzTy!GZ;d7?~pDKGp#Eg_ZgOT>B)R
z1Ng;CQ85~@zJPN7&q6xY_*V+Ug#qP8K>Fjb{R6lsad<yB>5YzKh-KbkAN>hW1xIA@
zeFd}U*-iR>=u9qeY_|A^d#z4C$*{Ug`#qF6S7mvJjKL=ATCEaeIswsDZg8egV2EQq
zIO#hhWYIv?wbg6!@8`3>bKFKLI@8v_uv7Zz;J9GI2`!Q89s7rq1}|<%)6SoW?8HoX
zv%&iAM|VW}+w#^EnS%Od5x?QRseExmEH#Q$QD3D&W?P3PpXBf4qQ<liowlBTLT_{X
zwVsu`FJC$g7CD2!oS)INRI-iV*T=ZV1(p{iT!+P@T%POpkqi9ZED5XK5ydTQ9xj*r
z!~?{g!Q&qBCsmeHDK|wS_W|l46g$B=IC+g34Wu5t>7)&cdX5}L|Jh@M*=NwDH}6L6
z6aMY;*#7DAVnLU;ohYpJPnS2v^RAW-o-6n#?TGkY?Ed;l`nm|(%`EuZxcjZ;+ol^5
zI?MVvW-W1ARQ&_c7Flwyf&NS)VhNIn`*h1f^%W`~&*+Si0oB89aXDTU<{V&g-U4k-
zivqll8Xh(%hJtIde0;iHOG5$_#=?1T(>~Dp>I)o_R)O0O1rqJe<t*hC98;~=L8V#p
z-cp0guH+I>?XkDlq2OGPE1HTc(`%7pPU6MtS%f5JdO7~>Ipn`QHWTiLms$pATQzRO
zwi*H;EFoH}09ugws?HuIT)LO~Ha(Z66J?6U?~1DycsZS6nf;>F==a6&t3Ox;t{Ffp
zXzyEn`R+Wy&;Y~Go2}~txJv$DOsd!Qf6lM3DoAyj+bKZKPpBJ^fC}-KoRltAM}Wy2
zS<p?Im*vPC-Q_8@)}vC*68#6D2OR%lM6FTDsJ)8B9;WP!6|AK}Cm*fuk}02kTMZP0
zizBSm1|YAKO|}BsN!bdr-RyOxZh<+yX_@i}dU%&U;eZ?G_jTyx$u1-$@`WTs<VM}a
z_o65c{3UXV?`?m!)R*C1f@bH;tyyQN#%iesGQ0j`ZvIJlq50_QIY>ztdrq6*BDt?|
zv#hiY(;Ez?QR~WBaS9F)d$$On;R^S|IWWO5mqA|f6|ISEK1>m0!eb33Rwg{tKelvE
z!M85M=Qyi^InL6W${>>;nO<160#l5doDKrne3YOBAQ&$um?(ckMzWS&o=8OBoz$|O
zEK<*iq5EF!+X{ln&L^kbaT%+#&A=-9>+r1bQz6H$m(r#!$oxE+ZQ8prOP@ynxx8^(
zafeNw4J@^HON+w4&>OI)wvb*v#hVAkMxMG{BC;)<`?y+sli{AH6!qRl>38z4dc0#o
zR=o^UMN-xK>l2HvBA4Bi1{aY`5JlD|fd_(xJkC^#pDXTw+@Hw#z)Z-gLZ_sxa*;<n
z;}r0!Oqy8?GC$HLahU`o{)TwLd$gGRfs6?Y2~7hhF#3QUsEZK`Uf6g?w!@6R=$ri}
z;$11Bw-4Nam1i)>ip5J1@ObIX@9wvqVwAkl;1aF_u~u+9nh*7qC3D@ZN;7#zr<@%Y
zSM>TNa3C^j7sDh0iT0|j_Rj$bRZe7jlg>6<(dpk@dTIE20LpZtP*OMi<#ZyMu&WT}
z_O$L~B#^s6#1#%z)7-a;T6p;~|08ML!6mI{SBIYPTwaID5Ks-utM(&CzxWxV+T*zm
zHVlH?x2J&nhgP&-`Vr3*&4!*7i_$5+knIe{(1a-^vydq!3dF!G3+N_6&U~H76iAw>
zF6zxNVP4%<JifikOdQX@b@}Z7nO!O2ij?g=Ems(RpX_vNqbcSV03lz4*TXokbWE$4
zIXhhNmm6GLc6?$m5XyPZM7Qkmm;svdtUcwcb1At?dHq1ou^T*iQ%MYfST$~gyQ@9L
zD$}=BO4hR_v={peS`P;Xc-a8)KHnILnhFj~sb1A-o(KFLJmlMxa)Jfpj9iU)Sueu6
zG@dB>Hha^rcxQ+h5Uc-_yBsk#lM~w0-kg2SVC_Lsb})1nn(jLf4-hX#5Gp^+J=h>a
z=bAS;TKzlhvNEKV9zjJNWky|)?tPu3d@o(#WZyqI>HpH|8Cs)n!1KJl5m_AIM~!lf
zR<PC+8LShx3H5~i>x};R9S8CN|H2}85oMSEguMEsF6e%`F5_X(^R@Gte-MqsZ^Zu`
z#ZzKP$Z)fY@<)Y;rivL14gmQ~o{5?KVFPv4j$e#kHyIejB02JEdBu~NWv=_%xJBB{
zl^3;MgB$vdu46kfbd!t+K=)IpeLV7#?%1Jpc107tp<Mm7VV+b0CZ>mo3mkRfMAI4z
zEAQAK)*E0qd$~nEgL~iS3*wBSM;=#soM!V@ELE?{+cwuv00d`#GuAbQO&4`B*t;Zq
z&Xg={mwBrard6A-koFq?r9qdV?JB-T-|tEAzBeg~yt|{BO#`PJIQb1`Q;b<v7-WM>
zzqD2*Wndw>q7&vN*$e9dL<QV611Zb+Sl`G1*cGdtT{&>Mndx6_;lsO!t}!Ayl)pdP
zAf&b1;AiFAmHS9`h2f)2ODgGH><Id~bFyNMjOQwu#u?d{*W+JGDZM&Gn-vFubGz-f
z%CE+~3m*gFRBknaNYp&bNvp98){s$ByC!kK;X(S?>ZbM1op<J1?<MpF+%hs!sgfHr
zJ(MYdZJ{ZTu~_hfmkDFe-Q+$H+#T;$US?{3ICDtgT&%jhkW1y~{5bJ`)o)R4P3kCj
z`2&chltD(*%DtUVPXa<Pv^Ko!PKwM8$jEBEuZ?7qglt~XDkd>a%+VZj6AH6`zQ3+u
zm}GYy@OAl|Ixss8mg7!gK(uEMeq{{K0Ehqo!{`K6Hp8nFySofGN}O!eI#}djl>*bT
z<rtU6*cfO8@UgGrzF|{{<n;givJ*sTkbwb*Y%L}ypAV$J0R&2DtWiV~#duL%f5q+<
zOuqi9h0z<Uy3Y0W&p>W0Rh+&Syh;i;^z}|7pKn!`kD<*DM1|=J_n^8PC~iT+8tJG{
z`pS)az8452no}X^$?F(E4C*C_1>6oxWVxDjz}rq5r*`#w`8$hg(Fo}kNO?;_w7Isv
zc@0WKarf?ToX&edL|mjZL^Jh$%kTdZ8`K*S{Le^m=`55}n+r4{PWo#vgHG}8zI{#O
zZSv3At6w*8iqdL_9Y0*14+$Q<>r*eB#EvQJwqp&{A0^XFkNLBoJ(MQ=tPnHR5u9_v
z%>M)2O|z)LNfJ{VpgG60P8@(OX>d1-Ed1D?NZBu@0*>s#W8frvfVn6zi!2*{yY28{
z@PY+Cpo8FRNGU}>sY=8PVWr9a!FYb}!1gBe!-1KziEdjh7Q?LQF7zJv%|$Hx@u}3`
z@~E~=9Ss&S$j%$58)j+$G7t1LndCg|1LcxVm`k9MC>VPTL=3My&HticmQQ%51-(z#
zLu>UTM|(ijGg-3?OTNT0+6@$LMb@ZvgVdJMPQiPYhcmwKZ8~_(F5g1xsdP~M3kDLo
z_jpul_W37njI3DB_A;urSZK;D^jmGoE;Ku;NH)Kj3Fz6?niTWwzA1YK1v3_^on+-a
z(!Y}Y%$jLpmh&D&H3Da!P<oy7W2@6w!9k~6-_@-ax=Sr%`T*XQ1sI5reK>^_#^6}<
zV3gW`EBA}>fN~&~y+He?#!<;Vc<_Mt_#IK~A#ljHC!Pou1&Id1V5Z*n!4#ednuGy~
zZai(Fal0p(cc(9|KU4E-L#tya#8|i1n#6YgKFRZN-UB|8YFCiu;ui>o0(PSSf|ejk
zA?g66S5*yKT*i3TT!SE2GK!hqF~7hA$$SsujmE40VF9}4I=cGl?OI@(n2U{W$}<~a
zOu^1d=Tk1XA*MG`&koIo3{~YZl!P|_#IvgpnoRpQ$xjBmSd|8@19W$SVFH{+?{)4Q
z1j-LryBU9Z(DLk`rk?=BP<q^SK(nNt-Ok{~W4q0#!57xT;EVg>^QZt7gHx~;y$}B<
zJ_wMXZEXKU_;SrOAN|mY7)&RiPx$G6#_;zQ5~SQI56ld*{O)iEvVpO5W}1<l)$sT<
zm>4nTmcS_@^alzX`H$u*eRk6#?7aObRoE#BdcUTe#O|$7KoO-^K7We3Z`?6OzcpM1
zR1DzQ)!ZY~{pB<nl2~YTtxU5^$yus4$xjjltC<Bd9M_9CM4y2cBOI}}2RD;_UBOvO
zVP#mhz6Z>htDv&Q3K0Ccw|89zIV#>`>tON#v2WCEFk>#Kq0bDeISC5g4ZK+Kgv=@B
zB4Ggf5OBP&_7tA_8JGHRfJTrp0#K5w;ieIVKuIe)q%HqkqFLW`vCGtI$qfPraW6L4
zQWgbV4;7eoe2i$H=?l3YVP$!yKWOnf-wyEqE)Q`^7IqT2*qdWibxyhe3rtnA9#lyK
z?Vpt5h;i;)cWvI%)N>-{!w9z<Tj>R!5Cu5&EO%jiijYF2UFWV{FnH+Rbl)ijJmQiu
z46w2POBpdX=e~Ka(kdc68P>httA;bJvZ=M;!A(=U=zXi!j2vP9cch)mdv`tI+d^@L
zhoIT_bRn~cUmJr~(9aG7#N}_7PbhtAe7Sv83&sdPQ~vbpP2z8M!I~zd5M=qpscg8o
zU*~>9(iKJ!o+je05b*Red!g}*xz~unMR4DL0mIl=qH{cUm|20Lc<`{Nw9X>cE;ZIS
zPI$jbXO|9=6i^5iXbC*-9J%eb03gGvei8X^)!Rk|#@H<XMH7AkKa#W-U3cdr!tj}8
zz-YsAO-Ow!v;ny0s}Zm2FdrOo6w|mC8DBMdTK@SJ^&8^KU$>b<0Q;#W;-j7&rf}=n
z4{R<Sl^)b};6aW2Xn)*17P<43J+fOdiP0xChDN1#F=d8hEZ`~j#0dXRwfB}m*Lm%d
zPd30cWpxavyGr20Buc%?-$7z-8gV;=M*>f%irwpx&(gd@G(HAv6=}ZK<;bJH^87r|
zVpW?K%l}3b#M)YlXcsEH|Lkqg18b^|XMVkqv*Z+^3>^P;;rIi_Gid>dV8GOCFQ<<5
zXWHgDX;i~WocG!C0BaTfV*jA2bnH0?Ml#TD-0+o=E>=zw#xl5&T)efI$SBjO^iMb1
zV$q{2;~czlF2oC>W>#ElP-wY-0&>*7yCHJ6W&BR(e~dQF^ad|<SVS4apZCeOLOpfu
z#MsxZffh%?Q3-S--}4#F|CD$*qXOHmA_ZTo=!tuPzmo=5(H#edP;sHG_a-aHX)kv(
zqBxljuUF}0NrhVUU+OcsZ*`aNTprFSmcCmDAiY+ZMrb0)k{1t;Hc|hgHfPOMiqRyS
zuTgxXQ)QX!MhAtd=!H96G$?8g8Y+FW*A9leGw?D4fGH~S1_p{+MN+usF+CzKFOkWa
z*v-&@83>$;3e73lY5(v<osqDB(`~HhMyjE=vDZoQR$26GcAVVpA9df^r^z=c(ynD+
zu?)89d0QlKwv3!Y|AL69T0k(BovjokN8&22xzHngYDyZLOh}AbmrI4#DxSr#v~Tfv
z_X<xMU1vkN=_r#kGS(e#eAT;w0>ge%BQ62lkPVtBz5wA8Qlpo?_65{Vs4d)_t$kwe
z4F+qKqr4Dykg?hS4G*|mJ}Wna(8x#QO`p2h0Z<}Ez5Z;kd}?pBNm9V-tZ!nYKmJ`l
z7Hrb;yvPYl<e!mCMq^yke!RwvnmK;Mt`3I$gFMD_4qhM){%|pEh|hZntGHS`QF$SM
z=kD!uboIGKaL&xyp3m43hd4?aCmKh4{RI*p3Kec3%B#?nfJafZI4Cqy_;{2Y5_tSu
zDQ_zyZ1@7a-MU-6juw};3Y&?C4~O6%Xco156r?uF%2(s#`U{g9$^=;<*sVEYFd5C5
zP>*A_0@sB!{(v`;OCSY8Y*)E%^R+_kH6#}2<g!$ET_Y2b)GY)vA}3Xl1L>Xw_kD{a
z!4n9(yK^2*c{b`=&sY9zTtThpcgvmFI~}=u98ca|Fc@%PhR%8!vE6Sbm(R$thH}g<
zHy*W^*cs64te>pOzI8xE3&}%hF}>}L^Jd(3nX8J=ESG?74Sq#`Nay7fJbmu9`E3OD
zopS##rvyweIJr0-?{;YtCH(db55Z`8@J)4BBN8GaLI}>g;70}x?*6m2HYSj?Wf3Ya
zaQX^3+!JAv;}5+ESCzxZP|fuAa+0})K1Svcek8O*$@Y=^xNzg-zU&fXERT6EaTak*
zXk_?x{Z9+wbYFvSU{FGT;?`4Hj1P;(Gz_z8QN7)r8YhhAfMn8J8Z$Xjuam>A55qdp
z8Sg^hI<QER{Rwd!%E_^%qInQoZ7PhR`?aD;qC0@@yL5ZLJNYI_(2mMwdqVqiyNd{f
z&h*?h=1w5~h|A4ai^gk48)zoqFakdg{YA(blJ0zpl?AN1`l-JjPUbt&(wa+@v~f~7
z2+_+%Z*$E9l6mdk6>lnTv-;kAi|;8n6|s_k&YYs`fNtz!+kB^KcBJ#_+;`C%9V{c+
z)MZoeB0u$ctMImfmgcta*0Iy%xCE>bO<UzCSxk(`eF<rIH5C!T-){khvJk1V2b+TD
zx9NLEiBC^uFye*tKWy8qTcI4tu2y?{xt-k^*$?#bzw)A8wUcY8F?B&4Oyge28bu@5
zUgWkM%a+9+6e2%3Odu6{B<TUH1e-A($~&iyT}Y)k*?eppZrXUpr?14kNu!Sxk@1S!
z=M?GX_Mda}No@K8|6#r&2%Rtw6i2$;DfI~ZJdGcQQ{<N_k}ao-23<Nb&?9#kG>XOm
z05Om@4k}Rs7;+>tJ!;y-Bm2<qZ+9I<gshb%T40!otzN54xnXO~jH?@qA37~jU*wCy
z3VE|=LZ|NjV#H?X2BGKucBWuwS)pB>UWdsC`*K^&enJ+#KrAv5iQ`-UHo>b%-)m~w
zAfY<nNW{mVH!jQ!_FwK!HRr2%W4C@5!(DkOHTW6|+2{SUuiYOAojxzz)0ErxUC5Y#
zy!_{3ZIG~oaAd;Hu&lh6XwF-kzlNUP5WpYSa%$>XS{xh{z96w))m(ZJBg~MfH;Al^
z^auo4!y!(Q&oGqbFt}Y#rNWfuavV3B>-hRIn^ZyRCBLV}Q_22J#sKA;?g?XjFKT;=
zW%W}bj3#43mc01VFP|{Pqee3fm=A^R7kt@5dNB3+OLdUO24<WJEvla1&#jaMOt8}Y
z#V8Do$y1FqXctPuAv$9<Y>?~BLPqb5>pnv3rLzx3RKSp5K1lPv#(_OE_Osq03IU<S
zF)iivvHK?u=g_+&&c($^hRWI|Rh_4h%*3iq_K->%q9gfd-Tk4ZTs*_Z;q@PfmVeZX
z0A;51_Y-s^=ht^v2f4VTlH2L9`~03&8|9u5>ByYS&ftEc)i1yD+)Vh<KJA`s<KxYy
zvtkKW+erHlCXHvbtLTxZG$nB6y`19kk`Zez8G#KMZ-<fSRm5keejMTx)d43#WG17f
zeOC(Ztzmi;-mM|U3u)$CYD$czTVn=Gd=wO<Q&dDS=qIm^wm(AW@!<$6yYXuaZw5MD
z&cP4Z0qRG~IGZ;bXc*D`nlx;2eo1X|^Z8m=pU2Mb7cgG5V4H6Ar8Su!0Apz<JZhB7
z`daStg*SMQ;tfv$wb$Oub$jTSF8t@SJ+JqKc#7m&o+^Lf_RlObyBZQ2lCY-6sr~fC
zW&3)r7Q2%<TG2*%u6uF%xQqwWP&NzV1~LQ#0bZxEI}@x-^Q&*n1`}jZPrA>>UD1WB
z0@Iw32{i;cuZW3H;|jhA)@Wy>XB3Sd7m8DWyC!&<nGO{L+$6t8kCvdqq)zRla}Xyl
z56mx%{syyA6{#F<2eIkTtP+vi4qm@JZzcP%VWc8F&B1PVPR5rByXaCYpFK|jr|2Fx
z!|yF|@Rd%ri5v>Vj<#Zo_^em{eqxjqRF4Ao`vRpdc><|+7OoaI1~#K>Ns`cv?auOi
zcyvqO(tPPyM)+=6pCZDj6MGvH)F0xdW?V5CCj9FW-ZQd35e47-HHt)PV)?wyAwxM|
z=vlf6SDWJQTt-<G)ij<uol-j81S&#mTfAanY@Evv0k<8c13~9l3xT#3^hg7$c-#bj
zFY*hl!~Vr!?*OlN=B;dK*0b~5{?~E+=9dFIJVtu>wckKB-Ldh32ANr5H~5o;=Ha5Z
z#3$vw8z(dLBR5j>U4Ao>n{~C#_IUT6)`v@C+TZ0FTT8yO-nW<80xo+FRyc|8AgcV4
z`TP|;Ty^_@z%QNKA8TSaKk{P{zmf8LUpynLXs}%?nDP9A_T!u1I;QAU2d(H2<z&T8
zOodxI!LH%_*-P7~59Ji`o>Mtn@JFyU3Vae}l2-g*kKiI3A{4<tw%X@0>D6=Q1Z9VC
z3{;yR+N8Cmc+H4jI?NGONynQH5<%PZLB*Bgzq$5=cW1%$B#kn?pe2>ukJ`68`RU+i
z+?-wfd7bWbPSbogB<Q?y&%gUu<SQu}2CHG?U?voYNE%qTJ)is8E_LvB#J(&U&10I+
zw|z~Y8D{m1j#k4=X$ir0a1^H6MWOu7%_Q^%(-SmGIUw!mAWm--b&fAoDjP{Mv}P>N
z2AiVI?=vPQe{QKx9)e+S*cmgbn$SQ*_ZZQ0IB`Ck4s}uN$KBN-hZfUjGR-n;moyO)
z`32~+@Fc-&B&SN6pJJ(Xg~jpBW`JmBWslQto=wWHcX)a<SYa>P=9@k;J3VZH<8Y7N
zbsf{Q+yv}l4m9vEh9vD-jd=~BJd_V7fJMdrp7ng13T))EPR$7>a9B1WAhlh1Kv%i3
zQsv**r<e|=beH<EqY@8A;Xg%nfSw)s_6K7f2O~o)WtNe-<Gi0%-QZyN_VT}_YVYoK
zJa%)pH`yZJ;?SuqZ$)^2+Qq1xR^PTbB<B~5aTaYopCSW>DSf17ZpuD^;SepuiyPra
z&cRvi!;$K9{d+ee+Q;`KczA?~eQ6Kc)}Lh;2>Rj%2>I4)W&GklNq>GxdVB0mok*6W
z<6<XqN-#j{uB%n5nYx9$J_{+vpQtR<)@mbkgO0gejs$-r<qYG=%S(uRT-ph;Ki5Z?
z-j?Iz`O2rHOgCA=o<oW3YabIh9-Xe<I2GwO3V2y1_bohC-UcICg@?O9^koD6#i=ee
z$UpSrA|5+mTCG#dlFB94<-TD!*7*osUfPSE8i|!>2kX4@0qx;P!alV`XBhH!+n4UC
z<VoEK?AEBzP0@3R7;Jn}GWhOSomeM93iO}mt_#z7f{5tP`}I*rTYGN<pDjY|Dz@+S
zV={i9BoXNKGai~1u_1XoaGVlXZB{<D0L98cM^qG<=h&wJe<I`#%eemHR}^1Dwma#D
z>t1w>^h7?aVqS{CT1YZY1A?Vg2I@vDr<ap*KII`?gW|T(L(P|G>`Q=~$Gs(hYLFn-
z&&7D{7TNYDAjwzTpdMOlHBKSy9#T7~Qy2Z#MjP&(<lFAi$sAy`yVA+JGt&MrkH=b$
zwx5Wl5cBQ)0H2Ke>lW&!q+BaogX0DV#BO}7WHPxnFGl$R`TnX{tNdNE=AgRQRH2iW
z4pD8aZ$Qs6D9--fSe}E#dJ<$q{I6tLKj^WESURqZxiIMEp!j0HXADZ9e)RYnpu&Kd
zqy=WJp@YAOx1<H=+V5ebDgpG=!Vx$KmDV1J+^06y_=;I2DkUbjK1Se?4$n7$>_Fl(
zg+C5$b29{cf+B%Xx!H2u3jUN&e<j)lr-h-Aw9WrIEl$CIHSLQ7At~*#;+HvsZYlW>
zDbiyI+(*NEwTJ!W;h^qFlvP)x!A7|cKE40~?j|+TshwJmuD$y%2!6`B*)H)|GT{|3
zG<r>!JXYuw{Kj~(S48)|Gr){h&!|(Rsk&IJ^oMWzA6aHe6qvsxe^claf=)jul}u^C
z&lgAu3>#;|;iD&NTi42UVukuu3~Fozy{B=-uL~3fp@r6k!y2qgr?@mXdGz0hh;vuG
zWn~1sx{FckJXYG#jeT5Qp9fv;#M#}ZrIThg{c3wM6&!mZGuVZo8<8bmVp2w?kqOfe
zFXw~^HpGYWuVL)gq!ZjO@yOT}1!g<RZ2L}sPZ)ufb!ko5ih>KtO4M`}6<kOekEr|}
zFGia%^3OL(tNCITPQFw)1o?))Q+9u)mc4?mZ>D%TpLf2SDb}JmEnNBmy=aAHotX`f
zbUZl|N-HK@SzUQdU8sC?_`Df)vU~S*QkRC9cn)G=!R|rQv{k0ZNfZG}MVV4vBod8~
z-?r`E67(7Jl%%J2OD%(+2dC;dAfE-FG-I$x;!VFAuU!&W%cZH9Xmz0{?Oj?DYp!7M
zc`}&7KKT-VS&v1%0LQQ<mQjD8<VDl5fa|V=MzKaVh0nGB<-we!)iW*Pldk8^DP$I{
z)K17kK6TrEqtD&7m<$!-k`NAdW*9->hTA@#Rlo8py;<zb&2P5_+_wA5V75hOU?4%Y
zfKl#d=A;#KC%V@;;9+&DbMU&}jEtA3jm=ILe`+8Y#B{9s0?Pd*1eZ_Dl6L1woFAFh
zU_60Pw{m#xzt^J%R@j(n@dNy}x1un}sumNYT&6;iGwR!Bx&GKrTKsDHTw2>5vG}Cv
z5*>Z(mn(fmvij54kC%6HyOnpTa0Dj?d2HrJD+!9PwYjrPE5|fK<tLhg{3Y@6vG7cu
zLiMvvnI$-ALK!u0=F3tA%|U_<3o@)m(P4DccOiJ63fg$q0k>~<dWvoOXv+9sNrsCZ
z=VOPdR}8kWY}Dxmg$Uf39}I9?lR#y;k!2~PYeKfn%6d8~drx<)!^kT5J7x4s%_WCt
zsY%_RzIi9Vn6F8FKd}!vTbm%C;%0UC`Dufo!|BGQ(<!)Ci7ji4=dCU7yV}VkFwd+)
zLw)dVU{~_KI#iEgJ8l>^4{Jd|LPBhye1skREPvQZf686z<Zjl5K2S;k$3&I)o-|nQ
zwSzneV$yj&+?wTK{P=WJ*~Miy#H2rafEwpV`20ol4^#h$L31)1j93G7*!`Ah;pfEF
z%68nvndQFNZ-*IQ-7oh^5xe}(Yr_eL)Os$($&c8JE|N)Zx`@I^c)o<|u1R$t{Vbbb
z{}h5lOUQ&*eIOcZ{HdU$uIX&3kwXKmfZ{d;$*ajMYsx{qUhs-ye9o?QFxaiUl9tJ5
zJhjo;m{t9&#l#mdh>WtVw1nJBJ69o&o|#&$r9gtCmQI;`JU<;8Bvy;yadS#5Tke-7
z_tgd|5Lz2Cn#_>d179O(Hr;tEG+|dG8>|skp`Ea234DzN!5St1uQkfZG5ghBh+bBi
zLQVJgH3~JAM7q)2Kq)K|1>+v&Wmr!pDS2jMqw8s_gI^#Odi5h5Zk?z40;|Dsaw~~7
zd@j5;GfEevT%VBILQw52<UoC3e&pX-NySU+K?X)J_ZtV=FY0??;qWNp=msnB22QWA
z(C-lc_%(t@pkNL|;4<08@WFO3KRI|49p4iEgN*DH+=r>c*tE9$rh~ewptszo$CjkU
zxCC|gBXSe_U5OHh-H(_7PkDqYDEof9fsVR+CJJw;%!F;(pzgDz5)W$j=dJHH>-8ZX
z!8gbiE-E{6cMBKbQan5QBOqw@TW2$=0-Q|TbppD@pznCO-LRFa586Dpg}-%@gB@*q
zSlO>{DM4Mb9o9CsfjUv6?^QOggIE9tc)mMXrLEKRoaG@Q7Y>9`$j>=OrhPJwEp*Vb
zG+*hE-oDSZvNi`JjvfODKy_NA&dLNkUC3Audw=Q8icx0K!Z|idj!SRhJ*he32Yacn
z9BGo<rR&0BpWNA&8K12Avt4vZhmCZG7)BdXQ@91GPWx<-3rf?ziO&M%tun+?U8R(?
zTaqZp=c;k(<mf@-%Z~k&I25+n?rpKT?{N=fTSmU+&B|BC43?LVCC}3rtjz~i;Lhw*
zw~~Q;pT`nk2>$#KUpb|X0h3@r@xI_igjeK!F{x(xuKYQyHG#A2jv+<6e}o}d<%yMs
z*c!5F^=s8Y)TwsWF4)VLcw89yBQO#%Pf6*NL~!~zEo7iR90^#b7HV(%nvFOeR1Lu&
zutrzw`Ak=%WtR{Yd~Y1kra4Q0Fp+o(v0Mn=W76JN(_m4_4PhxDwA3u8@j6Q5_f3S?
z@;-}6C(p^90JAF+GQm@1C<_+P*o3V`#PgQf?EusR_*3QO+Po`4;YbG2Zs#f5oaP&0
zxq7xYeH!=^-C~JGgYL;G4T(Rv5M*$_wc^a7P=*o~$QlUwDseYsl8@wNosS5+U1GQ#
znlA@Q^WA_u@NWRgSgjkj23oM_{R+18-6Azhl}rDt+mD~B4}v}1QE7*D?T2lh&&|t-
zUm6$?@MS$ZLnl;SegRVP!3mr!_pT}W{j-oGu{ZHuPUyJYs{M@|57%pvrp%fKDep;q
z30<qiG?~wRp)YvMwt&1<Myds_$B<G^ZuEyE49_yJsTp|THXRYsIKhO`bjT5%MFH1n
zY*DzZ*ZWcHDAn@c=0HM&a}1)}B)KdekogB%)k1ijq4U~M;>66JZ{aJjr&pP7lW5PI
z^K2Kq|ICN}WHrok6=!y~Y8BL?@lbrMn=Y_;etTh6-}sm7K=6kmm`K0gN+0vfU+J;I
zBo0vp3GZoUPb7Jf1jKmS;IvFd?H$736DoP~jJ6sNHBnC6b-0x9-W_TB>!(0AIr-4^
zF}MA^B#7mioowW~DiBqQ?2u(SFxr2Bp~GtP9q$EowiBgSAeYOd)BB-btJmziGtE`F
zILk#t{GQQ^9$RG4#^`5y1H{uloZrh#%qJt}u-DlicfCEmrJ3x;3MZGRmLcA@Ai163
zISX^M!A3VdfZulxPR>JLAp;O&hVxdd6PIe&Oc<H;(8Vx+Lp*r=ZYvx@cu^jg3x3Pm
z4gfb^h9F|}2>}7?x742CNMG39(hCI<n{I2K1hKXi0i%1On+Gksd5w(<E}IWCjvKET
z?}%X9?$nkPEtx8v78BbQ_m85HU5;i$J#>uj-^jg<zHtKYAJQt)&koz4L=F(fI>aH8
z{D5CUv&{6wE%CTyN`wV;mbv@$Yxj?Y(8SZDVp65$Qg|%-ocZr5TCa8{Q@_9HU8(E~
zlyNWfBw(F6wz_rIOIb#I^0EmR5*gua<WJ}5h^6K{@xk-rly<UoOET0d#sq7cm13R_
z){VIy)|E2)y@HySOuzp&_}rKb$-^E-{^Xjtu6q*c^V%{#;V8;w#E%i!<w~4ZE?Fvk
zS012%WzqSZTB!feu3V@BYYld#?c4c6Q?M)ZNAbOJ;k#1ukx@T!<0Xj+9c&5qV3;V1
z&&rXDx;;|C*~P3qWFz*~soxag`CK*z=n;g%#%gTX8PJW_|EL%jG-*8<3WlzBIVmX0
zn@VzG?WHlHD9U_|ra49lqN}D^wm+E64&T?%-wwdu9*axfcfjmqjb1Tgnv^0QL-u)p
z{F~v4Gh)?Nm+FP(;`yQ1k%I(vY%;qy8r4ZM-J8g?W{b=D_cK*w$hyY|h;ArNUir$&
zZ>==x{;<(|NP&7v!pUs78fB$ETnm*v9|zo*-<oPqYJudd8cE)q@R-zTeJ7@;n$ng0
zV6Jg4CL}0g{|?Kv|MSYDPUj&%w_5NT6YJ}sZGLbMnBJUKxiL#BF5^Cx<;zhlHcb&z
zRAdV#WL;YB|3d-2)jBOR{c8OK$v2%F2o5}##-0Qv$<t*9nHFlV`tZrp1RMgP!>!bI
zM=7ID%+GF@PTi=$hKK7fTf+|G#ryC}Ww_NiaY^SDM$?Url$00HvHd>>JaTugJ^J&B
zRWi5j9k)}rx=!k^vF#(kcxDWXF!uRck#Eb^+AXObgmbi$U`?`VW-7^Ng+yj;<7R*A
zOsI?ouSy8h;kuwZhI&>~?i2AYN7F$9pI~T+mnIPt>#jX#&Bsc`$lM8Ed;UwdhE|0{
z`EAe0^mOD@$s419#=<uH`CK(Ykadct!$x-^EZ2hsM}#S~yDc`FX(3*f(Jaq5!;TrD
zLq_%`>l(AG8$qY1Qu59I4ab;3_>K~;R(#rqXIMptiO+^C6Y-fe*@g5PW1He*HS!KO
zd`a&ZtIU|uLDpr*pOS4Kl%n!@(`EU2gBTN{@PRKt?q1Itv1z>AHv{sl7@>dCYl}h4
zxd^v4JosjBhnNj*L%_ziyYs^Nr+LT<9D&&(y4W05n}H=ZB+bjhk77FxD;J}L-_U=>
zGF(#|Cd#~JZ^7BS^E-46`27t<wXg8}jHpdWcCB^1RUH|gAR(Qm$4tE%i<L(nGWg1Y
zivsmNIwWgwKS3ldr&(i<-a!J_Cb)ZsvU{-PYb7K)3oId)=hLmwI3T!XfGaf72ys#K
z9bcPO?c3h0=loHPE=Tfb9|=#++JxEK#C9IBUnn75^3Q}6>TugJ9Bp*1VU>@Lh%~D|
z3-p*3Yo`qFT!dYT!X!hm4znNMUG>VN&@$P7P?|A6*5l0;VDH)kZOgs}nu?=AXI=P7
z+$M7O^?u^``RNAs`rKbbr5dw-qD}g>fc~Q87Ap0;x7yT!m8k#20yKc++QEEOyAd=m
z>z}&svRq+L=Xs+&yUWh(f;D+U3u<@o_!i4a1CsJB+J-`(3VO!V*+$r}&niz?_B*vh
z3gn_*su#PG@hf!2%Qjyw66{CAAK;U50kiY>;0dlhA_e~nk*3q4>JgYnP__5bDE#QP
zqbN($(;;#f_BfYb0@?z?0?xZvewD6lWtt1gt_O?5M?vgGjzJub1s?fB`W8m>s!&V=
z^#{p2`|DO3_Ghou+<#L-x8es$EkI7a0kV|J*x&?XZ+^I()3o4htM|H@wMpD<kEOc=
zuPCUj{Z*(!Ub|}*9ev~0K3DwkhJ=ta>gCIj<Hv)Dq{+0VF_ws198D0ayz4TBw^<-L
zaAL=%{)Ef6ZGHfUs1_b<ieuDT@eQb1yROKdCEaePP5tMv9PFuby7DP9SV)ejF?mBQ
z8~=K#&dfLdeu0sHk)7_xi9wb?z1J2GH~M)DYx4)9p+5d@Lh8C-4En2_k@-kt9AKra
z#CHZ`9bB0MRKRuq(4z!Cu}>Du{B!AhMg%$tgTohD%dJF%$bG><T{<0p1PIBB5lbxc
z6a;m>dpIL3SBZ)gS-qrhel9-uD3Z}WULqK1RAj_ErVoGk9lt2Vu}HF}iRLFQ#+@~#
zKRF0uGjFRRiB7AD2$m(q2+PaDFypys6LGk0dOKcWwS`3@;GQva#%Vg3yDSpScEv!@
z&%s-cvxnlx@#sFit>pLCX6C9pNm~7JTXX?mZ11E_wY4H@@$~7N5670P(?2lV@=n1G
zjwJB4MDpqNnABGnq?CWwYJu>T${)Y5Jn?3oBG%pcTvF!u)lzAMAh8rp?|tlckA<)h
zX&2C7`g#3$bpcpuCNfgkxd#@y`qNarphSe-^Zx)f`gR<sg@|=QEfi2(1p(zasJmT}
zm_%7Y5BtldHYvz|dO=40To!C^cWRVaCXFOeVz0X?Cklzjwc@P6G7$WPye=^(iw~G<
zxf$<X1C%-qmYSN{l?k;(R32^18!RR1T10ttbDbN_+YxlORbYHaSryM?wHU2guHEAs
zqQ#9t7frYwYr#ohZAb*mi!YEXdb?9G0%}3=@r)I(N5kjGxQ6z<v)n~VD&Lng9Kdi)
zetx2Dq^w{m`x|(YdC0Iq>9{HQ8<}u4j}4c7Oj209Vny(#r#i0L=C}9#dRK*V<U+@q
zvXydb;&`tIh%F2-i1C#`2jy4+VoPuz@&>k&ioSLTl)-`BHj}<iI%HON8kiK`JE|#M
zoLf<t57ob=w5?tc)QzlWXlj1|XwXaA=gj}V>tu`~CzN^o%9?PZ<Mp$f1P695^It0&
z-#T5u3p_sANs6{U(rGn%1`GbAK3VMETaB5Q+B+nyl-o}vBqe@C`I`q(VQ39_yT7);
z<sGX3vr^>}=l>z=t%I^^-!EP|q(Qn%O1ewByOB<52|>EMyE~;p1nEXXKvKH9LsIhG
z_<nzL&dmAO!BL+5?7i=6t<PGQ2EnWDNSDVM@9U=^XUo|PCIg<DyPlUl1i2mg54sKX
z2A2oha*HSzXP7S*!2UsWYZO!);=2DmIB?=)o2T&#%-H-cr3g)6Xde8y(gtuuSZ#5&
zKWl<6e_+4?Yob?WcE($37kpmz>xY(f)JnHc-kzX0$Hz(IEbFJ>XW5<XU+=uaMDMRt
ze6>6%bP6%bRlebvA1(Ecfqu>KnMy^6`eu@=tnuf+pPIn&2z-r>-GC<ga`IW8c#%Zd
zOBa2B9lD4YjtK`eP%SUSm-Dr-FbxcPL9DVjf`Eup7EeE1_w_M9rhpd}>(!ZH)~BeS
zNsI$Rfm*l^E!I$D^mr9#hEr5Vd@kLL73Y7-h0{IJe#!(_>$l3jheuPUT<ur?rfIih
z9lW(gR1#+t7|Qv7Uf1(#h8Cv}yp$nWy0vfke1}Wp#Eu=6?ki08_b>eTi{W-Ml5IPE
z=?wV;suYK;slKbJ&EqNoG#tnWzrs$~RRz$sS&RYRlKrY@pYxkMS3jDzEl0bEFKqFd
zbgp&kI2`D}RVnBRMw&`z|AH98u7vyV!_>RqHX?>h9vdJfq*W094H^e<y*2A;$uZZf
z8do+tH${s+9v`qhiY|M+tLL<Xf4=?`N?Pgxh6qAFUlAgg<C#F;MoI3ig&dr=g@1a>
z&K|IufxN^n1csHHy0!N13EsjlPw;47ppfgO6vFv_Mxo@DDj&pa0rhNqN1usjjS9`e
zJg(!tS>LChh&sT7-1FKMM`@t|ihoNF9X%E}eF_l!zlco<=I3=%rI=`V-i3v5L*(CX
zt5l1B*57m)GhIIbcvfyAA&P`Q2eiud3sq3R7lUeiz8~}5JNV7ugndS!2o$^m$Pu;v
z3b*itdW%)^`PR|;e-imt_~y1y?_MMeXAocSCV|&Lo~1I@HeNaP`@pYeClA3NR$-!^
z0T6n9t5DHrSQ&B*6y#FxMa|2zVfa5|vi7&&9j)q?*8NFGA<3YtL}tdpPg-t_s^(RH
zKT}ZWKop?@{=QWXo1pr=)xV=3G;FA^FcuVJD3!Ku=kt^23&|oCixkzA?unY=-H1u6
z{S44yvCgNvil`}nv1TWCxrY<lDCn)KRy1C^;$kYBrZ`^Tleg_|=UIoLUre{w^6RNS
z=Hutqd_hTi`GWTy|2s;yI(n(ykqW-{{4l&}3;t!bX9mjpA{<fD;*ZjA#Mj;H+GHNl
zdY`{v>dVKMyynrqJef~ES>_bqLUg}CK!85YB!!-U0=GcdC_1ffHIYItYiPSzew0Y7
z!|94X0UuA#pmOlXFCP~qQ3(ICK>;<|YIS9~+_KB&d?%ZEehr~U!p$gs5<;)VDe>Ly
znb?kofa?x2;1z>^Cf{rX^6kM2Jf>i0CV<78wF7(nr)|Cc2u2M?Pehc3{BU{p(n1+r
zrd+YX#eLS3!ua?~1#lBF&d_7j;`=C}zNSZ1vBnRCIiE)}?}qy^xiep7v_hZuI&RV^
zf8C%?!`vJo^)32jp){2j1}Parua2MtALP2xdR?tKK|u_MYTx?#beAj5AjhaMBPHI-
z>`cmAm5p2A8_Q=B#u(kaX0#LS@f_a5U7ZwQ)xmOD$+Dc~3OGisc;5(KH-)~{VaeUV
z`O!kT^!dtaaNKeS{<+q{*yjXvrkOH-Y5rzG@VgK>xL>65W7Pr9D*L++m?%+1Bb}rI
zwXtxQXkadiSyi(@S>XdqJifFx+9&!Z3SWN*v*+`#dJ*kSf%jkv$St%V`^Rj=7#ke=
zmbsdY*?MOkr?Y$PJqtbVD<yT9#!hS(?{^@p>k78G{BaXZoV_C*dheK{auT1si!aW6
zy}z8Tn8TCP7#Zr8Ne?t$hIhy>PcyPLQ5d6<Z=cr$J=b4_E`p^RW9s>OGLeibAxI>G
z33A=-$m!$M{*wwTwePtCXng~}R)Sy}Nhi6giHVJ#W?xOojELP|3@Uvw+WL&?YPHnK
zN!N2F7D-48nKw%5ijO@#e{*l)jM5?uo1>yNu-+&XqZ0Fj)71#sP#QWk)J(r*`Z|E(
zk&c#aWRlhcWKYbAbbjf#^&3RQ!QY%tobBZUFqqmJb1n+lTI7U2q3L)>g6>haqxkJJ
zY(@gsm)bF!$|P@!+^3u3(FA=i#}h+)Do<zn;S7q0H7hqPOhCmfz#Pj=;Fa|Ba@JHQ
zF|QCUExBwL=xN@mYX$`pqppbhh>_L2AVk;RF5mkl_I&TproYu!Ty;)svRWJwa_WAP
zM0@nzJHz-a>%Z3H0Ad11UMgQrs8>>DI**qVW#XYxhGK)YSJ@BqpS=&b^G0>2%u8>M
zRwSlM<O@=nee*iVAFUpOWd3vzTaab(2DiNjuale64dxXlFoL-8K;4k~{Lm|yK^^$V
z6y@+x67qY2YFf)R2=2*0x4%c=8HV!0SQftVPxZ!suendqI#CjO6xX0n(eTD2G;s5K
zeYXbv<o&A>zuxJG>XWZq?8(RyjlBn)6e<fLw7F$L18YOg_KCg@J{*tBPjQ`0OBTI!
z*)fA|4$tcDVJ!GyS%XeTqtn49sg)JZ+eV-re0lQ}Jx8dW5c}>fjW^jCqQiNg;>9#;
z7x`W03XIt_tzoUo0yq@HA;vyq`$4ka;&603gpu?{KaWceD&4?=R_bzms?5t9`=0Gz
z*@9x(`~*x*(=aOnVGe!+*nK$B(ce=%4CvZlgsnR-F`z037Ophx<v%MdQtd>&E8IHL
z!4dR&jY9etmKzS0SpnKBnuwuxwZB*}L4MIGY~qX5iAv<RJ5rTG+?u7WQYi#Ww*FYo
zs6;Ah&1|6JJ=0NC{uywk1VghakvPK({DmeiydRBFJyc4LQBJ!>#4A!Po4USg>ljmj
z+$Om$_zGiaj_AIYNv}l_1Tgb0#yZxi46F+{#(R(&6-TX){=!B0Bc<ApgFAXG_Whp>
zv6*|M)S6HDYN$p7I>%2+E(c4=IQ{rhd!Vvcy_ncPl<6!LQ!zS><Y)e2$tUO#!_#u?
ze}oIZ!`aUeS1wBd+0@&SM}L>P&}yCGE@-!{Il2zoZXS&)^<SI3701Nopg|F%F4NSG
z{=Au-H?z#|4FdUhbUYiv-!-PJ)*>FCr&5kVDZbc~#bn0spsjq-ddju(ms86%YpuE}
zfVfzlB~X4H_{!N~e(G<YaQe&$T{Q~IG0j86W*DK;p$63{;8BXdZlZYfPd<$`=QOQO
zfuAnUX~f}l-Moh8f?Dka`SLeG|G)2QYR!rXnz9?_9rs70kbZCqPPf4L1G+FlfmT6$
zWBxugi?x2Ii{Z|J-9n!h`YQifG&S`XRq&kg*Lt;*`!h(Q6gB?=%wgLoWth7Xj>Dy<
zyG#$74i8+HWmOAMRDXN4MKHB~OkG+f5?hv82o`K%X|U6;=Q*-4XrXTN`yA1dHxt0P
z8FqZmL^+GA_3_>x7lD?lDSLtHR{MPfp3G%&uHMEGA62c`;Aeb&HbMo9Hsf_UZ2CE5
z!wgT14h3$$eq8pPY}1Bj6#If|$0L%V`l28IeCH&3-JdN$7cx_&Q2$ChI-`NsbeDwb
zqOtQax{yd9+jBOaS^o6p6Q(RQdV2ZZu9dnn{@MedFvcgzTotDejQoyw0@#dqyxe90
z&F8QVB2TX`gSkN@=g|}fV|{@&%*+?=6SYY8JJQ{(hC@|6<fC94(4)lcdn<yS#V~tX
zt2TVB+gJ*;(;LWIziV+kH>AC;@DE79h&u6yKwVMpLZ2$)+BA8iD!zsOgc7>TRh2Q(
zV53#_S>WTj6KINLPo3B}J|v+%SVbz9B5ZTZyyYx<p=};0+<Mm`XwL)b1)VW|1p&8!
z!eqoD5hX^86Y*HcuS7n(TL_T=<=7PA4kkRn%w$Ac)*!bJ%~as?$%+y}b5NHUE-poa
zqYp^9PFJ{+KB0v3wYVNzo)^!4T-lWGUiH3V^!$MIHQEn+=9s6I2H#=~Z8NCGRBgHz
z?>A#>_8ex&uRCx}(s0p8yhopdah+T9aGWo8P(t9GsQ}Y9{Qj%mxsIG$4ru&&cR%8A
zo*(?Br7acL<!CxMW^3nV!+Di~s>fv7z95+PW_J&PH%>~VuM$~!x2mcOd_RjMBK=`>
zSSV%{1lozN_41+-)$fY?3K5pC9m^~|kFqA7n+FtCh7yWzsi#U53pgvV)D6S7R`MzW
zkA5x51X99AryR#S+93jYld+@V^S{@k5jG@V{59#%c(mcphd)RlT$uPXnSt3;Js*m3
z#b)i`$Bx!3i)w=(a$K?z#<isW|GAyy;kaB`Ab^-JO8R=E$Sq-O=YtvuQ*QY(2v&bX
zCC+=whYKvoIO0zm9ik*FSxQ^`E^Z=7#PNLj#dYs@Me4|ufW<X(B=_F+O|8*8Na&9`
zl5afA#Mb7YZqF&p^_nA&vXR7aFyG0nM9giiG(T%Al4%ULz5?eyJ#2_5#D2Jfeu;(p
z_eccnpF!z!>eyVxI;d=U=@6fcaqcDmp(ZibfQ;9(*rJ>-icHf#srmVXp`noMe3L}T
z^N)+&q<XG+EW!Zm-bCsmLp;MbBHY4fqfZa9zRKx!+gqLfAKv6SLSGLyypd(5my4$<
z8Dl_;(3WFO0RmS%%4iNB7eGg(u7qyWGaD>rs3TJIz8DG?H&ke0TxNV3&YXVEiD_?m
z;xBk+{7thH<ztvpXp`RO8l6JBUoWp4BDi$y8SA!ck)Z`?F0#vE@$qdkqi&4P&5Z6P
zILp&|dlDS_%E6gFdgON6IEg<~#tv35hahkt6<d2~eV-cwWQ^tb8ts$*@Ow_*!flc&
zEI5N3JgEsJa5eKFDE*@4`m5X3+go^N8IU!g@2-A3uPuBNij3Anx0#<rVo`TrxlBV$
zq!TcSJMc^ewS!1Iggrl~n(x;T?S;SQSE{rpNSMAwr2_-pAJY<p0<ppnwaYM-y05D5
zg$^D~%s7he?nmR2ck{LaaVfIUR$Kc%RoY^<2`<)u{J7PPC=eRULKPwmw<dxC{q|ba
z%8mP~l53eZv!hXM;5!Z$*$(ua-U>|nOr1*M0Ok&)c!gG3LWSPE3Y8f?9*(S3>`qJD
z^WVR)O=)3<4U#VU{@vK>Z@#1UgvtB4-jhDxN}X6=2n)4%->3Zkcn=SwI(dguNB;gj
z4?ln8RVEGL+EoVo^}+KE5_Z9eAbb>NovbNzueWl=2NGYA2QZy+z_HX`9+D~ojjJS9
z=x>tG<2G)~r(G_)<+}LKW)CS7?}Tc2tF1HJ!Tt8)v%3ZXX}YUDGud0-h17O|4e*=O
za_R-@Du*acZ~0vi3iuoC4;Sa5G{N5>op6{;e;sZYzow~BOCvm8;C$l$;=Cq9p{-(2
zN~yV=5(LR%4+1clj{guHwBOGaUUgQyqXhRNc3pwNfA=B{6v87ZCbq&4xum?#=VN>4
zgJ~I^7Pt5kWmBSpS?Vu;2;-@VN%CV}y><bF$8?>BO@uC<oK(yfk500#fL5KlRYW>V
zIK5{1i19C6<}8abVK-NL;D?vjd#;i{VKwP@pIgfSo1SIv<8obiBuH`lr@W0!CA~kW
z_;Pf-bF3fu4PLGu9Vp`CJ#+3K{c8%d{kSO-3PDYKHmFPzT@|<war%V%3CB=P47-lG
zR~Liad(ICOLBy8VXgEb?{G!~pFNF`arAo5Io(9uL>7XgJn8tIQkpeDT%ylc7!0w0+
zoD!Lt-P7`^&%oxk+Lw?LPV^=tWCzQmi9+s%)A8`Xqtxl3c&tiRTLpdX(|bby<Grt}
z(|ICd9yiN3dtf_!Qipfu4icp~-pPL`ul6ThR-CIt?z~z^46pIT88$cg-!)oOQM-Dd
zetc9NPv<qQd8$z_W0Mk*4)GZI_CF#(LQye%FbqfGaevW1w;8b~#)Xpks<S?XQM*Ze
z=UmI?3XHmzfBGCr?DiU@o-2%LccM%$M26LLX4%Bcf`hJi>A@tfCh3u3eYGYdiOKwc
zYm>|dWph56Jl)X?)=oE}`+)qy?~C*GE98Jjqp_3h^o-%eA0&@xIy89pcJ8N&Ssckd
zJt&Ah-_S@4#yi@h$xa9-W8Wy|^xyMxioDkQc}JDOXI?;q7JcH43umxQj*a~ayda_c
z+oT{Kq?)LM{n)xz(B*7X;`8y^Y7taYQCCatfBd25aJ?RBJ5`7Dq`Vc9iX|SaI+?0y
zmFR6s(0$FlEUgUFjkk3Fr>qS_)N&q3=jN~18la%rdS<>F2V*?{9!`ZtF6N%nqxvS6
zz-c3MI?iTZhi1z&`=&a9kmw)EI~V?JchHVP3DGlO>kp^JzNfP0&D`e$vv!O>UPLF<
z1lm^#1b?m#9fpxT5G@UBkJbN4<NrgV<OUbIt!Baehc8$R|F%j&(4~IE&rC*l>T`lt
z@T&)eQuR0p#V}KZxx!~-s%D43AtS9(MLZx38DGXLyzTD|u?578kw<2r!GYsj8)T~5
z;`h^pGOM#jPuJ7h-4l3HFKIv-?aE&z6n&H~IX6X#rxQIA6CT08KXa1UXIx|}%~A4R
z8B1Y0Pyc~{X})2?Bj8tus0!r#mo&pO+T)9@BWj{A6Gw%t&cLF+QBV$s*y_EI#oyt3
zF$}ZFBx5rPE9;Zj08sstUJSHdm@lspSXLW$A=cScFvo@U+nv&H(39!4$f?|t#Tk|p
z7yXY5P!XYPBK@#`|L@9)8fjlj6R=uybfU`41?Uh&QR={iB%S%kx2dSM8aE`<$`A7k
z6eHJ-nusBe#6gHEI5fdE((-&Jm#ygm)1=x`!uEr!9K20&szd)ZM+6DioZ6a8d2Vcu
z&v53?fB0XqVsn0$6vAPJUVhXBfATa604u+J)ux*p1U!7&vzc|4Yxz0JWo@b!EMJ^?
zo+?BG6q8UE%Bub9S1d*Yld~nx?U8FT%j}bb7=6#7R!N0wspy>k6<nit8xGoAg|W9P
zBiy<Vo!1?`SU(plz{($6D&OZf$fE$oU^}g|>I*CyKD&9LAQJGcZsW3kKeL2obvo;F
zo%9s)nSdv^<7Ugm;yMO5Fn+o6Y*&(GO*`=N^IZzUFd<nj{tVnW+$~XG*TK?wJ+{Ct
zo6yf``O8AzL3tjQD0uCIDg(W@j>jHQR}g)w>X``(kQg*!0vIO5ki}T95-@cCcxj#>
zf_2vl`g{$E3@c5%(F7c}ea|6Ny-lo?R=Y9Cg}Ad|Zl9qlMrZPhm+Ea4(P!o0d*N&O
zAnD3qyj~b6cYlZ`U97|etD`*?B2;Lx_2fg>Er$<yIYor(a>tO3i{qu1)?0^C_MMO4
z^^gtTD^HU8Xlq|rF0|4lQox67OU%A{;NKb16+XiYQh!0(I+fF#wokGbr|V@*n^%91
zssi9<l$NY0V6C;M$#g1sG!-}wYer|=oAz^&7hrYU(Y7)DS&U?W=+Gy9#xkv~ynK$&
z4=_H?|C@Thc~B`C7pI2fk-ESb<?(>lJ3HBBVc-~Uh&D?pVYcOyvu;XG0pPHu>*j2T
zokUl6J*1^=1ce^b!X*-?%F4)1XeUXsZeUtrvB?5qIW)9|q@c*F7N?+Mpmix9)#9o%
z0SW;FuAz;gV)FMT>WLh?1tG0pfam86w<l}H)tGO0hF0ib&D>HK{3B}{4!LVZ`sR^X
z7`+(=&HJ*3Ityv2S7EjhO25g&dNzK;tsa*m^&Sx-FObFm>3eu0R+8RLM5}x7NdwJD
z!1H87!^dY~TBiPki|7+9Rc`$Ydb7~>yX(R(+*fNqE?^663{;P&^bpSGa*rUtL+|7~
zx3N6ednMb|+dROl6tHiu`Od#km`e-{5L>n3k}m^9PK2=LwF<rNuUZVS9fhF%>90i(
zBQ2Gn9U)3Ai3vsqQ07^fse1;g{X<dPBob$;OS19z<^9kKk+?K@AU4Qi7q!U0WB3`r
zf}<bwfApjicssq9f6kg{X;jp`i8D7-rJwybfg17=O2E0w9pa+tIrSriUKjB~1D6e6
zlS!w?T@pGfb)TPK5(`ul<(76jUb(|MMNl9dEfLw87#wq5Sr?i6?vv?t7E~znPRQg1
zN)GLrbo|bTLmYo6>~&~(73t0=4%<Dl$PiB@!V1vMt7<9KyN$8aog<k3dWk0JIa-cB
z=zgBz?3z`O>h|tV<)@^Ws_2v)w&&qZ&>z`yyh@2ycGvh=CGQt@*Ohc>V-2rS3OyoR
z>^2g2ESjXZSQaSlf9=BrL|`J&hY@%RpH&##-WH=jhqIc}xqBxZ3@4GqSWmn%i5kIh
zkbGu9p(w>qr4@R(g55SFEoqYY+VgEW9F3`S1b+zncX)Nva^cUd#uD6?E~K1R)i5D}
zg_p@a2=dz0LDe0Af8|<>0y3Ph81~_I#<CTLQ~H~UW2*P!Fm+#|V88<T%ekg4Nrliq
z=&Yo?G8}nLIuf5vUAqe>*nefCW%cVQog_PG4tvwAO!5DdaP#*|L|8+|$gP#Uu1zlQ
zWu)s#XFT`$e7KUh#t7S;|JeQLnUs+sN|-Q<FIYH2Z)?RKM5yI(yWWMmQk1mif|E$e
zGrtUV(==)1Z-yp^!~8;x4TJ-e{(k5YABQvSbCEsw0jWUA8ZYerLbKq@BFM^TmXI}K
z^y$?OJBC8GGu5QJC3|@Va-t1|UV9{>Qa+9*^9r&E!-f!>9wNx#o}K8j7qgu}z&XwK
z^7f?Fz6_`<e+bX3XsF((0Gz{1IgYEIHV^q`pm=Bk%VPUXr#O_^lGi9nN*~>AsFz`7
zdahWE8%Z7eOw<s7+8K?O=0Oa66V(cGV4p^T{$sa<md+g$7nmB&z|HP5@;*EgJKP6O
zZv&t%;DH#_{>u>Eq7OEL=Hqgk3}eRMMU+(_itr4rk7jaPdM;@0tP}Eo4DjL&mlGEk
zMEDxxS9nL-KvD0z5H<e*wf79s8G>U7SB{UTna3}Sb01BEfrjvC?;b@o@jQ+e_A`El
z_Gm201MWG5Y4&FWlD#Jnq`>_SA=twBy8U4tJ~l`5ukkOxDT1Y$Gxc`w!#9k2EJ`lE
zyH?P_<6c?RMfRkM^oZxfWzOkrmp{_Z)$58xXx1tr?Ol|4X(b|VyHB@=Uu#``Am!kR
z5T1e%F);yu4tpO5^w%=!_}IOfs!ZpDEk{bzk}uKW(}sJ`)yp1dLb<-rf`%N%hS<Dr
zv{y&iZwVb-El!HM<JZ~b=fTs0oTDIHjradpfIer&-c^T>h$p`l^mLkUdoke*aG~Fp
z<NkXGR14=x49{@5K8bofKi)KZj5CbnaO!hDAV><~rPap!_q=dEX!9jd?+mDT0<@9L
zxkhy&|M2A1$jIk`-7PHzt*|AEL_RmfJa6qC<OyS-*-@=Cxd<FIUkTW=e?D0k>XzQ#
zJv2=bSCBdPtGx!KN7R8|>gU{!PIpvOy%NQouAy=PeRS3Dmgj8jrUgO6kDjjcMoi~^
z6#jkrm6U8!wEZWU_8mLDgTTDvNkJo-lRE9VCow*vf@VtCsJF(THOw-4GS*AVG?|9I
z^B=+*@N9!52@lrnr}-I=*o6(>&RQrnmt3lto}~bEm_8en-gc`xQ6gm{m<wlofaOAQ
zhC4%qezjEIf`Ebz*Yv+(5?D-@WZ3@3lSR28;y`IFku*s1$o$&_Bn0M>2vv~N(5wSo
zPB*p*z5GHg1QXopfwnxnxfS-LCCQe>?-?RI7R1TwaZ5{LAs!_hhg{=6waOH(pv!7x
zMAdzv6Cob&BUPlOZAp6VbZO?U_6ZKoORt4tf1CxCB?D}t9ytjbJmCttopJqel6s+<
zc71y4`^@ihJgvy-Wr&YWGfF(QJ7(DS=5*bmta$oR`YmXM$D~{iYM-AdY<>+gmB}6b
z%V&)<q{Z=CRasUf=;o9BM}-xd^aC*%&^?s2O-iM0T;!di(78H*iOdPIF}MT_!UdH1
zIqHAL0R@a?EU^+aCERc*gd3S;&<#z{sobAXp$C6e)yBaU)k$M=6C+=b+imFPrR|DF
zgi!vMQn~%Xc%t8$n_NU-kA=@2elnfz3@tBVlvy@^!-ZuH1|Ay@la8$2LIZaXoaDv3
z_Ez2PbXAg^b*mPzgXo$o7^5%AzFG20R+5lP8O6^=ej{E3m8548P71l!t<-g5H~q9c
zIF$x--v5&prtRLkf}N~A1vP{S?+C+LnDJDE*u(y}Q~;I<aU75yh`?Dyu`;R3!-iCE
zGiW)Aipe;*rE?f(9R$mDK#%=Eu_m4l`7oy6g~&}7CY#1;#|DIEY&@z^Nt9h^LMHBx
zrvo}5y##QTyiwb!&i?RQI`lO6`5bMb-U{@Uc%~#O&e)H~(K!ec=5eLyEN-H1uVu&Z
z2ErsHbRp4j6gBR+ki^4he*c)dOB|)~{I~OYJo*q+g-y$RCM^;P-Png?hziDejCJ}s
ztSg60JUK^?g<Gai@#@juTN9iy<DDCTilbLn2Knm#Yj*m5soOc`!+rTJHU}WWzQOr1
zW3{Cxq<Q=@W`=AxqkEsgU#X^ZA2<66&IY?Qj3ot|L8An0$iY9JcpF_d^VB59dsIAA
zsjx$pGbusVVeB^D(`3W=cV~zlckkO+1RHW5btad2LFHj|)28pOf4No_SugBDC5RwL
zUz^OC%AJN{V19xNF;&8G%Z(-C?BCl!@C23KCL=@|FF}kvd%rXfIp|q)229%0XmX6q
zDkKJ*G$ep&MZShJc(K_3dFy0`ln{Y~8|Dn#BXeit3X31sveaKi=_=Q<aER3Ui(+yn
zg~q$x4l>`K{>Q3@jMRUJktH-1Kxj-xHi-FSvEZR4a!;JYJy+`kT<cJ-bPq(GgRx59
zi!!a#cYnrMP6B#g_0!VL2kF$+g57wk*)3PM%>a|lO2*kNxFq8Bph^uv4If`h2?%MP
zxi&!shE`~fpr_>S7(Oj?Qh@zmz#~4;xG~;MR~f(l4iC-h=D9u}b}n*lv|Sw0@Oc^l
zm~yED!v<ZnkwttgU7j8Zh?O+bX1H8r0nAl({{+C!QCP;!NEg&kkS-D^;Vi>Tm6e4p
zt|%ogaRTbeo#8Gccy@XRRr1nBs>Q>#v&~A`1Z_<7l$c{YITgAUErPLiTAOkCy=5{+
zYVT}KejyX!_1B~2yw$n%J?i-}U2NkTQU);JavKsKH4oihT5aIvRmijf3hQCpYT}vY
zZrwzG64EEyYlOZJRxqk-e3QjlqguJY6q%`^AS8ON)7YS=7OGbuip&@Qk<XCO?u>o*
zYtit&Z9u`xVs9doRPP%%?lm8X0>H<dOZ<NIW~fX1=WLHCqy%Xj8L}`7E<1(Y2ke9{
zp8Ml(_Irs+&pk48WU{{;M?zcCa?WxH*laDSjt8Z8eO*r`qu(fHcVD1b6!k}Y!PvjW
z@Yij0+Aeo~df<(8>rx}e?ZM;TL*@M0^^(|2fDYJ0Hz&cgS#1DL-KdB0S_2xhiq1cb
zZ%Y@ZD;;-|S)NlQscu4g53)D+wJIt#a*dL0d2POk6Qx=;gKl<z2x6Oe!iGVIE$e6|
z`|ynEhAR?+(KkMy9y6{vS@H~372BM+Tgm<IH|Mbh$f*8nrv2I`y?m}KqCi{!c9ib7
zi={O%b(9|Rwo!BhL;275b^iVvTl$}8!cuJx4re6nT#`AVr9w2jEGUGS`{$t!L06+$
zoT>dWBvxDPf$sj6FjTY;ASA}<(;^MAak?tb*|&5_PK3UmPcT>CJfUP4s572C98%;C
z49Pt20maLC!-$O0aN_iP+QT)-3K`oqa@Y<P1WbI2{CrOTZVaM%5fQslft~ZE0@#am
zLS+P2i)!k}8hN&G+lv(Op>BJ+`J#nyAVhf$yHRk~XC+quyAppY%~xH)0g;+|>c=e|
z3Qd|)nihIP)XmvZa454l<KGHXM%UOcD_dERDCn47#;4KeZ?#&|2Bac+E;PUj4S!}n
zzY02HbOBGB+1pWw$}Cswp+$#tr|Spo6(P#8FyGD9w#{s-!d4+qFxGID>J|(OKRY)2
z%Xtlk?d5A0&H~KlArb@5VBjm3(tp!GR3ro!)5Q)m1<_1$CV5cW&B4Tve4lP*sA|Ko
zLCqSJp8n{^{i@aH6>Ck8B|Xv+K8nz*GIvXceVA#?CSx(ePLHaiZKG(@_qxN&t*?6?
zq@qcNvyl&HwOqVdLTmGbAy+OT^0A5a>P8}?3$Ka!e#ZJ~;ge{CEBG=chB8#R*D}a4
z>*omDEjH{ze+nN%@f!MWHXoreT~bBvHJ<J=KI6G`?iyrHA%JBN;1Ah>^EZ-J>qO`w
z!UfeWMZrqN4@JPQr-yPbQTA1PGE1O}VM|(&MLXNp46)<y3MI_vYR($xHI#R<2*`?n
zbt?cbJ(*8fz{fyN)<dtC#bq+w^;ODwEp|Bbrd%_j`G!oR%3Atqe^=MAWJZ)@aHgL4
z!PRD(kXK5vc2}^?wL6jyh&}GC7F2@4GaTiHp+>f^!O2#f@MIy~IJp4+FDi(M={<Dk
zcds^fV0=GY>u`ERJtUX2NOok!qN8vM)AvMBBIVz&+wVI!o&M%&p}`{=MKG$jj?Vdt
z3`9QvMgY|5B`W{#ft)8yk+-#z$mg&>DS?XHI2(xze+sfj7bP-`ymJ09gFm7r_o%rt
zU(||&(GbET==aS|Y=X+x;;6{%*4S;|OB6GQe4$TiQFlOyPScJTne_s<f1-4~_pQ_0
z)}~?D0uQ$ciY%gp_>Sy?Lb$T;g#GkEH_$f`+bH<C#~5zqZz^@<uDlK|Or@(sS#-#E
z5W1%J`;XzB2De*^IJ1g=sn<S{siVWuRKXcg`*NZNfr!h*2s1-}gtWV5pbGlRn5>U0
zA|>@{{$v+Yuf4;nGLXyC0HS5#ydP#JJ~-WO@>g}CRY*=TZHk#no9e^V?YRs|TgnVw
z&;=>4j}BK(g?qq)2S5(Lqq9BhTfJWW?!r#9%!ZxR?6JvYc$N{f8uk7YU6T@mkV$w3
zQl|__*P2%iz@DE%Jl3$lMcTk&-rb`g1QE)tdW|r1n6*-ehiTpf%$l-^3oxagn-?ZU
z_9Ud1CeTByv^N!Ly=v;m7=lGawiE|zz_G<lp&={Pc*b59cori67T=EwuvF3Gd-YiJ
z{Du1e?J<CXf`#)35dxw~nC^9vS677GA70zZE2td9C$VyMmeC!~)6$)rkvlImekC8i
z_#Y<sVQef*FqZ41^tD^H3Pj-uPo!_4n$ze344=;fp7-r~=(Nz=ES>MK5~7LcIJ$>>
zIrbCTDsiqJ4h^3-wrq9Uh1bIu+9c$55WlC46m)q_^KrgTqC{8^(lVL-bv&A2M@Ho^
zROjYHm{9v0$dR>^^k*hv5hUbl4n`zbXo%Ohl?yXx&}d65kD=xxOj$xwfLdWIu!-Bl
zS4KniW6Z=)@X<~L@}wE1=SI0(#=GOjEr#zo*qwyv(mI{~iS8n2jGGj)R<$g|tvmic
z&iB`hB?iJgl?m|pk|yJVZ{OERbG>G;QtQ%KE_cV$*sIXEDY4P2Icvi<5zf=S$>Ct0
zLB}>K&va~teCLRVNxs&Be7v|w;SBs-R+1eAX%)mY_ED(Ek+#(v(vkdE*bILHOK{r;
zef{Kb;y_81GBDlC(MkEdf?mj_zGN_%;r8Z1LJICiEgZ%vtpnuPDJIBTqfOu)cR-bK
zx_~*KzX@u9H_IQIN*O(g*&6-rQ$nxlxo<KFUj?HJLQztlqlXQTTA?#wRHsTt%WRwf
zJY<&PGSd=(&Mm3awhPow_)q;wnATlg(xOy)Kwhu<;5l;oX_vX^M9>2)s-aDzs<C`v
zl4#$rdKQGUB_zg%GdQPyQSJcxAR%m(7XUi9TR3^0`^SX*`08!!Fp|M)bLH5a5NI+k
zp|fdvy)8=As^q7cwldP?X79yP)F2^BWP*guOa+xdN`V}k*P#e*>(WCc)57rmEZ+gb
zW*1*rB{{0Y0m3nb;#iFzSBgIBFD&+Hr~ARftz`30T0OPRllad0HA?@QNEG10gQi;7
zPEC?dW!9$(f>6xmmEz*i+1S@0RHC}pNlr6MGCKwk&@?lL_NN|1H2u1!#V%%-DXw>3
zB1VJIT1+#wk{v!rA{13(EKdtRiE7#`{f#lmM@mv@bD|mry|pIw)_95hnDuz1BqF@b
zlF0R~@|Nq(`G14+H>*&VOI!-Gu1QKQdU(kiG1aKVDx8Z(Z@MS^4YeLc0TWfj5@^Q2
z>HBqc8_D4It^3o#W-N*`^;yP3Vsj*xA0U5KXN2&W&vbR=K5j)loz9gZJ^md#ok|>t
zwHnKjub39U_Hu=7u1xp<+4RMJRgzG3<|25Y?Jv?clH2%)wE(U3IdsV$kd$z`aTKXc
zDN=YZDXwYttO|-YO6(amD|tY$lagP32>=%vx7=(tL<?)A=!2erYI5FfOT&3m9@gJ9
z86^c_VBCLD%h5MKWYvmm`Utj&|H*aq54Pk{TOcii_!&dOnY9Ml21er-ed{@>{XMAe
zkLvPQ!F)}EN1EjeCxLu+YnBUvph6UulVF(yVnz8VLx=m<Rhb;-3&?=4lJ8gfqdlwk
zj2p$wW3NMp+~ywm%`Fmu8)WE%S_rhgX%j3q=?w~msA9)pW9Qar*&kOoHc2Uz5>PWt
zC>V0H?#G1he@=<YUV*7OzBCW#0jY$I$GGM`UggOQ9IrTJXaPr{1A?6_F?lw#$e}#C
zP&pk*(Yofc@C`7SKl#uzJP(c}zKyaWQ_&3_@?6x?Af3%Od*;To;>^*a;qtqhDNn~C
zWU_Sg`|SU5D^y?-MZwTPs^R1G55+-!Na%(&h;uoZzPOEA>~h)!a7=qkqr_6fhc{Xw
z$kr$dp{aY%kGn!6o^*%;@~oP&&{3nYJt#<ivx1+yO(<ja%(>T_1IOiwdh*foaEt!J
zY)VYWNneks{*1W&J<V6j_&hY}6=*?+nyNbEyzf3T3%GRm9QQimF|!k1X#;Hf(jGti
z=1-wqnu)j@B2t%~W$T945VTfs5<%(5xB_-rAhf)0i9Qunj)~gTcd*zBPb`>W0~gJ9
zw+7gm=~gM+LZs+_G>nCq0jyfAWLez?wXCYq)CcvN95m2(kURg4WTnSKG51e>KFdLk
z!6(V`*CEVQ(J+k_W-w}-VG{0pK6vcZ<&b4DAWqEQSw>C3q=d(!oT`w?8p-UOeE0}z
zk>s^%^h(ZZ(J2Su@XWq_QX0Is(R1#r(NpyNd|FVo=sGBAIKoc7GFxL<2+)#ri9l&d
z8S0t&`S)35vm`4{u0#x#)Bu!B9V4^$PWmIiSN8lv=R;II2m@~(VR~c!Q;E3Hm7Pv=
z-nk^Sxa=F@emE=bc{2d~l6Ue(V!<qQa+#U`iN@sWuZ#m;+=7R9R8J7_#~tmh$JT-T
zIB?Y<WmsU}@w8wphJhMBFQw?fMvu_Lh0#&=hQ}=F?fZx|;Eoyy281S0_O64*vFSQ@
zKdDfD)86MFX^zwUJbilsP;lj=nW~)l-S;7vg@}nIKXaTCq|Qn)RB+n2i_lft;NOQE
zc0Bk4@$g3oyUqKEWk&<;1FWWmPCWjcgPE&!AWRJ-jD<Sl8WemNA2PHXij=L2k<<Ff
z)&OCt_A8rLEV)8`9bJV89pe##*<J|;PZBOjO4VT%y@SXf68G={>?Wc8Xk0nr5kQr|
zu!*(p@O}-h=1?Radake?Y?%+DQYnQtu6x1vI7LmCZH{n-B_eUQzgo_;!PeL$yrdKS
zaiEUR%<$PbGDPo#Cqjdf*pXS9dLcfJNmK{|NBxy{BUxJRSs26J-`${Lc7z$xaYV*6
zp;-`CV?o>br7IoQAI~H}RdcOES;*)VVEVQz_pQ5yDM|o24`@6G-BuXpM+?ItrqeG*
zvx*bFKr6jtwtSU2AB40S0-BrNwMQKfyTw}7VxgA3^-Lu!O^X@<`d8c&Qi2f~!DOff
z6g)R-)^_!fFWwg=PnRIbr$mBt!hh*drdquJ>sS|uk~2xgdK_Befq;#g7zRV=%P)fj
zVoitrpl|Y;Ga|o>Lep~b`B8BHIP`QaCG0Rf5qCP_cl+%R1-QTt1?tw@n!nDzU3(JD
z;Bai4xT#Kk!nH|1$E87T%MpP7FDeu(36cMcNBI(r3but|C~~XgPdMNBpm~yb0mMpL
z@CigBr5%(s1mdM%t;^3Lte^RdN&b*cwpuTshN)(dF_Q1gC&`2WT|$14ICGREGYPa}
zgH(4YRcQf<?!z<Ayy@|;TS~6nU76s=RJ>Y+9xn^=VZ(Jgzq;!uCQ%SBs=#ed)Y#i!
zC)B+G%SZA+fs{Etl==Ki71n|{^l~`*0J<LrCQ0t3dE$&XJx?Bu{ha(u)U6$_zZVpt
zAVt8#hrs0If7|K%nMym3J#?5@>hlO^TN^x*_AXeHrgB=3Utk4m_6=6lTl77=ad<>l
zG6=x}NvVR=C#^RIfsWi=HRJ$wja!ZO7FoE?t}`~I8ofWR=)1XVZCoh;{N`+ZicuR5
zqk&@HGTYT{lC>bvH3B?c5)CH{%xzF5v^<1O9`CkOXD_?qNeSH7OjqiymZREF1ohvJ
z;;%uCscz+;om&b2Zf`H!+x?-w-{`lQvz*Ss`XMS^WirX)^F+X3TMjS49o!}~i47<U
zz+i@!eTfZCc{1$qh#Vu(J{0aYI|wV_SXkIN7INPSID+wq`3QD_Zi+W!Dse4bfJ69B
z9=6N{GTg1wyQiR&)lLhSM_{T%HjH@TfG}=KvPjZ@z9UIUS5g@}ZT&Muoy%T=0E)vW
z{Sq@3jijWZSuVRJVN<Etq+tm(QVFqwg6&=yE+eo|v-m~W#oJhDjXdfEb#ZUZo*Le;
zbo5pXEX-+pko3C+DfZ@tvv$wvY?@E6c#P2^KA7M#<-ZJuE5u#)#zz7=9kyRTpgW{x
z3An&@Lu>Oj1w!Qk&pYD~9ribdcC96%%ZUk#8xdbqZqMCS0}}ms{@YkXMnbf6mYz{Z
z2iy%jsN0o+=v-;AN|pmj%e6lb63xhMOvHAdV?gJ`Kxx1D8Kc_s^41D&Ai<HCsIG}B
zL<J_55|k784byR&G9VuyJlDK$<@#N&A$2V)zUQ&5^V_T!$8BJ0(sif>aRQYx1ckN5
z`DltessD$(2{g+!L^R>w!G8Be#>+O$0j2E1F(KxX1;@3}E2Nb}T`v0#@epgMgIpjH
zZbhbc$3u@?B06yaE^&Rpn{Wopv|wGW)$tzEFsawG(ZJ3{=S$^L;U9A>+MsD7T0j1?
z&@?B5O;M6va_Uh6S`wW`gz0fn6&M7b0`TlFc{&DHD^2acTnw2}5CpQ!O^4S{c-x@3
zzd#{l{X4Y+9lBlF@FVgG2bDnsfl_*BCGbIshz;Gq#+p|A542l?Q6P*zB(h9JP#UFQ
z5aD5h+Fy7%FOORk_^ubZC<JlkRoAkC3JH}C7ZSP*6$cbTA(H@xF;VJP&)-keora{5
z#@}bkxwdOgmcBBoaUe{@KqPohm+7YNjAV58zoHuN^(UI!fa+_th7HAZBroI^s3rrW
zRel$Q;c+x3H6sPY=`ZtPtf;mkV=_oII)Ta~?5JnZ^YNhlUr9sX3cWx{Th1M+XV}Z!
zYtWP6NbNMPOu)Y)Os?M2XR$#s(Vq(U$Ywetpji5WPMlN*iTk5sB1-U!+3o^&IoTXJ
zYxW3p2dlhLig^72(2k!l<)|bu3u63K(ehwQ8I2%dG{*A9;M1J?H8&JT;sIqmxKxa(
zRJKnD_8p4iG7;{D&QMoj{6Z&qCp&ce@fZ`4=+3nNhlAZ5O{Lz~>Cz8sF*ll{nWdA$
z<hgJ&9LiRJtqAE>p)1gMxu4iNKp(|iBTdeKZ|9HET^q#=^Y`dbl*~LH3hvZ4vt@Ds
z8L77x7XW*ekJdv7&rkIE*zAil$g;dI)6O@@jJJmaq+Sc47<C1c9SR6c%2NZ@VBV;M
zk}?~_4D0Vb6%?1{qY3XXK3N;sv%nZlG4ybujQ3a~@WGj5Qc|f9zOxNe%l81-YMmC2
zxWnnfBmM>SnI!xyiD=wFG``F_M&LG#9fE(f?rR&@A8CQJ_RAJ0hD0lwT<66AVp-6S
zbrU9rB>L{S$AwMh1LG1XSinKS*Fv&z(Gg&v$^3{$H1j{&B79*xX)@73k80t`sdlI9
z>{UBIkisbm828NFx<Z4c1~Ew2xHX*uPF7sQy7W=I%{_r?@4VU1sgqkTsgWvo3iaH8
z?gA4>hIWaU(AC8+;6b}>W?>Z~pN@>?xfSxRK_mBv+Zv%CRdvLd{i!!LKA~T5)cF|1
zgKo4&Z}Ou!vN%l%sQZ|?1LTGxqngoi7Nj`$$w@^2uq5TO+C}`hi1`u|JmX_C@od8Q
zEvkg&%=&RsocBK~#TdbMu1VuMF8~snq)@sEQmo2ql2+{iRu~p~FlNMC9i$Bki^#!b
zp?isU&Jsp^z|@r3Xkqq~d}PfT^j{N@PIs~6fMz<VOs?G)Vom{a#8uFx^^Ph42`fkA
zwnla52U7uf#GS7@YV^Dcz1vVk^B-U|zS2SEPT3hA#86SBE@j`Yf#ZZ0zz?1ag+Lu6
z=5tAzCEpfl1KF-?jqBA($H>%A*>V4ZP1>bmS7D(e7=Elz8_Ah$_WUz=X1P)n*fyW?
z#0GwGSgb%TG_VII%JnSb;>JrOyo#j{qegSXQ+(QeeiQ;d1;u!n6i$-Ql<LGX8eiW8
zDB;YB#>F*!j;4PxzMr`JKiDjw&ahjni>{dy2~cHJ>otpex>`)eQ}U7sah;9Wjn~FU
zK}RX9aXx{f7cl_x?;z30++?0Kc);Hjr+?cmGeLMnEzckigtP9bhwa=s%=Jwfm`a3)
zH<*e{t!9xuLO}Z!2Ki`9@R#KS_o){hO|Q+y>YxeJE9Ec#qOb*$h(QggL_gEm=?)Y3
zKu24Sz}qF)O6I1mAACV_(ZD&a_su0&$*4z_`9*)rZApagnD=_`KJWW+R8twV0gsZm
zhifClozw{aVs0VMW6h1uhgJ>PiXfIVoXT^|D(wGwnuxA2l|nk}IRy6JusRITQT_%D
zrHmnY-FrNyJ4DvMTcVFNpeR|}T;vmp(>_-lQyLQRS|cally||I22quiP_ah`mUXi#
z`MdWr_vZ65nx<y)>hg`t%zG8@ME`4%BM?n&cqO2+)=m98IWu!Ke?nFS?h>G8Kh2Gt
zqX;mE^22hNnjUyS)NGW>TE{`vBUu}%__u26msI~ymj_VDdP8v51=(iv<+GEdT@_xp
zU+^Bx2!`9FM$Lw~E3wY%cKCLZL2emgg4M$uv$pGWrN$z?;Lr;fgl@40SD0@$m)yUY
zgoSaqeAJAz73YEn@o~9DMvX@4%#HrF)TIy;nep5B0(n3Fz4Rh8gFLoye4&uPHT<6s
zC=Aszs_oNsr2}a3LsifO&eXUozkupS&-y3$&mj2y35t@_{rrJ9_;TOs!&0l)@%Iso
zSIj?VYkW)mx=M)3C>`6NH}g^y5bycqpke{w<uUXLNpgp>d7i_35=N2YV2F*yge96l
zQ1j`@aXzxtpVbhVM$TYdtz@)l+{YMMcP1ZtTBtr&0wF#SQV|RN)EYZ_Z_0tZ&NkTb
zk4Dr$z~4_+02Kgd-jamHgzsVoN)FdNuGbtiHN6sv^{Wjy>;AlKUR$`YxyVEf#%jNl
zyRU=)ebolTPSo|7QsmRD4I{f9_OFVjtp<s*f_85Ek|LI~4*aDbx-Thse_?+S2m_vP
zyL|+~IdajV{zaats2Lw?jgyvIyy3ff5Sm>s-ZWT#$b(SEqB4pkVU_*e6s2GjS@Oh%
z(gzD?22T)yvJbYH-NsdJc}i$J-wp^_{;J&n9LyF7%}ehA<Inv*0hnj1*%=z60v?}_
z7UV!LZ$<+F2}(S4Z^Y^KkN;x<5W>5HctRn1EHMJ!L|cG9KMs6O;dOuXG5o17b-3sP
zKK(J7!k{mX<JE7MY8TiWD-aXjc}R((WEp1)*Of*vpP~1>wouvrsnOI#T`fM<;&7V-
z_7yVfw}o-p%bMG(JEZkOGqF*~kMlp^vfwcr_4#RU*fnw}@|4yn>J7vrqmLs!jy*r1
zJsy9_O{;NoT!Jc;f=7-jLd5!_O$5pgxu;4odh2~~KED42@X_V3Ac#M&?FQ0Wq9yKn
z5Y-@skiltR7BK;q4O^ZZrAu~#dyD%sIiXSBYEo({Aa`n}8{|A=bJ?|r(IwQt8lt<g
z=f}{OZs37f(qiKM#Zd>zc@V=nUv=z`5m!y<3gmFKV*@oFn?lCE8lBb6J_Gi$o00o+
z4*TzRA~EV+BG(0T=(QJjfAnL_c<r|aJG!1^r2~p90RQb^svj$a4`;bn-Qe$<5v%iM
z*Hv%@I*)%V(?x~39L`XlU7Db%|4Prw>YWCYg@Px7D=~K^Wm)Fb;9_ftH7@&PBPe+x
z%UmANrmj*-7TnMOQmZ5x6p#_dYl@}X><6ARvpONECe{6n?-hXzlDLZ;)jF2zJEl_c
z^<vjD#&Uc`ZZ;KItuGaCFU1!KFiTL7c;aj3%9YxPck4CGmc1cnk;Y~zd{HR7=@+Ty
zV^b4_Ayc4UVKf5lzKsZ2s84)Gt;vnVWkwh95W26VeJ0L%<Np*bKFEjRubMA0tl5^|
z>9Ng5&M`HEQV%#vYd|{h6M@Wx{nkF5SNv6*?kwsD@?pF{fY@!Z4oWLgnk}UW_&G>-
zr%^aYT8RoarXjdbBU1Zb;ZhcI5@#IFT&%}g$ef`_hYH|5f_)arQdMKmHTVRaS<D<%
zN@7(Hxj)52Sva~QWh2dYNxn>)BM+e_ZwC1GQaa90@-Y5x^2V<`U8}2B{z?Jbv=W4$
zO=FFSp@LD66PxnNxAot<5Z`SjD!s>*+4S$rIYSNZuC%Cm_b2!bCe>$KQZps2rMgO-
zM>J>()YUk!ydeF2f0sm1hFUIpXH_KkD;;Mr8@ua*{5!<JpMGc32UwW&r^I=>anon(
zsc1`>_U-(|9JN3u9rc7!Q<047VzEECD!WAgu?>=Zkhbb4gbT4AmwSwcl{`Ofs$Fwe
zoxKOs<7%xLYs?dfggz&ET<uXj>$=AyMMQy&6C>AsSH7OReq93%M7x^vrS!o}Vd{|`
zeS!~u-VXqC&LPn2b_hJ~$NCn1QOZ>XL+H<UwoS^j^bA;-ylfZ=+1V2L-X7_K^gB_S
z94OoMd%l7*Y;6^Q=JA?mmPjpac&#Elmz(aywm4hS#>@z$zu0EC!hh1AgDwnu4qRX^
zXO8kVN|g?e&c7~>Eb>4`WO4*8F*a5i^b9-_<0kV^atuimP(RQmLP=Z7_`6&`6G-C}
zc-(Phqw0P)*^7;TX9z-3IC*`~39$d}Q9jAYYWw#-M<iDa0lM)oh8w4RF5l3{2n5y?
z@#U5qDhDDlbo#|oAL7y4t_zflFAnh(l4Emx=+-{|gxEn+Xk54Uk54zRF_+ZT#+dY*
z={%nUT3}wk(SeaH|BHm9w)pvY6f`6egg3Me=>P0G%kL*eWL7>U;2aTnm;4wKe>1Zj
zdU?HQuRFp~Gm=sLL0jbjUk*3^B%s0I5h9j$=XF#K2$FHOng!*6B^GeL&)0e}w2R#C
zKb;S7aen#syes^SBG$tKeqTQem#c%7qiD_V)4S!tj*!8Tv<PjpK+@-;|03T;Kx{sD
zC=<Zj==yBT^<g6cmk%kYM>Gs;g<@YbUo_ZqFwfyvD%lX|dbPZqJAW7hOAmCn()(NB
zdvRbcp)}|Tn2_ucF@63i#FA+-nN_=jSFSv44^KDtgxP}fU%U7|zfhAMpy*iP^ydc$
z(3?4jYbNtt$OW$OQO(z}6d028p~Hl|r$<lq@3y=LlU4lK%m$)Q#29bFIOu38klSF*
zi^Tc=d-J@Lg5a(J1<V$)1ke4Q_;>P|D6!3+h6G$sXrw+e02<h$Kw#weK1n!I-~%rH
zMQXb2uXrr=a%cR=%yKVOjT|mCx4>caepIz?5#%8%Cc~D&@B)Xk+J3vr5lJ+()g1*C
z^6Z4^a{bVhx4LwsZ_aK2Q1{u>W0y|&?~yqVEv4Ld@m9!p;!>E!v}icj1mPF>piGpv
zw?GQhO@<r~D=NA@U^s<xKygUYz%#1vx?`AlIM4!DMte;INfu9z!o4f=0I#ggi4oeR
zw@3S8OKn^t?=|Ly)M6@?BUz>@1Z}RSNBHN1@%}fi#S59quj%qI&zx7Z7z-0SOu0X4
zcY0h!lxr~6+#&2>C#Z;gTxwFR%HU?Dr}^zK1mcNyDFVo2frMCm@_HSaVoQ9bD97{J
zR+qhCTAZe;#WxH|x_!X<?buC%+9c~402a6{B+uboT56+_uSNW5!!jZEAJ(#;$X#&{
zwVtiC<~%RiI`i}XG-Q&Sp#g5pC&P?yHt+9avMtXs#Y`+m`1RJxCw{J}!cG*eoeu<K
zmyW%PK!COv!Ka&0{5LbijbSKL_G{U&wb`!)L(ex;27-c-!5>|uI^VO_&y4A|5Id`6
zWItF#+GK8cp=#xD+IJUFXN^lH$l)?8&*TSYz5YScOWsuOaGNN)P=)_7-qQ9VXvq0-
zLBlbvmUR-e<4&OoJtRw_#%|bd4LZdjccYs{hib*P7o^6|t=zPzxt|fgc|$!lH&Mvr
zj1_8wS6e$j&;kt|N=ag!7b1*F5>_Z_;@UHx)A0|-?Pq*IxJAu`zbhlSsg>;h_UfW5
zA(f{80=T)hmW^gGigK$z5Z%zDl>xBgnQ;(rUL2_vbn2PRm@kV3^U<4%K7dD7p<vo7
zX57tfW6gFxMFjZ5p9*T6iX+QJSw83?cYh-;NSVeWAARYfIn4uoN+kijS77TE`ZfOX
z;`cw|rN;*sU~Ocn)Y!@cGHsG@u^D{@W@4#35_Aek?3I)#5G-DyzV<oWvx!*<h=0{0
z2mD$V5<J|&mln|#YiCp03{oE1>55}J&9XH1J6|i%u_FE5^QGP;U?Kr4e%ks7TDRU>
zA<uzc`sKc|su%y?iSC_bo^7*J{i*QxBX3U-p4lN#^9br0=DwMu(^!$Cc6^5#HYkr4
zn3^H&mBO<{`8Npw$d{xnaf!AvA@A|N#0gj~rKx;&+{y^yAeVRe`Tw-{)=^cjTiY-o
z4FUpEA`K!T(vkwwNC?u>-O`KhZlqI1q`SL8q@=sM7v1pQZ1>)0pYuNN`TqU>cpPi2
z0l&c#?s?ao*PQdZz7d2>CLZt;w0(Pk))=u%Sohpv&b%(Vspe>+b(zrh3zlzxp+;G7
zD-woo8!iSed#<8>p@|DZx03gjFH}!0tbKvuW@}TS#pFh-I5u8-;e{{@8^IOXrpdH1
z<QU5(K!lUBWR}Sx11Y9HAb}N-tYg`Q$yZv;OW1FXEx*p8?)Q3!Z)<fh^w_4{%VdLX
z1HM14snsmu7wZ&1S*8w^&Z<okyKT~>k2phM=xHRVpDx&f^OXSl2@|xz>%jBL1X0MN
zTeKWd&LqB-qXYS@tV<)a77bJhS(jt3H!>o);H0LWB{+*Ndsn&ph{EepqWdj;_x&Q5
zD5qExz~i<>WxqYtl5LRSSZVXXcq3T-F)S%Vbq;ypS5!<i_O1Ez1PQj6Ljtj0Cxw8l
z<gJx%MEU-&sC!oIh-?kIU~6Vk9NUGBAXXcpjeA<md)hO%?dF~H99wuFaw_*#mL$I6
zg=&hRGF#D|#L*@jqcN7}bYiNkFB<N<C;)q0anEK)8dt)&fu9#=(Ifo*dqxs?ILlBN
zbh0O$S=|Bf#GzH@l9`k>TqB>~QKIg0dS2v`eJ8&Sunm6)Iw{XN%~Aqhy0<)my%RZP
zr&4=|12HDAV~h4wVZp6CkRz~vsNxy_Sd&bCh>>6rq<p?kP6WTv02nv!Bd&yx1TpZP
zv61|IldM0IXmNbWzB&B(?4|T3pU=R2VUPo;kT7(oPI(EU(GWbLiii$vU+{AQA@``*
zJ3KZLagGvZcE5*AW7*v0<r$yjTUvPdb;43cM7J>49-d=bPgE+$q^Xz^$A3T3DX9N=
zf%xQVQ3Ae*n|eR9Vc#+SP@+2r7YpmhtXB)NXh=aa=OK~ri9}*AhMk~1#fyBOO`cOZ
zCnhFJ68(_}KKJ~eZ@WC@j=*`{Bav~sGuMHVIRf8Jr*(ITc2Crx0eW;uqw$&OU>mR@
z6I%6<etXdf0+BW`f_lf2#^#>!q`631QaQx#Jrdq(S&M1=g##~vh-R$k!cX7=o1===
z<IDX4>xPXt4<x5Rc9P0Agc6n{T1E)4t^fS?3yCzL0bVntnN%+b4d+9?c(;-?(_1Q2
zB1qe7w?p5tB6Z61i@T6)mM?U?>7d_Jc%bPnTr?sKG?6zAYCjAi66P7IGJCRf7iT(2
z7x?ix&F&S}^O(v$ECljyK)^Iv_v8rI{{;cv(;%6WJe`aBmunJA{mf29Xg4s0AS=b8
z0J;fiL3qzK0Nc3fT#?rke*lQYON=V7qh6K9wQR!nV`6Q@G~FEI6gdqg`8Dm&R|SAZ
z8I!rYHRT&7KwRMJ^{DUnx<Yse3*GphxgS$zkXJ!Uf_$<C=?UP095<ICc~2jzvFEDn
zaA3=mF(U|vtv}>7Vm0bx<&FepZ6>XdJQN&MqW<u5d=glYh%z8TA6X16c}&pt;sb?I
zx(I<?YSL)F^ZN15<F`O4mG!3z+A?%OaM8i#+pD3oyQYRC&+w%mjknV$&QD9C?m9VW
zo<#{#B&1|?b0Lx2^arNcV!sPycoYWvi4{4@;?pCpB>j(YddnS%V^^u_m$jRO(xxW3
zqPFu~E@Rnwxq0r2e6wy>qb?FP81;jZJ80c1Y&^DW<#wAB{dTSr7V2D6){0altd?KP
zO>chMB5RIkh@vZw$5%b6RFO$y(UAZCHb-tj#H#h2xfHVKs$l$acX!fJuEDsD4!dm|
zbxv8dZH7UUP3yaKko&s>C9~nm26R$pKtR}=<oB+(Ib^0W@J($XLbw(w4^Xq$h?Pmr
zXec?TdVLEqJ%B|crO5Np9Mr9Pz*|oixadQ}>sn!7V%z1gIh?1S-+s5k5^+vjVmK>$
zaK`i*6Xon`{O-nTb{p@jtK1zwhKCmPi>Yk8;7x7Wn$ML|#-)8dU<oX<gz7vXeT5|?
z$Qr27$#8g1tF^=Gv09;7FDxP0tItSI4?jy8fcZR1rA~Qq?ru!oYTGu%A>NNkkrXAY
z5=67Ho_)sWPtg-urLZ1MCqEqT4cE9j##9(%Ao~o8+qL{UK8}*9EppXZ-H~a`G`L;y
zJlCLb#t$}hzeUg=j(f_S)UmIrEr2#WKw5Y@fb(-v^C@<%T&`jjX&Hg7LW8MDi`b(C
zo+3hi)@dzjLyw+c(aeG`9O6m%?c{DM7jNe?)iL=xE6RSUrhUB2YTia^dbvZ15($F>
zA%jI0^|F{&M{a-+2+hpuyzw4E^EISbE_!U<<!it7OUc1}-qg0envha~lO*sUdLy1G
z%g^yEb6aHrqPd0iu|T=?9t->w$jole@ft%xbJtL&txJ4|5~R&yvQo<9c}YdXuiA`+
z*X;=+r)qr}@MaXe=0VuFV2Cur0+2A%v>mlqVW5twhHV`yg$&w?H3i#km%`kEl(?ML
zKZ*Nup>Lu>!G#M5Yf7!l_WMC~a`dtaYbU(&d(I1NVm5kyv=JQYtOR~3wL1{Xs>Z^>
zA)&}o$coCJELDX#X*D@05{(oU@IvcHhccy@eEiWBbU#&A5HpYo>o|HdtKY=!*2QK~
zpilp#kE73=_o=ntr@rw)+$1<iJ|32RExB@wT#?*v3>EezTUuV$!{HedSq(Nwb?$q1
z#^qD>qH@SI=u7#5w*{z$*EkgJ;?s48n&*sv{*v41GL8|udcB<?rno^^=I`sI@?_3@
zzu_#6LA|C^$P)>3=GnrRSD!sdZ#WSK)TXX?XUn9fDorvo-WZcZc1`^;wLoSg3JT5S
z@R%lJyF7O#Q!O*Z@qIAlVDp8)zATw7cYTypw7f#I%;9Os{6)IQrG#3A@z>}%F4k+r
z*0u(4*W!_;%VCnL{*0$5Ty}>QEd5Y}dML3aOWl;7uKy!)P*<j87*#WD&Rlz>N-I*W
zO4LdgqJFkJJWLT(3|7+1b=I<*SfjNn^s`-`fF`A|$>5%dk3@B+qFdV@=f4EE8rr9L
zS8rv##*;ltUO8Zs!D5TUz+pumuAY6GcXy$9x86TB6MeDUU3PfTmHtZFkkzyof?_<Z
zbaJ`iC2lf#t$0|xKxli6FIb;1K&4run@Gki8=?ez86s(pQ%41p3(tq3NsEX<Lbp5R
zI3$t>`0*rClhU_un$dhR3O1m;H>WFHtFXQnE2=EttxeD&gPoOvcW_0O<3dnUZmJ*0
zc*5~A8#;bKPl|E*napF}<|PD79lQ_BzJ>xzm@4ryySn;2m81U5nwvw^fJmA@a1v;i
zS#5P#7ufHQb#IH%Lkjy+SY;cq+RQB+D>?{{xSr{IaqBY?hLl}&oJ?g~E3k7yMg4S)
zgo3{Mr6`^RFJIhT$FA?j_QbzWK*(66zL@H(+gc^o^trIP>a4~jFP8(-vc#G^)s@Am
zYB-<BaR)FTzMIZbufP~tzFn$9Ux%K)eCDazC`A4IeRXmDox5ZW=z}_(VxLnO${HY>
z_wbn4;e}WPz*de@tTiS=Y0r(v3S6vm<VvCsSww{Rc0zyg?$s|X6*G(HuS&+|iFbx3
zuH2rT8Emgf;~k8*SXi}_D;^DXgveLe)DVp0wsvV7J=nYPLtC@GSbj;AtC3Y0O2{d3
z_hZL2|9pjC>%5@V7C_@BqewJji?L)JIvSLr4;)%DB~RXk{$fo?W=!UgOrM+8xa4cC
zCE(DF8Oc^v|I%5;R_|Wmq44R7cY=tNUvhyGP#7M_a^c%^bk4M|v$q)mR@nYYD?(GE
zPt!8Qua(yPdcy~`B}qxSZ1<vT{UaS=(<ViazFoaW(6qYtTS}1dgcm0ZdQ|Pcopz|!
z9C!0QY<qg=X?;cHxxkgTX084^zCE3q!^hO-lae=HxIuIayBUO*y@6SN_`DF7^YyA3
zx`g(RRK|`_IaU{$?8DEUQZrzNMlZ-E!;)W$P+ykD3aV`Dp9hb6uh13Ccf4jjp@11c
zrs8JlJQm4+*WO&~dLi#^BX0Vv?F|if{z3=7dUuMdb{z&Brb9x;#7L(@C`l7mCYCxL
zlO0wujda=z`)$r&S_CDCc#P;_QR3~YP0`EN^>2~jD{+*0^Oz$7@sUbM#(;Pi*X=H6
zNvHQIRzHn$;Y@B=jjf^c2mf^yO#ZmXQOHOr-?Xnz_u`s8<CxW21AgFSWsEpituFeY
ziu?Oc^uC11QQp=Kz9E@wSF1+K4`Uk74>yQt$eIG|uB$tf!yN0v8J=7<_Um3r$$)Z&
zXLcy!%58j)FH<y3?XnAta&W;!;r+F0k{jFv->*zFOvUE800!5ONh}urbPt#Y!gn7?
zlly5q9B+SeW*7!;$<ImFEa{3x3%?R}w~kyUgeGNCD|t#JSL7PI&9CNj<$`emOzbCu
z!e&_jh%&8u+#A=tZ!x1mXeIQ4)z#3!fJQft8MXeSaLJiWMu(diwh1rhlfF-TceoI}
zDjAg!cyTbx&C>ADq0`yffLwN8tBt{ePknJ=-Rhx>FvWh*_RS+_;u=B08*`fdmz{ee
zr|Wf&`_(4!-5G>|^J)|58MKcdl_*b@n_4<Xb_!zwIqN|LUDo%-Cr{PCRY2k<E|s#B
z*jc3^imH%3?T~X2(2rD;|40LE+n5^iIYK5i4kx(^G@YTXmDtq+1ZW!7!iQ^pSyL>_
z(mTg1-Q_U+q2|-IB4=?dhJpdbXkMI!{$`Jl9@aUpmcGxGqbZc8xw@>{zxmu*?KX{f
z0^1!&*!F5+6@$qsiBN0K`YBm*LqU9d9_L>6c4U)Ie>^U{@JB!3B6-4VLG!%<GlxX2
z!yZ<KwX1;1_?J&?#uF+--z3beiM`|Tuwlrhv8IC75@7hXL7GG6aj8s#VZPJqrA5W`
z19Gp03d=F9W!Kx*je=i+9cZxWhUo&rD>@-64HML!E5_CHq}&hz4bna5%F#5;;%#!5
zG4vF?XYkltNrIf`z2=r&4tqlyyDGjq_<_vApU0xDvj)IHOYIoG5mEC}w(d@0fxU`f
zCFzg(AtOOvSbfN34V@Dnvo(9d<(yKE66*fk1BiDY(v4O&QMB2XEDhRY(U%)m{N!*6
ztkxek61M6QtmkY`$(*F|EZFFh71?C!IQ4aeJZeqG@-8l5nk$5g%ns^3LuQ#-YFc~*
zl+_#?zEuw)$<miu-H|`e!YA1eOy<>XCs?&WvmO2P^PI(dMIPbCrl-tk!2GLcz-i1T
z>o=|aw31-AO%qqW>3Ir~knZ?xj$C~W;EqMj);Xf`;vOt{&gW71T{Bb)cAfHK<&ott
zI4_37kJF|F)#mdDYg<B>4Cy&44t&G}n|LK(c^PykNq_7!v2L@DD8Y{>I=a!xeNTrg
zFe%^hVLK&0?y_F(A&N$^N*KvF5_Zw#p)-fSmKqij#d2r3y!}Uw3iDafBu=Xwcg%{5
z7G^3lzlp~zj+N%~HOlgC$5FWt_AMaR!^AkA;uuAaFDuSU;I2!qPz^q601diHHYH!E
z3K2;vZ|@+I`|!hOZK&r@y_@q0g<{EaGMLAzc>>&ylRs_gp}5nte!pr@m44P!3FdN<
zwd`V5p-S^XBC}axt}zpmP|@7YH^=$g+|UEADV%+<&H9QSje#o~ygssebu0KNE-?}a
z(U)62`JCQTz55t52~r~(r$ErkLCo*);ijtW)koWP#$U_920bY+l%~gKcz38~iR(Ey
zEhoQpt@~wZ*HywgtDqC#>Fy%(QJzgPHAT9+IVTa}XzoFOAqc9L{c^G;Kx~E;;hoXz
zYpcUU)PeVCyMwl_$8!caPdXS*JM6{sIvs9xL{b?ULfI1e=qFSaNvhs_wio!kpchkV
zk9YK?!%U-*;jKRg21^G9+|Ta?JO-<WAE{kUNHTtyM^uN5F;RRcIxB4zXCTC`6%Qjy
z8wn#CDG8KN{r;9qwek?no_HK??@<!6`E_8mb(``KXpcxfemM?Z=&0B*U-yY$tm2ue
z+~xTReUx#syujnSA+Y)g)hBCe;Y-`eGIEh`1X19do86!?Jd_-0l=c3e28)?e@l37L
zn^9(G6v}ss6?B6KWhVV7y=gpJrlW-!sED%Z6s+IX{VQI&Lmb%|A`kMbWuS}jaH!@B
zo{go>ischhWzx+9O`Z#?N_BS`xUC&_TN7iM8a#zI9by{3^WKBovx=q^2X1}P#L1JI
z;unPW2T7>0eovp;n<<uwe+VSF6;I1`qhj+9IcNv><J?3M&KTA2ImLmUv2)y;EV3$S
zk9*mUb#&5a8Rh44Ju%4gn(dOFfx-NOj&Ct)u&hg|iVgF{%#2&vH%EnmPmZjC?6szS
z&avVmtPs(go2Dj3dEP!y!}Sc=Wzkfgygr5L1Fm6|-xF&l@*OiBq-f5`>Ie+xLx1!q
zIRP|+A!CXCsi_F6Ul#ca{Ims}+NaHCio;(NzcTabVniWJvlHJCiVYQEMfO9uwn>&0
z@~s7->8I~~YT1Ur5QXzF72Ljc9d*ou-Ss4|n0D@!RcD0j#8)REYU}h+hylq6dFy2c
zLBs{%LaskwoP%W&aXGjGdBEp5G$J9|=W;ASI@7A%+_@KES)WW=%It4d#*uvvPI>lK
zX6}?3FylehK=!F}kt$Q5SWqeSM=Fm|TnabgQzKPYeNnM%GvxiZcm~dDBN%Cc55(-4
zADvwQ9@rfCssgyFjgqs$Qq=+D4`w`$V&WY0JGpx2+1~3c%IW025j0Mt#rAgrw!*;c
zx3GN8$?EJ&=q;BMq@g2)-xH|g)5o@0VX(Xnwx#V%JnkMVtD)Zp55hqUlkPl8cOq;2
z`~3GJTKk<?o@ve?7<+Pd(u#L~|9QgC2*7AsJ>jszfBpK7pr8e(&`sMcC^Ym}M9Ve~
z?7;yRs^F_EE1Ehcr0NpT@F6>DU@mO?$q&E8PpUOG(sBkaufkgn^#@0u(+4iI1`tWE
zDrN>fhkSV>It}XRc=CQOE5SE^yl#K)t<O0%(@rCy(dc?%aFNSoPfki$_K3y@&jk((
zVl?pZv3`@kiNsc9%cK$nM%}12<n-I~7Cef0rM&=B63HSG4aEeEq;2@fP%M&+O81^$
z!4&~7+Ap`*zb@18;8@6}1P{G|jbT!k2l>}E=dSvCs!Glxl?qW7qi)kr?P;?-nHt(=
z_UNR(<TIwW$crUnRsA+g=T&(2VYXencO_cdfl(nUHI?X11`{=9mb*mpvYsDR0|QLn
z7Me0eCHI6m>j<i!c_6Ra8ukS$VhhgXc_U&(ai45$kK^sJA~UXR@%5l(wX8+XI^FLi
zw>(so8vGX+WfK=V=Cj<g-dS^Z&!M$eeZ|!G#~~RkCsy-Vu_d3ggnuaE>gIk^Pl=wG
z!D+9y6Li5PWbEMAaE1}-38zsvmrQy?w$ZQy?(4yav$B=aWQiK<g|nGz6-0+?>Q>zm
zudhEZJ!v&-f9$is&SV$$!t-<g#nHPVj?bCAuIJ6MG%B4Ku=NRj$xY(dXt*O%u9`LV
zAL=1328Iw--zp`4bV9|{%n<xs6@&8XN5=Pv2Qk}wY6|bfn`U?>VF<mh<)Z!67Y)yp
z2yUY&7zRte<Ho7LGk&`X@l~&L_n$G6y`GUJx~kQ_y{QJU!cr7|5rJH#2Icg2WHsZ)
zyPSA`)dG|+Y}A6z4f(WDwj=oazyid(Qgf~sBU0ymPdN2=5*{(vkCa_p=3WJ@!3MLE
z7xL>yQ~JL7-m3~9q{=>EM%4$@mKYu2v8+5M0tcgcWHkk&#axSPt#4}Irm<-{wSa<&
z(4z6rQ6r$}@o=RtE1*E|DRKbRE}hjybcefBZHw~j$qnf^Ol2ZZkAYk^)QFCk$bs4Q
zP{I@~>1=N{wzeX-j@q)GQ%2!KAt7{$)%H4{Xyy*-AqmZDkMjF74_Dk8fRCVTjq`|_
zyU8{HA0;fkqD|>OQ1FCbO7vvr^=Zh@-hhLTi^}NCozo7nogC^|t}!y76Nh2)v3-M&
zs{6t86iC#HAtIb8&e^b?J!+0yRV`cZ?zwA>`Rd2Wx41}-RPuny;uL)vCW;Dm?id<O
zuelPdz0;`atR*!;!S5tld>FblQ<Azf(Wn^U$z?M8y}*|-C>+zQM-EX3ZsDNP<BlK2
znDA*)3SJX@@hl#*y-v99macnovTz7>KULZR4^!vZ;wr!U(tAF06bD}hG%dQ0ka(>5
z9j^C-C3>PiTQ3HAAjSt$Fr?m6F$|2<l5x@AeyCDwy{hJW0-nWa5!-?fu4>pF%&)^=
zm{b+c-bKk_k$!`|dr&ve){{mV5c5Jo2C$js`a1Yd4lQ*&5%U-BJa0zpLQ!kQSzxto
zWv#Lom2CvJlO{3?Z20XNyp$k2{KecI^Stb5oJMwYp8mT|LujkpVK0IkPx$03Ynr<D
zB_;Ss0i?MQwXe^K=Nc_SrqpDta?jOYKm<LjvIZS?!XrVRNe&hN$2znf3;SRRsmMP+
zai~-4Swpdb`jK~p>^bu4PL;{eazZ*>q;={=JQ={~43DCuJzHy6oLt}zq(X+inb;~~
zkjhEoGRAyNT}d1Xpoi!$x@Y*^4i=MD)|JikQrKa75wfmJ&R#y;;qZSc16bhV`;s|+
zT-s|L5;pTq=#_i7`>LEhX;jM!Uu@gu>>5zv4IrdnO!J;E0A6ADAvDwG;xH4kMVM?a
z>N(Kck4!yd{o5GT_N}Z@F!#t<b(ANKFgc-=;2kfAy5`xaA>U+_y*V|fgP*kOqvkQT
z_FZ;E=T0;vUD`B0+oXEz1em38KSuSO{#u<I?#<D%ygm|vz<@3acpUw20Z3Skx5&*d
zTL2M|jPdSLETKTyq0yagG)pJjBxiUt6|r2TV6OTMX8#u#Ioe2*I)@np5~gV9=TDSk
zGO=X1<LLF+d5SsObZn^BbrAv}SWaYhY>c7P5VgWROC4iOvXPkym^75?j3l7-)Zhlv
zka5}BWi}hy-*)CI6hO~A-av!)Q6;i53QC0@vZKSz6#J@RgI<>s&E{LU9{+(}32p5B
z+J){j57c@IE4~sjDgij~dV%$;{`-zWG%1H`O!@XNi3;ENFrizgm5A53AHNvj1u?=R
z`?j#Iivxbu6PjWJ2T&o?OG~PrZJ8ZUu17QZ#9HobL2%3o5~?=+m3mP=$42qQXj@;w
zasx5BSP-V0GzuOYF{;YCt=4Ak_<2ZlU`Lh14Gro(O1(E(^ZfZ<<5Va5ex;!_Lj#WD
zk5C`6Rgi8{<ZIg}{v<*JrBY3OVf+g#wtaZY{~=+v5a+L@0D)mcM*Y@rInFjOd=V1}
zdBaNVmyxP+lp<W+T9@>AbdMYXo@wdf*z=x;VaFW~#HFtl94j{d81|kTf_cF2Fh>wY
z9|Qmt6d9~PmJPnXspBYpty>g)#^Jg`;MT(sUS&Ebj6pn+{`uyp^AovK%MdhnX<tj=
z;cL3B6!=QZ7OJNb+RWz{_>m`1DmT;<9_cx@Ru7s^bFEoyl@rRB$Uh!caAnJR|AkGD
zlIB-^fyzndo;~s@v^0&wK6;8{nww0{AA>YA<mg_$)9b+{jobhvDJ;2ayBqD%9l@f3
zyW6!&FfJoaNF2kkUejE?wZ_lb=YrZn;xOciGN}#O?#ob}N8NR`4*So=->ZC!B;9{=
zz{?qU6b`wXx*^SaQ_2J)^4nmebD5;BvAfS+Z{V#(DqMK?Zf-7*wX;KoQ;7IkpHaBt
z%k1XdFNYUzUxa|&0A5tmaFz9<kxoyh4JraA0KLkOCBLIjYcSC!MUwF^==ZZ+=Pi4G
z>T~Z<y=KtQ)~eDe3ogkcgcsR$9=zqC%}&o(tKsdAc*bR4EZYP-lwp)kV5>vCoXS&`
zX%|Ex=?R)(VO?JeUvHrkvTQwT509*xcUQmT^gZ87SC(&OVmv@5z$q&HQ1TWLbEl}j
zC~60dJjod44a}Lx&dSA0MY<c`_5Re@{-;yiZx0h+HXO~B3CyJO+WQ062j!*#GJH6G
zUxozIr3UTj<{uZmDeyEcqWHWg0KeokDSUPs{KwQci@+KDjQQk*hS&9DBy_i*F^PRC
zBsGLswU-B3p!X?AXN=^{zwBi9!J@(Gida-y6IMe-K*fs&Rcw;sDO`HT3)dI4CPT%R
zp({>7BZ@`bjD?A-^y4b+4x=zTlMM<}RS!RJr2U|WV`d<4ZzF4_bUz20<2W_Sb8eS_
z;778E|K@lWX==~+GpyT4A-&oXR&#(RFY9{u5giw^uHxCom})qvetMO<q$)ucgbn>8
z3ZSY@m|*<v$=JegjhT^Qx!he$nUxxyVN6!oB56_dlIxo=QOW^aG3U~WeYMYaZ--E|
zgf~S<5nJWK59c|W;?!@l>F-Ex4$JaYO5OseEe_s!ZB|2I=to?^11hsIbDPChr%51W
zxK16!fZ~g!Qg2tY(i<z~_fn7+M{Nm501^tk?{8`+Nwwn}pPtE5X<5#<@2A9{!JOS~
zwv@dOr0MGnCwz{!K5%5iLd=iSPPHI$zqUTK{61&?`A#BDW;N$Zcgn+P@<^cHH_{1h
zbPvAWeRnML&Cu3o{4+$&F;G$zJ+A2@je5EM&ia!H_;i|-CtT5b|5F#4`(x`rUJ_|A
z^?=)kk6|E<PwLR^<U7W9@hBlwJO+lSs6ibW<NvSE|M}l7tisbmoiE@PpuZiB-yZva
zyz|DxAZQMx@|>ppv7Y|$NdDtT#G89i<Q7g25t<i2{jslp@2>xNhrEDAtxw}|+~K<4
zdjIpwGal!2^Y$v5XWO$sg23OG_<y`ZKfvKa_#F2pY=1A2|M8vanSj@L4?awQ?0*{X
zU$$JRxgS61%vk@|v;WK1nlfM_;+bGD(*Mi&ZSTiFQ=>QVUkq8F0u0Hd1p`*g|2%kL
z6wh^RF#a0buC)JVNG@PV%|@74uK(l6e?J_c2IIF~59j-DhO_~OY;cABc>Z6;|6dp4
z|1P9IR@eV7r2kk*kufOWz=`Azh}fvcJAkN^tozk&71d}F=N#mXeCDP2-fUg+x66+H
z|JVubOkimr^u!nZz5J`i$t<SqhU%<5x)bTE7MjSv-Y%2gMc&=)dmP@!J0yIUB9&IN
z6t;!~f#ijNOHe9_!|F@FFAIP!ZJft++QcMAO-B`L6zSu7X1G`_#so=g9k!nX0cu>*
zbj+3As(Gc=Uqzt#uZL7N{bw5~$<H|HCk7X#nYCo8edEflaRoM0m_`VAzW(BniD-fj
z`OEVkKce)gW#{S-O_ItFK>=4bi^ttf)%D@gfX()p^klt>4}%uo8WeZZb|sQphyIv_
zNwYq3OOgI3smJwV@mv!~%}-VsHC<nYaUR?F_+0jQJ-A}r>I0Y?DlWr@c>;5|GLTsi
znwhV7CO;>AU>Rxy<k8}_JZ=<8Ub|C0lTC>P`K@m7y}_kxNscxjM{%A;MlOIJ+bwO&
z)_f&fg#1PhnmzGsRu2ubvNRhE8@>%h3Nlpzf-==oW3ORni>b<Zhh3hnRm-_*av;O*
zpjHGm64CF>uW{zeKPk-&?gm#l<JMF%j@Ywmm-TQqllKEAq$>YB`kU>+jB6NmME`wq
z90-#E=XG<WCi(g({m#xAF;E)+MM}Ka&6W835iUjd#if@yA69Ko=DV71M2SZ7R?Ab1
zI4om91ej-2=U^F+u{+hCeGm8&a_W@6NaMD6FU(;zMLS#P5CdAxQGIKwr;?bIx;@<+
z7?W}oiW=W0a=#%f<t_si-{NI74_6K{#5h9Y7}YgfmGdiKRoZm05b_o`wS7l=NcerN
z*O<~DGpd+6gyGg<WgADbnA6M;ZRHb~5W%AR^o%6b(GaV;Nv%og@)Yn>8>d7}6HWI&
zo&KhGB~WMaWV_sQ@I3`3CGjbx)R;N;Bd3Y4=+&MPtjT!1QbcU!xOT}Lg-l`*DwRgF
z{r$67)JBCL@I3mX7&Ab#bnlW?VSi8wHb3zSK*LqXo&I@`Hp7GUPNQ8y``4A=>4M^V
zJlIw0G%X{MdZ`fN&(1Wm&Xkr{{GigeR|HMSpm*a@uBIz;J(gpbX6P$SUN#TlJl{Is
z#=D;D&^aCTaq7W<6l?VRocBuiF11$SG=Y(}R=(zQ!JDg%U0+5mYS8geY>fYv6Mp8I
ztb1(4Yl#9ELNmVw6LeS?kM=o&n-XfMZVJ|MJ|9O|ER#mV<7M7GT*%GQdbC*6_1E;F
z{Df*CBMkU8-=tjdm^Q~Xht$xjO=ywuyK0x^s(LvBp=S9k%eN8ZhXztV0bv|*_&{8<
z3n<&nkt>V=jE}tYPpoM>tsPP7Wz+d%XShn+x9f|o|8<i=IquIAi%u@hKc9&U!B_50
zP&yqo9tyXQomN_?(J_6<xNwDffj&wtMEHkeA|2<rkj3ZDC!J3<RQ!K&nY6yDxFLm0
zGYoW5|0d3iVm>cO7V|ZY2Kp8K(qcd+wdS)60}^6+j6#;o1jFT(Rnw-B*)mO^{^5vr
z1F<hu=MCb|;MGMu`+1K$Hx#V{zw;~nUw7duoldp}WgD+Crm!IgXBS6nKhLc*EKZ*n
zYakIa+q@0c>xb9$4M_kY&+ud9POPCYLtF@G3!nyqs)_;Rw^>r@f@+oKjD6~rmFEP%
zzT2Y(O;mMlUg)Yf(~f-|ND5%))n9yW*3*kx4@6_iHw7C_mJv5W%CN0)8XNNN3rIlO
z?9Heq+b`N<?Aw~z(m**(<-`g#8<ucad+?c}^*>l-JvI7=*CgHwyc?RuZk_Qz-8C{U
zoNUdE@4mi`Q~j9l&<_NkI)w@KCiClsgXSppC4~ixNjibfa1Ux>iWMJ_P~hVvWHF3R
zEL;1T?s2;*A3FGCem36YW?L&a5l{&H3|gM&PO<bYdgZZM`{I<mTRl~6l-SuCgW#1)
z2j&>MwYpdsv7t3dMsvtS1y+F$0g^CZ#^(Y>UXT-iq1ncxa#ZX<1NHAs&GbE-NZ|7t
zpHKpwbOzJ?4YeN|Eq9Y34@b3e&6+-xsS&YT<~nxK3O%_p7F}Re_@2U`e&LskQDlmI
zVF5Rt<57pb)l3W3<!6sLI$F<opJHI<qkI`O{7y1kbjFNvj_oHG4rDislf$-;`|r~V
ze6fZsx4_;NlKHpG2B2zPgOLui!@aseiLzn~9@+kUjt*h<tT(#FukWs<K$tD{)WI>(
zKWErTvQ1R_1KyCXPkVkdkIjgR;1EOKhoJf3QkT=Ge;{7$f$Io2M=FpmB7`}YvpqU%
zCh4T|-0P8U9D~z*Ws<h@<aY^T3@fs)r78LO`Ey-$(dsvR2I+}|)*^`+8hh39Q+XLx
z_;1f~?77<m3J;tz39>jSp+pTPn55ja0Mn29WYoWHQE56yB`VLej1mUNB&75{Pg4QE
z$pWPm<hde=*v;~2gx32?0!!X{aW*PFnx_7Had=e&H~WdBzq!|6K5a9V*FfHA<S&Gf
z6E*Qb1goBjq&fsm$bM^xa@n<$Z96g{)^wxk30Rz>MXIc=2JWvtChP69=4OMIyMES3
zPF^+@Ak2ZUf22erY`tpb7JzV0E$VeqYt$ZZ$=aJK$AgP7I;Od9E5u&@tG-?6<ki`}
z!~q4uGPk0`wt7fK5m;8GROU6BB(5^4<>(EIxy>OFWI(@Vw4uIY#TY5Vm6DJ}|NZ(a
zhvUFER@PuqZKILYU^(fGbtBI^Z!@lvV-(py4D{w6eHUg0E<|PM#LK_VR2Y=@L>Pp*
zSCsk>{+@qB6m&vvA#S^^uemjpo6%sb+wf-7RTfeGPcy1I>+W}9)gJG!2BtpLC9x*1
z92am`mcIk4GTE4IY730-$|DInR-!2Ve*#t@#f#ST$5HlL7D{(++iMS>tJhYi1l6W|
zgP*%W3Kw5v82ow+auu1HsYH88r3AYZ*k+WNB(ZN3Gd=~*{>D0V-VG>vjT6wcL&EGf
zr`~uYK741<O39<XX6LQaTiL6&kowXxl*AkM3#TL=Jp**gKa7Y~6K<+p@h(gb>kSeT
zN~^B1s2As4+@mKn|C;1i_mgboYyS7W-OS(>n>Q}mEuXm?tZg`LTh)98+!xwK`4GmC
zTe3Ba_QnQ)3q=Tv?nRV|6%l&jcTbVknkqG#O9YfS7F-l)G)eH&%fG*w<i5>i^x`Bd
zP7Nh``jr0cV7Y54o|C)1?NsB6%5jf(tLcFnd;HBK7ipCG!0pSG?jo5id~bu;U<1Zz
z>l$pIDuEWEQk`Lr2DkPrk(v2(7Ij^VFRkg_mk-sC71W+N+bS;10;H|<!ccja04JAR
z^e}e2>crPlytInJHK&hU4XytCrS|d1@X$~!-%9}%jPjt$7LvKT1bSAu{R}PlsHU{L
zRos(?I!6TNg8N|l@7EqBh>F}8Cb9oo8=fKXp%lu(?V2XTxiul|7Wlv@A!X$l$T1*;
zKe3BnS@IeJZAjsEl8<9ZVghgsJ3AsPoK@yeMT5cUj}14WoBY;Xn#^?4X+#WR$!rQI
z<n0&h1DRC@QVSg|pjUo_Ir{2&>qVAKDlR0e6<m^JBB&QRcO1(tW{7f&a2G2;_wQHU
zD;&s!Y5PckTpbJRiVMZ@h~X)u^d4gx>;_ecAICkDog>I69%W9ux;dMVFIz9#peVGj
z|DbmTu9m3a)r{A1D#?sq_;VdoysaTso?4bBQ{{eS<fP_3YtlmnQb_ietZ+qnJ0B!4
z)=kwJ#QtRtDlBPFI3{JdzpNqPjZ<xR5*Lhwstz2*P$Dh{8Mi=8FZ`!M`3s3<Z(@ux
zSg$U!(!V(lSlU3fzm<L6swVWRa*3E5vT7Dk#B61$Tum<Fzd;lq&~#Ib#b?qKAA36}
zF`|76uc?<x>JFg=%wofO)2BOwA{_1&nxhd+UicJj?Z$nfa7@1QKtEE-FCTI?iwhTF
z)*e2(Gp^+k8`npah&S8!Qbg4S&Wb}z3qY{qRv2&>02t5ps9S0Y!9qvwfVtZ2BF&WZ
zGA>am0}`~|$Ap8{G2}yQ1D`a~c%85_t}5X*ai>b%s#bd9wPFEDUKtSH6(ys~VEpKD
zz45LdrG5{&Th}2?CGD^C&=WqI2e@Y4ZvI^SfB7Na@G@!qOr+l>Go8OXp?78`A5cTT
z%0l(?HLB9eO-Dst%hn@tpUc16*$P~ILuKAgk=4db3FQE#FJxmT-Xy$`z6l^NpD8_k
znj37t#O4CW)UIGY&FP;b;HLKj@p?M6xz4VeA`#Ho4i{3sh2iD9_aL6KdqTQ3cpQtL
z#E)%uOXGf|8UwAPn!)k3Ich!&=#TK$f}33cXWs?rOHjP{(?i5-XiXA^s|5DbxZ$&#
zBNlYkFe`foReLr!yk$cEq}<-B(+3}AbwPTk7wQGK#2fanVT(7r0k@$xf?A#8uao3s
zRC6aIPy2k6C!O2H5Ot1xPX7H)0mp11&6rTWQoFg|?o5d^cO|A>4ki{q8Xg_PD*gKy
z-43bX^z^32Sdxd$Z^mA0$%LGjR1$$p%<vB=8gsi3_qc}=T&$m@ZbZHmujYLN)ttHY
z_Df8_GC#wgzLtpG=`n^@`j1x_8p3O~w~2h1nMioI;FtCM7Rd()nwS_K$A$Gd^^RCm
zjeVE7$sxWvjhU;m))Vdaz95$YCwdK{8FKp=V#{1tm)H#<NguL_js;kXF|0Hh!&~Gn
zX>oRa=7EUYFR=|@l`{Ob2LK8qFaunJuqUs_{yt0t5xfAWzj#Kcw4$^*<3Rj0Ctg8)
zt}ZUc(+(>3wDyE{REgZkd^!$9ax3cz8@>yIDFK!|d$aLZ=KZ0~A^xFoS#b-!qqjs|
zwO0F<fIcxt*`5m8crvDLb30_uckNYho)bh4CF*FG<(FUtmt97{peHnhO7mH`$2MJ>
zO1$k_7>~yyHUK;ANBN`UKwXV01}V=AlVQ<-2?1|bNFR~KZ@-&w*sYYhm>U}sb`<`}
zOBrzLogB$8u=640|Kk)467__$`ub%(=ug+D*#)KCcv7uXIwAi-VBT3eGda;xhr7~C
z?#66NR!bjJ?pNY*OlY=B9edWu4p>)g>a~zBp~TE1IxdC?ntDTJfo?9}q_^>2oSXqB
zFa?yl1t;`mK6;h!GVYIQTB4fseh#EERhW*yvp4Ebpc&3;Oyay|EJ4sb{vx+Hpg*ge
zY;UFN3rnk9TfG;yg`KT}YeNI2C}cc0-dSw<kmsNg0Jq;k&#CxUr>yc%mso^d42}sE
zqz%d!9w6j{Q13p}ZQw`HEMsjx{QIz{iiF&Iz$7kdiGQx|`Z$4FyUo~V8HRumFtRi=
zq$^2maUhu13-c7voOP$M`&@ds_*a((GUcII1(G^%t<ZaMa6DzE2~XxR`u;ZU)tnBi
zA;KKUg3yxVATlYMXEk};r41MMqo|Uxn~je3jGos=3yY)<-|fC#IJsDOusO{nehY+B
ze`Y^=qt{+3jS9zvI9x5kn#jwpLW-}85KpW2Qj|d}tNAVNM-ZOmNGN=l0>vbXd01&4
z7pq1Z?<-FK_IUZbSij5KPb7n$RPnj`!7qg7PRcwu5bIfx4v^iOtD!u4v#ypB0#_8|
z*ZlP#M)+}WghP1f@t@BY3gAPnZCjeTEA#kXhy>$(`gIXvaI*EdHV`#J48m`U$7>PX
zi(JVRezHqS#pirF*mGqlVHI_bqRSlJd;(-cL6_04U2r}h1PEYnm8YqC;jeqr7Iq{9
zNH%{YUujZjzI6QudEKe-mVLO#RT!$4Hk%P#QCZ8g$6m?>UznGvKTE4O^o$+&r-pUx
zSS!QN-Gf4YHN`SY0k*1W^;)hMvAFb_LiWo*-dw&w(r!lIB@RF_r=r9|nCeyQZx`%G
zIKWird9D8Cy5AD%4a2}7=Sc_)z6YhX2Vnb3^Pcju{<)_i?6AmM>n}dUa?ZOdtbbgA
zlABC_&jhhK1LBi*A5i#43(hO~E<8r$SdatSSOr4rOhC%({oO6l(=@oRbXp5hWS%ma
z%J&ORe<gA@#|I&kSL3iUe`h&7mP+SDg#OjI>c!L5#Wp04bu@_*4vR_h=knj=y6&!z
zWLE`udVx1-Y}J{Mm7`wNILF2d*&Z#_DYJt0+SPCW!F>6u<(oM9>)6O1<8FzCj_R@e
zSu&B3hC{^HAGMpxP3PJt?b^4h>EW1&Fo@WMYwdO)Efb3h;?1qxd&kR9F*nAi*Dfn8
zSB@t`4qNVS(l3w3yTT=x{q0XEKq)GFLB8<6E_@O(0A_bd6Y{+M^I3O*fRBF|0!7SV
zao7!D=CA=ox=xqJj@_T073udTNC3ENBQ2ZOiV;c?(;TGmu2#UGMZDU9pH31)o)nFZ
zlhlrByi3V^0q)$s*0dYxVqjBFe8m*?Qs(hwgr4os#sYliXIsF$R1(`J6#&hmpDP%K
z)MDX~({Yzg02re~Hm&A!NcStG&W|948x+h<AK`u>Qo7#zoXd7C8l+|0zoMZDz0seU
zc*k5D8wu{r{j8?DJ@hbC!FP@3C>H?0J1*^{vJKbecth)#Wt+ria#AaW$0$d#w8x<g
zLYOuR|5AH%jg02$QbkWP)z2JRs;rrc#3_l)Eo5UtmA#wCFNsi|Ln&03Le>XT?Unat
zo1Ovv8hf>Hgny<vKHTRM?3EZK{xT*OCj5f^6Hun->gxKz@~My#(2_P-_Ag@CQgJEZ
zHpL>j&&x+ai>aA|88vI)0&%w`8xJ|GUGlv>5HGzL4G9Am!(w+mn`>rc?EGZ6W<7))
zU^Mp`|0#x~NU&iVi6Zb{L=Lo0PbhlfTL|pDw%PIZ`-~c~2lNsXHob>S3&FC=cI)bA
z0R=N59AR+#bAdk5eVldNpbT3}s_n99iH2tjIr<y9YLa1_KYEP8qSWYX9Qg%%)a^U`
z;>Yw8qqYC$4QeNY3`HUOUs#M6m7w-YcF9n-L>Yl*xZ3(cU*JoW?XkkBNmd_5-8CX4
zn1MbJ)=`P|r#N)k--3j?*{~!D@A;f%;)fa=sr5p>ZyzpD@kq+X9+T~e?#(}Qb3Tjg
ziXf@!J-jS%IlSC1$~!D<->I;y2Av%&=IzE3i7c6ZMrBGEt$VTb@rvgtkkhHM=uF9;
zpQC1@i_=w2pN6P|t9cP|+5C|SeqTyu*&Z7kRnhznN0E=mo}B;~_v`$9;MOJ${9o)N
zE|%W;%2byVZk5*r(;zP^9X9YzXL%y&54eulVWN^*lNlAjjB*&H+}W3qqtmlX-byrc
zMnE`eSCjrn;KxAeMS{KA5^0Cgy?zg*<@mZQ_i-Z@*{7J6>!si*Pu~EioEks{g?L6>
zf0^#yb;1XykUcE+pQ&a5bW;(-B1>VdqdvZU%P*0t=6-!3cCk0c$Yu9Z-jDL*Xygc8
zQ+g9Ft(>^L$7K%h`K=4s0Wm2+#HR3-d69*$=#MnM0Mz|RE-AcGOkej`_J_XL;Cv}`
zc&_==OS$pdT|W0c;VQzz1EP}90=?bNp6<!NVa4D1Hi54oB23;;XvX*t*!|zW71+7=
zex7oU{p|pP{2P?)k2JD~RD4Zl7nd7r;vtP=kHjSMKfERwlnHVHuXrh+e>jt5lQ`L`
zd6m5=sta+}hCL}VX|Fx@;wmTp{d4WHAUv<e)_41d`MjuPVS;)~^}}3jisG5>w%J<L
zqXSwnqW_UOq@o8%;ipkMo0tE(?f&8A{C+qm3{E`GK8`NQzc%jw^&?b~`S%xw(r|an
zzZv2mzY08u;DC5wj%}Kl{@=#@Z=Vn-r4RrFHqy_K-u%CR+k!N>ke!FkZS()jpWPh{
zOrp=8N{s&h{%xL|k3h0ex~#9{pH}&|KL{+k|25M8|BU2yhxE%+DKAm-2^$RfCm|vu
KTqvaN{eJ*aX#~#z

diff --git a/docs/notebooks/vn-ask_files/vn-ask_11_2.png b/docs/notebooks/vn-ask_files/vn-ask_11_2.png
deleted file mode 100644
index 1a9cd7fd0070a0713d28cdf8dad5096d4123d9cc..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 78743
zcmeFaXH=70+b&9zq9RyPkm6FXAfVEuqo^oIQAAWqR0O0(X`v<{Dk=ghO-cYoKtYH|
z69NgSh|~z7LlTe@dP#tgkg{iV`L5URd-phdoO8w=WAEXwkTRcnKX<+EYtCo#(9+yk
zbgkrC9v&XiGpA3S=iylsz{A5oE-VN>xlx^H&ch?ebLPac3jq$(1flpn)}1_q<qyKb
zZ}6PkL*A!#CjPZt<^z$FcU}vxeSUI_kKnOz*^_s!9zSwgP~_B;Jz5X<nH-Wk)2_lK
zFR}4Dsyb*ZdmShm+SyGGh?%Ym@*}}Wgu-fjD?L|YAURYcaHE`I7!NO>fUx+#|6zDE
z{ETGPkhj9s|N703-}(xu1$YYl$FBsoej5}`IeKmLzhCax1cnjaGXLrGFhfgTQDWx9
z%^Lqr67Ep7fSLdJx$vLK{)^fEsPUJp{dDR-4)VuA{$!B<p5Xr^;{Q_h{x2ypEt>**
zo3@>HM-`jH&bc51PccXw7Rg!3yT(S96hh7Q>$XKnjcU1YboJ;Xar`o+^S|YX%o#q(
zD#z)tGjR&pPD%D&$7x?wak_C{6{BM!NFVXNsh(xM?VC&wUREsGn-O$?5LiD`8dDJT
z?PZiwdKtlMwdCu^s2mCGh`eiz*4SwTYYL)6u3qZ0Z7=P%L&^jUvh(meY%X1GDsV{J
z7C>)8yU>Rg>a%mxgYxDtud1@bGg!y_oXTM^3k<6aWoiRiT4f7Z&A%<i=?7nNY$<K0
zG@+g+UUu#+8B~NM%Y-gIHJ2v(b<5&q=c-f*-c+**Vle08p+`lz?0I8@^ksGph9HZf
z&Opy3IWVG<Wg<6k`VD=AI{;`=|E<r1s)RphEZZIBm|dh(HMBI*s0g=l_2@V@*XKuD
z?8Su^`LC=~If|HZ%!Lg)1kc4S4@~h-tWgQ5{Xix8;2`a{>vtk!*lZZ#n3jnm$*GdQ
z&DNi@SYl;iE@r@-|B&M+G;oV5?b@nEo|eHZT};iMLUD`;6M~EnIhp}JGGfdD3A}$l
z_Hc{#)Z5{)?@x_o&R`j%P7|-^q_yyDV#lDgrjp=q0Ih~+?ald^r|~W2JqJSPR_o0J
zD*L_-w!q}ZPFWMWPiO{ErO^gQhw5El+}k#*^@=&QAYmT>?{lQt2kDo+5voF<#ByTc
z%s9emH7u6UuH}+p?NK3F)$$<%Ru04N4fW<&*tku{lqQ?&EX6O@R+DTzGDOYZ*4n1^
zi2Uv{VPS$O!MVF$`N!Pm;nSN}b7?abu*TSd?W~~XUKbr$`k1jxGw>qEn1=e1dftN-
zJ&Jof_EBy~R*k;z?$8Oy^|L_~*4E1+bXnx0`t~%RmIO+cRL)Z6{2gk$7rLr=C!2%&
zpG-Wr{dGm#y9I?*^Q6@oooZFjcSENLhsnrbf9=tcxSZg#Ugy<Vrg5h<0}$}89TTrI
zke6Ji^p`r~CX$jM7hR_VA~brgX8AH>;o6<=nv|>egi@s-X5IF|W{sjbFS@;(lrp+V
zSF;uwGi4TvZ{J;~;nV|+H?>X+&Y92kXjNaYU4uThlTi?%ZC0y*N$D9x(oU+Fblbu3
z55z1fNr}?1W*Yt&iP`tSZmd4{ZRv8QYqWaz*;J4Bm#;YYI-y;=20g#Wlq>uOq@V8t
zP&nn;Dq>RAHI_EptH+RnteP;EUkG)l6=+39d(AI@k|z}fx5#>#Q(JZB9-Nvn)~~YA
zo{5jEuWM}~?vB;Yp<WUaC9*XF>dh`j2&xs;u0}^}I0NllP$C>;kqtO!QoX9+j48<6
z4o#nR$}5eFEfHd7AZK{B4@xIB@%$#v&7v?tXv>I&Zv+fP-kJOY%qeo=;2Ow6qwh?q
zO)kVP<Q#*VF;}=_DE<=#c{{br8NWEWq<NOZBpbBT$;i~g>aock>9DsVf-h=UllcuY
z{0X74UIBD-!cvz*^?57Tl@xtW9qLs<IXv`=)97f9yY&&+$!GEBQ(TCF_-(cx30-#X
zGrk-aEt|v|)0}vu2-le<6sfLmAnv$~@Dd*jy5d*biI3ngY$_-7NVy~?BWdDAq|Bsi
zA2YnR-Bcy+;$^?mlFyq=a}aE5#zdm6m$@b(z^HN#6C9l49u$$=J=hZL!2&W%K`AL}
zQ$87~%9!zwzP;Jl?JFeV58v~q+L=`BTl6&lGADphd%J$|#&Tsr`56lX7IuP3ZA~7#
zUEHE!d&N1~3I8$b;InOZw_d1mnAF_d47fJPfgBS};;qn1N+T&6T}~ZQr98NQbG0CM
z&-Syw6=r^=%vxJjz0IA2Ef7BckFoF+Z=b7gZQ!pyar5;Ii%okR@Tz9KC>MF#KdAFS
zzCZgYNxpobJu17rnk79koS`e%qDLFBGDBwQ1rHP%=kgm=Bh12!#HL^oG$$2XIo8;t
zd@HX9qSbK!?-uQmwAI18g{l@B=PGojAI#-+d$JhjAr(8Sdp@dUcoinuxxMkNJ!vK5
zbo=uV$sEF>NaS82MVAjGd;1t*3(>QEB{N;NIWR0a)Rn~2Z)Z`5ghutA&VA6I)`>i;
zZsV0g9x$H@{E{X1Vd(x8zRT9Li$2`8AOr7tG2srOpARBZ)06by;oz>o4=kcoFeieB
z)<JqM)AVRe`2y^03epkb{e3@D=O|T?WLDkreVv(RY;mi$J7e}-{VP$;z8fi!@r2ZB
z^jw(_gOy-&7FM{E){TMR$}Q6As-)IdJPa7!iZwNsxqYc}<XM!<&Ddz5*wq!CNZI6V
zmj*{2Tamcx;SK$M>GFEa1dcv^6k0gVKIcFUkiD>8lsy!SNbCw;Vh|i*q1`&|brSZL
z?w*<iM*YTM&s9%IQX$6eJLageflF{MtV*#(z1t2StumJn;Y=n?6br!*5Q3VN@H_k6
zBQz=S`~*v(-`eaNLy)|?&NiJ;3-I|gjnAMDJa8T<`AA>o7ki~S^Ul6<Di#)_HS#e^
z#ne=})R*Q`PV%36z)A0_s+d?PE1y0@xPM*c1j}oF>^?4ij$^1fvNt{8uYwN)&yZt-
zCol>}U<NBg7VY<?yaq&}Pi-(BmGn!u>k`^8lh3+-kmf`<;&b)sMQ;*e_4c$^WPMr%
z(ty)#zyTF?x~<i5@0Va?a4QZUOst-Ia1Fv4D{qg1!lwcv{SoYXow?Ie&<_q|tj!hI
zQQxs%G7OP8H^^+t;H2qOiY#7*kVnUD;HRc6chksZhn`RcZ?ATzRM+Z@5XTnZ=Gz84
z%X>9JzD4*RXRH_-sEzret5@}qebb`}w9D-8m`YTeDACpn6ZqNZX0AFE!ynw#qB$`V
zurk%heEv+L`t_<Ydalx^a**khE9Kx7&mQ{HUnx417L}cJ>BBNf42xwj7Tf7#Q|Z*t
z8SJB>BSxzo@+p%a@U6Og3n&~}4{M}v(1vQYfULRlJclp8TV-$^uu5~=V~qe>0508?
z!>_N}+3RCOX#?e0C1@ck*Nr)bUSkv7NpWO9qK^wgRhk$Lv54pT%THNBS~pT0R|$i9
zt5s24nDQ-p?(T4`=_=xT*5>zRFU}}v!&I|s`xR?)Qr~8HVQ0!_uR&OhV-rfy(BM(m
z*{b2?l7>^L*~hX3P{dO=U_S*dzVef-a(`QKQF|g@_0-t}92JLP?j~?*Sgz@TV-vau
zuD%}9Q#+*j-p43-MNxB>VwW}7*Ft5j)(YW45moQhrLR2nn!otPe7`77M%ybR)F5q{
z_06~vKM;a9b8TwL4S8~?izx)3jdD%0ht09a<Ky6o%LEsc!|@%5mpkwXV&I7{-=?@=
zWU8=qa=rS;$c(FR1)*#?InK6EKIzo7c<dn`Ul}SXE7juz@p&xvP2ZsBM|eK+g3xa`
ztENVT>+TJY)dHyYQJMoG#<}!Ei;cKG0(%K%%2}x=p%G;*Q{`qtvfe!poZC-Iq-Ri2
zXJg@J`L(O55Y7Q4jHop+P>dkb{U}Q1L7t3}Tz%E=-8oc3L6dUn_+4F`k8gyg<`p)z
z$8kcdxV2A&{&2611&t64t(+;d#qSbA6qCu{W0DF}p=d=t4jnhQp&y!2jc?eCJW9Nl
zfN=N=rdnK^nhL>IG2i<VD_n8`VA0cq#*nkSy{gR^9lSy@H!H{LC8}<(dR8h2qFOac
zOxJP(ZCp3++W1m0zu0MsG|eUZ7h-ygb6%UFpjfK;vn_{lFwTBG7M7Fhz-UkMU!JIR
zFX-BFacKjw4Hwk1FjqFEqa)h;!iMd~u(Lps{L!-+tW^@nToH9>w3Wt;fY>qeOM1SW
z`qqy~GTJ5dQ`z&8Q<aEB*){L$5^b}q4c<X%8#>R65<|M-t(|modfe=X;pNuhz52|j
zv1WdeaQL1tOWm9oQjWy@3K>deq=S0_J8wc?^C+iUjhyD=f1h0ao^e1iW<}?X_X{Sc
zrVZ!Oib#`Mp%?9^7j08zJYE<ubhw?JfEVrN>_P@Lo|#z0TObdR>8(^;$nrWa${)XP
z&}BbKkF=JmGV6g>kF^K<1|PQDanVdg@>9XNaR>|-o#p9(rayl=;^OMyO^2RR3p6I#
zCyVVQ3|6ns8f4REifk(vzDVVyXma|Nvy(XfpNj*rq2skkGOBgl9jLX6?j4e`(i4gI
z>vm8jelsz^PT^=VH!paV)K=m{-k!`BF%~`W6rJ2TSUtSl-#&}3c0U{I*B$J~Sg^2|
zEz~e5Ub0qH(%E_rsd72>VuU8*QW0mbe&TF34T?W|GC>du-(w6{tN%9DtZHr%Jfk&g
zx_rt4{xR14>=g9fHCilnSc&4OeBa@dtmk2+$RVHE`5et$vDwuZB@<t!U@1v{kSy7@
z`SGmS9F_sS&9`sA73E0CY#XfJ!KbCu742Cjd7F_HtEXS>jNgwaPYa@)am^6JAezOg
zLM9|FCYq38A3URuBx~Tt-4`7t@8gmT>>42#l4xUdsH!8Nz+!6(ClyH|`V9IfM`@kK
zo#QXifj)R$4&e~PI=i+%o^`Ra=jiVy2;rJQD+QQfUhup=OAzItLty2ib9OY0=UitW
z$wk5>>AD?5qC{q$N0bWX(L~`vMDIn6yU%#S+$$-@_574Q$WK9@^J9+QRVV^Q9nYd<
z<sBx3;#h<i!+OP~lWCvo6TT9fZ_fW{#!gM4R0;B8oa1j@XI?zKIX_13n8i%#;OF40
zskf~xvuky9XCq~TUi%n(wX#Ya==?FvkiHk)Z*tSpmgzO=NKP|^>EASim}DO$g{RMX
zW$Zu|VQzQ^K~5)P17^x?%;{J6XlhH?-wfaQLK*Y<*~E8KcrUAXC>FcDI;Tx`Q?*mQ
z=Bp4I<uQh`+sa&*zSx>HZXGyUoiukspQ#g>L&fRjHttIJV&~T)Iw7wT>gwWwao07l
z4Oq-Ki74N{TCgeQ*l%>W_;JICa_5vujR0!Wc6$VVhEPoO#Yem5w`eANZK2!bP!Aiy
zGNL;l&y?1t&V`^^v4{ya!{4iN6mmGDtvi)ODT~kOP9dW?m|#2><h;c>gh5Y5{&Kbo
z5=EVwrWcO1p$1OdLXn-hjF+z+zBicDZJHw;@b1n_N9MluoUcgTAxbPtZ`1A@tXikM
zV<FptZggkBLyDd90Hot*rCeN^z2z~$v9Yors1}HsR=;)}JVn1`E?%WKwd>4%&52W_
zV+IW6c_YkHi|;p0%*Fl09XmPzI>}HZ5wPPgqx>w;TqId96YOzfdsh8pjH8wqd{j}w
z1j}qmAPiHIv<oqlk5u2MZLA;rLT{^2f6{dsR{bXZp-y$&h)PWVf?0obfXrgRF{SbW
z3X;smfZhn-1i@TQfnw<Gc0M>{qMi4fS;yNsOGCH-QKG_3`NB?C+HY*_cVTY*wI&G8
z0pybAZ3G>+F5RWh?0sGl9w(*s2~rIVQ1of;rqt9dHbre%CQ+&?WA$UwDduE={`mJO
z<<sctD*T6f3uw)}P5|}8NeBA-31UlcQ-jH<m!)JCJ*tk9WGq^pc-i~u;>vJrtej*C
zP~Y*AI19aEDMxk!CsH=(=0M2?LPN4pjF&TevK*T+Y4m_OdKJ4mgTl*WKOD8c#SX-W
z#>{-!oAD(~Ta=g;qp$2)Mvt%GH$qk*lf}dk)wd(1LC?qVr^U`zkX2l(OLIdOF0*Sl
z8p|X&tXA&F*|8gwFi&ERhBO}b>sDiYkf<75<4T6jBogPpNVh9WTnYH>b34~Bh6%I6
zqy_}RLdc}k0n}7dO5!E&HzuMZl|PjCu<=dc?|nE2P&ev6mgTjn*!cY<d5uK|!v>qi
zWj~^&>gIFsms%bIfurEJ19NvBS(MCwq3Ly1_0ZtE-I&xeqI3W3div$J?x>>1_07-Q
z$I&X(;^;_(R@dXR4hLWn?Spz_LI&K%b;6hSDO3F)fVA7ytRfKo@x2x1!c6BB^a*@r
zIKvFqI&d08jnQcrsh3TKFMb+U)D!ZrlABTsFyMB2u-Ph8*d$YTYA0^IdtN7ziqjzZ
zewy8VjzU-}C(y~WJ{W2rWq4hlZohw(dNhqXFmE4>Txu7T@`}G`8ya1*^4;|D%CpZe
zhI9Rl7Y2ZDQHmc>v-SlAc6!chxMG*SJ01LOy=Z+Iw})kRc+SIzGmY9){X<M?Z&yPG
zSx6{Cb}k_!ORMVPQ`y`nvJr<C^YDY!gD*|-=S@}cNXP8aBoq3M9M!1=S*@p1?~P*9
zpFco9fMR9}H;TT*$pjc`GhXk9>{Q?Fu9$#6<~kq4K3*scn~#C(`yrVzO99Wg{LHAB
zoHJm~Zs#&-SPs%ZXew137ma*sgA|<O&0u@<g~rnSEp!T4>^c>M(#&EE5<Pt1pnf$p
zcowP8Zm{q}_%mE{bHt|AomzKXwn92;ayg6nU8D(p71+%fSk+9+#QP@Y3G-yxx?2=i
zm*`&cRzxg|6~2lOr4hO-j8^9mh)gQY3(oe2|I|=tL$u>>-gEWP8npoTv23phSO!Z!
zZJ98)n@|j&QG}R8hLWG$&iab0Z^kw342p&?8UnFV2$*$Ho#M7MuTPExHO{wc)Vm4s
z4vXI<U@n(o1)c2>PLRdSWt<*I!nJoaaY_a;wj(#UdU+sgIpmYr!2~n_`OK4-@#tXh
zx~(=QE=ZqankB=CTON%#YiX7w``#_<^jfK+S~MxrAVvQJF0#_pU?mk|VX#trSZ{Q7
zA~$_<piYO8kWpSqRYqq6mAYKHIdrlTmoMW^3F)57Q&iC$)3uIxgCCS8+!_e&M&j3y
zGjuxllapb@R*5E2&LMeHcIq&OGHLLNK9-6NZoZO_&HK80U!L~J?OwK+CNYsBjWI%{
z^+TnZ(X)tH_W2J3C9JwSiJVYcuMQVu=V}vNUDA+TZefBQs!3E0NG%}+HAEKuRyq##
zaHEoHRbGp3aMv)c-w8WTd+V1DV)TheZ}v9nje$U$<Io5kY`%56d!Ecg_944OjJe$H
z3Jv9QX?i4sQPVO?(%sQ7{U-*J?GC`Qq^k0(-R>>MBAB5m0udd9EiKf66B$JJ?1YQv
zF6p6g*w+*AhQ4v~UrAM~z75%lCaGSPC;M&=n`uXX>~+Zq{ruiSZ*-&tC$#()?Pmq1
zw=mburq($bp%QHDoSVm-+4TLn$j-p^AHOLg0tZHu>{BSkNs$hk1Ghqh2#HoQ_;bOB
zH{Ti@;!vv>D+?eb<ixL5%a^T#aP3zr=e$`h9vBFn*@ikpH&x7C;+Cnn<$i%zU$^|O
z9XYOcHlG7IYwi_#mSJ1z(jxk>K!bFn^4tiz$E#|zb(R2g3_Wum1u(AWEsSEoxF2W;
zbCopuU+0`+eVS$BA!yjCG3V*;QB^P5H}?C@ddpx6b$eA*um`JI1<*WoD0?d_B*_t;
z&`229aVhWd&GKzh(zH+|0=jbSzO7f4*_`$J+En-52+PBZ+{Qa6TH{jr#lm2%eI$|K
z=>-E5DNnU*e@*~d+I3hoSIss!StYgrI2N2XgSRk1CSLNTNYfpwDH7wN&@ufL6e3$^
zu4?zF$_6PAE$fe?+_&q&16YgN-Qy~79p*bDybYFF*Q$oP;?(KONGAK{R#6_2vZaZK
zvUliqRVciy?SIAUa@T*n*W<m;{a<?l{(ZF~ycR667bK^GLJ(3pWY)qYNmT{S_|h_F
zQ=IqwtEr@s0fRg`;R)@%_IbrYs>*;p(Ez9x2Lf{VSD%+6xwN65OSh+7F+#1*qBTb$
zVgRqqpKASP2L((h9)(zHYP2E?5@{HO#}!0Gv^M0Z`XYeWxScEXlBroMncWNbaI()a
zu#t`U$9|(W1<zWKx;LVRaLvYQ(_CZ>l?l12Sr&m=D2<;JKoawB0K`FCHefq_F7~GN
zyUh7g&g{L|x-=fHMWe@jTX3Kk30Bl<F9r>Q<RzJ3s7AboX9fb}cY9O@Hp*^TUp<TE
zU`oc^6fJ1XU%kGRPcxQH$CWfTTFF4q2k-i{0eHo%X}5!qU!OaUwix2V9=}8tx@H6$
z_gd;Jz;i-qs{~d1khV3hNk~|V*VoN$gP!g1)CbIzh~Mytpb;1M$vD5N)nVAgqN<lu
zxRh7Sj)o?OGDC7q2bVb^WI(GsovlJ&SgD8-XFv(}{rVyjMs9+&7M3-x#WOo+^G?hK
zkkRc#*#XT^@;7KU(|rXWJgVb~xZR5~e(U}cUJXxnN;D%o%ty^i<FsN1-Ze#k1Bh<r
zLsLWS^%aKZhS`t?D@-t~q0XUKFXzPUDNVCn*xqp+7*RfS5}zTx5D=E!JJ?c2wm&)=
zRp?c<aK9Dx#bVC75{S+JB(1pHV{vkkY(UZ@e4y->h|!vjocKt^nF_(3DM^o&s+*7O
zH>lT|tFs81Hkw$dm(3X4>4VdQk+q79P*~<DZlZJQY@oo$4^o~TVGaOAnFC6dGxNaN
zlh{ApX%7!M1Ap9b2?Y(AQJm<Hlo@dE!Am0mi3fwHPtB2CkWcj)L!o%bSUrtdty82<
zea7raTg%dfdalnWHWk7&A)AifPd{cyGwt#oH0y;9E7bnZKMU{XvZB_i?I6)5PkDXt
zJK>|Mxl~4Q&R?AWBnI2vh-I^?vtp%g!>(i2sgt6$8S0F6k=z^ASzev!uri<2ctb&E
z1Y;0$C8HNnQny#08t+WREY{&V<DYx?%&Y7RT5L16f@9{hlbC<8X3Md&8h(^MgU~@T
zo{QW!iuN$=hHMHxoDHHh>~%RBqg%^e0pgNffaSzAQ4ldl53(o}Q+z@B*}w~5j;~Wn
zBeG*)Ii3z!ds-BkQVTM+ymt~Vl#W7e-{_7pT^*KXS>~QeMqp<Ap{D_})_*Fbjrffh
zFc3OT2a8{!*&%ZeE{W-lWG=R#5T&awQqcFVTypeVs0MUG5bD)uAIwtvK>~ewA{CH}
z^!8>f@@8y5XVs)s9?~evOd~rb+Lx)qSA5<@8nFM;+-k8>TQmU>uPNPh@;;U#w8cPY
zbg`s{Pi2n1FmEi}(fb+52slP}^6YqVtFGf`={ow{y-%^aZl5Kd5Q67O?S1ZVkIcGK
zlafYVx;JoY_Q}R~S2jP3dd0kkJAt_`S!LuiMzw?Y%5(VvGnWiMXWGJEI=Q0Ezjul7
zgIx;waD=ITks7p;Bs^BsZ5L`C#93V)ho5mI!cskpoPxTQ(YY04Dej*`fTcYf;i+GB
zQ=@*1MusAA1U%vtaKU(4#@G6GA^i`e3obZ_;PU6qvAKa`$*???+d*T=F4|Z={Vs`H
zV5MY3#!=a%)J;Y(lqjb+LQMbp#mla}CfH~CGM(elOj&(>O%p2JSTphdm#V*4!PJTS
zgBWzp4cdFEUF*xwQlAfuG~6B~-;HsK<FXV=Ptm&MH@O_$g37*0tGX1&w2K}_5iZUk
ztx-!<acA=1zMp(>$tSHs>$%heE#eStR}x@p4ZE%cBYnT0$&F5)8o1CbE7z<=PTQ~f
z+8CSDIVf#!R542-<W^{q0nfD&ue<PhGg5_`?+u$Q(HI#Qocs2{BbD5Op%)GnEq{v9
z@koNx`bih^Vs~R<ix*@mBWQP8$Q)Wxn$(mDa8+CVnEEJZRC1@HW+1cIz(BQnP7iJ2
z*M|xn9&8mlnFY}z;R0KIa<m{a2D?RxIn(71l$-w%E;ru<ccr0uf{M%;R-dQzgt*L^
zL;DZg!)DYSPw7?*&XpuSpQ8|NM|xU$9kBT99wbV1ZOKSI3}LsE@iZ)K<iy=WojakS
z{pLsrF8!ioV9?$cvs%X(wgaQj2BX&b?qRcidPwaWNN+_H?21|83m$LBNt%trQ;LMM
zXtlF{geIvv#SuxwAbUlL9t&Vm=`=}e`m5SpltTyJfiWava5{szVys>N7%p%!;UUGI
zjOus8`>uLg$#h$eerR(9%0&|GDzq3cLTTo?$RLwZs~Erf6)p)^O)aII*eaL~tCdIA
zJ6xdacrE(UBi>{nSK?Y7rNQFk--|vT1E=pxHuy9jHg=f?ym0C}(wCE}zpdH`eB^em
zXFH7z*bR&9YW*HPhACvlPMd<*Fcnx90vo<v&pBE>UZ)~M?HPEmGCG=+ZBHu2KY+N%
z=mq#j(C$!iW>TKal*3Y~bgvrb%KaD6S94n9t~(Fms;D^x5-WX?;aNVXd+};jjyZd5
zl>qAxyr03+abR*+#ThGm^%Kha+0m|r73A3gC+z|oucM@(DW!?=ER4>qgrC`k+56WU
zoDK9BM$C(0Z@amxD>KW5uvael;tA$Dm6;6<MeyYs{v7QaD@n1V&g^Zeo@(}aZ7_f3
z(v{=*kQ=Aq@R=fml{Pg;X|~-&n;AX}vuZFw%~)*?aGhd?tVlSH-Y30Wr*vrcHho7i
zdbZ41(rql-&#=|UD;_b2=ENyi&NDX}Q5+??<g+&9UDDh^B+-HXgE;5(T3CF|I;mg8
z;hm_SOQoEQOtSO7eFa**luI8v0YCUDmH5uH5yzexEp4rw%FakTn!U@;3A%WMGhSpA
z>(FzpUNiUPw#&W)SP5^{<#tnL^VONv@Y@`(uce_q8%buVp8CtG&D8V?Cdki1%RvzB
z$<=y4gYC&(4vay4S(DY!l`Mk%g$h;eNqFkhH0{LSGLE3BVFb*O@-$;(#n36K+|n)w
zO|ZbGI{_BI&L%<pU2{beQmclmzc8MahG>oh(*H@Ky%)V?{CZS&zgKlBzFCr;Mp_sv
zSfvhhTz2a0Z2umm@^qWM$HL;Xq$)KQXa>zR2j(Le(IjRiRsObhmo<%v*HPBQcVBTw
zwmJ$@lGFj+9||@#%$eD+XUq2^TrZ(eJ6Z_i)B?<x6xW&3ZZp$^6&HdS6S?h9N$kG>
zrn#rOIK`<hd^5Siln(=|2hJ|BU|F5xJIluc#Ux=C4IS|b%5T+tI_&MEVE_wS>g=AL
z=Iq3`XcFQJIiLLYYc}OqQ84zdqc+*hX`*iZZZU%aI?v!2sX_~G2hbS(@fnJF?Q>45
z=hKVu&iwZ4VCx5^xPY3qz14s-a62^v|7Z%V{5-#S=~~@vEUY&$*LUHhM7-UX2NhJI
z?WQWl9#`DnWaIyeQciKs@Lcu<Nza$!-J)*O$%wvlPvWwgXJzl0Yu(n1CdDoKwv{v}
z!c>#s>!{5tu~J}Ge8k^z`v^~UO|5zOd;fYI^sjs4ixF{Pm2U>3)_OLqMsDp$y*rbl
zY2$Cygd1#yc#WU@J#vLV10Wrpir)CteO_bF)5K$$nKf<oG8qoV6JrF`os<G-4i~xJ
zaZywMjZP4kv%CV3Vafd26i5V2;h2tScqSj9%(*KYv?wN}*el82t!+ZTUuXRMJ+t5E
zyds}j+yBJ(*Mv`M!ZTK{_c?VF(8Xkx>)cj#9kQk5w=T&rtfqO>w?X9P_ItRjTHEbC
zivoAn4TSXDPtb7)IBe?_3hm5Yg5Q8SF!Wz{-AY!8_VU*w=Z8y{`=<OaQonu@%k8wW
zFWRM8yq-_M`NCCh*9g$S<5@LLJ5J={mznb9Hdkqj--Q-l4>ozs@$5M!{9gq787{B6
z5Y4#d@PGVrI}c!=c~9RF|IJ>%u5W1!6d9B9I~noo%R@Y%J>-8Pu<N&-FTX-GGX{`4
z((3j9@yn|`U}ukzoXGLt_WS&@qM<a9N!u-E*T1(_zrL*D0SSGB;ikL)=}Vq)Z6K3h
z$4;YPLjL=&!g<BN4N8aY5f1+)<Zr+712Rp$*1G>6zvP$8tkvN;BhL3rj^BPY$t^PH
zeAfTRF9i)jp5l2X_n$XpcWeaRV%FI9-_`_vspXGhf2rk<VSjn@pNRceBKs4ue`ldT
zsrX;z>rX2Fy9oWMvHyY|e`@UCW%Lht`h~2-|DfW(%jh3e{0mvh{b_f8mC^sDcBk2J
zoi4R`dZJ-3%yfVCt<2#qJHs3J#B#O9j%t{tEDDJK0`I@tB10VL&h+B6u6|ns_DBX!
z3`L^Mar!!(%*X@!e6H=UusIcE2SqS6LtGN4OZ~V=;wUGaPf<Tnb;ko;gLmz^Ja;xu
zL2oDDcd$}w7N=mgc4NMr$PM1$F8yC|z5YIEg|Chr+p>8dXxPG^=NwQLN7YX8$A3@#
zD57vy?n)>ic2rE_6h_4?oRbgnZ{E0X@BCSl39M`4W%lLSEzSzRyy5j8&^AA8$UF^X
ze)?X%>!#?wB`4geO_q=!@A%p#6;n_FB7YZ|YR~~LzjX2t<`sP{?z(A&v+l&I(0j&v
zzuh9QQKx%1xvPZ-EU8<hs7(~zZ2s=~#t_atW8#x@**WlCHecco7NQ#LI$l2D%&b{=
z(@-?zk-*WjazukCdM|4QV|Hg^zK@u^S`fJ2)jc}V>q3r-RQlc}ayDhLT#Yu6D!_=j
zU(sHSYaP>~6!gD&D#5&v;*=Qqmx|%EKn~z0O7~0d1-!<Gc#WWAhdJTXrt77u_e+%=
zUFyudaiy^aNEmMVFidifI11xzVWGP~Uz{%XQQx;NvE43Q2v5!6RH(VO54YIAOej4M
z2!RAw=<-YTfK((Yr$Cvwrb;IuwM;0rN@l5ZWcrFNc1?#3R&|hRw#^b^)>>G)WDAtO
z)ZauO1}gf}kZ@WN+~>u+M?B;NUfN#;Q}<}xdA%<abKv-nQ<?X}7<u7i;(S}dMNaPf
zB-|nX;37mlar{Xl7*wXVVCGOJcp<L1zpC^ky2cXH(jQ^w@RZ@^?O#wp;+xDT?YPBO
zSoa#G;L_d4P!cb|FlI)Xw?SV&479g(janv{L_?gfP5Dqqx1opBu?t%)AzNRp-)(7R
z7}{y*BOLw+T;#9#YXWY<C-PB}roN|50dZxUvZA13%b(ZK>q+eUA@kTwtpe(FsJa%q
zs|(7z)H%2QC?XDs99Qh_$=U`)W-WWOj{?WJ?JeK_h)>cIOd=&5ep6!mq`O>MwA_KU
zuThUI?{9p)D-+|Esdd-zB=3^-#>PW@>H;r2ZKCD1UuA>AN@gK(Nd>$>s~S*GuFN*n
z<*RWvuP`ZT_U=>VVT?(bU>ddoh}_UyS_WSSM1}`zA$9`x<Y>hv*OR~%!6c%04NKOo
zUs4zEKPCQ;S}h^!-*z6)d<pa|?6f^x61a2zmrc^`=fU7a1x!OzR~XQ0YIzw~=KR3m
zcMXc?|2C&#=#mb9E9nNf@1OPtB4ex547h|(n%%>amtlezfb9g2%k{0f&yalJx%<IC
zYJH88yt!eQ<vGJp>$^uD8;XYCT(Wk2xWV-e7;L(kG~(oL2(;Q_Ys;0nvr4aLWb2#1
z&6$Z|AbH8q_hG;64MZk6w8{dGO4GdX#FcY~{CU83{JX?w_>4kDKbLJh@sC<NY(&)}
z#sBd$!xBbb(TT{C3&5YVA3`bb)iYDl2xA3GT$$a7G9HvizszX~VYP-)H7^_fZEqlQ
zCsc(T3urZ|y*7Up?91d;Jn(7g*Ioc%$9Li45B$SlU<9xC3%~qF#gqAhDMrHo_#B9f
z&Py+it{ecd+5TBGuvgO3tksL!wT&ykI#f&}@Z>MkzDB`aYUrs4Gyk?d5Pz~fiCPcH
zqv$xrrx&+;3j=oSF%&+*4GaDvPl0p)QZaBX{+3+=|M(n;3%7%9yOaRE>goDDwaP>E
zwSr4|pnDWo=9F>}%76Vb?f-Kq8v;B23FSYb{C`U*{|VnemH1C3{y(-7|DP7Vx#iQ`
zRaHH92IrNK%m;&4F@hJqmXvCY|G-_Pw(27vJ8iy}h-g0uW2}9)@7jHUSa;zS#^t#E
zhj9KOp`VLOhlF=cSFXxT@XHRUw19`BKr?j)`6NAbxp$F<HF$zqxrfWan`;H;9V!o+
z>6)NIRwx$`?B-(JEAVvx0lkHl;fczrLNk&M<pFp9C9cHD&9FtyZEp(CPteNu%<ECI
zLMFypvUGE)rD164p@~FYyg*0y*)0E;+tvc)xh?1GGk5NDlXu-4uT>-m*Pcwukx#l3
zRB8I_NpYXg&-IAKE`6LZ+=Z7%$HueT!!wB3_MRQmuXxq7?!;sy{{-gE1JbSPS$vc3
zr`AYYT<znVY?_s`G&c-QC{|Ym*h}6~AdlNYB)E-#fJz4i^sz;u({E?z#B`s;=#8yT
zL>e%Ur64eLJldb2_hY-iM{!FRozBi!xv4$0GF-XolT;OLfSR;OM$gSMJ-}1&7B~cZ
zT{}1>A#v=vW6bOdYq?hk8Pfi+PF_9p(Po`mfwezi)#m3RR$C=3A$1RtnRNhl*EN(c
zeh05di#C^B0${H6sC6PS3jo>Jt7cO0DQU2C^Bs5y+4oA|z3d-b?5;m_FQ_)xUU-Gq
zM)<dM+GNi-aQY5QRYB<O673r!5y1!2=R!F>CE$DlKQ<F=M>vbFqR!Nb{C|*wrWc1j
zJp-P%Hc?c<c06xd1$!^2bdzZ8)j3o5!ZL3QQDVZyD_Y3FWjfN)3p0^ZGCC$Dv9}}a
zfcdn*=6ye)wAodPnYEo^=+?ddcea7<YTI5?dlY#6{@MK7buJqIe&KRZEVs44qwcxl
zr#a9^zh27hgZFo5=c5>`2lC2b7vqoJEX>}^F6rq+4n{A?ZQiS#CDp!*r2o>V`5H-U
zPbk>Ve!%=SuQfQrK*91y?~qb6lA8A+jKP&f3AB?+=9p}We;EM4|GGEt7iB<)7A)Z2
zH~%SS#j7tU)l;X5d$Ivu6U**goG}ucRi?hOYCX+;RFjM)ePC%!fK5#2Dr(UK-c7l2
z=6b5tgKJby1G?et6_*xk?w)+xG)w+GVAQjjKRc)J22JbR07V1At^fpnB`w5MML81#
zJmXl@8qoYiSvgJU0he4B?kXAbY1MM!J`##Q(xlvP-?!O9_i3vREp73UP1RrAZ6Qbl
z1GZ3ojzuWNad)Bt)3l3H94rft%4o%9=uG+Gr+u2+T&Ksntt|8s$^vJ`xX;6<?+=l*
zRK3@GM&a~NwPb!yb<PofjY|GFy+>&)(2H4>6K)IdlDgG%B<LK0VzOP|PfG%esDDcd
z_zFc;DJZ?GX{xvDt0ggm7+tlb=aViV3Wk$)ne(3}j8@@tNCZ)9_x;vYiu@Oy5^@G-
z3QEg~WV2QQ6F{YfyyX{e_6QFNKa8uI$_bQsPz34hZYJ(()!fYu)5V>pR~aBoL0|VP
zOrI?+4U%Sg&SpY^5TRMJk2jOi9#qFIl;JIu-IA?GStTWndHFf_wq5xkb(Kxsy@BJ;
zm`uVR{cC(klo&iqH?3T?K!9gZ5WD(!`ZPbK5Ng+{yuX<O&Nr#7pP>^8cpOf<c$Gv|
z!8G1A8sOCTw_{~H29dWeZQi!=tHgF{E7~gsTJ(_fF6%_iWd7YeEmJ^poPR$i{{%&=
zLi7p=nEd_Ta+x*7)<GTnH%Y|^6{)Eo<`5(_x}|%KM2HjPV-hw+gSetjFvRK5rc3H)
z(Y~DEfC!o*gmFAqM7L||!R}ZSR473MDXX_K7%^e3sEn7^=%+dy9TK--ld<5ugF=6y
zxw}m%@9r9sZSIa;)@fl^osrMUnAhs;z8jbFE)zKU1NX@;5LJLs;8_E>gkyGA<qnxQ
zLiLtbvI=Nxz8QedoZU-fHK#(0tQkaF?9Auee{Z(GnfF{Hu*G@e`LOvon|{Pp`I!uY
zxzLKR0S^Thb(4I-ISPdp+V!FtSps)l?j~BQyX+6Yi3>Xq$@ae!XbK!@Q{LE~L!iO!
z6%l9zit#RURsc=njmL)8VA8zvqC08#R6^COhmmuWZ>PT*Z7>0+IM~$Njc&EEPa4bM
zI3Y7;K78_@fMHo?WDc!;uzKV@B=@9*ZI#c!uLr8Hzm&AByJ==;_``({yc0Ql`7B5&
zS?Y&*MIC~}43F{7LDt+hBLs013ga&C>w|!POU?`AkJJnh(;uIjuoW_6opcNAG%%oj
zEcv)r(VvI7)LPCx;o=%jlnAySt8)t<lFU>tn{UE{KdshZ;LqD$@NnJFrg)7;`2Hwx
zbJt506f$ew#l-jR8)W6n6~3`m0rz?(;}A~*$RvtZ>d-;wRA_RHHseF<M>eB7xE<_B
z)ad-n1?ktd7%2rcr8o6>`}j}DZ!@>hr{4ex)M6T87&N!KJh_vKLa<c}-c!6!9tJs^
zk`i)f%@4jvgvgVlcmSjfN=nrzs2HPCHIyj80llnJfL4HB-Yu~5AXW(ITIOAfhHqJ~
zvnjo`51a%-M`qgx*3Gpm>tOZtC|`FYIqBRZO!hLzKhF}-HY|4I;(hR}`jPdB6Q95t
z2v5LfzB{cr=hV>U#r7nOn$rCHq}*r?;wx3$H+PgC?X*k!?VxieqOZZc8CQQ+_B)zk
z6OVq00;m<b;5+6^AmTn$gRL@GG3m-pbH@NnBJ@^agT4EVU%Lgu-z`PW^}I_Uy-kGs
zcsTxGobwqKc!Oyrf;|`^mgCoDm%X~iJ#czna4tZDK1=!}rlZD9?~>5*^&C5XxBDVy
zhc^GzO!5b<G`IU}I=a_yP6?|~Tho!$ax60qM1zaFGe~5nUxY7kAE!9bIe1&K@WXlS
zMIGZ;b=x4<^Q_0dOuOc$KLbzqhoWPhw@a4vqe*f4tYn;-)!3Wdbdy+p%IV7GO8549
z{VE9ei3OKOF9kc!Uh{t@vgrpqqp)uwCwV_eU^$0$&X|ITGu;gBRXu4K+OoxYuj?DG
zSzJ>Nq5+`{6)nk;p**rV_#B**5M44rQG8X;p$1ekz<DP5g_TG2mU|puB);X{dceLw
zOydWG#7Y!hlZiQ=ZThZOpu^_fT@lTA0N@goYXvt0dayR&UcWIgxBhn>za4<4J5uPZ
zwEIV`P3RQ@e`aDDKcplWf|9q)8}1FPkyel_aw1=4$8Jk&V2Zr>+t&otGC#gD$z+Fn
z08c&u#u8U;+Geg&M8KfU>)o{ZJ_&Rr%@}5;f%`bH_u5zvc*tKvDXS}v$=|E+V9$@q
zPWIVfw}ve9{A-HWDj*WIKm=Nwe{43}4EUidrwWY0sgT0*+yN1q9m{T^?<Vt?Y<WPy
zE?J9rcNBnn47gXGwOkN*XG@OPbD*zJo7}X{M06|szZfQ2wQP8h>za~PMawq*S=JCw
z5^opeJivb)>ac!brhZu1QqmTnMR}!W!a<-#=TW@dGeMM@xG6Wc2twboI+t&D{{1^k
zh`e75!5@&7%hFd_^4xlTW}S~F*gIN&nO-6Za*y0|ZkZP)UX^+~I+TY>gz_}0{I^&I
zH}`V80yG}nTvog5;md~njr#vPv^YChDs){0z)wK*m16s33K(vy8{V;>0iSqPSkVt)
zNFRp(E%p`H%C6UDow-(4%(ytbQFPhxQ23d+*)u-4YIE+ggE-hmdH-~r90vllRQ2yG
z6TC}Xl^nlE?*Y;NSMQ@zEGXHmCD<|_A3NNRr!&3|@aIu&DbEehLo~SF*v1Z@X1p74
zI7Iyn%GE<n_1)pSxVYTsZ(M#v`El5~l|yef-87N3^ydw~1FrWYvjZD2lz1`$suGMx
zAhr&y&q==p2C5J7D0sXDigmQ=C*G^5xe1-!T{vLyWVf?f^EnVa@n;{Z0uuGnbM?c<
z8y|FqQRYzlbWGDO1H|1R8J-8OZk_#j-R?oY-DmRzCO2@4$vF^HKXU7TO=y5=rHFnT
z90eOZk5+ivrwBrARb_n$%7cz$W*vvYWRG<p9?1cdC2O9m7q^5QrtE2a&TX}F-oIYm
z1xAbckq-jC);7L-Wb?rvL1Z>Bc*y=72nO(x5(ow*5>F!J0w`^x>VZvMcWc5s(e=2?
zLt#!g*8{<}2W}d@@gw;*wMOsB#Qf!C`nC;BUGn&$<})yLyi(CAZjxvVsq6n)^mTl8
zfpN#*<tY92W6G_)f(lAt<l5Sl#4xda;Plm#YpM``CIm|re^mO%Y5s)8pG@;7m;R|1
ze+uxQdicK|M0Jo>(|_#+_=Dj7VAMab|4(D{r*-?&oc?J}|Nmw*E<0E31xNd8gT?Op
z<4<0r{@!<s4zq!jdF=tL)_&XT(O}W~rPJA}r`(N|du#!v2#7x{yVb$4#^A}i%#`<B
zy7KUq&70?WAL$u#xhaGkTL0jO9cT5105$yajM?c-ML>+biurpj<jcK{w|He0toi(e
zP+-98Ffq&DS^X34hIHEBR4ia|Hdlq<)h~fbYa2YL+U>5Es8bJj&&Yl~OjVfN&Nr!e
zD*eO`E5p#b=G51Y!av784wY|g;F90OzsYYWyY0LZ+pnFMw}j32@e4d!d(-e|JayPK
zX@-qTfF;0_fo5#PG!m9(J=%Fs^91iMx$Wo9@g6%SP`gcC(rmi=)Mnd`?ZMGAre`0^
z7wtL>xgantKWcjY9gqJ;og&yt-gVdix+rkMX-_i^?ebB8?<lQxAQX3b4nCH_<1-7V
z!Mhx=f%d8uo57KQ(D^l|148(Sck80HC3&G2M%Bq<e5f~4_U_^}5J~N}Yz1Cs_HS?b
z9Lxygm9BgORc5N+MGk}4>vz^blh%dIuelmx!?)73Ri!Rsa}A_cB5c84WKhMXYKxe;
zVGE>o^g45`u=xB%o+x8=@ai^xB1u%BLwWm3REzarVc7VNmp1BrE2d_L8UMU>W1k;3
z#nLy*f#VkS_Udeu3-jhPy)41!Cb6D5`d)C09~hWcbAB6NNW?SgurNhl47}odcEBw@
zH}+a(iD4VVu&{EzOS*Z-!gx%K_EvhxW%}3FKs*XJfxCLOtvYXG4aDtH8|q(gEvZS8
z5JpQZPz-!ptM?%fZ~W#<jg{h-=&OS&N$Q!eH}f(_1rpzj4@$*P^9b09%rE`CUrVaZ
zt%~hfKA?`RHQ&#P@(EZ1?K$!DmaY?IU-wB69#oMp9k-6=VV}2p4FA{LuoP^^N;?!T
zARIt-#5I@;2xo%Z>ADxzw}u~4@s{@_5)9n?F8&@5Df5Pq+@MJq3Q`!bUnUI<ywg;-
zvQ=Deuz+V<ted!8So^n!%2L9w?GMdMq~@RCLF|8X66Gc^pOkWa@t?OH%<L~oaO!Tu
znpD|fbN{~#dAPTu{KF1SPNMrJ!9cC>?1KU;g7P{%yf%CxEbltgg+YN1=2ko9FDUSk
zHFV9pfD7RCruh5jzP*NqGk3zVJ$CZIa%Yr+tapcDJGNv&{`EF<Ohp~Dm@3Q5M`ZT+
zyx+{rw-4No->x5aP<A&ww-<Pf$U&!FHJbZ+d4)f08k|Z}ba*7RH**X%=zSQz253ex
ztS(CuXhzNVWs~3!)7On10G2axYs;4ehRoT{`sb}W;>|)fi3uERtUf&sDJ%|_K(gPi
z`(X#~%lwbD!9eq?``7Vejx}sBtV!U3VC@#p>mKD*N32PTT2PcTtg+>N`ykeTw!Kb2
zRj+??a`MKPy<yLuJ~~AgyW!8nR|s@9542)0^vEWehn;uCvhmneUcQwmzpyY_a25K~
zOm8<JwUt%LJt}j)Cc<-7+W)=!>QZr`z0JF>0$Z1@89@}0es`R`L>^|?9NnWuc6j&o
zA$5}M6h1GJf$+i^aMJAk>V$)rIz^PG-!hY^vR_Awzc(;NxW=_%>lg`*f&c>_oe{oZ
z!h^6jc}(7Asn5%_)>llwYnTmeWjzt1E1LvtWj7;{QsvoSwwxpdEnCuD8N2?lYJqX1
zpMoYijQbex41A1)f4S_mv1+z2e`Z?MLS?EqQU3%_=lMHTn8Y7mk)POKds#_7412}o
zNw?9}27!5reqLS!V76GLgk8YCTOtfA!2LGKC(Qd0(6o2`vsK;Nu-P;-`e+iQFU~^O
zOQmW)ttIU+9{hg?{?+MX+{}t&tljmR)m9y=nVJ1o?{P^Vzc0_|TtX463+&PU(I_qY
z=i!;0r<#><d&0bpn|ZDG{O}j+Eg9!$fk*3H-ynRJ2eD>bMjHWS7})2X;?F@q@R`<)
zZ`}j}Lj2OBSdunlgDsRL`o7HpPM6oYik<6Uj5YA`?pTAk1DmIl`yLD#Nd&f7ciTbx
zJ+Y3<bHiVvON};YXEszSg@*CuWeWs`D*aTrQh7x26`<$RcsW#L%`-4#89yH!$RTTc
zzzAfveS+cMBI5IjrU%-{jKvvu$9laqGg|HHT)$?w?4{*bqXJbCf(4F_vmf^6YYipX
zctp;W9Yn)@WcP%*DQh_-3H@-+Mn}`5#T5ecHa-mt+QMpPJP7rc2Ycnd+3~I9SBwNm
z3#2H3n8?}tT|`(7M7=0Rr2KJZ^+G5N*6$<~%&u^0QaEp3gRV~}6`S6V`RcX-J-tcl
z$O`lQlqT&M-|Mkw!+wE3@)%0D?5=96DY$;pPE>>;9!!aU9Kgrd0&JXO8q<9&(-ovo
zx1hh$L9nanTy>5kK6mr%D=E5M?A%+!4)vh6VBPtJ3LN!pY+Ljh<3_=hhkHE+LTSp0
z)>gbw4x8U&M9J~3QRD^<C{efnM%EG-3?o!*Hmuk^7It70H<zLgJhIpi13n~uSV%x2
z49gdV8~>MOfl9-(uP?3@ncrNsmCtly;bOs+UR$eNr`-wgqCW1SzW3n!`<Rz=Ei$}v
z(|qp`G|Pqxwv8bUZl7;W*X!43`CeRplbv*>udmEKX$?9%wz5*Y-!FG&y3=NFhkz{a
z1+zmwrxSi;N}Ghcxo6FU2T>_k$DU*YO;`@?Kr4V(?oTYaRph{CM@^9IpsJbKlxLmY
z<Br2J0XLrB9&1jHW7+nXc}f}BFhm9ju-;mSfFXLFV3pb7WGx@(ZJS6wG~_zHKIdeV
z=2H730|Rm~qWAF*+@(;~qpjFP3B$}T0TYSGPDzB0zJpd%aj7sFwwsKmLxLDDGeHby
z9({}lQTHu*KXq3amNL}(=CE)8BY&1^;b?fH@i=gDrB??_UER6~{^d>gA<5Djj$hWJ
zN4}H#{JQNDs*%ShvW#QX{b!aC@AN~vo7oOQQjw+ISF(yKfcw*su$;d5a$=*t4WnVu
zf2QwpeT;Mg*{%A0dDwH#?dEfly))&}uFTa(`6!#EYouVum!U^k`}v4@aoL$d;q7a(
ze3Du`?>SWKHQH1wu=BLfuhrgE1Btn{Upk$Ky%x*Ib8Al+cIVJ}ZCzdqL^Umlj>Ye*
z66blX4XQxi?#}%mNNj_WS|fO>dI-y}yXUeC^ZL^<)1hfA9Og!oGTLLg!cVBc32(qY
zy6R&!SF3~Vd7xNWhV&<@uewjn$aG2fpcc}U6*+qk6>h7D<<JXTR_=zCU(tOtY$~_9
z!JFLj*0g+Uh*;ivKc=<(llV6xAT@4o-nl6rNOwTjvHLDa+ak^zL`-V%5IjdqYoGNO
zWpEY<@vqlUti<>Q-+ICZLLvT)YTAHPBx_}`&fmLJy}RGPf9`qc?8xTW^3+qr=d6l>
zu=2&}DAd{a=16TP)Ks^N`YMx(Bjk+f9VdJ{-xD6z7i>7B5-FegN(z96`-vaL4>9XD
z8P>$|uqlqFPQtJ0>+0kzmBGB;XXIDxrn(AdTFOZ+3c-FK1^VIrO51cs10~iM$;$MI
zvmF9z12sZ=vbPFViRr2lgO(ihf(aV7o?dYZ=Dxd4c(|9}@Uw_t6WKR$iU(2gBKr`?
z%Alqm<<`{Qb|#VBnmT`nH`4=v6sIf`YHhcIMFUX<wmjY2g=ne63XO{*n8lt&br*Mp
zRb$Ij^*|N|6XLLoDSop9y^~W@1u$HK6p7p&aey~o$l5Jv;}2YfGRrI!0=IZ9Aw~SA
zTo|@TKzIdIS-8iW^`IWU*e=j04~nYtn-dvQfz+G*x3Z#(Ckm?>CaayjE(g_ICp@>N
z2eP-?22Era-zu|-_3Gs$>Nkc)-OtE?-<S4Vyxr@r&mP|mj_hU^s)=NRYF*X%vobZV
zGt~NDLY#_q#z_!Nz8<}K-NhjE{qwhiM@K(-&aWXm8(h=5H7JLky>D>2d#fazj)!n4
zh-JK$h1=(MS8H@;F~KvKBARoCJHD*IZ>F!avY_O>XVK`zE~ko7Nr=zDVdI|XZCQ5b
zHW_kpXTr~dksuM~T?p#K4<HkUy`#c2j0OSn-+|l3yx4RG9zVUZnZ0=+aqQrls_btt
zc74YiXumV~KM&$}*6<T^dg4D0w+GWU><EEd#g?s51uT_Loer1$nMWm+g^Wv|^RV3x
zA75*D^&u$EP5+bPyy6o)P1i#Yek5I4T?VM2WJ@!9h}PY|BR8W=INV6gpuJUhs@rsr
zm5q%{Mr(=_I8pd5Yq}$DhD9Ugi=5<p%}tR9epnoJK*S<B1vCiiwavSZi43ALKdSow
zlSKhkyrA&KOAvUrv!N+nK9sRs3WY99PpvG)fXy|-GvH8RU)H^wG6zL6bzh&yNBuy%
zfu4MRdI0T;<#pUO<mYA9Dg5V9Sx5sX^X%L4=4L#{(3uN~4QKdp-74LFnLz!Zu<&Q^
z6xas5@RAVlLV)LGMGoYi3JaqtZkZugM@oakoXf7D95h_pPe}PqwJi7LqjJjl8(Kag
z<o51$ZRdZ(g;?!V&j)U;C~BSA@!Aj+gYeIp2_v9LjO=mB<OA2V3IEn+QY&(ILqJ9-
zd+XFdwy8oJ$3gA$eFp~mR0TX>u-1Q;E^#IQV!^g&^I(D!2r~3kty45XhWCO8t24)j
z+f9^;MiErlj|vR%tH3ufA#Y?-dH#M2q*f8l%RM3IQG*7jq4j@FHFmkuiqz=_nGfgO
zl9Ip*%}%K7C1nJBxl-;`eW^f2@<_moLr1gkoxZk>@AZ}ok5wbM4MbgU%NB(?$o|(~
z*PjH%{ZZcf&}>5<M0Vz1s#_8OV0zT}6!XX!%%bD*Iiakn5bg44V5QrjpOfZ&JxiNx
zf9SJ`L9GsFc&0qJCrt(Ovy@DLv+#=9?#pEi2IKpF6XR1nb({A6Oa$38FKw8009F4=
zaf2!VFv9^J9W}nw_-3Q9)I9MvEmY%bO<!`lt!GhkwSM6Ftg={xCA(#-s_a-SVMRh`
zX(ZzYLYeg$I<XgFDqAn@b2oa2-htB4)7NGAUhlcFUiB{b*6v+y*&|p7IrH_a_!@9)
zYY(jVlm``4e%EfJE%D&i);@Y#w)Ql*wbc<-m7cYVZ*Nk^T8bU?BtH(&WuX|B*Koh8
zN9BUxax9`ME_CwSr&w^LB*Sl+JoHJq6#V}=)c;`b&BLi&-@fr>R#HkxLMkC4gv=T!
z6e479Fk~(=4@*fZq7a#-%=4UCO6GYcLzyzq^RoQT+fsYCzt8vg?7g4kc%JutpZ(9?
zhmN(@ecjh}j-T^$o|lVH(>}cY!Vwp?5*)v55A9hRNQi#Ky<p|=ekWhZgTAr*CMw0q
z@mmgGrt2t{f14Z?KE|<e-+c7#g32!A#mUx{Tn175u8#xZ6<FtGEt`(L?({xgV#m1m
z;9c9t^O*J=l1Y^&>hE*?mU2v2_sK&L3nHq=**+l5J}+J}?UaGQh^Xw62GKDJ{(h(L
zjpa!O^{wg4jgvi=LlZ1^vWy0sYa+sf<?ecD=WQQyP;a~s?b2gc|9;|Ufcw|qEJl2@
zmcJV#92n-#xOOyuWJ)+gy!iCZbgPLD?)7;_XLKRlSS4=Ug86>iE2r6cwt8Z^UE3*Y
zV{C#~vD^LFFq4bSxzDH0Z)Gp9TQA>Iz`T0ox$CL|M79y74J!LU#rE;=TsXTUb~Pd5
zfMJ3QVJUHec!z=bdaXHE-LXJk1Fs&q3?>_Np))?g+T71DIEg<;nv#VdyRnJoX(}r0
z9PaFs7aS#|Tg@q^R!~$w;&O|`Z!5wJXtHi($KC=%aS?@HO^f0I6S;McM%cNdXNOuy
zACcS2o)cTF@o2MhqoPhQ9HmKk<@})w<89WXl3gr5>zQTLdSX4MmcO$hTFy!MZwli5
zlJ1l~b^bYj?&s!}r*y)(iZM;ueb%xLPIK?1DzR%h8WS49CP5n;h0D>MQgn$*5`u<t
z7hF)!L=}!~<vudqk|`@5fN?N_r!Dud0_zI^1O}prYHz|<N=GS#`Z=De*%$XH$!!Fh
zzMsuWG!5oonycpO?lcHBgILOzDXCl>o0+8(?X+Zm-d)?IUDHa^DE~!`2%$pdCE8mQ
z2vV^#&A)Qj(_){OK4*7cLZPV?_N&W0Mqy>7WQf@ggEOb1fKF3Ci4~Weh`a_BGRUs8
zPz+p2f?F9({OYs2H^{(FQkM)wQQUcm!rqenZQENgZnr2{k(@O5ovj=UX7lsBcG^fE
zL2}Bve#_tgZ8{&M7R+yI(zmfY70-B2CSTk4+o8fX**Se-x7-h5K1%8B7R6Ld^vN>5
zz1VXLqM{mkJ~^xmz%VDD?AuzMVi%`<8E((|xx}-t!E0?v1t^vCvDlD<4`%SDncNx7
zVm2@VZOK~sZkeHc#{Nl#Z3mxkTK8@2=|1SRrjJGses!O4*(eI{;ylI+ip!(;_`n53
zanB{{@tpsbqWezw1wNv<``!F~Aauv=B%-(%p#7W~PDylp!g8YAoj&clAy&A5vN<Q^
zIsNk8B@->J(8bZ7!U&%x>c3=ngu$9xuWQ{-Qch3_jD~~mkb0h1mfdAfH{SR*X2YgL
z!+!Ydth{bGyVFEYy*59#@#5cC%8y*dRo1<FIhTDdGTL=4_1R2M)VFVb-86x5$l4|)
z4x@Sj-BS(|fuaH{7)#SnGjE9e{QOBHI`EjcaGR)1t%YYe%efsN;@kxoY|JGEK|cJO
z1ih=`&xLKKG{=ke&4YOj<b3g_#nz|H&vUM6Eq$pyx~b0+YO86q{^Apet#ri!ebOzl
z%?Og-^=#Wpg4kX=&?N)nCv#5fF)J$~w)>BoQoWGqa9Pf(R7%%L<Tvfg&z==%H}xA%
zaDHgh5MgCfL%*zB??orjwp;MK3%-nuETO`L%b%2-RJ>_f%HtZ4MNKkp+LrV8*t$w-
zrL1p+n<OM<t4(N}KDk0!pz3)*e<XZ)yk&{$sU2yA&kODv3Pkv+^!a=b?BDiWDC~*Y
zQ<<*_AqT`+NF(eCR;jKNhabQ*w3fe^8!t|qTUlAP#n>!M85WJP*rw!v_0Dc>>(;Ml
zu&LS0ufGuc*B39j>G0HPlVn{Vu4`Mcv2J|vp))*S|IE^8cl%V~G?Q^_yz<hQ$K!j_
zm;2CMf71Y(Y#Bi7_QGX@2c}L=g`xA~852PX$=4yq88^%CHb)DzbY+_cORtPQ+L67H
zt+8K0PW=P`zPI-L6+@22EbvamzV$Y4S@^g|ELE>7CucXkknWr5jCv7MQTv6=p?qso
z$LNLWzSX7AOH18KirsFyh=Y=<qHx`EP*1Wh>tDjW^7PxKC;<-2C9**ge1<BI;x+rc
zjvrhAo=bR$vvMIdjEf*VM^eCiMXFb%i~q}=f%HK(xBRFai}xnq%k)I+&#wY9Tjees
z!|%Nn<?_iJ{Qso*v8(KlPh3_b$Nx&uyYCad^_NcP`EHLSh$>`t*ATSqBFUsV7`H@X
z8>2J(01SU5I~q^91*pWQpor)Jn!5PjZ?`-O?WTi=Is<lSD=7!{DkUR!Ne7S$OQ$?q
zXiKvDkS?9c`<LVg-+OW7U<6FM@~68j>&0Mn{F05s{PXte$5pPY@PMiS@fcO9tq|x$
zb3n{Igj#bjrrr?XN5k>z`>XJT)wz*{OxO%|Q@+>9L6CALNc*b09hN{TlhWRayu79N
z%F(GJDx|QR6g&+VB4IZpOL<h7z*C&7kf40J4<hPFo>Tq=c=*~Rv3@n+Bd!%;1Pgg^
z-wiAh3FQKX;6lsELx?P+p%YylfP$NS#A9NvfMqpI_;A1V7-X1Nf?7@x;^D_4KdOgI
zk9gdM($0aabbImO_&!+tJ}UpToe(Edog)sqgv5#aUOh-VM0$*IhQWET(fa$%i`VFT
z9*|6Y<kCzKY8~5u%q4#J#rT%TTW8m*&vhnB2v%=(Mv(~L1EB5>vVX~RUpSUH%rbv8
zsV`jO47k`?Ke=sltDM6~j4uMPXq_k+H-yVyhk}&eSi|p4Ubj>f!Czqy8@{Y547&s$
zVPgQZRi^ahX|ODmFaifjZG(3t6LTGPiO19Riam()w?Pa0<M9C7AgDOB*B`JAc2U=M
z7r-{)Bc!shGdJCC%{<!yFPEHN72k#~>7sHq93$EzcB&3g?I3&4`Vp9qbAsgip-z*n
zt!_1mv%9$)7PPxTkY^VjhDyqaxb^{THJ;GL#{l)FoGLwa#{>Dn?AH`TgW&xurK$67
zZdu^MWQ&gjT!NK%u0KIx_wDmg8G>AH>rdF_M-5Fzbs!p+)Gh-FFz_~h?Q-1ri(6ua
zv3^k1%HmQSU+?#f;x$Na8X3h5Y%Qikkrwc`bKInU$PQ>Kim<>OSQ)7k2l;rnYAU8b
zizxrTrm|UERBch+`I*lA7GU6Pvd{CU3O)jKr_`1qa!mt*gRG%iL+H>zib5RC!K&@B
zi}4)havqWZzBL6K8Usq&>Msyeb_8Dj`q(K`S<**)Z0pa=t6DdBJDZqx`O!?&xfk|{
zIdraEWHj92pgj&TTNTtZv~a;^^+AP}rzk8^v?86^l(_jHmT*YvXS5wQ7){1avlCG5
zXa?qfQ|j!Xf+wi><F5tZ$>3x~rc^2VH(+vwJ$A-ZixOl7K5`6kaYV14rUjpcJfyqO
zVUNS$v^@WjU;*>6S^z|atS4S?bT5oHn-15|J`bOUuwW~uUH4-%?_?s`Y|suDiKDHs
zdny2lwRvev%5j`{MX$BY0XAE(LrI(mgh9<ofBEO1d}ztGXPxXvArql@URBP9yMgpF
zAwKTTUYp7>%>abBy=SI;qEAk2);8a8@cHx8T$tL;uA+7N7aJRBu7kG%G%?*(m*(%+
zf)usx;v-Q8ybSU><+Jx?T0G$tXpMFw5h&6A(3i#lXCWUUItHiUvX9$>cLxOR(?!d8
z<2h~WwArEAeO(C1uaTi6o^LSW+F49a>sUmdKj9;ln52=D9dP_|HaLOnNQ9+T=-%4i
zE<h>FHGd3hU(x|xt;ZYk7O#zW+*2~{vA52W&2Rar!+D);3=%(l@8S^Z2T&cG2_RE>
zcJ45U<#hzx`hhC^KE2d&UX4m>G;Y1zu4ubnWo)jCE}Bh2XKxA)eR5mi+_*ojqG2Aq
zp)qP1Ww64^fQKc>wGC=$^Z}EcPX9ZB-+WNB@gnqJ3!soX`#T@ZS#ZwRah!Ea%9W~@
zBI*qi;&4dmfqRBNFLhXzyZNoo-n<BCYPj!4cT&z56LCT8cZ}b_AoIR{{CW#k@TH21
z9@?#-mwaX4RiC<ap$}V%U;8aA{+UWZcDdFWV6vL5m9$XZYQOlsEp~jKt56>T?mD>d
zD34&B<K1#y{)7>PgF@>$EaA3amay6%9aiS9p2XMe_lP3tafC76to(#O%Os%J1n`;>
z)Dp9OI?nkLLt~U+^%r+2a4RE09|^-j^FsTSu+hA_66dALh0)IN&6$|uE}No!$)yoW
z`7>>1xpum5m&mY@Sr-|cD|UBGug6WfEof?<dN)MYF0%RHkemf^G7}iX^Bsq%yucW;
z2okiva8XB<q0y~(1<%Bn0SwXl?ExFbV~7K725aA%etgbf_lUs}o6CP|rD39;gx>K<
zsAX^eM18o^QXq0WNgDTC^Q`cY`_Cpbrm-q(dd5-SZvwD&oClj`4l$M;DIt1$-M*n#
zm9k&_MJL5?p5PY<1kRTrZXX;U_S*vQWW`(W+WSsW7&D2P%&Eg_u1Olpi>~`*nfEzA
z4XOu(hrjcVlLOqpt=L00noDXMg}fZi%3UAcyW{|F9V{J=y$kmFOeO96$MApho0iwk
zAXN$$3Ic&(<h??z+B1xkH=Ky47&kHQlSS3LpHsAJnLFiMEzoyzX=r>Y&m9RdRn_8-
z>};@m!v!8!r|4P=Cr;s$vDXj}@3^Wc$`1;!fsS7O`6qZI6^~JNCQx|OolU!ir%W!=
zJ0&KyqFu6#+v@-uo^;*Qn*(=1eqgZw{vcYrZp0E4?A1|6ujJP_%|6M^Rq+y>$zHLG
zEMVuExwr|2LBoeg!{7QM(DWeD&60Si^m7mlS@f+ucEU7X)Dx*ZDv5*=gjC<(XyU?w
z<a7~LLNI)!CmPPj!yd#}@u=>FP~u3e#GW`Ll!zBP1%d@cgK#z~%j2+y4Adc=y|_2L
zq|HzVMcXPhl$U%E#1iV-kE?(F4UWo(+VyL^41yNkwFYp*fw33B2Nf!zGRGYh6037j
z_EtEA*J?2)2x5|<>VUB{IG2t!-ol@MLMW82epzS7gHw3Z0s>zuh?6qRKI``u*e$J(
zr_^F$gacgePMg2dbTfOAzq=Ez_z87dgG;$nccc`+rrwLa61-%_>}bbN0uD-0Vx&SJ
z7vbs4){<EQ7G&X4_wpvZ@F_*!JHI(=KD683$7eMzAHMt(@_LOIENqjU)S45}+S<xN
zn7YuM2T)r`()({R9z+`U*cnDflRYA*lFRzp`XMr@f_iR({FYOWFDAIQ@WToJf;uS7
z(>yyHp^49g->aCavD0=0t!XpaYP}Q~!&Q1`=0#tZ^ZMotd*>_XF`J$T8z!GUX@_`*
za}QD;c8TY{>t&2P2BVi>3f_N)vwQx)Qj-+|AHOfVG;YJ0el8K@+z-yoZJ+y1jSGh_
zl&oijhntljayUmEzhF&9u$C0Iu^(>OE8w?#24cs#KGHNY4O0N<>;`nwbF9zI4l0?(
zMfq2W*=*x$O-E)5I)KgL2c=roaGV^XNn*eM0So%ImVJ(}0KL)8v6OU$zxFj|)VnxG
zCuB+7W2Vz++;lRJ4%@LZ{gE^O)8k!Y#k12<%QJ<e{@k5?<KyF|H#WuijoT6}1m`u$
zL10=b_yL^XdTQ2ni=8bmz^^fxc<qFzyZMGZFb3&IKH_#1r2j5H_uY&gk4SB&(KA=a
z3)c?PzN7RKu9AYw&5x8&J32fTv>d)(ESA7AC)@Ga%b{XzL5tU6@+`@O@g6Z-bjFAI
zbK)Q_P;=3A!s*EdeMICRup%7p0b;JO3x8-I>E0Q!<x;}&^e+~)zT|CM-C~#-SILzx
zPSXT!=1E!UX!KXN5!3e2Y>mOdrtZ@r_bookZ(@f_$tKd@&;(Qmju>5nNbYf}AYxj9
z#*<LyqZIL*Ra#*W8Qi6L9!?cLa^etjs+3P21Ydzu6&`&a*A{&xc*4m_Rmb#IS*iU{
zmH<*P?i}%7knOPUyDgu;kY1f(AmyFc>LtEZq3=541{|3P2nuu8a1UD(mXQ1d82f9<
ziQ-6q=*n7mTehi2LPA1@SYbX_Y4k#F6YspZGv+M;Qr0;+_l3d1xt^0&=*aqVQ#Y?)
zZ}bE2Z{R0SgdM-1sk^n0W&G^_8Px<1E!=j^P6Mue=cy{RzppV^XqD4rMv}kQMR!p7
zI|5{gIxHQD53%_`vHtY|iNPkey%-a|vC!f>r{v`u0NeO%=+DA@NBRrFlxO#@(dl++
zZC3@!Ms1NwZ&Hq-ZGF#{TGA|Y4|_S70I-oR|05Xso4^AF-t;U>h;9saA#>Lz#2We<
z&IU@s{F6Ns(+SC4Jq!$+kFv~qgx1%gPGlf1ba%5%X0f!I(zH`ApjOOgyO_)t@h<ZM
zs%-b4EfnmX$u?@Ok}1BB<g~sN=xjM$lLl_TK}9VpKdCb%{FRva<^Z5@=H4Qhh9g4L
z@0&TTS6{WC#;)h^Yu5KVEr-WVp5Hf5A;HXa`!y3Hoa{A5$GKU5AVL^rg`0QScYx*D
zK}#DMfe>aCJTsLg5VN*#87|}Ma<=>2slx_?Dn!ilr&?xI$Tv4;zmQQTLOP+hiTT0p
z_{$*e@qUgSHVfS4-G;?0L$~-Grwa|UYyE?}YXW&`RxxSi8=su*ySNTQ03e`gU=Y$f
z<G;soKiIEpv!~y@W!~}wT-j=nQT!6g{rEF>RrWd8#_+|%*Ge=>3ubfp(_GODw>4}E
z7n3%4CIOqmxcAttn_71^cm%|ju9Syo1IBHJ!9>%Umvr+E=44z6yNqf*c7%bIV#{5g
zXqan|@dZ2W`@|N7Ukky1&~q=Ea}m;@)Y2D3P!GT}&8udR47q(JeMDyak?qjk8~Cv<
zk!0S9NJdp!O`U3mp;EXnl}rnP8E?y>{a^uivI-q-_XHzkMEuxw5d3tNYz1l)hNeCX
z{gXNX+_j*{nvYy+w@Kb1X%>V@ZS0O2E9{t^s1k@U5L9FaR=q-naybfiM=&zt{w>Hp
zDJlK#dAbBJzd#W6!~L(+Q)X(vrOdFSP#1xTvX?XJBfuJ8RZ%D}q+<2tVbfEHMy^~|
z_{`L=N0NzqQq~f?ea;H|8u6)O7V!U&KQw~>|4vte2}8bA`LN3n`I4-BG&jDszXVd+
zbahcRE{?SED2_Bo%{u^M5_Uh1J``$wMR+yS(vYTyos12ohGJ>vg6=_lZEFcn+?Px~
zJk0U<wRjA>SA_DMMhZd6r&z=G!<XI->b~9wvG$S#1oV(Vv6<2oe#4dBa0I0vk@ql{
z_`Yj$&jEiodd9N{h&_iT!PlQHVb9Y38eF#h-ZMC&fJ<>{3JP@yP@U?%L{XFoTkv&+
z=SO*nWz`Y$OIV=3PF1LZp>iU4-RBE@hIg`)-(klW$Zt5yLp(aCdv-DtD0tCPEX_02
z<P$Cj5P8B&=>VoE4Vp*?_1OjjOC0YGL*<BfpbsfWYTi^3VFPZ0bY<l!W^iT`5B?nf
z3cJv<UylLVx@WkpGb$_<@YsHbKR{xTyB*yr!y<Kf)y1Y&IlsG$fJ9j<d%gU57C6{z
zg`7kha^Tg5cEu?O<NRoTPyaiA5DX53OGKn6LG^A4{7X?oVh(S*EMQlL=yF%SCWD@M
z&Nd>zwr<CeNDq)ySK2WA$QDrNZ!G851uiA)cCGX*gmJb(y!R&I|HwydL58U0nU0$w
ztPp*lqy47G-ybaSM8y-o5R5d!IX<H%rC4IvYx2XE7p{W^OI+BcO#liBA31Uo@v>CU
zKCmB0V5sk3FLu3gr@zYmI$Hbg%!BpLcTXvU{}-S>e`L}Q=xnN&>DL`H)@RR~iC`s+
zmyS?Qut~gK9y(#H;}8?1*JCuhSWV91Mo${+v{9<FTUJ6^04xIh3)A6c0{%+~zYlO9
zVVlug<%cW_l5()bZG{*2tar5+sZi%{EcXQKq^nTJb%}o>Dq5-$Oj{*<Um_4rpYljT
z2@aIcX37GhLR(&qH*t+CB7_z!3TwnNF>>A4$J?eydSwO4?~0#v-&emMSikLD7-hfO
zH{KRd*GmWqv?a!8#(zW5Yt^pNhsCr9CxSPmGXLnjKA|_j==APe`z$^hU-J}(*7Drq
z7T~11m>J_E4u+}zHRU%*hT4m<Sw6KPtEfJSr}^oMz5*C=h3uRZr%A1+MI*HuZTfYN
zU&h8)iK8Cf_z-N;Y7}oZwxDI)v*z1>?0`5Q^5`9ueI_dJHPrF(d%vkaK*hiBYUqq4
zY{3%HqSMM`02%R7Ux){QCXP+2_~)NspNt$w1;mlm-gURwr#eCNyHZ6(MZIRZhVN>z
zCfW414c_T!I<W~whm|)ZbgyXbJBP9z+mk!{(Dq}}*3A`krc+;XSJ}!dWg&|!1Mp&t
zY4m3Z2109I6HYd=j5Or5Cg-^}LQUT{e&(MWZtN@$wHh9^-pEoF7%RjQ_ho8G^@MF~
zwC<oZSvSqOWJ==`=#Dx;%XWTOB;vf7+IRw)W&!p`p#J_8{AcH6D*;HZyi|F33x~o#
z@-FHjlGlrgV0S>J&0wiH-#EFk8PLVsJ$Xqc-lD4}$CXD}Y`F^h3*2<`*Lz74`_zr~
zHnUfw={md3<=J8r)4GqiJWDF>T0rVRQQ0@s*2{F#77grmK==Z<T5p5Z!TkvqHR|l5
zA5yChN00K2f629^o><Z<yclf=B$J7xxaM?m@9o-^TP9~=)cMgQdKt!_Mfff^UHv~*
z<M^en0Y!MOBA!Yit1;alB`3S%#j9Q%g$qqf!@=eq)WPQIFHD4|GCj1MhxlZ7xsb)*
zd!J1jQ7X+Tnu<6h=@gCk!?S;YD}E#fMvx30^xDUQK!}?w&Dm8a67=Vi+MJ>$k`Br+
z0?qQ1iVnaf!2<PdIyNp>Hdh9up3-2-OzOqvGbhu!<-X0ubc*3!3(AWYdWAeJD(|Ub
zom+8J%d5C&2*iJ$B<~XVCK)Bw=o7?X7^z$jYOzuv92Beijck=oY@n2Q2VkX`v|<Ca
z*fNG}vc%QdZ)5cX$#jnE?hb+Vc|}<cy#WTt7W*Ylj`j8J;$z6e&tL72x$I=gT_{1$
zjk(b5Yf!n)*JB3#2f?}XJ*vI>70fvfvH>lAeCLcz2m;Nl45@YkXy#ujVBeBtjY+$x
zkJdKmSu|NNwc)E0GHyE=EMn(Fe&`G<ncWEbkY&qF>vhxHpN8Z!obY2$TV1g_fxzA}
zR+P;lWay|kb|orTs1`oneg7r2XuOI}zO1|pJnso&zC4A)u%$hlE(DVg$+)UcudTfG
zHYv0^=p2-@z`afM;ksH}>3h7ZO~WiX!n}fEN5r`*PT@>s7b}z1D?ZPvUh1UHlL9aE
zT*C75CGaxuCU$8Zh2M|gOYJ4?0<V(;>00)rb+^GjxlLR9CF@;e&YtwkFBV7hhmY(l
z28#JQR@<S&ozeM)3&zk3P?+fCIJqc9v*OHd1zCPgIc=pEe+x9Ktl<G?6YxcG=LVLe
zEJBKAC&B<3deRJ7_WFmS_0HqLj@`Y1LakH9=)~uFi~bhcRlI^oeG0%N)yug0l>cj*
z!Jl{%RNez#<5|M*T0E+6tVH6}xre82v?2{C<jii*&ViF>m1(#rh;yokl<lHf;dQV2
zMR@NAb>FY77aa+Ulf3#+Oc8;d_w(I2&WM;ZN_nBy-J%6wX%bBHX4e1|G`ixXiCC{8
z6%7OL$;^#5eyg$WD}|5#W^n~noU2Ip^<-{)FKtN^*LC)d$gF5F=X+~`)`N}Z`re^V
zZCsOi#>qxw%#LDz3n7AP%0m~M?n&#^gp@)iSFC%VjyYVDUax)<MHK(HiZk$Y#T)25
zuI?EA+rs(_tin^Tk5&!USn`4GM)26yTU()2>#a&Qh2H=H4An1?Ed+q2J3f`v0_{&j
zzoa`}nLU5Gh$KnAkB_$lvEy2&b?^Qyn1gaAY-4=h<dw3D;b8id{dhO9!Cr4{ydhys
z<tkcn+^Zj@U;}jVY%iVZI~yd4rjy+{=8pP(jE?nKF>K?10n6E8%W~P#@{LP&=ck&9
zT7kY)4*tG(%*?h)M<HH^I&HEL4wPKmsnGB*X$xkEG@$7#Qdcdwfnp7Yu)Q<(AcNy*
z6wPD<BmJG`=t7OJ>{$%v&C$=F=S^~s=Q*kd^BG5*uJ)L7@sxN8Pu>~{arkg#Q!K?f
z4B)@cKQ@-|5y06%N_LG17v>T*vR&ncFj7BOko7QtzrSQ{a5nfdpDJpPQ5^3VML@Qp
zSDW+H<bAy+mKs*AQ?%KQZ_ToxZN=m%sR4S;kXk`(vBh_3ZBV-QLegS-_w+$ym{@np
z*dBa(_L|Y=O#!seQ7@6ta^eGt>BRZ}#nzKj!h%im!EdsUJHs3%LpSE_#}{(E#n)mr
z^((~%?srgS10&^hotoTl{U+_1rrm8_Iny@^?U%EG|IXL;v*Bd^=$~phd0Q+r^MecU
z`{onyE}YBH&98@xIhi7eFR;Z`pK$b)dy9WPCcGFE!*TkCAl`KUe0|p5kM5lK!|}$+
zIg{Ca-0REt20nK&k<j<=_C{4fQ^d8GTiKlQRY#dz2m_{`2p&EKr*hp<$_9$1U-nu`
z+(2;ulT>e25tgF{Qw)XobU}48KV~i=L#@x&$%5KBr7^}_&Ac)7oy$*#3m;3t+_TBl
z9{(xe-Xgz3g~PL{%3}P4A#C(|O@I%Ndr)R@-{wbm23WrmMQ(dH$e=gLks@Wr#*%mm
z_{3V3>-U)1H+<6S_3N{3VhW8@<ikv8Hm8mt3<CB~3G*v1c*fnPHoeA36%OVregbBU
z6CK~M+<3E1Ej3ZW79m;p`;%RtQmZ-Bm|W{^+|QwqHN;=S!O*N?QD1=5u+`uLx$jA_
zxA{Le14^F$&l=f}QHX7ksK^=by;{`D=u?eMNJ+_Yn9i-1nLa8EVC+tAn)TVCfN7&W
z-ssY<9CL&|lRad^pVj0r=0(4(;DO(Z-5}|x(D;1aeK&o2IC1Zfj+L7ff4O4?D8aJg
zS@zp>EWO+88$8+MZ5qO4CzV!MH{Q*yl!s*}vnSq&qF7&dnCx8%`}B&iAj6<OTVC9h
zv?xH^$k4buS&MqYUrgrBY_hPaK}wO(o8uLv5k?OK&&T7qsPV@{^o-5{bWF(WP6%oA
z!=3dVd_XlrKJpMLfG7kW$frddDBN)GDLT7A))uD}BW02z_xi^27t0tR-TKtN=5Efj
z8u#DOon~;D($mVjZ|FD`mOq{OanHt8-n%r@%+LZ6{_5dWQ#p`<BYS`qEWocOUDDm6
z%WF`VsU#=#L1uy)^SwbYDq358c0_!`HoErpY-VeF%Jo@eJ3K<8D-riUd~X@;URoR~
z(jI>sYz6Ht)co3h&_MZ$($<R{A~d%bflQXrz-fVBpT-33Eyha=hD--|bh(l8?hlR8
zi+6-_S@t@oa7Q&)apr|rUZPVhOU=#BjVr5gk#a?^vx5w`GDk+j&7;YgS}-NrVeQ%8
zj}w@A=fVbd_8qpe=A);El5*191DucKL33GK+U<+ux#}qs8=k*KSqC?ZzKxB)>NH*T
zE?oY6VO@7kiLhYk=s@M69e$h#s;zs!s7w^vdujQhPh(GnQ^^lQ{c0!$kNzF-1ELZ*
ze20Gi4IL%Zg;<lk{?~~!$Pv6X%dc+J%3;zJnVVtk*0SmCeRsWGbJ?L=zk4!cq)ur5
zem=G<A=vTCOUBo8bq;C{^&%U7^iG2}Ju>YFuH@(!-#5dqkN7jZ<{qF#+DkGFywA)X
z5Z>_2NEhEDwy8<S?fCsxIsLt|*6ilGeEslXF{ivF;TiF1n;Q8UYP<8_lc)(rid`of
z#l=62LxYAkWNb8QW9LeCq0@+dt2>8bzp>bMridUruVXj)d_we=taxF*RElzS(~SXh
z(^~>w1$+)m+1zg@I^KG-j$27O-El6_kVZ%8oVMxk-jmGQ&moEd2K2$c-EVcmTMwT9
zCR4|`tk!!p6PO!NuQQs)b1Qz9%C`UwFBoM`wlG(TA&9qzYHW$1J;bHBin+{^A{J?D
zJrVvw^#U_Quui6PeiNpI`Zcd_x)LvN$ZpnY<#oW2;2_cUFP8QC=Hn5V#t;{qi9(z1
zH|~e7-78ryIX{rpUcAZmz1t)!_e#*2Msj*QKRWfD!npoj_usYRR5(A(xm|uG$!ffF
z-|3Y#W+uujSRfbOq5^COVo)3-6gYRl)=mZ1wmLA@;3oS5orSD*28XVw0Ijgel854z
z@p=1^md7Z6ZTqK_n_uP8X-&LQId?jYJZjTN#MWjA*f&Zun=a;>H!9dKtp;dk0E^$C
zz+qWaFky7@15vNXN$7b%XlDWC)C$cWfTSIf)gnDzAW4A71wNk<Y_L1KG7|u!!(7*p
zK1&cORUHRc(|oOu^8MJ=P3)bRjRn6HU6r-6n`rbm+VM8ip^4n^L+DH>9Muk4_&X;1
z=%g<xPk&gSZ>~>$>m|l{duH|`V<&h?o1wF)p=SZ#l#k=OE45KoxsbtZwW<6-8ljQs
zmwsySHCuE&y^kp-7nFC})vvY&@;fX=ZVF@|Ew0s%wQf4Ko2(4ohzdV9nQy-bN-qhh
ztlqa^<_4zn+o$Lp%=vYLvrUtX+mqW&qh6VMaO9+OR&%tU!Q3l9bn~{9w}so^T9wAF
zg&#Ea=kI0A=}zfYX)N_-8Uh`E*LYs(v+O1rc0O#&6ov#6auGltns%Nt7E?z|+M_6i
zf=?zD{qw>0nPuTDE=Vs;%Zn}lyUiS!QT5oXh{BhJbmIE%-wOTP%}qe+HH9!tbZ(i&
zw2Z3SVNdVAmi@gBIbVj}Lj;=<t{#SzVT-y>coa-*HySMNtA6ENy4tLkF_AkGo)sQy
zpI*3$br@pki5ww~P=Dl2(~hefw%VROlPn3E;xRLOi`0=B4^#H=xBiOl7P1Eoc+-xT
z${Cg^*DIxCu0vO1K*gl%avzlAg+4Gi&R{J%=QNSta>UZs;`rpXK7lkt(Cj@#7<T(S
zWI9Z``V}FNw}zBhnvf!)1=G&+DsCve>0)kw=OCN6&x`e-iPhM6k?}^T|D<knuT#6W
z-72%g@Mz3L8I4Zt&b!Z6pvpUEP_v^IN2qFT4wJ!xxe>oD_XO-@S!-D31~_x{=Mahj
z(DQF6$_8H{MM$&s(Hv8-F+ORl1JmZId&DsjigF@cK%|nnbW)vfi|l3ipOU?xXiJ9W
z$r|tyEdA`s@QU%CoHYv&eEwoE0l5d$DF!YvfNZ}RUvS^V^{JcuHXz{d&I>p-!11^P
z|KIiEeLG79c=rjJMgts(pO*6zO8a-n8ezd|+K4U-d=0wU$IorWOPXyik#ex(FtXsB
zi@8EN0mWVBlJ<W$fkDFXuS{SdrJ2D(lShW|^!viHPvTH2rf!dL*#nsjWAe2{+&+mp
zNGSg>S-5`w6{Po&ODDb@>0RzH;&x&tEF~&<Rk9jyu)OhM8JbcUlT-x9uDyg37u8M0
zs?aU1%S|DK02qqpM=r~p?Jowxk_!G$CJ|WYpAFYz#bMp%;e{rcx8A4cTMKG@q0-Ny
zWuzL63!WVaVn?J=XuGB;>-&IV{8F@m#41m_Mh8y1cTSCCVX(KayEe@6+pK<3P=FmE
z3rI=B2#44knWGj(Kyu~tTD;^?Xvsd*@G@8ekx@lqA;6U++dWpRStvOBMIr4qsri0&
zi1M4XARLT^kDJ-`t=@o?gfBBIvT{5JsUh5X^eIwV5XL2J{RwuRDKj&O7nTu1)W0%@
z5GBNvPORbZ&SI?yi$#DV#(1NS5Dr7=JAn@^AHSCIfiM%WzrGS^#>k9<+RMlTuWS4q
z!0`XXJcg4Dt-u0`dPAwjk8|bxs{d&X^g>B@@g|Dy%$-orIf%Q=c=c;4yw9-Y!w&z|
zkpf_(R4N{omjR{YDcONUC&VP}%#Qdr@Qv#po?&qVnCCY`Zv^kbp=wHWah*oM#)HRe
zsh&aB{$?;D5Sh*qPb_KFf|RES(5*(iXJQV*m-tu}3Gh82pX=E5FHQyNm}Lv|Ws*QK
zAEkOe$55~}ZX{N#e|2prZ}<KbU}P%mMfkav;6p>xIMSH*qoE1PZqcms2Y^ZVXZ!M?
zV0q>0FjD3Gr=I#xJ@w$<s;9cR2ymaJbr1hLrSh*F2Rrb%5gZC%JB^5}mvg(!{Ui8X
zVPC;NRm2Wzm0KENs|Y}ZuaECd83<@P2>xVa5n(|bTa^f5!Gz0xTq(N6-p!o)*ER`=
zdADX4fK9%*-%rjHwD;CSp55Xfs(0T(>@mzNnp9mdo82yRuT=YTX1xWY+$i9(DvH#~
zeTlM~k3g;5KkV{Hjnk<Fw{W%cTV&J)TH9rAU?*&i)0t7ljY~4ZLcBZs4q)ly%q$=M
zfDD~Rf@6Hk8s>ke!m(zz+3?#$yx)(Q@v}o({Mm3@7q_^x@8lomFJP#giBSEQz-fB1
zvW6ajqy0pvcgXo+0DZ#|;5`es#Wf#qi*Ge~`gw;fvu<Q18eCq<0GG<Y*jI?y{5qP9
zi(vETp#x+$;mRIeXx6w7+<@`_V738~0%n;;IN<_3SjJ?OPY25S&?s`B1ge#XA{3jR
zqu}OR<ZFjPUJmzPg0V)wjE{gH1^6=;=3LZLiMu<%#}*@Gu5balxUfQz24AYA8U`u6
zgxNi~DHH$kTlTslZwa|gKOO6z=PMk*<C2ZQQ6mzvbQ<%^w$Jwu{vU)yp1MWO1B67~
zo`)RaQy_gZz^BN*@u9oy*YQ`tW8dODz?W1H?3YLUf}#b_Wf(8D-{DVo7=wQCNd~&R
z1kk_utMrwxklN#M;AA9e<5@4qHudC>kr5x-E<M6p9ZtBp$=A@<gZLjR%6|(L<sZ}e
zf1T;vB9OIqrF`%CwoU$;34p}oBE)hymKV^BSjdcGB;jm1L<1k^+_^#W3CAESqdsYy
z|HGqU5d7r>MELz=B`Yvl3^TOT^_w)pAd``M%=TBhA8}D1(ruuK^E!&-R7Gmrh7o4E
zl}6pSg&b&$A_uno&{YK?WOm=v9aU#Agj~XZ-Qt-ymh66lbBoV7uFqJ{ZhN#p3;+bT
zNJU)ci?~I<kX=egfX%`1C)phTg|KvG2av)3GWo7I@&P>s0$v>Mr_xC6pZvCcEPt5f
z0%yy<>lq7jwrqm5(EwEZ=`MX7b@6;j_3lf!t&>SoUD2Q2rYdgN{Q9>!i4YrHI6L|Y
zi4Bgk4!|(12^VTy@Y3ciIZgeCM0A^s2WKmyrXb7#XKOfGi6DvpIHrGM`hQ~j|0OZ~
zKaPp~zuPfI#nK!7-~#+5F8V)C>i>Kv)!^?1g>qvktLd%79ga5_7Z*7=0;<P%L|A;N
zdsB;>OIo`>C}0RG@<R_p&$~h`<?JK<8cnFBXr@};p+IUWN62ogJb<K+>hOsGR<~Sn
z!O{KQx2lsS==!erc4ZnipQ)qKalGj*%HJ!uR(Wp;>T?`C!+(Oq^YOyp;P6P4bYH$3
zS1{4mXwzXoZa(vBpawXW)}8k>9H7!pZ9fGUpr$p~pGi2mzg^2AE7WOtR8O?K$sOua
zFafsR2Zv!=2%kxa0t{1j$DBRsN$8=xCHyb6czEO7cl(^opi;c^UO4>D$xlw3h07-E
z^fu{PZDZ!L99h@+S3PNYO&VN^WOv#2*%`zait5QMt!A5c!<0JuMAhkDWERio_7H&P
z5n6DMG)&t2i(^EA@<)0ytGu2OLx&6*oD9(kH3Sxe=A8oQ3h(f(FSrx6$>B8dzDH%L
zik(Y9ETdn3X7_e&{fKRH-mrbQ**bj&no+<kk=~*KZ;JHqaA(*FsV8SWxM=kqrm}4K
zm(cF-e>WG_VdIgib{c(lcN0Amo*&G&jXi?nhDEOUS^OmYtgxr9cuqkH0@;BQq*vhj
z38|D9u+45Ik)mRQk$s&oD<}N<MnXn?s&PtD`rfm^Hu}-x=1}{CWpnY;-ztoy-tq3+
z?0?(lu*jF5w%lc@>M&NxQnlN5eVOsbQFB_~!m{(DqRs-)!3^zTS~iae6@a!B@eIeX
zeD+PL3YuOJ==}lYJ0;(E^L`SJfU|NV?m*!=Fb7ol9t$gv=}b+Inlpqx$Bf2=ceywx
zaGl0Jgh_M`OD5|J&1#(^KZr5|4$E!8ZTm@-S@}Ce85pgB$5ATluVt;~Fi|;zaO^wZ
zN9Cxn7M7JhWF$i-y0UHHZ`D$#a@XtJ7$(!96Ou%AeqaDyWXvmOS2Z@Sny9a4bhgAz
zV)S8}32y$V=9p?eD>k10>X_XhdwzZZFJagqY<*?pEDzcXKo`qLIxTOZb_)%ibFZz&
zvn|@b$#NCm5uQ%1Ju=C8V5Vrk?pp9%n?@&Zl6qG9@5Z(!UJ2%Zo+3IN`*C8a`}1k6
zQ(0?!g3#mT-q&}+FSGO~30>crN5QIfO30@3i^})b?kMLhk8dePlu=>-(!#Wz#rBV;
zENi3rg|vt3p)zOgHREBsfRLe=#bNg7!uP<e<*EG5%xSYF4j9o?r%GJlS})!%wTm&Y
z<E515y{yU1`Q*-#Xc*5szI&p5MKf5hNZV?crPz7^aD;Y=f6%Z>-@kD9g%gQg=ar;d
z9){Kg9ZIw^v}<o{*S5Atb8Qc76WLH+UX4LLmM}wh>AX&Xt8DSE$*^^XOl8%{Fuvtp
zhh~%NX%nNU<#w$v<sc~Q%6R6ZS=-!ozgMF_Mzf-37~YuOVVjVE{tv~H{HIw)S+?PV
zhdLvDRuUvvZ0|ka5nEV(5F0=H@UEr@*l+5u17#E|GBDel=)oUndk4;+EOu0-6P{v1
z8fewr1o~`yV4z!d8Fp|AbM(XxTSnVE1&d=nGqPRToko_yr|;e36*gVd!;o0OwB^V%
z@G2f}i9+8&FK|>08zq%HZXCnOx~T@~-;HF3vgvSL<v28@_CJqVJwmxWEnZ@lx0wA|
zCw2)YX?KL>PwIkC(vgnwaasOBFyRA&N#}5F@Q73xS-}?n1!`U{GSZ}&9~77Eoo&Hq
z#jbn6xCsCznX?z5r5(T5adpIb4e9TXTCOnd$+K#!h5@G&?{9mtCZt#p^!^yis#Xge
z%ZfIQ7_{1A@Hz#JCvLzrj6#@?s0+LbyT>ZSYrp^=f}ur_cPDTcB@KsbTp>N3yYVRy
znG?ikm7w0P)N7ZL*2WH<@96wlF4;t_wb5?zjjzN&8>tRcJJnBb(^qKS*Wr+XHvhu}
z*5~Hy3Tv8dBAjj&VT^<Y&{U^oileell1Kbo$%g&>ZqJQgh38iryc+Zc^&Z-_5?WiN
zr_^h2`O+mPuHC=%D>4KU=!oWHjnwEcRD2mJ!dphj{>mSR`eUg9^M?_vc%&zxMtw{0
z-?_cyCKsEGEBu*pN_};A4%x4~v>sL~);<#0B){e?Wb7}xjLBHaP?FDH?%S-FCv*6A
z>@U}xp+*Q3-}fUm!Xx`l^|uVIN7-+~L;kr;;h)PC{^u`K_#4H0K-R>ULM8xN`**XH
z$Yr*!Vpv(j0jR*{c(3WHg9r9&=Z)D|7(L8N9{N2UH&ZAr_y0IH%|G{<{Bxhlf8%{7
z|ES<^PVt{Bg&@fO=Srdf?kk1<QNe#y5JztP=T@)(p<BKF*Q(&!=F*g~+_NL5{VTVH
z<R$lt?w6N-IC%1K<Ryw4LZY*tukl{qC~;Baj=+zMVD%y7#yb-G<WilQMCEWu$=zYq
zzIr9g=5}G>HwHFFHb!fzo2<e;t;&7zW21I?c|qxU$4gc$lFC?9Wbr+@0@OX=ANspi
zENTPhsKZfsz27oMD*OpaCDa}=Yp~-dYuz|ilz5+jC+k?rN;;uzHtAhgA2AmfWxS%|
z#5o_k3L;H99VT<m_;8pI-+MZ>qlFv~U%@PsGRl+mz4e0+E0H64@J)-jEY<{LcwW1@
z=iKl9A^AC1yCa+V><)^44lxHW6KNNeAM^F}tRwwhM8pHtG6IK{kX6d2>Uy9ASVsv+
zuT%A}SD)Ytbk{7&nx&c>j$AV&rRcvx;Blpg;xKARO89Ek6BlEe1D;&=$-lkdKQH{x
z3IC6abZWO*xJ;!_d4*a2h6(fLWrM1fs!Z0^&iywWJ6o8iQ_0>h5d==Bq%L328LMBh
zNGN1Y(!d7=$+^#FdT%Evh@6v`siX^;EqkJ_(YB&Umejl$A>K)kho=E*qLDu6fs(gv
zB%w%UlW=K|=Cq@UK{UE$q(g;}bVmIqGiVb=A{$X-ivFlQhi@pmOmig^=rUN~eO9dy
zMz!XgfbW5N(Y%H4-TE}rU=82vy2q?4jIUYJ4gV*+<}xcOE>RMO8mJEA5IkD45(z&e
z56Y+~|1iW7#)6qAXR$8s#V@#zA3&&?Uvk4Sw<VvIeZT{ZhA7_W08tGKDfkIS_z4$d
z_zgnAksx@Mrt#IW^DY5m{eFn{65582X}{q*Il#W4g+h72t9iWFrMHJge$Pjts1ch(
z%~l~)4vQPU?y5-7R3giASEeM3Y!`lkoK;E#jsGmw8Yjv{5*{e2nZCOa_2ZXdKRx#A
zhTg^}w6#n;8@C%zd(8!QS?dNxzf}U-tuWIQ4gfV~uH-VSrxZ}|k+WoFr^B8IEI;y0
zevS&^9ORiQ4vKVJ&y>YI(`+#%H2|Ku#2~R@y7N?#$(WB#2hjnYo6~qLebLB!MibeM
z_``dCF_Jghde7Im_oN@c!NkQmz&=RtGNwUw!%=OBdHx02siJeec(Fywc<rA9ly~ve
zv*F<v2)2e?lOiIOXxyW@@9reN>+F!?bY!9@*BT0ciSU5Vl1U{k-e(#o6rKYjG!FX)
zLyVD^Op=V-gS@2D_DjY)xD};(rZm{#p-#d|Pk!^U`VK37GmVeBzW=VNquRT}<A*2@
zmjvG?m$7>NL6-6E-+IT7`^XpY$`JuLTrz&0gv{<9tq#*P>RMks2+o%Mb^-IfTVgS3
z=X?I5#9J@y<iH2i#tpyYIU#|1=G^atv*H2vG<tfDh(xo1|1prQBRy60oq)815|-NO
zdw4_>S*kIIj1%ch6G_O{#-LJ^de|4-^c>xa$WS+~!a?p0NIcI42kAtEDv3l+;|P)3
z$ZI%_LwyF8<3G3n#tQKtcl~W~@V^tW=L|SfB4Rx4a-r)L9@Q&5?MNclRA6&e>?%bD
z@jX*s*r4Lgl@VQ`a;>qH0bP;fV|jHI9OeSSf1k4G!%ltK-YJa@_K7IisX`J3bTFt{
zaNZ!jHK<vK18Omc4V*^0;o06?W(gO8oG#z4)C&YoCER%JoTo@<gxWrw)7Jc9HQ;Qj
zWQUn(ZaBIX5GXh$AR?G>KsQVY5y5!DIM1CFE|HAykKx>URIj8Ot<C}-;lz$pMH8Jq
zyzt~LF$Nu5I#warj_8=Whaw|>!2({)wh&!g-syCcc3V(EQ9dz`Hz11AM}$gcMOJ$0
zY@6V5SZVn|zp+!UU`qUPD%LZmbCZi>fPF&LWv%<Cu{~8(+Di~yd<9XlD`azZ9H3&k
ztzj*XnGb#^@Y(^f%UPH9wB6Km-*|o~Bj}<w&z@YcB{*$Gw59Cue8@f!L8V%0y=yM0
z{Tn6B$o?GA;audbs=^sZkidHXki9o>VvH=6<!oIpveb5Uzcs`VpJB!cPE4NacQO#1
zEkOlEIl`&tt__NUvt_VS$(`wS+=ww~i@4@a3%irEy*nzKI~@#Zw+#+_6Kub`7JL(D
zkwC>v)L+<`Au5)%^p5{zqXgsK%Q)NRWtIAZCg6uMLa?_L)g9Q@RzzD)5C@L<fwqJg
z$(?wMPZ;r?gcI4H4-nPaTvge&Ii6e&*@K>_Z95N372RP`2SddRa@!(X+)-RkC2ZS*
z(^_~==lTyzen5x%UZv0iC<o3W!AegmzOeE_R+>f}B~$~u^L~4Ga@JHkWMOx3_V|Df
zzg4C11bh=`uo1Otepp~B3u<MS#gcXNDe;=i?QN@<=;~JR{)Ym>dAtg!IggljoQ8tf
zsc=__#2{jK%~Fw;>M%-D{H`>zKc53+3q8_#a5e`Vbq2Em7~3t;g{4kNzpzY3mYPK!
zB}QmFN+7o_IB`={Yo#DKTfzy-@kF-m4Wb-d771DD%ZG`Umtmz|e5|cEiD7p*aJ!S&
zT3o8F{zC!bn{l$eH<54RG!)b-n0hc2u0pW2Oc2e8=8xJfbjccSCrk5lM_o%xwQRuO
zxpg!rZk*51NCRW}%q`UQ@dc0spU2TbFav$%1hw_<gZn`2RWAj(8R<*FB8Vv}j~uzX
z8R0(ksm=7={n7KfIX%|C;@Fk*Vw)IV+KmMz9%vhW=J^zL?d4U=h+VkIzDnY)ujEV6
z;Afse1a1oOh*GJTDoMyLPVgA*-hU2x1ZnV-6Eq6&2)wTylW6?>>7xA0!Q4t?Epfpw
z^d?@%3@vGxbME8ESCA~NIm?4H5A5g3<@qI%mG0Buy-yLW(IvVtBbukEfrLx11utFN
z$~a7q$7`WLx`-rh2Nd9Y?`CA1?6Nt9MhFPHV}1d;Jzabj=jQ#Jvb7u<QK`{Ig(*DY
zopOW`CS<<o<3w9=iC+3*Wpy^_O7^K$cQsi4a9hk&Hkj*dw@UFEuwW^ta;U82VZxHR
zy|xMc#T(;Z-n!F;%lxuDnMTebjth<My(%%`jVe+i+*KHdasS$;;ZMVD<U1tPScXxw
z`?s9*s}G-9*vG-Xjek0H_!9^#g@BlH4v1d5Tn*m2lVA*X-c!1|c$$cGCVI!`VLKur
z>#>ur?qWvRGgei)quu!iVv%mLDwlFChHCr9+mo33oYs?+rSKIHpYjor?o&lPU+^mG
z{?)JkP-T$r-zR9Ni%SNMUaT~X$>C$vbT$+ST>Lz~%5UHQ;e&--`+QB`x=y=%7<x)A
z!H+Nku?3H}ck4X?+;af&)UP)1N5lfkaIRPLnmA;C1%@}$44ofTD#gftlzLuE^6JDP
zPBeDapy;_!Nb6MwTK-auQ^!%)p|3E|Nk$q~1<`=P^(|dfeJqUXRQuN`X#1gHi`WNi
zB^R41z~B;72M^P{7DlHXQj1Gpjlk@6|IBRE82QRG_*A9iQj<r0b=HQxM$|DBqU*e{
z(U4EFf24PrNQ9{8R~z>uA_2YpC8L}tOVrN4idD|b#4NV!D5ib6dGG01TLM=~&1*w3
zjm*0bLfRKi%=6E)x7ME-512N6r6sId*@rIQbH)JUqWeUGiEsh`?X|dQi;9;o>6kmi
z4(N3Dp7X1RNF-7mV&-4n!VODDr`+2~g%5ps@!7x-HA(JdPBr_e&!!yjrxtWJ;Lei(
zqqaoml)_p6)!0k;1;YH5DaG2y(VK-jZ^k~?k?waZfxLoseS%kIw_v)_)kDb*<tsk3
z%6HE5unK_=HL6*@n*n7lZ69uV{~c_Yq(SY=QWkjZ-hOf&bXD|0%KqBuw!5h(J^YjX
z()Ft0O*T2Gs{Eg7xDEt|9;Rd|ydxHjtvWs0I=|Cgn2y($UiV!E>0uWX{_p?OpNhiM
zcBkVac_!x~KyoncOv0&+EH%X#IW46}7mR1JP205@=w{z_4p*{BRg^eP9V^iYdHy+V
zuLKH@km7g$ISh`*mbXe;-w-mNE0mtK^E*9h1<tC6c6`Rn4z_XV&JSN%eX`bPo1xj7
z;Jvy&nM3{}?d`=6Pkvp_kJZs4B7^tol)=5pMS)AxV(kYWvM``8Ptn=hh<T|R)cLDt
z83h-I-!r1?Ougy!x-wSym$&-)Gf1?_U3FJKa}&E>{n#d_(ky@SIHHn=w2J)^DPj1$
z_oCk`(AbKp{An|>6rCKYGjC$~{=;9RhGSNjAlLA3*01riUmOcIO3}(tH=95wsl~q;
zy;olSq&(b5k%V4X45r4s7P;G3k~*uP^UF5<*tJA(LRnIDVV>UcijvxavyUgh)M`h;
zD$RKl1cJm?2X7npqz7W)e!;H~-bDZY#D2UR>2>PECC0R8PIfX{RJ@t1O5hzz{fG^X
zsXF*wE6c*|{!|N7eG~c3dvC&sC_7-T_<LG~Q$kB8q#mF#1B{BdHaBW5PAA8RE`Mph
z_7z5p-7h@hC;kY3jec%CrTCe)>;7Ynn`Dun#VQFG)>h{0#R=kG6Uq3WG%RYz&WCUA
zx0F6p;DNv9upDe&G%S$h@%&=oUQ+0{>wR(h{#9km;*BL=Y7PzQR-;zEvN^qU-Pt2W
zgtuqpMJIRVu7|DT3skDn*S+u-TT|FKxjeGD!B&jHWH`=zSm(i{-8>$_a9UKz@!cT@
z6Qzt*9rPwMOZFLUXUuH*qx^FJuLIuVKD^!G3^op-ouZ?;mBSet=DE_^Xj7?DN3Qp&
z!S^Rx)T#nf4wLww&}%bkV;mOWgx_8oW#KWKxDz;2^Ik-}ZJNQhIK<uvbGux)p|vot
zx{2AtwJ9}J@`10MnDSJixx$yDj++~tf@ylZ(-|GsVcY{$xdYjF_m&F>)7jq{)F;#$
z)CTia&J%EIqgRWIvGtyz;pkOKvDKBMf!L~Qo{d+AhOL-*ZKro10}U#_Ui709-85W-
zmDlWXvFYn%ZP)4+xLKl_6JC5b&_;y5Iwqt=#(MG#ZO$&s5ib9YWpN2@^oDY-Rmt;S
z{<PJ1@g@Eo!9xYf1|yx9!{2{zURD>Jen>V{LLmE;IHA_=Yf7=_KwW5GWny4Tb!?2(
z@D9ay&Hiaac{7n7g#q`+3<UaGbo2{n?c=}A+fkDq6WYXL%ctjnYUE=z-d5G{VNYdD
zxbwc8%sl7KFRQXO25B3Dy}PSbl3$4~cPLSFX&-Y+o_c9cN#6Cva{92~8#^+#tC5c`
z5M&BbFFIVP=GL3@n45Ssdyhc4tZ}niHI~&krr=vEb7w9GS&+!cGYW^^5MG1qh2mtL
zQhOuDM$5ZT_pJw;E(9est4;1R>q}QQ9&Mghk5hOPdC0c^!EhXZVRGkckIfu*eY&!c
zU|PnuFnV2VrQt<p&Eoo7>9-XYhO>%!BN}vKT*Y%i-}41;`D&xF@Zq`E0G+C8C6;PS
z-{V2(_2yoOX%56X_6(xsN!G-tZB>L<XIz)(hm!jA_Ut-%lAKP!pGR-^d{OrTal=Ts
z(+Ll1j?;ZHPtAyXET;)9s@P%z9dD<w-`W$+6*kqi=r}*Jds2?l$(}oCU#qCLMwC%?
zrVue5-Glhn_{vWPI-UtHW2e7=)~ojST_+JesT{BJ%5}F;$GTZ#pUfKFrDCNpT5<k2
z7B`F8DYg1WZ6>FSH;yCM8ku}a)s_<DK3B9hR-LJypE~mBp>{^J@+E#L)PqbU(75t>
zH|c)4{%7nCRW2IldqSkUo8^2K$NT&v)(dlP=ZAcW)+_QD=pY!Aoc5n&47y=-n%qG*
zRRq&du%ntfWtWqK4zp5BfuDJ})N}8b0oe5ctNtFFD&M0Q2fK%7K6<~nS1-bTQ8_NC
z={!2N&vKcb$9jP^W75MnMtb0O(7P{Od1u3WMTdsiUb^tc*%F<mZ~%gFIme^A#JFo;
z?;`rq#(0x_yqzDfrQ`HW(OC;D5lx_Ydy*E1e8lNH=*Aljg8|wvG|Y;a*nF@GAqyB;
z3*D$HX}HOD>nc35dikoH(B2wbhmXS|XtZV9<=hFMOZ2yz*BPD6J}2~w2<P8+m>#fQ
zJ;vVBuH(c^PS>);-x$o@99_SF-x6nkF^8<)H`h`>xVFi#y2Fu%OXJl@IrcI6_>iYk
z_d6kxaDxXD4YQ}M=46|4>Xlbz92-86RCnd{@u9sZ>u2Mazp}h!Ob!+>_3`b_tjLhg
zk>%taq1?1lJ94D(=2ZwH?8G>evEsVlZ(FFuZ1&t~bWv)p8p?>U`grwG$9%MN&gocH
z-mm1j?D;y(0(}<2?(=X_gKTJ!^4!hQTDPy>;%qU5@9{)OJ9i8hQl&|o+Z*5D?zx72
za-MR^XKJ<WasB5j-IC^0?_>^&2uEG17Qs{Okzbbg>&g*TZcEbg9l7m9Q{nsebF@e_
zanEA(i14&YO+cY``PgD&bjSF!j_2X__KDxG$X|&Gb-WdZdDtczWRRYHd8mA3mB`D~
zK15`>)bIW2$+|O=z1lhaeFmcT+8i6^1%g919=#0(GX<QHBab?+bxc>?PoB;;>pa=6
z)6Ug*=28peP6xRLM>30Anav9*ynOKPlWRW0_^X7Nvx-iB>j^1EGVv{wrIxjxf}74l
zbfW{_VmvhTYnN7Tf<kHQ#{?R_$kCf0@ENA#x}H!j%};QwR}AhQ^|Q}P7!p>AN2T;$
z2^Ta@w)y%_yg)TYosF)om;<?bt0h54Ctfv$NvN7_?W5D@1w#vEZ}yrr49ykcY;(wQ
zE@4^iHpkb?3SHiMP!~!-oLyKVRcxFrK-7?S%IwRX)vxZ1x(l%^h3Crh&xDDilQnI7
z1y^@6oGwY=a&0LY2Ld;{(EPLuflLss3ik9!lEBb6k0ZSIZZ#KUmDTS{ebsiD)DwHQ
z)YF=v8Z`Um{Vcb|W#4GU_-kzD?HAq2U%C_bgtH{r(o7xHJ(Dc`@jWl2E1@mlrG*dc
zs|MVwdkRK-YziWRiwG@eo0PThs*caWdMYB_$Og+9(J#8P#;abwI#F4?>GVD)*}i@%
zpfZ6sI{0L>p)8tqVYtp`C}H0APEUerT*cf;N%3RNVv%UgG26AtoIYK+I`Y)OC4-Fh
z_QCefD`^6kd8qnZZ#*Mbj+CxWvl^#Xdw(M=a8moN)RpFovWyl_a-NIdRn*+jA*1B#
zw;UP@sHkbzxsos1!Q}M7cBD_$px}sTz7B&xh7}$Eh+quM&Y91|R~DilISZI{7DyYl
z$FW~z>^W8c{A}Ta6oI*o(bvbztF&xloSPDAZo1p`Y1v~F6|ygXNv9cfH2%oaHL~cS
z-`P~L%ek;<eMD^i(r8oEykouN{9?Ps{S9?(r^t*6D}3|%1bdIV@2!puv}>uIQYmx`
zYfM31*~VPn&sX}g9`zPz!8PrPnnhn6ZN~ZH<@P-hONw+BIx4)x_Wm-7?cx~?{*l5o
zy6!tdymJdm>M?zBok!oeIFD#L^lX}a$uY5t{QkaSKUWEz1Hlx`GJHW*9T1$RnQS5$
z*Vlh1PPO=fjn+GuE(~y^Bh8u;nBk291@AY-FBgvc<XUs6HPxK(()Jj;x7d~4Gs;p8
z0hw>6fbLj`!V6=SJT`pN4l0PZ+5^7qtzhZj<I{_t7M)vpa*=>7sw<^dI_5QFUSmKv
z-~ZR%d&V`Dec!`$3t|D4QKTqUrKq%_i-L3zLXnbSp-LNp&><iy0@9mwq)Hb8L?8jI
z^b$(w0qMO4kO0a5po7l*KHrzm^KN_<FE_d8p1aR3Yp->#%+$=Yu=+X5X#tZfXRfkY
zv#ISYAhj^`$rc(ciQE^*vidlj2xH2YI9buPRq5)?qbq_Yr5|@!aG8FSf|jXgwpJyf
zsHNGGcIDQDaxQIOl+W;aiIOGjw9xQJEQ*#>vn}V6R~Zx2nd`AxRL*C^HUSSgw6)jt
zDV^K+2DA6E<pi6Z=6F^q_eWMuYC@{DHJG&+>(2EkMN2yCfpVKTXUY6R+rcW)b{EOx
zsTV}QCbnh>M{U&SA+~AB&#UoefuX#6-v%cagx6Wcm3>_&gC<qjSwdS0p;F5c!9pQ4
zB7{3C^ZLA>q54X_$t=<YZEKfXPOFF9_O`PgtC1^+4Uc-AI4PYOe0B3-!@Fev6GOaV
zGLj<o9_~we_2djuyj#_Hk)Pu#cU*js&3#4cEmCwYMKRfv3&tVg(L$#r9{u6=3zaXN
zR|DnhjDhvGvwN_Co&Rj~i&ft*XfJJ~j}>a8DYAXqX9|Y;vhtkIr6{qrdWJ9w)#Xp?
zEJ6|pNr**J%($$C^LC7kS)BmNb3`=GbU<Kn(wdM|pmx?O4FW;WzkB<ad>cy4E1eRb
z>O)j{te+oUOs$*e72T2`)9!h!=1vdixL|In{T`2SuDrjs-j$f(!3bO}vWMn_h~3b8
zc}Z8>R3Ram6B>!6Dp!HLkxw3r3tI8VS9tO~S3_T{u<or!WK5KG4JHKD)49PPHts%G
z!>s12eP(!{i;(5oOBVL|=!9oz&4uu&jo@Y0Z4LUCRmp$8a`n#XO|W#8RVtcCWL)sD
znxG2{rS~pzPakot(s<B*<awn9gQ-Kt*Tbg^L8hI)F=cglB0ey&k)pVh$bO=FE2Y|O
zg6Y$E(EJJi7#o}?b4{@(Lec*H<<g>AH6dA{-pzSdS2=_)%C&fD>QETWWCm)ExwlpP
zAeO&wo_s2kxw_ouLX2bK)Fx|N^swv5C*$LndK8(Utqgv;^705@gWkq2jv}69(YH23
z+mHuTXsnlH@~|Qs+l`iHmxj?ptw!lsT~Im3lLq+Lwe~2Bk-brc#)V-ta~XaKfG*F;
zoIKLg+>H2EB*&pCmys-fdm$6oy5720a%$9jywx4{7ueO<C@X2>jo%8`N%U)>Q(grD
zrAMeokxpXEYenzAQR(IHKG%}DaQ3hx30iL9FYZ*K?Jwz$JJh1<D=x|7jMJG6is--B
zr~}@=X$~q*JkOUNGOwnGcBq5P)5}Wp`mJbg9g(`X%_5(R<P!2=UMV%c<lTHfIOa&2
zN?cbZX`sgaMt2Safi6kV0cje@$dkszGTLJZU$(_xB=1hkwbsNrSKq`Zux=N<j1$D{
zs#Y#;R<|exraV(ED{k|ERy_<cgy=`L5pn$^fjYp(;y1CSSw~mqz&42jpvCeyXiMfT
zLJN5A`Z>6_mxg=|L=0W6as1Cw3gn)KxCw8&rq|aDuDV20pW}ltGfMo=TK7`(J?<(j
zdtrvAuHiekO4QfQ)q1feWSKH>Vh~!ljLDAp87F4`)mTjDh`EP1$cZyS7WvTxS=AxO
z$4Mnf54vTQ8+_GKRJj&oJbAj|d%MVpuVE}v(~9aOFE|zfH8JfH^)8O>g(V9nR@68M
z-W9p0m+!F)SKKr2Q0gywUm75O`^o2(2WxfS)R<3P^eaVwLoNOKrjOTlo!Ya9W90=C
zI@_XIgG@N|?sl+`_LK|n$!E+EyRo+{FV*F{&-Qg(PrvL^5h8bOeT=@n5#Fodqrjs|
zymfB<;cIfu{d)3YJ6m4^b_P~Sen$uo{*?s_C5(KmL1Etd(BkRbfg1^00G~2n>uz8?
zfgJI=Er|Jk3pw$;4cD95{CTBfJ8kX@5*og~ydXi3-sssdPdcv<oV_16rqc0z>Mls`
z6x}BTgbcH-=klZVdv=8D&fedwt2bHIPerwU=1;-3wPt)xL4dvd=Ub^T4_Ljs2Wnk%
zV8t^F1UE{2a252D>)sY^6>*K5fsm<6GR&@82p5z)%>{N#RdXC#jfjhwqaQR9krMl6
zPb)KGF`z{M2Ui`-UZ|Fsl(?R6?{c2F-p179(#&}v!!wv5idHNhUZI<fSh9=atD85S
zH*^@Af91mv%cDkG{lgP_4`gI%lrVu2*_{PWdgkI4`vRT>h3H(TTk^$*!}9{se}GoP
z;gzZ$ShUz7nx{06$Mu98d>(z(iq<c@H1G1I?bgclIn19p_8Us9hPW2=#z={5&bnc#
zbK{uTmzNAH_Jb8YXg(#&s2S+PJ?+yN<0SsN>T!RqR!%n$Y-ZT#87|sNt1HSi3y?CZ
z+^0`VDDe<2soN=TYu1nkJ7d&qZrb$A5K369mgU13KJAZYi|i-P7xWkwBrwXzp1(Si
z%Ka7z$#B4h?ok$oQ4pz<J(v{P8-saRDDh92cvOPV7Ped@L`WrnVOdtZDDR<|SMh4<
z`ewXkmU(l7;{~h|=bms8BgTzS`CMPN70uHmM8=4)(IxL!1GQogvZ>G{xONm~fjdGK
zJWyzY0()4G2mrh%LI)jAd1D8G0kn?j&@KdJKX)SYl}wMAt1)}pRD_<BQC)g3u%-(k
z?6M}8<cohAr*&gLzx&c%*C<NXE?vAI!VS&-7PJ(hR23k-n|6$Ktu{xIanZ9CzL%vn
z(h%HFIG?AI;o*);2^lU<n;ul(v8s%ub=yc-!SAp~3r;85<fSp4@Gv=NIK?dn7QN5P
zD)Ur!p5Pl@l>S`Y_s1lUE=5cEuY#9v`-<xcxvZ}%P~xXrjhns)w#Taqm|Qb$lS4T*
z9i1~;E^ZGRQn**`65?#d;*L$p{^(<n%{1CGzHLeuKU2*G`B@>-m{Zf7<lFD`+*&OW
zrkbVy?w?7#m6^&kbPiO*(9W@E*?3AFFu(}0<m*`<^u1dk?5%;!Z*!s5p)GEE8d1eH
z$|@rl3UVLiv{{6-_SNp#`~ke(XqW$q6ESVjOJT`7)WU&OXyVhnp7~1-S8#C>$$yzl
zEPkHlAuC4V&9!2xOrPYs4_>`oO`}6g`-mEC<UuZ|rf*xkM1QtLIHt+Ww-@p0Q>~ya
zq29Yg>0`M`)!F679EI4Zjx3FAjC9W~0!>j&XDm9Cd3ke8TG`iNOHGtb){QI!a2K=9
zxEd~nUXE8hnEnhQYcJ1XNy94Vl9m*it1Cnt@CF{QW=>d>IoqoA#|BwYuh}O9VX$bZ
zjQCKN%0@<yT;g?nvy?D!v{}yy&(*M*<2t>A-Qwx<8miv?My34*0IAp$2QN=GP^;OV
zvVnM!qXbB`0o6JE`QGUDV*EQ?O|Cd+9;=@G6}_SbT6_lb8zZfoDR>Rb`WUxHiB=p}
z-gAWAh;B2#6<eXEE$5@J8rS+~;rMeo71y;qxzv8TfaX6KR_3-^3{1VPg9@j2F<YdZ
znU+R3q3#d^lo@bt%^43JsCb>$<XAJc1{C5hG&}o>H@KEn6l&IR^fM`+9_>lw1uF+a
zpfkzSv0}$19!)4SosU$&{wUa}(N%4`Xxa$oKY(k9Y6PyK$PnVbCP4+j0?-8cw%f-7
z@Pl3XPBST+@NAvupD-G`JF}5=#6LP@$wNv_25;}<*1AxEN<yLaq3%ZZwHs6K`*(V0
z7YDL3_zlqw)eWJtVsoke^X*(PUjx&XH_VHY>+(XX@QP<OjelzUZV`kBnqKnWiMRE~
zvxXU*A}d0|@62>nTMoq~)AYyLEgZ=_dh{#(${fpAQ@2@j2p?HZ`^LG^4WUPj&?qe8
zRPB28awaUfA^3w1H{#^u?kKH>Vb@`Mm%uG*Bl41||4ONv;F`TU4Z}+Im9Qet{&(_b
z-Vz!m@}+%y8+W>izDa0~11<onH?T<Qf{f{BsXKWU-QEX{iv`k9W}xGzjb1lHZqH0P
zz2xs`E85*@Q|Qk6phIm0^>Mz-XRhc+yDYZ<z;mgr!zadq+u{J2Fn#$x@G}Xs-PXk(
z^EqE39p)@kZSHDpUZeQ;Ldln#NX7GBbK~P4f`OP1vxw`^(&d$OyV)TbBVat_ub<y3
z(W#Ap)yQlt(P%Bu^nQ4I$0?nnxTg2!h(nr6@vzRYRoCLKFlxg*iWg-aandAi2OBp&
z*U6SZfF2>XJu}O__QSnMWKiODF{;TM)l(nW+XLrc^Vbc64w(bbW|9PQ5(H5-_@C?B
zHV$ZW*i^oX>G$&tNrND&Tn;Cjhs#%3CK70X(e5F%ERR$cO3B_3l75BRHr=oFsnK~S
zy;XG(QL~*Er07|vr&GyGqBb4^UvP&x!i#`MasJZB=6CBT@F?f4w%2Nre>_C?P(+fk
zX&inJFz?=Pf1PhtyTzC_qo|A)-zN4(1i3!g&%x^}-RtZe&BO99F*lOE3k0=&d&zE(
z<=JvWaLov8rqGS;?P=4<idS?wF19234Y)^J>hwR2<ng&(<Y+qbq42p;jCEaMCq_vK
zGCUJ}XoKeko(6kbN{utVxx9CT1GA$*70<-`O8k*7B%Q)x*kfZd=3GSo6lt91$jTgN
zuE#i+VW*)+*s&1lOKcjFF!+VuT;q06e|NO>6nZ23NZ%K=+yR}f)%I7LLI!VAw|nK)
zrvu!xceu8*KvwCmQTvH-B*IPj7#K%SXNo7D)^YpHu%e}q^@<3rGY#uay&Sr;hE1O%
z6SLRzJ-39v1Vh=eWM?%=@o*i~S>w-4%Fd(^!S;+^NR_ScCNEivZvPReMba>|%~p+9
z@rPxbsX5KKwy(v^w=9hHEk~FY8oyq*%l0ly!UAWQvfJ#tSW?e6H3<)3^LWe5)w?K1
zoVjg{D|=FNg@=BHSbW{TB`DOQNULI&$v%OA&eD2s-Q?_RFi)C$)o`8=7>U0yGbmN+
ze5f(>CNMd~HWiu4AXl}-d?#RvHn>E-2gH)IATddPlRx54+LE<mwM}B`#8_yUH%=es
zxcevQ2R>ha<UrGTR=K?UR{Al3Za^?eUuu1FYgVS(r0iRr-aiVH(X>ZzpIt|}AyvTL
z!KdDl_&VXUgr~PmBXuiGB%B@;SpP&AIgy*Y!uk~sgL5)hQUuNN>Qg#f!xn>;K!$h?
z6t_m@b8BB08aj_*?<@0Aqe*eOv+6|w>|S*ju6le+TA;mF5_vlyBwV<C&WcoE6FWN?
zAj(aoEKJn^=wBl3IZQtzS6zN{_RIk0xeAeU>$^p3miG8poeT?s<w;AdG*jW3_&k9P
zS`KWS#2i1FzHL4-=e4A;fJa+LIoe&J{92)v>j;OOk#YH-vfngB5x(NesUe$%y2uNn
zCvll75bMseT#?7luiP7rb9J)T?tizO{sJlOA#dDkHYkj`VSY(CPttWR+!CZvgMF**
z9+Mh+n$-eHJC(eW<W0<!<gBa41Wyu=46|Ob4mMFG0VI00vu~SiFl2ma^h@3fS(Q6s
z-d}BVgzj}Q7k*JAO|m;5iR{t}MB7|6yt1$@)+K9%;}A0JGAx6by0^Bx=$;_Ay~2qb
zg0O0LvRic>TIy9kvvxdzaB63Uk&#4EEL)z@%Mut#K2q7Y%96R1I}qJ2%o`3aoBD2T
z=H11$j<g1PS4h@ORXc#<MARk}_fe285ThWMSnwh07TBEPJbl6Cm@ha9`4i!7qBd95
zWR)oVK7wwQKoYwrXL!X;9xAkCqS?@E>{K7KsYkqc*Ioa7OHd9^e^Dn<5fNOOSKQF3
zNB}22hLN7{F$)=4u}z0EkM`JQFyA81*cQ&kK+bS4P1Cs1e~yJqWgR`r15Q=kl|$Rt
z+WB69>z<JyKMhuAoyQgNRJ$y_@{EAi+J{8XHx=F6s{keOIV5>9&LzswK>?S$K_0Hv
zG`(?;%sIh}vcH%p?r<ZK7c7xp?cgF6V_iyoU)798JntP@ftawohq6J?v5QsSAUwne
zOZs28nsb7maCe`JPD?~WPaXZ<UQ2vfvrJ+k{2^+A7N^(r|6VUDA-P1KM#xUvwA5Ix
z*$H*8G)<o%f5>xKTynD*EPFgKl?gFx;0%iwl@*=6hr7-yVxC8iE556Jmfz?s;oaKT
zmfne=X2IiV8J29`@R{9wZ>RN&6KIMIaxT5ht#pdzm%J&FUF|Q2Oz0)oi+g*#Cy6Zf
zH+EimdA%Q!S}F31c|YFf30}M-B#!7E#a?HapQ^rovUuwGkLsfN50M7<MstIPMb{y_
zyz=`bw3j$_6s=oSVL(Db0J?forr)7<uZ4@2T%g2IXTt%5fa=$55Lb8v8Bf?Xv-TKT
zom%gMm-*vlFt8RJ?HQ15YzVEMa;AHaFY8KlO?c>V>+ELrjbV!7+TD`*kwHmbD@<3V
zg@9FJ2|Lwc8qir~X$dSm+3<SbBuc_uLeI%*8<hvO%yjhg2xwVdN%dlMkCskwwuq9w
zbsCx@uKavgm>IqU(w;pN(@5u0ze5QHaNM`FfETaHTkWGgi1}gjJ#5kCnP%mO&1zsN
z(p!+lK<Uv)g|6cHmY#LBm9wmBqM<A<r@?*N)anZKHH8CcFSanAOmJ9G*CA^#CR56J
zbVsQ~z=viRT=t525O@DH^ff>wuPo4aE<BsEs6DjAVnszM>0`ieYGFU20I8CrINEu&
zDOSL;AY=Nq8`1_+J~?KduQ14OHSq2M#y#-l<sBNvWJGzYkYR<9Dgae4699~B##Rzq
z^RB@(YR1-$EIF|Hcn)!WCOQrl?c>d<mXjG(G}og<9QngAPFC-x1gs{0hJ5>lERQ8T
z2;D8B9F**R#*Dq<h+z1_E(_Ej%8tS%c957ixR0(7{duc=3TnnV^wx@{@W>tWZMNa9
zLpIKhFZEl)f~!NF(c`B#y%Me21s-*9SpHoL-=M4d9NhL|BL__Eu;9QQ4?K1~EF~b4
zo4ookPU+lV&5MqTTMdp!_Hhemm3IoWt*9xrn7p1f+Q6<{&pg>r)A6VN5cNo!X_eCe
zU4k#@*N`Yg|7nbhVf9z-%O_@Pj|e{^id5#+pTWyM-z!qzA}&=jXE&5+gbCLp##ZZF
zN)@nX>q%+#hdo*o7^4|Z-b}j-ng#S<>e~)y3f<?d%g^dSWzVtdYDhNUw$$84M1QyJ
z)AV%Dd&SD+jy1IHGz`{~-Y(mAS{NPyOIFj;H6kG3nDCAdfR5LSJF{BJ079$Rc+Ewe
z($mQG8B%J_2_vxS5KlU6a#G?6J20`Oh%0;`G0NXqZ7*8gssu>r2DijIvw(1Oh*iQ*
z0tAA2p4p^NW2sWS)Z{iAUhpUcZal06SvVh@ONBN%n|!^%&%(PgtY|rQ7G!B@*Q;>%
z^GK(X<&)mx8wWbc7Ea!kx+C}q(du#TJ-_s@>A5f`ZxLdgX=HJ6a^8?vio2iLv}tl{
z+5J^V2fECna(B&X<l32si-XGvqKcv~vxVNNcDG4JX;~7i*G7iAOVWf)2*s1}Z?lR1
z20Jl4<j9kXAga74l|$j~FBGgh{QX-y850P!E|S5oqJR9j3|Yhht6KAYSJ<$Yv?zT@
z3#`_Wzq(l?1+>#scXl%A95!gnNj75160%M>69)}vGQBv&+HCBHxj1#~L#$$A_p`SF
z;4CY=>JECi6VKuDvA*#?7&({ML=0{3wjiJ^&@j1_+LSP7#^?Bnpe@#OWgv*ewhMEP
zo_O|EQ)E?3KQQ?&lczIu^CoYhf~k+&hf1i~ho=o|4-$^<K;tz*x|gm=Rx2*QP|<$G
z<5gO3LA<rRqdbM50<ei$mcyq@d<#LC@~JZ0KJQ?$;3-w1);twa{XT(k$aQ<|ObdCZ
zmpRyAZ{~!<p1P&nOt7HH5Ackn)R*DD52bD{&B2%5kmolJ*@j&e5|$&3b0>SlL4n?S
zVt6L`2^Cs#=!pPp(K|{!;9+pt;4o1R79R3c=<^Hiw%?Vp(xS7Bml)=7*N|>|DyBgh
zNNJH-bpfcF7@nm|D#<<en7i3~1F__gJfu#>Wj)|KSV-Ta9PbR0TXCX~`2B_5MDM-%
z@O;p|^7^dfVN$<!mCsiEqE>q^XJq*#^@-!LPE~jC7C!ZhsD{@$sj7V$yYik;vS#lG
zPV=~%dFu}T87xiFah7gE(p~TzxPS&??a+g4&G-vjS+~wpz|hVyuAjb;UphNy$J9t8
z4cf1^whSpW)~YxCjiPtk8tLwtvJc|wQ5n;(%#c!hlv(9A`f33#IpzlA)5_KWCmGih
z)du5c-RxuPtoamgAr5WIUYzAkWSJ~c@kc>mK0Vd2U~eN;|2xeF7y)jzSdr>%<k`3O
zse$W-45=LQnyl*pZ3<`PR()M%I#`Ty$L7j`NAMNK%w;4FTPKV>3lV>0+%BwUP_UXZ
z6S(y(X&bgKkafyoh%VPN^q2r|UI{6=5dS?-C)Xs!Tx)mvDt10Ytr~hC*AS{vm03TL
zE1c;Oa(*hqO^fvm2rr=MN05g_M#YwohzT^O?JUQ93zHc;Q~9>-2&iV0XE;tXQU-t?
zxa5%A>0u2@V@g<0$2m0d<voI?BO!~`!vH>+pnP8?&b|ZH%d3X1XM(ekIZMD3|GOw}
zi1G%Qq8y>PB%6$b-+?n!DF&Z??Yp*GFCO(MK_muer@8jjniPM56r6oML#a_qZtr!O
zCR6G;_N{=}L`=h?&b&Ia_ak(+Rqap(JUGd-t$%HYy|x}ICBE7E*@rS&v`GFGLiOxu
z4@G;J9Es!5g}XXU7hGOPUxwT{FDCib7^bj}O)IJ?;3xK_$Ss2g{3<RES3A#{9439^
z9@r8k)@yIW0EDNrof|{z3iY={4uGJP8+6;0h2pnyMI#ffW1Yt$0g&_MTD#nqZRhc|
z4?D}Aa<4N!1kF^+TdoU&7dI7nzRiVU=p6Nm@#$gj9(Nj+Tf+amEz*#G*~<71Lfu+w
zZteIg)fo2H4tpGfV~wMy$a_PguAEW1KD14u*Em~=TsUtQ#=2L_t0WSR^jN&JO!sng
zUg?D_e{-zh_2~e8-ip}4WpsUuN$=?$#w+BEGGb+0nMsLlE<X&d94lme=@6^)JHxSw
zy!;(EHUAk67U(AtNl58iA{p6^;i_jHY3UwMU$1ULyE`$8q1*aKNF-j1mU%a9+{9<R
znIp2-%plhv7;wyf(6%H!<`Aml3Zn}k&?1re*O%u<V7yA=wp=->czwaD?>faJ%LC=j
zE%*&yvQbf$ZaqXxmhG^RM{?8;JGKgk?5roFlwdRYdl<7u>Q*Mxjk%t<s*O2MG2*j0
zSn-`WH|+XTpXrvA>JFM|k<=ORn%FEWZ9YVusE3c6N4IjkxNGP_Wqpd{!+EhzOuZhy
z1v<<FyJkox&8$Rp7I~ZDFl_5Jp3AX@!lrTUvOC>n*6lD1#=Ntvpq_n@Z{&tGw#p{8
z!|-EcXDVX%^6dcW({Ee*`6_({Kc(624ZND2x_rf3GTk-RN2m4!)<S7fTymCMY&%X1
z+fHb#&xODuzXYFE-adLJQ!ihvvwB$+AM#S6+3)mbb*J2Mxb)0&rp)FL<hTss?q$f-
zh)%Afd9Gf5g{!b$b6)ey8OKW`UES$t9K8huLz<KCt^$!zkx(UPxK^EoufYi%AlxwB
z?+LchsJb%)-s#BA3_I;^s8$+(4EvF2`o}2Zlu<ZE@zgg{!CPcjP}C!8K|yYz|5pdx
z?<Y<qS{nK=T)d08x<gpHETk3Kl6L7#v2V?_I|#2YYQ*sz$1e?u1$&DCQfAqCnY0wg
zUzeD-N#snknGRKPI1Kn%{VkC}cy*Q7>7h!8#xrp)&CHoch}0gV-u~#g`q?MI)FC|@
za$B`r0>p>$96PgOuEXw$(tF*?4(l9tvnTq%mUVX|%Vb0+zopB)fPdl%nR9aD$-0NN
zKRKb4A3M`ly&PlDZ2I_Uj-0RP``OeZJ*W|Q=kmZj<SZ<X&${z%O693PG)T+2(dS;i
zj-Ol9l#^&zA4#7f6QKq34D*$@=HE1j0*t>tfXN$?-Q?dMMNcC`{yG&2vW!98TWtuB
zrU#Z^F7nDOLxEs&TMP3sg4~msD<{a)RfLctaTaK8#kGBU5^3Ed&trB=Hxbv`$^a4|
zHElrb*qwiS2ZdeMgvQBv$Rt^r%81W42g7lX(3yTadN$%7!bMRrP~HnePX>Lx5;GyL
z!<B$5n|*0)oq~$Q?ekDvYxCh_2Hnuql_ciFnl5}Y#ajzLl`YA_QX>{1KO=;F((UP4
z{&TV3pZ$EaWtTeCpH_x9v&uq4@5KKp<?6EHOfRE`+1w$Hl5#_x{l!Y{`IBE0Igy+q
z-hlfieEXJ=1>rg6`7(`|SbkGGoNec6Xlj!wop)4a4OSY~S?{zF(PtIJaCCbMYj{s9
zgpIc+zqdhH?Rr%R>>c1V;c2q>{3yvMMs?xXcK@0lNoANV<WE2QI1?UMyy!K19?(><
zlA3?ju6pLUmfNVYLp4OOI=y<!eV;o+<IlLk%*sUGLXdgoNGtvYCY2^jwGL@BoFnp)
zvUGW2@w{`@=U<)wt82r8b;M1@l4G{us7CuM_N%BNuiHb54^6wzR%hqRrE*Mew%^0{
z?-{r(U$z@`Jqblf!E`vi33vSum59j?I8Hz^CZi#oYLbM?Dy7aWj`VtVV#8k&$Va^E
zTF^H6I5>xSm@h)QCm%9Q|MBzHZ|g#uF+BBRqU^KZ?fcSPQVfYzXJ-NNQ}vINiGZ2i
zS#1#Z-iClHFjVs}=`l7cvo)u>xf+=w1@nZz81fp2Z`bSurIY75cZf4J+2R&8JO(Cb
zEBh1pw^N^Cb6AW}k{5dfy;8DocC0(tR$wU{(D5j&ooL!yp&luWos@%Ev0Uni&yGe)
z@-^9S?soW(Svn<S5!N_9N1vYhX5l9_<=>+C8*;^;h~C`<E!?I@pI%IPGAgnM^s?Lt
z)JbRFoZEO?V{oh91AVi&;!&I?D|$<ctI5=|TTXgH8%d*t_5vw&E$1|P!(xaZP|t>w
zg-bs%h%<zz7;Ln~#R(>NPS2&3di8f^)?*v5?>SsJxwWHMYfNzM;2v&kNBUIAeF6Xz
zX|LB54}WMYzcHZRThv?ru|9-_bNs6`>(=w^_$oSj4^3rwYeK{eZYG+O%6vC{<J$Zv
zs0=yND3OmsC2+g%w#S0o&6}q*RC@JV5}rcBJLsbYjN5492_-9lUDq(DcQs1zc6i8r
z$tYNyd#-M7sqWjm+BJKdEQTn1yHQ_PF<jt{O3pN-f2eF#M0XLSekchG=iiuul}<|U
zmUqSP>gDUj<>}=&emF!{!+Sae7^-q@Viy%I5fHA#AT{nDpW%Z3BRW}+McpmO?--W4
zz1dy)bV5+?qGgj2XmCp`eP@~&31DB6={ZYKtktGrSeny-CZ91RhTonTcEw*G*^+M;
zmhhjwtLSVU_P8fM(fnr3&XloXwF^8gP>^)xaYw02RCedPCy%x##={ijhJ#Qw6}S0M
zpP{621ga#5P%-|VTL)a>pET=+tM5R24wLh>ZQi3|hPa+U!0vi)4Y#Y`;JEmM5<CiI
znXrAi_N8A8;U8r0)5@c>*T=KqiBTBujW5B(2G2l7?zKWE(=_ULOh0+fUpQ|1qW<WR
z;QBZ1`6iZrCZWoqM$|O4Kv!bq!y{8OBSO~r%b#rI)BAFm4?}(Q|0aUhY5P?y4m3CB
zBnj?A>vBHiVgA;Y-Aqe!JX#_Y_wpg<{_vg|f-k=|PObX!zyC{0_x0@p<wCN(?9s6Q
zO%HznsLw3>@{j*XjOG|E15=Tc820gh|N70>AfbFwxsm(7N#lqA6aevZb}D1#fB*VP
z3xJV6u=kz|{ojMr-0!wmZSzV0do~YF{_ocRd+PuH8@%GxcOWZm01zM#0u&fnw$~Xy
z-NaAlaMJ|Xu=BBB+62F6RLt;d1tXM%A?SDVXQ{DYB7d)!YpJLuld5+K<6)(b>Rrx>
zIltq-ckP7Yudjin&j<E`Lx1sYyLcc8@v~)qtGms2PRb`e`l^BKU2Vkfs*?Nawu<94
zD~fIa|0U!nKIVqJObnWAo>&N7gci`5-}&Y48V&@LhYmaoUqPK{??xQnyC`DVWl%s%
zpS<0UnAq>&MRK2rrat~B$H+9eN`P*Wo5F(=spUIcKfw3ajchNQ-hx;_+HM{w)w%X-
z*nTTOPS2oa41pXR;>fz0ED1L!+920##etBk@*B~|VsY52bM!}t=>^Ln<*xBiaRg6Y
zVq_e^xPA}zJ!qD_ii*5=u-He7>Plm5_N5q$w6;QvE`BYka^lv{_X$YSVq+?RIIoa)
z4h_hKp8A+f0W0^{ALi|AvnLK*&CPwTPU|Et%l_Aq^Hd~J3pfgZmwcQrPS8jD0|sSW
z2}Z)kqGl1!I&z5Z0>2Wgp5k#*Z><7#-Vd<@v9UfK=^r4ssr>QLzJ70W$VqG4r&my7
zD@pUn4^Ttr%~-_L`g;2!zf|o`+n_!*F5~MfaWcNfE)gU`0ZASM=Q=T#Li@3G0oVY~
zDB5OPGhW2{>9Hy@Ub=oCTb_8{*af2Cp7C+X@AudHi)%?&22l>p$YJpjFM)lk*KVO*
z^=2n#x@U@Pnj&eKa(?^0yZkVS3|GJgyAe%#c@6svc+ks>QWLE1G+s(~EoLj_<S`}7
zi<}T>-sj<xykNaZjY^e+xuBr>21uAJ_==pVgF`pj{3i2pD)Bc0;%mLP7EwB&U2uyY
z`qu;T%K4NX^}FKQ18D0gpoW3f0CkO5qSyDvxG9J8zJ>P$bt>Gf$FmoC?&jyh^DRp4
z=Jg$r9vdtTWwXVJh<VA6#wgoZB15R=>t3)!dDh;!9Jkc`zyVMfa9>$M@4#kVR<kVP
zXxFD3KOY%4U+GX%^#4K<S>G_2e9fbgrJJiW)$Y)m!VQ2|j&E;vkuS>yMf2`F9pE~!
zISRiOpp{~97=$<-9O4M8tJsniL#m4od$vPwtOb61&N%0>wCxDAo)~En<(<hm(}u0;
znmEp;SWz`eg)VVZgn&|Sam=zCU>|;EyV*>bPDOZZg!<s~r_b!GP^MD%6{q@z{T!YP
zB}ysG&9govu$<*oF#|m<sk@XgnLFteC^|Qk{qRHB;~bUs0;5Xwwgb8ha33LTzY^*<
z122;g7C0r%5Hr{$z=uT#&`*A@gtQJS$sIk*4|gE-!h=nDF;|Z!71N1`*3P`@0n#FM
zP^xLvd>?ZXYOmQVVoHw4YnHMCX5=}sdMa#6BD;`cx#>*vq~Fe=Ad&%OaR5G%mD@F$
zO5V-c-uj6U)=yqmleAeOQlqiz&M%fL?2OH~JGs|d#YdDUGx8cf(u%OUgi}y3uBj-<
z>#myt*7({|>{g4;=>)d(&b88#w#u@e(0RA9Oy<^+eT`Kv1R1oS(b3v-x&U_j-?!1Q
zFNUndhIUgO9N~+;38+eDL(f!TY=B3l??c|(qMCO9q(PlIt%qqPNwSpdZ!`gsR_#Rd
z@|zD~4gJaO*AZku*UnVUa&)g~1dZ8d$JOW4jZbOU*J82`dOV2U{`W=}h%4&8u8m`g
zj$h1&)oWHeU#~J{>E+|5G8B;UaG9}vg_&Kf0Q3^HO%_?V_$l<j<SD2sIe{46bs#d~
zS0JH1`@YImuCj<6Vu2tVmD0AZl#Amd6GS=H1l0l9PFU)ZvDZIz;V)k_=1DN>nS3x)
zLetLj;z~uUv#)D!5mX1I-}ByFVj}#u`DDVzlyLGz<2SbP(t~FJZ~nt@5mb^VOFB>W
zOuUTc8<a*4a=;xKyb(rpM2XJhS1qJ|3h^%L=rbO;LEoG2_miyZy<C}tL-%QbR@N3q
z70dTNUa)IlfFZA<0fa>tg|w0*uhBzCDhL+?Ubh#|dX}sE%+fjxrXO3Glh3H{A`2lt
zzj1Fe0VsBj+2Ygns!T2uz=DhxGW}qS^5{{O$p3T>FYC{C9?X<P@9s{QmRv-3J(rJ)
zNfUJm<-z5BZ))x<zxQ{nIGD(rA811VOfTSvRWuE5|1DCaZB|!s@mk46W!vVV@or8j
z`$XmoHZ5IRjjX7VF;>)DYBamo?sIXq3h*hp+BxPBJKN*ABH@?t?A5IigaZi!TJ3mZ
z9ku<O5L3!IgVBlyN(bwN!f$AQ^8w>U6}y8N;zvb~CS#}ZI!92$j!~~zq^j!Nx2d!0
zMXmW#z1E(5L|e2aT<x*xzLu($bPZ--vr4>6=T_bcNSZ=BOV!1><nK=&P2ecSRePP<
z<AChQmb3{3e5ydALO&$9@LOIP?g>(Ar(%uVQwI}rm%|Tm|J6WeyQK#3tM@f^urx2{
z99OaBANcQHHPkI-A6R$*Q;RK*{d7X^qnGT;lGJ2l1Si@qL)dM+FmS&8FW^B-!J0~x
zE4S}audo}Q^EN5=p^g{ZgRd`}*{sY>f06Jv2rKq8VVHSL1aj|8i*nV{zZ#ETHV|a&
zP9`kSRF;s-Y3-T+xe#Uc7h-RA_u*d)F}&_?Ig;BB>@Ry}!*};#erpM+zjAd8+%o%J
z0sGi|W;B3tYTVQ(%_-+Ns8Dqr2F+~7h{F7H6w6;jSSEmCfVZG4*>&XVuwYHM7n?H!
zY`CIZ{!n0%DSFVpI^O$`oQQH!Wl`-mg2Ayj9|8q>Ji|1x2fY7yc&EX`OI%bf{Ppn4
zXpc)RjHDy2T}QlKk;`pBGcX=%$G4xKL{61Yr+7Bq_76~*7vog{jqlcqzxkPzcUzUH
zqgEpk+mw4~;3(EWD&wALk03Mk+Z1D3YNe8UH1&(_r3kSwyr==4TnB4vV_`QT^vuIb
z&(Xc9@9c=(hzkhYjAw$h3@eXc?5p6q9m2`nkMs45!b2@9G^(Nflm}CHlLG}-;*`sd
zj?}@Oa0vJ%(hXf1_9U!rVnt1NHfvP(<&#5R14+(7$5_RN`0H0dpHmr-sk6>r(UVoh
zCscPN21>52esf%|t6rOU(|iMc-7^JM_7T98nKp5u?iJYnf<vrc@3sdAMDw$5S9h&>
z;Q`F(v`c+Lx?`uhkm5)41F)$Q#%F8?zAE*`6xR@M6sbL+Lf4DQXr_2RP_6NTHy(pZ
z`ae6UlsJ5SO?@eZ_Wp4zVRb=04$W@@VjI^{LbbcM0E<Y_Sj-{vQ`n!k^7Qis&6_Up
zcrIg5sAM^STV4QtO)H8&6PykG4PYr(0B#Zz|7Kt^$qCb639{lik;iwH0Q+xVy58IN
zbJYIc1IrG?(u#5$oN{9%cb3bdq=kxqpV`&AeE2YWk=o$}vdtD(w-qM0%W)=DTBnIk
zTVK<*zvXn!HPCxSYz&0#H!LxE-atIxnW^pVaphpCfutMkh`!Q!`M_`}Y1R${87}#n
znqZmD$cIEfmS<LjIDyWpo+J3|A8uOGsbcHtI|X;EzqUdL=^EabWUSkjf;(sgWJfo@
zQ8)M9?djC?W(9>P&`_I_n|X7Q=NhZfHucbRhLz2#s$vtwCk_0AeNx3MR+%fx!tWS<
z4d!M87|V--54nN|hfeCI-3dv!vAfEfWwL$Lo$4)V4~{W`vgn&;o^|jx8P@MD#EgEl
zf8zh8>hp)nY3E2l0p{V?2ND&tk4PamHPP?lL!e=9;)vZ|!=V+^Da|zmG_9^I*P=cR
zs&63{Lr^WXQH6&JQfq;$vv^S?_~GswTfAWlvC?OA^waGuKtSD|1KFsY+QyYLtxxPR
zi<*@SK}%EQ>6Ul_W>YuVT^Ho=HnRyA^)ibY$uuNiU(lgR;U5SIhdwYA?_Y8ICP!AC
zUzVy$#+`cQ<SO`NyBz5>^vZ*tyqL9bhn91O#H-{%x<C1BN}zS^D2sSe+&0MKijt+M
z7mI~-Z2I1oh}e0cX9{34o4f8#Yv^!+yLZkFD971!h`Q(ZzP&8xMaI|;R_N_3>TXvC
zyZ0v-X&20XVNQvfFPe=iK{x*LTVU~lx&E>L)WPDTpsc4oFDiQnmarC-`@C(y?rw3m
z7f4(~dxOS);}v}%PS~i$di_qiPV)KI5qd2G+gxyEF0GGeJC@3*CO!%t#4-x12d6-4
z92=XR^81jXP+IeinYCls?%4vDBfVm6#HPD9e+|U%68MHOSIY&OU%rCEubWCsMn+##
za$6VqrpC7j$SZPPAJYH+&RtNSFu>O#?!OP&GVT)y00f6UJqt3rMxgd=$R5)^`}++3
zeaHDc<W|IQ`~TM`KMoL_{P{|L+vsl}u>UFiIruyBoi^X^{NmpyoCI5$JDlXMkpGp;
z{Vvh=Kb7w9X>wNVsNz3t=3l2i-LDAKKa2gIyMKMUc^0JVtsn2aQU2HA--Eb$5`--I
z=svpNQ~9q?4Y$DG4g2^`ANkke-=jQy38Zu{83%u5bpPi<h5#lNr)PP7>7Ql%@9R@g
z$pb^9(|*YEYu5jLAr5*F1uPz9-2GjD{GStEf=ZS{)z<%?Kl+bBn7sji=eIo_^bi01
zuTyFE?N1@_S7!6?pQrHq&j|iAg8z)*<bOu+pAr0L1pkEtn*T41V1@j8t>g84kjPsK
P@J~fiQ=#bA{ipvAt<hPl

diff --git a/docs/notebooks/vn-ask_files/vn-ask_12_2.png b/docs/notebooks/vn-ask_files/vn-ask_12_2.png
deleted file mode 100644
index 0210f1f93586dd3daae660bd223edb72952e8ac8..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 142409
zcmeFZWmwc(_XaGWh<XSEkwy_w5RjHekWN8BU;veF=^=&?6_xH1ke2RlQMzlW89=&b
zhHiNGc%Jk8pM#$3eLug~`NGB2{_R+M#l7yeJ}4_n5niOYc;?I*LK*4DDre4|gPu8q
zw?Kdo-Z7|&P&{*n?u^XiM^B-;D+uRmzuA-KHR2CpI;GjowZ;=W1{oy5D{|6dcP;OR
zKaI$K5@IpZ##$H(YwwyGF8d;Vg~e@8NVsfb+-R=Dy*r9?zB;#g`e4^+ZWJ}|(0#Zj
z42L)+6`S@WuV2I^pz}QQn?Iu8F5JE~>0i#R|Meff;dxWEzTN+~KL!In{&EJ#`VA{p
zzvLO5vm~Ow{vm)?od4bX;5{z_Qo2e1p11m=|M2KDIBYw=n>6-4l0@9I)t4(@$y5IR
zxg>Oxvoyb%&(FEsdg|%PD@GPzO8*b*I$J%C_Yad2eRGinBf0RE-SW5VB@y-XjCB2V
zAO75f_sTf9NCKUQY5xDPE)t9_@$XOS4DMwn(R#|nOU=cX|6yIYx~PBH3{g6<a|BR&
z`>80N-v|MAF5r-b{$VrzJ>*|c`rkwTUm5)OCjWY!|Gmlot3dx%*Z+H8{?yX{s_Xx?
zR{tMtGAqjK@rNriiDGZPU7W@%9ps3pKN6WG*i;k^WT?uOEOFoV@OmA>Yc1RwPoF+s
z3)5DNe|VGKhqyI@CD!1eH0Nf;8z0&(I&w}U`>~x9t0Sf31N1vc#k$X-`(lWm-4~4$
znb!3ddZSoVRmOIYlcRYJ+NS{rxTbw+;di>ZLUGSsq}Wku3(J`4OZBxq+-2u;+YMS7
ztI`Od7P_*-_J;h{X#*-+O-48AQ1C4fp24UG6XIL&ohX)R40;>$D8b?k^&N$nr!IBJ
z5nN{Dk2#FHew6qW8Fx#gHS~fzV|iS1mX+R;X1Q~{Hq>j^^EhIl<joFU({rD4fNe|B
zhKJo#jnNTNJFyulv(C#Cf6^`G#qY2zH`fvEKe{jF<*+=oKisEPvNUMkmfk2OgHP;1
zm+${-wvANtfk*Biv^?L?BG;b9rfv-dM%=v@D6I8$VPUkyoWpp#Y)ByW{4e&7!1oMJ
z-X%xE$R?$zYn$gjpmD5I+tdu2viaPr{14px+_*4!bz>Fg`L<j9t&w%2qDRiLmvF2_
zv)y_5p}XaRn?2%^RhP)R<n}n6zP2cb&$NcNlTFt}P;i@_<9dUVwI13u-J4#Y^&Fj8
zmb9DqU`uTe<M!!{X6dhq$DO|U%f1GkC4lOPUculyI#pbPZb2_<W5Ssn%w$4t%Vgtd
zad}AcSdNnn*DK~^pRFDp<W*&qn<$%j#YcvV{Cqzcu81<M&l1=cp%hT0fllH?ZdAG-
zRYK|<6*h<QHFk1yo*+iKZ_VAfj;otjMn`(udwqWc2UnL&F8sbGM}}rrX|sgIU}cU?
zQ+CdM?aIe<UD2xroo%G;GjpA>m+kC!1)dyuY6J>JVFn-W8MPVgZNc@ZDqSk1*cSK9
ztbOuV)@R#QlA_SfOwgEEyZQt9Y5esu>$+$Kl~nnA_f%6uAQed|FOr*7YQ-dEK0Peh
ztBucyWpi?j6fd^wS1dGYH>%||`}Sb(09|*Knp8{X<w}ZKvY`~%p}Hod`>pnqfRp-u
z?NOS=Xu0n3(T?6mPPS$ddBQ>S@&I=&{R)~ASJ%q?*VFa^PQB+6>|iUBRi`RC$A{?n
zv1A|x&2#IuWKFNv=M0yMH8~tROrkfpG-%jlY1MhG4&g)&Tu%v`@Y+A&A^R9Uwte??
z!qc7q5YD2ZTN_&>x;f=is*<e5z-M##?C@C>LG?#4QN?H;)y;7o?cVb^ig6q=$i;&Q
z4Q@oQz{`Of8JZjH$*eee8XQc&xWl3Z;Pmkx6FP!J#MzRUM^Hzxm^+TtxTa@o*2pR*
z2$N3!f#&Hik~bGp*Uo&J!wOarHrpQ2hSCvW*)cEiW*KvmiMSsag(x;hhz;fHSe9t7
z@lFon@LC{QM~dbjG`r_{h(tepQ9WBR%-^$>qn`6_z%9EpMKMm2Rp(Hl)CzHnIf9Lp
zkQDD;;)3dYFu#LYhDu4y(=X37QB`Q+Y2Dsw&do&V@pZ(SR;In_JxI!z0#}{xOd%-d
zGnI(rz_i1JucwCh(TE)xKctVc#<ev&y8o!MBb|~rIPg5o>}++zZuLHAd9GSUpJ6I=
zP0F9sH;`I@srNkb4JirezP?O;fC<6uP6R49_Xw(!0ZGlI5^#As*BNK|sd*(gMIlmg
zX&{4fwoM~wW8NdeQoFPTXh7WK<R`(mBvQ4uVpKkhKH_s;e`7ILD&c4`as8FYaduXY
z)#ro+(WWHAzefn7Ga%l<FL!LX2u-$~54KM022m)4_QL1HVPd)K?d=FX%#HV*dgYI0
z!|oeG{Nu^B%0;bAM>74Z2j{8j^X*t&SWz=FdhM?0Z9?UGmm<E6>oU=WvmF8WL{Pn2
zD&8U6X0Nl==5XtXFJH#zh7pyHA>Sw1K5|D!PjrP}BxNSgGxv-T=|(6I4}Rk`>bTu+
z<Yq3o+3D_+pOd>?V7Yvq{##-AF?y4Is7dF7L;`;VP28GFV7yg#(qM)A?jw&tyMA|-
zR9OaEx7`n1Cc`bO(IpgSw8Hk%X)sRBG^JQG8l5Y4E5$aD*G1t~B!{goCA0NjM>q&h
z0Y_BmALN`dmffHDSk#!1Fw8U2xML6cxRW(iky!ZJQPSIWl`>YEs!wIl3&QTJjebdP
zcE8p}J6l-0jW|lxnE8%kllyq>-uQOL&GdIk)3rCu<GpI^_bBc?`x4Y$n-ECN;w?;b
z!`x5V-FlIH!P|!@62$6F6gxl>ueVC!8MMuOXmX`^P$x1;Z#tS?A-Fr~&006VxnYon
zwp8F&j^npXo9POL&(5ojEgub4&K9j7q{^{YwMUB7Wj`zFa<g8Edcv_A8u*xY2A({h
zrIKN*)*8x~SK#QPw@j;;sa|;?WHP%ky}A#j{a-^&B1-4}^T=}>2%rLj6Pn1?6R$?T
zcvRZPSYDlMQJPYf5KledfZ!FoVFJ<`QbhE~dPN!z`qtJ^UHXnj9)iw!eU3A$*m_KM
zC|lPwRW8|*4#(QQ<ART83!;F?H!?RYNy3+W+T>v<v#U|rhUGCtj(m6RdBw@`!BOQM
zLhmLwo<74^<;`eTm`gOfUBKnTJr%A=vvJG?pCVJs)r(}Tw|pb+@9aL{m}eJ;p6EnB
zaR0Qn{-J*!wl6rmZ!(&aXfaVb7-=dn&`V-9yR=1=$8Dx8Vj?ic4IMBq0Q1ci7!V2v
zwl(bV9O{#Jj>m9oD6@I?l8f+e8jDD4BRR*eTW2h<W!QYY<;wxRI@8#hmf-&RQWuCs
zov=0k0P)~XgnPVwu1iE&deRoZ$OQ7?nCqw?`mxi#3$q?<@9iJEpX-{<Rs|eGoRF}I
zbl06Gf6DbC%DmPUw9)q^RVUSD<9c;2h_Ky$arN=sSV5P|5Wh=P(JHZox`+sp>Yt87
z9S_OMW*=IM{zgP~yf;s~x4fj*+tYcBqsXs7NGcn7_m)O3<O8?)ymEg+dkmj`O!eM=
z)-l%wSsg@9hF5q_*j-&|)|2C^+1evQD5GNZost!r%yh3re4pHpc{u24hox2xJtfBx
zA5{KO4_pVc%sNRZkx-eXOv^D>eeeWbupx4CUnUgE7R_PI?tW~ocfBKlQAl@b2@`{F
z8C$mck+j^DZl{^n<A%TuTIi(Lvpedzx-if9V+-WO`rH^SReOiVh*QW~vs;Hq{eoJ(
zfJZN}%KC}Z(pdM_(qLATh|b%%Z5(u^zczz$7erVu&90tOqqfXKpi*b`qmzRTMHCrJ
z7<?7)@&xK2z#g{7;FGow%eq-8e1=26$uH!lxTKFx&8Ts-%J-KrW4`m%`{ozs(Y6O(
z7C6=qghhne?vtJZPJV=A?OeMl!{lJXXLO+O5{cE)NSr^V@FM2HgQE`zm|%UX*Y#@5
zk#f!3mM=R;b?URGx(W?NTKX7#{XNTdj~G*w>W+!L;*K|UJ&1C>zSl6t=|P|D*KEY|
zeLCLM3JfQZv?+zo&XUdU$T@jWhh?a=H4+;?aFi1s{2ZJj6WT=O2=7Ypdj*es%Z8Kp
zj?Z<QmM4HIpOg?av4H4*xZN;RMiZAv)GY*WoBDD_1IPOA{y>HQ(aUPVy#d67gGfEr
zmW|c1mRguAb%fab-q6@l2g08sUo8uQoaz`M7NNLpIa<m)X8Le@ZaJ@YlsoIOI4cXq
zHH{qg#@&p{c$>`c!jps3j9i;~6-G7W_{&ODl)`FkLpd)FoL%X5{Af&H3J^US%Yzii
z$D@0Af^s3H7bNPJ-Hh_x<0n>kO5N&Aybkx~6Pg4qjDI+y`qVbR;1P<h;_24R1C7fv
z%_tus_V!Y&os$#STO@I5ksBJ=EO#O@7A?9<bDi9%ihU*F*)=$k$m%ewFBuz0KnnE1
zo_CW_PGS!1jNsaG9)w0FdE(rd6N+2>SxsJTH2(;+C;q6HE}GMrJ-|ADwNSm9a2YO>
zb-j}cg){F7-^1@kzwS?0Z1a!hWe|V&N7IgN>Ut`}jf8~Hh<f`se-F}0o&W?9hcz<X
z)2St$er9CO$s@PM2~A^)c}yM2*<0ki<@W3V5np1i7EaI3PP7##-l+<P_SK1Zau&`I
z_FHJ)(x&Q~qZTqN|AYEa#*^ZhyFboM+iAsyAi5bQEGbN}>*YaRkwLv+Wh8W|$R+$D
zjklE^E;3M<{8o<E1mUGEsDHDWx=qD~7F*)+Ri#!kJ;eukO=|U&AB8QA-;RnsfO)Fz
zaWIVMJ{ohRHmI+!+G(kzh0DgOcXsZ#t7khroO|RXKk67!x%9N#?-<&nOwMDUzn0H;
zaAnCSn=he)YUM!W8crS!ZBIr!LZ=@|Ly+Du8>HmZo)O9@K}%txhwI!jTC<Dni$fyx
zRxHk@cS+D1@!D?A6R|A^oOH#FRtctwpA3Ia%*a_8Em4iPQWjCK>oWFQ?y^TDqH-5#
ztyfO&&K$PmIpO3T+vK9htSN{+?bKfH?OkXiyBBxLZ+q;Ay=-!Z43k1GKeEN2Yv;(G
z<8xSlGZy{uJacZ>MlmrrB5uM|#B+m43-QR}<a5FqO*gYSDuV^0M}&A=>1_>nz3{8~
zOHo{dI^IHhizr*B+OyT$Qz?#pNqd}0#?)2J;C13czwk_d+{eKz^-U=4(xDStz(DwL
zX}qGSsY_gY#FegTDiGgAWD!OxeZisrpg;GBXnuGpI=4OYh@|DI4pzRi<~!9hv^uGj
zPUw;w?CBVSJb4EuwD(8a<2Ejr&3lc}K#T=Y^~Wn(8u*nP8uJzhc<=DDNZTUpzhrud
zj+Gnw?8Ue%Zfz`OEHpB25nnA$s{7J|8B+g*r;E@*Waw*;R2mjFyL*FOnu-7X56%`?
z>3-1>?0jHUGL0ZqbP1j@YjeGFT5W9j^+k;r*>yl!+?EPRVE3@iyZN}_s}n8sI-M`v
zh+fh^yh(uyFHDho?E7fLVhKGlDTshdtpaI21UJ)WS<$dOcSUH|FH@~7Dw+wk)vK;u
z$Gl5YitEl5I`3Z;U$TG#Az~ZUu#6agD}C<VIuiCga$_$S8Bm4cdiDiR_egMrHgU>K
zqgvw+Vp6fo7$OP|`FQi*HY&AlncR(M4!v>k<Le%H$ny1?5?AZu1vZjm=p|@Lz!85H
zKYp5N(cJnX=E<D|VFINS&$)~R_FFC~-Z_3$YZ(QX5b6*i1BF0Wj5-jYHJ<C}Q`r1B
zHUOQUfphkFmbq-ja2Srt+dYL{JTR|839qyw>^D1f$MC`+=SYu%kOUmDN+N{F!s+Ea
zDQdaxg!NUl`9!|8mc<Lg*Jp2<yIi-3;WA}Vo$Kh!pXzVYtS09$vR@b;9IrlC?Xpt;
zTEfZcHS4i^qW$vd$n=|<b3m$88SPhQ_<T4W*mSBF!YB5oJSqx}d7L0-%4uHFu-**`
zC-mq&kz5`9H@iMW60X$Z%y0N75e0S$jV`VSnzc%yrCHZLdX^dGjB=Q^artB{beSLN
zzuC{#DiJHSKweu8yplVIvi@oBN-ZWBGz$e^LPAi7-H`%S&8Y<^0d~jUZ+PsF6)Shg
ztc6*&fR7Tj6~Ur&ONZa#!3niVJ!MCCpc2_5hQG&hUQl|FGMH4sr@+*XCr56&Pou1I
zZ+Z(ybV~+e_%9ui7aV_j=KGGHB6}oK6c?#xJ|u^9+v~KtIM+VAeQ!gTaUu2f#$KWp
zA`-(HWCObZjXM}b^txO(UgR+BEaTc7N~Y&hE+e(ZL0{6Tl1p$$$81UYQ{71*s&FOx
zlC}J&a3RiRRNc&p_#v?#YkbMvBv<O;LSy+jDfiLdyj|h*V@R)Eqyt%I)|DlozyCmf
zxZ2drpFZ?a;V!OjT;PWBkaNI30@FO(Ug+3qMlR&?21GhLaNKPN;KNL}?L-{0Y5<+8
zpzRTYjcg-POp`}eUAXr&YF~$^@`!ECbyCE_&Qf6TH#YPaUz_-yG66O}O@QWS9CXhM
z`qYu4?&#$0m0kpNy{fFxWfi|QbO&|$qRXe(G+ED?L6pL*ezbsj3_Zy28gn~z)}!r6
zC0;0GGat$h*|yZ$@AvO^z`FpojH7*MFRzj!{UTtn){<GX$R%~p+8QTsqhv{`C|y2&
z!3KrIMJjJ<=4cT{^TQ&#(@;$O6FyHWHd@A=eLIqA1qnYJOYAr=J4AEaxn!Fq5<%zL
zAh#Ig5JDoukwqFu4HwnwV*&cG=Li=1<m=jfO((kp$Du!*k4oYTklVbI{>&5F+YN3H
zaFJWFr7{6jPJ!fW#{QNLap*WvJl$2cXCThY_2&6sd=?-q!OU1$89hgV*>)=_+jQA-
zup4MdaJ#K9Ou6WAos!2oa%IFWYHP)VB99IK3T6~-Wmm#Hyqx0p1v9I0HPxzyk;;q}
z1b@0qL*IRdywnP=U|2OvWkCdFMzrEqn^xwzv)9GeQgtNqU@VZDQx+d4*faeWs0Z=h
z^mkemRwHd)363or)MNYSa;t0{%D!Z+&!`fDC`#zIQhfFLq&Kn4N|~CkQQ?atejk3Y
zD}T9xcJe~arEbwz+;!^G+q!Vjfg-uVr8%hM7tLzg2O{NASLGyRvi0^NBZF+1Ei^wa
z%Uy?>`^TS`?KL%qRjUxf6;whBo17iYayof6*G{+w2kxlN<<gf7lO<a(wl=2Qt24Y$
ziH-*rgn+b*;vuyHg;=jLdgupGw2)WB^YkLc_L8ZLXr$}SX_FR}W*yF3=YOPe{(Ms<
zqc4CM6|=jgv5u^Qd2{=<y94FiB{BkzEazE9VaK6kE+3oTR}1T(j^2fMLAwUGR}*_1
zB64pFYgaFBIjzySKlB#VP0t<pqAAy=@#VH@f11O>4`AI?G7b@l;{CLvn!V+`I_VLW
z??==_`bTbi8|`g_%hXHu788={IS`sK8-UMHkCnA@`cpzz#u7Z?waEaCliQ*wNioW4
zPBAN4nhQQ#%D>+nTm59@vA8}K8Ntd^0}(XN>5h|oZOwf>$DKb`MXlaF2j&;RReKi<
zkj0Pwp7DGS`Khc~dpvm+MvDuLCvMsec%LVhKH@JC>=NrX8c4?D;u^HwULntbG_XJ1
z0_Y2(zLI%Zok&7T4$*9W_RG|;JS~2@z;sfQtw8nEvXx<0Xg(0S1c&U69-YX_gFf}@
z)k%eLrtlR3=+1b5dnB9OhnMGsbVJHKd9T5i-fXXk+&Aq@VV_Hz((|h3qZSj*TAs{>
z#g?x6`)H4R%tB;>Py-#wD$^=;={$^oo0xT=>tuJDSU-o0WUFkUqH(+G;Z{*5PNhgf
z9=J5~71voI-*yifWJ12V$u$}hMq7TL@Z`;Pvpy#<=}=2n7tOB;fVOva?Pz6@VQ|?E
z-1ZKiRi2?ZWyKzU`soE-H>uBRq!w`Qy6M)Na4v!0c|@VD{Vy)S*Hw9ZLh?J^B_@Wo
zbvBJIrh5=opM7B0IE^}kWy7<^3Ehl57;9XRN3AZN_nVv}CQkCdP8m;AMAZys`E*1d
zS$;<B4}!hdaH2HF7+&ggKvviZ-*UO;m4h|Lx*Y}mNye$8vObPEhFh7WR(UVJeJSWG
zZ{?gj$bF4b-rQ?kA541jIcK3u0?}~8<O#1{<CFPU+{UHyM2)CXyB@)2_+Y@6=)B1U
zDm*@~HLHfYv0COTqx6Z>{_bFn@L8omH|Sx3neFX6O%|@3-!!p-y}yTEjmsePc|!UR
zwDGX2UQul<BPo+QN7h2{-OAW;_1btYHJU7)=EE}7=b^ZPcv;9U@}gt?a&@S-$g&z!
z#Fp7q>pdV%Q3<qlR?nGE?`rkWT{U5tq(1l#bzaYSH`h|-gbtBZ8nojJ?T9YAAz*3w
zC|KPk^LV<@dO{cM<{NP(US~<k01ER`ICWU6+;s=n_{_Y=6gQOijM5q*4jTHtbKMVD
zXf{jgM3>K9!9?UKKdFsA&RI~D*WR0ryrh!5iP+%VasbBX7)=-y5QmCq&rW<27+J}G
z)?yUi?;qQ8fG5o3)H~YbKni@U?wAs@_LO`5R8bD`m*%=Rr1J!do88!TISg7B@(&I%
zy{cDW7|-gy<f>+oXD0L8RX#d#C)F0;wXkRrU*Kp-CjXmsFC^vmDwlHq=aJ(?m;G9l
z{c2Bcc%%3qI{xXzLR362i}&h_Doe~;62*Is)DD8Q^ep}aL%7v7K+@xiP}b;iqIIq#
zw>e#cFwDhyx<t3oan&sFtP9(+4Pohz>Z>(M6Hc>l$*N+}2e#_=<#lEDh2Y|sbURR%
z$##9JkoWCRSCUzcQJbCcIN37E7C>*k_i?n;dgxXM%m%QrSN*!r!%jQ?0ocPa2af+B
zJsH<zA+cp3tpJlh#efq*xY@uLhUvQa6%u}akpct{Y+hM45E3P5`nn@lK>PUkz&d#}
znL$>z3?OMW`%3(ft@7^X7AZWm@QwSTSA2T9hJ1vd%Xd3%l~^E)pKN+*sDCW_u5Dd?
z$K~nkoQ3FA3dJ;!hc$xh(mWZu$wt}d)lBam7}Sg=Ntq0j>EY@gnYv+NDTjVxES%E2
zVW65OeQ!V1X-x6Oy!p>lQ=*3R5e&e$Q3!fA2iJz1DV-s+motu_)ETN}wNEp&6gK@d
z=aa=O1k}0nb&8C_{m6w>+(!!#FEsMrH6{xmKsMzyv~3*ZTX!#n`W0BruA}SZYWPb!
zT<LZ8H~W$#%%k}Yli+ki{WU2GAI|x@zc0B?fl}Bt`;@IyG)iD-SyjGO?q}4gEj@il
zA@v!1vz=EQ&_((rR^#P2YjhV`+ap=RPma(Y?;d%-Q)*Wwq@al3{;pPU?(wEEII58Y
z+S6R<j?miJ$XVTrUpnq%Uf++kjzuh%EUZy(S7qrO1*hv*4b9oy-uDSe>x^kXhPnD5
zJd*oTS5__bOmUv%qbDzu6OHD^w4{%#Xy-eS2B?k4q&i!C$PGTeoCVzQBzKAqb5nTb
zTk%PnKb_EUw9@FQJlNy-p8{Y61mLEg>yg6ZT3c3uB-|(NXrp@~<c@-tPr{zL1Yz{%
z3so|<<Lg;*c3({O9*vn|rkRunCW{Q##Dq_ZkyqhJJobXuDjv?T5t)S?C8g`g(NQFv
zo?#OQ+VwrsQ)8^yWJF7thHJp`{jw<ys*8z8B7tIbb(E5NS+@vb?NVItO)R{CX(kvO
zN1UtPhNmSaA^Yp}D(~J?N#lC$aB!eJ0iTxKBqrOI2n^_<&gzmt8y+RBx@kI9y@cr)
z=j_P$8~evab=}N@(NgR#(i#X3+7Ll?gjzb`&d!&hs|OX1t1)Xnc!Y-B_QfZS!9#Xi
z=c#Ilgy7onp}nfFNT;PRnZCU4Sfg+N_`YSH9Q3tA-n6z(@`&nvrF-&lD)X$sBw^Eh
zGyK5M<&<l-CJy*Y^$x`pn5F!h38<W|OGUcU&B+9h<9j*U!pyFYXj{H%Q85L??14qU
zq~sYgzbmx3$g7M2?PJ#4*AX%+nY$Div#~1-a;=-uMgDPtsE_!u8}psP4dOnrYPyTP
z3Ul3Y(}gm3_d8;^W8L^(gj{3M>c|@t%`tnLV^Ydzdnli+(;m-1@Jb`cSpKBRu%vaO
zg9Py%m2sASa`4#q+C8Rz<IWEbkaui!6z_AjDj>Qj<lqb5oKgqmhm~9rSP<mL0m=@#
zpc4<#q|Ovbh+b(QuhlCSt*nFYl#?9rSdKXa;oym^4f_MkuMM5^3cuP#M@M(TXvM8m
zB<(xdG=O4%U|^RQh>*`c+})xD98P8Be*8>XE$=pI!~7D&#@eK4-RS`0KJ8>pfiEA=
z-{|%^%<eqJYs+VKiu|S4EH3dmRX?aOxzB2!nhm&h%y!8k*3z4K7uGH`+^^c94go;C
z){^badnLo+o`#71XO(XL*O(x~=Co#6C;d8^&4IL`Q{v}iMV>gpp~qht<}@=XRwQOy
ze%MeEI#KeN-4AEd2!HwgV=GK1q@_1m%I~xL;K$h}%{GerTd?%Hk-)MIBjEKCAwR#M
zC&x@NhVba{m%&qXT?Fel7bjYZGeW6RG6<njfZ8_|-~l&gZP*9d?_&QBg}eQ9Gkds;
zt$M+6-ol%4DM|_?LSNA`6<Z8SR@NPUEVw$P+LKPSuUv>W>I?(<V%Gg=TaC>}R+ZWl
zgG4Tb-06z(chOsD<CSNnLYs<Ceslh9b3LhD^LvVH(#xf*x3x=GX!7QUd+Gbix?`<Q
zlwX)<n+ro1-aiv?wnSHrJ)zA;vmA71W|=$IwhWr{zK@4xOE{^`cZW76H|{Hp`JERr
z>*Z#G(3LgsSIX@ab=QS4sb%sB67*LDyBlX~<}?TSy?W@RxlDThnRG-B#GGeush!QB
z{=AdO1nLgS$L>JlGC{S|hwB9t2$kkzp)u9&*DQL8A=pfu;-`mqmf=Sxg4NB(EAmeL
z4qHLoN93g_`TI}H-#?!1VgZSNN&!L#-UkdQf`zp+o$;`)Ps+I~(J(DLC5`8)N`$vA
zUAueNusxg?6<3$1$J=!aS?7^wL%e4zVn(1-F8$=5R(5%BWJFX{W0UysCPag<#f`;<
zN_<U9P8!6&3_6we>+NiH(j8Ocg@zk<HY^}|2kYta@q^j=5v)4uz;SJ-)i@4H=#C3*
z^hq*ARF(+y4L9}oKtv`C+aq{|Cq{jaFE<@0S{!#Mh>X3xNXp~3b)uRk%fJ{w8@aIH
zU1*J_nQp=N_(;R}Bu$>LHJCFUa(q<yNzhr0$9i<qAuik9dXKZ&RfpGMX+Wh?p6{M!
zW|%=+*a$`l`n+ysq-ty(?_Q0L+yjtPX!-#=g$%R+W`h4AH&<>w034NAS#<T@y~}X9
zp1FGCybxNI_Pt^1n<ORXjYO8eX9Ir*L81#F_7OLBRdT&ES(84ld%ho$7bv*?{yyZv
z#HymwQR@+KbW&}@GmSg|u0|J^V2v(3QQlnK68myGlaC#bBpq-Qr#IJkh52xGCvs2{
zodtS+k&FpuCR8_Ht$(xWJs(2NcZI$=kUI2!py10-C0eOw4nF7e7s*o?e93GNiguMZ
zo!Rc+!25d^>t{qlXAdI$#G;yXp{p3As#Tu%$k%6iq^nF&*Luj^{Y_){0g1myE<b5H
z?_I&KY^)V<V=e;{gT+nr8KoPptE1eD8|v24BG$RhdvB7ugK&D-f3rFDLYL_#YZyBc
zX${tSIa9>m$~K8=oE)mQg)v><e?;DpBf9n@P}V0PF7<J1NC;m${dzqfvGk8`AN==u
zt&v<q3t!(}D%5Z0aYiF*o6M22V3s_0PJ>}TU94}GAjm4O5$<4(zi=DGCFu{~3GKk>
z9s4Qi{Qb0lZj2Y^0tx0_cYN@vEXaQ^n;ckl#O`T~<i98OMhO@pw{5>u7|MS?e|Cj#
zvgDhT{%;<QeLkHV7=EhA*x(;NuMYtf69(ba0n>k-$*HS!lY|LE^ru|^|9&0;WRhjA
z_r`C80DHm&2|$PJu8@=e!{_<8MeEH!1U8+rynnqE-37xp8h5w+^~T@P08dW_Knjs_
z<N7BW^jAgzt_ZsV+x+|I-v?)-^&|Or0`>EX2!o@>jBs-NM&PiYKbP_JgkPcc|A(Xf
z_vrsU`hO4&oPTfqzqkJPTIFAb|F6P7W#;~R`LC`2*Vg~nZ~U7>_ph7xubcNbf%rd%
z_y4yZ{^8XHjGOV|z}~q?|Ko!ly^7<V3ELmLHsmL>^M%GctS9`$s;eMEYXJym$lWKm
z^zm26O2cxrd3;QH{_qw33IZpEXUm;~r*Km`PtmAz!qmdDF+Ap|{`;)Q+p)!Fz4D;w
zVLQXUoQXj$LjGky9FGrrbk=$AMeEK~4AJzhpwA#sxjJBLSMW=uLSlvE0g~#=pt6Bc
zX~0!J;M=!1u1i+UjFbLFa*f}vc!CHC_n86f<zGUS9|4}QdRNROPKI831Yd>yV!vE8
z$LvhFZk|kU()SK{cbouocw1zE0NK>bI{^C%zP-c1jvT3UC^`hhbQ_mic_OdfTOb0`
zQx94Gr4YvJJqhL-W>l}9x4$ktb1;*V4FPI5Yz@0t;9CrepPpGEDrYq)587OEQGk|-
zXN8s%&$26~rH_JvYJw#?5)H88={DI1#J|X$Gzo4kel?$+L~A9XwtT2@tnlhugCU@J
z2VqHA=Pq6k+gzl*PH3_P^^uEYZOaU2PSH!?_5VDqY6|kA#inDrwlf_JE-SAimf?Br
zO@zxc1FfMdi7JNEC5hf5!Q5FI{Px^7ZCtHU?4j(Ep^{1z`c+J9I|~f{@mBXWiwq;r
z)4KH#Bm&OJU3PY#S$|~B%*qHS>lnAmuym!P>j>2PxSEf{eSE&JNW;1pUNqlg+VPVt
zip}AIbXwcTS-Gp<j=o8Nz58u>=D0YH9-c0tNno6yaaXo#v!j)G`@BFM-4W7R$(}5$
z3d;yyhiu%j-R((yriP_KtEPJ}gFN`A%*);Un;b8Pm3=A!kqAphq{t&>3(?DkRQ$lW
z#}u0y4wY@BJWmv}YVM(KL~p|609TqKs|zHxLbj>nd38nHSH7f3NB0qgA;JsvC0joS
zp5M0@dMZX2f~_=l-ii|V#jAY$$ukef8j!yYx~e7Sw!&G|#)spUAV_FdpuNW;>Bel`
z@xENZH>wC`58dETe73SrQG#=>b%(Z(+QQwr)M@`Bi7%Jxl<=N7srIEQFcJ%5JjG)H
zc}2&S=wm#)1+zw;Zn&Lsx9k#E27_u^2hr4~d5ud8VBYfinbKnT^*mA6heXGPCx^`M
zswKS#h}zEkDygUkxW@z}nEhml-ykRTNnqOOAF0fp=W}$b92G8-l~dM_rhWEWRI1vJ
zZI~Ol7wSiyzb(Zc28tbwI%4Q|COqnTSG;#7!Y@oWM{6WDbGTuqn&;{?av-dg+QY|(
z$aPYtHnQnEQ8+nuIA}SxoiO->+t>~9`R&D^M;tB#uk1SRYtjUtn>cxXwnmHVkVXAr
zLZidO^VOr>Wkp6UQQeZQfWznK2w?LExeQN|9yiquiU+2BrXxwfLTMXIwwAx%{`s?5
zdQ$`n6P)k?zo?YMpr?6#WZ`l_u7vj($SU8+%hRdS8ZEJ!T6fvX9@WjOv8qn5ay5r%
z8V&gd@V)r-Hp}p+k~Y<$-B@Rv-DBzsfE$a~;_Gm%K|Xmdx|Y*eK9pC_gL~)(vCwAF
ziV%tZ%C|v|xuRe!1--)sWZS<_xQ9v-E>#KUIU!$vSIM*|PezpHXs3*D`u`Xgs((X5
zkOnl+1MbC3zbGIQ%&q6Nn5F2V`R)^oVkq4R-n#O~YevIn%aVaiJ@l6#;od%hzWB*n
zG%V`M$K`G#hC(^X4kZgC<t~!B5ygvrt*DybCXeNSXF|0NgX|>x?w@h2YY+Df0X@9w
zMkVvJ<{|3J+%{wVIxd=+G{ci)*gD7)8gU<ZIw1nhQx&r2SPy!pnKp+nvKV)LieMsb
zw^h1Dl84>wt#w<QUpE_mb_GvY$*u|%76Iyo765D)3S(%*U#)kX+o%CFQkUw1PkeUd
zX!90|aC+ah2_@k{(I)q`@U;mS^%o2JCx3APEI<4}(Ru>9z=6fab&i>SfvP}{gDs7F
zs+mz^&ccWpa&kVi?6q1{AB#@m7fm?av&<$mjRO?WB*#^8`b>`sHMo)F1MOih5m@@m
zEImCFaJz8wjx@`*i7!;WnyP+!U!!g6KI9+~kan2lB68O4HU$RljM@zjPXy4lY;l$L
z+{a^k3;6Q^c!bbZ?-B9dUX`6S3afbw4+UPU@gP7M>8J!6w}i$Oa!2vF$waE2vS;;C
zG6BHu{PWN0SN<{uk`dhauE`?<OnP6Eq4@@`)9Rs2yw&cT_Dk;Bj?{ZDeNQ)p2u)!3
zc&(6O`wnL0Y9fawK|nDhchL*p=Tmj#Vyvq2MaCR=)5Q(GVG@ZP0;xpkWkT<8>-Ov4
z*t|=?LN6H*+|<p*ee4R)ja#?(-nVLQiDs4^vK)R{ZC%&@>_nk{xqV56@g^vFxbsbI
zKIRvkgw6sNNmFP<o3eBp5!bNn=57U&2uHPP+tdQB2ef~1jV=aEtsBaguhREWSF<^~
zY9g2VyBBtVqF1T-8h8G41=Dtw_0}gOC>MztB!C|2>QdY$0dU^g!XC(-Uv%U*LL5N<
z0d;H!{X+@2Rnw}xR{zXpmD}ZJ!}uK6KbgQ-Dw%gC8}Qt93`T5c4Y$YNN>U=&wIArQ
z?g7oCvwhj5Ub{fWFnVtllHBcayeD;WrgPCTAaC1UTz7FVX6^XH)#g;m!H-5dxVm)_
z5p5Tw0kDh1!V~%Nukh|apsFb3YB}tnbfNL9n3@>EgKlH{I>s!4Sme_q9;=a?Sk24#
zI6Yw1;QM+ik+{`Fg$9RFwOu@FO<yY2Xsb;(Jq(c4IKL^x3syXC{`3Goxtv!Uwlm?%
zs7|X{WEA>cB%1`moo)Ej4n<i@abc?jZ7~>|qHbQ7oe)jV^r}zu;M&gJ$WmvG3|JkD
z+9H6~u(FU|!S<ZM)q%2}ZvEg@PKQzM`=(N6a;G(RDltgjc&|av5WdKKlQ8%wt{hP8
zw>7JGlM5#gQeV1aMu9Uii!Jx*Ni?x*0qJkwZDVHN>#RZXLX{te99Z|(=Od@+o24_K
zW~6A%f&vCm!Kq1;r`mm3MstB37;W3R4$};+oOfI<l?4MHKkl6u2kzDCZWZ696v*Di
zrW-DsVxW+42C%b;R98UhjQ!$hCse_EZ%K{04XE!9{<GD`NYeqOy8sx!V3=B=c-nvY
z@maLZV5c?GQcfCii(H(e3e~^ewrOch&oQYM)T9v8_Wp@epiw!{F;8=!NxIkBw{B`x
z+oxi4w})jzSmGg-;44uYw}nUdv`edJI%AdkQkAR+dM8U|zZV+8U`OdX2c2{yk#8})
zlbxUVd@Ycr{Z!MSSfz<o7xo^qzey~Y+@z2q9h@}R(;mSZ%o@l4Q2wnaJTg2{QS2IU
zTHj}Nai7NHNu+=~Mts9~-i2vfK)VFVRtE`^ot2BNvfp~>11jF6fl(LE$+WA_^0zO;
z_*u_m8G?}QME#}Q=R%o}+Us%9?UB<>`~yO^hkmyeVg{f&(BMN`z)SYo!B!*f*YVby
z59b=Ad7w!F1^w_^V77~^pUQe-ckxwk#V`4VA0I`<{(zn*re^I-FgLy5aC~&&r%zTL
zZk^`Atd^z5o0X%tlU!`Imn~itkuxft;C{ql*cQfG)gM>049^Mgmh=y*aozcrnY^lt
z>XqAUFt4zcXbl(1Ybi*UnrSXE$JS{T{#p0x*_-<pK~WgE=GTQLG~{~4ob}HY?^n`X
zW!ImhY7JuF4zLu8c+vOm0+t1+({&Q(G!dz&Q%Ql&(XCP8FSeX5)GaaNHdxx!Y;pzW
z?mnQFZ#K0b5IimhV*i+pHdN~WLaLwt(G{M%^0J<CiL_s*7+cQEAR7_#I7B*tM(CF7
z&Ps$YnMV=VCN}f{b&AP>FW+vo0^$JqD-Ud4Gbj+21}?mRT<x+uWSYaC2zrL%R*)w)
zhUj@|mvLHOf8)lcoJw!y&i8}V^`6B_WK*n*yA|?_fE2ef$nhLvb3A%@M*mF;{iR7>
zV_UsY%GEg@8CBS?C3Ph5N|joS+?EQYx-7);h&EuTLQccEcH`3ANQG*;e26;?=|_3h
z_&Na{9caaJ_VhI9NO-_J@_PmTaNAwD=RE0ko=UghlNUHbM0tyRwGtQSg0;)6zWaaR
zyma>WjbQ$h5ka~eXaKTa2cR9cZ%~i6j1(FFXiAAbhf8n+cV%)`^4C};ADcw;N4}T@
zd@d{}NgAYsZxE}vVj6sA=KLvbry?)e9uBi(<FTfbyCAu_gN;s*F%RfZ-|j2ef{53e
zW~|q6&WeHT6XmUEmA@t<(O^fB{$IR+YKDS1arXG1rWEgWS(GjwII&HkZ)Z48gEQ|R
zgAJ30aL<A4oefA9@v`RN+npk9iqd(3#oft2H*X7uS^y7z#F#36dfFryHIQr4xVMC@
z%FYEIPzC4dhlv7{dA9mRvhnk?B<~r)ziS3JEB-h=(5)w68do&@`RF}GAz*3#a#;<K
z(?dx=2S2}H(NF;aDZEOsVLdX7B)_<aZa})W)IMTqGoI!k5r_KaVI%~x;K!H+>xo+G
z>MqD;*xe^dLEB36;DDmQ2hXjF#ZKL-GhTFHGx2erJmwl#h`F!uir=ocJx7~&W;-X=
zc6rF-CZ%@(*ro?yU+c$B-kvg@XK)_@!6U@|adN(zZ=*PjBV6iix_G*70QIrfHfn*b
z>;hE$hg>?rGmtDUNs`h&y*VU*<|Df;vIU?Qpx*j2Yy^*Ez(iAWZfu+u5;_`iZ1~3P
z7obN@^1#?0Zgh(@tzEx%_Le5t;Si0$ieGf}6xh`U&H6XjFab22icIR+2K9(am>f;k
z6Ny~ink7;WKq*+ClJW+{!W1F5Brbx&`VYNxz%tk#?K|)}p|U&THsa(@j6OoD96MLg
zHN^OBs!H7UBPXEheP$NLR!%L@Q{hr`gNg1rNPM=hp4JCva9?24xkNCr3((Lz3QRtM
z@gd(nT#bE|EJ+lq<nzZm!APw><KhYOjE^IV0^8~#$<}~<BA(qm;Atl0yWv){)XSNI
z7&V<*vIU5@om7vU7#2j4&gv{V4Wf`VgA3?gM0bH<a&=vdckw{c<9so;Ec&9MT;<zr
zz~l2vc+l#00vL_qfa-ze%gID@gkNKYJhq)_xd%!^xRz%+B3cj8Oln!!%H<S;j6RiQ
zNtWp?5Dd0~qPiJn`{MgYFACZV@S@FMq3~T~Ot3<0`MpB-^s)X30%!Q@I(_1QE1sJw
zDnw4)KqY^t(HZrer;4C_efEmoQJSTsXO`iA7-Ou<;Y>P`?+9rbK#{<ESiO1H_+do^
z2Xx`pbb@}fU&td`;>~iXR|oe)C%l^5TtFh<l>UIQo%Stluzub{-(V74q#rqF>vo(g
zVgAv<PU{beOS7G22NWmqM~M5*IU2-~QH+WSya7f%MUESihzoCo!e5`e)Cx$Y1(~~7
zG5Gu%)^^jdvk)M4wtD|j@c$?NqQltz7Eb_A0gSHT(pCN&&-1q3G$Zco-tJ{*yp4@k
z#fLs#Z(C-cR7(cdXm3-LM}v9~J1~55oNzOw2Wx#sKibutR{P&>f~8H~mlPv_I-&is
zVI8@E&Bkn(6;*#ebW!%6R&kWq?s$=c!A6>YfhZ{b!t&#}b@d9|GVGUzS?TOOaFL?(
z6g}Te!X|;@x_ZcR=KtpXpZ|W+3<6+o#86*SW>ze-x_&g@Jq`eG9lL1b7-8l{Nxy)t
z%9>1?>7JYe#55%r-4H#^_6pMQ?AQJL5_5R2vkn2kWSH%?_%ATgO^Sg|QDeBjXsoYy
zfWoKR-=)C>Bs`E=8pyGJUSe|W2l_NL>{<)OPqnOZ+MXQk2&}9)sK<f&@&)mMaZ;fl
zFFKdhK;SNAMLRTSUT^M@+fYHjz;F|*wo?Y@v`)t^@AZG)^C0k;CMp4z))0nJEX4Bh
zTF0~}4{Xi?+c{uu^gj&<bdpK|iHzTAkqJoIjfVWJqySoCDlCic>awLC9`ZR>zRuO$
zzJ`^r!afM&FY=}QQ@*Yw;34;w1R3<)_!>M%_xg#PPimZ~dVrF-Z@sl>T<v(5Uu#KN
zw~^kgFGVI5@M8d=#_-cYZP%+8Ook6(K2!#_df^>V@2@dT5^jV0?bIXZhUF`vnLD;l
zHv=K@0Y~Xw^l*)DGOq5`2W%le<6Vcl05MqzzH}T0I$eZL(TjwFhA9-C5o`yKu=Uz#
z&mG;4!Gz@`tFJ&yE8JM_Q2Rw~F#a6&{u(zZO(^}3emeMr+id2+o_z~l!txlCBfzYj
zr*njxM2Kkw>9&>!)|n@3BJH*gewh3-H1LzOGnuXAMhMkg7zHd~SGcIw1CMz5nB8!>
zeEDdO*ye|yL{5sH-qr5=lHTxY?;@!o5NF*)X7$YboON;L17o$8SzMNVJ$at+B}k28
z&_#lBU_@qze(xCI`v`-8e3{289E&$d8_JPJf^IV3S%yKy9|L%N(}5aucqo?E4LV}9
zM66cL0PY{?Ye41~SAlA)KIfbIbdjTJOdKC}Kf#}7O5;zVy9$Kvp91Fh^go5}{q7Bn
zQAd<aDSF)eOq`IbB$Gz@)!IsCJbd?CSlkL3FK{5RIJm*UIayLNQsoqAF;=L_V>M2v
zU1kwtzt|@?Xf~L7(4Hp^{6v2<7r=Gn2y6rQ%g=*RDITJdCePp>%f;<<RS9$sk@UZD
z$KwQs_(JPffj_VKIr7b2(fU{tjX3kud>gs|tWh_<`9mL6=L{2_*uVF?Av{2@KG&gX
zupEFelGZL()-CYpBwM89wUTaRT;^ZdjQh*#Y|yj&q&nu9UGb~f=MY(<o0J8Y`{181
z_YKSvN(Vun1y|30C9I#GT~=titQ5j+&XcSKsGILm!z?N(U#f>|e6Zy_U`30CzOlU4
zZJ_^!Ttb;kGllVf$B0UWtXd$Bb^hGa&pr*m?HTo6_2-TUfE~w|YAPTTvPu+f5W_b4
zkV!ax!RLM$wQ^|c(_91-XD8l&Ocw=QTf($Eu+ulm(^C(O<8D)tlZ|6t3h_^cF7CYU
zPgG?~59kbAfHeZo=R~YeB<_}{=p^`}*I4hBU-a62AQf6?4^QSOFn46ugQSzj8Wwvp
zBDKqo8OyAXlpb$-TmwEKmUCib${ls-v<kT(4^)U3%fm=t;6Q;JPso3d`t;58^vnZ4
zua$j544(dq1-KV+Snv4nhUlkzK`Dd>d`m%aJNy|hwHp5Y8^H7X0LBR}H|qeLupfYZ
zW)0CIoO^w0C{bMCs3<(Y)HMs1-GkK$in2bZ9!5YnnFYvec`5_qz=?!h0(Q~(^us)V
z+Qml6?t1WGC1ByETg7b2PY?7s2~6X5E`^=s8Lx6|Oc1H=U2%G-pn9x<9DZ$A0fw>%
z+W2#5-_6q-K(GtCMJ{Ju+roO(aInzvUmo^X6vg=fm*Cq~Fb=dZ2!ellpkQ#7C_iL1
zeFDxdD=;)ose{j1PtW@{)(xIy*<Bqg^M*(J#$REOz1DZUNQHA2yM2Tm{_3ZHK}T{H
z{Dh9~<NJ428R$B;hjA4PvvWCPwj0})du+wzwk>l?%>>_!!IyTcD<PDpr)2}d8k<Wg
zIMzi{eJzu>G`+Es3cwjwJYu~dAg2OAPCZFMFu?3meA;6^^B>kzM-y;^ZBoe2{!c9O
z_w)aGRNh5F*zd_p*MLey2q;TIzp-y!+t#`OonGy;eQ|ne-(c9y$bKSr5h@i(&Pd9v
z&M|3)sAUKo{BjFqCmb$mo_t6*sQ00bMH3%lV9~rzrJ&{!B%@6G>o_O$unoFE1Cc$n
z4~>hoJEZRW{96IgXbkItWQzdY9dt9R5_hc$sLRz27dhS)=dpOkm=H+5%HgIEaX;E(
zxLW7RhvoA~q5hP_PyEhbXUE$jnA!4bx8Gq&(OB>fRd?c^j1)OJq>p4fVRebqmkbO8
zuliR@W;;k3?B-axCP2m3TP!>QEB*Y^1W23sv~1q#WztQ01ED9D7Je#o7sndd@>x*C
z6!OsKrK;gT%Zqi8$*>BqtnN|RueIa-Tm$NsRVodhlx-Pz>)fSyH`?}YYncjnl*_cg
zEgt6M_AFdL&HX>Xwx);2<`dw9r#5ewSs_A@d9}Cfj69Z=mBvh6ol>88?-#nl6@AJE
zEjFXrQa}@qnl4RrGUyo;hGKKH(RA8<-<=}UU-hEoUE{g+xy?~FQZa00tCpV2Y2f4x
z4l%eG4HZIHWI;*%P$u%vQcDJeSf$wpXzf#IGWGhIC1}ldOS=>u^7sP^6|{8?V^$A3
zCoNMKm3Ac)(*(um+4D9Ro~x$#VKwGr%$WZ!AJFxKAx|ngF<S6qxpbmJw-I6^?Kn8I
zkls~9{aB7GaW8evXm`uy1PX`R<0UyC>T-%V=y5w`kj*mRwgJu&s5W8&MdWe~uivJa
z6#NKbRMJgmWBE@SY#=o~>(&0-E^5O?Vqb4N`hGc4um+rhUV>kA@oUhzm+}vZ;5Sz=
zxjJ>4fRIiJKiKG=zimEbf&Y9^c6MfSQI(Zl=UnxCS6n#2=$bQ6{;K5F-MNObnkZF^
z;W1r+-x?L``^#_aQTIkl_(sY#h`sfL|B2QwJfzk3Mz|(3SOP{oy6!~wSdb6W^#ao~
z)d#{9(85TvZoDQ-{JDjB*ln3Bd-l5~rknQq*iL8={Az5rn7nB2h62~^(oUOsC4m$h
zdUTcdkyujUpVsKfuZ-Q-_rSuaI^U4|*TL{yov2f~&Zc$Ox)wHn2p^f~41v3Bz4`z$
zeyHJEg|;vj;{kI}rj)HyHENM;yll3cS*6QeUP9gfiVaUU&JUI1&*wNA6`4gc%<}@^
z?*OALoNM-<vzp;A$!ebxj}MIKp{`Nlwzw^R-s4KUE$H@>B0Ff-w2bWza?Us6W6UDa
zOQE!>x|8EeU7hl5?!X4@D@fv<j{isqBCrAA?W<z-0?#KI`$~1r<E;$Fv$cnO_r1+O
z_vZ5Rr9We%EB(TgmJ_AnZbGJ+mw&`RbeA`KTD6hS!-6M5b3bRSnA7q6a_-1EUlf)9
zt2{hi>WzgDMNQ&8R><mm&bEdQ&N`sPJg+wXKIlAXT&z=L_SW76&OaHe;1BX6`W>x~
z?+S!ha$h8;`wNRuVdDL0cbw~w`g;JvkjE{ebs8@4^gIXj=q0G50+_e?B`#}FeYR(7
z%=>!yyPSq>Z;}(u^X>nJU7-DokYb{Evm&V8b_!5~rrF^2>eNu|E;WvAzJKFSIn<7g
zH=0-k{P=hHC$Y%^Dt_C(8wWod;XQj4$@`%U6t1G@y6hM?S@qK1K+0bUPsZj*v=6Pf
zP72H)Dt>yPi(H;iTA%G^1Ib=qT>+aP<pW=|*e8!oO%wn$6+@eIIt~)8e+^c4POvI%
zO=yxuJ-giPr19eP$5lM||3-9n^{#-lF;ZZjP_V(fKlvy_BRy?%Wl-CtX1lUCTPytH
zdR;6p>>{+J7FD?Q6!ey44IIoiQ(v>k&r{zw+AmWn(Q-&We!aJm(k!Q=<A`RN6neD~
z1>p0q55;aWNnMxY9W5j^@8ooni@eJOD&34WcR>G<^;e)zjmKD>mFWYD1K`ap^O6&u
zM!`hso?#VLupb%+4Jrv!6cPLQ>YzTgCC#7G@1#_Ozuw(AuLg^$&o7TAFlv`M5=IMI
z2dBtKt2nNX-c#cJ!ZuQ9xWhNORr<Q_Xg@3Lo`Z2@!FBEWEMh71!KCOlEzmfU!3kB}
zm#LuL8g{Q}Z4_Hu2I_8unKg3DslKY#XR$JNLmrGCtu@oGoAlx$(-yano@S`D0$lms
zR)#8LDoBwSA$Ejsn5?`X;xPSjcJV|p!LvE>#s9mj2+m~CCt$I$86sqFvEOl`k7ljU
z&fFIYIC-R^Yx+o6wz8_~2|wwDMP=my_}7%ni^|uYh)P_$aPQvbcPLcEgEQxXQ3r?c
zaXUdyJ0r!_sR1X%yl}^-nxRp1*bogG=3Zp9stLNE%@An{X}xH2>QDa6e+gP75-+Zv
zhcH>v0fouc_vPgpT^tO$;}KTpt104hHEWo<Bm`}DgZ!wkI#+vvt)kSRC(IWR9OLgI
zi~J6nEIzsFVw8J*EV=?IY?@coE2X<~^wCrpgob+tVlx4zEQ|djOk<8HZaux~SC2lD
zu}rR7n#}*Sm{6`?{gDY^WMLacB}B8HWx7Z2))$TSqB5`wcz?&0?V{G(i{UBVW9XP}
zBASPEN&^`*vz0}j8q6Kq<&Qs-vAxL4dSn5rayxfWC~P6UOKu(`r~=Jm^JCV!o5!bh
zGxx{RdwlJ?G;rV1aq^wC9D&(_=39YKXr-ZQZ(MVL;gUu_gF+0~T=KrsKnU#M7M@<4
zH}KnFuZG4i{9;y;fD@>-A^pa-Ucl-2*1ac%VcN<|$|=ujdV>bkUtWUxUT3*;={idh
z+)i+R>e1P1c&<(;g&K3r0i!~M{B;&htFDg0Lj40C)6sJGPj-%^nB0kC1z==f?%!3v
zU3UmuOVWN95KiU9U)2v?43X%oF=uqjRB0B&sv!2oi@(fA5X^L|gSm7x5tK(h!Se}-
z4|{XrY9%4J)yiFRzC&@>qhVa#ocvoab7tD&q`E*eKR{I~EpsNpvEH1%vp&<w3^Lte
zps{SUO-Br$xGpT!DSHD<%UwXf^lA3fk>Zox<N^+h1(GsCOH!%8J?WS-KS9RfINRwa
z!dB3qML;b>KM|;xw^8=LqQLQBvs~s#wO5r1p{{~(Ii&jzjC0l5&Lb#8RoF@PGuxda
z>S+uhNy+SSoY2&eXw=8v>-R{N?tNM4F`;{P{lji&%U@i8(T^gyx;16B(u#U_jhV&q
z34=Z)xUblE<>DfFEEB?sg{fYQF0m7)%3gD<@YT>uQ7?r!j}+T@o0g#`*^9EC={-+x
z=KQ9P#Sxv?C2L!9q{_Mq4b}pO1cx_&0K1f@E&uda6nqyTBqfsEPw|k0%RDmMD}j_L
z91Ol~6?Vq@=f(=m>p-{3E=ZnALG~wphdwuIje1IL<Kv4^2SK))!^}f;3Ga&d@@R$k
zVX=jbUt%TDo{zr85Qfl8DfX)iX>nOz%X)#$b{)R?0QS@2o_1!`$Wd06XUT%x#3q67
zuxxv}R%=V|bcdl+KxF=0Mmib5@!7g@Plp2pyI9pvv9J6Gl+&Q)F7VfQM0*33U#0Q9
z!YG?g++06|^A#DjF|*Y@uMOz-)WDl3pHK+2yX?Vd^OdUXIdf@bwuDGhLqTY_aKbGm
zL2_sOJXEbE#=w#fit*eNhV4sr29vgH<OXAPUXFIzO0(Q!;`*)K4+$E%ml4tC%jTnS
zJwVqIX$_zrOM$M1U_mVauf;4xf79xUKWaQ%-Cq~W0K6Uc1P2qi)~#FW-}seQPZmCK
z&OtB0_&(9}f1XYf1g&L}=chY#elY;`AF!r5P~t9rb%59ELU5yD$3n|A{!8XSp$His
zON1%wvfR)`vKCA1>fmvM0v@POVXT_pbO+;ro?z1}7<FIqstw9fdD~}uFvQZkT@c<x
zm=LBT;Pkj+99xAdY@3a>RB=;n!HqsCiaBPsGrOkPj<X9jmu5Pr3Rj&bx`RPG&S)3!
z^V^Z#cNAZZyt_CAz!a@%X|`WOgSTM1WG0F+Z(i1CRXI73<#pvqHwfM-c2FC#9=(I@
z-!@1wn8%E5(!h#vX*qzM|9{wf>!_;M?rm5EQICX4r+^@x(qI7s0s_*h2uL@Z21P-o
zq#INOq@_D7I;5phnhhHyrN6n<bDje}@Av)2_{RIkJH~tdaU9*S@3q#w<~`>%uj`so
zZJNAh^Z@=ib_Y!NRgf27$4$;qlc>+P(CQnQ&h8u9A}F8xpn3(>J^TH15yTnFYxj-g
z8K58oGQ!0)<<v`HBV;$E*?n*C<yh|Uz@@3_bN0sbuy>L@ynSAAWc%rM{fN|)uMgw6
z&=3iZz@aHE_XedBV@zcuSwk>7bSTL>71N${I_0W3qxAbXw9AcD)Z|JmgW*afp4%U=
ze}RTZ0_1oumXn#tGwG@SENlM&NOUsb*!tS~>nrG28wx^V;+z&km38^JJW>&A^GhBa
z`*8UNatHJM$rdj)Mkx)qZbk7?N}>(dtUQ~3j7>dORvCL7DSv7aQFk%^7ipXq2c!j6
z(>nuT4SAN3A#5vnp(C$iuo9)$ytlj8RK{A31@MU%QvU09w*RmCX3y6EN5H^mzV701
zdLB$!x1s(=OSxIX(rJ-`;&f9z{lV>d>|fXS0I{4BFnf37j}HmMO?azidjVRIL~!pk
z@nlecZk#H(-CL?%*8xb0gV?#GeGvWd@<Pta9mzHjyU|=nYSVkP(SM*8?-10&KchAZ
zK7^P>W1H}i{DC&zK|pw;6Rq~AF4x$?@zV6)dW(b5TXazS)myZK4<-EBTU>;glru72
z3hKQ_Pawa4!b;zH5RIiFL9ip6ZW5lu$8Zp^i6#rz;Ex7uGc5Ik`MYTL!^hOwfwd+0
z-{7xucvKjf(rgsa)Oy3+-UQQJIZUnD32o$WvH*%y-J2o)<B-$_T&|4XHsj%O6ty%)
zRmX~XsM=2L^k609am$g_6hRAU-c!K}$4*6N|B*e@Si*IiC7i@}vJ%sf$*%5sA48C|
z8e%^zDSgQ%n4W$#fLKpRqJ|hgrMGe)pt}Q)RSX{F=0{_zn>A(ubd@wG{ow-Mm6-Y;
ztn40~M7p6yw8x#YY*wT=(v*@zgi)CK?hLgZ8&?eJVfZoHw@+?j9k{v&`tXPfjV7)_
z2SC^}_+CRuH`^Ow)WQugPn>g@Vpj(ml5sGPvAk?&?dsUvSge(?OqJWl#J5i;lu}js
zT!+qHRH{$sBR44McGcP33ehfEj6^a4qqfcAEUpXEA=kwyF3HG5vi%IUE3Rw^)osLc
zO9iZ>=@u$GrS7_#=vHpx8;-spj0>Fl_Q@{~Y>7#^+}=Pkb2m&Vw}r0g3bl~^t^Oj9
z#w<a_hHAKw-PI|~f!lQKQ6cOjz9#BMtc780sfl1IDjRZU*9iZ$vMmCt(7o*`aode0
z!;9K9s5p1?p(-h=7Qk3Ws@O{H?&bE%#a{@R19zT@9fzZqNw^9KJ>_l|LIm5GTTWx2
zvitu2$eC=+Krz3h-jM4`7-|?zKIOFH`~x#!^}3Bb$3=ut%X@jMRT^?G?bg`8b^(4}
z-6P{Xd@vxqS4E1fWI|srwJE1*{lP04m~=QP=fPWu@8eLuYvjz{*RvPtK^`9>xLkeb
zE#`gJ?WzLs3Edz$G4RIb%*Orq#%parHoXvg$>KR%>?LUsKPTVpvsHq8Wh+oO-l}Ob
zzz`kLqPS^`=j6Gw>K`ZO&{!ZHFI0H1HADprLrin_HjEP+Yp{avyfwI$HMTwR@u>iH
z6*lxTn>beUCb5zuoe;i>ny%0vkk5k>c*U}u#op77R@zQHJKLDpM8}zdTD0t|Xn2$z
zD1kkksG3P6diYAylRMW8w@cc&YD-;5?zAsE7S0WoOC?yg)7O@kn{+0JI-ekth2Dgm
zD84mI1k1T(jyf;Y^z$oA4UfJnX0Oll-x5O2TZ(l~oi|?FYXk<-EAaZ7{CbKt92?pO
z{4XNB-yIBXCv{<C^knj5<=E97J+(L+AA8A))}T&~)7zRTp{jk#VrKQd>||NO(adtU
zF=jA}4MxTQFk4k_#N6DQG;?(TE{m#mo_X?FCiTw+&P8%88kIs1k&3v`YwocZKTYK0
zD+fXUlT<&yljrAmo?9dWTLvNytvk3cjTgbaS+LQI0=3}yGhsQ8u2mIs#4zt1#k&-#
zkSN9w&JvcZ=D;{gDP;Z{+~`{i+J`=tWqkSm1lJJ?1Uq7;N@%qJFQ4F#9R!WS-WUnS
zQ3uSA7l(&c+X{m3(47x5{Jf}oO}lQXX-1s>%0rwbAT!G5zTX(sT%oH|h|PCc%^W`L
zZ07`=1<JjrycRu!1<rdz#p7USdfaJ9iLg}$!SXEq$qt5x=ST)?MEZetR3#1K$;aa<
z#x0W#(cQXJP@Nn<b0KWLd`%V%A)DP@?a{2VM0@wCy%XBYJvuKf?;y#LV@tXv+h)(a
z>v%gJ>CK_Kd@-Ze&hBrfN3E8|8w{rsyh9+sC|3ig&UUt|fe9-|IHEdEfW6T4wvAcl
z?WG)esXcc}|DeO)fnwjRWyx2z1|6un#!5Qhok`%t_rg7+4ULFIfTagjz|u{0(Hf@%
z_z!m!*z7QUFz+gP>c;z(XSwg$xu#_0E%3XzM#Q$G@z*(K^VuHHR}pgq#l1)tj=cD!
z{JUpdIo-CuD5fc9g_uk^UH2Bo7WkbR#;13E&xfTY5_=6C1bj}m{@fHE0yq_A!s~U9
zPkh7aq^#mt$C%_8IMk32v~=%<9v_?dKzP2b#evm@C_CY4h6HMDmOu~H`2Lf)G}z3`
zb*E}w3YR12kIJFM9!A<)tLWYqMS?OrwV(%Y!v~73WLKHbHOmea2!Pki?T<0t8Q&;;
zeEJOPt_Q}R{sQ0spi<1A;E!iXggi@Uc$WWpd%@3CUTYxu7@7ZMYw#xzYLsJ@<xrjm
zq?6<J<{Qhz&y$<znhW6#yy4AgR?c@+wC4)yxLHHul+BrOQyV-d1N4o$&SX2+jjeAI
zsmr4bW|nMMKHok+iXW4F_r)JE8qADx_{;z>9<-^;-a(vON*&OuVfoJS-NX5NPY}!n
zC^XDRmM84V{4ss`T4j!=R@vuRZ>wKW*y*n_b6lza%5AjrghU6Ot?Awn6Ja;iDia+N
zTyCoqzT+E+IL6=gAL1Gnh3qj7a6fz0G6$o4eS&EDy{5^QC3KGQUHb)++h-QbIta7T
zu;mMN{fYj#O~8gJG!g{EPGR<)i&vM3ne=sUrEoC&Wl)IPNS<btHxJ}}15vrsRQug@
z{=9JG3tH-abk*nla@Htuj#>)>3Nczj@$I*yzEvx8fD+pTCfi5nac}w7k1;_tbFDFg
z*(hgWmccC70S@(+Hcgtft2N|LGTul1k@Z1iN!N@h#;dn93G+5fr98Xz%S#=zr%%+s
z7To=Qn!ymH0F#<4Ls{7m+i9=)$__XNm%BJHT7>#2G-8IzUky&7t&DC!FF1Z}!Td6d
zT2^RWsco$6$jvR8Va#$_B^f*oah{i5Fl~e>>%yOuwt6JoYj7UcoeB&THg_<#ENq;R
z(EB*4zH;m_Lz8Mue3hmo9y#+^T|kkV&ACO>Pt=n;OboITn9WL?F`v>lYR_%U1v<pU
z(0xiwI*Rk<25Zq6#Yzn3SdWbv;`ns-ViaRz6r?O0(Z`c@Assd0i~b|iyaJh~S<A!6
z*8r3e-&zR``i4_(w<YgyXUz{x>S*qr-U6gzTUl7o&eT13$8kUvW=U+WQ8Q`e-Q(-!
z(5+zl<ToB<ONcr=3_!)xs<Uhcwe<!x?Axo6VH{dl0roXn$k5xn(vc?1zqMZ0wC>l&
zDD$!LT*&mx>q;4pl+Kt9-L?2~&F__{&3ZLG`KR1eEQfVPPdEV@HdfHZ<8Is%cc%qg
zhT}UjV=kw{KJbqu&gLiV<M!xU4LbWagsY_6-SLIsqhzseZoc#8&QxGq<FiE1C4tdy
zTm<?u>#@3IJZ~!KH0mXy$hf4At3|r~j?*sA8$%YDF|A(fPxf^s*+LaES#?tq-LiY9
z5R9h{UV9JSLzY1YzWuTQQZM9h;#BMjNfJ7(KEsUe+@0-JdUNYe>ZlX}HTPExK#&I7
z3Wy)%FzSn2m2;=0bGk&RI&s$h_Pg9xUr)P6WeV%-0k#viNhaXA*+&e1@wFsZa<Y@C
z7~0dWX$jg2EG4wdMp}xF?^Izo*Zp1PqG@g8e1-AtBdwxCB!<#tD8&(I-x;e!^kA0z
zl@)o$v%a>F<=(o-0V0HR?k_bPLXsz5`cj1q0apy5fpLJjRflWmt9Val-!4rb1kznk
zmIm8VLMrQWwsWTtcIgu9!MxyC$&>YxAImD>m2Hx%sF{#|k8FtH07D-?3&Yp>^6x*p
z@?Pt3`-cBpSKbZC+N-A)_hQXzT*aN0q-oZ(W;iuD))$7)l%n)b&sIZI{umRKXI`2F
zxCblU%TBN;pI#RpASu4pg_GMw*##-j_P^=;P&^DhdPN3z<s=LX;t2YqB>M%?Sgj0#
zMa$LekOEyN3Nbl&ssFAG4kJ9(=c?Yhe|*RYF7!^(=uN0|SRqX<j0+?9qiCtofxv@G
ze&Y*!NdP`H(QvRNJA_q@6ea-)<iHYm0)@Cw{Z(%K1J{M~5TU7(s0DDrhiKsQxE-dP
zL<c|g9^oxC6UEIywLJlgi}-IH`4VVDqO*T><fq_6B7b(|NBLpV)$Mj*qI2vNJdcwa
zH&PCg8!mG~Er&an&SeB2qK6M%*2J&<gSHR_OVunMU0)a}&gNkhWw`O2Mt3XK4(H^e
zJUl{Se$D-fAQr=O`a8Cz4hxbM0T;Oi$~bUDzDrURQJ#U<Ze^1v=Df7&)0`*kn92d$
z^<BzR*M$f^>=a_y5OCqW+%iJ@al>uK=i@KWcBK3`s>E*Q=S2GPJvN=;*LT6d1b#(6
z9Df>q=`Pu#YU8jZjB7EF^KEz0a5m3t9vo7`41yY!SRbm%qi`pv7w_-aq~JXB!mXH>
z!3$mL)2wZJPBcf&zD$UR{K(KECJd6wRmRc6+F;$2$0Xs#=xg)U?sqG?4p{L-@G({7
zOi~R5z);HNI6juBJQ8Pt+PeBV>bai=Y=lqTJktMu#>X7s*WJ?l`Z=B&IsM6@LL1!h
zqnC}y#GM`7uv6N5s%i5|E{<12CY;$|b}({F>7}`JsohlIMiu7F>b?4-AL5EY|6!G;
zlJsmx^LMTIs;he!F>>t9)(u^rYHI-J&T)v_jagbY)H+`Uj%xX$FvDE)?Aj$X5aU8}
zs^iWBUiQq+GSFalWI+cec_lO*Ws-PyHqW$0GIG`Y908>elZBS}gyYTwZ(o^87yQBO
zy>BPl8lcr4*VDG^L=Y`%T(#5x{_%41$kswh_j>3m*^R{F;ozHlE#~ia@^{x4VxO-s
zO?ckxtPL>Aa>RVG%+7kE&T>&X#WrJMI$TI(Kyz(=0If3c<Noy;a_aPzr~3l6h(6q<
zqj;_JtZ<tPeYnH0hbxZ;HqwD<m+$6C6G!8m#)$CaCg3k*YE%n07FLwzHGl}G#W=p)
zF|uk0SI8oR);hb6XCTL6p<Q{{IVY#-NEvD&;W%sJLc0XJPT6>Y$BN*`o|z51se9v3
z2qy++I^$GrC^|pWdXGawsuRfJ5W|~i)^-KC8}@kM>S|NI+uXPO+Prkhvez>Wr4TJ_
zT-3RlROd$DqP0uTZWfimfm##Tk_Ub>s}>clpzWls8QzHdRshUS*&F}DQ7!Z8`qM$v
zGnGo<mdkMd?qfBJu_Q1Bb9>XVpZ~b%1p$znQ=m8>c_YXgt^aar`;{n7p2cKXRfU>%
zn_e%SBv~{)WPakL-o^+zW%zORZU{$p9P8fpa?s7)Z5~&xI!@?{x7E)mr_uwB01<3B
zj|Yc^u)A+EO@$=FFt2n~=BX9+L(sXqvp6Y7&T!}bqm-bqG$onYE|cr1KB0*95qH_D
zI3dAW3U_=bKF*z=rE%Hs(%5$EojsmY5T)q(Vk;?3L||6M_f3{Ovnhhq$oL~)Mavu_
z82mi_3#&ghsontg!CbEcW!I1TuOF1&Sl?-g7Y@4D5F^KXtS8U<oyg3p8)^fyB?#qs
zKgrHyW4soURf>tjdEdEJ^*N(_M*P-aSXM7GamMz?T{o!4R<VLoJP^>vM?CJZ?zzAF
z17}5s(#q`CACPc(!!jw!<3#Lw+%h~(7v{bkRlAe!lP8+6z|bbT_wcw!A#@v*(pA_w
z$i{_;w5**$9&|BGd{VxX+ptL*wsd%hVPk)6<;u5Z?sZ>5#Z4Q&3&skeV+6x&vHa42
zFJw7S?^YAnc@<yJeRzR$Jp~#)8ddS9O7qpcySI=06_rzLHNe~wBOreG6(kUO`t97x
z3ow^Ssa*10JExdSdwki#DkaT)!o2?byZBB9ET_ya-3X)*Z23+QWbED?n<lb&38#WE
zE{=RZd#wk_W2|I?2qlqCGG%?t2`QwJ{BK*M5;skSd6(QL{acjHnb#W2L>Hnuc`TME
zo2;zISVjx8w6h1D?|tt`oTpuYL?YQF$wiT<2fSW0L@-GT$<m!hlUnh<KDk=O+pgo+
znT}SBxCtvWtEHJv>XsXwi!RoG+SiwPr<AI5bS`eJc*J?+(VV8(-kdV201bwYZ{-c)
z5LZ^4k~zq`V)ibyAIM<6eBr#JdZ;L>|1+I_hAf;y{DLrQ?zs`0CRu@Tf~BRWM&$0s
z&hE9kmc*VM_1wYj8TY5B8RRN|5IC(;A!QhKBx`ZvjAojfiJ;wNfxFERzEk15u$-#k
z7(TPuqIT4vk7-RTV3}YyTA)!a-j*1t#PC<sk03@FaK8=s@Z!PFy^fCxcemf-k#lKk
zigwnzWeb-%7#HWjn$@oKA1Gp-7~r%$M;>q(1~LQKa4gcRSUSli&#vu?olh2~BTI+J
zwr)yzVJ#ffw#o}+5bd2GozjH7qupH1F+6%JZ;r5Sh7^cdRha5&D;ypMpMY=+;q{oJ
zGFLvSqMK_TSNTRQhEn43C@*z1+cgr0zSbK-F(?dI<hgw!Tkb;?mN4*z%R{}tz+F}B
zhxMZkZPbrTRvnku=KAJ43D05WDEwg-w}=31T7vx>TF8peAuD$2e#Sk~WTKR>N{QY3
z#zW`K^bBUmm)he?)tCe3;U_|oQTO=(v8B5UYRx6D63NlhH5v1S)P8O+V<T*n{hE;C
zrD_cr%wm|qr&|p7|Ar+X42XF5s*Lo{*bS9`6cBfwQ8={*yo7Tcte(5h!-Jj!ft4Y<
z?NTkhfr$gSsghuc8Ue6sUtI>r*Urcii{T1s)$I!Hl}}a)XAkQt6udcr`RYeQk!%=d
zzk&qCEG)uQFMhj8);!BG)n#rzeAHA+Jl#T7Z`<YBzAQM|h&*vBKFNlK0iYIZb6uS7
zOQ#n~;-hAJzI&m_KuUO~F6Eu7qVuB;s~_XVQSvg8tl!dOcFGK(>Q9PvSr03<JFl0L
zf@t=D1HUTbyhNO)dC``*Ai@J1S2nd(r=?dp)s5DD#8tSK&9pn4<qV_Tr8;2&7BV5T
z`=W+RQ{3}t4jqDEuU>{z2WLHgLwt9|ZqF=VLE1D)6!KU(&jhJ_t(Pa|@&_CMepkw|
zl*674^5O^ER8UlopJ-p%))8fXuPTD?6v?V}5m<e^Ey4w6Y^P4KH1`4#8@xA)VM-x$
ztFL@e6^ZbLr4k&}GlQC~<t0Pg`TkXb*Z?X%k;ZJzy7;zhzIY)D7yOHhQ6kyjzCAvn
zRB<0G)!nS}<p;?dpJY^;{rc{*l(7epiO>@7ZnE@%niP{MbkG;~@AQ}&geN(CpT80<
zPBta#MX&{t-7dP{bEC-eDW3YysYS=>FB-Ubn>B-aC?ft$VrTzHL<%skragvPg}JlH
zbYjVNDe}yu8K?lJIV|$O&Dh~N$)05)F?O1r^N20Ngw;{`i5UNwiI9`PcCF)H&6t5>
zfoxfEhtag5$~}1MOr0tSTrQ}jtA^T6umEF7V&Xdl%jlLOaJqCf>3^e}IS&=I6Z7-|
z56>C{$kc)w?w_QA_|wCBz2rzm`lOSk*-E7K2Hj}<;tajX=eM~UpOJ?8Fo%dS@~-OQ
z(*-4Nw@_%jK&NwPbb1y((yWQy`Az`?JtT`gk43O+&_gk1TVAEwMMs0{$*E1oZ(?ed
znzDIV*cc)So$f(*d3A^+X5sWZBKMKB@#6=sQ8wkGIKlKQ!0rR_bDMY{7qxv&EO6WU
z^4x=7%g6Wo({9QuL)7@Ywdp}HH^QL+bF~uH-W;j;m3@d!tP#EoAm^vo!^~OsqB7rb
ze9NaC(HG8$_UdJkA={sxAN%Ng2<!H-PlSJS0gwb_%KK+)UXTJ?H#`HB93o+hv>Jt`
zhG*-K!c+^rTutCM7}qY=QCG{Bc6>_muNy)J&<Jrm&-NOvXGbKoIfPRavmfj8LXEsL
zSW4X6mV#!2MWFGMEIe|tM$ABxma#_O4=H68J#*CD^r=#}jl3pm`hiyMEcKLoiiirV
z^U~a?gS7OKf2Ycq4?RFA0|A68n{FqOr^e)KRzn^;?ERP1>XQdH)b8g$`9*SGYj?O0
zJp+=dk3b3F`|MuiE;TdY`J7%RtbQeV>NvXeeIP@a<D%-%W0`B<rqxbaVMm#YpSmZB
zrdYR(WFVDs_5v{bVlHJ{RV6^z=PbL@?W!McuclA*n@ee2Uw8v5EpB7X)iZH0ct8aP
z+K{3vAr@^|ovu7kPC6kCPFj*~Y~)OiNrt7*l0benHISmP_a?2vaLaOe0fB*AcoZ74
z28zcQ{D|i%1%1+3)OK0HsDvF<HIX;>c5?33Kfm(qEZc>?yd76<uk3d<Snd;k(q{}<
z)7eHV9ncYYWS`Ye)8Ay8=}6|`AZ`M^^|Z|ymuBy*IMFRo0BE*93J&~ab93{3K>&Gg
z-R7Yg()=VTg2>xx%1xlvkP{s$6dEg^u@SR}C{CMi)M^b;+^wNMtRb-}oW*7#Wd~-w
zjRR&LIs@!SF!YGp0?yx0qJfJ7zEMzufWdpK_(<RxM35~;FljUvltcgHdgitUG%;8+
z&Z{;iPPIkrRL2XULVW_r2J{M2E&wz5$*L|+g(ZjR!P$A404WqIg;r6$MgmJePK6?+
z!3if}hnWjIn}oK{vg>fh5ique>!w4Y3=CimiPW9D$fCxI((EQ$ESr_;RSb%q?yAb_
zjP!EmzEG()tldYy@qusvTUTwp7d-{0$uMNEM7g^Q0NNpw6{Up)?gd}Lzex!oJCp-g
zgRglr2WbhM<+ifn>|=RZS?>WM53taNSK30Jd4C#qOdS}cX2}=aMQ<RlbOFH0qF`s!
z^@fOav6MMbSa^B7+0@b1bmmKG#tJp(7n9{_teml?)>r(WbzYYl+-~!v<T1S-SFTWK
zVUCrP9Xq_9Q@tC;;O7z6p5)`_^C>sHq;@<rpjFg)X*>_QM{4)h&}B_(ZEqZk1%Oym
zFthXCE~URDNQ`ffT_^8G8ESq!FD*eq1djTY1WZ}BPJTKl-*5L9E-(StBz(|$slSaq
za5x(C!~@*|13xF4w1<r+(j7v0)GX}=Ka6Qm+i8fOWTw9ndZA_KGRZN6{VDg!MFh5S
z71rETgFngkZV@<Toq82%eX>4mruyf+>|mD2!E#qMge<tVh6#o)$)lAOkf^#iM^pS8
z=XwOtj#Wvf{d7wxyeoX&Ud1;fjFxV<d-T|oWJRtrR)<m(`iBUw)1lrgK}XpdvPEoT
zHj?B2{vEJyV9WH{^R6K62fh<8fINQv;&pnD-CJA3mF2d3yE^TAFTwmuA3<AsTsX=0
zg_jx@cw{+W?w>sb!3FE>F+6AoKh%VC`b}ieyZt#}FnmJf_&WsB%w(x60V=>PWI=`u
zBuDoz=r=8I6;W~MZIlW^AKwcu^cd@T<^6Z^n3FT^L(o6-tE&at03h@N@`68GTz_L1
zvud!^>LoisU5;TvX?#-sddhw!ETDaOIPk4jZ?h@JK=W}K8sPY0;rbN&+74a_O<ioX
zy(<U)^q82M1dQ#!H^TwlAVtuPVSOFJT3~EEKuouoSl$Wj2kWTeHn`U$rRhO>w$s?w
z0(S-n{_2|ksp$R8DiGK3oXmu8eOG4d4|W@eCE(g`sXnyXA4A39Hf(xHDOUqBwHclm
z3wP!if~VD-=iYxdfL_X&MjgJ@+hKx)AD9r&;M)H`YQ(@jaBS#tn0%dzbNuv2vpocx
z9)_*qG9}5fZ)eaT)@RtJf+YS&VZ~JXpA=O-40RDQ7NzhoRt{FVDqsdHIf^m0R!=Cb
z&b%<dxvCBq^N2Vy?cZnZ<sZnx+cbUqZ$d_*p@{D^5Z-itY~XBR%7^=vZdH@7D}>i!
z(G}Aj7Y|p#GBzir_D|3T%K})&T~d-q#IOwA7lI~0n*M*`Jv@QlKoi|5<SzGQQotJ#
z_~45y7{H9T#tYjn3|C&JpfdRD5IoaE>Nr08x6dz)56%1zlA#2+2^^^y6Hj0|$9$XD
zdL1(os@cubG|?1k@HkVg`XwI4%7cN=Fj+nfnPOS<?pm^LB`#M#BKywPEj<sf{By1(
z$@-k?1e<<THI{esoe#D0ITl~u>gvvQf0!x6BjtvlqP|hJeT3eiwr>2ZFZHEWgnbaX
zw;|P&rN#2W*PVvZQ}EPOTttpK8xXR%96-#>&=T`8&ToL}HXdY8!(O^nxCkKopY2lu
z`fzl@nZm>1E)EgpI1KVY<x>f{D4o7=^S&=Rzhjs`#qOQV=f5cn=u7rVn+}HS7#(iA
zHIa*2*%eKW;>`&R9MxScl9g7*%@NPSnT0JpSL*Ko)+Xa`ChEExp{D1l42q=jr7E(k
zYH8{{CY3RTv%mvOl_*t(+E~!`$J-{4w3CQI`MY8x|NR!?Pk{8)bnW-!(Jp}|{`-E=
zipw=dUi_+B<N7tH8XR8iY+j*Y!d8I-Z~&lJYYPQ}^Ylw!dXUkF2+FE%wQA1Kp>t9i
z%dM(OlSdj=(q&+R02sh4DOI}2*;&*D&Y#X*GDeyutQy+}VVj*Po*a-Z=X*M?%~9t$
zG#T|3+NFZGzci9ylrE3+trv&SX>be0`{i4^>{gWKV#tanFTN)BL^h;s!q)!djtE{$
z%_q`ogtw9KkFh@PMAu{foI=p{S?hZ7h(|awAnEc@L%OhL{JFYYPQOVEmM?{UUNby9
zcNX85(vRxh=QKOD<#rHYzP>z6A-`p@dXt<KCJvQe`Z{K_^!2E>L05)ie$maHS@Px5
zR=K+A%mm$qo-t?V{5D}k6l6mLVo1HAiOjtOfU!DKJ-g<ds$5pn&o)PPW|b;mL}(e_
zW|buS=M9X)iX)HGArT`>qZCkwRr7wB-cJ4&y1Dg1CnlR>ttt(w68Y?WDmG=TQlq{D
zF}tP6a)d6(s9qnV1!?M;H<BDckcH4upIzxouabT{WoD63{CQAq(9`92H$Y`nvE|_j
zqmb0@cA-D#=Hva?<M9>Wy`LGzqV{f%zNh0?v+_>MH7O1(gxba_`|k4oXu1Hat1M1R
z_C!|s9pT03x%5<BW5iyoj?@d25NCgm?W^zv_w{B-;rk=D!k_$sf2wycg3(IMPS5>m
z-<pM%f&V*|nt@DbSyCR1L8m<GINI_Kut}d3hOnTh^3Rmqe_5fFt8^|}z$9<RcFbqB
zV>ZpG%3fjM5F}yvH4=Aj{Og4R3yf6Q$O+FB#gWr4OXDfrHWWsT2C;iV+U^N)8ggD6
zV<8htCDy0Be>8Wt7=GAv;JQ2pLfimps~CQ@OLp>BE8mz$DS5}QIYVaN*&IJqZX?Py
zn`F>oJHAMp2KmXx=3=gL2(O6}f^z2qE}g(fNL7jR2twm!R&4M6$EF)X(QXOq*+p>S
zTCpzd;qwyD5T*cWW}%s?>_Cq~bdFYmo2F#IQxWCf?{-oubzX=MqV4>wO6qhZ`wkn-
zb1l%bbHL3RQ#@u<Io$%&qs>~~E<znvYK2y1y9ecguK3x7iUGAU@!rk?&tJq4NMx#`
zmcqNTm#_P`RaTwC|6fpV{yt9jezqBLUs5f~Z{AJsa(|`kfAV&au>b&4&R?U(T6K|y
z@v~bD4aK0pH?J`VVp#=Q#!n#0A24wm#sqC)P*V%ge@~}m_oHS%%d2LqV+vf=uofmQ
z%8{sfb70$<DiX{jU3YGMX~hB4IU(W!`JrzNGKkb#t{VJsA~gBZo!kk@aFMA=qglu4
z_P16<fB>-?<&TSnn7XxGedJPOCVY3aF`Pw-$upbj{x6cT6mG<3M=ru}wndl(&{>Xi
zSUS&ZVGSHGlio=a0Ghq{i&Q!;mBl)ZR8{7(zs~UL{T}5@(Z}uV?shey!r5@+8J`h_
z)+MWuh!%1w(oT%KZ;RjHipE9V0xyK3&qqjI`9lZ7$%1Unq5ZGJ2)qXF{I8Gh!9l7y
zM%9RA1^teR&bBJfTbrlzcXx*U9;&{)$}qFMRz8{UeUza7j6=FqspTiqirg%vmf7$L
z5TM(zzsm4JwRa>Y-+K8zCFnxHY(p#MK&1<lSj=KHuj$~&0%Yv+^-S$k$pH3xC^V`)
z5qWs`8zXho^LN-4WrP99al*gY^XSyS&-O!yso(*-+?4b_^owZtn=u#$)eswa1}Jd`
zX;-=R>5jmpR^6c(+pq7BbWTkvSDh9;quzw*B|$jAy;rNMeWb#m&hxxnEFXW%QT#c^
z&<h^ldbE?&gsgu&64_q-U|HB5-<&KfSrr#}8gWE=SMAfhzhQdvurAfZziEqnqjJ!G
zp!jv>O<(FN$xXU9zDPK~nsp38S(pIcX<A7$(5$wJ6^Wts-q-~~hEnof4ZD>G`S6y`
z4;GfM%=3Td9Rd+OuTx&pfL)<Vrbb5K%?;Zasd>}h%<}-Ut-Zky$5w`$!rA*+@xV<%
zlBtgp6Ni41Mz{dkod2%P;k-4pj^9yHDqi1pF;VzPXJlAkpv{k+^^w<Z(e=bHOmc+)
zR-|@i4b9XomPSZ<m|Pgl={z}8uT#?Qm+=qc*G^n(GSics#HvNMakZdC=95e~_(&F}
zG-e7eBdotkbfoKgNGPM{QwP?z0!y>(mPCFvB<1L~D51iEyLaX74ZQu9wAKi;EAs^X
z05W^Cmc~b>H5s&~|4}BW>poBEMa}hd085X@!9i*sxB)G_-%l-?Rx`+kM+n*x_j~u5
z=y_gTs92TsKLUf^Ouc_mPv+$Yz`#QqPH^ae;mcD8vTEeT43#-APej6Li?o8q>%Vsz
zMdnkTdntAMqv{HSS@{|jx53{BS<KPry4$cQw3>(Ieg=g)934m!DB^?^oXyv`Mq8fK
zCYkqD4IGLWw9{k`=b&WlL6S0eU-^{QI1QeO@JKyQy*jm;40mCl;!XFF^^xGTP&yPT
z;(kEoOrOkaHr!El0;YYYG?s8Bjc=}+DYhQ(sZsG(!`HVk+)$7;+^wL#w>qm5!eB>~
zrc_uK#-^v6u99&_Jnt&@aA177%pR7vT)qa6aeYS4N?@l6K&}np!rV9@n9R!5&K->L
zg^PjQ6wU8qxxb654mq1yJcFpHI&v`;a4`;e<`BBr5xn4xY>?cS0*BPJBn}N0m;<#T
zBnC5QtM_VXJ93qY?KpIN3FbAM(p6X{21xTIf)uS)11ZGl;TQ<8y$JX@pi{hv!dZ*(
z6Nt$fP=T!9NWQ4%Xe!E6h!Yua{f(#z#qwK(rE2oppgnH?g$x_5(IJ=g*`HY=V!BJ`
z&S4`BxtJrzKOwThS$5s{SSsNcFS9c8fZ*58V^PSPuBYa>Fw7A6U~=@q&P4vxGujRY
z*`Dh=6lu3|LpI8s+7H`)fB#s0pe1U<J1pl`yLRtrp?$-7?ysTJpej3;Y7uv&qUhO>
ziwFlIc@bHvr;{I;Z5p23<<yddX~;0uC+tI=d^8<#Yof3*2AwWYRnkgyy4>``Y7GQ)
z{JGUT_WRFoE!g#zT#6SD{Y-npK+}>He0*4!w}4H%<cT1f|H}JEwwqlS`zlPlwXUER
zTVsM<VSAwi$biNDuQ>DI5FEGoZ;#v&u!OKzCU?$Q0^dn1teze_hUo3jYNmX{A5YKa
zw&hSIHOEfpMX(s-fZtO|$+nM8@xTkIN~4nXX{aEPbU8*O>wxd1OfPp&&RE_Br~nCr
zKqA2m`xR>;1Cg8nT0t{VwCrEXWr!{Kue<eG5r;CDS3hlbX~6E4Ljk<j{!<P7Q`g=R
zI&yfJQ^zR<ir5H<Pnwd_Qvd#(m)9O7H#^2{@$SEK3*=ux8MJQ;{NG>qfA8J@c^k#6
z4$BJB{;QyiBry<@mgZMXnD$q6$9{mdTW{Nmn)ym3AB+j~f$i^gYEfWxUflYL{an|?
z9`-Qy()IY+TmO?EL}4v}PU`i9a@NhU#0a+F?0DhJ`>7o?qu|7$E6#DKcpb2|UNa#w
z<o6CAsn97~eZIa$z!}h+t-%K5lOqiK-e<5Fh9I_6acFQDG3Lvex&H*-P$%L=qlOTb
z9*aR!GQA&Yj*E(!G-3N*??Z<@kPBNrZ0(A;ELWx^Ar2>_IyD(tMdl-Hq}=y-DQ{=r
zk_3d|$bKS*mlrkijZfOL+#%+y{u=J%HN~N!oc~I~ui>FY6W&NWoo}*g0P`RB2B==W
zK|coj8DXi3zb2tMQ7x)wY3h*iTU=Nr=M4d=2+8{=PtMuy4hj|v_!5xPBMsB6vV+1&
zYXr^^Wi&nVpDg~t=;<5JFUZAgCEz(Xe+f#~@QX;`eX3OKkU@l)&gBer9uR2#ijNX+
z5xN(;k;@WLM8tdRvc~b+{hY8LG!SyJspNM4lX}q7jM~&_WjN|Mmv!^#DpW4GF4RLe
z7~|mj^TGY=UVnrdaw2U%Xb3+`&V+5eAB8-0cn?;x#QVP&uN+mb(W<yE?L5CK7Q*K0
z2nI%q(lNYgNRQ+;xKoQ&bELYnKnsO`B#4|xCW1|eg30c{LNC`N5MHyA&(L*HQ&~1d
zgTIYB>!?aiEI1i%xGkwcEj>Z<0qJL*Wq&@fyYZSMMP`U`HhO{Zcbo3}+35q!^FM)0
zFR1E%Q;T3yuIQ*7KnZjGt~UU;VglA(q+4lz6Ofy*4R`(bH#LtPhlluFz4mP!4wjWV
zyKpFYRGl~?Lf}NsXL+7l?nkrOqi`0_2n3AF$f>*t7PXPkeNfddSTVkM`^{UEW$ktL
zJg4@nCsHq~{p&d*hbX|^*!$sb__fu$Mn1=F3;oH3Wh4pqKD&voqGu5Q!c?pUV0||N
z`#Z)3Tm-`u>3ohfZj<hZ#!sGxUrL+ne@E~*i1)M|FTi<B^p_I_=w+(3xIt+PS}4vs
zwl6Z;SPQ@=tN$n+D%VX-+!_hp#eD0(4l1Jm#FJ~ryw)M72E6mMp!;SRywkN=Ud6x2
z=0{R6&;)u7ZZ8kGJrC^pM+nkzgVjJ?{-GB?Yh=7MotM|+!&FBrgdOK25yN*7C@0@+
zc(wNO=Ef{}nnr$6CmmUtJ(_l5ol<``kV;Uy)}QLm*R#_H1m*wbLDyj|#Fd^ve9!=n
z6}=e6k*ZzoG1SbEO-B~7dzN<N#97YO{$h7Yh!dnt%Lg|jqVV+j$n7&h51Y}pFPaxN
zBNMz}137y%GhGZzctgn34s0uW$}?)wU-8(VlK-99H~>YlI#oc+{dYo#g+>6K{MV^R
zfl0chUs(#SNRJYb<DxO_q9GbM8-T|o<w7u-=`XEx+n%9MQ%s83d4emNiW;B(-ccg0
zT;3n@Nn8d%i)#wOr2EUj{}yodabN=#D*i6upImhU&V%%Gng<(mv)vhB4El_z*9t60
zz;O4}PUHa&s(u!9QwkGS)<$8~)Ny>MtA`$ZKD)>~s`8B3wfa2A-U6R=7*nupG>qPm
zE@r1hN-lP^(gAf}4WhYhYq@`l1UBM>TmpZvTYIQhgZ5HOjk{o>8NJv*kDx&GFb>w|
zA*M$M+><JHXPYLI%@5qX2R|T-4WL$Y3GjsX?+5=R0d!IN4~reC2;_CSWCgli1~3P(
zU99owD{?qd$Mt9}|HItBZ$FI}TnF}jE|O<buoNnrpT;y#X!SK}{Pu&E|G#om_0x++
zo+7@lWg}a&uFMbS#xFY!g}gew?@%4BI%E(Ye&}y5z)!&}9xGA=X%Ygqarhl066`=j
z<h;7dKhd`qKMqpD@Am<uFMPg=?s4hzX*>`(Y@k3`dbB^XLoy);dWX!Rw-Vsa@U5Ey
zj^VpWr}nMnWGdv`gg5pdQ9;<lzo|D#{(Ha|MbPkePn~e%1k(!$(Oo3~ec<b<kfOj#
zqT36p65dScbHbx}guKk;#dFVZM(>)XxXg4gm~7pY1%qbPN%?r%{f)kt2rw&TMrz4J
zJBnX?&bSIDViv-CvG6j9kpZZ^MidIg=FG8|EZ@4^T-o1$pczHH8+`R|6C&DsFO9!&
zVH;mzh8MIP8n@CQD2TQMN@`QQFzTWGEZ%<0`D2vuGoLk@tYeQuTQo}mvF6P{Litp)
z4pXvBB-hyefz68=<wk|w2Cu{qyv&4<rikJsxzxbL<2EaCo`myV2@7ss@9;Do$C}5d
zo4{PmpO_dH_5PoKF=D1G>`46_k+cFv{u&XbflYlzorLHA^qvdV2{|N&wJ~~{q_{4P
zbAXo%V~BwC>EaY|yV_zzfLc6@tDHRE5ZVNaE^m{1|5dDGucc#E*>y`syW`zVw(9AE
z>fz*@fc>UBG%z6PGII9fE}iH0_wr&Lry+JAP20|I@|7<3>QSu+i|r&W-DnJhaY<Z3
z1E$z|J&hUU9shV)StEmQ41P9W{^>y00Ja43K!nMMXhQ3j?+>Lv&eSXJ8FPHl^8yg1
zrE0Yi=x*3O^SSo)4CAG16(Ho%u5h|C3A8inAZiwbZad<W06vV;vF!2MVCNo4Df+G0
z24^4u0ilOownU?OTvPB!MQZRozrAiyO217y18?Hoa3xFYMSRLjN<br{3lfXDvSK^|
z`+EuOI~vBpRREj?KJ^t1<x{?{TdsuJ4SO-hv(US=-Q5-h%GXuIStQN^u}AqJ6&P;b
zm*4b(P~3c0x6EFefKr5JsLU~}nnTy#?4qvwj@(RFX>6RByUc8N7O8P;NU}_mUE6vH
z!k&UykI;VCHW6c$WItl*z1;=pv$j(Wv1(Ot)YH2#1)C37D7uLCvelCC-oR{JwMv8j
zU#<+e!&L^xnA{Qu4^tqI>t>GSsHf$*3Alyb=bRI;+;NUxTfM!p=>2Xo=j>gUs?2<?
z6IU4i-n2E>APy70dqV|+;0mn#vv@cVhi}8_trm1&y<)`}prar)Wr8&?e(;Ls-W^kb
z(F*w5t$N-mNH(C`hC*rZi!md?gm=91SKo(6%<@!-yT@;!#h;ApW^Ev;$)pn)PqY`R
zNv+ze^3ul@TR*-3nM^BMXyU}o*6@HlNA<dg=S=@jsrmrbmufw-o*X(9kQ)`HP~Dzu
z8(~aWk_{M!_;T)K`4ril8+ux1G-T9%NX1i7@wNV-_*8Y=?uSQTY|d4p!etDH{&H4M
zm8L^qG7m?z)hSJ5b%8Pgrr~$(#cfvvOg3(_M7E98Q3r(Ix#s)v4gU}CJFo7zXivaA
z2VnO%kPKI4=QmwZ{^z_}RDzUWRv>2MKd?AWJrWG`c1O&X8uxUI6|}B3SMP2sv+I?z
z@>>nsH?&u3F$!)p9gkc+ocj=0cmOpY$!pT_#TT_$gVk5*no1$!ba`otgXXc{*>KpW
zez;!|FA-4RJriB@YjZxm=#pB#UZZ%%T9sL^KaL{{U1sn6=s1%fG22PARHPM*Sfutk
z5Kj}@86g0AvS}e%2S~78e{9+==uXBMw8y_m^jLemaRU{wTVnkHVFMu@#uhCRL&rMP
z4U@jpGyQ_5oM}^c&`}oUxA-&l7-b_^LvCMGmd+<)V~`50x87@8o=U#`^gUN?PPuiW
z$&jk;R4bi?-?`!i$#r@N2=Afi6b^*Dm_4d6W*ya8{`>bA%%)l?J6?YcwPAk}sF&CW
z{l_opQs9SGiytMJixe$KHB?o)Li3cjqd>#1A)2MQG6;OO>w$$eKZ52kwwEd*60Q9P
z?EmJ#AwObvnXSP1@jheWnD_;R?{ovG`bqu+kq&E^r?1cbeO`?s!cABCuD?W(gHr2^
z<RdsJ86eJQ2%q%>4<#e#*)Hicoup^SrQg5&n_+xYCFrhGZm(UQ`OG&GWd%rA{3%3r
zV|Xntl%06)#qX3rfWPJlNV7}D<p&jl%{3z)Q|@-=2=fTh=H|*zLX+&mmtHzjQ`L-n
z9%AOnS3XE`f9-5*DfT6#3==9$mzbHVV`xgY{(62ge;Vs8)s?p{Ll^SB)wfzhc`^jc
z-l+~xFBh%2d}Ub9qLN;`+UAM!M`QZ=(EPFSgPLUgZs6}VcxqyJ2Ny3wKEAv*DpDA0
zA;gfyuyI_P8`xr8{brn1<Ei0BzB#)U<4y6Rtw-;y5uSJr`L*KgN20|wus4$lXJ-Q>
zJf(BlgL11w=Svy+fGQEIrqPJu4)g{kux;vIeXXjxp%hea?M7hk;HEJ(x*@Iq`uB12
zk6=p!jx%QhBw-pslE!svA@(wZTe80>psw!ZSDqKN2J=K_Y8STdPE9+QsfAuUN?0rC
zf?q;*$?`m%4?f@OteBz#bh4~;x%rJ&j-^_ZuTNhj<uM9_gY4s%i8TCYkxUmUg&l(_
zN^Pb43rt!p8$uZsVt72&wzorPl=qr<9~0|_821<Oc+O^fc8ELJ-YdD!V&@sf=DIdl
z<eBsJ>$0fcSy3$k<7{o))y8vu#i$(84}e6+2Nuc=7`Ip&;&WHW327iCVKz-ML&pcY
zrEU_cIUS1&c6Pg&5pzLP&*kIGZp`FO(7SK0*iNpPM2n(b^S!yVm+Uiolqx0VF5Y_a
zf*x$HJiu1yku8Wy1KV$+JRLEoosH0HdUAZ_pZKhER4Y@$*p($MwX10n8SC!$az&?>
zBL>W%*T|WK9nB+C0%oIy$nFv`so&bH_->kM&~4``6+mh=yT@r<R54g??7z!*za@f=
zdz@7<^Tm##KH`+2<4PE9j0W|{jZe18cMBZ0C*BKNRnm4=1-do7jIa=1li8G_=6h)s
zXdeCQQMF5@ZFu@pOEHg}j!x5>MdH(r>g-rBE=2I{sM0fwwWZeQ5$0O^#>^M0woUcS
zZpx`tyH35=_iM;NZ#`Q@DdZS|<t@h94KTNquFH34*U+qi_4*`I?x=;;V}BV>-Lo3Z
z`w%yu!GIW86v1hd!DUDJw`%a$42diKTVPnytG6@=LcXgKaG3NGUATA|(k)?8Lf+ff
z6jR?f#yKR~1iN2dF$J!zNWvuHvd7sSJExs9ZusBg!lADoMSL$_z(zY=Eloe?)z=Yd
zDjCdK+s}=G4`l?H%Rj9WnT0;X7{$n=pt|VD8z${M2C44Coj5kF;Ik~=xGY*$>-4n?
ze6Ja<`S?%X?Em0PC=Id&1KwUU#2DLBG$E9#ZPnIAHzPrLZcaiI@ms2j=VED091tG9
z97J)yv&=B;g$_zCXlq(oc^>q&QFJ`KG>#&SsvpGgcW%b7Z#8x9RkLVSD}dGEaUzF+
zm8c_ZWl72dXl=}JrI}c)sGZLWdMn#qAo1q5HiXA}RSVEA>x>`TyviZ^*OeynoXWc+
ztLb(8KXv~b(2={bKzujh1G*%o9d$YpG%^L<G?mbl8(M8|da7I<OGlwi$@6mF5hJGW
zAw6maRMr_&JyX>8ZxR=E>8m?)9njw^Dz<dR?JRy%32awBk|rM3ty^^hcHzBEe!YQ(
zEDq}o&8)HwkEN+Z={=8yPb87^%@fm7nLqMc<r&-laX^Ne8>fQkZbvsZ$a&mf3=ZPK
zle`5_64k%5kSx<(FU}FfR{z%(#(dXa$82NZA;<4(lw>$>on92el`W%F(~C&PGA^3y
zn`oEfiCUBw@BLh<|L!Wcd#yQ=+=+ha@@mQTCs}*YcO(W<#aCCd=C@U|P}8GWb`d7S
zZX0unIa=kC{UV**GSo%T!~OtsUmC<C*`s-GTDZ?*<m$XsuGP{@hxVf$nr$(fs_{>e
z3_Qay_2^`gIhwUEDg_aJ9xa5*K7`9)-13&_;UokyaD=}8%2q$KAee2vtISxntDq7c
zM~R%KDbjP}wHUry8yKr!M*54I^m0Qph}>y83)S4aP_>idw$pt(^;+(c(z4~UJC#By
zf!QNP@xkTOYB|rI8xIJ1evh)~O&6A8_(8U4N;6!bal(0KLTz5yP|tJKaKodvm}^o6
zv>wqSt7gk?(>yxR<;@@H9e~bNNwG!m@S{!5xOm|?CvBe|jonTqpph=GMNZAguZdYn
z`K*@_m0c+M)+FS*<fizK1JEMEY9<GQ?nA&!Xfh82HS~c#5!80wqxXK)a~ZW}x6<Pq
zMNJ!wpcbP9F*Mmj#o3c+*&4F}#Wx)J%xYy(2-x8vEXth(Ej*?2)-#HZ(q+pbd_yxC
z<<|=DA4<Ivmo;s3_yqCZy^+3*m#@Zh2?DWla6eSKiZW)XNkvVPiOdG$6nUv$6BbQf
z-9e4yCH9H9G)r|<Oem*#tcWL33-6v;&SPbB@kmcdnpIz6(Ab3kb06`n^T2s*P?OQS
z(%cUuny|!3j_@;eL9#F3ON>uVh)3(I`}HTwk#Ahhf_bD(K%Z!79Wo7Xifvm-e%MyD
zz+~2&c}a@*OXK4co_*L?cACEv9}4vBSP+<mnMaM0o#(H${_cHV(jz2WdRgj=Fyi?*
z)a_I~1b2LoUtRrVwRu>8&E>TZX70D-ZM%AEL1--(bSyynUYZ*&36%MKX&AQx2IGZB
z>N&S;-+iaLGGzz^D(>%{K?XOGhUVmt6QTrHgV@s4vtRF&;3!}ZpF3s7ptV*v&*9J+
zJ9FZsaFLaP`1y}Ehc-tzwT@*bq6PRZ25A@-cJGcDX4Spswd$a0BprhQ+9@&d&orKz
z-*$+z4*-)DyJcw!y-!*MR?5H)q?P(jk)yq_yb#8FyVF|EZ=M9l>cX4_n6YVq9O!g!
z;#Vo^&<sf4=>(j{i91<~#9#K>c{947DowHn>z$5Q8sl6znm}&$v2%$?8}qAP+59cU
zk{g=lAn0rZyZVdZK*QAwytfN-<h}fQ=+==jMo*qQlfYYiE&ZWBiHpK723QRpUEPa?
z7U=pHUx148*0WlqGre@1(qi4#+{{>*S-)vgt|QOcKv@nO19(!*=s+LAZ7sc`B-wA9
zM=s}nW4O2bo+0JwSQJ9!IX+cbVA*}OCr1ly|D@=%^0i%LsGd-u@p}(2+*z7L@7eV`
zZanJ_LAX_Ho(XkH+Yf16u&uC%-%;a*I<`4J>4>K)ec>3$5!d;bi`xg73fsaV$NQ)^
zvNc}7qj|We)2r7J=W!M`-{$z(cX0Blw+oIxC)#)|k=R(`!w{}QPoPahq(h(sjrKpd
z94o?_I2K|_RdNVx0h@6OIx#2jBG`pWhH51Hkn0nSWY?>AFLs~imrJ0QKdn7vL2WsG
zUZucRHTGPZ$2e7h3T}@Q28kLF7TiCy@%8h&$&r$08D7O#Kglc&tp^*o%f~N0UU6Tr
zNFC~HJrd|a@sMpafQ_O@ynS!P%qmLEU?AG`#1cgtg(Ke8-b`IX$7jMU?!zu>2q(i)
zXI8LUlLC?L(AgEr7Y#LoZRFbpf$o!n0E;Mb>a{|`k+fcj)Y73B0(PSCjMtd~WM<Xe
z%r6}$S@c+KK`CWv;xCutHsxkzfafT-3chOLb#eI`8$4OhXU`F>WY9O3(Qcmf#QD#P
z$XJHHe8Xb#9I|aRX)6>Wyz9NUJYby7B!iKQoZhC<z=j2RekxWD=11#uT5o4(J&cI+
ze4RIiu*-E*)u6$b7<C^!O3Ogo&#!3h^Tr#J)pNfo2A*zzQE6A_sQBJmuSa7coGWsf
zCqzdyR$B_`c00X240wB}S!7)G^X~LukvL}WPShFoZt<N*sWq$1#>s}msMl^qZ=^Cb
zl5_R<tTk*LW40Nyme-%EJ5X;P7k@C|Nf{ZG*vO`E_L&=LUiZY~8P|KeT)}74s8`d`
z`E`y?-GP#j?bdjohOkM=vu0q@^L}g3mo}U78KG&%@Zc1Z<liiaw?oTOSK(B+;DGtD
z&Z|LHl;5oEi<SBZSU`DNN*&j1M=V)IU4d64muM5eQ)bgdaHe)<qs-aXs4xf!fEk{7
zBLE63i^D-i^g;;2$}d@TncN%+CmfiwmUo9#%!LgEx5fnTt@a1lRM9kFx)JN3Ek$!X
zTS=vA!!gAqPk&d$`K9r=&0lnq0pY0$9<^>+91ESx?(yda*t@|le#l?Z5BCGvNwbYR
zYpl*2$-2N*upxCB_lfut`1~#3isMnM74qJUky|Ts_lKTlwaHfv_O&P;Yl$fi;~G03
zWKIISD>wd~SQ3LCI);^LT+zT+5}oxrW1A;%Ef&(JIqpTUYSEV3PI0M-{}h+L$f=AT
zYqb^i)$}~|LLvz51dW}JDg$FXE4JSvk1qq8d9D4&v2rrH$Aq9-J4tdla(7pb-B^|u
zW%o(p$?E6ek?~-jUIvxfA2Z^dXGtH60}#9OvQ;z-(LY@c76YY098@1e+U`R(QG#|v
z%H`_8+m?HM)duVEJo<wYy8CCNFTKK2U3uj>DdsUZ&1Bq-$d0aebE-6f0`dz=U2;MA
zZVPThFrBggvM)HI|DE0reIi=ycRVVLTS4}hnLwt*Ue|78c#}<b2e_-va}X~>h5MOD
zE~a3uYIQ=t$aS_FL7a?_ncdHrTI!eac5xUV=U{y0Z}RSyp;Ezpu4N5#EK``NIG%Jo
zF<L0mUFZrf;jC3vk4|gZfJT#SrEBA$V19gS?^+0-sMgw3p>8=!d<zFEP3Uu(>$**6
z!i2`AiYRuM8w;7)DlpD6YYH1J_)gQjJd`ph{E6M2BprLlW-0S|@IbvEc(NTP(fzc3
z+R*fLT#4i(6GFG$#83o_cLqv$M!#&Uzzp_$bJEl6=?g7Y`k67*R3BbH%@9VelNc7u
zc7AWcx0_+6nJ>g`Ng-skRVSl7rJ9p?^ob9r=b?vAn-uLQKl;^u2Jrw5Qt_EV*`!eX
zY|vs_4v-q*SHdT~vjnRA=f;9+8{fXXCX#@}Ewjkf{F=`1l4Li#GgYK!yWFqJgfTGy
zqd9lsQkRQDS2jB!#GG=#up=WPB<Jey+5tR@8z{!|Q}=|azCqVv^37qbr!f2GyM)JV
z<}ii`1b+kB=BTZrZol0;!5ud^+MCO+>tWYbjr?6Y2aoxErI-@_9vWm=KZ?cW^SWGd
zRpPE@PnHgyMZ(iTiJUsh=~i8~z;{+F1m<=QBGvpw&RV34LJ3V~TC#9>>{V{RYED?K
z9B48e_&)bzP^c<QUXSFB*-YlmANC=<_eq=ymiarYLW;L4KyGUoKSU+)OD?qy9**dB
z2K__22yy1P6i+qa?3?b#NuURgQ;IZhp11X)zZRQpWx|B$W1YG|CNPxxZIey~S#1Oi
zlfGmzsNerL?Z_>jPU}LdrzM7YG(Zfi(igW520d~|0%mqGN%DF^gXvcOHVmza5)TT}
zMa<EgB67H?(SpVC{lx)_QbEa|iE~Y!zu{<12d~~rc{k{Llq;>eb*U-{dY+2N|Fl9s
zDi?Ywi(ZzjRMxIzoTH_wOKfMHE?Q{g#Bwz5_-5*+3QJ_97Qa=$RVqiBpYBhPaz|<W
zL~B71A#R<>-EY5ujC%2P6y8(H4_fYAgP{&|ZDS6sf7@ekFl`277a6eM9f(JN@zkb$
zJMW>2Tk)Ig&Z9HnXp>>mvnS5}zK<+sitBEc^P~s3{}ov56r?$Bc1bViPsz8B5v@@R
zS*Fi&T`&Zbrfhbdl+5PcI}bL5iim&A@JTKF?eg0Xg$l+$R_G^8@c=O{B|+CPi6Ewi
zgZ@PS`~`##Cj^IA7amYN(trJfyeRqYwj&OzE9PC_&s=B(CEonkj>TYu>nJl*=bi4z
zi7nC*NfXWWr!L$!9pm*n(TssVeau$7Ogie(RuvN~aXOX5OKGayw)W!~EqoN;csDod
z-QA0duU>DISw9%G-LUOSBH*RyiI3kjM!OW5d_TX@5_~MsaCG!#2av{>gAG0>kNo2O
zVY25xXBS?-o@qU+4R&rYJ2YuW9UC@$9l<)40JF>WYZHGNB10TP#67Vz%0#XL1W)tH
z4|u1n*{>{C@$~pA0c4+qym#so@GZJ=Fl9w9mEd@wSeCD08Vhr1B?S*(-RhzvTKR%C
zw39W4IH0+@icS@Ic-PyRZdH6wcN2Ek469;v=Tceedp2L{C&q!o)^$&dsZwX(v@=I@
zz$l44K&-Y-v}sqqX|<uq*3C<)^Silie>Kw+e^g+qJLCMEl+&AJ%v`r8A8Sv(e|+VN
z4Q5+nO)q9;x(9~B?Y85!^*T7NQrP?i2WU8vCYu2z$>S*~EE8he&;R`wz!Sqktn`kW
zr3%w}>Xz2-)*9eHSz(Z4iP)nD)FkxVCs~=tGU2an!%f$g)hSVgLc15MFzN2gt7`WE
zDpx8rE!;C$V11D!RJ^uV;HjDU=~-COW!jThk3AU0z<<y6lLgK)pT$3!d87SX_9q>g
zT$~e_6(W<DB}2ozy&hA-ojjrK^r6wx36(v?RbS)OJhxt(4Nc80SKRNfVA$TVBUeiz
zcC!1id3Oqf-6-zxUE#!A+fUqaAa_uSj9}FuGq}dc?5Xk;Y7{!|rMOK|lO_AEjFHPb
zVm8|(E<W}j#_Bv@-c4pMvE4X5er9!8&+Vz09*LN^=hFDo)9=r}S72^egApz|<r%Kr
zD1A%43b&1p5=phcDqK|0n>MCygnqcd{8f4B7I3S(tUezr-QEfR!E*lXb$cA$wDEI_
z%b)y+>nCDW0(kD%bK1`nJrs3yd})y}Ng&FA=C_cja=Vgl@uT64jQP28yi+ez_c+P9
zgC42hdBWf$w&MK!+L+7wbfEjz8q<kDE(69FFkdRYbX?UolhFNf_OXw58Q)sYn*#EM
zC+f0tX_K|uV~4CtEIMgU!Zw~+#dK^n-j#p`6#9**5^a-fpGrS|@b!$j{aHSa_uMM^
zC8f5O^m9$tqctA?4{L7$RaN_~k1C>s(k%_rB_bf*AtBwcDG{VY>69)3>5xVmq`Mmg
zM7ld9H{I}mxB7j*?>pyz?>S@KI|c*SUT)TU*Sp@B^O?_lCNKlxNnN4j3D3<w?zZra
zw)i{_tF6fAX;*kWiREZD)0p4M?Y>RRVX5v9fSM&xa5ZQ+T%S^zz0!x5r@~CR<>zpA
zh}{-L?kal48(G4IgDmOIMnvcm;cQ+-OW(vyjA&8ElR?ybdLo!)cfn5;W@_`6>Qxf&
z19)0!=N*!|+UPs?AyrH3D^CRB_B{nd?nCxhEXL~Zm%ctH`pM>6;M0OPn6i9Y*Cc}4
zl<?e!w@A0{F`7I<rF_O4rjUmy-mY-FlG=^$FmU=}IXFi1D0hx4o<KJ*1FWf30xl*R
z%n+t3-oCAW0tz3p>CL@*ydfsu-z&65OOb}CbMf7!({x;i4%$m}=%M++c9niY1jo=z
z4fS25_v}&1wiRGpAnkfTa18_^Ev0o2-jWGl`N>X?w3utgt^XYOJe{Ln6cs4XY_Yoc
z2Ea+1PkGG9S?+I+7Fl9Lk9VGzjB4s?bbW8RH}Vka@H?rgu~`NfF=X#%@C~tC>`YO_
zo-ipswTeQv)w1KFfNDAy^>>xOjs;4N$XCu+Q7@B4m19jW%ij*?wjDoN*%NHncfv>y
zi(8pYLkJ9&^n?dLGp{`1il>#D?~6v>xj$#}!H}~G3v}-Zw)I`mn~+yzQ*gxrM2gWH
ziNk}`a2PT6=JUv0WIZz!&03Q$SIsxt>2e?$Uoh9ciJZ6sE%<MVY=jTj2H9(v8moe1
z3q)&=e##aFH;*u661vB+O9XaN1odTKU;@9TBZoCD2PD9Y>1*U~6SKOSL{)SPna;Zj
zQ1^1v_<dAbs>5BT@uAB{up5%G9V?Q3NW^nt7FE*0AxQ6EIEgQbllhG)?e?3FK=@f^
z!k(IkZo&N(vKJ+APtkHyW27coGbA35s{s`~na}*v>=m!o^nS)CR#~(5#ul3_=@vMV
zukR10(JK?9lqgJmbz*q-=Bhn2m={aYVyaqSCwQ*!hx$aHzWdU!c``ySe6dp5W5)Aa
zQ>;J%bIGtdg?1+lzdHL}PZ0Fbobj6=F5jD&+{Hb<8Tg@oW$rIkVXg;>^u8(gdOZlj
z*Mjr>d}O0-13uJHNP{iGYF|vq50&IQDg#`9aRKr{W}CVzb7ske-qBASgV8AwbGg<p
zG7^)eUq-)AiBg;(IPAb<tT2hm9Be;AsHB2T0!(YPyU6vsivt>l;0;=RBd~=(MF%gA
zWH%`qUXttvJs_qzk;mcA3Y)P6{l;_U7}uA}_r%ZPb@(5mAtJVy8OudG6cOcpIn`yK
z&$f=_2Z~f}hj@b}7JY*pzC3Oo7+($^ta%rwq+qI24t`eQxO1`=X*!~PQxn~_n;T#q
zJlCRF!LUUSseeMkTOH=+a+)Jj#7izJIhe>I85oGRJKvTYfVk?tolBnn9u&Nf7-qry
zc;gHYA}HnYl-K+#=jaht>id}C$j}BCd!A!kQ3!={j=Tn67(iC+&L)G9`U)mp(b3UU
zx7jic)EI?cr36`@$(L^oFpX9pX!qS_$tL3Bu_Sc?lfKaTFkz5V6&vVwsK(I0jHFUA
zyE*R02yU#88N-j{m2eo`mVg6;`N@Ja9JZs*U>sYuA6PKPtygo3Xav2+k3+cbA%zQG
zQ7@D?GmK_R$R+t9GH7bQ@E`$EFfZk4KKCnl5YbSM27&<WPjkP5T8<C7-#>NKdiHw?
z{rTODg(Sal++JWU`w{jc5UDEnMZx{}SQ)gjkU-oC!&-A;XQ&LVaa%xsXCLt7bCk;R
zxS@TT@cu`_w_e_%RY1yRdnh_~E{eAZyu)A96ZV_z1Y9`O?F$jBB_cQ=97v-2>r4dr
zUwznxM^nhG`qf5>7L%MFDuArB_me;Lb&wu%IY|F{a`5o5=kEavrn9YmHHQ{BI5>x@
zg7!7A+i7!x_GP2PE`!?fX>)d4L%`02R4fR$El6ccc^Uvkl+}sX_dXLnj{CD}{AnCn
z46J2FsYJ{Ju$HlnB+>qL<|AlX3#?@gj;qvwD3*@8h5T)23;ih<{`N@x!@R<zS1gsN
zkAAP{e||&%>aR#j&^~VAKnvao@S^0tA&-lK*2}^t;X0xb@dts>;{qsk)3P4VZ*Nlk
zesipCC6`Tkns~Y@9h4|RJvOBL*JT6Dz+)~ayjTa6A8bd%;3r*yf1RPciy2@AyR1i2
z-JNK9LVD|1W(^;&>&vOv2Ln8N3$YnA5v<EJc{;@;vtYAKIO~kKB>y%2e(gk<0W`2J
zC{mQV*+PCn*7Ic;jn<cDLOIMHi|{*0)uEola8`v=@1MTEU|jwnwsL*4RSdm4Kcr3U
z{<-d-JN%}VGdrc0Mx_bty8CPWgjE)CSdn*-z@Ps4@q{(_+|`i*O!c`0uA)RZmXu$2
z4<NXkeIF8Ux&I@YRwJ+6X6^QR&!gJu@WJkELokgT38l`(qqDQ+uuzpc%{D+vG`J}5
zVbx-F`S;Zyg17gcTpM*q5!^;6DAv0!9CSBc>*{wfT97^nmc!2hX$n#V4=%q)1Vo1m
zIG>K@WYGt)IA8u}P(kFt{xP2Yw8avvLLX!s#;uZIpTh}ZOB9=z2~z!3g13lsnp#Su
zBq&TVYQbCWLF#sS)ZXakGE=YeO71_G0yl+?>x#huCSI@^K?c7)R5MBe2bUoeA7Jyr
z93vp2nc<!^yVW9v7zTbETFsRmrC2X^_2uPW0IvfsjT})|JX?1BKVA@M1@tj^x&~?$
z?HmHojjm7XVb+3GKhd}>7*llc28>YWUh!(we-9ZH*hulF=(0wDt+J^DT!!9Ydz?t^
zW(DoQd<J@dZqBVy)c=(ZcG;5H!7?ym?9XMBx$mv^s>$zwz?LUiJ0^G99>C_^-#-he
z;IgwqpY1vyfXkK$MHp6t%R(IF*OS1P_5;Cq*~|R;HfKCF%>X@WoD>Zd_+t)h5or{T
zwQR|o4OkRmwHh$5bE_{D0;T)*4_2kEv^d7M4B&EyGg~tJ(K6VjWiH&$7X2NsFWBem
zov;dPGNxay$tGXjn`yXodFKzUbw{!pgv35!j)Qe5xU1LrOFi>lR@lNILtl+f0~->U
z_=&KA;z{830>hC(r6`DWompP#w%nTE50wP4vuTy95gRwANj1uhM5fArLg!rea`^y1
z1UZa^ul?e^*;5NC{A6CIrOJjky-@^j`7aO$llj_48DeKEQLPfIh1vkc#StGUl?U!g
zxM#!&*qvx&)5;_6Ojovpel)jydo&@hoTH8e7{gsWd-dK`R`W}z^S9nLc5kNLYKBTx
z2#=qE#7wynw&Ov8+l3bI%ZVndV(x<Ps_+liI;y`v1(Ngk0obo3ODf<V5{x&Hq107*
zwgm{}ibGZNcgoG?U#d*0<!jHqNdZu3x>=PTHk~FBonmHl-Cm=a`7Nk1U_O1o)_CI_
zCqhy6mD_&l`KKqcL3gh&^gvZ#)Iv40a`TSI@GD5|UqZK7zk29qU(}inzGC_m`tsMJ
zy%Yk*$_tVHK!bR2p#GqD@$WOB)0gOA-I~a5g@n=Y1Q^9(;k%z3aI=Z%IgO?sDHp1?
z?UINlP1nD@_o1%FxCu<Y2N+H%0v@QhNt4?}u_%w=MQIsT>*1+GNQ1w=^jkkUsF>aq
z6k4R^W%3P31YUtJV&Ry<O+6PrzxmgW>9)p;$HY7i6;r3Kub-Hz7W>@ZoHi*;bxTKS
z2n?`cs2_*6OMxUZmlIk=cGrdP3X&>$^-0~!DQ#<pHp?eER0h+?@pXVHVlOtw(zqQ4
zX+UW$D2u*1Xf;~hJT_$l`?+WtH42e?(rk^fKVFaD@4;>(1y+NkrM1^3lHh=`bw&Q~
zGq8ak?%8)Af}ssa82&_!TsVz%ku(NZ6GM<dMfm#2Y>EgVp}2g(k|Yo|oK0!H*y?n4
zzN(1h!_Pk%0g}>3*MQ&%t#)(m!nzbXwqu6G>GnB;)B>YIIoa+^P2oYU#X5vae(m8m
zqxawGhTo*yf3DqZRF*B)DMQ9sq*17q;Tp-)>7s2s*(E60{h6V8oDc_U1=k)m-CoP7
z6z|TKJ#>OQOn3Jd&*N4#=sGFfm}m@rIS;6FB4Y(AgEzKk=#`e&1awN7%J%dcWslph
z1xR=Wy;41Cw_@pMzVvI7xttIoeoGuw58VxEW{7SD%W>CFC5*GfFah~gJ$>b3h2a;f
zqM|Q0M+zPrS>`51J9!`A$*c5fzMz0gWxdZ;G(r!jK`UK{vLp9@L<Df3-BGgC3B~Vq
zUm7eR%bz&bgJfX~R3vp*&|hc37XrfIw~^~98wmpC1g=M_PhEx1Blz7O99x~6UybJH
zG?r0pQakVQxt_K7LkEfVuC%o;o?B>>QV2R3h7b#209__EX*>o$k`|p3x9J#KEx`1}
z5T<!0^ttxf`u2toxgHW_UQ&)IfP+->%PTF^J`A60aG{y1u+)Fg8Cx``*xIQ6EQ&=5
z4wL|WURkJ6hWlmkOyT<SN5{h)<+PBV7l~E7qJn}X@B6jy;4a$Trs=BOFA0G`WJa^8
zV!#H%Ao?MFJzOsgxxob+eI9)c7084QQo>lIw(FaBtUDpj*zUvda@acIi{o_Qh+)yf
z%xXeh)^gZZXwAQBSOJ<6Qi%-Xd-!5{*Rm4ubD!%@33Z8nUUE}FYwZRhN9)a5pTNQ<
z_<>5$i?ij++!p66ukkIVI6cl^pOXn`Kqpec+25Z#j4et;EN6{B1u2@eT6yX+e%4y^
zz#{!>JWp;It+yIv1WU_K+`{n6f3w5g8MF%IA<`rx(!=G(Xk>}3O03qIXCuf(9whO(
zP)kK;zeD$Gu$V^e-dy$uT(KO}9-ysHKR6E<RynMzk%!^o5EvZ6f3|S%_~q?Y%>x^S
zU_iE6{uV#n=@INW0qT!-XYWqBx<aoe*^+o%R15Xz8~Jd@r|QKRR0<h|*FK!vDWn+~
zJvW(<RPo|>xp;JW8hCb^agY+-ec+^8ZZ>}R{zE(=K)<nBKd~r)RKS7qNu@m{Hj!^=
zwTgIcR}UnXp1ibPzIcE9NieUae|cC=K;#nj^T?|2!}aC0&@J?q2ARnNTJ;=sNQ0|y
zM=<VEm;i}-Qkh%V06zbcmXCjmC@A8jOo+j1cYevBt7c{vZTbT#@=MMM2<VFMCC_Gr
zun3#2eR~k0<RPdJ$dERh+hWJ&*C*4&*er@<Qo7fDzU1B)hC^}><jexG7L6l-L_gKV
zoBpIB(W~f7kOADel*OQ;)nl}UD=XU>TmSakiujO02M(JAJR~vjp7q5HRrk$nixlIF
z7gBb)&N1ui!jLCD^YK2EaK#f`Kxb^^#g}cRRt&H4&n}f+A*a6=>KT~va%tC$BN_%4
z>J1x1mQ$GXdqZS>A1qUIvSb7B5DZ41atq%&2ai)J16#?Yvm~j2@TnqM>Fm=I`|CH|
z*^38Ajfgfe!dN5y9o87Ps)duDAAFIuKEu?dgy%eyXd&rOVwiO;?A(U4Wjo^(C{+me
zLv+gDWnnHcc8oD44i!pER9LzZ@i=L!*ag$<WJ%*;U`Gi^In=1tiekLm{DGrW`#|f+
z3@2r2R|h4%fS>>71tqwkuQ~rDQ;{?yLIS6m2}QZ|=n>2azSI|aK;QQWBjA|7q`~=J
z8;~b{WC6B-(A#2qt((sv)j&mo-UTP|K2nKU_)TdnsC}xXqt#$rgGpX-roR>jocWjw
z<7`w5CRO_|0!|?fa>=9H(y)?Em2JW=uTrv#igl}S`9#t$pqqB4ke9B91AL=uK1b=k
z9~et(-M1W!7WD?-2y;s$@fSld+m#n&qq!>{OHTlR3Gw{kOhY@-ULkK;tUJb9bb*~z
zW_cl?*=%lH$E6a<hx5-X5r^Rs-|d$00m?%t;<>%c0kfI>l3|u{I~Hti!az1T{`2wl
zG@!+Dwp}J;dPz7|+}0P%Qji`_FTei<IBfVp9%p;BJJVSW>v1slH$0{^Zfdw<h+tHZ
zHW#Bb{J=MjQZk*|BdPkxE&db_WRKe!^-@=M#Vjc!Yz{HK;jXii3}qY>VBC-i7p~3I
z?=VANgn=q@ZJfrhmX84kF4bw+kJ``#uJ~pNOl9cGzG1+q7snT6tIhkW7zFcjN%%{|
z`C`#QMx$lvzRK9rDrTjxdq$`*SUNNXea7MLKLl%o2z!pY9(FIO$#yoLWB>Z-<Dd5-
z4c2?#?wK+l6hrEUXd9(b8Hs&VtK9GT$R-zki6`Q?o3`AUGe7I?V$hsQzIh6OA?R@H
zIc{t^Qk<fbPMIdvsQ7^c#ZtiqQw&|9=JS$?)3Y8n$yojdm3(-&?6{!M6anLf<ATI-
z)OJ!wThoLLF)S5<6NzB#?@q=Wf3)~xzkCF<q1v!N-XInnOsw_{E&X){X1~zft%EB*
zucYynRYKr=xgo$7mg0CbJ6iKlEqd0ga8t|WkpTr1(rB;c^tD%C6{MMT^u^vflLpIQ
z99PX}0I-x=<<m!^QtIeNMPhn#xFkdy&4AC%UqEr$=mrY<O$*{9xMIXMKJPk%+na{G
zI>a!8m#IkQ6qP}8TWTT*i-5qM*Wdn9Nuf!f@>q-BRLpUd!n_wPN2|E;V%=xo5QBqm
z1Ri90*(p?LqP({_Qxgfn#dh{m+YL0{8BFBVA0M!&cHenyi?GrHQYNFGGLmoq$UK+4
zzM-|yESRqrQ`wE7dwX`I3$ZRYoyA2!+g8Ix(d2bK%g);v6~2Wd>oa~3W_k#!74qUT
zJ_|_7S7nv}2+!!=UL$G7TKL9XMFzKCzv4`_n;O!pEi{qn4h?zCW5r3PlDEsw@D5w%
zC3|U<U8BJSW~xXRuZD0Or{8b*0AE6x1-CrBDRyYy!#|$wi-vaWO*$uXJ?m_l4z2lb
z2VwyiHWNO4j_ibkc@K9YM5=v(_fVy`o(VIm0)Y2Wto&xJdokZ<z)->?RD!m^N=%d;
zWBkc;LZ1zD-dfPDb->1$xOg=0DtiJCDWR;kKKI*vvxDWlkCM#SC9mKNVvo;rjK7kH
ze}{+cV-GB+PzIgmpXHAgDXCSk3%rmi%94zLGp0a^o?WDoOSRnD+^kZ*fz+LoQoRuu
z^~rc8>&@=R@6*%4z^S5zp{w<r4Y9-73ubyIaO8$Heank2TrE<HwZ!K(_i-))v$ilH
zu=z8%(k!xaKf?IfL(ls24`20%RoRQ&`|Z}4l$YvZ=4F(BLDqNFCs+{zPpgVe(@$@7
zD&Mg_IJ#^#(7pD0?asx|=_I5#M_voJ*R5a(^A92yKVI3Ymkg7>Fb-|{-Hq(H^{;-T
zAP`tL_NA0b0N-+Mqs&n56b2|mZjwI3OEzC3y<mcJ*BX@|L3@&kBO)RoR)eW{>K(Xg
zg7Tgj_%c&sY75aqt#V@Y)Ax`t$htyE-m2+U(Liw-AaH%E`1L01gNfdYZ4b0&V%Hv;
zTl%LW)sMC7pNrlGvs~u07OH$PP0yOMQ)lr3M0m6%E;G6ZsE>o%1F@EY|KGc=Cd>j&
zAQgYZ@>Y}m5U7G17J#567a-?D2jlxQ4aQvy0@(1vfq9%E>z4%r_NdK+)AqSq&R!0S
zOGdOxUy^E>TT3hOXkx&=r7ZS33f&B$#PKWkwEecPZjtt8Og?z4IhLbem=rT50~vvW
zREk<Ih}o_)30RfJ!&zZFex9{^K-x#rbCN7O2aF-$J_l&Qg^^zS`G-DSdhd<N9RFg!
z_nu@KHyoXk27hD=Riy2Ac%g+=Zx@pd9(XafM9ut;u{BQdk8Qgy!BC;c{B<QAQOo#<
z^={S#Vr5T6)<$0Hd|2tOkf^?(zyB#q2Cr~`PX{GTRlpu*;CfY4pfh=?!RHPN4Cal!
zFuYI(%36^&4T?Kw!%M51;nYl!24`Pp;%WW8xmlZvV)c~uAAk!jGvaEQ!6qaFMzo&E
zbdh&YxgwME-kgpR7qmY>UwrFcVFVw5<oO7Bj~GU0VotXr3>UlO_OSw*EI*n*xHUp@
zfh%@x<X_s_Q`RzrE2d7}ygzqB%wu>KU_~rmfEQ;7CJlRuGL9KZp9cS6&^1EXi+6%?
zol`OQg?kjUN*sSmRTP67*_4@eEwA*ie4YZW8|CYmw#)YUaYYk^tR5lXQgI{<ztuej
z1E7txG0QMvpj*<1-iLx@hKs4$wV?`4kkc-7mJM(yS2pM?i)3?&p+z|UdFhzZytSQ7
z2j#vp?*HXjEx-V~*`SojE>AFY@tY0RsxTd$_Ap%qq<oI(K2^Uaj<|IS5(t0LqolC#
z9!U>X3P2q8aIYTL$3HXj3((L6b!UF4r!l~71P0gvfvayKKE*)T!*G0H$8!GNJ6!9t
zajdhW;X&o`dZ#O*n{8bIHPER967`y5@R30Vhv>zVboyAb^`<*W^%Utrar8qKb_n@6
zF)nCV9||<e#P&%mX`q#Fr%C2rIi*6aWEV#BypKWrpp^nuI)JzZfX)_Qwl||0I@>yu
zFdW5>WIkWa<6%tMG1y7fpU%1Til`^+?5~cdi&schJ1y7tByil+6MK0%jk24;nf?LN
zM&FEu{KP+>9S189mvlv$XmRpviDkcO@Z~6~MxFHyZ=N!J{#1Yo!)5ryAE5R;p=$^$
zd!*&v8bw1^WeF9ucVY>Rk-r7AGB0w~-4z{-`m%lmpfUeDA|mdIi()A<7-%R74p`y4
zcP%LegCA6-t+&ILSs&Okdm~8Opq2|o{5eDjSp3h@Banw-mK2f^=D=B(^JCp>{nx`^
z{Peds_C7<>si9MO2jx#3H)%eZb|2u-rzx(|BO=p#Zgbg^DWr>bQiGD+9l+2YZ35lu
zEM)O5CnApDqO^nW?FqVVPMkW9$s)a16|mLu@wi{gQYQIUWh{m?=c^d;a955ETz%!L
z;kRm`h{i*5Lp?G)C4GV4Lf$Y!b=_ipaXoOQ|G1I#TsDg8{Pm#MtP9Fqy+106;Ncg)
z!QFOmb$S=7qt@c{J5!M3n})Fy;zYROxr{Lg^Kx+W*0<!(ZYLATFqlY^?7soee?!r}
z;D2v00nV#awP*~#%90uor?#>)>3}%tTAJ^YEtewPFg2<&nvEE$d7R%s&o3u73!Ija
z$7~QLIrGQu{^N6tIuxC_%!=4eB<EtsT8*|$LAVS>?x42O(9-%Q*rn|FpZOzpX})Tu
z_BCjA^rp!_(P&hE-MzlQ7BM`CHtn#h6x*?0sk4QvFeRx{Nz_g)oK6&_lIN&zNT`NX
zf03umm6;Dj<WU812N3HGC_g<ZS;R`6w8P738+mi}6bDpKR2W~W!P&2W*OTsecu`@4
za**E23uyhG$qkPXl6vqn#KkM(ChFhQz`-5la5zV(v&{9jSgSA)UO67`8{K+s43&k|
z9xWFToSh^tc1|bs`&MiMVfso@J&WcEY)3pM4KKy4zMQl|6&tg|PCT#ics`yhy)yD&
zD6e1=%+AfO=F(t<9Rxq+QvT}<0q|6LpMao5z6OpYPF_IN!EHsg>rUkme<~>T8-OT~
zYx%Q-1%p(~=cx000rKk|3VV(mt%tVIxGZ$55xQaHrP2IY0F*#~HY#UHReTX`0;*vK
z=ZcX<(fP`4z(7J#i61XcGtV{Hbk7^f9Rf7AVE#JWCjAU*#Lp%<jiZM;RW=Vld^pJ8
zx?5Aa{8LFO{~m^aR;dyrsc67pY?qt{#m4e<M8;69EYJJ5{dv(F!#wSd(<*SqGO5Ky
z7Q?0SDz|G(R8kafevibp?is^FuK5R(o6-x!q;MI006y9>$bwh7GZQR<MoOWZx@i4O
zi`=cFO)ZZ9>QL?&PB6}Nf6_QUYJs^X`cla0TGnq^T`HwCD>zYIushD6Bpe29oKkNM
zHEE-#OmDKA=I%c@*$W2sL*hgDTn1db%Zzqv*ydw1;EIW!QX}-m3v^968myPzelIp1
z#5_UGJAB~9S$S%{SF;2}Ct!QsUja1sH5jU&L@x1nj18;|OK332T^13mL|#;cDN|Uj
zT^DKJyFYn!L5(4TQx~1Xd@9fVw|7+QOeK`-GgGndiMjtI^OM66AQiZ*qXI8ku+jBg
zp+FQViczI=ql?}@^(|OSlw5Q3h`$%3z52}U`y;C__3dE{^mNc-CH?;|Vge|i9{QV^
zaHM1bfZ6nVbFnzQ{}*CH5kLt3SIh*n7rfTr!}T|&nBYOWj_|Z<Ke01p+-fSw_56eK
zG&GVXYJ%RLfI?XAR=;w8L8zn^UHXyR#vz%1=ke|k@#V>m0xpqZ=PN<455CHFJ%uak
zq!-9K7y-cO_6PU}<=fKN8$%gYL&oR8=!YKn5E-$2+5&DEVe#IK-5pTjM!B(VRf>>)
zfQp3wN{R1KQ|5okO^}G!f<WqTlUtN(A=iGLBDd79@cpTRANg}OI$d@eRMZD-f)F*E
z6Uizm2r5X#zS;>LXKL`VSx+W*j++ShwJ0_hf>Bb7BR~^&7ntL$o?S(j09G0=Jmcbm
zO<XcCaa~r_Ux3K6C=wrVGEGIlXPJFfNMgN>(q*~Xov#{qB#YrZ00Nx2oxXnLKy@0G
z>GmKiI7hv)yrfW-_-%0+m6zJQgs7aX$ym|eT*bYesq*I>k$DOw1W&DKP>v`v-mIp+
z$BvNCuN^7+$!Az$R)p<n^zmGPNvOsaXFDyZq?rMswx`7s17i^uYfP}}JDHWTCVjpj
z&8T6H{&>e1ai5UGLJ6Vlt$uPgkAr1~L5(7{a7{T*i_L$y2<<1LSpRn_LfF5k2px4b
zk}dTL^xdmB(OV87B(s$#7Ci>9*LSbG7ZZmeno%8o=V^|+Gi9^)%kKVK`aGv$!3G!P
zYEKi`(kE-Zy=D)yZ<67d!JgCH2eZVBAaxk`9}>8#=d0zW(!Zp7zV+bT0+N+~TC7uV
zl9u=MXf3>V@_V3?Jjmn9pz?JWp!hOdZ9{yx_N^0OVzQO=|DYjAkG?4mw>;AyBcdYF
zZL(K!%VUWEfJn$=tRR5iX=2Az^v+?l`HQ#Er!@4nI8u;p8X9c8kV!CsV#nYMkjrTB
z#Ra!0=FS2xLbsRm8hPbiMK1IH&Qu`zV`_<%n=?~uWEaIs!2$^`)pesR!NuosPcH?0
z1g9Rd=u)7v_PnTAb%#5S+bzb_w5O=~haIQYqCpgku7Z+2E!JOL01bbWn~nrLTasI%
zJmJwHbV6U0#HzelvbDkXeM5<%KjZ|}f0GjuxO2X12H*q{y)$7R2!1*Ptg`LNhGB#8
zMao8Y)$^&T?BuZW$XirU_yi7s+X+NR*`eef2>&4`#86Pf?S0g_TmUQ&OVf5vO$hhT
zHh`4X>2ds888NMSz!<lbyNibo1D-RGKF<D4909RPM=n@E?B*T<<%`VNsY+$apjh(^
zaZpWkO0(QzwpCOn;h6=s>3D9wrB)vN@f*Jbq*_;gQgrkH<H2P5J#8*!*}W#yMgfey
zOt}b(4(L^f9f-e_$u7Q{*X4gZNEnCK=<Y719?I*WI(cUzQ7%ux?tER9q%NDHmB|?)
z_$lo_c?b(t^Sh3s&Z4Qf`Dhqeq%%$aN*EXlqC8>h8@Eitq8FvBy_DIy%tY76h^VC8
zCTtQH6@7=~6jmT>fedHC<#fAJ{o2%`=>RiL*td7nX{N+2v29RQ=FF&n&D+!Sj!_CZ
zPMrag?S-;WV3vqX=V^N*h^QsUAru9|Rt0S#0ADfW*nX=f1CTN^tsSZwj0}LBM-&MR
zC309mJbF_lw|1nSy<b1j%GgqXblC`Ft-VUkOgG=z2qcfwle4Ztep{k2)5{aSJ^(oR
zEK<0!rox_ZETo85uvJEjt?NAi#2k@fo03K~ktbD3zt(|0%Fj6hLe2utT`Lemdv0b4
z^<~HN;JXhuF7%Hmq#)d5@G@O-{}TxHiXHqFb8Zg-F<(f$;uWVv7(tj!d>QSa+<B(Q
zN)_c-P@6Fl=O-V>c!6dhe}jlYrNIgHFaPlO_#nHB2Xmr@tBIzvV9O#l3xWeVxC^sS
zUmAEAOn5JohxJGwQ2!Y^eiFU_SOc=wbYYx?AZl)<7{9<F3~>3ZBtmfM03$Ha3<+rc
zL5%*ddtgE>!N~?54<x5!Y)35HlLnW)U!S%4K)CV}ww!pNR>S@0`($^~C_ry{e`?8k
zAqL)zQuV}yH@N9>>T7E{V9i5bHox`a^e<)!!et`a=`Ye~z#L2w2($OFfAWvJlHFB<
zJ)Bf6(R4KI;XW~U*;9dsE6VIEfjt}?Z1lg>AC@l`YBMQ&JC=DDj4b?}n{CN|^?DI3
z+8X_itC9iMP%52|J5u0jbY8|9f;agD9vou{$J9vtv-SS4Z{p(+I^%=ek;I@gcj<$#
z5sP>HatHMyU<89cRg3SHItczYYta6;<}T+y#NL_AKj5^|cBmF0goQi){t?uMt+TP^
zTx#a9gT&`ts(+oq16!6W%+}mu^zjXjO_PbY&C~khSsDB5x%{(Hm;r2{5zCL*X@dTG
zN5OxcfkmOR;kB8eUjR--BPX`ha5~qPuT~sBJ%|9~C@j;xvJC#Uef}ETlFhI^;P~Vb
z^~|x-f^2oo>B(m$*k{{o@OE~o7i_)MII2ziA7ImKi|$nDB*p+bo`2nG|M@>>h-5Pb
zY(PK#zYgdm#CksGla|<PguLjR-yv-DGL<qwdHK6v096Av$MC#XzcRxJL8}2=Ucq3L
zyvI;S1^k(CJ;e6FX2KsCoEIqgnW=s$yk3Cb*u~QfW3d6$d3m<6IxP-E@-sCG37;!|
zp^(9kQy>!24itj{t0U2*pE&Z>kd6ZoB8BdE5$sP}IY2?!`bC2eV~TM{A07)Vww8VQ
zMK%!?<RPfqvHhO*AaDxE9)C}ErG-_tUoapmB{~h<9w=-b-Z!sX`0jM~v&nd^*f-Uk
zyA2(-OTmrT5$swV0WY4Av|%o>U2P1B0F{jg!(V(BLEg2cmc<vD_=vTPFzEIqn|6ck
zq{SArGLZ1Od5Dm=zdq3MJ#$~-G(BfC9u)I}^ZnjvAq`ff-nAI<FcdN0py+UB9q0PP
z0UpQ86DIfDYk@c(V~(}{c#E=MgD^|$Da_d6Q=)js?`TbWdAcJ8fKiJRlt<r!ZPN6+
zlc*kkqLThH#Sh?lK;4qa{%Em34yvVOrCT-KH5qTj0>bpZfN0AzLc{HH17L{n6)uQ*
z%7uQ<-||1ZLFw^n-3EK$*_-yKfSx<H`FP4<J0!WGQ7}(A7uyUebh3M|vC=Uoqa14>
zG?7E1(wtusB=43KA9<Xur>H;mV5at$Z3fYA0sj-0(1a?JteZqKR*R|Ebv5>mdK|y!
zdw?BmWD{}GgiwJ4L!>AEfq$I=UkEUUQH8R4nSjUv2W!C7V}+^m?noMRi>XQp)cK^&
zleVVE!0PZg(hLEa%=}+u620<9O($l(5oLk$si1Y$fc<oBdP|G$M<LO<^}&=j0b>p|
z84Q*#?MefbARHDiq~$IObH$vg<yEsP@*2F4t;34-m%DZ9O>Y@QO)78?*ZW(b`rb@)
zBqyWe8=%a|XyZC1r9zoARj@y{YMwSunR^m~hIf|Z#ZfM%nOJ!Rj-s0jET(_|>+hKU
zo6ETE^Y0PMu%HP?S8P)n(1~6KVujQ@qM5TLW+^=$T8t>=c3m8x2+h=r>SXC^iQbT6
z-QX@@)hK}ILfuZL7cYx+Y%vFNM|rvpA|YV}m_(jku+_07cd>OF>~(z-?OL!oJ@(CJ
z7R=#fVb}`$Zt3-N^N}Z-Td`6<J_y}~m>H27jP)o*NP=`>n_Hl<+Vyi7quP3r_v*@)
zoJ@|)6@UkW4OF0(ba3naf`{%ya6k2Ekn2%DJTtRDxx%5cj-k~=2NEKxPP3JE#ig3v
zcyWE3sY+k^MR&O0kGeUH0bxVm0B9tw&KDw}3}A?@>vH-?_4G&qplsg&4^`(=-Vms&
zV6d00(~T8}2SfseK?(1XhCdWCYPT#nm9c`rx+WripF%AU@m_2?g<>I**ZrpGr?-yK
zJNG}pr56ZzczrOLD!5;2Jm}S2e;yKD4#M@UlV#LUsfr@?DiEiApjHe~@DKoOX>kzq
z9M#OC=QloKq~1z??!>)0YL!~V2gpzqNuX3TI>8TP!RZrXa+L{+Zs|t^Bc#FZntI#C
zc#c#}pE7_2bB1u6D(ovIRWNF><YN=}T)(~_fezGXo2WQVwc&p&<HhOh;j%3T+i;SF
z!A_U``oorW3|Q5S14|mRVKxX|`~o-3oQVFzGLm|3%K@o(^a3%+rHLWk&pVr}J6#`B
z0;pvZ^N#~IMkuQpDy^n5jog-~9&_6uZ;ljZUkTCynh^31vnV4IfWU>5$F&<ZR4xHQ
zNwE^?WE)ibY{>F)!(i--rSk$g-H+E{&dry>r^-dTwT^eA>7!UR`qm10Fwny#blC7b
zJBsuH1t8j!)^NQ$rl&ol^0v7J5%p)*h2_jw67t#GLi|{%@q7MZc~X{vKuTmuS+u%m
z21akN-{BG0Uk+#{jN}X6=_pL(WVPJRp@p=x?mM1oWPH`BeXTH4Z!=rn8LVbW0nqax
z2@r@?$jb}HX7a<yAIm*iYn(qYY5}F3l&Ow^S)H+6=VC4Q2>-dL4j#`(P=Q0s&2mMo
zIgOGg#GrgE9Ikj)fc>{297YZHhm7I2j!9tO#fJI+;-VMEFV}+oh}Rbe4F<dfX=o*N
z?zzIQ`&V4M0@Yz{2xx*=Pe1RMmGcM@ads#4Be<LpKXd<}Q)57&U2om8MxS|523Q36
z0`}#mYBf^qKnDu@pynzwFeV?4$KmHkP{m^btk(*8yhb5_(=k+Of$;ixUnt@ETj)Be
z#{$@6dJi2=i-=80&cE?L$;3<GunI)uKNEEOVPzRy0yzHNG#i=$zi0#jRn{D&q`V#{
zkJbm0Rm>);tin3ng4T1CwSvOwlCyB=RmHviLX~kg%CZN)dd!o2OT2`!2*O3aPE~Ay
zz;-a1#Z-B<-6aQ5clH8M%jC*L^-H!WCN+{8+jB~rPfx0CuDLU%-uJEqDqI8>o54r~
z#{k=8P>_c|1!X=n^wNYKj}LHgSu_I#ZXES&UhTgl{wIT=U&LAOwo!GQ9w!5fT2^5P
zOytlxzB&m4T_4rllPJXAt>StJRi@(c$Yk*5<R_8FAUrzstm2#14^Cp6fzUEZpbmxU
z1}bgguX>gO1tvp4ku;V0@4NvQI4hZx?e3J~0*x_da+N;ChJucM9zXAqcEcAS$kefD
z3Gx==xV6Ms5U3&5t|FmtnMiHrI_Dgqh#;*%yW%rGH>%skiBc1Q=RfIJ{vw4A!Yp$;
zySC^_FiK+O0{;8p$Y$g%8sA@@xsRTrgoL3uUGetk5$0IY{G)Rsh>s-(U<8~?kB{Ef
z7%$cpnN;iukrkEEtax(|8JFJt{an+{g|rGAE{lTVxz|+C&tYmqfE4EiI(9N^);^QM
zNgwk7N#Gk}S%%nNHxoU>k}3S&dCB$feo_DkPa<A%H=0=i9wfbs#TK<t`)j-n?Z~cn
zQS+wF4+|3*2*~PFBTtmG57xry^IGeFoPfBa$j;}q`DoOABHXL@nFzeW&K>5OxqJ!E
z0<F5v?`!$RqxxE!0o61lKR!{GXoQE;%l>3>IR~m*qZNSZXV?x+>vR|Rc7-u&HlldD
zJCat|(YwpKOijxGA9$mC(sE!VJpyPlFmL#x0f-+SJqp}x%OA{jqAH=b4+@8r%ZH1p
zj$2(9F%oT0%1EvU46lz$!~J?|<~9*;@G91&nGsfciy$E;<R7Yu3aAx|U!f%N+RS7+
zyb=&FpRbYAnJ%|!P~xAsaNVA*Bec-uD65{K>QjZ01~%t5_L|xj+Yn0hBZYjvG;c}z
zP5QyCQeF`72Ev6XYHt$30YCX1;IS1~z4^EW91<ut%=G@|qr7J-Y#8z398~MsLp`~w
z(f}cnhB#`R8e8=k#H9GL*Fv@LenvaejJxsQV&B}<l)OGSrSg2+x|SgkCNstZGGSJw
z6F4lm1H!+YS4q_YdLpGt-Uzfme%SFE1oTbjMn)1uSeoB@HvvAc9EpIRI<bkNlu<53
z4<};(x;>D5u0&HgS6%fS-;5lmgJLOgf{A=7OZ{O0R5MkN{B<|9q?Q>M-}eCF@g*P>
z96D8qgWxyI3{RxIU4#e7Ko;NEu_dc{8diHuNM?TU?!A-k1ia5j!VLE<rn`XOnc6NS
zorY9%(bn|DgN9-tZw+S0<>SU&mxQJ8dIQx4t)nvbls*M7PHLCRPR-=_py<3*7i%>5
zRZit+TA-Ho6k3@)ki&Sdd%(zej5B-iOf+wZ>hVav(NIu}D~j!cR$Hem`j3n%g%uW+
z`mYE29AU*x*CZCx@8x6vIG5o7P6Zp+O~6FVua^=B-UZq#)YvyLRxm%=e|agWNcD;>
zIljuQ+@=*|{0UP+5)@Yr?$=XFCp$;n13J}t+o<NCYAWG#0C51j3P<|<NdrKts1Zg3
z<>@~}A{qi>3PJ2*H@TVOPlnMnOu&f{14w!3b;m2c;TYo1-noQP`uGX%4M17+b9vy<
zadYjW;(<ZZ@ktQNM9e2LXtdZ5^%*|`C{ZeQ4c1PV+#H-mmEf;*0;!e_7n><qonc}V
znetfmOY@rlm60H^^}l5#XejG!U3bKqjMg%tl1!kLn0#MaY!i@m)jejpQ|cPivXqf3
zFk?2_ySg!*oo#wLduljBgbDa%$_ND-$o;m0@Df~iUI~lJV6ah{tK^v?B)lZyAAF78
zRp^@mTM5ni9Z+?38MPY4R|RjM3AXE$7>B>#61hn%2W867RxeJ!^Xzxb0gX-m>m#L%
ziCsym!hjCIb$;%&NQO}L(w%WKQnKiYF{U#E8ge}cDZ|_^d%76reCPk@=-33_)avpA
z3^8>!TdTGN?xY;Kp4tMA?wFVN?KQT}?c1gX*^T>x7~<D<Z`d%XcaBe^E-79FR#T@<
zl8G8y0G@={1df+l>zMJ`npr6gbhANREOj)vZAyKKkk{p7TDmf7<|k80rt+)a>_ew3
zJ5h{9V1EZrz2D4RTSM^gsQ{bmg3OB1dtDFo7-gGZl!YU)|4<eJiOQ)g#9S?gzL8;X
z0sdb^gvnGU|IM>}NM%gjE1g>XjjtG+WX*oZX8CU@tozcmDO`i^STa2))z)IUa|D<A
zPr8Ej*>|DfVeJ}s36+>lH{)ae>b@A}PEU7T_3b*lQ}-2Uf9~%2>e<ZNeA@5MZ<K71
zFPyCd^W6`P@B=KXXw@A+$1CXE(&Wk2WA#PHJEyw>kM<|Vg!77lTm(|?7Y+|PDi)FU
z1fgWv+$Fp;o%}I-(FHewp9rd_t%Se`gxP^2Kv>*rzuw}0y`_9BRj^e3!JSVmGr^~G
zFIPV8bD6YKL3ii((w!D)vHQ2L(k4F2Pvdi;CKmgU54i*qza8LsvhdU^)6tuN=`dAl
z_XzdW=8Hb`)3Cbx!ClOT(?+)05R3Wx=M$$eO1xyV64C^YBigMqoUL^<SR;GA#AEmc
zs>+49>fi2OrG!+yxp|5*A9mHLq@k`83)V6%A2^}ALsKH}Kpq3*m2ze&UpV?*+ix2Y
zo43=*V4Vke+*fnomSFq8sLYGcb@l9c;AIyos8LThXYq7hCv`*L7CuwKVmeN4b57fC
zzHvhz)R1Pi{w^;WU5)6qbjXkfh*fBmWwFl-6TsHg*z%2FSlJFEA`;}IKwfnpS}{=!
zXbWzR<c4w(#7wOY5PPOn?I>0q!R@tn^vQpb;d-y*V`Sz8vH>g2M;}m1gsQk%sN`Et
zmyE0LJl6U(Zw4epr-qh=BX~7zU6WWTpBeR<n^X8Np^%uosF!(|TMwzQ&nTsg*qlSz
z8Yidqa9<|3|M9Bm_NiOYklB>xuJh5hH-%U*-Tb2Yq-%)EI&cN#qh~ZLs)#VF%?9sM
zmG+g%r>hICzAf;jgtPj8q-N9trrlqh4020{zR4vluUNF*w6s0+SmgS;J*HNKw`bd(
z+3THHCkH2kW^rS*b$#%2;Z(+77wN-!RccKvPUl9UCdY;}Fr+7d0gmH7B-b=@lY>dP
z)}gZ#W$Ux%bnobvLUq8R-KoFFO<-#M%_}fRJ7KI}gY-2!!q4wJL>ER~+)eGID>fQj
z9HLj7IVt_bayiOrpuK6v-u~`cer2oIc`7f1`o)2sS%?;3%~WoEN1|-Jc~wzG4K;<!
zgDhCgm$3PTosH?YJ9}{f#-1{kv`WcZ3FC*k8*d3c+2%18c|(gnxHM2GR=xgR)+V)w
z#KGwkR(E0i$LyAQ?tP1HOM7N?<=#IsZI#Dp$y>i7wqu&96$|e{T5vCebo|sUCDqHq
zzjJeIwgBg0TDs_Lad*l^K5z?jt+nbz26=D6@^eTf?vK4X1w;8F?fc8v)0H<NK!tHK
z@rR?wZ&3Ax=zi<@VUA*M!A0RYdtXwa)^invhntjgdXQ0ZVMYn@&@1ulQy4=QKQZg3
z{lLo$mE|MKZ@_BFr@3t1W67q>fEmY8iAf-6rDwRk$Nk02R&wacKGyRA_L(ez#PisN
zKle?8`Ut_5h%Zd)$XI<EHiEN)eqvL1Sj73{s`nyia?<fAg<-&6{}(hDpagqi4HBC`
zKwF`qw<$d^BVQ)|8P%)gAklPDKe_M7D-WMy@DdSs&F&mUe{(uK<GPvz5>c!ejz&cL
z*XBRUYlg<v1u7l;Um+!$EUB2uE#P3Nv?~V!hMZpCU?QWzoXY~<>;43$pxdu}URAQw
zCueJQ3Z^oEE~83ZfafTNjccPWyp5R5=VHostyZkfO2WJb=<n&qn<KY3Xbk;knrl(v
zQnLH#xI%KSP8B%{g_xFe)t04SLItcO^z<O_`x87h|D<bH#IqZ6i@TpzTrjB&DDE&0
z<r_N`Xq8PZxmSpc9i?XkRF<Lzf^3mgB?Rx-VkaU#8!2KLW9A=Prdv5MpKw}c<92pr
zx@{vr^0<=R8TW#<Pc6p>R4ON6natPZ&<$IwDfCFosQO|3`dX9F<wGr-VF}akX#5O%
zDuUIF^%`S|oF_?r$zT*^C(2!CXeWyCfH2$>bPpsD(62I|FXZ=%!RL5QhRYm>$Asw|
z)>ka?sBMN6g(8;I_vUHoTcx(A_D83$Sah)*EmWK|F?o-%0#CC8)S~ItgyiM#z8;Kd
zqfM5sqsQr6YV|$L3kLM0_N5Y#XjW+`9_n+(poQE|BFrz1mk-CJO$Ft!{PAd6m?rnF
zPZ`wyIbhCI<e5u!jZMXqa?p&6$wbx1tqTg+|Dn(8{2+alJzvaDh?TO<_0^@gB@spw
z1y<!kJ~c_Z;v|E<>~@sPAI8Vdum0j`)!yrK0b;%*#ac@5he@S4xy<2&y9iKu+0bN1
zVzvOcsiRoJ-R8CCsQB%Cf$;ggXxV%BA^!U%zc>tzd;oogq_o1<fq#)Wjv-Apu+PGl
zux+6q-W<8UOD<Wc_UJ+6Ay9@F&((bQZU=@ij+(M7+i4*Pad9W}OtD)HA!l@ks3}RS
zq?|#gc<QCw)l0I!`(&*$jHjEFESZKB#IxlEsULo&fhJVNa*4h`?bQ{WMNY&HLRv;i
zE|@YtFNQP-4{ZAl9v=Tq3~B#E3<+TB@a^M_3U}NZlZ~Q>OiXkFmO>-_aW{+qP^JQ(
zzY;7}BRT&iCL!aUH-kE<s7i_ZZOY$LcqDYNytL^DS0_DwF+*&>e|7?8yYBG05TL$@
zWEBq$F=Z`r+Ij^KzoKAqL{S2%kM>^7Q{_0@-(2pyxknBu!4w!s@B#%SE$a&>wbk<n
zM#HS6;m01lQ(g!K{KA(eTO2#ko$jH$pCFY8W2Rr;q6p8C1_YyDVm<PRT}xY^1vXcr
ze?|N$-}@5^z)#M~t12@(7ribFa_f?KTj*kcA08f`q1>ne=vKCP%s0XcFcD2MPya@@
z9nrxnA&Gj#+(8GNm(Q&oog|{bqd}nZmIfXxR0_6g6mH73qhLJAASC8~-=fxr;-9a9
zg_*%)uYEEMNF}c@cnC)djd(qKT#1)Lxs5Jl>Ya}<eIMfU&&C4abu4OQyoytmQP=c`
zEI%I}tG0>}q{*)|D=7CeS20_>>BgJ!V!IcZ#R+8Z($g+f+jTIUs6Yvk52>kFn+}3S
z+m06_Bby*Gy{CkTf`)70H>*Sho&#g*$=L5uQ%IE#U~Iu(Y))}7CBle*xJo*p*hJ=F
zc#DbI0w6+>LO}u$da&Q84rDr^f!~~xeAJ;{fC=szQvYI<1dW&1-}(OVYzc+oL*2^Q
zC%lSI#fvB=otYJ*pb)yzoS(zS@*gq^ByMdN{o@7FokKNEL+@RlcKo2a)x_$qn6z6H
zNoFz|{CvJfgyU#fYP>j9?(|S5`MJ=fc%1+C`9$DwC!UOR*aoQJ{kXx><8lWz2#>XX
z=DR=QVfLWT2ck~uZ!7n^wr;V0!tk8suCS$*z-8RSyjz!xt>UI|PO|LTE9rX@s2X-A
zWE?OiBuJk8pCYb+tffjo+Zs?j*pxlRQ@8%dpBuIKle1JN;wb9!|BZ$s&hv;siv_v{
zJ?<EoMTkPLJj=eX4p6IhEDg~DfaM#SZ-}lI(<>C(I*E!WD>c!`CVzB3Cd`>X2y__?
zw{*NZV^J<pzOTlt+X@imq03;Fq4i+*yndhn8x?CIdiIj)A}D93#?0Zp+#2e)o#0p&
z-N$x|QeJ9<Qt-8)dZeE1geaA(6bVo_^SMBIOdi|Rgy|s$9~1BqBv#c^m^M1@!_~N!
z<=H$yA@D1j75-{G$XsqQI+M0;b^WEVJC;SV0!6?{IIz$lmYm|~i1dxfS_C@7qmuUT
z{`_dRIa+%pvn5vZBt|W)Z?@sFY1Jj!V`rp39;X$5$MJH6HoL1=*|UG5mi8mzb0&0)
zDZD0@E>g;pvLLcuPriq~XTDF&tTrWY!@Lh&OxcVdmw0!oUF0hEO}845{~K1<`zI>Q
zcs>&Ghv2a!X9#!n;y-&=tuPb)er0gW3fsh}K~bOKrW>>C<4usgg(kkP9^$%~v?`^n
z^~qmc0Q~%{;}g^$Hvq9m_c{jzVf7MoI-stD7tNBgJ&Exn1FfAw<C1W^>1oL+I!K(A
z2>6xP((D3@a3*WpWPJht)<NKZN%Q_n2Q^JO>ofSwmnqpKbWJnr{P3=v*TOe$(~$yS
z5U0s|_C2E7^(O^=42y+%o{GfOmf6dN(Nl~eC9JgatvZJt!8#76(0<W&%*4Bg_CEw!
zo^2j7o{Bz+l2UTp04$WPf3Q$a&`yGL|II>~N?sG-Gii=hFFm7i`Kfp+7BK(yZK8r>
zl-Zh7t=&2YeGG#UMU*rT22<7ER5of^8Sa5%Dr9F<{I2f&D-W{tteaBQ+z-)sm}_YQ
zBLidNOy{%W4uc8JW@rTkbsCWm&Q_u1kzYXay0?0=$zUaK8PKr5v)6dY%rBKV=BU$t
zVBqU5;|T1Qh8mES>it-SVan`Hy`0y$zOwnRcr6JmDX1$u;9)ty(OF1Q{tm(Yj<<tp
zcY{uqTN}MO4S4$xhsV}Wh6tvK-7;-C-YsE+>^>zVyEXFk5uic@OV(wK6Bu8qJey;N
zl>SivoHL6}o~I_sdG*xnBW75!Ze1S#Xsl$yb2{-*B(YU`6(;09O`|=K=bKR=hN_6=
zHS78rOQcKxN4rOZbe9~Wk}BGo!Pg0H$@iJcFBAOj1ESdpy;TdR^J=JS-<gILYH>&q
zP#!E*&|Z#mVw&CMLS%lw>A@gVaj7UvA07LPf+Cm4lKqO4XvrAHKskK&n}IUa-lTpg
z4A}l6DjYnI4Klv!AF96ob{6;&&x!gYDNi2iW$8)-W2kQf(HaeZ|C&>{6qK7izva_y
zF-L^slHbt=u~-tGezn;;sw$s}KQQ0bSIx{)#vlWt#)Gi*-{np@QQ*%NHZn$-0xxSy
z^Y|;y;7Sk31>;EB#=U(oUZ|6ix594rpilu8%?5$Q_N__9?)k{G3vRpWln~0T$#NtA
z$BL+#QQmX}zrEYJm*6!ytcB)30Arl)zmM^g-9xI2BX-xu;;P5iZ}$JBkcH|nI<;`K
zC1+Pei*&CXo_l%<^17TTYcO=DnU0C_%69)(C5-FjjxbIuJ^r(cb2^WSZad>>6wiip
zARI&)>tVTC;zCa`lkV_Ud8fBF2#+NY0d3cCevS`4Oi2zABPUDv8Sn`}!aG_v1w|BE
zX|`X$kx^f?#H%Ll7Z+O?MEvi*zxjA{iEg7NI%m)!ElA&dx;shSAuu`CxJo7LiyS?A
zSPcXX{8I|!N<(&&#mGR})qo_f>ycnYCw{r47i-XDf$JkSY({0oo0@yjgAVD{LWXOQ
zD{N^e{Vetyod;fuaevTsl_j0kTwg462lo9-FouC;0Qfq<LQ8IjuXhC&+lzBZ<9pa=
zLFN=-vF*StHW<&{4Z)pN6^mK768^erdl{N8CdlPPuSg7`+VAp4*o4wO_*V$skse$#
zIf0<4j|3c?AnrG2!@`2O@r$*vsFSa!EC}WAUvJo$43$>c2-xZ=z~Z6#aI0VQ_awr)
z5J+A1wi!~grQb7n|AQX@AX!+tzFhyKaU+nU2XXOnoL7Q{7e~HX>wtkUC)`}r%#af7
zpAzJgBvb5r7PvcIC2^k8n|%O?dm;&8Khl9rJ7TZy9kF0skuh_A>PMMwAcwHQ_u=?I
zR1BVk3xbQvrUr%~Oam$k+NU_dD!||IqE4QMQBl}I+8HFCPFLQYQKPbVQ(y8#)eeNf
zl|c%*zMQPf@;?8+x}rJ=v{Wr(wYmrvEgJRVYRreR32-z%!q^1zh%cT%kwZiSF+r|C
z4=inIC~}-66C}AC0KPb@+1fi7Stsx!eiI~q{pS4uE*K_x4-W&TOOSClROjzAfY`Ip
z0Z)YMSiuL|roS%ElWB2~f=V<bAnwI#sarsp%<mRd*K~`pKJd8>M313o`-Uu?ZCSrZ
z!f!M2$#Za7EX~g4L3cW6XNop;`Df4@CIsv5z-u)~goU-v;pRMU-Qd^y{ky_$TUVuH
z4P4xa!v59Dr6`b;@S>x?#{j5y%&GhIr2TycJj@cg7yiTg{cxlzpyly9p$YsB_k{I(
zbI<8PA>e%+z*8@*0v<?n&-xhb&LF*MPQ9gD=%0PD^bicMeX2+#D^k#A$iQ;nN6_Y2
z8Cz0t)m<3isI$Vw@{jl7DFGXY5pNgMi9pP5{H~<=QUnZ#e63kc3k)q5*q;P{>iCrz
z{1+vpIvI5MINREzB69G*?Aly;TcDlq`3wg@o6(!Vap?T{>h3?=^*?DTfL6Oc`R5-<
z3QEBC7lgm}mw!+^z}S0pHIev_?j=jc0F<3U%mmL$5iicWR6NNR(QsD0(zI0~phfH8
zfjTh{GG9h6t@g#1Jb&yT$O5mJ{n8sytHsTDSbttF`jajJ60IXB>r=jFFOdy~-{Nu@
z+Y(^Q!L(EYhpD<}fMh}&FwN50tz>L*3Xvv%G1?@X{~Mu82No5P-nX>|89VTTAi@86
zq;`%qhU-w3K<S%4KcF|Y2xvb_l>e55P%poqVZz*(sr7FP3Kxf;47wr6T*mi)fYz2U
z%CLXkZ8ef?Jdhj=cON+oB%;3nCB|e?GrIiJfx50_EHmGn(>igz+a)eYxgh=anT-&z
zJu4@xjPf})elXz^u(_uv(_wIv0$HN#%ae4glw^*}2Y>5Ahy_MthLH+%c061k$~Dxw
zI^Kv7Ip3PLx-(U=2jirtX|5ii9<y4FfGmaMQ*szVB>3{blTluh>e~Z{*_F)zA1EiA
z*`WA;B$8M<#hTWcZ@4^_&oJ$v-2pjPUh!q?<PL%)nKJQ;vmX0P_bq4Z1JgtvEP#N!
zPK<F~@SA%uTmOI5Gy|iNCi3j&a?h~0oFGTD&~G-GV!&dq{BFxE_q4@U(1U-;L};^$
z)f3rG2C>urtrL-E8WvkT>$d`Vfh;GzzgxFw01RaGv{B7(DVzvx{wS4>E)#0H8HVdc
zs+Y-OA)<f^1f9RV;gm`QE{(xh*ddwOS8TZyeiehlfXYf?dIdBhZsgoMF{Wd@H(W^r
zC115_T`MrFsN6MQkb?BsfM*{O%TwH9dj1c4Zy6Wm+wObM(1NrG(gqD8(v8v}ol1k!
zA>A+tN{5nybT`s5gtQ>t9nv7(`JAKv@3ro=_g>Fu@8@~BUn#>3b6w|k#u4A+cdVT5
za}NWhXmWuPVVOFzsvXkR63zfnYVlbxSeo$j$*NUdNOO_v4T22=rIUn}mvDxzezu;n
zA(086-_xJE7qQyxm%coS0h?$jO$0gZKd(dpq!O_#HpQNckAt&`AXg=u>$n!w0LdqZ
zHG!=2!fGrQ)D>yrXCy@+AsHjq&Obbf{EHn26->DNLluf%P?3PrOCXN52-MgZi>I8n
z)zq=hknCSlICPbN&e6#(s%2Fh0%h#afxiM;K;TrEkFf<6*Sn+TyPxN%*V7vRh);hU
zSX~VW$*unokBBf=3H%pL0v1)#{{c=ifbYU?()$iHiC|>Y#sWoZs+$P-%-*DLeq)4b
zV<+3IrCnlg<dX=K5wK@9m9)PqrFxy5+@yF;sncEv*)eOYNy|>xIuhn<6gIU8->9-$
z%S16}76n%`pK%p?gh?l*pNN$L^bc%%BHEzxoouX?SI-i$(P%y5mH+1zDg+z&5bT42
zAz^=IA_T=8Ht?s3rmCz0pT0YF{UHD49iQXo0?3SkD1-jic9x+Tz89miXI^qQcmAv1
z`TKedQ+_jb&S{`bM?KbMeS?K&D_H+!!;4!q<mO61hVMo4Ui$eeXpE$o`}|&{Etkzq
zAPgq35nlsge!g@q+Q>Md+TQz-B{ERb>TjIuXr|gg@OkZx7TaUBa&#OjwdiRA(2%+f
zh?7OuNP4gn{F-zQDP=VQS-Un|3SRt7#?kmDrb=Q%|0n-bSmbqRd=sc)xEFl)_9#L0
z-^!w@HokP1k4Q4AV-NlyOk!8|+u>!qM*#-3qCk{z+pB?B`1kn1jKCJm*B)3XfG|_~
zx^HPLA(+iDTSF$q3NJyFwfpu-01ITiY$swba<_}9dw%gf7MHv1vPloni1OMp9Vr4b
znDojS^h@?<(u5saTT?Z%&aXQopbuVs)^L^a|8Lok7yp(05cV#5raf#pGdaRzzf!(8
z_khxAa~64#<x5WodS9|&OHG-{2r1}<Wn^2pSjIRK^WgR4IAP-dDFH$-@Tk-yiRjm)
zqsX^r@dz%fSJO3~T59r-bxJ#FJKE*qQ!Q)uJEOa)0wW)N3k8V|wLBGCg^)o751lFJ
zwTvQGZ63YAcMqy#8MG)-v51=UV~a~bGtA4q4&-3_%AN6hEs`F=yStG&TKVzjWsVn=
zOZz7sAe~cKq~_sH_aZ)R5~#P30-?C@rwtf|$_tG6QDb^)Au<6so4IAgBV{z`A%XLz
zl;^QnqG(4QX~}m<624#v2bZr8G7NBAtb{1x&@;Wv<G9PJlRGK<SgXp^{3(1%&WM&9
zQEC>)`*62w@`OU*9rH^e4I_oy6#hb<7rAqzKv_Z>eK`KjF9PKX=8^96fTAXTliBAW
zq9Kk=6J1~DWX*j~<Jj)kinprxAxQ2=u!bk^dA-=Tv}uI@k+quVMHm|LkE;n*5e8rw
zv6edym=sBoSVexo(&k6l6i;k~dvzdtywP~~5qv9xD43W$O1PigB3qFHge4X)GdDM2
z1pp>RRBE-;KHw{SRR-idh${JZ^t`X$!=b!NARM;rW6qSNkPrgIzVc`n@70;E%jA1y
zXjNHCfG&-4dE}XMUn8>-YB0;v?(2i%D5%TfPcx^PbkZ>R9M^*$>-e&`Wd$jGJxz@7
z=%6xb9bC?j=%K4?D-2i`IWWeS^K;6LPZDtaU@mOgDe~s?eWb4|=uBhoM{6G(EyhSD
zJ&rg@Z}ikEFZs;|GrH15>>hDp5h#CVyn4gxeREX>6l|C6LP&&$tBa_NuLBUZTHekZ
z{iB9&PU36{qln&#-LPKhpOw;VRE={Z1RJk(8?9N~K8PJHjI0jBKb@{5y5|*Rtczoz
zzI^R?HM)cLZ7{6I&moM*Q@8%nTZws{Qp@OpN&Ul<xrN;Y-|>>~)SVI<^CL;D_a0Jf
zI2{>^QGo<<g{?SVU(9kOeP6|o`$R+Wnk?S=uio2$2gb$*|AT7J|I0E&M?5eHL4wO8
z@W3cP-+dee9@uXv_{mG<`utm=K-ZvUrmm5H{9w))q*0EVKdCNt8N7V())<IS0p%)<
z#YF9svrCoJi`Di|%lRJ})fm%D7@`Bt0p=Bzha{K4l}KRDd82OTyw~iSArnp7z-v!h
zOvUE{0bnA>Jp=*54J5pL>B6Z*3vkNW#HEI?3LZRdNakT{<yQ{|sRKqTBbJOb&AeCQ
zTQPWh$_1!mrc8<@cu!xSYU&VUg@7=9=oOGsID@}>Sl^USyqzeWQ`6b#_DdrD^f7OV
z1Kz8db8I{=*V=gFe+Up~-0eW9?}wZ@JCe^BX+YD&E_1)uxI!i`aA`-Z_2rTKO+&ru
zNV7hRKINZ~{(5vpz?qNHid7;JXjyygUT!t^47<#DMCNdv;vFdEPXm!#_J<=CK(T_F
zzA^Qa>uQ+QT7Qval%N@aF@Vy^bUiykV=~G9CsCVFgFx}6Hj9mkA>9B?b9PX{r)JBV
zTIC-gos{U>@COBvYN`h-sy0^GBwPqQmjRQGq-_LrRe#CL4?xu4>Mi;>eg6S{F#dr)
zqR}@&&=s_k(?tmI@+1bRJtz%)l6CWC`lIM*#-K)?C=G~V2YGqAlXVdB`^afIkubT7
zs}4{7FQ^a8=-<@GJMthJHrqkfVViNOtC*ly__`Gs3H!(!qxr?xyatz=esY+c-<Ylo
z?Wki~cZ)xeu+W3&F-_Pvnapj|T$DKV_G*%I38&Lnhu@jrK=b){ru4zb^D96VYc|>j
z=S{Pyl;+fqBBG{wj#|Ki(tF8aiikDlrD<SYVZoS_-;|uvN3m#8V%=p?J5evx4r}mq
z%bNolsuDf-2kI>(9h>4a`%&b0Pvvl6k$AG$xmz*g<+g(F>aI2$^QnIRCV|;~op)A0
z-(IY)0P85)vHP6nu<~v%CY;y9^Q+|<X*BXxHw53gE$P{)6(uRI>;;}gB%Rz7b?MD1
z?fSih(v%WMNZPD_m0Y*+c%5?<=>uBV%3FzlOQ{7Aj&QgPI`K~w@U-Nc3{}Dr-d6hH
zw>Cr+0#P7>^GFVb4nOjdrP|d58RNf6RCoc4XB=M}z;}-9C!{0opBN=_jiYz~Kt(#t
zK8_~^)K@(Ck~@SY@8DbiHPy^5yxzuX%YJ--+AF53e$t|lBm&OA5u4n_JGiO~l=%2z
ze4N;$B<Fav#KqI9|0~`j`!Dao<8-LOQJ|;AN$A55{u0f9CO*=#y?Wdf#*O7j=XX<m
z?`GH7U4@l~<NZ;nNI&uWmqNuH5TSbLZzJ#6$J((<%Zl-XpNDa`D;WCKI6^>Lye^>k
z)pBVWkfzBQ9koAL!M;t!h2rkCQ(jG{g;YFh&~om$hCkglu6I+#{4>}yAhVxJfR2@>
z)#w!%=$Pvrx~rxQ_SXLc;KTBKS;rE8;y-{7BMYf8QKTRdW%##{7*|CaXSZ0qTe^0n
z-3me?X(zMcqo+2yq+1sx2;Y4^7h&u~+^cV5ti%8;H2E4)g){&;?lJuT0CL#w{wI(F
zv<N0~OO^k3RSaJskdnLd-~pZVCzNa6vd^kp@!>?aD@e-O@>b>FOE@&Pr=h2=Q;!{G
zS$7|6!*2r(Yn3r^&B_=J+27?dPwa*@N5*2tepOPqFT^s%niG?O8sWGq1aQG4OJg5s
zh#K8kj93J~nSA$O=nisOoHjCn{<r!GLakM&=STSn>2J^!EEoVr4<vE)I4lMRUE&hU
zZ`@j+{J0vJw=KBQYH&Kj?27(+DLmblP-A4`OI)fuA1a;nrr@?vjNqqVf(d`^1-vR0
zO5t;CTry&Z+@=I$M-=6(QV&|u>1`nOPlr^zJ=ei+bJOmA!<s8wd9=~kx9eOgcKRgr
z7i+WjQ(pAYF_hVBSL`9uH_o4%$V!)Pb7`Y~%9bH!2|FqJAem3akAU?>v=I&y^}4Kv
z4Fj9fL5*Wcf^=CN2HY)K#Y!>vZgk&|HoN%*{FabW^hr;!0Lk6BT-G%5YFKv09(FVX
zwVu<>6##2j(*Z=M4kz&mLNvqu|3x(8f#J5WORKqKnU@c#h1Ok+f8@NX{u|K@>575^
zrRRPI_yIJdMY`{2>)){)1CjHu(-9@c_fs7mGTvz%JdU}lv>s5UD9sKR@NvCw^{Ca$
zXcz<!=6b2T1>VvZ8`6EX*m*`%Bs)&fz=C}W(yXR4S&6kY(bJ%KAI0HT;r<B-f26qJ
z`}P&P{#L-d-r24Hi#(`C#x1=(&;G-2JTv$sDeJ@Y5F{IuU8W1-WKm~TyTc#2?sM2y
z(#c0X!GL=m5@VVagpyOeyq00ex+8yCiT_an=e`-H=)x^u6vNP_vbwn0N7;b8nFrj>
zb~DqXGitT+n9DU`jkJ;QL_}<ex(H!*L>w;YDa->6HkHDIl|B2@GViP1Kcog9(SURw
zUXLi;INMK-V=u3QZZ{}^(J;?XxAiHN`;L!Z1gAwM{dLPR$}E@F)X#(+iQI*PTkuzo
zCA#xON}8<(x4u4fIo`_cVb-a)YjdfNV+X)`Qm)F)g>Zq;<*w+@FZ-f-Ds7^gVlVzX
z9S&->Y=Sc57agGDM!hk!>t$XdjoZ;yn4^Wd)^xE`=j8i?Ri#Yjmm?BlS`+@Q$5vYX
zxxU}J#{|NXcrtOa*ooI!DjWeUG$k|sB5Xp=eX+E`wQ5`N$=h8;$M5Qnr4?tK&$Jms
zGLf{feq}cMUYsaB@um!($?l5_CFQ&kb~mA*YMZFP8fvie8AM8zG7CmCeB?7v`mT<)
z8r9jE=}r*g^S8L$-x49;5+7B&qtZWyGWK26Y+v;}t>b6<ZY=Gz^2Iyp^~&hxi*wi0
z-p`w(6Ar3{s$q|HYU#Zy>H78t0;fum3Ls2Pn2!pPw!S5lpC4@9(truN5EfCKym*B=
z?#pd<v^wz;s@`-)q~By=gtP4bu_umFg0MaG>(|u|V*=2gZaEi4V43inXu0-TkSb^d
zv46lM1zM)yqf1CD)jWsj)Y!eeG{@dWx|^<y&jy^ocwVEt#iU2>7)FXK^i5MK21fBD
zPsIyR`9y8B9ty!U^13P=Eprq14D72Z8(cnjVm(hnJ{!M6$H{uE;~pTp@4K*ck;ra=
z7J5%`@U?VN%|U+yeIoY`Xup~x{V=hZR3HHQ6yI*wLI75-QR7`)<4H%{#B{POXn%fZ
zBwyvBZf@<{Gc@QVnZ}H4Um4AKy_Lx$SNF~N;_1QWB!Lc#z3Dh2eN;`TI<+*o<%Ep=
zgC!^WCfFFxUbV$1#wO4~czN|Z7!eUv%qQ~|Y=J;bG8+Ibfuj(K-GvG#7h-+Ok7;dd
zpnxlFZli)M2WWpUu6~&)4G7ZwS%T&gI%R|dGipStRp@ES^6Ouc=2K8#FS~T!nf>T)
zJ+peY|Mp}zW#%J#E6wS2rTM^c2DT-`TRbw6ML?S6Is`sA=L$oD@8=DJZotam%(VLP
zY2m)bsDO*kV0LyCgTr0O!QIDq{d0SgI1}%(Xj2zKBao9WVi_f<W*f(fq3ARBB$K_6
zbKG%fpe7_nTc#?(w|F_CL=Ac2oRx$TE9+C<)Q+38vX^|`+m@u9cGX_Dl*RLS^%<z<
z2vB0s%29WlyB6ziuUzHB>+6q3x`5l21|0YyVecC`(B`U)H?~9*HiCp?<glKR&s9aU
zgnsmmjHj`<*IP5>$Qyli!NmTFF4AI7NME9gMooALU0-EE!c@uMIf#o&vP&B-u*<ku
z3_+efwP+Xo<d1aQB~p^og$T^jc{mvHP|58_`A81Xt=k1Ek#Be7l$*#LCx7rBZtIW}
zG2~o0P^snSjEWs@4n+dlU9<iQ<>fpM;LGZ$t^CruqgY#Ao!r~@{``n4W34Rs;@J_I
zvQ$pd`Q5j~5yW3X$15;*slASmf5;W<-g`v>!9jlgZ68{~+ZgU&A{OC4-R*EyTQQt(
zqH$#<3Dtc;4a7et3fRQOf2j=D0NOr^!QQyO@R<jr%QCXeNK$4H@m;*ZmX=5-afv|R
zmZi7-(?8$ID7l<IAIerp3Lu8q!EhB`LY$ZGo?Pv_-n&g>7AOS0rn${b{e+hJE&wc<
zw;q&Go^`)}X}_XUvBBBq0!WS2Xr`EZA%Z{$r@8FSb`AS%Bnxb8GC33gV=0p9v~p$}
zQQw=nnt4iARZM!7+F#VFID`tO*;Y?~eCWS^T$m6f`)v;S`Y|3)ISyrma%bVwC|%3p
zTw*B$6_cQqUC|G$rFV{3CgQC<lK-v(S1|dxU6*_`@V&v~Y1d=l{wQz<EDVADrhLRY
zSyh8UZ3OK6WjgCGaBl_pi_q)<=@K)&CCZ>MA<?q~;*>=iS>@cpH-}yYJScKt@+#~p
zsqv@iu?B^P(s<uI9nO*7GLMV?hXr8Y-|x!T3nkxOv9(X{^z=u;&}wjCE7U0qdaMhl
z&Xbjm-p{^uKebtp=>7>-;!{W3kwRknqMw8(+dBLM!Nh&J06=i~dCtk_eNBF}H52Q0
zv`se&oFQeGiFUDMqJCn<8X)GmNV#&{vngR~YYW~<u-jFEG#sK?^&#uSd(7QH0iadz
zaRYUfPJxvb>J9b5zXgToETIm2fK-@k?ed+Uw@IId@HuVBT%7D=&acQ>y2)@^%}Ade
zTm)7QnDk+cW7gdkS^HeJg1_>t2@^SnWItjR3Y0*$MnB__kFzrKv@68D0D+CWJqxJ8
z<lUmWsaPTcF8acg)%V{idtPxmZjP$#lwE=#qn&+^aVhZ<pAH}K)luh_KPWmVZ+5OO
zXe?SJ-#c6<-1{*_Fbc7mup=@Z__XYYIRPTE13)!+{d6Gx@c0)Qqh2Zj_B}prT<5Q0
zNN4cdIQUUG*DZ73Kv^$%%frQ#D)_9>;lb`l&{eN!ki1X6ZU5Q<_-ejyWYzkrtLZ(U
zJ#lwwueks*!Gcqd93a_wlavA7`d-E|X-lRKLrf8$3=J>=23KJk5l;~7_XYQM^dVTN
za_8i`m|z=issY<5S>L5vu~H=M2R|hMAzN*@UQMdyDfa5kspo~2kG{OM+jRlamQHzD
zYprb+z$iU_o1{wAo%eNA0eOZk<Q7d6jZUO{yUZB*Ef-W5t=e~8F)TK6jCD{}9EX-~
z)@*D8s&x`XY;$2V7brmWBZak4vtf9Hv>!t4bug;4sL#a^a&S2R%`;E2vK&e;sU<Qx
z<Bl89vh@R17jw8!P0o8h7Ot}vwXVvV(=gGXiJqsw_q>^B$$#?Y<l1n__d8E*;c~CW
zF<lC=KR9w*lSp-hQL>pbg5u7ro{2XoXq<RzJ2Kv6gK;aC_rcIq9PNAl9h#+7u#YW$
zMAsF+L=1v=PqpN}A{edxPUPZuVDP?ZK+)j0Iw=@UM4x9XfhCR-$BrYC3lvIJPT#qf
zgUF%p)NZ{_gJEF<pHgjLUJoUh;{`QXC<1_RK2@bc#9B!Ch5Q)RiqbG*GJmUj#228V
z=U(v{!@u*1iqZ~7DJEt=K~f7o&6pu^`8JxW)}6J;?)(#G1!45>nIPe?!Dn8P09CN@
zPTS+gPunx|t6m&4*`QcJ$x&7p_rEr))`puat9FG^aldL5I$J%FaYB_@$I&bO(iNSr
zKd;B^djG;@89%zG63y}sm(7&)%hF5ze$>9!brrhYXNnZ!J8w8X9P|9Z73yhs6`^tY
zMXDzK{YE1m<GMtr?uf(Z0MY`cZ0gm;1EMN6k5+om=;BPzuB*htb*QkB%gloqW}IxG
z^h)X=eKX_CVXI6}#H!S_)lHzvRAob0ur`GyycqMXQ0_V`Lpn*=TYjd_;f`AWO7omB
zY~=?oH)P*5n3x>W(ylhTZwnp`=dV*CVC;bNMr4o)Y-{WGO-xd8;D{m2B0G_BLrh;!
z92Zo?Su>3|-Pyf){B9@rxw~Hsg0Q5Y^J5$}6+RKUc+6cKPavcqZ!_DFs>5HYh2p$V
z(;Uv7Y~y8ju#2aE1Z1F_(V8YbawLupyO;!=jEvHV>V1_ef*qsjm4YaRy~NPdj)!a-
z1xr*?Ti0<S!txZU<~$Bh2SkHH1M!7AzjH#?k-K6ZI^!zvxi0ch2-=MshAmw*9Y8y^
zKnV0Xs>|@TC++q3nB&k`jOA_(g1(<gGj*0;m7io}o0M&+^z58Z@K_)0dL;4McV!8-
z95;7N#o8_R%H4bVIwfD@F_w+)Dftv>92Kj=V3r&mHBVD%p@Bk@Rif|I*FR^m2VyY1
z+<IKwTb00sU0mx-|JO?rV0J6Uf>9fZR+z>9GoA<=5)3OW5ix8kBHKx?5nI61byq`v
zgyEPCn@$AtodcZfx;?^3%zxkh&!@D(GPo4r$p?Qkk<%V-4Su@)+bGaa1~2^@3U@F2
zb6I~ag`5}Q1B|jcA1Yg58lvCTC)Drl<}s(jDZrJTE`e{pTKaV02Oi_^i~92qu-VYy
z-+B4rT(aN|%d0If!G&!WeE#VO{<er6;x6sJqZIr8Ire^UZNLV6i8%dUX7~_;Oh1?%
zA{^VFm=UKR^I%gj;`F0ahe3-8>B3`s5x4)ZFN`=v+`fmLYpX&!*a8&N+50~I^O6|2
z$o?2`Ulq|dvn>Dl5({8N;7j%&E*5}KJC6R?tG&0o&;Dm%J;6&A3c}kx|Mop8Pr(Pk
zos&-DAnRh&XuZ*T)0AK8x9<ct-uXx{#ZMw-dkO#A_<t|(kqP2XR=0L1nHid3vB|h5
z-~=x&GY%U={O#}Jh+(23gya0#!=Qiu@p+Bd%3gm&(*><d!2Lr8s%1+NTUn_TGVAZH
zOcQ)g{)>Pv-@o0F$Rc8$?Qt&S3x|SR77pzdkp0(72rF6(+}DUYaEtz9@DMkw4!)#2
zJfI91++#1<J2s7*y8Hf&?lHLNF`=t!?tl9pSQq#JxN~z;{@X5`QI^qG(a_>9g03k8
za6%~*A)diwUWLwo8@z}wU<M?7DQmGP%K-DzOX!OlxQE_&UR}iBengBICS_WHB8vkv
zA&`R<H~lWEHZZeI6q0F8`Hv5QsJG4f)y2u-LW{pk-&Gs2UjLY$w;ZcpLx{7UJD>jS
zPGjHm#;ao(Xhd++=AHv&5S6E=st(r%T3k*lO#1XZkBAm_Zb0X=y`)(Ff1Zv4;%och
zyLkm*<i=_xrXRQ>ybjlu_Zn^B@_P~U31ubk?Z>p?ItA~p&rHN`IwL+dT<*)V4c0mD
ztWA_<mjeObcs7=;NYSTfPNl{@66=i@VY-c8azHCZVP3vsjO9rV6q{5aWK^;s6ZDV5
zgs%M1l0wD0n>G5aXKlJhGdL|I0q^-TlWIoDJ@x^UWKRi@+~B_2>)0uO`%M5-?@6EG
zoN<qqGUy6IFB?PE%8uH9cDnbF&xJbZ{BXniYjLrSP&^5N#6+nHG3+jM&E=@;jrkZ?
zT#~T6aiupX=QizyzwO%mC2BU5Mf7X7!Bh5Rdo~l`0{yv>bayU5`Y!ktT2<xx{d-rN
ztmOt*e4bNO-j{)VPTL?!ubO$d-Z*rFoeJgP2R>aWIa>&@4E3EZN3Et*PAKacbZQ-*
zTli(%TbZgBdN6Pj0)@_*^du=Xob9Us<D-pSIqBkf`x#vrRhcxQb?cug5g~w>3jznt
z`K4g8=x&nQ1~27;kzV>ttV;xD15Y@Zy+1!Qscy<8uq6Pk4(kd!k)g`Mgk0I|WA!P%
zv~LSW*%%QgJqg@P%Sqk%DnJ=Y&0<t#kATK(KjYRNE*i0|z4O8gziCm)wcI-ZMB%lX
ztc`@c>S;^cMdk1q*9RReysqC*R_>Tqf`mbAjzmS!Ay7|=E6>%;#q3F>lGpTA21I&L
zo;sr>aJATLu7(s|nq3styOmf>&jUgv9Te{jg#FTzJC{!sN&q5M7DM)Ue6A1VJ_|_C
z9e3^x`PHzXUVn(^G!p^MEI3Tj;_6Ixpj|&#tiO6MCFu-jsRfJ8*dLK{GFVPBBU4)m
zAWD}_0UXS=-W&?{6U3JI39%nX>dCu^S0a`nS7No=z6!#i>AqDQfG}ue!3x^zB%Ys`
z7?)jITuj?>T;6}f=lu9Xk#@}sO3I|AUq5AwifR}@7p}A(&}L8h<GU3fJ%OxnXBF_l
zm=_K}s2T0sV#@2U&k+{e$1$CcO3mi?8;i3io@MvMi2^18|3ry1)O;jvt!zmziy1U(
z)xy;Sfn-C)??K0E`6CF$%YX(*-c+S^YR;AW_YQ8V5v&4*oDy-M6c#yIX>C@5rW#?`
zLohAqbcpe5x+ZZjOIp?u*_Yl#o?`lDbI*uzZPlvu`e$~Uc-xajU`*fnYK<-Exi1E9
zMYJHQ#_12LC)0p-LwA541O4_4f7!X;3vvbbht8WjvM}Q4V&DSw1L|fSaLkK4*}96z
zf^Q|%;O^U7Xg}pY^F?lqV%-^|6m}DXtO8A))E}Rps=VE-^kcMyxVA<-yE2;?Y(u*u
ztTj<>O%|ZY_pi&b)UB|qfn9_4PwXyxgql^fi9(J~4RG(D7$U+HFd`{s#FmkJDNsX!
zI3z>`w&OFvf8><UT<yTG6@3s>_haj=$mh90@iGlPMFnI^&47#o?Zc)%_D2r!IhKA@
z^vJU=0bg3>pu1^CtUxDNq3Vkvr?3AdvnAp2uiy-ImiTy`g^Gj|lyUSDW{s>2Sf+By
zhW*Oc+2R-|J5y}ie{;KiqLTd+yxy~w(+G0=)NQx(7L=LIDM|Y!wt)EsF8K?c+G9M=
zD$7|h9e(cu63NWX)O0#=8tydpP{uoCgoVjdGcCSOl9YIjEfQ&B1MiTY$l??5MZeqN
zzSH>li*T&hJ+>eEGj>g6^Lp>B=W5OD(G1+7SOI~A?eQ+Cq8&p6#E1G*jjC+5?w~{H
zRzCN(GLRy9Pk9EPkpqGlcbViZMy>Arf`)Gn=f%*w>sEQOe@jCB`r4KUo9t=7e&gv5
z@-@Ft)121=QUllKH*9b?{hslNg&(Q#*o9^fG0`s%7e~KKB92HpVmJYK$6I+Y_>*x}
zUuv|?ZhRiPCHKh?b@h)hX)qs4ESrSBsxTY$vrW^<>{81$9WeCkTh8|Lx>VH>k^+Je
z4E8HO96;BXNJfS7?i~%-JKrfqc?}JjWFbMpvrX1o_miUC%b6<Ya1zYx6rH-`6bZTb
z0q!}EheGRm<%;OUnd87=>`fNVzM<GHQCYP{(p|Q5%;YZC8*0NMZY2f2W^r{NP&o-U
zmxcWRy)2Z^Fr(?8<TUKkcwTLAQV5hJHxu^~&*S-smb|Jk7kwXeCle@e^n*C0c*PpP
zHkdcYL39q2UMoyMu%2GLE6M>h)p#DgQJ%{eL5q7@TWLKcul=g@^+(t{$o3ngE~V7w
z_v<>-{LQNe-d9JOw(>5uI8<ywY3Y5+iScUU2_QifnH@`vy*1ad^-772&$WwVz^mmP
zV`HMe?E5LCaH4dbQ3-@X0vTVT2-q00Y7_O{#UVj{&53i?jrucan0<hlUbH;~>3ro!
zOxqHyR5|m??5wN8P->}Ed`RMaf!L2V6_bc5cuotQn>(kZjk92VbY@Q6aktE*j~>Ku
zz71|c;ddkDAB~1oJXEX**?7aSE!0nuffjBs2e%FqovFFW1_?=`dO`OFm*uR}gyscD
z>!OJ}xW2)BE>XL4SST8MuezVknfwk9{_9wNqXXu{DCgqc?<$Ci!OjY2L`)3I-xDMM
z42zi1LmnTJTL^?15HVArM41lyA_QVe!+0_gGPgX`o5z2GQw_I7i1N^}h#ng{A!L(+
z&D#lRWCyxNR&ZmRA?zkEGJ%9k@Ynf!b(YJo$|wu?oh{SlDJDr(ozmuV%T|Fb`j0fX
z{mF{_rB#il*H+c5dZqLgoBbd89JbQXm-avGGJNRBxAnO3y!)!gjbhoZr?A>Y6Nkf$
z{551!i4%J*K*W)TnH>_4iCq1*Ub0HQ+_uF{Cn4E8741eNI&=<HgwO~zN`~o|!C*Sb
z=SHkI*B8arcfUGuhLQ-WHWvL8rrP;6iNXZBY9#Y~CgmJegPiP41p^h8`(7VBTMj?l
zw;_5(rfloTdAcm~auz*`(Wet}``YXk^lGNz#2;sn6sTbEqLBASU!g~m8$D6Q1=@+C
zA;GKax(l09O-zN@2X5{wcUdJeAb1_$%mY9uV`zds8~d20_{D7Pn@AsAr{^aj#Hidm
zm$WNv=!>>Co&5{L4e2<$eaZX@5~1WpafA(j4Z#Qx#HsIL-@;T@fUp3c|Bn{nWZW&)
z9hsD`rm2^QtI6Ku;|E6U?vP?~>a+*M{%@dfjk}W)pBn#oG*3}fw{rRs4&NUP8o@_`
zN$V4i#O?$6qJmwTo{0PDkcv;<Op_oP@p&-Q{yw*}^VQKqe_W+ViDzg=ozO21$kCy!
zdT?q@3MnHb$}T7q^-m23Wjwf1W{&oKky8>`pCCgKfhKE|d71)L2r<@O#uuO2y;+OM
zywO<E;q3=9M%~b2^63t`)b<Er!<M^(9+EgwIM4G{SR<OVdhZOqz)pCvn<4J7J(!4g
zoAiMfCBQFObV{Xc83;PXmmNd%h{Va3c3%8I-8=Y(tTYVI?Unz=BcCj&aF6{B!RP}!
z;VF<u3lxxIMUOh~)hdxvO@0_sNU#KsyKexN#8<0u5lZ#;K<>NE7z7HxB)m`^qJPMs
zXZFN##v)=z+eVb848?0PS_~u_1GEl(up5n{Ieh!Y9jY4&MNC)D6Tk@M0+??v+Gpyo
ztM}+DV&mn33U~tdqA5Xtz1oNX;Y$P(HVuKdz=ja!ar+&aWMi$oh6=7ILD&hfubO>{
zb_+~XJ?;<_XD8#pwquoyP)H)ZpWAfbx5zmZcceE2z~^wWg2GjG3E_CHQFucsv7(ao
zCN(-70w@=U3}5tgF>jcpCIQey$HO7Y7Y2R5cIFz1t)6GU$aZ^n)Yg}igX$9f0N6;j
zrbLE+Y`azw-P5W?yeF-@$^L6B^k7&{<_BuQ{Y;Y81cS3m+_m1*)Mkki`T@WHvFG_t
zYv0_PPLYJlExhQuH!?(oV{XUWvOQWTLkptl@5O!ZKtAWJML)krqP|f0Ohok_2D2-7
znUJxy0V)3BYz^nVgJPrhU|zgL{z@YB0*3dmd11bDZz1GJF{H517(Zpy&PWD*j5|fc
z3ix=!M8p{xRahv{=uZ~@2CIioVv%)!av~oi_lA-0mCa^}+8T*Pb@YU)7wWRwQG4Hm
zU6+_V`Oub=2M$RrR~IjVL!4c=v0jS9pW(tA2K@TGDK!FH6J;p=(B1lJ`}O2EXQw4f
z-|YQh(NgJXwX1P|eds1v;FE0%)GS7m0uLrO8RLI+G`U_QHQjoPZIC-SFsXP86%MI`
zz%gW#7s&c-uy?zd2%<05*eDsfmA(b?cy46u-idyW1V43{?O+PO<(I%^gfo(-Bgw%n
z#B+NLv<VblWz``*Sw=TV4I*qP?iZw`jW-|be`(Z-96z7JQjY3jHK~anv<y1|eV2!G
z3<TY*RqHJuEBxXE1)D7r2-kx?N0(*bHf*Y+Ljz_5d24_FZ2pxSG=jB}%4#<6;A3?0
z%k5iJ)dticAfss;PgX^Rae+~@QviSE0Q5*WQuJ)v8a`g&C{uDf+x9(Fz}b5za;-gA
z?=GonM&B0jF+CRu=q}!c2wuiymY}#~azW}rp5PuipNT*?xvK0*N!CKkhyH8NkH(I|
zUX1Z?F%p&iKD^-AtF3hI`$WaQQs?!HQ7sQoU;iakbJn{_-<F=LdHjH<qFb`s+DXOZ
z@2FFMCvrJi;H)>_R@gz7<$KM-FiM$b6HApErRRAW|NTDUUP`>mytge?&c_pa#+aVn
z?z&b2!|u$$@`GOHbH<UXK+Z?uEtnXn4VM?FJ?2~D(FewM0S|Q4zoa{^>J4fz5FXFX
zaQ8U~z<z(B&r%-PImw<rL@y{2rw5j^DC-a{c#<Rxe8-<k1Vtbsh|u9>aVE%p1;^4$
z=Z~(zO^M&LrhwKVOgMCBNMuv@rC?*^<l6&fxJTPldLd>-Pu1SV*!3CkVhB3yLcZCn
zBU*>ZfUbqqykDZg%x&o`ppnZnraah`if4EKV2Ts)<>?z4r9y_{aZXC6l}jQ!Tib!D
z*YrKn+{N5ha}^rXpO9y1x;2zQZ-_QW*c*FSH6(aXd{xGP5nVuo%t+oKpVP0vL5(^Y
zm<D)WwXVKhF-q5x%pO5gm1E!nk#*N}CWT?WZSDQO=(uY=31d;57F@tAN&<c$EsUdi
z(7?1BSBl@-5F_)NkJB@mCYVGNlRStUg!GZ6m0atsTkaZ2zT21uyxS)|AEa~9t$va*
zp!=V765r10ei9;MB%%w`Mqz9<V0kBci{1OCUbD&p_at;IX+mw{;lyOw_mh`U6Seu4
zI_|^caI(WQlVsl4SU};CDziH(ROo`XUbKDnSw((Ruu0><5ZZfkOqU_aR>et&E|aIG
z8m_Z7^_Z=KUQ*AjMZs@Q1hpmRGFDB-X0>g-MNzN4?1GJl`+hxXnsRJ&o%D#LcdQM$
z_33({XAR}(r~L1zj0Ypal*u_nnEx-LJglv@jQf93Heq3Xm{+&D-7Z=|FI4Ei+|-HR
z@<NEX3eClKZDKxEIGByawNXaxQ%>uTNTz%*Y>=nO=lW&Z%GwxoyaFjkQCx;qIZhpO
zfT(W*O$@TJJA^eaP)Uv1mD!~4V<Zlxko*dy(!=M|X!~7^eXdNIi=q8!i?&Rb1a2kJ
z#-pt-lGb183N5s?j|Yx>-5_(HB8v6|q^QuSB`gCpB?aBr7$rlIo$i%Pi*&L)dNhSD
z>;FM6?v4!h%?@>K*srO6;3`{nVO#R)V?#y45MBGe`MAWOovmjVlyh&CG!(O)#w1Cv
z&19<Z*B7FmU-3B!M6+n=3d6tR7S+2y28k8mlv_jWmfb(P3;(2U*hM`!tg3l8mL=&=
zmMi6hYg<guqk_2+@z7V)sbaa0_>S8S%~b+p;h#qZ(bzTTKIv_+FPe8ezHRP&rTr~`
zX8NEPcpcQXVB54v4+HI)Q$f^2y1aMwr@?{A&HlnKD4Yacw-92L^PB@ml|UW~i*q-x
z0?h@g1XaP0Y0?=^HHu<4dA!Hq)@w;MH>!mUXYth<>eTB9+UtSp=JILcxIo`S{qb`y
zJ+989+n8tIwxZtEnjR3=l<eT{jy%@WS{eIAZzWGmTmuOI>As9oy}3BTo%$AEX*nm?
z&~VnuX-^5~v>3@+XI~BC0(^ePK;!iTFNtXOyhMD#T4zw(|M1QU6Gf>LaQpML*+j~r
z<!wTEpq4hp$;v^uq1|@>MFCG-FUg=R>}oGvQZ)w_Za4>ON0g38`MQJhqPqq_TR4^#
zQ7`)+)q%t1FR^URnycA3jNIaSJoz2BC6Li^iGD4Qe7BpztGT=H(;ZzbwGbS;&MK|e
zT^&K<-rk+maD}G4kk&?T)E;tpJ;PsnGcRN{Tm8)C75c~+h0_>y4o)JE*N+uJdr@@}
zE6n-EWI?+(8A(N9XVXs?PgXfDyQmJ28&9b=a<~dzg#+^;?z^-_NdlAEDgcWRP8=0b
zS!8UYga_u+g|~yy(IjvRi$i&1sU*;(P&J9>A|S<?j0!aK49Vz}X)p~UCN)~&#&=Qt
z3Y5Mw&0R!Dt#m&zEMUYXBqN^#fH6Px<DLpp)uRc~rZk8;sxlAeE|=+e9PNh}_(QG4
znC<AhGHMfhJ?VgjSi_AAfKxB=Mug9J&+BgtR`^#x5+;#vnBy%o?vERIC>OI7&yV{n
zc+mBLlGh_3o@4MV@0%}4bUlWB3E@dbJ*gIrR1GIu<36h8)II6hS-w*y^vue&(JUSG
zbJuEX;TYyeQSF~D_LF!$gEmHT@5g_~%}gNW`uv<WOhY>erNUMP=M_c0$(fH+k~J?j
zj##-kyLAg@jx_Li%)7EGkDFl{T4(A*)*ukikT5xkg{*6}oZ#FIhA0pb^e5xA8Z74x
zr4W`b{~(9#;ZjI3i%O!EVan!-`VS>xcw4nO?ZGHd0aW+raUAmec(KScTP8~x47sF?
zgV)hQ-QFkL6g8`(o=L2@&bYXf6s{uL@A|CrL7&9Q6y?3HBYvbuvvtm~GO_e&Hb3c`
zn2Kct0Yb@Hpf}dee2)^uL4C()Jl$kIKR2Oz0?L7H<0iLW4w(%!qb`y{crR72WQo#o
zcjh+7V7}WS=?aa|;d=jV7<&ktQ+aNiA9+;Q{jcP+i~7}!(GFhl{k6ZOgm%2JGgl}n
zueP^Vo)jm#+44^^QT=s1-rL4FFJ#}6s4dpmZ{&?zg)$hh=UAuUNc?q%3@kLv2TF-T
zNd@K0=W5>&I<5m=A{KeJ|2v^s*Xx<NOxw;Q9DsazYbHEA(azSTelM5E5JOO7LR?{%
znXkK|k6Mm6cMFYY&rW(^V`ug`BNQNzZoZP}JqMB~!v1h%;DbuN0vmU`sQ33ghz^7w
zd2{#?xj@#PU5P|4dz^ZAVo7n#4WSuHHO4$n{HycB49<KFQirzeRnU)YSnbVhgE%xZ
zIQU{+TRTVZ=2?(XU3GZhH__*gBUP|E7(5_U%PAsR54u-YWn%4i)YZQMc}ud36N3xu
zIr9|oqj@I)8HY^bZH^UY>I&9v*zjZS8X~zmT6G(TGBBDar}dta3#qL9aMSWVRo(4E
zha=*CX{oAvX2Qa6{$T-{9e`r={_buDhyosNt*dnHY?>W0Jk$F(gu+JiUkF7A!+%03
z@|4*Bmk5Q>E5i9nIBGCPU(BFAT~(;!yGuL$TQ>SGD6-J*PeIZ7{b}zHh>oBl!j3Cn
zu2U+SQ9X{lS^LwKBC|LgyIvcR8IX^&pBw+kxG2!t#@7LT=;IsTeyz6d<tNd<o^G@7
zYZ*_ur~4LuBP?apm&787;qnZa=<~cGyjW*v{d(SlmFHV;k<~?dK%7p^-f5(s8x6kE
zTO9A)0n_N2P&=6gSsngHI6oqe07r!HQrQ^q17);F)Raika3Hdl<@wQ_p6~qja-SY7
zD3)0|Qzmxc;_D(F2S}w0w@Iq~f_c@`b8*F7UUe&`)An?BGZlMr+BGErEC0a>1p&3?
z*<f3_Qx9XU%ig=3$1G}H$+UicnBHoB(+?fHhCi!T>84bNDNKWnTZ~m#AR9zghCsQ?
z+U1%3aGA5-#z<YV=>h1<z3_&N&{JJRPh=Ui5es&Yo8m4`__n$dh61-MgkU@vElkZd
zNJa8^fD4k88E!sD--o(ooAgBV#hyc0MPC1?=?0L3Rx{mEz%$VgN*(e#W}p$`ooRTW
zoWl34LVgBsFW~{M^R0VOErVDnhM@hZK(hdbra=>dDCNGuykb?-4BwCs^2K}9j?-I_
zx%#QiX}p&<AB|i)nH->q-YSx0++vD(#f@3kGj1E6F;Jcv?Xu5X;(3tvQ1JyU)AsTw
zdtZigUTTp;(CMu%Ef<`>V-eR{X*P!8PzIzKN#YLOTr6VcX|V>J<B}8zKkBI_sI#oW
zEI0jb_grlk*bt^bq{ZQKP08)z7<&P)?7pb~=ECF4aIB?+LF88g315keFuh;50>>f;
zq}|VnN%~zut)iROt(tn@@-x5fdsm3CB=8OW+P%F`MSzq;_N3#6QsJcI;f<9@=2ONP
zUQK8r@N+db6<`P3$<X4175PmjlcxM5x+d3?KG>M6eFqbWM)~{(4O~`I-9qCz*dD!5
zMVllTE7r-xT)sS#gA&m6o8&eU%tu#s2*=a(GwW~{m54<@vP27+O06e<Dx;1w$OH2u
z7>+FZE@+f#0UlnQ(ZC>)YNe%X{?jQe7uysv9H-#Gz^qBmynr*OtywzQMGDl@tZhG2
zeGG;M*#pgv2Yn^A*?Wh4(NA)pPYlvF6u@HYPAKvGCq84r?;xt37Vn#+s${9ur<@yK
z7*gcCYs0$r6XUiyHDgnB5@BxP^n+)$w8C3IK8Zle+k#I6i7}LcR}f#K>HPD9kHgj)
zzHb(+phV!~Xo$((k<w)EV_whL`@YwF`n)S)!NKfn$^C*xcugkjZT@@bUv--<Ub1Ju
zoFWC0Iu4Mx)RoJ48J+ODDZi`S+)xGN2R|CCS$~2SGY)knfEc=uLJlIQ77*Gs5z%j^
zTIhzYw4R6J3VLkIEnuw-EQ(`cTeqAzods2#Z-}kail~McC7O;-qasnxH8`qx<b_K`
zGZKYTP(25tS4t?|%D;6j<VN554$r?dhxhhJ1ai<EraLn*avB`z-#*jdgl$NvN|X9K
z1Vr<a`L3|MYnu)L&FO|f{^mt{wZl=&cdzA82)-@em*C)FX+2fNbY-W@>Vfm4@4}55
zrA&%4&ZnQ2Re@$3@{QqltO?)@L*vSitD7VY4k{C)Xu5IH<e<Fr$$Shr7s~s(5=N%s
zEtm5{mS50S-;EV1MMqtFX9mtAPgiIu5c1$Y0ewHn>d^}aDKD>(O?xljBJ+egX)+1C
z4`m9o#bw3I>iZ%p)Npni=RC5#Bgy&KwERr11IJebss9O&!OYAag%pFKlHHf4T~tGK
zgT`&G$(pxBV}bTl;?@LvyCQJj$^3N0`nGk%PzBIIT5S!H=2dw2Z)slGfBb})*=gYU
z@w5AgcJ7|RtEyOm;HiwuY7#Kvm|G)7D9`V(y!tW=_Y|#jvaG_`UXt~rvJslQTv}PU
ze`&y~1E;ox{CFm6CZw9~=C({kS@)G~AZYem&SYDyOccF1sE<xVR=Pkfm%)LGB(gRp
z!ve#p1T)6tNEUp*Xd_1mrC9RXo$O{r(uEBTJoIN-k!rwg(h->jy}k$-o6?VW*!L7F
z%WdFd^m+}STqsYrX5So?y=Q~w>^-<|HR*tafn53ut6*$sD0q5$hC#Ad`|!9&i_dnE
zBr!M?|82)Befj^wYODyhU{xzFG%rPuB`nUi4}id?_zkzstY*Ti>F}MTp)5JsU1&Sp
z`}z$17wD^0KwKq<H7`*B3j!gs{Kcg_4~yF_YDxM;HsR3Xpve6FLbiD|*LSY&z>S-K
z3v2;CZNsF$Xaj%{vcSnw@!6SkD;`=*TAI@%2rLNW*^v?pVAFLz*zrLm{FH%#C!H(Q
z_b=`s2a)J!lrQS4YKLho-%{T@24@vd4dWasvTih8TvZ1!`EURdR@_3fa_eu}P!nne
zB0w4mt{N>xz(BkoJUNXF48#>3>^kG7{143gl;Dlj42U>i)W*T|KPbTey{-TIwEn+M
zLYoKDUjQQ)6dWv@G2lW{K|lWq<ksBJIi5{@&EBb+^O6Oz-E3Scp;q^8)`rt}4cF%u
zZfE;%;1`BHH&+*|^)7o4W<7;(F754l5)-a3f8x3wZK%O7riSi|eh4|Visx{+80|s9
zHc}`e;JEK>i26kgtPc54^txGrU~!$LzEwx8I*S#T8SvA+-&}c<5O|4Jv9Vb^NO?!-
ziov8v8-?d^IaV*|<1C030<ES@IkK^#5Ho{Y?_S^1{v=%mI*uxx?=++XvGk!HvN1vn
z&5>|Il3^GcHl@Vo!_h(D{<V3n{uhLU^nVxO;MxCg5RQIe;s5U-9O?zC?_X7!NrIz;
z-f?3XMJo6dbP8E3ZloLn9mmZ;AlrCV4pgrJ2Ph1n3X-73-Eh?fNU*H6A8ig-IXeS<
z_lsQLbROsC_o<H9O6v(R06%}7%m$b>hu7lka}cIEcT6X|){SA&c{Cd48HeS*Z|P_|
z4f5THkyra9g>CH%Ek=th`ozLMuO|I~vl<%>PWpn+<}=vV2oR*tUerN;aYLFJyRk}i
z-bmqbtFUF2)yxYWzKW{JQG9G1Dt>Vo+-4SjpY=pLEbe)<5z-x?N&ksfAzs8l<#{V*
z@m#G!r=Wvhk_@!E#%xm_$&`~gxS6;gXwMMY;9i^&n@=^QPc+1`>ZFm5FcQpX+d|5F
z5iujiWh+H|tqNt{TJM`AX+22que#%nZ$-AqBE5eZ4s2`ab1GpXtD}27cBgopW_Ml>
z;;>TTPzlmBm1L6q$=!4slEL4;B>O52IRd?9RDhjycPgBc-v=_p(v~iXn+wYMY2Bt0
zO!D8^0#8F6;b|y6<*XzEqaa%yRM`#F5dS_ru1>OR&b$EEL3oP}zr96eSYp}N*v_^#
z@wv^e<!*;<?c1P+<FkN(fH-PuzJ>MkHxCes+__TE4w_gghdSyQ06HK`%LnQgef4b>
zOEvGi?anuJZWeXY8&pKhjSX$33>p7OeO0j;aFK&FQ{qL@CYDTd^Yl%wap9!f>13HZ
zv8@8-Kjen&zsL>oH<tBH=YE)4tw}TdxmFgUPi~0>amtRA0sJ;Kk-ti1lEW<5S|4xu
zN3QRMx1iSx)GN5$D6SNiW^lFh&SUWcEm4JJ0en_AnHWZvBIH5+oqa}q-g(s9f}R_X
zbl`7&>{fe4LDo8G!<IqfHkG+@y~o;`G(d~%ObG}H<z$KdhgRgsa$Yldn~%a#)p9gn
z3Olb8h`*TUU@Vl4eJnaFBoxITo&c*u1avN*i*q4y-34iXLZZ69B%$=X-wJbF5A?4l
z)6<TXfX|D~QAXEy%l$zO@t-;d$JuE!&t-7_UZe2rT;JQ}v)L|hutS5t@<wvG0SBOd
z@o%?p-cLGpxI~F?09pMuFuXE=(0N=41a}Bwr~<Waq*Fs6;`A}Hnjz)2!xoK!!u)!S
zN`diiMDly9<_6D?!+GK=WlV6VgCxjB$!q#Q+y;<ti!|;{V)d#A)p}~odhPmOtoR>(
zpPB+DJX#YZ7d`w79#Ja^zd}&~Qnk#$-*D5ZWA}>OaK%AKkgbRUOjXtHq4`M8^RH}F
z`PMUn0;bMOP+MFs0-B(^93?auw-RMQZAH)p)@om-p2Y2;z64NpF)D7E257T^hI;oG
zKwjSl;<z)QrQH!6(M5!OXr+&AyS>P{cLBsRIvZarMP3`V%VlKsyb9Qiqzy?oQxV0U
z6x-&Pa-E)*JAa7`*Q(qZ)p*Hmt{4t!U4~Xud2W}MbVdlHE0ckJpj5M=2{Q*ll`<-n
z1XTg2y6wB#*(fkn1imrOQX=aT(ZyCF!gtAt?V79W3wtcnFX6XhdNi6qm7~^eIjC(m
z=dwU4zY?Yr0FX1~fwZ<(sItm)I)-Dbxm5Nyy<a{**5<KMUJk@LyTVj_`<AS0eM4q_
zC_9_Z`$`-X^AII961;BlQTR7%gY93`Msw5Do!`iYpTdlNP3>U9Sg|-KEu$PR0@)b-
zjcmO6&&Y<**-E!Uv0i<aFZ!{{Y4aHp`GeBcPU*r|6{*j`G4kQ|y|r&w7iq8V5JknL
zJ!@&dqgYAq>gJ{t6veRK`)dlR>mIUj$R0@F-BQqO{X`SIww*YIGOtUULQce}9XH!n
zpT683gW;{2X*yFWi2a|KjmSUDM(nO5XO+5Yq<qp-x$?OZp?7XhJC;x3aKjPS<k*}~
z;t;2H-D<|9!Z|N@YU+I3PQAyVvrjVEnhR{~XwQ+}bjB%(%z+{(k|sS4MzzW0m||_F
z$%nBl@mzx^I(Q9YKsAN0n)g@ewAB;NQHRa#oix7Fi87O@xsDdYq7a)|0A`F6GsYjd
zRd3jIGsWOi@kxO*lKUR9H|xROwSs&4jz|d@u7_(A{y}$GvKsw79~3}mhfMlZ+FyJY
z)1oRC2ojpu&s*6Nelyw!K<A${<lM%nstDI2`jN8l6fmB@W#qr^{?F$|ua+@zKg1Ah
zY^YtYUUl5OeGo*-YNYgYsGu;{REZfG5zx_8l|pJ|Xan6A+Mq9iuvr>xu<b|=@_n>$
z?!|jdVmAJrgVjEU<SPD!-JIzBhs;GbD<Qdycnl~4MzMw37Nfq7Kqp{0S5zw!Ia@wa
zP!eRQ?k1Iw73t6jHzLv6FH+{QPdTnhfkrz6$ab!xG%o%ZbKc4C)r)i`Yqaf|wozk{
z<w()*!JJg(6cUBB%Bi?sr<DAFP{#<(bsSO7@C^V#b4M${6_Q@+sd0HJL^DR`OpAp<
zXz+8^#Jsnb=e%!-#vY6o(T?Ltv03zb<f+$ZodR_Z{kAS^^0kqiuSH1J-gCO;ZX=j`
z>|12O8D#RBEw@E>+%ey1Vd~4ZrP-T7#}(Iu9U8vBx>Hf>xr0lQ!CCq_!VUu?lIa3B
z$Ui96jmQ0%+)!JfDh7v=JxM$M1PFH_Wy$z#%#9z^5<klMz^dKUfl`k1r>2H+(qVgC
zeOz4=QySd@=DfZ?vZN=WA!n%_%^b?=`j||sU_8<!ICwRo049TQdInp~^|gRYAMrZc
z`XjVhhA`j9ifw*G<dbVK!s$^2N7^JkYo0Srzh=3j*ZD!8u;td-*Uy454V)OokHIaa
z5T3F(ee(C%jR|&f#&qm2rF3;&%|IUqnb^mPl$L4d%9LRLAyP{L==>uQq3?}EzlwBg
zUaSw+L?qPJUDpmidr3eZ6@CGFthk*mzTbTk-QFs^y9^_W*vr4ea2sbV?_d0eY6X(h
zLkOz@3#3}JMA4w@%bB|^1!!P`b-Ho!9a_8xSANJlAMJZ_`e>MBU(#|s&3~uUXYiS+
z;|8ko`0!`L_*{cXhS!TOd-ki3XUv*X?k}3iq6bMs4nR~+HQii%fbxu=(Eiz_$F9g7
zPMf?kl_xm4=0s0M1gm;a?%Dz=qL1k7%P?g<)q%A5y9;`GaXCSiG>X_^u>=8H+%}36
zPie4g69owK`yLkH@m1J}?!v{J>`(g#R2J`jh^eu^ey#l35{{+?EuMaiY$UclAr20s
zL8>HwnPVSc$6ZSQy8Cp>;NfU-{NyTtO(J;g$`ErCVQ|JpT2%asf)-Cc%}cxjKBjz;
zYc}HHkRTpT&So1E_xl;2%ndCI(FtUi%%EmsR$aw`=V$bfAIl3<KxSCe+XEDSEhqO+
z*>#dKdMZ%_X@X90N1H<`!jEy9CjUYl_-~ak!Rbx{K;nlK0wgrn$O6ruM3Bl)C50H(
zy(#&m$SvPvBtA{tKwTH=krZcX%D-bUWUQ1}d(>JCgdS2#81AF(FGetv$Gj)GKESI-
zeNVo-NGV`ZWiurM*v^4pT2=JLRk&b}df4;?X);rxnE&=x-R*m(pmj=`UDXSQnd}=u
z_mfNz&$-2gRAL&jxIRSZMjc?WPYl^tIA0FN!JwB6jxD?sJ6Z_XCpSl8;Tuq;6NhY&
ztE^Va-}KFf2ZD3oKL=4#`8ZMNe5Y$w$nKKk>M*jmj$2Zlf?RSMevnX7QsO|8GVM={
z9wv=9N_`)*u~X2lBlIlVxM%pKrW6z_(vhq(0Mm>C0H%+&B;J;g>k?3V=LF0)vJOr<
zyk?qj6Co7M3h1(C*md><x^4^T%xW)NXfuKC?D^`*tbo=Ggj*j~6$Hd|iD=axY8f`=
ze-z7qn*eskIMq<gKxnZ9LC@4{0KoYp0AMsTkSwhJP@=kSYL(-Mq^nwnwEKYB^Mj2*
zBWDv9|2w9!odD~VOSNU8oNR@}jHX&XG9*6~mj#B9zMW-s?}h8~d-ge?S8!V4-Zz8l
z4~#tru|>fb0H9S&d^OVAmvi}khsh!Qcj(b!lw==9t6?)uWVK9LWY+}xf6|x_mrx3F
z=jn3AW;;>v4fGp4TpRvQ2()QqOwpQt{rt()#0{ygiST&KQV;2joeKwQTMQo}0L9@8
zD2|lf2(_R;42Osp;Q!JBrwN^Ya~#RritIllTGYb@cw4cM&g`wWQ`ke;4VO&KM`{a6
z2w;?6-J{Q~iy`{kzdmbyMIy!{o|GP$ZU3pBubuQ*cUX;HEBF+m8-mJ&E5HhT1Fd=)
z)JU!4rF*`aPG=Zng}?lF%8<+z=S8QPHlk>VjvPkLbm^SLF0a2x%(zM1WXU9qiypX;
zYRu30j~(VoGq~xkrt7F1%6u}s!asK!VUs!gf7pA=uqxNB?Vs*YTG{|<R6qo2q@|g3
zgGwXaNQzR@-QC?F-AH$LOLxE5bh*~v`+3)X>f`_aep<&|hsWfY^Pcy8jd6~1{7%SL
zD``ZBF5<>tHV($lhejsVtiiT((L!43m**aHzl|O}4O#<v?V1W4g?hKVf|2;^2D2BD
z$B=HX8@sb!7BcLGUp*;hHFVM9^N&tgdXxKTmk!edJ!N77u*|}~f#09d5#NUi0@QVa
zJ7ZdKtOD_CD2I)cc?v3_pBFXxwusd?w%elMEU<xWRusj(`kS_>H9C1J1KKmv2+sjP
z$-Bq(AzXJMDLL$s5SpwFYND1G={_-q@Owr>IkuxHEs>$PNtQQOd@EtJ@*$B<OrE|P
z%f-5VS`P^c3BOBz9#VHWavVO@aB5@Z001Os{BT-%MRjE5myt?TjnjD!62#oL9vj9c
zPbsxp3b<ug7B^{`#GqCVdKDVcn??DVitl}d69kRZAi#~7onOfUb3==_sA4JMu&P?N
z^>coT04Zb^z+;o$ELXh)<r?KuL@N6bC=876Q#8JQKl8?DD$kqf5VWmfFCcW?k<1P5
z;V67yWBfhR=pneOR_|;fr=k@V?DhR<V1=nL@s{6o=w?}_@%5=IsY|rjI&NPR+LH)4
zX3ZOZi*FP-E)mL)i35&!QwoQjMGRl)+YBIZ<tgGfT9K^0Y)y8vn{Rn{Ea|v<^rkH5
z_1?7Wzj0`&{%naIMBVC$|0S`VD?pv!vYW>2d#F(~7c)~6y-DDVBP76R%AX?g_c4-n
zR>kgd4}SdlfwOqv=P?*&EN&96;}6d>sP@Kz)14M<aiHARI9R$|`+Q+*oX(MaO?=Q(
zsOxOyrUaK|**INe>O{<=8`g`{16vB-ceFK&E`lqf6x5)|*c9w)vkY2EY30R;9(9u0
zL$_tltEv`;zuJY;J}I4{m1jBgNx|n2e9oHYm1xu8dlv5e*&e}shW&D%<k6UHKe-0p
zRWlQO1PMyDx0n9a{<JxE7BGPOx;%Z0mj3z9?w&@+si^^=y}!4TuhhIJ8J**~{DmL>
za>#d8LUL;PU0XKGx)(RXwcTQq^WL1sAXWwL@>8!M<K1sQB`Uc|!o1+jsw*Mo8L__)
zoU0=9uJGAHAB~Hd5Eve#;qMO?&L?pBaa4JX|151`AIS#Rj2xCi)rs(|1yiVp3iD<e
z*Ld%@i)s;Vt`#S&W01ZPzwY`OxZLVZ|FT0?7!du+aS7w*d|5ihhKB+>miH<W+Z=nL
z?bW^!qJiLQx<zBIwW@NKyHY-QKz>1s@-0HxO~E2djpMM2KF9vImW`sv_W!qKL&EW9
zB7~4(?M)*VEP1nAMbU$x6vt6tYUBXZ$@*Alm!q%LYh3omV>yz;ANuf3*ZLB~QbBui
z?N9eX;q_xj>%F%m<03S>N^nsCT%Q5Dus0-pYCqwNoyM^im2&Zbhp;_J6Ygg_r94mj
zkIADfN6h$lLZjlV8$;=SzE+JQ_9Gh>mvj>#N?s1EtNNO*o}wJB_hraF_K7VEb;6yN
z<1j~GXq(5<9BWK~`^569uJ_gc3;2F6y2|^OPWM5dcJOfRk2(%pGn`rxep(k>6Z45m
zx|;q!zmBeix^=OB72=28*pFkMbNf^Klj!O7f9rkHXq??Gk80oj6fTNRss0fpPa*pH
z8clAO%i(zRvjJF2r&nU~V*<Z-?dLfx_W?8^10Z$icEw7303bG?h%TsE){W3dYw;cf
zg7xRQ3SnoMLWOYC?FqTp%Pngkxt$MQ1QRZkc6RLYetc%LIVGqbLV@vgelJdi#Q-EY
zQA-H0ZT~BMqRv=$(l5wUYZ*4}d-sjgpm2Bo^Yiet`CqFMHjuoK@16(emZAacB*>jW
zqR>-Ry-2pcP4|t4v9b<pQC7oZ2atts?DQ6Q_s(>=&g9eIOE@Xf+zx?zR_!|~uxwx_
zQ3+FJWQ`nXH!OQb6KwFBZ2GdXPN3rItvf1!dWa5wd59wZf>RV3x?vZVx75PufoM=+
zu=|92qgXi0*XA2}k9Yk?gpfiju@76L@eH{Y4CxjAfQu%@ODZpF=^=*_@x;}ZjuGz4
z-6Lm*DkuAa-A?!=9A`7Nas#6wqzb%OUoa`}Ck{k1$-bFymvvLp3`hGk^7$kjyID?L
z1ALnjm&ai*ybHvw=9=4<o|R9QW(=ozqqnlbSUTrm!(1%hINeyk+UR?Ac}&7L>$HLO
zs)a~TBv$opCx136jwmyM>z`hLo<&Bi&$)79>tNnhe}gPnx%<79YS~vQ8*Q94E&Q7~
zhI_i;%Cmy&RX1ldRIJ!s`#;$LH4D*ZWHWK6u?Lb7?cwlqa&73tU~4aIh&IRc03#+=
zZLW);Q4L^yeJ6^9tXb^bD0aI*w2K+z$<`#~xcF(mFUg8uo?ADx+c-qXwRZxwP@H<W
zc>q{2#LZjU0V5U*O9x|6(C&+YZ=D1?n(Ds>RM0s1f*j*;uy>c0+g<142PeKQWhS-0
zBye+yEq6TGc9V38N&7@W$pyU%z0+@^>K*dM1^zu=C#SUxr9zB+EEpfy0U27<XOZ(A
zg36CN;S*;n4JO6aLp+(TcWD~^idRR=8DrTpva(!!IU{LQd|$ll%d2Gjg1r!qZNGSk
z=^^BaK*G(%WvHZ&2juXu!>cW<r=@rs=-65Ym&aYW2XK5?`=2gpb76Kn8F#N%k6sW-
z4dJ-JT}u!tl<B@zX3*~rQ<)Ib=01!>FJ1eQX*6o=dw_JhCkO;E79yuP4<WA)5}Vbb
z)50|Tx11+%v?g0`2MOmI_faC?_MKYRb{vh->^G4{^Tj}|UqnslEg35W_M3*eGfBqe
zznR6qy<E6g0pJg<Cjc}r-=*u#5NM3P;2n`=-+s3wgjwf*ce!2MRYk&XKHk8(IZ#l3
z8^rE(WC9^F1G>-OF9-i#k&UhFhCWT8>%Lt2LR2erH$KPYsW5L|rTrbUVgTJI30g|f
z@_;14<87hh;^LJ(t<S`4hQgptJjo4)*F?2W7O?v5rhpxUnGpYjPZ7p(be2*$^BAJ3
z;;?p1y9JQHV3-g`r;zuSy+G@+bIRN=ABEc4#Rb>`^Nuuqd#nQM0vkSU_mg2)#|+e?
zPz$?O>SI_SmB7F`@A9%SD7Z<lBs&Aj4s#KYgQElLIXa5JD9VBml{s)yEEO?BcedjG
zH%^Lys{hnUq4TuJLJ%SS^3r%~EI)JZ!v(l~R@P#A^_k@mpP4bBY4NdScz<0_6YiZ_
zf_cSfxcmXVp+AaEsVrF6XhPqDGQJubvqARS@y!eq;5O#ZS3&M7^-Uz*jkey=kIR7+
z(KlCGA^}MbR_`BRU{1u)jgBMrKX&DCT4ROn7T3AP5!MvL+*@o9fZMz*H%{R=MVmJ`
zM}6#XD)zBAfh!i@$GixR4thTPqx*-{2m$d=G7qVu%}ohjY>g4@K)VToTbM-JA$L4W
z3|FujI+u8PQU^6v)2tVoqX*Hr^GLwcz-l@;U8g>Pd^vmuY!ah1ziblU{;)|X|2vxm
z=btu-&`%`|dS^VaGsu`55+Go+yatIC=F5DYP2{U6Nwj6IWSnx~k3dQyHH96q+vBFh
zDrF(Gr<JKxWNQ=b`@Le&d)mec@<}N*MTtbTW#DCD3y$MNO)J3&M1yk^YbCUK>{@gu
zfZLqv3)5_egx6E)Tbuz!xY{b@f!P$p$DuYNf5@cyYwZ)u?2=$awPc;gp8%5~Ynu2_
zP}ri19PSfxd5#hRv%m__!t$9SNWj+z^)Yti<RtHa{#>R6QUUqr1^c!9Utb@1y2Zk%
z$a0Y2a0cW+3LiGcSu9YLfpqc=V16|?NbyFhTy&~+Zd2`!q77}bfywv_S5fb>o$){6
zRfNYBIX?UBTx4S~T0$Go>CmiiGJ%w2IT05Cn?w1WUEnsl);S4mq(uKza-|r9dxg^1
z*4C!)`cGB~M&z)cXkkNS_4*v)^h!;Q4a$cCrw84S>0(VWCumIODndcJaZ?g{!q?$U
zDLKz1PT#p61B@MuC<^D8fFn2YePDJ80l6Qn_pfzoZMO~K)?q)tt}xddBpm+@mvBoU
zA`HS!Xl}>vsCvr#@dtrR7?=6>7&;Dqsarw2yYI3XZu{U22d5v(@<izwOm(%Bay)VU
zV39&FvWawaMsJ!MOpB30Hs;t=y54IY%w)XNmB}rSYFPTDM?e?Jp@}A*MuXQ3pi&o_
z221@Z`bH-7K<A41IL8FtPOkyuft@fsWWL2C2Xk{RM^GK^_q8P(i6du;$-~YiO9RPz
zvv-=k%(%nWZ=sLq?dnmlv>7=$T%Kl)J^uuZaxC^}R)VI3cZZqD+p-k9XF0aT1vpgV
zg8(18!8hW1xl@U3OBeQP7Ix@p_3ZIK@D$J8ZNIX}FZsiXQUH;;+R1*X3%6r)Be;dY
z>PaGgKQg5`*m*|9Uy!{zi#~s<rb?yx2;g+YxW0iM-I9yR<|vp*`(Qv;=7jaqK|P>_
zOXw&v{b*&Cd4;`;%OC_y_7iz30^?Bty-cT^^`%Hb?8Jud`TE!84ty7f@HIe;Le*e7
z(?g7dI#2t;7&UYMC-4Zj2jHtcOkMmJz{0{`ub`DvHI(>Jt?x131kMR?sQ>p5ltMxM
zRsP>=qtLDlmYEm659-qV&`Vkv`>(H{)(Ssx2}32Q?a6-q74XOY4aDHjo6;c{Dw^E`
zpMdj?B6%2ii{JJN@R3;l@gbnhh=08Le;?@=8RH+v{{IKBlKG>qnE##2!S!TR$*aK|
z6k)Bk=DN0`pa3<WuPb)A18R2~;Cv1MMvdsei=SN(59$@EJhxDAbBv4OwDqup0*aXz
z?_Yo3zkbIPnNTy`mQt0d?AB~1@9K|mKNz3C!&5Nu2Qj!yyx5EY%QWJ^O?G^FVqD{}
z?5K;GduajZNj#9$)MDV$s!Gh_m^QH&=YXEA-PAn7S@j_PHKDPrrv<J+mb15S*mFJV
z%b%tFAm{upgZK749wb$Y0Nb9*PpC4qHIR+|uItd#J_APN7j_5xjclUkEaU0PNv{aB
z22eZw2{-TvMzs)V`a4rd!$%+bf1FB(Qe*Z;6GEMtP~cVy5Qoe+=VohJtvg{jZ4SLA
z>)m2Y-}gVAcfOznMMO$`**chM4uEHriR1gEQJ_Z9yvtDl`(Vsd6*hj7Hv=d&kOH}Y
z8E!7GT|j=Q-f+4c5kt#U8`dWM;dzQl%$BTPt=<-6A?XXaa09?^Xb8%tOYnhy6f`Ap
zP1ij)>qL814W1V9T<*l0Jb?7_biS*y&uzR5H*0Z~WnuK=p~E)#@`GrA3KWp(pCuFb
zQtu@sTXoh*`ntt-daQROUEV3zlx%QezgQlj^9qm&4lVmvztAdhtO18bw*A)-R)--3
zv{;-+r}j5vE&{vBkB=45_}V1Z>~Q#UtCjKU-9TV-9>~t<Z;+WjCF?!??!1XJnxz<g
zd$CRt`V#CpBv&7`oM;bMHRUQ5W*MbhLap1O^}IJ>;T3yRxyZHcm@ph*VOazmqHLRL
z--RX7VqZ$!c?cRF^h7cyH^E=2xF|ZF?MQPwp5EVq&g1bvr;_EE1s8%{Y1+U~+iRF~
zY8h!w-+wPd=5BKUz}sk+>R?*@cZUkj=TO-iigCfGlGjtyY0NG5$~CA3ty<XI08?++
z!gid#>37h99+Xzb^#pN(gT(2py1M%D_X73$x9fdv1L5?MT>#cs=i=No%2o*@{ly3S
zF6|LwFMNajTZ+95V8UjM-uMV@p4#|9N3zl6dG)BU_ED<WsDP`Mbg8FQ>~kNZ(Spaj
zsYZ@~%!r5U5^>!VmL5}Xw7qByERU_+4hs2-o*;FTk_k2|#gWbEPV?}fSL6h48<)=H
zJ~$rJD)QBckA)EF#uy;^<gXpQY<Fj*42RRwYux$6STeD8?@rF2;~yWrRJl8lA576D
zvH)tAFTmExfIglGz-9@?VGWDy9Pppz03dYWXp4rzMS*IyI?O)Etawm|z>m+EV;BHk
zZ3ug9M}9~zBh!FXR*bm6wAwaC=0pRyDZ0uEn0lD!PR<ugRA9UrG*=&xYNo+S^p+mE
zu9MjkU>XGPQtxCh4)GCZA|F{FzKMC^5W@e-=`gP7X^2xXTwgA@0_(l;V@iF0XIgeU
z>j#JGDU@eJjwS_N#v)<6&#m1ykS`%J_1)N~3uXTqCThHJ`SwV<$T#vA3jsduVzYPy
zFQB`GPxq~RXd_tcJNuho>de=R8jYr8Pf}^tI!L>@xV2lp6Gu~~L!{FHc{=~b+2B_A
zUpgC<LE4L>++W^?!OQw0)(Nm^a*aju6(pw+PvCfYNu`6{yzK^{Ux%0<f8M+*P-}?R
zhIlBKyo&pb`M{v)>2>~sIg)#WCs-PgEUUG+a@Rd6WOTDzUfY4gcnnZAd|-54*|j&(
z(Gl4$8OK1E9iH^(L{C?J!eS&(u}gav6oWroTG*9g!=cW}^sl3h6+rEw?4p}}1cuhX
z#InX*_a{dL;DB#T{-yrT{mGyx?E5bn6vT>%;_&5r1JN%&^t~lyiet|{d=q=^ib(US
z3Uk%k1|W8ZheI1~Qvgv2t$*Id>FkTn!q=&CV{D_5v<EInz3fY&w?gPPA7y<5NFJdi
zCP~2BPh?xM!~V4V!_Ba{<c+S2iH!AAY34&{Mz2u$3qEQt36M_w#-0Dfn{azusc>__
z{RXf8V?B(|7bqDiSJ5;}CO9SRp&*ju$GiG00*z|jXdyBZR+G1|?|OnWGYQj0qeFIQ
z>Ls(};$K3Lu~(sf23Zg*+nP=#K`=P`x)QbV`&&K^I)$od-~F6KiZIT%3p;$RD$J%6
zK7S(;8XWwPE!CTo(%UzC1@;j9fLx(xo4>yk&-E_Gph3q4;pFGsq`tG;n8{>`-?r;T
z-J5U*xP(ez;`jZ4?&AzwLhN(B+Wec)a!LImg<0ma{{zJ1-e^WY*lVHG-!zI8Zp%r~
zhPlimE=ptp7Uj|zfGQc9ub6pe7iXy1eIguf0v5m2Yaa5;E5K&Q>nFsrv;vsN7tF-M
zWL)Cs)BH4$gA`(d{^v^_6rV;a!G7Nnm{Y9O3#QC3i+szHfh8lA_HTS>0o|Y%e6Ze<
z!1c6!${s_paT4@r+a?c|PsG8`Vf91PUw|_f@ahlO@6|6^(DjIriTXV55saK#xygH|
zj{4GMin>nV0F{R?PENhvR*f{s2Cy#CXf)L45t1<RL;uCg5DxSt#e%@1s(PTM4uQFd
z5Q%*|lUnsy9`ZKuuVu;mR8S*J#dA6ZLK&uDWNy1d2h^))(YR;V5(MdBQYYsVsDXi1
z8baKXNkm@QesFW9Vz9bp6V}64xumJhF_2~v1ZyBNdOWgOD&(XP*8BqAP1*H}A`pfQ
zmOr1=yyU%mgf$%k_YvDC_Mu3T3SVOZ>`iebU{ooo`zhC|PN4iYGicaFDb>Dg@(rI|
zekzqA9AJar2u;cYfvaB<b>^SBtf?OyWdx99IVs6gXgWv*(0|?Iv8TC&OCzNJnVB`Z
z<Me5RGC#Q2D@>3tN`3N^43`4NXv<{j`n~0)YVVhBYf#2SLA2*k6}$e%N27UJ<l6QA
zc*#^@EG2acrfz!Id|1s*bJQFE+>l-=?PW{{o|He#V7OHMFQxi>m0=-Zh^hqH92t2J
zZf?5S8~|R@grv*M$ASYa+xqA|^yY^Bb#p8HFDMkvu?ldpS@mHZX{dTa_y)iwgc>A$
zXf9L>5P<SE)=VpFy9EudEBg<PhG;sqF;KC(nNwnpR{aPOa^Vf%Uc+l)DZ@T!5D)fP
zAfp#rMT2ebP)1Y0OU=PAB7wC>HHK|$^YBIkJ6!XA+wF<B06=k2H#A`hQc%wh#Il~R
zd;@wa_IxmWy63>w2zpvkHcK0;d<(UFXY0Yzhia-uXj=DXh>)*DFkiv-KJzd9#Nh3M
zJB`tt!iP+4(#-yZO#kQ?sK)otW@_kkTLGK$4S8B5ytvCcqw<rS{`){S|C(dq5Kezf
zu+N^1cj!B=0c?R+75P89NhuoX$sB!*?1A@3p~m{bqEZ~U2$tjF3Nt9+(&|%Y$Lf}f
zs*{i~vyCeg96PmY-rQeoVesa5sIVcM3B;EP1=ZGQn55|rC><&e^D|~&EI{O6mX{ME
z)lGG???pg8q*_q#m=T>zpjr0i*p$pEj3%l9(D*!j3A#m~VA)NW4c7;3!p=s_cV2T5
zf@3n9ep@oFAowj?D>32HLg%TQV4n6vw=CK66!&~j(tS7#yS<@cEOLJwQ&@5xF-lm~
z>&F!TIe|ik@Gk<z9LEvC7WM)0pWcNO`2WPaa2J1m@lW1`Y~3Z*{yCRy2S062=Z&P_
z=7p3LCA154H(;7lbjDlpamrV#jRAN!rYR_0GzxyOT2IZQF-C3%n6qG3VFH1D0agN2
z!S*rKtgFH4ay%dY&0^);5U%kJxuyPSlLbP~N7(@5&1Zbo*vvU9vZKC13(vGGz`WN*
zbM>fM4k6}|cJ5%7J5#2(4*h~R(g2+MbxIB=$TXl9T#EK;Z?C`w>GVHhB;NHvp4l(L
zOd}t&RXhdy{CoC3a83eB+uzvylvdUBptAkZDd?3O7ooQjzb=PN$=@0l=nI=!PnE*k
z1y-r)Ufq8cgvOHtwvd!^Qo<;%y<hGt<wI%%4a}TB5*4J2g?{eSs$tp{N#qu^F@oUo
zrXCXh2j+zOcMBx|ooItqL*ZC}mdk8L%HI-5Ak48n@*q&aV58{1_0|e1T8@$gEBr!x
zvO3H>%)*+$VN>}r9Ho{k?^K;lCXqn>`)X`6=nm9zr%sz;8hjVbh09UR*O!NAlMwpI
zVX)?he<l2f;Md0er(wYbY|84SC*wU94$J_lxxQ*J$NOr+qI0e17nkL^3fTf~?rrdm
z7I(0oZLl^ddUsmO)h38_f1uRm1JVeQUu{UCt-$wVV@a?OS|)0j!4_#!6i3KNG6v9|
zlt1k!YFR~oS9`zIZ<z%2g!K2$4pGbd&+oD_jj4TpK7p=LU+zj=GVF8^Dq%%`K^~2R
zE1c&_CJgW!zG@7?nso9l_o12H3Jv2d@AFCU#1~}%L+*nRVtcGi-ARmwI*Gi4O7$2~
zCvt`)1w(5@9MU|#6x#hu>6poZc)E3)A9o)%N|v}x>kb3uTtk`oC0tLh0{#Q6AgPSB
zsF@%+DX|js``g$jc>B6(8xs=Er!cTE9Ii742MrO;#0!j?DNpiMQ;$+Ke)l)8;#Sa2
zOnfL|HLX5YiS+Y~)S7>Ko>AScfU4Tf?XyaG3?5ks{VM51uMB8l*SZ$d{?^8zui%p+
z0MRTq=2HA|K@X+iRd&h5(3@+TPt_Y2R#73>NkkN;fV0te8>VONFbBatmd#u&wL|Kj
zi_Q)VO*UTb>6>7m%*-k(Sj`J7mtUQa@C8NjKCRib<~lk9a^0&9j37cvLU$w836ll4
z`XBS3q*Y4a56`!_keWfM6Qzbl`1{@5maw(5vt;$!3FJ(vht7*B>5fSOg!kqW)|!mK
z^eoGucxmZlGiW_eAnWGy_4wg4a^>s<X3`0RyrsD%A|>S?LV;1GFQ;)k^OH=h_1!DH
z{lM=OB3kc<F1)P3UU&N6@g|;(@z|5@(B3;ce~4I(X+g6vd-m~xOK3u(#tyee;OxP?
zwArBlWi=U+eQm)j=~#1|bg9Va{3H(cES&r|Rk%QI1Fl?g=#!PsWoL~W7MChfjimMg
zYbo-6v&X|K2#M!`O#Bz=Z5@thmaWf1jRb-D+9v^%{IZm2IOJ>_^hMAOID}8LT-7C8
z<Jy?}6-L8>!q<nn2Ig4%;xG^_d$mea=@t?H5*1wz?F!`mlo%pNTS$lHDJjS1!s4<%
zmUa&zjiITDJEggNP8lzwR<)w~REYzw%}!pad=%@&U8&vJfo$CDbi-67qb7=w_~5-K
zsA7~=NRl7zK&+JF4C=$G+S=DoszMROKB6-!#-*5k+FPHw`T;T-YG23phWy;+xZ{eA
zRx4z=a_+Y4SGPmiVmElgGrZ`svImCl{DzkOYH%$GUuY{#roJR_vyPTr^4mT@;Gtb1
zzzNy$%=R3jmP92$PLj3W8Xy2&;|P{ky#UM_vw8}=<*HSWOHeOaTn54ZOS2&iTxvsx
z*Zw!p`1dcJ&++rWivmZ2MPpn{Qn4YHukqku)`phwbZ-pTFeNXQSiyVLna}tii4bou
z4pH5s<)^^quDifU{B*8bz4vVCKzIq_&U|-<_^Fc4T)r{Z#DU25TI%RAEi(N*B{b)|
zy)%O)mbnZ!yYc*c*ZYs}?#$Fz{W}I}f)Em)S4LO%!kCYbMi%WZv0U#jOBaV+A0hX`
z&XE3+jGib!1@9j}x>yK<fSfbPSy)-SHGaF=q6TkoNP1{Qg(AE!&YR_EDJ)tPsFcsq
zC~+@bo6ei3D)bwL?N2;)jZ!}}v2g~iPx<V~_G%SIp0WUsl<fZ-d4Y<COPY~{)(c$O
zF+YZYjjzndPX*2%)v>0^*@f)|AW=?nY_@#ky`{<FK$Qz&F2sY-U-@~quN3Q@xt^b|
z;79s902YxnDD47@^@M#-6;|Jl_Td5AMblVs>@V5{wND^|sUZd4)!7dJRRuA#*3B!Y
zhjOHEGqE?R8l@6S5s#ecPvg1mU~?3Ql@%4RXneA=ayfT4e840dDFt*rqOmU-d0ei)
zMEN|QsJHRkw<}Q6vf5YkbS(b}hKH%u3h4H$;RDF0dqN<R9={`u0&BeX1G~vo)!d5J
zlLlG`v+cViJ;?-!bRXarBFh0(1sP4WR0aO&f=!9n>jB$I&vEyVO?@>TY|W<<ugoJs
z`LguO9#0icA^g(#JqooXQD({dI0*D$gZvTb5o~T$eR#W%orR(`57!yYk|}kf--h<C
z)%Xw(&|65eBuRM*N<T;{&4lV>^AjNILnyuTVaz>02R!F6h>7}aP5piJGZi$=L-BRR
zh}2yXM@_x{q<AnPngiB~-WkO!A`SSz(mdEd5VQx7y(@ZBz4sHSXai}%?MeY$U$RRg
z1sbLlc)mb`JZ9uXd;jzTFwaI>=3=|9y4dY-qcAgLUWflA8!@8ho#}lXncKJMcBz+z
zSZ8$hb_`!%hhJywLUGD(CbCk-l_Fo#lg&Xf_d%r|A}Mr$5Ev%84rNuWcUL~%iGVG9
z{BF1!pe)9#4|{8&YEcz*kx^VSmen-y05|i?n8K(CPu&{U-XkJ4pl_OvF4bVF$&@Ku
zJV$~w%L(PVM#0xz?igahb<|&=e^FZz;k5B>4}~}~-hrt~XT0E%V?CE;ZLQv2)8i$a
ziy4sVGm?Y}`S44_Xa$q*RE2})sh1VM0zSZ4Dn;jJimo)xsWXNHTk}v|GLEL0$f;@R
z9q>_9TfNuaToPI$hP6D5JfT;?OXPJKDsacD8UDs|gOuci-3$AHwf(&KGXbup44qG_
zrM(1l3j}T8{GdD4{LY=SP}vs<7`n$<i&N8b_yx~J=_#}*;3RxH2esQ9%Mg6B#kqWP
zGki59M{?u|9}a);%K+>2g41J+Z*Aq#?G5i4_FwXHc0N_Eu*3wE&8JM!hc6XX6;{Hx
z!7g-o)?8o03Hy%SXbe~Gpg)NB2+RPokVsF~(N7<+!@e>#Xxr^JKKNpb>q-X-2wRJX
zju%a#y{UUa2n5#V;e<-1qD?$})QVs*`<DOY(f+|QG9FWsgH2+NT()Xx3MinJ8_WXw
zeuA=3Z_cAFCg(@3olJ(pa|_;ZKlDH1J?Ix8H=j|^#uVmpW~e$PifuZ`&o9>q6E}ls
zIZedL5qwbRf>+_2)|}^dn{oKb!THPQ7m?qV-b=!sq}0#1W2y$L8N;WkF<qjf=jBbN
z_ybP`CQTwy)7V&B46)F;k$$j}j{uX(4`1Nz5BREDC++#BXN%L~xA|)xmmxmPhL=kh
zRtNBIqzfN_R|3Yan{oE6cRQOUEsg4gc3DZi1J0xUiJ!Oi<`DXV=yvd3)iY@1X11z^
zKYP(9iaeF?avw~pA?~+-;weNW<{DS-=TW0Xn9r05lFEn}Gi_`KG~7DAFUh6)r7qDZ
zRDB^bKWM%n;?Rxin^;MAe*Qvy!erq3*c0uBSqSvpA8)T!)ayQKT5uok4FjDvXq>*X
zBEH-~F_o-R=YMcVAjZg1tt1cV!7a(kQ0)Oy=*RN~ST7$fzIx{i*}ONXVGIz}?GEuj
zyc2XhkWs9SarEHe;Qb@|0KhP98fN)s3#C!8C^3<8Iln#6EKn`RAQ>xc8_iXEV`JDA
z;u?jA$8ZgyT_MjN&gd83;k0Qx0lP%WPTC*pTyN0uuj!Y@dP%CBFK_@k&rkFF)z_C`
zQSZKH#r;J>#AB+gnPhoFi*IYEU7-@|_)cnYn$?O3D4o1Ej-o{{iD5p6t2eTlW-j*j
zj%eo+_o5!Xbc>{Oc+4cU42%twB(T1~Ly;`M&gb=+Tp)KX2EP4ATSdH6Fmqy|0fFm*
zhg-gWB>z3f(>TN=2bxYaPX_pvhyCzmTVthagrpoebPTVkrDA-ch|jf^PZAsvK6L_-
zFb6>GDzfRJej*lwH(PTua>?-N@))&xri92uFz0hRiM7FG-h+or9NAz4;}uL`QrT@O
z6{Z{j<g6SV5*)c)TtD#k!xQXPwUGfK!aHaBV1sgFUP<01kK%Z_P5SQjMv`s3<CNf?
zN2XN!Ryh5eqkb(O5`~^ju~35J>%pmw3rgu_)a4G8EUAwUT_q6FSf==mLf!^_5(}Wy
z=V{d<edvqBxv=aBhIgNJbWf^0CX2k&ew05O!xiiF8KfpG7=Yf%rp%wS-xbUsr3=VR
zGcoMR7*qR7DZm^y)Od~-lx`Ek;F(IWrCP3P^A-z@zeK-F;iS%CnUgN;Xt;t3YOs+1
z!(eeKQi_nAwta~op};2o68>^0>rW5`Lf4b5r+=h<n4sDl2By<1rkYG1zPG6$*dKB?
zvo2D5^X8S2V(yc*>C(F*m|ah#<F+jb@qhsnN~`&NwKVAuYH!yBavpzv?~-(kIs??K
zJzncKr0+j4Y>2pnnLZJzrSOhtX78JL$CH55bQ=sZF1~BZWD1*YwtM&s;{9JoY@yMe
zQz}-JiCmvC$O>-m^WBm6icvcC{d^!iZnM2BDErQs&R@m9)0EzyyH+7U5;A!Ruus*_
zn$?yMAoP%D2Ja;kdV8VFHW8?+BK6&f!)Xg(by)5gynffXZScS*0c=6oB&Z)rLG_)N
z;EN6LE>Peg!Q+C5<S62X7l><b1MakPi2*Ehg~}?{*<2}qE-9ZW%uH_d{kO)xD3(vb
zZXI@eGX#ZO@=riG;PO+Xhe^6rLPZRa(?AeEtIc>kbp;Y<F~=T|vOXC0U`uGmQ^*!8
z%-9y>DX}q_Eurm;=hl1nauP{qwdgq%LZSM#nwGP|+!JIEKk&bAa}(GEAQYVyx<g^w
zRaI3)$LVNBIdyTbbn<LnEPG(7YT?qYnN{l1R=Xhs2h0(5LEpKpe7oP5^S?x!w%ZZ<
zjM1=Z{jk&Gc1DFYOG#qTDVjL+)H;gdf^~b{ovz7PF&BgCPRsDop%3QIv0<1#T*{r1
zWJUpO3f3A--i8-Zl^?%i#bvZ3Ty@DSH!LX=i=yri9i4YjU=Nl$Dam4*(dEI`v6|&i
z*|gdTVvTNcZhqIjki&p-oE<ss^Fg>fW#NbPq!Z~_&bF0B*Rd6qozm7FWmplASWx&_
ze~{x0j4?Tmc2NL+U>ilnx(|>KZ2Ep%CwHOeP<n(l%7gDbd#kG;HFOSbZ-ymP`hmAS
zPG>3)C>UGj_wL&3xoagoUSHsBhM(5)Tm<#ZYPgMN<tlk$x(&IT%JF)5D+FvUMvK`0
z6c+ZPcSM#SWy;UBKL`P-bhLq9-e@wB_dNI<=bY>JPrLj;qyXiMM*`=RPe&+4wK7aN
zR&3820sO(@u+<`zBV^C>P$;MpB#9-V?H3KSAl-IloJ#TnUj+qaLI>E3&UURZcncSK
zEGW<&mW^<aS^`Br7$6bPkrf2m{iFB6Ubh!HkN!yHR77=3&J+&SP0%9;v^X9YIpvV3
zOQ`|Xjp*+9X$@!QlIogAYfbQry-r8%n4=Qq)crY67eD8@kwICjfuZXw5+543SFqj4
z%mIsr>}h{jBy<Q#0W$|pRZ-3dhkP#83hZxJ0{9Ofw8pwtpMVB??ED$*@sC%~onz?8
zQj#Wm!REKw0(kSF#R9TK7Op8M7I3Min<_xD(1f$~W*QU=Z@T{QB1u9o60VAa40w+}
zeGnib!tFbBk3sWyV8lPY0=1kMSofRr3PII`f=7P+wFPbHGp)#rbI=w%(_~A?Ome|9
zjUid8j0`OChndXLL7!>ARz!otkwHE92NE0#z_`Zv$H(~BSO4!r{r}`jk%*K~gGVm~
zkMoyQz?Kk^ZKSd>s&hVgq&QuiVeX4ZyAKw?oNuoum#ROVFCssYjKKpnN^#YmH17?<
zB@?J)rk3i*tj}++_JSX_n4g2yL_WT+P^c=-XK=sZ3WL<U2<VMx31Xv~p;;@<AU3Mm
z67<Td1rN@C{p$HZSjC(&4>p+3@B@~_Vhs0d0K)YH*hpFb<AY@pkb4FPf)Lt4X;JK<
zU#uR&U-=`tl=6hRVFBz}SGjDzSI6AmUmnRHhw((hZUOu5&&+<(6wf=L6QuIF3m6RN
zJYdrBWzBB#662@QYN7yn9W8eAE<PaRWMMFsx7dCVjzOiYQ6HKHk^&yPaEe1LLLXN^
z2FWYOCm3MKjeT;w<0&&WvNxr~SRUMf+&zQuu8hPx)8);%k<0<7cNgo4&&``~K#?O1
z`Us&~kZiFGHkpYy^<khVR2j4T28R`4^HX!4ClV2F%R*0QD($f2I9$Ywp_m`#Dud{p
z_054~c%p&A$_mEK;Z!AxFj_UNhU*X{goyN{y#;U$26IIyHMu?&yt)lp&0W}8O*Ptu
zxqC5X0b~^6YD;{DlT=}_eEX)dfDBT(4xV<Y(9O1gbSJiD@h|?l^7*y9s7(UB3|aK<
zX%9-*Qb5Syd#52@6M#nw1gWY~rpA6q9n$ge{Bt0egCwE4bXph9htz84vX@4&4k1G-
z+AGMAU-ujPUMtEMQO=MAaeheJwCygUyP{sPb=M;hjjVidS~M?`qTwSYd?hR*l&p&X
z=^Fe%kW8=P>2z+Jsgl@e+JGxXmLrK&SC^b<rZ0?^#dhy?8e;7wCip?|T5pb!18s<P
zLk-koUO%EzZ`=h9cY$K82Le5iD&go9+dYINAl!oY?=NPl<cC!3jP2Ae#x}Th)tBuW
zh2L15Y~g#_X7+ode<`3AC!kLoHSO5Fp+3sxodc;CGW903Y{MT(6dNA`OYL@$p^dNP
z^937U*4Hc40A--B8V|*6#Xst;69bRKqGa%MX1o`<Fxl2g1BwX)Ck?;A_H>E+Rkn=8
zySwE3ho|nbYFJOi!$iv*4p*L|5kAAZW{8?w0-g&-Xe0=Z3%b6AOo{<Nmow4h!<s$q
zs3O%)07bPP0AGHxaIfkT4@A;@vJQL}!bPPThMe)NZ0|zuT08u+71?TWwjc2gqUw*H
zRU5Bkd3lq2R7z`(WUEmq=tx*--)WW^56fjTLwbi|sH&WR9{+Q;mW1|`)YmDS?WR!(
z{Mnu3DF&kRcZ@M+pLlHYnGS$B6>6iq`68Q=h9rfPmi)aZ*Dag#`salx<4ii;e7UhA
zDvV~XEm=GT|JGPRAXtdm`oV}?m$sAm?UprX2N1rWy&FQ<aY5Y=QCuWsM)`6D{PqfY
z>WCm6g)$b51GGWc(zB6Zs3j|_B*{Y)Kr%9@Ds{ZWdvCS-D%M0AGM$j%@P-7buJ{Ve
zlDPx;unLz~h9+%+YBBj@_th1sFke+$SHy#pt-}Av6;zm%1>hnXyQdsG+O`NwzQK0H
ztWz78nrJZp)`Wr(>EZDq34l24K{o=giOw3hmw~|8@;KFt+g*f7sW`4l(3P+P)d!p6
z%{GB#0MkMH4l>-&P;UO}Au7Hi1+*M%AZsO`AGMzt?=x$ueu&d>!fx*AQBxmAZd5RI
zJZ^m;%l}qy{YQdI$A^l$#-<J83Blu8fE<IXb<QVxI${5FMMbttQZ`kU>W#3M@p|9R
zZr}~_w=WG{!YKe?0?h!y<03l&86cmSG+$9X7Qq;vo33(r-I?R1dr?9~1oqwg5;kfD
z<{zM4lH+w38h-^Oca{v~Z5VZ{{-!F_P()>N?n66x5<IxMbtcWRDIuBF5}wxZq?Z?X
z>z2a?xJrZddLJ;zUJ77Tnr;(VW3y_8lPOspzRKeh0FH8VfnJQlo;dLP?WJu!!_9#{
zmyO=rYpg-b52=S>;}2@vG=$2R&I0PCwGWRwQ5Unt@5>~!7HHMJFJXtcD(1?{qZgnU
z;M2<C9oJl!EztV9yte-70UQ>~-Qhh*kc1I;X9=}(BXlKp_B5$@;{Ll!bnqA?OlVM8
z73ELJa(Cw*$P#0DBAuXKH`HKVjKm~f3>r!GdS|gK_NJCTjT%(#$k|@ZPYq5!xk?3J
z*gy}O^Cv_CE*iihg)h)xv(yUf_jO&)PRRnvQQJb=&=Fsyb;k7K=c`o;H8l$bQA>h6
zsIT`&Q;Zc0S+n(kj^{m22YF8|9!CVSnGhk_ICvx9KpIrC<n-y%AwWM`+|6mo_Nvsp
z<-lW5K%wAuMo>YzJ{f0e<Crenc3XTb{Fv+dkrAYjVe02B1sb-rGzN(M*ih}NwA(6s
zka82z8#@5VFP;aeW$(K}AnH(U<iv)mf4Y-?ysh*El=_JJqu3YU&;^lBI=b<-z8f=p
zY4OLD86qCr^oBGo1Qmy*Ul$qmB0Yby3Qhl*S|nst2}HZaZ<{w&W$Q@xyt2v2V1p)l
zWMR2p98w)R)Ee(;eYaKP(y|UB;g?Hq>1_^7Kyb06InK4uhpnTgAc7edc>i_loiFNg
zyLO+6q*+=K{sL9JDB&Sr#va+G(7YX%V&iX5Mdh6f%R>1bDd#rUFTB$Zl)Ad}o4Wc%
z3;KH)`Lww7jxtdm4K6!h?WO$Wk#Q;GwC%%B?j9)uA;4zwX1<DkVE~-MP}#~97tU1S
zxeA~Hq#o5fo}f8=w@d}5Jmpfe(5@4Z<x7U!@eSX!lf`y522+?@`D}O68#paC6>Q}i
ztO%JOYSbJrg<q4f7qpDCH#Egr_ZPmoU$!@aO7_}j6b^7B4r!^sDczi(jAMXzd|Xny
zDl>zw0)ju(rIE|zM~^`$hmcba4OI^YTq{mg<~DbYP5T&FA2M~N_=<Fw+nv!6`b6vz
zogl4<ekmWnE#^q#=^=0@`WnZ+%xn3wC|JH7!(#prz|fg)&E_k@b>E$}cF7NB6=(c{
zM<`d?mY=^p#bo)=PnZ}0aqhOt(GqjMTf`lV<Z~Pps0X<pF8iYJh9@S}X{0z_T|heY
zBpudP;En^v(C19tm1&s#N7HAw_s0GC4QrrI3+s(E_gNqZwQb0@ly8?(Eri2c<Zxze
z={ZcG?FSOE5#&#o;mU&$P&}}EEb{|dOCK=~8f(`VV%RbL6kfBVC%g3L7m#_UKXq{0
z<u-m`+5H;Ifi#D@*TNm;PYMu-{qTPHbbO=8{&`Uz%?4l*_p)CEVf8#}jHWVHOp}b2
zYJ6R@8^M^mf2aQ43>Rd?r6a~FxX^y14Q=<M8(=jYLX)AtsFbVS9#09T3r7dpi}~MO
z!M;7KVOsW=FaZzGLt};Bi?tKupiy^L>Kmxl0`<jh7)|ggzT=iwvA}~xJqAPwo;-xU
z$qdaSQlF9UV=-TofN0{al7+_I=qHYa(L^O;H7xtpg}D%~Ex}t!HCuzl*Q<P+lx3<m
zTaWZFO`i822W6wgaLGFF4wb)#rhf3?-h1*a3lFC=z1x_R%irVB?xBFymx;m0ItFtJ
zdYMTS>&%+MQ`Vba<)XW!F?71VS=)BNaX|qxKLCaTL67!YoB$s(h|pX(TlchJ(9XRc
zSNvh2$y}u!J7<}3z9}_wodV>$<%Qh!)qF#h(|TYQS_SpWyb@^jLI2Jb4%huqWhm`@
z|G+a!jn>X+On|3rF){`5ntB_VGl;oDFFX1h5Q|Tfz*TVS#3_{hyYBH<<E9-C9>kEX
zr{4q3axTYaWX53TV(oOjkm<>YA!*v0&gc95ugPF*f>S%bD($Qm4&-v^2hh1>bB5{O
z)Ua)gXJ*=}m*7rRue(*0L?)%ojPYaHqXP5A6spL#&tGp5$h)B6h~sb0Im$OK8<emO
zG#-BlMr|K*vZ(gyggX5>mXer!v*oED>Z=9?)*TTrjFB&~U7tNvMF$XybgUJXTBmU-
zQqC&r##%1TxmVWvVA%sNO=D}M;Y)u*nwY2Q>(ejYvqMyVzQzC=A#_BL|M7Z4R%ehB
zqyhE|2^Hd5CPlHyJGO}=zm2v8Dtkaxr9}(p@#d(8GdYV{N|a}cM5gVM8(Vr6;gPbN
zCFgknmRl;N1ZK|9jEQPJk{a9Ftp<9E<<`xk&M>j%*;vL>q(FHYd?r{ic^}wr7kjmr
z#{NY`Eh&XS2G_;;5q3zI7|9?cDvwq&YB0hVDi1!z=sdGaKgz~8G8P<b`&g=n<6f50
z9U6M~A7WoLSzeya)j4>M=0^CfOBqVHk3ITC?deHPQm#|1&pZ=>Ut|X!fm2RM@pd<$
z4rD(&t+zs|J5AtU*WiWvL%H`r^djOCR4t^lev&2pF`!u?J+(Sn7u_E9C(c6pvlHU_
z+iNgpszZ~X*MbmBU@i6~zNU9pNDqQxcJK%JKdk%O@z0IPLADH4%r*t7@OakJf#ry#
z1@H9|;z*9HkaI@2)}ag4?BhqxvZXQY#De5$T_<X1LTVm`k|f4_#iaYts#>;%(>`74
zy9tBz(4sN|-Zqqbet+Tg^z{BhEKF4~07ppPzyz@;GFR-)(EkOF(1_!*P`8Ltv!g(}
zLh-ofaj^Vl#{iX|4qwBZuM0Lgk8fPHrJvI-N9k7zl$HJyAS-)?f0pYsMMfD2oqyrI
zBKbDae6A|c4egyZ133!m8O1YYpy(&>-5I0pcaJ9@|0L>xzj%<yLzsM{qXPoOqS#nk
zld5SO>Dj2azlOA-(M~CDV2kd@)tjf$x=_?{g_#PeyUN#_9XBljM@BsT{$j6{g48YZ
z*7cfhXgsOYEtYYjYwMkrYz22oR~lEAJk9>@-n#v46%o%UqfY1z_0&g<?6G*E68&t`
z7d+Tob!g5GH%ORVpHmG8X4&_a#DmFXLoF5-A3eEHk*92GLTinN+auSrZJEi6da4nJ
zNlTHnz11_}xbqn2sWg7>f!3`9z2cwa{CVg&pDru{Ua>@oW??%$B~mAJ0#1{dmJ5t0
z$Yt)iL1o3sZec4osKljQtGO&x`@0LW&<bHLsweY6un%ZjB<H?LvYWrveXAFqjZ+rp
zgw?~pQJgBmmryGH{NsQO=pRrlU(q7hUHSw^OT;Mja+&?0`4RhCg7xW_xK|dsvdMIX
z6QdOLONVUGCdBkb*jjgJ2YM~QVOOrW*<Iw60|#_om6Z0Ra$640g6UWtReNCKlgpSx
z=UF>Sj9qf_lz0UD)&7(C=}HhJeaNfZm01NEw3I@SRsJJff=?5!8c%^y@+FBipVp<;
zC!w_;DrILIJd@8b$S0)fG0AG!KMve`<K^S$dAYGrtM%yyAEcwdnZ3j;4_{V*-O!rD
zW;dUC7A@dN5J<`!fbqZ;cV{E1IVYTs=5!O#=0l!JyVFN9FK&iDh5HdQD+bh0Z^SS9
zv?=<MDXdAyvl&hqCNGC-X`P<LI=#H$0R%a;I+p{KuXEfj((}exGy&V^hx2!fSFOCu
zcj?3DPz#4edgFHFrv)KTkC%vb+3Z4;@91tV9u-)&FB{;U@Bc*IS|!$%Z*)5E5`QAy
z+t0*nWs%z$xo-C?*A*)kcCK+WviRm@5CddNnen=7XJ7fRybyY50i<vV?G>oSc`E5@
zH(5)O_CpW_bH_|=+Ea~W9m^9Kkc9(?-tTi(gK_>Z14k{<FkV>571)VRP^m=%KL!vE
zLiF6y-@qK>597w~x-vIH87m4@YzmTZp~j6Du$`$L(k(=d5zI0}s`GICa~b-yym_jn
z{OVJ``V51gco}ao`JquEA2{p2UAu$}aMDQbI!I_o!8~t^kR%x_^~q3G<n3hgWMHTH
z%Ve>F9AWcs3>KR*HB^2CS$*4J1lAcWFQ3h2*Z0<+!uUFxvXj*DIL-E(!lu+qk_cr6
zQFMBxISRkXf_p)cT#l>#bwf+5FYy2$P^js8PWbFxK4c~5tRKwmMPwEdnG^3taZowd
zOlA;&7)~sFcDTmkeETr?ac7&8C?A^hMFaDBEyN)fZce|aWq;W&hC+-3OsM4+u0A!0
z;3gh`OIT~>z2HM}ac8$o_kk-=*!{`5e|2x2Db#CI?`1=nxadRi$v1o@k=Fog0YnG@
zJ(DsSYA=8HUMiv54OI7E#~i-TLK;q)Ddvb9C6<Gfj6uifMOf%6bF$(eq)k?+YULJ5
zN!O%+=JN3=1@F%Z+NzrOgoQb^?=LQmzjHKBmq1ATiCHu;-hpd2+GN=%ArrOm3~};)
zozvNvegufZO6OMpfzv24Fx<Afof`~7eFpl(C_1s+xx9e)A~N^yycddvvbfOV(R8gp
zp7Ht}ZB{qpRjk9GUV!MFcv^t6@Bp#|?XD81{*J0OE8S(}eN&XFAs(93y=l)=Q#Q@|
zON&#1v{zA56w2amvv^T)|Iv)mGK@{(a)tRO`H@gC*gbT<Jiq@OTd&Avn_zKIy|8|5
zp%UrDXz|CUJhc^Vg9@0-<$*0`^_q{jq+267855DtVP_PakGMY5Zisv<acz@SRF75j
zI{qR5+RBHnd)n4y9?9wK=L>c&fFzF-h6TQi7=_m}!oZiYD7VE*0>BrUV&yHSVZgY-
zlwS7`s3zy_K%9oqR$V`Pad`a1Tv|d9t}Y{oE8H#9nLLLs4NdUQ&3FHV(T$YDYD+;{
zF;7Ogj#^p=YafRpW9zLia8c-<=56|_h5UTjnc|j*25n|c2a29kBTM2A6CKI0WqkkT
z&ZuDhcIneAdq>ry=vyb#X+=p<`@2p5jk>7gD1~Z*o>bMVonKpYh|M*tO<^4F$-iUv
zCcWOmrrd$-&P$l4&BWv=%$A=~*442>vH|2mwRgp*)?vkRl!J6&h6rJ%@Qra@fxn9A
zfR5`5^Un}f_^rLU>Hy!{cY2U&dM#{~$RKZ2Z`x`9Zb**K?zK<~+2q?WI?aih3h3++
zO1H7ev3@=B9;izSobg61psJvo#VS`ps>2GGn!^A(eXA$5CiI<4Gqmzgd?i#y9gB3h
z$Yy6x*far1yGFSL<E9fHDQ&)f&$DnM=yXq7NEb%UrLFG0I_=fsn?Z{v@XD5FO~@NE
zzMug4?4bS~KUxi*o+Z1&CchuqxegY&GLTHOIFF`!otB=lxVXKe|CKNTSfa#Zh50We
zYJBpdj~1wCqF%}BK0ozn>uJ?7(nl-;{rbdx%1ouZ8*zfRb?L-1<D~Js6X*`k#+;y4
zWAyXaupBhug1Q`a>7I*phz8g8tNaPYvo&Wpkpz8-euJr>jm;$>Rqd4d&dx3<3}lZ)
zJRiUh<B(?19gr5p(Al!d=1OUJy-j3{A?GT>HdU*X8J3*>?8f14g_gcPJj{aq(sVYP
zTZR$ZjE`sOew;`Y3cW2XuG8g>R3k`jRNf6RMMLO#k2&Lm{}BN^wmAg|;;pd3*UPdO
z2nB%$1_`Z0VcqLLUhl;~i#926m=hS#e!`E{{xGXL%8&ew7SSQKFNzx*d~bY<a4||}
z*>vGKY_yjrn_o}1$2P1nvy>lz3Yp*;#7rfqyAAOV#6>#n2L5@Hw&V$8lZHnfo|@fH
z_d;{mgUO!9$aD3h<(!nS-tGr7P@ueAKe8o^KshAhwuMtIGht)`X+E&u9g&R8r_uI@
z5DvGdB6^7*GyE({>C=Y|VsdfJ&v&Q7uRDazmJ6d3mLQ<_ii$%1Xm{3F@2O*dv4nVd
zVSx3N1%D)x%UNug5QJ<}z^uR|{)9)Vk~iC|H`kPoUwp!tE&ZTjiId<SE42zknna{#
zqlD_W>ke;Vu}%>m-O{adzq!)xHNwOT*KJBkPx{~|aQ6r6LV+WV%3S*pMG+UFhuv)Q
zAy!r@8{zQ@flpSKr`yR86*^{uM0Nm(n)%d&U7y-O4=F&KV&4>dc*gp&lIPMaB%?in
z_RdXQxynA8=yM*&VO1?H*5q%2YNi$l133x|=4M7v(iF4>if3BID%An^K&W`;Gzz?C
zrbKm%Nfbb@r-iUL18M32x)6u%l_@UDdHxk_4nqzL)Qd5Eu*v!C&k<L8A}QL$!}z-7
z(#u`*R*>m{+cfuF0rDE`Exr*JZtgE+1)K|{9MLcVEPJc9Zf{SYZ>V=85c&w6mdkQD
z8rgqi)UY{xwnIMgpirwp0P)VZ%H{}(Nvqx~;rmsJ(w=KdZ!EjHSET8ib0Jt4R64tj
z5uusXYL~;6A&0iP2sfnyd{_^#9;Nqx8#QD^{wt$~qyje;P|=0zo$FIf&)d-9Dnc}n
z_%|l42n<XSpgxV~|0|!yu)Cf@Kn?{!U1(_4=-+?ei*mnTtbB{D4fZ3>8_3~2RpJb2
z@pS8%6M0iV2J2?2<YIxgB>g5KPpy{t=E^AN+bTbDovc}l0JaWT18jC&YV%uPx?*`h
zgK&MB+rAf_&{L;bZR1wGBEn!OFpsLoZ#8iCIYGx4nz6O+RUd0Sp4SXAL|V@tx0pW|
zOgCm<v|@DW=<p|ZM?6|1!jOzn2eOtLw|cTV?F>lt8nuGPb$^fp!Z6Fb>Ecr`JuN=m
zd|L~qr*9{1^S*;&MxOJb894kGrlI2{f!<uj+`umWhe@9CBdxt8<Fd(di50Z&Z@QRA
z6h2Wk(wj@)8AMQqS!*;jhvW!%z2|EnD~}Wu?&{_z_MuEhI7u_M>{s55VT5JwEw*km
z3S%^`ryEjjlt8W-Y%=>jUznInxbZ>!NWq%K45DC@sYfaAHMp$vFdnB$T{<|PKSRRr
zj(D-3LX{+i>^-Ps+wS3tM~M!1BiNVavR@XRC0|%SSYH;H?1}t^;>mHU*>|KAIQ31A
z;Hll2VoZ(K#(;{^5tQ6g&I`9OpUQ!%-yh8_XrX~%FWD;=zoC*wK^92yI)~*m>3)tF
z)})Cj^0JuQxH|78tXCdunC{Akg#iHjRSCIO$$E0GeO|uGbCZY8k!go_@5KU#z&%6j
zZb@(gb(g(v%>XCR8)64sU|hZT4IE1W-sk_NbHlA{b7)gNGpCo_J^uNJ+efh9Hj8K+
zA&HN~LY@%uK1Ts2Hd>E&*(G+Z`^iYg$wsZum#K;KSY8>t$Urpa@}|v_3(X@xb|;zS
zEHj(LTklJFP84ebpJh1_6~GUagVq^5vgyjEIqq7F_AfQA9oh|t!ay)WZmRy%xDgir
zpBp#O<o;X6jU35;7&l<C{xEJ3?f$KCL;2qrHyAnt)55eKr1C}#e0!X)%8JNuaZ`l1
zFFr=Xisf*1%j5i{r24%Q!jBcUxAWMXZ)Is|*eiE=@bHhr#&x}qVt@Eeeejtsh6{uO
zDn)+eSp5V<N~@L0`*uLayI;CR>ZIGaP3o|w0W}ov{4#P>{CA8T5co%j%e~v7*wr($
zh{^#qjzSYKG-MOhrU7nvkW@$ewfp3?!S@$^=b9ACCAR4_>z*WVJNZ5a*+wH&UX(!z
zKq9DfIb50?e)`4#%RQfZs{h=^LD~6$z;Pl=I)CVPQ^f0V6~6VzUi*$`w4WeA$SuZI
zR5bcUI83wnX!9Y5e8yYU!@S<8=eS^h-D{x5$Ny4}qz3|e%huA(wFvlQmm2#;uD<x!
zdNQk|<JB3}8xAQBrSE$_M<HW>yga5oSVn{T9a;mxaj`5cLcR*U=g+2%`&a-@=Rf{0
z=(nZ^oqiS{cGc?q>36{K2mcWFEuH;C0_a^K&{XB%0p%xoh#@k!3V@nHm4=A@S0*-}
zG$;<PMgOvL<hlLn(-<%Zs@|MA<qK&YT&Oez02aq2048uo^5us-bcP}beH0}R_r&V`
z`Dd4)Z+4K$-ERUt>hg!bIdvrdANJldtjewH`=%5@0YyR@K|osR4oN|}8|m)uP*9LA
z>F$)229cJO?(Xj9nWx)(UwdD1-}n1`e2?dg2g|i!tu@a%=Q-vW|MB}npIFK@X`BOk
z*KDFwfN1^=+V~|T|06m0uW#_DhU5A!ShCl5Ne(f<>*xBRuyXC_VCBDr9o}cZJl>7_
z7}Ws9Ky&kGab_RF8Jzu0GOUCGpON+UdQedVniC*4f!H9wzv{nv0~V+<Cjp2cjo#o>
zH+pw)-2ty>D+dn<IO^-zp+5qBdg2=}P4PS@4u6b5BhPXD)$t1az<N`@8e0hI$Luex
zEq}cj!hHPsjwNva`Uda+b+jRf2`VJa@t35x4F2OCy)ZxUg7IrhKH(~}2SZRH$-6_~
z3GHRP+s+1?(5gxFn2P`PVo2Na|1Kw(FaJ8)e_qbT=k;JCZw58e1tTWHHW>`7*NLD9
zpzg!4L&17HK%TmR+G;YdXYlaU{=oX>Zlk|iFuv2(+M}5UcRV8T561~3OH?BfHX@2m
zsL<dezFr`s0xK<s=z%LlwW>D=9_<1C$$zMi3ZN-Ub4)G&^`6V=I@;*gco?~a>ebm|
zh)xFZGg?^g#vZG*X9QtNGYGYG*nN+uL65i3P~(*kP_oUR6vmIBtvw_CXUWIrKTAHo
z|1TvU9ij8A`)?lMJ43oQLL>oz*N`|l-tP<q5k*HhGj%w*1l2@?$2BfM+^4(ODmon>
zWad3MS!aa-RT>c>od)d?*?A!z=@9jP7qPWK<!8_ir%ak46!4pj<oSO8_}J7R=tMlN
zHdiE$wx<bV=(PrMl9JZ15x>!>Dot}RTY*xfc`|VLZJz8F8GZtLqrV5V*S?iN_c#1~
z>I0?~44Cd5eCUaG_d(3ew2xY14r1m|L5gWOcufikE=y>xFF@EhEV1*SQoL{53aWGD
ztMkT_j?gASOKCa~4j4>Mq&4pYQE=!fD1G@E?rc?l{`Rz8z1D*<0F&PPcPU_Ov4`_z
z%2Y&fMz*Z<oeiKG=1&<`rqL+9*W!<&SjW9}8fG+_8Zpo?AS08b*h+-Jd)&gCf)1K@
z;8cBOrG;pkRedV6e5hnX64~zO!DJCp)N$LYCg=`Y^wdbeS;!UqQPX<y#Gh|_KVmhM
zMuj25R$2>JAb>`tbYZNs4688T;JE9<y~dnv+Y9xtUTY?4dS6~~)TqQ8GTYh!!G;W&
zVVlom?Hb&{-q(=8*%b@|8Zq)jOCm5d^s9BcV5|9{25qk?6yAw}VKP?0O!=e+iy%lm
zhQw-Hm1%04dv19fp0x@;rAsh?LW(fm3U;xn&u5+10z{fRor3;A7>_VVBU4TcRJf0v
zryXCsQKnrw+<(Eb_DSUsk}q2)=Veuy%{)&@(^@ah(M-?6YB<@NQJ9JlS*99(;dn!0
zy$*CUEkH^05X<G>439G;*1iJzmxUQ`fYdCK5KnAC5H;>WpW?PZKsec%4vOT>7Tm5m
zp4-Ut238=hesB$%cQ^aAQiySxEdub_Z6E=WIkSry41M#cz}xma4`RMOnIjVw-=-uX
z`SwL;9NlcT@(!8UMXJgnR?eK3%oHh~e4f)=T0Mza2C|WYSu>Vu&|oKUu+%BUsp}Qf
z793DxVpGtDvhhL8h_axwY+T3|Ua_ee8e457`!oPivrp6G98&~itNbd_h!c$M^YJ<b
zFt#O-I}L59J<!!MnGFdZ5mWnFXmGy0ZQ#C3dbQVrb`Lqp8z4g#fo=)BuAi+TURJ@_
zNe^SD(Gx91y$Gyl|0_DP$EZX+A4X{7a5WZ!CeaYaD8&72GR5Zrl4PP%Azz_=tNMQH
zEZ_|KdY%t*EN)G>KGf8lS%~9-$rAgSPSJbMNbHv;gHMX`0uBFDkvI4EWWZ$+(2gm_
zT$C3QCyt`3rZkbyf7kKBDzRGR6K>#$`2@~Zw=Br#U437_PYgqiM%E;5PNz}-G;SJv
zG7qwVCqH;CzUeWUkGxV(W-x{`c!O5CwjavJ4SNV0EI2|H^XABs7t}3q&4>Iz3l1kD
z)Pe&QWrM?CuTCO@1VeXq`W865rt1x!pELtYQ=48+$bsSOFR&lC#vkH}ZPQg)OtD3P
z0VH>oTQ;n~WxkV;b`K;NfGQUgQB>l7QrcLRKs%jiG7oo=dbOGK@@s;F^A!<5mzdvJ
z@f*sOTRhhS-0|znZ-=LQsqi{)TzYt3lpunWE;-ec^{AW7KxP2702TXnr+9R(t*K1B
z4mGygc)S~rQ&gp5^+%>`HqYd(3zy2ohPx0LVrVr!9bm#qS82M-+_~7<=EUbl4<HM~
zM!r=EC>U2CsIgbWpixIK9?WQN`TPX*YZ3k_uaE&MUneIg5}AeXUmZ{Ba>Nvn&h&qL
zMlzqM#9pM;YLGuGLbsyV$ihd)qIwrX#G?by<N#=42!IyGqp+ZXQP}BBXeduprF^`W
z7lSY<>B(4Q$UsH7<?fI%qu?d5$xbyqrMtV>O|9sD=wjlof#e{pSxuKz$a~}TVL=G_
z$x#&OInk5$EKvXQW^(1#8D_@ocwpr@N`qrJN6$>9(uI~kV)k&G@|Q~oPVxb{u`p`@
z7BwAH8N%M+L<l}FN?u&%J=C~Qn(h}L`+#@4<`*|m!(=j7pVjU=a#tx4)$QR^q|o3n
zKFA{nWS<aFzxj{_x;%ttXK-QYgv?-z!9*yt05-yGaZptBk7fdqNy@+W3&lA?%+5+E
zpc2!-rqjH8z@AAQI#Hv~7{%SlGFfVly=L!}_x#zzY>WZcodEdKotb)HhRgut_=kLu
zSO|=unca+1vF6iaB?}CC8Cj>4xBx(+)m=FIl7{5mR-|6moN^$$(dgJm2izwl3)BdK
zR_GPrQog6y4#FFq-;AHt7ON2%j@{;Tcm-@qE4<Wa`k&NY{#8(c{7-_4%eMk|ks(Dz
zI1!D;?m!_U==Q2xkZPzxxlxLe@T7PhE~t#rui0tf?L#G(%e(!D7YB>EvOnM{n~XC5
z?gqM=ZZM~A?b`Vmk&R4^5OCw}`WCc)EHI9<{z%}~a+|5Nzh8rhd$ITLRTau?pUYxX
zdLPB4wT2)>!^{kuvZetCEu9^pahY4{TpVk#Ek092+RL)B=3mn9L3<{TqV>G7s@eOU
zuipcK>|XCQi5SW4cjoWoQm9PwW-^Irc|30((1+lsh-o-~$J$ekFl07e1$GbrYt3Zd
zP}DCojtp%cE{`iw{l4NJpyjtI5yY&vQ^tbrrBNv(fvgi}2JEZMaOT%z5%WjQU**Z?
zmTMmZ;}DL`L<Zx!95{&xa@u=CpxJ6@=c2+WLu}bcz1r5aIGN4kfduaGPaKdeKL|t^
znyK?ZDdh-l%kZ4*hNb3jOGYOfWLMAEdCvf`EPQO`hs8?bedfqi?mu**1!&U2>{|tO
ziu<2lox7J`FL^0>YUYOF?{ziTlOYZJU&U8$^?!5hf;>4YHim>cj>dK3)}P8fVscJ9
zo60nGeDH)x&~1cQ`b`5l(voI_8`3b<WuRJQ<NZfU-&fN`zV+7`3$&UiG&<oJ|IB>+
zg4q!@Xt(eSIQ|CXbE6ijR$;dM&TW!d@@PeP#Y`mCKg{hRRnf8A>BoBe*1wf)iQR2$
ziGBY;L^QiPBaS>do|>ohp50J>@xa@igxDv%4(0rEP^*M0WeR>cnM44{$<FO0at2gK
z+$|yRi{{b-wRtNHC>r|5EkC$a_piG!`|f8b8d3yXGu3gO%XVc6=L-dQQ;X-OFuNeQ
zNh1kEb)}MhLC@oMmXa8ZI!@9d>@OQOnuB42s**0Im4})MI`dFK@;7%|3Q>D|%9c-U
zTwFSAE)4@zgS5W_Sp=I4)0-*sJ<(_c^ps4`CArp(T>(Vne9Aw%a^jQ@bJL=MJI7PT
zl@wqNvC#KdnT2p>mqKgBd?VU`s&oe|{WNLc1aKi)=x=t1n_1pJXagA{geO_V+p^g=
zLT)!?61ZlQUqs}0qUluR)i=j$>Eo)5?vy?v4!ldLS?5GY<&qhC3lsX^3N3&#VWa+Y
zJ6z<?W=lI5{5vWp()z5eKz-F;aj0~waZVzcz!UN&mT9JboWXSN>z5L+JJuLqW7w$O
zXZDJrdBXzIz*HHTPA5mXC3va6%WEQVT|^3k{)9Y6Ha&w9=V(|6L5E*!apaTaz(S-#
z5sT{1SE9x4OY~TV_QwiXi|@#6pP~KnAB_o!lT?3gk@y2{`0Ip%tb&yHNIgB&?4i6J
zqY=6q81fhx`uDk`d&d+^h)$isbD(~ah6k(4jvo!|-cyoz9kJ|9P0j8-f7T?P^lc`I
z9fgVpKsNkwnN2@dULg7pFy{@{;oHkip*1?eR+z{?O3pnv?Y-u`^W)Qpdm=q1xTX)B
zL&--ir?LOA<-jArd@qc$ITxjQT>53IVs{Kjz(1&|y3A0zSQ2I66HHZARS3*1LQ~ND
zC12AGL>Ts?$YSS#@MXAOIVKBbYzirSrG%A{Y5#9LKE#bc@|YF`TsgMm6d-}O&MZhl
zlNc6FEhM@2nsM+xTyvDZ@3ig@TWXNPB_qViZ<uSNf-;xsjI<E$AX`y&qYBdHA^A$o
zm|Z41%Nxhfm$TWMEVkCdKJ!Y+y(}ckf+-$~z6u33f(-Z%g`JE+@iP+RuLOE#cp6+k
z-d;-SKGF#kjikYBxb@^6(=j6a`4Q9Ubm7rN)&(N>^x(MQdkN2mZ)cy;&R!<A-NyT3
zexSai*?0v{kBjj=yM}DRL^RPF-JH#DD4rygA*xhAMuL2qKk=0}T3=F%X3^8<aYCm(
zwO=Q$f^$0AuJp*lvsVmRi<p+JnSl7h1F>vlm9Len^4!wzFLn0UH%pZ}{KH>x-*J9{
z;H26DU@hl8R6<qm#7gxljtS88lK>(b<BYwI=ddl$@9{|{yimL<&V7OC6bMc!6`RbO
z<>E0k-yn-Z{|Gnl<L!q4q5lB&=TjxSG0gX0{)=>BwFgvT#J@=w9hS#8*RJ1IV?Z6?
z7>$%MhAB7BdFr#wXI95(Bgu#C)(hYFek5vS>nM2^eCQsX1Hg+42zVhyNWV4XC^{7m
zKeL=al4iGFy1?PBuj{M;SJx9)^?htV0vN6ps~HnqqP}aMZV|Y`!S;$l{lSUh@&?8*
zPmfNfAZ70~>J`ddPb@Vyi}^Su)%RRkhtpny=W<1L{W8d<k!u5m_d5_L)cc))3&rD}
zPuvlMPuwrj1P_)dt(FhSxZDo}`AkYVa}{cfN?^ihgpLYd7j!cA5U4d>0)fn&I77yp
z<BC_a353y8w|h58GoE!J7{=y@L_^U9?<YB;p+!fX+*=OB*1eJD?Gw~MI@p!Xxa|jJ
z*5glq1tm~NnV5p*ln1eP+LCR4X}lz(DNOOysyuFFo=`HEGtIxzIrK)J=1&zf8J_%@
z;Esi_E1axs{}84t=&JkMY$Hnp@d44>wRn>^w(LKEa6*>(r2?inVK>6d5JFyaEUdwr
zXN3|f#E~@1{tBinAI!JL8c@77m>iJhviwp!e1#Vn31&oY8pNIwL<$d=mJ1{Q1t(EM
zbwXDApmZwbg~8LO_VRMg)XvyHJ=B=YpP`ON_ycLYG#+y4EVz?Ip6x(#Uh5!_0yf8a
zbPv$N5*h{P{DRlXN^6RA^5e${pSft#YzI+W%%LHx-5Y7pO&h=?hPl|5M0C9gwCcM1
zgP3p!;UdLXu~p=KCaX#&A{>VHranGoSt^X51{yruwwliur}z4JEq`l{N`!n5S7v4$
zd$Cad(2A)sv03hHyRVuJXz$`I9hbos@VS9Jp_2aHf9MtTWG$clmloh}+J#Z$-`a&x
zrS-pQ7Xl;+CUp9C5(7-$5pdp78r`~k)3O3%*{x{)!sLh3%dD48)C!2*u=M<IeOfT|
zMD}(Pjn{z9EA95YPBe_BPZAwnZiQ=fowl(ga-Jj^+FLk`rEY4W;jWvnp1VcCikuF+
z{vlGD);&-73N_QoA*aQOAIY3}y6vAZl5@NMs#jRy|2KLC(km07Q0ad|q)b(z0PnP1
zi5~D6xB9s;Bfyo(m`i-Ix>5f`$UK$eKNUZwzFdc&q^6^*W41lWD0RB*PX!_}al1jw
zZm&_?<FA%(AdSSzGrU?|2nEl~8`iUD@*sWWme*&imJYIlrbCMjzcQyVpmxr4=b)v-
zpyxqz2GXMZ$<@T0KLrOQ|0FmFpc19bK|h$NFxm$@s(6VLIL!_?fN1(Nw`t8n(lgh4
zE||%G)f^a8VZJsTR5MqGbIQy!tI!qSK0=F6-xQB7#BfdxUFG9(xb^lOU@r0h`i%F9
zWWy{V!M~jvlesINW-{`p=3rFzubKl>v)NfV;FLjqNUbsi^ZDn*n*Re;R_?<URMtq>
z4OyZ6Fw)fMEQM_DKcodyEG=<dYGuSAhnv&xz9<L6n|)wwZ4M>D3uQts+p@tAi*oKs
zlekdwBc1T{kA6Sc;tj);*FRUD@LC5LNfpOMpcPlQ)ZTl8Nhgb8D4C3YJ@Q*t&{w3w
zu!cYLjP^Sa7HGZb;h!60^@O#i)>D0$B{|?!DptH45n}uwbOjyJKBzjRp`yk8F;tq$
zlWmHSk%kMP#4;5W=N`#F2J<dvC^rm}7Hs_?EwEkv@qMs0@H;cy5<(vmpU2J7Yff&3
z4;v!M9`OD3{wrRLxVl%$0)ZcYH)NED{acN}5w#{+{C(Zw>Vtg=er;nO5V91|c)ZrV
z@`9tMr#G)S0D;a6{R6?P!{z&+(ddKm64;^{B8oP5)!=^0rzW*1$nh5w9S~7jOxJk>
ztCC!2`8SneN?WTo-DwrPU&#ALXafGz#M{q>QtR@`tCf%t6uK<GQ|qP!jKrSi|C7ET
zl1m64v@zA)3B2<rN)0Om9AO%7d@<Y|j0;?j@kpL4%ejkN#Sqg&Y}2{TcrCY+gAVU1
zOZ!69d#I23(#2lqh5lIGrlWbZ^wMPuq1<R(Rehq)8s6pj!O%=4=3FMy(k~AUVdb&6
zLWzMf&p!gsQd4sj8d#t$C>ETBQ(+P<8JM1izeM%>=-cvdWCfyfln?;Xi*q@8=W=D(
zsa5Q$@oV?4GtALkqs*6`I*@Gt8=cPx>8<tK-n#cWvK2K?Oh6e3xZ7p+j@`$iy~C}B
zVNz!{45Ml5@|jbQR<8|zC{IJ=Fu`K{6EJtgdqBy{v_0SQB=Wgxe+r7RK#lkb?r=WB
z++e0?M0ffw`7z_kn{!0@!3)F)W)VV1)@`SemGK0NwjIW~phBA|`UX(Oz?;RHJJ$um
z_n9%O_Ui>TXk8@2Ch=B6^#JgqkY8nhAULoEH%IVAh5Ek=L1Gi+kE#PsA1(8~hz|)p
zV9yVhMZTbu0jipDArUo!5Ba}W5=ixNO$>Ly79-T;ys{k*&>t)Dpe@p@C&?2Rk3MS2
zNYT!ay3Jox11)W7X+;5j{{?<n{X6)<hl&7nAO4Sef^Q%lUv63sdIL;_ytIF|9e*Z7
zr)i>CPIYtk1l?a+_<2Gp!Nf0wKuS>I0DUN<1&~>)1FY|&;P^=<!au@wxmOs+DsvoZ
zHd&2*esCU83H54?i2)E(s$riBOq{<@!HW)b0m1{W{#0x3TKh*V@OsTJtq0{XfGa3d
z_LOY!^3&peGCnSV<1(8rMS2}hE>vZ~UBT0x%;OHHkiLPq%%MPqy}j(4+8zpewdXn2
zN2KJeCHEIvZTElVBiVYff>x0+z<@ic&9Ic<A0DC}HRA*4;O}<2!XZsQ&bAM-qLqfi
zS3peuvX-m!Hs(JG1)^3!AGZOvVFv7fy2k%zBK)d|^+UApZxpE}6&s)NF?{qo!*e&B
z58LeJpRZ<{Q!9wXZ59AQtos^K5Bj_CA|f6;7?3yn$&#KYQ;O4XDT1;TDpP6`%7OkY
zLrl)OgIhOqvl5|>seKSLU#8N`*;ZBs#c7?7m1B&Sgan^CUjhAad)!kQ<`g)4=^W=_
z8jSLx{FUjD16gOta-<|opzBS0u6<zp(W~4a0#{)wKLF?ETsvpXD3h(}p6+f;06EU_
zimv%zNps5KB@!}V@<&kQ4SvI)%jAFdfeuBKmxRmn20Q%O>%2R)b|HMM=NlV{<Nngi
z%*G;@)Ear8(_)G}c+X)ivseUpy+Wh>Jd`606&5I&fY-9x@>eY=1YvDpY&vX*4#{5>
zf-hUEpqmFLJeQ{#w4}g`h<?=up<7AY!t0c-@sv3nu)gEG#4q@7Q|f^|bu^8tm%cdm
z<`nttq(VL`v3ZRh$7rrenTWRGkJv`hro~!Ei$JAgO7JOt_8<E`l>QP<q8v@-DgwyZ
zC0KdF_@E1*nFDC<byZ8+<UZ?k4Ly8&oPy@tIg)DMoyF#O@~L@D505XZrOoUCIP{XO
zWUYZH@nmOQ|Ap|-G3VXOC{_|vSPo#Ev26N2*Dg8lb*_o+!n-dM#|p(Va+}wAdP*sg
zJD{eLs$PxEanl-(U0P)*DKlQc(jolzvZx*^`y|pGy-5HENR*9X*&|IXt+w3;c!CuX
zo}LTm6qBEE!&CyDw@Psz@>Jk!kD0s<5&SsqjRN~y5HYJ>x_vh?k1Eb}@48OxS?9<6
z%6W?auqT>c%?D)7s2p-NvI&KQaL^8phSBoal0Z6nr7ym4Ov!?Xq<Dd)iiP9B?&&;f
zSPygULI}~)srW3Kod2atgrV)GTuq-BD@&er@;j*B{4Vs4rhpm9%H!b;f0cR#^-#a+
zfGd9b3%L<w0yJ-+1nXT4)j$u7Q>b3KxX*NVBks=BW6o6D<-|>SDtIFMI1XithUuJL
zUeAtI8CJcvqS%%4sB?Bdcp6h%3zILSRD2H)#`aK#InUpaaQ+J(&ZD9=f;S4a<wXmv
z;tNnGG&)uQ$hjJ2zOw$A$j71Z-sN(swJcleA<m<xsP5u9{GknR#%(&bcf89CB^Q@I
zE|S|mn?>X%LU0C0HrPBEwENs<bIE2Vvqz+_&JSQ0oViLolQ#^hc`Bau>6V&zL{YQq
z5VqaxekUIGD33X?XJWlpye|SY)avy_qr5~ToI6^VTWH6ucq@@K+{?cWf}1p~DhW~W
zr6oki=PHyT7i96Fg-Rr--3EyguMSHbszQEL1-T-qLJb`;59EHiVer90^mI6>hxC0p
zV8)-%mneZJCrnqIrokhee>?&)WvDdxEAi3{&6~f<+)W>#Ul{nuOaA@~(4#+I_qWo1
z(+YHLs=sr22SJ~S^sTdUJR}rYK|e%bffP<b@0Q=1gC=;*c<~>PAsvA)^mOy%ACr)d
z;1a@jU9a}5ID-FFVYIxxG-xutWw#q400o+nACtEYIC~SGsLqJs^FC|@Zxy6<?d<TY
z*!}~OIur;_5qm=+v^Tk5j6Ss54agSmBFRGo#q_d{rVRWFGxZ~Yo(KD7QwH=6VSmXc
zh`pgb!kgklj3M;mE35xKEkYaOO<WoMr(gK9Apffe3Q|RYQxQl6*g_XVT_>qY7#gv#
z60U+CsO#7Eqca>Hq$?2qc2L3s4Mz{z3KH~bo59nYb4V-OAd%p84UO83?OFjR_|Jma
z|GB-ft@wtE^Vc3{0KJVOiA5+M_#vL}aZ5J?)J9i^ZtaTz%ui+z;+|+mtAI}z7xe)c
z4MCq(7W#%>zkUvFf_|&%@%L^<$SK8xZA$?>c@oF2$qF9b{l_ElUeBP!C3)l<P*a0S
z;V+<x>%sJom;C(~phv%6SMoREMhWDjU{3c^N}CiKF;Qj0k^g3nfloU(2hEFg1dy=*
zpIHy=ineM$DJwU#cBKJ{1%Ox5l_e~Dk{I>QQ0O(eu;Wy4%V%$IuCakQva&pX;{=?#
z#9L7wL+QQ8%CDT*^T252t5R8fZh{t16Z*Gq8A!Y_ENd<BYgS@_=kdA`)1~K0)_}Q&
zdYPd}9Fs8wLJtVz@woZ`O5@tV?%^{tDFR?kd|ZAo;@F+QeqZ+X;Qma#t3NO~Rpm{I
z_yp=z@DFgg9>lYnH+}t*{=EnQl|RAVK~9y(H~4BtIhcX|nEXzv+Z|8P>4-Y(eo6qi
zUOplrH{XFbMTy=3T!cFymVOLQto89C<(5Mbfy7Wyemh&qF~Z&5?Lfyy`d+DCPe8`&
zh=582f?};e;Y)y8-&ht`z}fm~38PwN90F9iIr!3&3dv(z<3Og&VZVNtw{cK(|FG{2
zv?+X7FE?~CU@cJd1q$dzPz`3R@f+J>2eN=QP?7`YQ{I3K?c2n#{L#n8es_o9Xnh(U
z5@;P>0On16<@Wq`1a@aQS<C6HC;h|#2e6C7ArB@B48j}99h5L9y<2Azwcvmx0p=PK
zEomKL1-Qlv`50B=5amk32xtB{2P!+NW_|_e8&G@df)>?Y=h=F8@(bM&b@@E?VKb=<
z|Lvm0$$<)6#4>a9fw{9>TjGvO@P;jnjt**X=0kOhG#YV$Gegr5WyC`UTG6fjmBc5~
zJFi6s<tXnRnS;O*fgq?A^Z>qa8`Ex`YysW2fQ^o`4W&>`6t4FBcyFJSKV4(<oJXfM
z8?xLx*;a!!MVg31&J*T#SfI(ljrK^`JNaQ;TF>kn++eMAKP^ZC>deNV{H*k)l%>*j
zXQUqc;)KZPWSoH20Ar;mG4p3|)8)Et*PPPK-uHc7qrse{arPk=Fy|C0En@niIoHqd
zZBqtXz!hTFweJ9mXXah>Bh3(1uvqdG0)X@mEQyo?@cjLx2R<s;r0Gz)Z`+=h12=|F
zXbxlq012<DdlJ#Yf}Kyn2SX}}OL!ix%{%$dPqisv0p1$^5mhP85~)e$zsEVGSo{w-
zhcvN%4Nga5nxoJh^g_8R9*>)IL+jn9n|h<stV~I*Jd#Xi@u-Y!$)qMg(h56Rjm*)g
zB2?D^T9IPlF5NWRt$lrdA44#`O(Kj`MDlE@C%aHs3Eru2ybQr<w$U@hcC~k|Ygznk
z-=9b(S4?5Q<(<4jK7u%S9)EA9&YB=B>=BSQlLtgS_kQ(0z$lf`oAUO+<E!(cpCTjs
zoI6nbfR4pL(2sv_TP%i>nrbEU$xFAK@c{D*sptP`aLJgU4X*stp34xp=_nP-0uniN
zYtaY)t-7c8CJz0RUr^i!LOo!ZVM?(zTh*?O;4;kh-03dR$)Nb~L6i;lq<Hj{`yrp;
z_(dSO0P{b|1?GRr1+qu4x})g40ddlFQn65xplp>6!*lkl2g=Q|_~xfF(_MZiXXilE
z3z*L-3j>c01@F8JN@R33c&ke+^gB;;W(zEN?`<7a=p+!Ye~B=>^CB}xrZC+5xaot8
z?m&$Mr>}c1Y~9F~GjP2C-LEh!y|KAvM5_1rS9{bPkvqhBzLgs~E0?XRR&1uoEE+sv
zaPmsC@9gD9oZH?e&5GxBWN8b=$xY+{G)EST2|sIHkws9gzZ(};FLX*+-)eucpPl9z
z%jTShv)A_V6PG9#II6G`3a(NvLbp$A5>hmDG-%&O9B}Sp1Gz8DgpLkhC_Vs$VURyO
z_$?<eS9r_!e(<Zuc3kI-{JBb@umq^&@R#5JLr`$1o{pE+DL`iym7tawT+**L%ccBL
z6!smf@kE8H74P%o@no|lgH}DS-(Q~Y-tW^wVjD0$`R{oR0taMdmh)Q{7H5~!oHDVZ
zQCT9v@2H9@K#D0%HI{FsG&4{J;Cwem^6B&VX6xPk(?wo=(c6DD&nq6r98axUWfAD}
zK9CsL`Z+y$><dZddp4rT?ae@IPgf)@A{v_1vp<myy`Krq`ssDs-h3m9(m6lKgz}Sn
z4zz#Q6nvvrpq%(Su_5liB{t0egV^v9>YwPNl*<wX<j;lii^UNC=b9N_{91o<8@kKQ
z>3(w?o<ZCOnCR%=S?iO?ZY&AB^-ogH5lrcLLV=jraUd5yvNf*v?bh*dDfWJfn=D4h
zYGwqZ>8Y8?jm`4)7roe(ST4tt2OGn=sRq>(ET=kzf$FlDjv%!Wc!6vB!;4i?Z;5|_
zAIyM#Vh$-B3TOsA#&HgHf+Bye55012kosm(P?+!?SXc=V$crkX(Q2O|bd}<c_Yhzn
zK>hyX(dM;+`Xu!}QpA#!8KWcMJn&mh@FFds9atXVC7uFMWyfX|UaNTI_c;6bH$|49
z*=pg%bL4|h8r25AFhOEp{?HQi&Xwf<CNzADIB5&o+&k{E>`&Y|k9zKNLcp1-3(%K*
zbe5t#tw1M{Qo!YL%?v+MF!^E2f*oU2C>mY@cl0OhwmdU8Nd69ZjD>oCWAKIfa#X|n
zTT(DyV0?Hf%5<isz;Z2tXfZHv5J?JWhoLvhcWq36dvjU*wbHnSqo4Xr_D5{hLqHeA
z_N=s=6#G)@y0Db{4cR-*b5`?jfQBmbX`dZ$Kc2dSgbgM1S<f@UBeGD<^3dWmMMoko
zbS%^rGx8kU@0mvZAqb#Bo7q)SJ!3|Q{UHUt_PO_a>w3fUAsb>3fUN`7Jf$9+3iD@$
zJ?n;@DPV7s37jN<2JLVeW_zkMP(qr_#Cq}_=uw$@7m1=7NCw?x1!*n1Ayusx1PxN)
z!IZD3_HHA&b2txZR#dJY<_0KpQ7ue)9hohq_pA&$<1hh|>hWH1QLTRWJ&<5h{*%UF
zryRwV^#&KLqMsSB@55Duds0`_0`^p{Y&Egc&eX)F7*7uRTvUj7@y|x*YgMN(G2KDl
zy=AW`;zg;C=-!~$JV!b8)85NyAF6=dJZ2!_SwL^@27)M9&HETM?~c|zF-JS$(xp9m
zHjhAQJD<0BNcjIFjscB;3kG<EDyRn_Fy|iBsOozT_yH!vLcp2Zk?4~+R`Z;()2r5Q
zh}Btw)tM+DCuBx51gB|wVkT*tN8I3WnB=uRXiIzir8Q}J6Nk})1Ul%`$<RHgF!80D
zTlaqwz*%LPYPODUQX6O1{(rYRJdY>L-#Tjl4YRPhIa)09CuhNX5O5Y!eLRJh4jo1{
zm25k36)t4$pSNDvoAwt=Ntt_=J|^as1uW-(Lt2>6fs^|SX#ogjUzZ~#u{^fl7{*Ti
zQwHEwCrkMon#FO@t5)(Pib@G{)bEx@(3JlvVx3(GmnncZd=x-Dod;rvj>TnKH!Y+G
za-j~na;B(l7yqIHDE4x14<W$BLXoX=+E<r95_@_JOKh5T6cF+%mSMTXY#G<ua?#Iz
z?Pq@N84Y5921mtX!~)9qM;p8ZSHg%*G9BIv|ET{zp^!`#0TXR^#w?cEYDyW9r@<z+
z1PAl!3H#l`Tf>S}%Lwg2Zt>03)u&go<tL%vWn1rWI#I@}oi?|KgfS{v448fU`tmcQ
zn(pLVbFcyw`FDu4pq-0;*;&&R1pKCjK2y96AUMO*>N>0&fexmscdB_oV9HhtEfOwR
zd3Q0ZpjV~*(gQsyugzfTy*1$KFtRjTMw9#T=g2tW^1?HS`KbL{29=la>a@eM(vGgG
z%W~AzbOrdH!fGC1WGSsJBYF;8|Hf&h72Y(zwc7@g+qUJL_yrHpOO>OL9&q+1s?l-h
zmNL)de@Rtv1ahgi{<oxdZc3T(RrlN;!?0q7QxxP9!5pj{ww@%qwmv*yrdKUhZ*oR1
zg(p^n$^2@6nwn!o*0CEw5o1Jh+N@D)fO+@mC;nb0k<H#(5@UQX8p4J7@UJx>FA4+M
zmt&Dedb(s$oyQF4?o_rWWgd%qbRSjS99o$4*je_6zFiw)mu5;QLaO7kdE!R#Bk1iG
z&;LyxRH-$B7_mSv5QL86Li8=<U+&Z~$vWvpmT;$}1hjp8+!k=ljJX0s?_K^Mi|nUs
z<B0W_C)m2U`ER09GN){nQD21+aKjxWC<J)>`UQw}gD3(iSqoxs@P7KCKA2&$Vy!Fu
zc4kT?jh%l9=%AsKMPh))^%oL4E#JVvK<`AaI*lYQ&9VC3(67%B>$;T+h1Li4TkSde
zyOlMgU@Xg4XkR*9JsTK}Ol)d^e`|HR_i%dwc~7;>P`A1RRMj1Jxu4|?Q?3znuZO<M
z4WT`GquXsRox>4NwY=VbpLyWxYsNR9GjbUyQWP33BwD$$9OX_#Sy<aINBj0}Z^V5c
z#4?TGTN7B$PJP#sk|Nf>+mq@5+&a`L_jX!Iovvr`FeI*r!zqf|vaHi)J-%0?-J<bk
zItF#Wb*52-Dc0or&RHdY*3K9xF?2S+;hypJ5{pv9qpb6cE9a1E?`EBJNmK?VR@P-g
z@ZDyg<Xnj7F0r%8@}Zy^10~u92C|!r!+lJfXZ~s&lUJ-QH~D>5hwjMF#G_agU3jVq
z2=hIrKK@GZS!ROsN|e~_*K58eL3dv1sA(Zkq^DPTQEoD=XvmR=1^N%al;A&M*7-bg
z!Dpg}x;L0==<9z&7Z-ov!R=0mkHc_v_h7Uqmb=UW1zh8L9jW38xvSfg9rzy~O|BQu
zOsfM(kg-Ckk)PL}qLN6+)DTmN?TXeaKa}AU%)o}dlkqVv$1akpp1R)gVI9dm2O6v6
z+d7I{9K*6sgYXCMwmkX{&pIp&df5+SJIxNdJK3AzG^zRQ@7DFGRYn84bxoH2-5&!8
zbsTZZBA9BnG={z53W|l}5AE#A%6y~kW#x$3uy^BF9fP@k&aftan@c6lXx0sh_uO1?
z=V-J{(V?BmJmfVcsxW#{0Q;r7!N83~gTwLO*J9h|Qf)a=WzHIcX1t!4h#Pt%uDcOJ
z;?a{oN!J!U07pxzd_9wG1;D(-r$sj7D~~ul&r-W=_L^XoMzyD1j`hz(XA$94HQnY_
zVoz>{ye@@t_e}H+gLg-c#z1@9_}a?RX~!|^41Q<PmM>p89PWW;S2%~cOZCQvDV_e~
zp+vYlH#eK~=f{Y%c9Jo98Im#lMKv26fJ=CsCGFjK<0y0FJ1?$s&yhaUqO0)I6Z<xD
z)`P>f6XwVx|8!dPKCESi&6Yn5T#UGv*J$QZjisLw&wptFg5sBpYTeQ&kyrYbFHCQH
zH`0-uDhLzvE9MuaCerZ|?KjoSEQ6m!YZpyO!xsDH;AWW^Pu9GrIWzO%3&PAF1-!~r
z@;Fa6`KC$GQto_Qag)`n4N93DV?flssx`cR&*PkIT_(~Wji3}8`##0oa6h9)joP-Z
zWCVH8c~xbuP_{rn`#a|H;o>Q^<**HfW#E*CRIuV+sf>*A+{go)hOba1zY@?Add(Pj
zwqFkJR`9IMa&)PPaGI`9<<|d5Vkez*F2Pcnta2>oQm#lF7hZimve;khGyrEj{H==Z
zv*&oZbFIqfUfv9}^1?|k);Qf0OC=H3zPQU+f}IO`oz<zCO<lsn6DQ{kVcMVXctSRY
zJp>)L#t8cdZeuujZD&0!#{%!2><r5R_lI2*EtXd>um}(N{`ODZL*hC6+%@%2W=A=X
z81{ljHFnPX3>2H<ho1NGd1seBO^hiA^h?=_318W-Rx+K@+_mbi+Z89|Xo|T;eM-1g
zbHgQ0b8~MEW?`={J3kMQ!V^X?bHDR2*T|+S>B>ZQA~HRD_W+k+iYdK!W4rR*V^Df8
zogOhaUu_&qxbYZ_JpJK3u)u}bTa&yyBf!D+bNs5S`bEN_Q+orms^;#gNgCaB3~eoq
z+I)Px<96Ke!O~*GKo$q$m*B18g$Ewj)Fr{g?4Fh-iw<~u!nQwpEA90TBXfzyM!(p?
z*6_I>ZG1kiKHC4pZjj1ByV{o=qsmNZ$89r;^JCLi6}u;Xzf)vhQ_?I12JRlQ*WdmT
zB;#w^4Bzb(mJ$axN<AYS6284HcqaRFD4}AJG-P<J1+146w@%TKR2pqpoSWP@Js*^B
z(W&N+XEi7L=e}BnrLCj_p>Icja|63dVevAE)px@g)m8+}mjO!#i(bRnqxf)&#dPZV
z01F50d%EvgsS`?C1ThEtVq=r)c>rJi$`-hc4wmq1#28Z6u{-^ocFE7E;fcz1z4}fW
z&g%*5d|4>N;Jkov$cfUy%vCI16nS;tPUJvjm&$oNxLu8%A!j%XXQ(Q2>+v!B^O@be
zY-bF8<9HhmI%kWT#*>{?lZJDr#O3kTT5+Iw?kS$ZIjuZ$uZX!WVeSzs8K~~Ph(Pu(
zM4rA|H-KL@9Nnvt-$z{^98r3B`r+iWT(%@_GMzFB2kkp74K5j9=fs<D5;#0IpN0xg
zbH?S9+k4`9XuExXU~XseRPz6A#{HUrB$&i=C<484d3=roC5HnX%tF|N_vP)9`dQmQ
zMa_ENN{C?`yW4AtWNsKq(DvDHk`PJU5;qqO6Bf|vwo4rab#b`}Qbp676H0;Dnd|f_
z5O#HZxP6n==(&L3x$vyX*Zil&(c_0$qVwN`el#8~_eL8vKSvq1)61qa%6zJjdR4u(
zj#Lo5KH7)JYHZ+<aNgNISkcYskW8=8l#jwDGRoq-fu!<9M}=>dLBIR;#RHrzW0Y?=
z&6@>QqcZ|&a!irb8tRe>XJR(XU9^GGMWMTWi4m{vxCKU#DcETxwkS#TC32hcz*yZq
zi)ENLhjZkvx^SBJLBeh*p|MX6!0dYV8Sd5Q5GB@NcAs`uVE+vpueuc->d5uE#X)oV
zDY~8g)w|BLQN@zY-rKKJ;1Up)*#<o1rb|S;sLz#qB@^GC&c0H++aR(+uS^0?NX+)@
zw&(MR)U~S867ZghV&CF|1w^h#iq+&Cc4wCJX3gIHZF2vb>rS+MO?ZAe!SAlz&P`m)
zQ-ha=`Ao(K$x7`v4JhSvK19-~DRxCQ&Z2tRJz}Dsv-iN%5*cpTQ&$>qaIclmv1;VH
zS&{?LBF$RXUN2VHVEj_MaT7+*jZ3-gj&>q<BRDdY_^zmYVtD@tjEDIqxtfLHTjOPu
zSCi~rR);ZKqS=NMoxqicSRs$+xj!mlXd<VhXv{4awZ`pX!uU;gvIm3hxW!~m>$?VA
zsw#`g8LljI?2dQ=kIQY=+K?E~<*sUcmaXMZ1k5myc#gT`i_{f1xF`5*Ry%dSX`y&m
z2%_(8h-#uRGZ%Cxwp5{C2GZBlm``$(cE@<qNhEs=4l6Ji-n;_ev}D|2GrA}3?Pi0!
ztB}CjOUoc^bCE#F_o;F^Y=MVdYiZUR9F;M^J~*C|?d}77Dv--yjo+*uw%wxXeN=<{
z@O14a;YSj)fW_B+;q|dEf!uuu0MPuDeMh_w_iNH-x$)0&1v-reRg3CnEXLhEcuY6a
z-iicH$B|E(j?tna<LpFVMp#`(-i$YJpLLZ_RN7iB7zK~Vg(y!B8;kfoAk_9b)E2^i
zS-zr9cs;_FD^pfkzuxgkpohe*xeGLf>tEMY6crKuyWO4S5m;t&+hMrO`u(Ag(zNy+
z<WLF6=oP3GN?0p|Mf@gMrJFXVMBphmO}9sOud%ZRWzso%ylx$8>KXOQvusK>212Dp
z;y40rdzCj&!I%%TkV_?!qj5>IV<-&4T7q^oL2QS~O7r}oqWw@~OW<8YZsocE-cWzy
zQcmE6pS7RZ1HfJk-m>JMC1*!aNQp)vc2V5xvR6Y<!S-wzq%puQSo4RoH{~`%JnP-|
zLm?sqDA;>7ma?RJiGdSj_9?gqs5nf-&E#Q(Ws*I6ZG5w$wyb3ROr+rP<Z8+={i=0s
zJ$a$~u>eM5u&>X*PI7fBSh$&cdiG0Op>Hj_T0(|iG$(ityx1Q5lFnfK%_)|_S;xoU
zerEDC+nvTSLn?Xhlmofska2sd(E9NkCpTcqcc|b_%Q|J{dqng?Fpv98x=DK+cYLx|
zsZY>-;Qf%Mt2<ws2Pz(es2|#44`qS=UjHM5JjB}<XW(=dZ6JZ$i5<^Eo;Qh$gky&5
zn~lfHY;J1&Gq0LPea|?J<7A6Be9b8lZ+!@^=An9x-R-9r6@;S$862_>O?cN^H|!#Q
zcjJnP``43>b}nUeWup)dvDIv!uJ%Pte=>7Wv%`H~olF<`3FkIZ8@ryo;YufhOR-V1
zsXE49w_>#Q$}Y*^_ArIC*>p6A&U@vy0(X$zI(dDJOopv^-UxX8`1C&7OrUz2yJ*+D
zyER1@uImuo@1TokMz}5-Jg&;rFHu|5Q<CbdcP2e++ge?c5PzLWg!^?o$^4&!2=LI`
z>drl<7R<v*P2eU}+_&1T#OHCoY{=+XM3;wU1j}rygtBXw98M<QUA*cUC3K%hoZ+i2
zOYY%57LBy1%~F^CivM((YfS82VtH2%TxQ3lI)mWp?a9i!37pCz+a`^W2@!BGiH@R<
z?jF@j{v_KGKg}#kubfk|L@zDfn{cBD(q0BDlJ&BIen*%@InUT_mjU{VwWFrOG@MJM
zcd>s{KwxGNc=83qXnk>u%|Cxz$Z;g_4s1}do7SBRLPf=eMzmm4HJS__ekn3(c_Q+!
zcdayV*9uY$1&$&A`W!R{Pmmt&wcSfH_)pIpfiX(Q)bsr3Anf;W5(~p2)V=h{R{2lQ
ztAe>~bZ4CCU!u4_{=kPY7+A|sbH-Tz>3KyjFIH9lfA`IP{Q;e4;D$iz6esj=za1>X
z|NHv?@9O{mWAc9xBevfdI@m036jngwBz;H^H>%;7s9xtJb91p-?6l5seIz{>t!D9Z
zHQ6=EKSw@l3&Ba_;cWJiAD%_%tj8s71DekaDL61#KL<<3pCX73dZ6UfG^n5d40N|;
zQBz2|k=dK_F660!jVS!a@<BA<xOGafPCrx9u#dXBKAk-PH;As{#w(J`lkF(u-A3xe
z)gI=?QJd@I(eAiotquhng(eolLM3s4w!tmG7QNiq@RIEi4vJ@rkW9SQB{C1ePL62}
z#6sY9arbSoIlg<juiqWrb=c>CQd6&q*sW9)6>lM?TgmRQl`~YVMBRK+w(3C+qS0-!
ztA$%SvD}6C+vb-it^#>VQf@&v&drX~=985QerN>1XwjWP`x+qmVqAAR@%O&4il9bN
zMo`>!qjA4@Fj%GK*%?b+rPpDVJ>|3*WKeq_o35je_xhRXXi*qH{3V6+^~MS1GH&n+
zeqT}*AH#IiYsn<8r}ie?2}|||H;6>yy$RJzm%Dwhhr3QECoi<BM&Mnzug_XSY<8wp
z&X*R~85Sc#)HVEZ*U+A@$%6{)Q^%QDnIl75AQPx{JDe@n?*RwF1M%r?*F?`u@1n`Z
zR>wxJ>+LFVbbf_%d9o%*^aO!3SUVB)R3|gJq<QD-A{&w#-d4;q6M0BWCSH&mVHQr5
zN3fVrOolY>xv`$Rt?L}xvUwur@u~}4G>q`_b51nWB;Ov_C9vD7juffTKAyobrHP>O
zE_z*0Xx9j8$DPgam--u#uS<2?Po8aBpX5sICNWs<;44KAa8bNse%L{o>&|mF$Bn~a
z#MduDQZM!XvPOI8v$brV{JOM1_TE0y?x%>VwmO`FhOn(jc5%hnm$pUqn^)(ynWxnB
z@7;UuOun72sTf?3twi6hr%qUn@zhGPn35+fy#1`#n;<lpB~GEF<z7*poyhB{d2@OE
z`tWog91VPCR?8c#v~&e+=*AGieL!>v+*3NQAK1Eq18x)9LkN5DChkDfCoW%}iXIUS
zU$nHMs;z+(jaT-kLP#(XFF61;F->N@ju3X(=EksVoM6uHt}Il8;~_NG(y(W^V_xpi
z5`*+@7>d?|HWYl3*W&B8IZww!Hsk9_-XC;<PB8eLpIPRJ>jQ_FmtP>K66B?xFm1K^
zyGN>4Y7B;5+LjmKKrWl6mm6B!8@CT+*Hcdi9DqPDGTyR*eeNcLLLyX?{#5ix`4TlT
zW73wsqheGOuXMV&frD<jJ5qFi)QV}<>9nC`MIb%d^G4+WobEEtW7HhF2-bhbr*Nx{
zyg8}788t5vvqP}x5h09h@khODo((j33_FRPPm9OFS&eaiV`sV+eRz4LW?0v$Qq3@y
z+g5n2{p~ie<20sJeCFA)$uxy>b=e3wwZ;Pl*8L_0wnpZAVtv@#Xj0$KIs0oQT%FgK
zHJ{ezldg{zt5I)Hls~LrMWC`Me$9*zirsE6Xy<2z^Cb<FXPmB?N1vuoo)kJHoYqUj
zSR@v>90}Ab(#E;CBnK?nH<x0XE;X2q3lL~FwI9RB0a}1ix#crX6g(cWjp5tXmdDqj
zPYo-Zh_F<T{cU@X;r*zhs6J~CpR=+~xhk>s(dX~f?sPqq%aV-PVz=?j7`PlVb$9Jv
z`nZcQ#WFSe<SCvWJP0U=?;t<i%W8_~eF|+=1IP%-1fXV5OTbx<q<ZYdFR;8%fjb^@
zd-PMP)VAGW{Oj9#y&jk1r5}lEI}MkFoDa@VCgo&-rlYJrcn5UN$FIR?qV(8hd~A40
z^wRBvv)cmaqTuFzd6IS0a-L3ePxr@F7K<wg{+Zt9JNPQT9w?0c@jbv|HR{A%?atD8
zrEPMC_$uC`BC=dBrOBDb-Q+zs>GvGpcEbGg#?aV{eSy%p8#+Xds@nzuk&@z0mt7Ti
zsiNcOiygi7@x}KD!#w-o^f}+lnd#x{x56=;#vdFktX^vLHqC0M-k9k1Ir8nN2g94^
z-SjM-C+3sSblX0KH}dg=1eU+?ELF2lY@{8ETC?!8)v--4B?0w%5##EY_9oTam6L+W
z_Z0_HvdnUI4yGLq(KURSO^2}v^o=kHIxDRgUCwnDh0jMDZ^%Gxn2Cr@nbhUj$^Ltd
zCTTDFT8)H#3yRHVVO1QOx?M&B)^wvvM7G{}Y37RI>Y>!7^On(`CEMBwAcdlyH4B%Y
zGTfRf?M}WwSVex4#dB=;czx7U+lM?6))MSR3C)?oUA+6lN-Mj5JhOut)hZUX*A9n{
ztyI}ko~As~4~{BqHsgjGEGND;e>NpxowX@D#|jKiu){J;PHYTenG0HCf3$JMewjhk
zkjUfC(W#Lom27Y`bC)V?Dx1VzqyKW)L$=0lTyXmARKszc=)3!2k7rMg>n(%xASb`T
znY3mY7vb{)^WTS+{*7<dXhm98!Y-#9v2*N1oxe6E2Xzq*diA=g2E_G4U2v%X?7EUG
zmz^O!|1F%;k#OMAj}dp1n>zNvRE<r+c7jgRPolkdE}`s0rv`{ctCQabqk&CoPnl1I
zbcfe&>XX<IYirf4hrjcFk>&G)r8-t^(~CBjz8g{lBKL?1!01e|v|tk594L#qI+=9l
zoU>P~F>lv=?YLP;p3-fdOmB2wkz_r;UA;4{hV?G$BW`-tlkI8hYMWJ-TSBIk#!oJ`
zPEEQGF!na^_z0r%Nof)@C8u2&7J91Cujq2UPGht@!s@Db?st#i@L<q=rWg>_L3t3z
zY-zkP^g^;_lTUxJc2_)8tYMCAEaw=JN+GOsx52V<U{j+Jl`F-w(d&3!X;5qJCLHM+
z?oJ)$Hg2U)kZA9hQP^GR5Ew@;==%X+SjSUm=DaOGNDj<vIc)I|bIcY+Yt%Y)>4uC*
zGVSgZR!x)JuF#fb-}DogzUfRu$`jkD8P>MGpeQ5ryn!<yx-Llt#Fv%X-c_xX#e18b
zk6YWkUp0=G8HlY0Z=(;J1m!vKJfxvPId&wL|D5MwK4BkPxt;W~xfqK;$kVf0_G4D<
zJ$nfg<=N}jB-w&9Uedkevm>@dGWlemm;NTa0Y6E@PC6TVM0eyg8|X?d4lnS0GX~@u
z9xVXkL>NF{2)8^wZr}*G^<8fWJML{vRAcdsT`E@$OE{G7bFMn2+cwQvjj<?mnI^xS
z$$ab5a`zZck~#9_Vx#`IrQC2<OCBVwJ>dgf(v1j#JK&zg$ACdRC*emCB>-io=`#5u
zvU-+>Z<8mjKtfu!RL}S_$UGuDDHM}Bn#`m@{Tw;XR#Vl|hOj{Or5?8Ja+mqa;xWC&
zjFa-E;NWN|fw(uG^4lms;E);3c=*(Gpjy%%K{sW=tt{8lAQ0o&{B+<5ZK>Kq1AQwk
z-S@aB+oP5JSb{Znpge|iZWxsvJ`0dDKBK+363_8c65%(Wt(ZkU4M%P+tg+wlPbxk_
zViU0ztMwyAVxej8eza$zX1~ErMJgQpvga<c)b9*7`;zVVjVjxV5Ns_c#jJYX;fAeO
z?k`e_inckOe%vSujJPtyxeL7Kj@e`}IM(8w8ZdS|n#8T?NRUjO$EQ^Tenzou<Bn4%
zd8xV4;+T7??ZsM$S|w|?oJ-R+_JKpWD%`LklcqLHIaQesi8ThZe59qMD00)4M4jwG
z<x)51LN>_<2ln2>$<(xS!=v0T393i%&46qghvt8Dp7N6kA^w&<+;(S$ooHi5pWV+T
zakxN;dVPA8xvbjbNer*lN$7q54co<y{NgYbM&8$UxzN=L-%NCej<`#7d`<CFeJ|QU
zRpy=(jdqWFwxzZ`lR<3hvi_FSESwzRe?<79xLH~yww?>`)G``o7|pvqI;9%ILo;j*
zJ7Qi4Ci_WXFFyfLK|cmm4h=2Nbn@47@M&v8V}ob*>3dn@Yrb~DM^VK;R9c<?IZ%a*
zWlE`$Rp53OW|<LB_brRmSQm3|1CD=0-KWMV<?hcLGWjMofM)^8=kjrh#)E?N_vw^i
z=><O<D{-S&YKjL5N|lnaQ~v1QX0=?MYJ}`Db{Ez$f6ZQkI2KDvcg^FVy^%ZAKrUy&
ziw~+9C`tt<61M4?03l&>)G<#Da$ePrh1HYCNqd8VeUt6gI>Q{DF1zk&hah({qEX9j
zNLV`rTU?n+MD9^zmCLPE>0y*fq^UxdU^?jRxrcTOu1$+E@06=VhWmjfMfhc8O!57K
z8}-+)#U5jhdmTuJ+YdJF`{L8v#Q^aAjiWu!#J=uh4_mTu)82`8i6%U7k%loh>_=7#
zYnM(qcV5JA&Tg+0N!~vlEUOARVix|6Qc4P{7ond(av@^BbGaWn%NO6VGeK~lFK$&G
z6S#GsE3xztAc&2+o~eBtwDfh}5AVlw#(X=^2DR_DbMIXi-&Q;_)~aU-JiYjx-5bXj
zF2qFx_f54{_E$2isl$isT37HhD4U}bw&9X-XTkLWXK7^AKO)gaK1|mm2Dj17RTR;3
zV<q0SAg3m_V^PhyZy&>^Q3se>GrF+mZjzE|whX*eiJ_h|KRb(Huqv@sy?fo}<M*}K
zX6rj8W8)?o?-lW#!}pqQ9aB;v2`>)!FQm{G$mc4An@qVm7!<SltRJ7K2fIetA`}PH
z&498Pbo#)l&iR?LHv0)Ewz{Xz8;S={U6#pSyNXYAgDPch@{a`55Zsf-?Dw`38<9fs
zRp(gUKV{-ZKA2py558bdIBDU|20PujWX35ay%x6eb#*wLX5xrwHeo-M8Dx~QIKgMv
zTQ416aTEz53=3EmN958EOR#0_JC{DC%V$j0G$i0TsW|6*mYZ8Wr5PC3&}OB^JNXpc
z+$djzn;Ti8c`zopxqXnG%S@`z0I>TktksS@q==a)Dg~l9N3Mpp$+Q<!Kbj3NQJw;R
zIC(s)=TkrrV$kXyX8oQjmcvRoax-wmEKejmxTv_dl)%8hiZyI}kLf!yQ<Tre8DbrW
zs^#VhciLgFiB%l6D^@kV8p~x*QAJ)|yqD7EsP^;Rw9#;nG3_X6{@6q6HVzUM5pqPT
zR5(pT=_A1w5&h{2=0{p|l>4|2bfOqL><##^#gZRO^e+ir`T1^J!xIAUu=66^w|~Tz
zjo4{(nz%xJqxwpts&~M$=5w6K_9U?OTRFGcT6>gx#dj_}{ovC2*6Z|(pHxT6(+20-
zSr605quo&@gFZFl_xG`1Y8{UZTx-<uxQ@fm7$)!10p}v->w{z>=BbjNizd0vLH00v
z3q9H}zg+12l=#9h`6%uZNa<si=#t&IG&G%dc#$eUuJ9}mZ^GpZD9JXNx;y2%Q>#8t
zu78qldz628Dk;CpK5FTMKus$AAgc56?CYZhG$#8uIj%8fK^dBc?7ZLmjg{=IzZr>T
z6u(R}j&KKAI`1Vau$`&*(X_t@+nG8XEcLtoy{!fs$8m47R8Tq6;a5c^;ClGtd4KVd
zXQfpx(it44yRGxe593(&MO_?b8>h7QUklu!0?pAedVi~aRPXr(&(+*Dg5{QggyF;I
zbM}5Yz|$-WolNX??x6mU93hPqsbbhF*kU~C)inLyls5w4z|<H4PCme!qlc=(WHjp4
zdpGZ*lhoglBW(P=|I^-ghBdWyTOScbQN)I*fS?pbno122P!WM3y-CL-O?oGQp@^tQ
z1XP-oNbe;|z(`9#M4I#x>7euwS|F5A?us7J_xsNK|31$>{DPgZ_g;05Ip-L20UN+|
z!o!;J9g_6CbPDYj9|>oqH*}HZlbC>zrG~o#$ThPqu`g}U^pAsB=vn`imuax52KW0Q
zsiBqGU45WbAFb!$o3>tPsgiE+{Z@fmnaHHiYE?s_FUIMFjn*Eg5Iu)4G>Go=ceRI*
z0#M&_bMnEWy1QEJZEL6y=K8rD)QJ5k$NV(5`^3pJO8U84nt+>Np2H??@dBJ=D9H<s
ze0O>+^j;79MeblmFzdWw2lM0==%$6dL9uNxL{^x_RDv9M((cgvM6|l&v}w6bV3F+z
z<?%z^loECC<<iRO#wd`gDWCR15}qV&oy&5&u8s^#!#6^YwUt#cNv(LvPH>fYL8M=H
z67m#nJ0q_+QErTNT{|#5xx)p>)oajJmmME(Kkz|S6m{jiV<bCubS(tH=ss5$dh(cR
ztoVjEZ0{zuo$HSGWUOOgt`n4du#HF=_n@ukub{x1;);oDeKgCOL#q;g(=NaPLZmzy
zpe;9D>QX6#=c`Ple~D>fSzm2YnM#ll)p)^tak$GT?}*yOx31yaLw|&yhHC9wT4}mI
z%{$!1bV?RE7tbPjr>!l~L~89;yq(KF%PMl)nj9;%t@1FQ#)0M1u!kBc$*jdw<Puav
zns0d*DmuL-+?;c93ia;5S|R%&xabP!s>~D)-Vb~v7J-)=YX@Jea^#xTVpkxjzC^$E
zdSmtVE>Hf>;%N}MiqOii&@AHvu14mwR!-jRl)%=fBUn^~uK|Fg#9pt+S*TB()e`?;
z>13o>j#;?yNiO(Y$pv(tDW-m@-hZLadGBCwNQ}y?47LP=bi1qwa_Wl-`#pq^h;}>k
zAuK|9ws08jePFi2v_G>PZes4S4m$uxa(&Eq%DjVc4-4qRLDqfhad+?ugLZjLzBI_!
zE>7Xm5VUpdll});5uFu{2L4(obi&F903>0J<El4Itgdr}j{_?f`VUr2m=1^pFGxwL
zHd3<?HLgSF<@LPZ)izp*W<<Yp3XR57D&j0i>sDzG))=%3bx!jcr)62Ryy3cTlkBwN
zaa3X(b-(NYyka&tCTu|~=CRV5_qKoJR<(D8p5dJ=6=F;6IBL_jCW`Dhw~Fg=7s~1!
zlWT$Dw^vVU6q1X_zjY>p;qTTjseb2ve17^*gHjtkEdVwMY=0S)S$Xul_fU}>D8i^_
z<DEa;jXREKfDagRbZ5zLCY=Kj2v0G`8?S_MU%A7(^H0y0Pd_vXiC({DKigZZebzhc
zSuSZVK@ksGl<xG%4GfjVnfhgyLGy#QNy4r4t_4zKRks3ZOe->Hdi+0qDRyAC3)9+!
zoCNEvk51Za_5~1u_aY9i#JLL<0{JE%#BU}mo4+>z-{iqQ%NJ6lt|x6eM0N4ZmnXpZ
zNcfeg&X$X$PDT5ff0s+7jCy7Ebd*af&KT7mofVtdPGIt6=k}O$osH-u2v}!v%&;0c
z7F64q-TQDqh??mMjN}E&sJ&UTHUuoAn-|ULoE$yFM+w;V3|zGcG95%{o`y}fwU=o7
zQllsjc|o_ul%gCDeM7J!!?hI8l?WoG-$wusr8l0QwJLW)kEI`dixay&Sk|6Okqev~
z+Yisx&*h$IMv5R1*6n5FI%USf#^_77G(>aI;nKi8O9O72)k>P4GSgU`7HUN4A!B2E
z+;>PT{o$=a5IH)rd8T;#{PkvnUJw?X77%Yj8g068{DQg|2i)czpbw+;Iq(YIMG3N-
z`6q<Gu|~1x*bHZL8EjH!55YZTC#ZyjCDz0AOlMz!0~Q*_g(YIW-)@G))5Y9at`Di*
zOIL2_6dq&xQk*FDns-TF2ANXBQ1$20`7m$aav81E=&A6qr!z~pjVSZgCA`a9o};V&
zO&%#DWntei<Jw`Ow;3}xom&jj5QV)Zohy8pANcRU9;a~u1LA$f{)BLagK`moo6hr9
z^p)FLVnt(5pau$^7tHM;NN4i(%By2U;5YYLa8RQ-B?php^R9?|S)k&Kv-^QiNtajE
zTR0D#&haChx8IIq06spmrd4#u1)WIBrRXUn55kR`v5yhXE=AS7jApQm+uH(KCvyl}
zse=ze%hUl)Na;Io(-(Zxa#QkS`>nw1Ni}`vy*uo>SnY*62nA(opacdrIqD=1b@|3G
zvYo-)u*%_;6@c+>>~7EXGD90la!DeIX`^<Mac=g4wrLY;ESFSr*ra^4+)tEl;};?r
zZY6@)CCHTqm=HyXMvdhqZpXy#1)KIVRYWhv!Ez*7V3fb(OTHwHkUYBF6&MqI**i1&
z{hOfJ#0LT<Wit0T8paO8i-pbXd-$k~2gE#w=ILg!Y|?pLd*cc*s=}9CC*O7UZ8-lA
zbSFQMxycb;q;A+UR<0iGV`9#Zk2*4c_(xF9X?R^nl0~t|^Vw*EughFvFVnJA<9fht
z3~J3;tmoamGQ#&_@#kc*TVELq_foMn4efrocBS(85vo<Op<Bvbtx;LkgUz;Q2N{TR
zYupE**6QeaK~S?JI*h&dwZEMP9Fe1Q4!2d%hrQzbbdt@<(A1x(ON~v_ssg}$)WIyZ
z7<QOKc&N1=<s#@)u$(~8&*3N9@%(ewWtB|Bw<noZfG<LvL)}qULy(4UIvo<O-9Pw|
zj`Y;c(slC^F{hZ7s98h6=SS6YkU~E$3j<hJ+#ylWt)y=9LWzZ!K^KTcE=b+bR)JxE
zc&kS2cd4EwDb;OO+uwKMq2X2s%Oi$c$UU$8u4$HimjA0@BzsOhhG9itw5c@q?A^77
zV%IqYR?~Tlt2e@~GPgDkc<v?q9Rr1)O*yn2i^j77_!9HcZ0#YX`agq@8D9l~PevJJ
zYIz^VA=Vt*t5mInAwDUsrS*|%m-Tk};gNdS>))s(Bv_kfTJP7}clgYu9=B0ZCW7&R
zlr={8JY>SOzbua|U(p=5I7qMc?oS?c$@a!jRhT}@S5<#SpB{`8%An|KFaFd^<GGn2
zuoZE8fqdww-(!d@b!EWznCvGEzdUZ$OS?JkvnA6L)D3SG#MF^ZD5@XEHm1?bx-uru
zbL}RqX@n{>qNepT@Qz>Yw@~Ri3m+GoB(_ysO|_h4$|vn2jqCqh*%S1*_c~(E6sj;$
zdq^)Kxfg_N>f*Vc#HvOxz$0!vQ>e_{<kKp8eH!XWhi>)`LT)kwxAcAUi;;~rQhU)t
z#2%JIoepB7t!)bs*YQ_hVz0gqo=8DpYe)*Gl;7TEN4Y)95BpMqGtR#01}Cg_DZF(Z
zBMaJ(mRoJ2`pidW@*s(E1ci_=Y=@`lsUldZky8{nU9?ZTi8j9ZItG8Vs@F--Cx3FY
z3o-|HJq!;r$pp?-7pgs+Z8`eHC7rMC3UX=fkcdr|Vg?V@X|eQ)xB7|rFC=}Hq!KmY
zk;)fyG?AdYBV&041VQDpDCVV3hJ2fqvwuAf-v@;*vx-KZtG*Rii*f7`0O=chC)Roh
z6Z5?7Sn{li9{mlv^7S(gr1t|UsYAs!k^=>*jY%QTrk9Miy~*BalP8|}H6i#@ZN@7z
zRJ*~gPaP~DD~J#ntV*uHj3y&kqCO?IS9T3v>Q3n8tB;Gxzr(d+NeZq6dHYvmjnU8C
z3dGo#-}@}XdNyiU#<$D7h>@UtB#bDvoTl7y(zQcXg6=_eD!;m2UAg<3Z5yY-M2>(_
z154qgaZCo3X?^;rk+J?g!DDF?Fcx)^*<`b~b2BPN8aL|)s*jqSA`mgRc<w(~_^5DN
z*8XipXnfLb#Uv)SnS)uyOTdwgm04gXIaQ1o;AEo?JOUa&JHO1-2TUAN+;SW96(wi$
zQv$>NT9YYvET>*6T=fElEsJf_ElT+#B2gNeu*ge1D?{4>?6kJPbfWI^e|<X2mb?5|
z_&x0N^KJ1NDHeF*Ak?y}fteS6(Ig{bX}Sad#s?(Da4|R5+;~2O^*`c1<2W^mK6Ls)
z$F)hDc`Y7>3wM;Vy%O<h1|fQ$1MAG=AcG_pqHXHiRIF73)4ktU5CnDAm*@;`A4Fc|
zyYAm_j0t?R9}piX-<Oy&dDb34JeRUcaK0uFo2ue<q?PH)9k&kK3^WhBt}V7$u1%=$
z=;p9;11T;zWj!-ygN~sAx?=IZEP2FnNZ+^q5eQ0nG?nr$L$-QzD@Jp2QPF*lWlaJp
z>0C#b`vmn`)1?WbtV}u=Bg}OQ{S%j}gBV%6=`33bx^kyl{S+t(N)5eJCvw1cJgv*$
z^hEb3fE@O>e|H$3iCFzBQc!=;oj=>@=;ZfxuN#@q+9-d$nM>%o+UKt*q)QEgjFH#U
zH@(yp)8q(XIaJQZiRF&wqQX>4T*sQumjdAvdafR1P_OJkv7oM$WA!yTs2evM*tjFA
z4MtB<ag55v;Y0TPdKbAA!`ajd#U|Ju#fv+>*caX{9+C+is(3;$wdK?-aCecutPCi=
z-Vv;MojD6HK;>xN^2uC+8gB<9GLYDvZ<MCiG<`0-(?=wS)iAX{*s_wfP<|U1xGzJ`
zg*9?{ic$)SB!8UA7<q<OHY;&0k(^*#a`JEg<dp_8dpxVf1){Ppi@pbLq@}Ir2U@+)
zi`Ci?n<<a(Pq3bVbQ3)+h#)jJ(<*a^-N!Lr0$~`9z;ajdI?|X9Tn~EDMG&tKl^C=k
z5B(qwcS#5a>8>wxTnv3<Yah;_o+Au$U25}zH$UL>{Rf)AJAXe_|M9is^fF+}QM|5E
z#tsR|FKY*719eM06W3m53_i_N+XrRS{Xw(x<@1pxWy;I%Sl=&0*DypQ#EQQfx5vf^
zSvfPl?Y?#Ssu3%Z@bFqKb7O%1UZYKNa5H~?>Vii@iiSd_WTEWk89XNZIji*N8P{x@
z!L(VE5gA<Gcb|pym?pO-!&4HS3u<pfuLF&;!)%*jig)PI9Ko|xij7tZAg#b;2y7x?
zyoR-|De|yOZbTip*uU?O(v~gx+NOhk{6+2KXLGimirNjf3nXPY1pp^pThyvkiDI|a
zEnZq$E>w3sZ}L2c6e?aH;ZYwUAi*l_mjcl@l=8B_fVOTr<edP@DMy!vcT4n5xgVCw
z4+=Bw(v&jHz)BnVkm2VnprwIg3e`VjP;28CieRGGpO8Y`lW9uEC~gxE$=2(&=ro<F
ztK%*ekAXuh4C*G|zI+~Eg7)|lc*(vi1L;27uDaCZmXwkzXWbHaPX5Uu(YtCe+~ZV8
zZ8R!u7<t({C-%FT1_W-7JK*IJ8SC$2is`1;sS=6=qWp%0wSz=wu2u;)QD;Bjep=;3
zS^1PC{k_-Omk0BdQ<DyAJ$4(AqD;vgmQa`3)W`?NraOu=+Og(tuL}lH3j4=w%_i#9
zDx4-a<wN3ed%OQsZ)Q5P$=cQS3b(Ns5_{Y<Xqg&3??IX4)85Ec$R$82NP&$R?bG7!
zFHYB-%H!_JyhfSCTyXDv%hGZHwVr17ZtiPxzV%ABjVTMQ6z@djg{C-}sL8!-`Yh&;
zSi1_e^>2mw^vzV*j99mqTB2WwL0ED+C|Xf4<}b3{5D*tiY`T%=2rF7C(D%WfTJ+FM
zs_9(vllJ>|q8=$74psOIjaz5yDRz5u`egw}0DSpOb?AXUYEp<#6~xWbkuG5@Aa3@7
zhSog{h7frH^*vlNyH2p2doy4~TY!yC2FsdmN&eM?wZ-_O8SBh*$ITEt@!|y&akxhp
zj95q=bY0I*@bOYJhoEqx>U+llHW4?*M~%_Boc^Y(+T8`Fma>s4oB;vq0eHFvf1XJQ
zsI6Z_&34AdJlMuo6k4~;uF72wqq3l$9tT!S5~AsT9Q^T5tgm?%&f&4RfBJ-a?VAp0
zkeWK%z%A;{{^48u;U)Y2={j}0lBBZDI*u!1{tKOK4~=QTKi?IgAvF*U{=W37&EX#(
zd*oU`K#bjgd8Z>!wW*DUy129cm)nCTpZSNz{AkF(P5%G8_1{tceYX5>n%GKVG);y@
zucGsNX=RG!wpZnwx5@ErP}iHE!+li%qx1|5ZFpxEU(k~<QN$*xMK0YOo8Z#sB=r|S
zv_AzSM>qh%X2IpnB+t&37w2goA7bSL=-J&PZwLwD3Vmb42}oWZ#fUs{+xDW8@^wT1
zvNhlme9GZ3qGIEpcY1M%n!y=S9(%E~BLu>k_XFM0z0RZWnB;T}4xg2Dt~q;k&m6O_
z?c}N5e-of$oSOTioV))vdT#g-d}XFbuq#)$kZGp7&oSc98ko{V!2q`zc7r^J+geYH
z<TF@$MyCXT&IzFz!jKbgo7c>~7hXe-3ZsS=e!kPEL|~jZkRm?Mcdl?71*XxMPF%-H
z5V`owM*K**fRtra*pINj!%O8Ofs(RjcZuKoS9|SHQ6VhCx5{zx?5V_5G@~%VwZrQ-
zEy#xlpyOg%;-Yt6dk^i6{T~?NBG&bnfPsB$=bPupP7TAh_RawYiuY#d^;aVLLR5x^
z!d^q<;K)qR+$bqsCCxgV<+etGPFwa#DnV+tK0%=Xx8;MLS|d$Zg2K|S8(**R>1O1u
z4NzS;P{NX!<3763xsn;52*jD^*?Wr*_ud8y7-}-rRX?L_>@%yA=((kyIc&sUdU7M+
z(?tQ|I&DA3D!;e=JwlQ6b;dx%V&f|&O$BcaGU_YPSXF;v;}4vGmcd_P>ZcqnU|LuF
zbf?2OU)-jSPyJt`mv<T(ILbLJP7T}7ze5q_K_L|7*49FWT=90&*kDTPouDW;>z0P^
zjD-3v1m&26E2&AMu@f*_l5Yf?9A#pa0!(vud#Bvw#c%2SO`wL%270s+DX0krHRmIy
zIGSF8LizL#@`{IW8(Lme)!xm%rN1%h##Y^kysLJc=qp*od`<u7=V$r$uCKUx$owV`
zakc~zCexmYCxg4wfDcybP-&D0KM;Gx?u~<XxzZjHsV<xhK+Nv&4D=?!%x_JBDl3rN
zT1vIRUO-z^tjJQ{IpLr@JkL(v)~S8gMc}dP_9YG(rP>N_&84KNc;$i&#ic6Qm$c<Z
zn7O0uQ+CXZ4{@^IT8_%TAt1G9{m{A82(PwSUyD6jrRTD*e2YGbD@yE$*S>zALkbLI
zQGmjwqKRjr-(5Z2id6R!t_R`WF?hfPg1k(kkg=_B5g9N&VQ&()Y2S7y+nJYo6NIF{
zCIBXp2u(MHS$^Rd&sflu$f()&dQ1<oOBPiJyd4K9GJ2#7zuqV3k9B`HX>)gCqk=~z
zDjHL(_I7VC2$Wk(dA^)5g|`(YBUrE61e8NuUk_LT=PnvTVtJjUAMzNtMzT<MX4~3>
z>Lvl!fyGkROE4ET(Pq?O+dE^AF5PkK<<@Mzi+`_wu<915lANK5@E_dLAD8Q4oH~`c
zZc~R@ufRlK7dIsB*|hA8uRad3aW(=6jF2b*+9?Bm#D1G}w=Pd2Il=q3;)-6jPSv2}
zTwtn|kg;H{etu-;n+F2spbCs1Z*a&7v2c*1ISW8GG;{6=N4c=D%u3=-hcq>$A)up}
z-}+{I8fyFK(1Y(DzS7o}lz~_gtum|S0Mc@E94Y$*pW&Ao%>D2C?$6s0Ej%`zFYmnk
zH5ir0@s~C7-Y(WD(AZ-Q-o4om5Q|jRwM`OXT0`y;?C%W+@YxLR4G*tb0%A`}RaW%F
zHMe@EA%6~M>496Au0>Go3Km!n`GTWL-avhS{DzU@r|Biez>L7wS}sO7dZO-}N=&}E
z!(^7ZgOTFozDuc}pNoWK-0vy2%amEvVD=TUt}L@1WAHB3tPb#)bZ3@w2#!8}0sG1|
zJ;W?opJw2f5Ym|+$o%x45qH)mprDilhzzUdydzDtsE{($>p_`=y^a|jN7$rY8vJHf
z7w##Op>E>><1UN_=)s7#4GL9V^QCX@wLihQIGBOf><_{A-9%_xt+iTW^q&fg^h9f<
zPj~|;1ODZ^6bu765#;xddk0IGryJ*ArZ)Lijk94#FU0-^24w*JTaJuq`1NKfN9UQ~
zNZ<>w9FX>yX5}+UQF>V7j3kaX#jDF2EqUKGsZZbw>X{qUUsr1Ec4)$FW;)KJB-;ak
z+;J8tR;ZjAn?z)-`^ZPS`e?C;3Lq-Q0CDHl`whNUax{Zag_t~dd!|4VEGYij$kuba
z3u=skTa12=b?=k9<La`O-$B(=gXvBmNlra*s*?pMH$uL5rnQt0oZk{T-E}Ee)eMAt
zWd=TEudNJ1eMggRnP~GrLNLU)=YXK(Z58=Fl^9*4q92#&u^#-O1l<$P$Z^GRTGnuA
zquhgVGFuz%(<*-Tr!lx3F0FWm&_Y}8*evwJQ~0?yv;n&Iexo18u!B>dssw`QF(gO_
zT50Y!zuuA<KQ=2}O}6PRPhavbPV7-vJQO3KchQFZW!SI-9-Hbu*VfVLyEuA)&!_?O
zhhfq;HUxp=#PRvZ2%nxkJ2zDlr&4IgbzC`j=laIMM+|UO1=-L5<AS!Rn^!ldtlOa)
zzG4uh2C2r8duAbyC<Vo_*&ejCK+-oJSi=R8i8zG&C;NgKgHfP)+kZzfZI9E`Rm-vJ
zaH}{e|Lsk$`dC4?R@tqIo{4m~7{~F2RK;+mn#FXY!vT1;RI&Xp1I!P`#lk}ha%y*6
zuyi04=i^T0&E*Zur&E)^vR|W{;_F`396Zjp!D8g8w7!I0a}Q^e<!0(P6X$LQM%wAg
z2db)R2I{QiUL`JgeCYHAgbywuD~w7e{UPnNz4IgOwyNQ!ElS-TfLQ5I{MrWE#B%*f
z2MyV+FRa3oHBs0^0BAiOoD?fr7ds30?4lBTDwrW=k5%r>-@w)5&LEGb$$U{mWBiNR
z#qN)GEW)Odif41E4ESQEQo!R(SvIg7?1!|cYx}l2Y^qQR7+;^ZQ7xcKa3K%z$xy7M
zLXMtq-IhV-qf>HZL2xtyKc880N+<A10e8Fla9}kf+=CKs{pIB`9+g;e_vv8zT%AZ1
zPBu0vM0k0IC%^B#1dam2Y-3xC=~TfsSsb7@ul$aCJH1&6`qvc2olPZA|3s~vw$yyR
zxXurf(PCou>E=W^VNlvN0+{LE%^hLwCfX7Gphv3*?ThJuy?zTEKaytA7;WNMK@>-a
z?!%11STGp;kkepk<Kb5WZ03?&@M5g=+?R_435R!mADl-Xp03FasT=U@BWjg7LhIut
z5(k!2f)kZN691TcFv#u2-eui=BX7Xv<!vD~Xzto*7rrBEmAUkjY&|)0{uCk~pLSsu
z6sDi)wrVlXM&&CN$ZYI29Z*(0=s(|fyJRXOo~Aq5VLHnknR8tQhecTQf4%bClH6ob
zM2p*Yr$jAH4@gug4POhL>Ms-HD6pD#IZ0!xpBWRnJFFIbAUi0a&QDLJQ2ao$pE4^e
ztE$t04nMAWuD7`3cG;1f^1tz-FS_ezvOd}zbAc5q2=yVq620F}o2RBoE-)>=aVwNf
zNZQk0y(n}R|4v)KEf`;DQGbbwEZAh-HS`MZ2+gU*a)aIf6(BpuZJvR)UF*&>&AP)6
z{o{{=H<fQ**RjOAn7yAVw68fsB7voLk#2E(|5th>@3$Z(>pH*?zu;q>Y57{_{=+4|
zvGf26b_2$7zo#_c+rFnTy*<w*HK0#7OG7h5E#C1gWjubHs*{jkSd`qE*a4NyfCA?m
zoXA;9rNI4!?!(AR54_0*x`WKoH-bZebR&vQ%3Xs>>KQ_K@#fs3@;ov9t|8f6{%>X$
z!3l&4#%8_lQ=?lHei-%v-EGct+p)!fWVcU@Z>e0apZNP);W1!Q^)e%ZehH{Q^wR(~
za<t~X&#_h>TmAM12yHQqouL3T_5&LgRLjST|GM@~&%9=O*_B*2XF<+8U3j-z3gSMW
zG#PoIRMIfF+aVnQPjY|B-^`CAm|9rvuXw{Zb+E&3HJ^s=+VmqIp3_j6*kg3EwRmha
z_YUS3lwPWub3Z!-XtNQ(uOM6{hh_YFxK=4Ox`(5Y^xK)ce*|*V(a@D|NzVX_WGL!u
z2(%%Ayt|DCwH|Z>0#*uLJ9ZtMfNSLkWHhp$$>?m}<<ofk!a#}mnN_>7<{-;xCnj^W
zZloHJ64u7$7=F9SJ5bgjG+4^v{H`nWcc=b6WM}sunfD1$V&3WN-I4se>#07~y=1lc
z|MGbNJ?Q4MoLY3hJ@WUj9ytg$={s2+zqjl6&xZp6MUVcePT>FZ+?_u^-2nZ5a=Pf3
zoB5yZfO7)Wvgf?+e>UpZ6aH=fzoY-}<p0k#v%6OQUHkuTegE$KyUXF1)d0U;``7UO
d-?sZ(Oh+J1gSnWK@BRQk$_i>X3vQS{{2%_~*#!Uq

diff --git a/docs/notebooks/vn-train.md b/docs/notebooks/vn-train.md
deleted file mode 100644
index 2cbb44f7..00000000
--- a/docs/notebooks/vn-train.md
+++ /dev/null
@@ -1,269 +0,0 @@
-![Vanna AI](https://img.vanna.ai/vanna-train.svg)
-
-The following notebook goes through the process of training Vanna. 
-
-[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/vn-train.ipynb)
-
-[![Open in GitHub](https://img.vanna.ai/github.svg)](https://github.com/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)
-
-# Install Vanna
-First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.
-Here, we'll also install the Snowflake connector. If you're using a different database, you'll need to install the appropriate connector.
-
-
-```python
-%pip install vanna
-%pip install snowflake-connector-python
-```
-
-
-```python
-import vanna as vn
-import snowflake.connector
-```
-
-# Login
-Creating a login and getting an API key is as easy as entering your email (after you run this cell) and entering the code we send to you. Check your Spam folder if you don't see the code.
-
-
-```python
-api_key = vn.get_api_key('my-email@example.com')
-vn.set_api_key(api_key)
-```
-
-# Set your Model
-You need to choose a globally unique model name. Try using your company name or another unique string. All data from models are isolated - there's no leakage.
-
-
-```python
-vn.set_model('my-model') # Enter your model name here. This is a globally unique identifier for your model.
-```
-
-# Automatic Training
-If you'd like to use automatic training, the Vanna package can crawl your database to fetch metadata to train your model. You can put in your Snowflake credentials here. These details are only referenced within your notebook. These database credentials are never sent to Vanna's severs.
-
-
-```python
-vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database')
-```
-
-
-```python
-training_plan = vn.get_training_plan_experimental(filter_databases=['SNOWFLAKE_SAMPLE_DATA'], filter_schemas=['TPCH_SF1'])
-training_plan
-```
-
-    Trying query history
-    Trying INFORMATION_SCHEMA.COLUMNS for SNOWFLAKE_SAMPLE_DATA
-
-
-
-
-
-    Train on SQL:  What are the top 10 customers ranked by total sales?
-    Train on SQL:  What are the top 10 customers in terms of total sales?
-    Train on SQL:  What are the top two customers with the highest total sales for each region?
-    Train on SQL:  What are the top 5 customers with the highest total sales?
-    Train on SQL:  What is the total quantity of each product sold in each region, ordered by region name and total quantity in descending order?
-    Train on SQL:  What is the number of orders for each week, starting from the most recent week?
-    Train on SQL:  What countries are in the region 'EUROPE'?
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 SUPPLIER
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 LINEITEM
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 CUSTOMER
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 PARTSUPP
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 PART
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 ORDERS
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 REGION
-    Train on Information Schema: SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 NATION
-
-
-
-
-```python
-vn.train(plan=training_plan)
-```
-
-# Train with DDL Statements
-If you prefer to manually train, you do not need to connect to a database. You can use the train function with other parmaeters like ddl
-
-
-```python
-vn.train(ddl="""
-    CREATE TABLE IF NOT EXISTS my-table (
-        id INT PRIMARY KEY,
-        name VARCHAR(100),
-        age INT
-    )
-""")
-```
-
-# Train with Documentation
-Sometimes you may want to add documentation about your business terminology or definitions.
-
-
-```python
-vn.train(documentation="Our business defines OTIF score as the percentage of orders that are delivered on time and in full")
-```
-
-# Train with SQL
-You can also add SQL queries to your training data. This is useful if you have some queries already laying around. You can just copy and paste those from your editor to begin generating new SQL.
-
-
-```python
-vn.train(sql="SELECT * FROM my-table WHERE name = 'John Doe'")
-```
-
-# View Training Data
-At any time you can see what training data is in your model
-
-
-```python
-vn.get_training_data()
-```
-
-
-
-
-<div>
-<style scoped>
-    .dataframe tbody tr th:only-of-type {
-        vertical-align: middle;
-    }
-
-    .dataframe tbody tr th {
-        vertical-align: top;
-    }
-
-    .dataframe thead th {
-        text-align: right;
-    }
-</style>
-<table border="1" class="dataframe">
-  <thead>
-    <tr style="text-align: right;">
-      <th></th>
-      <th>id</th>
-      <th>training_data_type</th>
-      <th>question</th>
-      <th>content</th>
-    </tr>
-  </thead>
-  <tbody>
-    <tr>
-      <th>0</th>
-      <td>15-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the PARTSUPP table.\n\nThe ...</td>
-    </tr>
-    <tr>
-      <th>1</th>
-      <td>11-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the CUSTOMER table.\n\nThe ...</td>
-    </tr>
-    <tr>
-      <th>2</th>
-      <td>14-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the ORDERS table.\n\nThe fo...</td>
-    </tr>
-    <tr>
-      <th>3</th>
-      <td>1244-sql</td>
-      <td>sql</td>
-      <td>What are the names of the top 10 customers?</td>
-      <td>SELECT c.c_name as customer_name\nFROM   snowf...</td>
-    </tr>
-    <tr>
-      <th>4</th>
-      <td>1242-sql</td>
-      <td>sql</td>
-      <td>What are the top 5 customers in terms of total...</td>
-      <td>SELECT c.c_name AS customer_name, SUM(l.l_quan...</td>
-    </tr>
-    <tr>
-      <th>5</th>
-      <td>17-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the REGION table.\n\nThe fo...</td>
-    </tr>
-    <tr>
-      <th>6</th>
-      <td>16-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the PART table.\n\nThe foll...</td>
-    </tr>
-    <tr>
-      <th>7</th>
-      <td>1243-sql</td>
-      <td>sql</td>
-      <td>What are the top 10 customers with the highest...</td>
-      <td>SELECT c.c_name as customer_name,\n       sum(...</td>
-    </tr>
-    <tr>
-      <th>8</th>
-      <td>1239-sql</td>
-      <td>sql</td>
-      <td>What are the top 100 customers based on their ...</td>
-      <td>SELECT c.c_name as customer_name,\n       sum(...</td>
-    </tr>
-    <tr>
-      <th>9</th>
-      <td>13-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the SUPPLIER table.\n\nThe ...</td>
-    </tr>
-    <tr>
-      <th>10</th>
-      <td>1241-sql</td>
-      <td>sql</td>
-      <td>What are the top 10 customers in terms of tota...</td>
-      <td>SELECT c.c_name as customer_name,\n       sum(...</td>
-    </tr>
-    <tr>
-      <th>11</th>
-      <td>12-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the LINEITEM table.\n\nThe ...</td>
-    </tr>
-    <tr>
-      <th>12</th>
-      <td>18-doc</td>
-      <td>documentation</td>
-      <td>None</td>
-      <td>This is a table in the NATION table.\n\nThe fo...</td>
-    </tr>
-    <tr>
-      <th>13</th>
-      <td>1248-sql</td>
-      <td>sql</td>
-      <td>How many customers are in each country?</td>
-      <td>SELECT n.n_name as country,\n       count(*) a...</td>
-    </tr>
-    <tr>
-      <th>14</th>
-      <td>1240-sql</td>
-      <td>sql</td>
-      <td>What is the number of orders placed each week?</td>
-      <td>SELECT date_trunc('week', o_orderdate) as week...</td>
-    </tr>
-  </tbody>
-</table>
-</div>
-
-
-
-# Removing Training Data
-If you added some training data by mistake, you can remove it. Model performance is directly linked to the quality of the training data.
-
-
-```python
-vn.remove_training_data(id='my-training-data-id')
-```
diff --git a/docs/sidebar.py b/docs/sidebar.py
new file mode 100644
index 00000000..ed6782cc
--- /dev/null
+++ b/docs/sidebar.py
@@ -0,0 +1,62 @@
+import yaml
+
+def generate_html(sidebar_data, current_path: str):
+    html = '<ul class="space-y-2">\n'
+    for entry in sidebar_data:
+        html += '<li>\n'
+        if 'sub_entries' in entry:
+            # Dropdown menu with sub-entries
+            html += f'<button type="button" class="flex items-center p-2 w-full text-base font-normal text-gray-900 rounded-lg transition duration-75 group hover:bg-gray-100 dark:text-white dark:hover:bg-gray-700" aria-controls="dropdown-{entry["title"]}" data-collapse-toggle="dropdown-{entry["title"]}">\n'
+            html += f'{entry["svg_text"]}\n'
+            html += f'<span class="flex-1 ml-3 text-left whitespace-nowrap">{entry["title"]}</span>\n'
+            html += '<svg aria-hidden="true" class="w-6 h-6" fill="currentColor" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" d="M5.293 7.293a1 1 0 011.414 0L10 10.586l3.293-3.293a1 1 0 111.414 1.414l-4 4a1 1 0 01-1.414 0l-4-4a1 1 0 010-1.414z" clip-rule="evenodd"></path></svg>\n'
+            html += '</button>\n'
+            html += f'<ul id="dropdown-{entry["title"]}" class="hidden py-2 space-y-2">\n'
+            for sub_entry in entry['sub_entries']:
+                html += f'<li>\n'
+                highlighted = 'bg-indigo-100 dark:bg-indigo-700' if sub_entry['link'] == current_path else ''
+                html += f'<a href="{sub_entry["link"]}" class="flex items-center p-2 pl-11 w-full text-base font-normal text-gray-900 rounded-lg transition duration-75 group hover:bg-gray-100 dark:text-white dark:hover:bg-gray-700 {highlighted}">{sub_entry["title"]}</a>\n'
+                html += '</li>\n'
+            html += '</ul>\n'
+        else:
+            # Regular sidebar entry without sub-entries
+            highlighted = 'bg-indigo-100 dark:bg-indigo-700' if entry['link'] == current_path else ''
+            html += f'<a href="{entry["link"]}" class="flex items-center p-2 text-base font-normal text-gray-900 rounded-lg dark:text-white hover:bg-gray-100 dark:hover:bg-gray-700 group {highlighted}">\n'
+            html += f'{entry["svg_text"]}\n'
+            html += f'<span class="ml-3">{entry["title"]}</span>\n'
+            html += '</a>\n'
+        html += '</li>\n'
+    html += '</ul>'
+    return html
+
+# Read YAML data from a file
+def read_yaml_file(file_path):
+    with open(file_path, 'r') as file:
+        yaml_data = file.read()
+    return yaml_data
+
+file_path = 'sidebar.yaml'  # Replace this with the actual path to your YAML file
+
+yaml_data = read_yaml_file(file_path)
+
+# Parse YAML data
+sidebar_data = yaml.safe_load(yaml_data)
+
+# Generate HTML code
+html_code = generate_html(sidebar_data, 'vn-ask.html')
+print(html_code)
+
+import nbformat
+
+# Read notebook file
+current_notebook = nbformat.read('vn-ask.ipynb', as_version=4)
+
+from nbconvert import HTMLExporter
+html_exporter = HTMLExporter(template_name='blog')
+
+(body, resources) = html_exporter.from_notebook_node(current_notebook)
+
+# Write body to file
+with open('vn-ask.html', 'w') as file:
+    file.write(body.replace('<!-- NAV HERE -->', html_code))
+
diff --git a/docs/sidebar.yaml b/docs/sidebar.yaml
new file mode 100644
index 00000000..9cbbcf84
--- /dev/null
+++ b/docs/sidebar.yaml
@@ -0,0 +1,67 @@
+- title: How It Works
+  link: /how
+  svg_text: |-
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" width="14" height="20" fill="none" viewBox="0 0 14 20">
+    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 7a3 3 0 0 1 3-3M5 19h4m0-3c0-4.1 4-4.9 4-9A6 6 0 1 0 1 7c0 4 4 5 4 9h4Z"/>
+    </svg>
+
+- title: Ask Vanna
+  link: vn-ask.html
+  svg_text: |-
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 20 18">
+    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M5 5h9M5 9h5m8-8H2a1 1 0 0 0-1 1v10a1 1 0 0 0 1 1h4l3.5 4 3.5-4h5a1 1 0 0 0 1-1V2a1 1 0 0 0-1-1Z"/>
+    </svg>
+
+- title: Train Vanna
+  svg_text: |-
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 22 20">
+    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M11 16.5A2.493 2.493 0 0 1 6.51 18H6.5a2.468 2.468 0 0 1-2.4-3.154 2.98 2.98 0 0 1-.85-5.274 2.468 2.468 0 0 1 .921-3.182 2.477 2.477 0 0 1 1.875-3.344 2.5 2.5 0 0 1 3.41-1.856A2.5 2.5 0 0 1 11 3.5m0 13v-13m0 13a2.492 2.492 0 0 0 4.49 1.5h.01a2.467 2.467 0 0 0 2.403-3.154 2.98 2.98 0 0 0 .847-5.274 2.468 2.468 0 0 0-.921-3.182 2.479 2.479 0 0 0-1.875-3.344A2.5 2.5 0 0 0 13.5 1 2.5 2.5 0 0 0 11 3.5m-8 5a2.5 2.5 0 0 1 3.48-2.3m-.28 8.551a3 3 0 0 1-2.953-5.185M19 8.5a2.5 2.5 0 0 0-3.481-2.3m.28 8.551a3 3 0 0 0 2.954-5.185"/>
+    </svg>
+  sub_entries:
+    - title: Train 1
+      link: /services/train-1
+      svg_text: |-
+        <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
+        <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
+        </svg>
+
+    - title: Train 2
+      link: /services/train-2
+      svg_text: |-
+        <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
+        <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
+        </svg>
+
+- title: User Interfaces
+  svg_text: |-
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" width="20" height="18" fill="none" viewBox="0 0 20 18">
+      <path stroke="currentColor" stroke-linecap="round" stroke-width="2" d="M1 7h18M4 4h.01M7 4h.01M10 4h.01M3 17h14a2 2 0 0 0 2-2V3a2 2 0 0 0-2-2H3a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2Z"/>
+    </svg>
+  sub_entries:
+    - title: Streamlit
+      link: streamlit.html
+      svg_text: |-
+        <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
+        <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
+        </svg>
+
+    - title: Slack
+      link: slack.html
+      svg_text: |-
+        <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
+        <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
+        </svg>
+
+- title: Databases
+  link: databases.html
+  svg_text: |-
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 18 20">
+    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M17 4c0 1.657-3.582 3-8 3S1 5.657 1 4m16 0c0-1.657-3.582-3-8-3S1 2.343 1 4m16 0v6M1 4v6m0 0c0 1.657 3.582 3 8 3s8-1.343 8-3M1 10v6c0 1.657 3.582 3 8 3s8-1.343 8-3v-6"/>
+    </svg>
+
+- title: API Reference
+  link: reference.html
+  svg_text: |-
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 20 16">
+    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M5 4 1 8l4 4m10-8 4 4-4 4M11 1 9 15"/>
+    </svg>
diff --git a/docs/stylesheets/extra.css b/docs/stylesheets/extra.css
deleted file mode 100644
index c8268444..00000000
--- a/docs/stylesheets/extra.css
+++ /dev/null
@@ -1,33 +0,0 @@
-@import url('https://fonts.googleapis.com/css2?family=Roboto+Slab:wght@350&display=swap');
-
-[data-md-color-scheme="vanna"] {
-    --md-primary-fg-color:        #009efd;
-    --md-primary-fg-color--light: #009efd;
-    --md-primary-fg-color--dark:  #009efd;
-    --md-accent-fg-color:         #009efd;
-    /* --md-hue: 210;  */
-}
-  
-strong {
-    font-family: 'Roboto Slab', serif;
-    color: transparent !important;
-    background: linear-gradient(15deg, #009efd, #2af598);
-    background-clip: text;
-    -webkit-background-clip: text;
-  }
-marp-pre {
-    font-family: 'Fira Code Light', monospace;
-    font-size: 0.75em;
-    background: #000;
-    border-radius: 30px;
-}
-
-/* .md-nav__link {
-    font-size: 0.9rem;
-} */
-
-h2.doc-heading {
-    border-top: 1px solid rgb(217, 217, 217);
-    padding-top: 1rem;
-    text-align: center;
-}
\ No newline at end of file
diff --git a/docs/vn-ask.ipynb b/docs/vn-ask.ipynb
new file mode 100644
index 00000000..618aa3b6
--- /dev/null
+++ b/docs/vn-ask.ipynb
@@ -0,0 +1,572 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "![Vanna AI](https://img.vanna.ai/vanna-ask.svg)\n",
+    "\n",
+    "The following notebook goes through the process of asking questions from your data using Vanna AI. Here we use a demo model that is pre-trained on the [TPC-H dataset](https://docs.snowflake.com/en/user-guide/sample-data-tpch.html) that is available in Snowflake.\n",
+    "\n",
+    "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)\n",
+    "\n",
+    "[![Open in GitHub](https://img.vanna.ai/github.svg)](https://github.com/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)\n",
+    "\n",
+    "# Install Vanna\n",
+    "First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.\n",
+    "Here, we'll also install the Snowflake connector. If you're using a different database, you'll need to install the appropriate connector."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%pip install vanna\n",
+    "%pip install snowflake-connector-python"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import vanna as vn\n",
+    "import snowflake.connector"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Login\n",
+    "Creating a login and getting an API key is as easy as entering your email (after you run this cell) and entering the code we send to you. Check your Spam folder if you don't see the code."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "api_key = vn.get_api_key('my-email@example.com')\n",
+    "vn.set_api_key(api_key)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set your Model\n",
+    "You need to choose a globally unique model name. Try using your company name or another unique string. All data from models are isolated - there's no leakage."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.set_model('tpc') # Enter your model name here. This is a globally unique identifier for your model."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set Database Connection\n",
+    "These details are only referenced within your notebook. These database credentials are never sent to Vanna's severs."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database')"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Get Results\n",
+    "This gets the SQL, gets the dataframe, and prints them both. Note that we use your connection string to execute the SQL on your warehouse from your local instance. Your connection nor your data gets sent to Vanna's servers. For more info on how Vanna works, [see this post](https://medium.com/vanna-ai/how-vanna-works-how-to-train-it-data-security-8d8f2008042)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "SELECT c.c_name as customer_name,\n",
+      "       sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales\n",
+      "FROM   snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o\n",
+      "        ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c\n",
+      "        ON o.o_custkey = c.c_custkey\n",
+      "GROUP BY customer_name\n",
+      "ORDER BY total_sales desc limit 10;\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>CUSTOMER_NAME</th>\n",
+       "      <th>TOTAL_SALES</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>Customer#000143500</td>\n",
+       "      <td>6757566.0218</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Customer#000095257</td>\n",
+       "      <td>6294115.3340</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>Customer#000087115</td>\n",
+       "      <td>6184649.5176</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Customer#000131113</td>\n",
+       "      <td>6080943.8305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>Customer#000134380</td>\n",
+       "      <td>6075141.9635</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Customer#000103834</td>\n",
+       "      <td>6059770.3232</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Customer#000069682</td>\n",
+       "      <td>6057779.0348</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>Customer#000102022</td>\n",
+       "      <td>6039653.6335</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>Customer#000098587</td>\n",
+       "      <td>6027021.5855</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>Customer#000064660</td>\n",
+       "      <td>5905659.6159</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "        CUSTOMER_NAME   TOTAL_SALES\n",
+       "0  Customer#000143500  6757566.0218\n",
+       "1  Customer#000095257  6294115.3340\n",
+       "2  Customer#000087115  6184649.5176\n",
+       "3  Customer#000131113  6080943.8305\n",
+       "4  Customer#000134380  6075141.9635\n",
+       "5  Customer#000103834  6059770.3232\n",
+       "6  Customer#000069682  6057779.0348\n",
+       "7  Customer#000102022  6039653.6335\n",
+       "8  Customer#000098587  6027021.5855\n",
+       "9  Customer#000064660  5905659.6159"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdCbhdZXU38PeGhCkBjFQwhEEkYDDMkwIODIKzMn1O/epsxaEtKKKCUkBwaPtZAcU64QBUxRapiopigCLzDEUjg4wqSqGEECQkJN9zjuVK4ObeG961cve++5fn6fPQe/f5n3f/1sblWj09GZg6deqS4g8BAgQIECBAgAABAgQIECBAgAABAgQItE5gwIK3dTVzYAIECBAgQIAAAQIECBAgQIAAAQIECPQFLHg9CAQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwj3ZY//wrJ+VdZ62zqhffsLx/1y+/rWT+tdPnjy5nHf+xYOvnT377HLoIQcvM2tgYKCcc94FZcqUNfrX3HrrLeWA/V416vd2IQECBAgQIECAAAECBAgQIECAAAECwwtY8HbsCfnVTbeVVVddddR3/bWvfqX8/UcP61//lKlTyzXXzRl87ZIlS8p228wq995zz5B57zzwPeWwjxwx+Lu5c+eWrWZtNur3diEBAgQIECBAgAABAgQIECBAgAABAha8noHHCHz166eUdZ8+bViTNdZYo2y44Ub9a4Zb8PZ+f+YPvlfefeA7hsy7+ro5ZerUqRa8nkACBAgQIECAAAECBAgQIECAAAECSQI+wZsE2+bYb3/nu+W5O+/Sv4V3vuOt5cc/OrP/z4//BG/vZ4sXL+5/KnfevHlL3fI+++5Xjjvh80v9zCd42/xUODsBAgQIECBAgAABAgQIECBAgEATBSx4m1iVMTzTrFlblN739Pb+3HHH7eV5O+84eJrHLnivvOLyst32O/R/d9q3v1k+8P6Dljr1hZdcUaZPX7/c/Yc/lMlTppTVV1+9WPCOYWG9NQECBAgQIECAAAECBAgQIECAwLgUsOAdl2V98jd19uz/LJtu9qx+wGsO2KdccvFFQy54Tzn562X3PfbsL3EXLlxYZs3cpCxYsKB/7c677Fq+ddrp/X/u/SVsRx59rAXvky+JVxIgQIAAAQIECBAgQIAAAQIECBBYpoAFr4djUGCPPfcqve/o7f355S9+UV6y9+5L6Tz2E7y9Be/FF11QPnviF/vXfPWkL5cjjzi8/89n/fTcMnPzzQc/sfvLG26x4PWcESBAgAABAgQIECBAgAABAgQIEEgQsOBNQG1r5GVXXlvWWWfd/vFf/KLdypw5vxx2wXv4hw8tV13zi/LUtdfuf3p35qbPKJvMmFHOnn1+/3Wf/Pgx5fMnnlAseNv6RDg3AQIECBAgQIAAAQIECBAgQIBA0wUseJteoRV0vje+6S3lY8d+sv9ul15ycfk/+7/6Ce/8+E/w9ha8b3rzW8vRx3yif+3xx3267LTTc/t/QduDDz5Ynv2sZ5YlS5YMu+Cdut6MFXSH3oYAAQIECBAgQIAAAQIECBAYK4H/+e1NY/XW3pfAuBew4B33JR75BgcGBsr1c24ukydP7i9kd33uDuU3v7lzVAve3kW9106ZMqX/XbwTJ04svbwTP3d8+dQnju1nDPcJ3nU32XbkA7qCAAECBAgQIECAAAECBAgQaLXA72++qtXnd3gCTRaw4G1ydVbQ2T58+EfLge96b//dfnLWj8o73vbmId95qE/w9i486H2HlIPf94HB1zz88MNl8802LosWLRpxwbvyalNW0F16GwIECBAgQIAAAQIECBAgQGCsBB7+4wNj9dbel8C4F7DgHfclHv4Ge5/avea/flUmTZpUFi9eXLbZcmb/L0cb6s+yFrwTJkwoc268tayyyir9l516yjfKYR/688LXd/B2/CFz+wQIECBAgAABAgQIECBAgAABAmkCFrxptO0IPuFzXyivevU+/cN++1v/Wg495OBlHnxZC97eC3rf39v7Ht/ekniLzWeU+fPnD+ZY8LbjWXBKAgQIECBAgAABAgQIECBAgACB9glY8LavZmEnnjZtvXLRpVf2vzO397UKvcXsggULntSCt/fp3Rfutke563e/Lddee81SGRa8YSUTRIAAAQIECBAgQIAAAQIECBAgQGApAQveDj8Q3/7Od8tzd96lL/DYvxRtWSTDfYJ3OEYL3g4/ZG6dAAECBAgQIECAAAECBAgQIEAgVcCCN5W3ueGzZm1RfnjWz/oH7H2dwqyZm5QlS5YMe2AL3ubW08kIECBAgAABAgQIECBAgAABAgS6KWDB2826l5+dc36Zselm/bs/+qgjyle+9IURJSx4RyRyAQECBAgQIECAAAECBAgQIECAAIEVKmDBu0K5m/FmO+70nPJvp3+vf5j/uffess1Wm4/qYGuttVa59vob+tee/I2vlY8c9sFRve7Rr2i47777ytZbPGtUr3ERAQIECBAgQIAAAQIECBAgQIAAAQIjC1jwjmzkCgIECBAgQIAAAQIECBAgQIAAAQIECDRSwIK3kWVxKAIECBAgQIAAAQIECBAgQIAAAQIECIwsYME7spErCBAgQIAAAQIECBAgQIAAAQIECBAg0EgBC95GlsWhCBAgQIAAAQIECBAgQIAAAQIECBAgMLKABe/IRq4gQIAAAQIECBAgQIAAAQIECBAgQIBAIwUseBtZFociQIAAAQIECBAgQIAAAQIECBAgQIDAyAIWvCMbuYIAAQIECBAgQIAAAQIECBAgQIAAAQKNFLDgbWRZHIoAAQIECBAgQIAAAQIECBAgQIAAAQIjC1jwjmzkCgIECBAgQIAAAQIECBAgQIAAAQIECDRSwIK3kWVxKAIECBAgQIAAAQIECBAgQIAAAQIECIwsYME7spErCBAgQIAAAQIECBAgQIAAAQIECBAg0EgBC95GlsWhCBAgQIAAAQIECBAgQIAAAQIECBAgMLKABe/IRq5oiMCSJUsacpL2HmNgYKC9h3dyAgQIECBAgAABAgQIECBAgACBJwhY8HooWiEwecozyjrTXtCKszb1kPMfuKPcc/fl5ZFF85p6ROciQIAAAQIECBAgQIAAAQIECBBYTgEL3uUEc/mKF+h9cnfq2tuUPV7+kxX/5uPoHe+45Yxy5cXvL48semAc3ZVbIUCAAAECBAgQIECAAAECBAh0W8CCt9v1b8XdW/DGlMmCN8ZRCgECBAgQIECAAAECBAgQIECgSQIWvE2qhrMMKWDBG/NgWPDGOEohQIAAAQIECBAgQIAAAQIECDRJwIK3SdVwFgvexGfAgjcRVzQBAgQIECBAgAABAgQIECBAYIwELHjHCN7bjl7AJ3hHbzXclRa8MY5SCBAgQIAAAQIECBAgQIAAAQJNErDgbVI1nGVIAQvemAfDgjfGUQoBAgQIECBAgAABAgQIECBAoEkCFrxNqoazWPAmPgMWvIm4ogkQIECAAAECBAgQIECAAAECYyRgwTtG8N529AI+wTt6q+GutOCNcZRCgAABAgQIECBAgAABAgQIEGiSgAVvk6rhLEMKWPDGPBgWvDGOUggQIECAAAECBAgQIECAAAECTRKw4G1SNZzFgjfxGbDgTcQVTYAAAQIECBAgQIAAAQIECBAYIwEL3jGC97ajF/AJ3tFbDXelBW+MoxQCBAgQIECAAAECBAgQIECAQJMELHibVA1nGVLAgjfmwbDgjXGUQoAAAQIECBAgQIAAAQIECBBokoAFb5Oq4SwWvInPgAVvIq5oAgQIECBAgAABAgQIECBAgMAYCVjwjhG8tx29gE/wjt5quCsteGMcpRAgQIAAAQIECBAgQIAAAQIEmiRgwdukajjLkAIWvDEPhgVvjKMUAgQIECBAgAABAgQIECBAgECTBCx4m1QNZ7HgTXwGLHgTcUUTIECAAAECBAgQIECAAAECBMZIwIJ3jOC97egFfIJ39FbDXWnBG+MohQABAgQIECBAgAABAgQIECDQJAEL3iZVw1mGFLDgjXkwLHhjHKUQIECAAAECBAgQIECAAAECBJokYMHbpGo4iwVv4jNgwZuIK5oAAQIECBAgQIAAAQIECBAgMEYCFrxjBO9tRy/gE7yjtxruSgveGEcpBAgQIECAAAECBAgQIECAAIEmCVjwNqkazjKkgAVvzINhwRvjKIUAAQIECBAgQIAAAQIECBAg0CQBC94mVcNZLHgTnwEL3kRc0QQIECBAgAABAgQIECBAgACBMRKw4B0jeG87egGf4B291XBXWvDGOEohQIAAAQIECBAgQIAAAQIECDRJwIK3SdVwliEFLHhjHgwL3hhHKQQIECBAgAABAgQIECBAgACBJglY8DapGs5iwZv4DFjwJuKKJkCAAAECBAgQIECAAAECBAiMkYAF7xjBe9vRC/gE7+ithrvSgjfGUQoBAgQIECBAgAABAgQIECBAoEkCFrxNqoazDClgwRvzYFjwxjhKIUCAAAECBAgQIECAAAECBAg0ScCCt0nVcBYL3sRnwII3EVc0AQIECBAgQIAAAQIECBAgQGCMBCx4xwje245ewCd4R2813JUWvDGOUggQIECAAAECBAgQIECAAAECTRKw4G1SNZxlSAEL3pgHw4I3xlEKAQIECBAgQIAAAQIECBAgQKBJAha8TaqGs1jwJj4DFryJuKIJECBAgAABAgQIECBAgAABAmMkYME7RvDedvQCPsE7eqvhrrTgjXGUQoAAAQIECBAgQIAAAQIECBBokoAFb5Oq4SxDCljwxjwYFrwxjlIIECBAgAABAgQIECBAgAABAk0SsOBtUjWcxYI38Rmw4E3EFU2AAAECBAgQIECAAAECBAgQGCMBC94xgve2oxfwCd7RWw13pQVvjKMUAgQIECBAgAABAgQIECBAgECTBCx4m1QNZxlSwII35sGw4I1xlEKAAAECBAgQIECAAAECBAgQaJKABW+TquEsFryJz4AFbyKuaAIECBAgQIAAAQIECBAgQIDAGAlY8I4RvLcdvYBP8I7eargrLXhjHKUQIECAAAECBAgQIECAAAECBJokYMHbpGo4y5ACFrwxD4YFb4yjFAIECBAgQIAAAQIECBAgQIBAkwQseJtUDWex4E18Bix4E3FFEyBAgAABAgQIECBAgAABAgTGSMCCd4zgve3oBXyCd/RWw12ZseDt1WZgYCDmgFIIECBAgAABAgQIECBAgAABAgSWW8CCd7nJvGBFC1jwxohnLHgHJqxaZm55UFlllakxh+xoyjWXHV4WL15oWd7R+rttAgQIECBAgAABAgQIECBQI2DBW6PntStEwII3hjljwTthpdXLXq86r0yesmHMITuacsap65dHHnnYgrej9XfbBAgQIECAAAECBAgQIECgRsCCt0bPa1eIgAVvDLMFb4xjRooFb4aqTAIECBAgQIAAAQIECBAg0A0BC95u1LnVd2nBG1M+C94Yx4wUC94MVZkECBAgQIAAAQIECBAgQKAbAha83ahzq+/SgjemfBa8MY4ZKRa8GaoyCRAgQIAAAQIECBAgQIBANwQseLtR51bfpQVvTPkseGMcM1IseDNUZRIgQIAAAQIECBAgQIAAgW4IWPB2o86tvksL3pjyWfDGOGakWPBmqMokQIAAAQIECBAgQIAAAQLdELDg7UadW32XFrwx5bPgjXHMSLHgzVCVSYAAAQIECBAgQIAAAQIEuiFgwduNOrf6Li14Y8pnwRvjmJFiwZuhKpMAAQIECBAgQIAAAQIECHRDwIK3G3Vu9V1a8MaUz4I3xjEjJXrB2/t3ZuWVn1LKwISM43Ymc8mSxWXhw/eVgYGBztyzGyVAgAABAgQIECBAgACB9glY8LavZp07sQVvTMkteGMcM1IyFrzrbfCysvGmf5lx3M5k/vqGk8vv7vyxBW9nKu5GCRAgQIAAAQIECBAg0E4BC9521q1Tp7bgjSm3BW+MY0ZKxoJ302e/q2y1w1EZx+1M5tWXHlZunvNlC97OVNyNEiBAgAABAgQIECBAoJ0CFrztrFunTm3BG1NuC94Yx4wUC94M1fpMC956QwkECBAgQIAAAQIECBAgkC9gwZtv7B0qBSx4KwH/9+UWvDGOGSkWvBmq9ZkWvPWGEggQIECAAAECBAgQIEAgX8CCN9/YO1QKWPBWAlrwxgAmpljwJuJWRFvwVuB5KQECBAgQIECAAAECBAisMAEL3hVG7Y2erIAF75OVW/p1PsEb45iRYsGboVqfacFbbyiBAAECBAgQIECAAAECBPIFLHjzjVv1DmussUZZvHhxmT9/fmPObcEbUwoL3hjHjBQL3gzV+kwL3npDCQQIECBAgAABAgQIECCQL2DBm2/c6HfYZdfnlb9645vLrC22LNOmrVdWXnnl/nnnzZtXtth8xlJnnzx5cjnv/IsHfzZ79tnl0EMOXub9DQwMlHPOu6BMmbJG/5pbb72lHLDfq5bbw4J3ucmGfIEFb4xjRooFb4ZqfaYFb72hBAIECBAgQIAAAQIECBDIF7DgzTdu7Dt89Iijytv/+sAhz7do0aKyyTOmL/W7p0ydWq65bs7gz3qL1+22mVXuveeeITPeeeB7ymEfOWLwd3Pnzi1bzdpsuT0seJebzII3hmyFpVjwrjDq5XqjrAVv7z/T/KkT6P0fEP0hQIAAAQIECBAgQIAAgT8JWPB28EnoDcbf/+FPypZbbtW/+96y4brrri3XXnN1uf2228qMTXaw0tIAACAASURBVDctW2y5VXnp3nsspfP4BW/vl2f+4Hvl3Qe+Y0jFq6+bU6ZOnTr4OwvesX3YfIJ3bP2He3cL3mbWJnrB2/vP2kmT1ihT1966mTfcklMtfmRBmTv3V2XRwnlhJx4YWLlMmLBSKRbHlaYT+nWxgK9k9HICBAgQIECAAAECyylgwbucYOPh8r/524PLIYd+qH8r9913X3nj/31duebqq0a8taEWvL3v6+19Krf3lQ6P/bPPvvuV4074/FI/s+AdkTj1AgveVN6qcAveKr60F0cveHsHnbDSqmWfN9yWduYuBD8w75bysx/sWR5ZFPdd8SutNLk8e+tDytOmvaALhGn3eOn5B5Z5c2+w4E0Tbk5w7/9gZZHfnHo4CQECBAgQIEDAgrdjz0Dvv4xfP+fm0vs+3d5ydpfnbF9+97vfjkrhsQveK6+4vGy3/Q7915327W+WD7z/oKUyLrzkijJ9+vrl7j/8oUyeMqWsvvrqxYJ3VMxpF1nwptFWB1vwVhOmBFjwprBWh2YseCdOnFK23+W4Mn2jV1Sfr8sBvcX7ffdeF7r4mzxlo7LOert3mbX63ufPu63cc/dl5ZFFD1RnPRowcdKaZdXVnl4mTJgYltnFoD8++Nvy8IL/Cf13pouO7pkAAQIECBDwFQ2dewbe+zcHlQ988MP9+/7C5z9XPn7s0aM2eOyC95STv15232PP/hJ34cKFZdbMTcqCBQv6WTvvsmv51mmn9/+595ewHXn0sRa8o1bOu9CCN8+2NtmCt1Yw5/UWvDmutakWvLWCea+PXvD6Dv6YWun/MY4ZKRn93yer6yv16Hfls6y3lECAAAECK07AJ3hXnHUj3ulHP5ldnv3sWf2zbLPV5mW9aeuVHZ/z3LLpppv1F7W//MX15d//7bTS+0vWHv/n8Qveiy+6oHz2xC/2L/vqSV8uRx5xeP+fz/rpuWXm5psPfmL3lzfcYsHbgOob8BpQhGUcIWPA2/TZ7ypb7XBUc2+6BSez4G1mkSx4m1mX3qkseJtZG/2/mXXpnSqj/6+73h7+vxEqS37nrf9R/vC788I/We0vWa0szP++3OI9xlEKAQLjT8CCd/zVdNg7uvzK68rT1lmnf03v6xMe/efHvujhhx8unz/xhPLpf/qHpbIev+A9/MOHlquu+UV56tpr9z+9O3PTZ5RNZswoZ88+v/+6T378mH6OBW8zHjIDXjPqMNQpMgY8C976elvw1htmJFjwZqjGZFrwxjhGp+j/0aJxefp/nGVkUnT/7y12V5q4Wpkx8+2Rx+xc1sKH55Y7bjm9LAr8Dv7OIbphAgTGtYAF77gu7xNv7oabby+rrLLKUr/ofXK39z+rrbbaUv+X6o8fc3T5wr98bvDaoRa8b3rzW8vRx3yif83xx3267LTTc8tzd96lPPjgg+XZz3pm6f0XmuEWvJOnPn3ECjyycEFZbZWNyu4vO2vEa12wbIHegHftFYeViatOCmN6aN4D5UWvPKdMnrJhWGYXg844dYOy6ppPKQMDE0Juf8Ef55WNN/6rsqVP8FZ5XnPZ4eX2275dVl51clXOoy9esmRxWTDv/vJqf8lalWdvwTv7zL3KKlNi6tI7zKKHHi7b7PiPPvVWVZlSfnbmi8qCh+8sK01a+r9nPNlY/f/Jyi39Ov0/xjEjRf/PUK3P1P/rDTMSMvp/xjllDi8w/3/uQkSAQJKABW8SbFNjb7vz9/2j9b6C4Zv/ekr5x099vP9VCr0/vb947dhP/GPZd7/9B4//vJ13LHfccXv/fx9qwdv7ee8vbZsyZUp/STxx4sT+kvjEzx1fPvWJY/uvG27Bu+4m245IteDB+8vAwjXL7i/98YjXumDZAr0B7/prjyprPG3dMKZ77ri57Pnyn1nwVoqe8a8blLU3nFkmTFipMulPL3/g3rvKetP2KVtuf2RIXldDrrnsI+X3d59ZJj8l5t+ZxY88Uu6988by6tff2lXSkPvuDXjn/Ogl5anrbxyS1wuZd/ddZcttjrHgrRSd/cO9y8Aq88vKq61RmfSnl+v/IYxF/49xzEjR/zNU6zP1/3rDjISM/p9xTpnDC/z+5qsQESCQJGDBmwTbxNiVV1653PjrO/pHu+nGG8qeuz9/yGN++zvf7X8Kt/fn6KOOKF/50hf6/7ysBe9B7zukHPy+Dwxm9b7iYfPNNh78Hl+f4G3G0+ATPM2ow1Cn8AmeZtbGJ3iaWZeMT/D4BG9MrX2CN8YxOkX/jxaNy9P/4ywjk/T/SM24rIz+H3c6SaMV8Ane0Uq5jsDyC1jwLr9Zq19x0y13lkmTJpX/vvvusv22Wwx5L/vst3857vgT+787+6dnlbe95Y3DLngnTJhQ5tx46+BXP5x6yjfKYR/688LXd/A245HxHXzNqMPQC971yyOPPBz2l3n0vhrFd/DW1zv6O/h6J5qw0qplH1/RUFUc38FbxZf6Yt/Bm8r7pMP1/ydNl/5C38GbTvyk3kD/f1Js6S/K6P/ph/YGBAgQWIECFrwrELsJb/XoX7LW+5Ttps/cYMgj7bDjTuXfv/v9/u8uv+zSsv++rxx2wdv75ceO/WR545veUhYvXly22HxGmT9//mC2BW8TKl/6/y+aV178/vLIogfCDjRhpdXLXq86z1c0VIoa8CoBk15uwEuCrYzNGPAmTpxStt/lOF/RUFkbC95KwKSX6/9JsAGx+n8AYkKE/p+AGhCZ0f8DjiWCAAECjRGw4G1MKVbMQX7wo5+WLbfcqv9mj/1+3ce++xv+8q/KJz71T/0fnfyNr5WPHPbBERe8vb+47YW77VHu+t1vy7XXXrPUzVjwrpjajvQuBryRhMbu9wa8sbMf7p0NeM2sS8aAZ8EbU2sL3hjH6BT9P1o0Lk//j7OMTNL/IzXjsjL6f9zpJBEgQGDsBSx4x74GK/QE7zzwPeWwjxzRf88bfjWn7LXnC5/w/udfeGnZcMON+j9/y5v+b5n9s5+OuOAd7iYseFdoiZf5Zga8ZtRhqFMY8JpZGwNeM+uSMeBZ8MbU2oI3xjE6Rf+PFo3L0//jLCOT9P9IzbisjP4fdzpJBAgQGHsBC96xr8EKP8GlV1xT1l336f33veDn55d3vfNtZe7cuWXqU59avvTlr5Udd3pO/3e3335bef4uOw2eb1l/ydpIN2DBO5LQivm9AW/FOD+ZdzHgPRm1/NcY8PKNn8w7ZAx4FrxPphJPfI0Fb4xjdIr+Hy0al6f/x1lGJun/kZpxWRn9P+50kggQIDD2Aha8Y1+DFX6C7bbfoZx+xg+W+gudFi1aVCZOnDh4lt539O72/J3Lb35zpwXvCq9Qzhsa8HJcI1INeBGK8RkGvHjTiMSMAc+CN6IypVjwxjhGp+j/0aJxefp/nGVkkv4fqRmXldH/404niQABAmMvYME79jUYkxPMnLl5Oenrp5Tp09d/wvtfdukl5W1v+av+p3of+2ettdYq115/Q/9Hj/1u3pFu4NFP8N53331l6y2eNdLlT/j9kiVLytS1tyl7vPwny/1aL/izgAGvuU+DAa+ZtTHgNbMuGQOeBW9MrS14YxyjU/T/aNG4PP0/zjIySf+P1IzLyuj/vTlzYGAg7pAdTer9Res9R5YdfQDcdmMELHgbU4qxOcjTnz6t7LzLruWZm2xSrr3mmnLhBeeX+fPnj81hlvGuFrwx5TDgxThmpBjwMlTrMw149YYZCRkDngVvTKUseGMco1P0/2jRuDz9P84yMkn/j9SMy8ro/yutNLmst+FLylpP2TzuoB1MuvlXXysPzr/DgreDtXfLzRKw4G1WPZxmCAEL3pjHwoAX45iRYsDLUK3PNODVG2YkZAx4FrwxlbLgjXGMTtH/o0Xj8vT/OMvIJP0/UjMuS/+Ps4xOiu7/0eeTR6ArAha8Xal0i+/TgjemeAa8GMeMFANehmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYCXoVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFP0/Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8/T+mLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R0b8GJKZsCLccxIMeBlqNZnGvDqDTMSDHgZqjGZ0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMS9P8M1ZjM6P4fcyopBLonYMHbvZq37o4NeDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AFP/4+pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cGvJiSGfBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zAiymZAS/GMSPFgJehWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzz9P6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAU//j6mL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xwa8mJIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wNP/Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQEvpmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBT9P0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPP0/pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dG/BiSmbAi3HMSDHgZajWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBT/+PqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSNH/M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rA0/9j6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xAS+mZAa8GMeMFANehmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYCXoVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFP0/Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8/T+mLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R0b8GJKZsCLccxIMeBlqNZnGvDqDTMSDHgZqjGZ0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMS9P8M1ZjM6P4fcyopBLonYMHbvZq37o4NeDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AFP/4+pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cGvJiSGfBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zAiymZAS/GMSPFgJehWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzz9P6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAU//j6mL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xwa8mJIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wNP/Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQEvpmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBT9P0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPP0/pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dG/BiSmbAi3HMSDHgZajWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBT/+PqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSNH/M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rA0/9j6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xAS+mZAa8GMeMlO+eun5Z/MjDZWBgICS+9+/Mps9+V9lqh6NC8roaYsBrZuUNeM2sS+9U0QOe/h9Ta/0/xjEjxYI3Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsGboVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFAveDNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigVvhmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUix4M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKRa8Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSLHgzVCtz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpFjwZqjWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI8WCN0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLBm6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBQL3gzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooFb4ZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1IseDNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkWvBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEix4M1Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqRY8Gao1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSPFgjdDtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwZuhWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wUC94M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKBW+Gan3m1Zd+uNw85ytlYGCgPux/EyastGrZ5w23heV1MciA19yqRw94+n9MrfX/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKRa8Gar1mRa89YYZCQa8DNWYzOgBT/+PqYv+H+OYkWLBm6Fan2nBW2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WCN0O1PtOCt94wI8GAl6Eakxk94On/MXXR/2McM1IseDNU6zMteOsNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqRY8Gao1mda8NYbZiQY8DJUYzKjBzz9P6Yu+n+MY0aKBW+Gan2mBW+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUC94M1fpMC956w4wEA16Gakxm9ICn/8fURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsGboVqfacFbb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKRa8Gar1mRa89YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUix4M1TrMy146w0zEgx4GaoxmdEDnv4fUxf9P8YxI8WCN0O1PtOCt94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooFb4ZqfaYFb71hRoIBL0M1JjN6wNP/Y+qi/8c4ZqRY8Gao1mda8NYbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEix4M1Qrc+04K03zEgw4GWoxmRGD3j6f0xd9P8Yx4wUC94M1fpMC956w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpFrwZqvWZFrz1hhkJBrwM1ZjM6AFP/4+pi/4f45iRYsGboVqfacFbb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYI3Q7U+04K33jAj4YH7f11mn/mismjR/LD4iROnlO13Pb5M3/DlYZldDIoe8PT/mKdI/49xzEix4M1Qrc+04K03zEiw4M1QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKBW+Gan2mBW+9Q6ruMQAAIABJREFUYUaCBW+Gakxm9ICn/8fURf+PccxIseDNUK3PtOCtN8xIsODNUI3JjO7/MaeSQqB7Aha83at5+eo3Ti1bbrHVqO587712K/fec0//2smTJ5fzzr948HWzZ59dDj3k4GXmDAwMlHPOu6BMmbJG/5pbb72lHLDfq0b1vo+9yIC33GRDvsCAF+OYkWLBm6Fan2nBW2+YkWDBm6Eakxk94On/MXXR/2McM1L0/wzV+kwL3nrDjAQL3gzVmMzo/h9zKikEuidgwdu9mpeLL7uqTJu23qju/Hk771juuOP2/rVPmTq1XHPdnMHX9Qav7baZNbgAfnzgOw98TznsI0cM/nju3Lllq1mbjep9LXiXm2nEFxjwRiQaswsMeGNGP+wbW/A2sy4WvM2sS+9U0QOeBW9MrfX/GMeMFP0/Q7U+U/+vN8xIsODNUI3JjO7/MaeSQqB7Aha83av54IK3Nzj94hfXDyvw+tfsV3qL2aEWvL2fnfmD75V3H/iOITOuvm5OmTp1qgVvQ54xA15DCjHEMQx4zayNAa+ZdbHgbWZdLHibWxf9v7m10f+bWRv9v5l1seBtZl0y+n9z79TJCDRbwIK32fVJOd2jn+BdsGBB2WyTDUf9Ho//BG/vhYsXL+5/KnfevHlL5eyz737luBM+v9TPfIJ31NQpFxrwUlhDQg14IYzhIQa8cNKQQAveEMaUkOhP8PgEb0yZ9P8Yx4wU/T9DtT5T/683zEhI6/+7HFemb/SKjCN3JjO6/3cGzo0SCBaw4A0GbUNcxIL3yisuL9ttv0P/dk/79jfLB95/0FK3fuElV5Tp09cvd//hD2XylCll9dVX738S2Fc0jN0TYsAbO/uR3tmAN5LQ2PzegDc27iO9a9qAt+vxZfqGLx/p7f1+GIHoAc+CN+Zx0/9jHDNS9P8M1fpM/b/eMCMhrf9b8FaXK7r/Vx9IAIGOCljwdrDwEQveU07+etl9jz37S9yFCxeWWTM3Kb1PBPf+7LzLruVbp53e/+feX8J25NHHWvA24Dkz4DWgCMs4ggGvmbUx4DWzLmkDngVvdcGjBzwL3uqS9AP0/xjHjBT9P0O1PlP/rzfMSEjr/xa81eWK7v/VBxJAoKMCFrwdLPyjC96HH364vGTvPcrk1Vcvf3zoj+WWX/+6LFq0aJkij/2Kht6C9+KLLiifPfGL/eu/etKXy5FHHN7/57N+em6Zufnmg5/Y/eUNt1jwNuA5M+A1oAgWvM0twhAnM+A1s1xpA54Fb3XBowc8C97qkljwxhCmpVjwptFWBev/VXxpL07r/xa81TWL7v/VBxJAoKMCFrwdLPyjC96hbv3+++8v/3rqN8qn/+kfBj+R++h1j1/wHv7hQ8tV1/yiPHXttfvXztz0GWWTGTPK2bPP77/kkx8/pnz+xBOKBW8zHjIL3mbUYahTGPCaWRsDXjPrkjbgWfBWFzx6wLPgrS6JBW8MYVqK/p9GWxWs/1fxpb04rf9b8FbXLLr/Vx9IAIGOCljwdrDwwy14H+X4zW/uLM/becf+X6I23IL3TW9+azn6mE/0Lzn+uE+XnXZ6bnnuzruUBx98sDz7Wc8sveFsuAXvyqtNGbECix9ZVNZYY2bZ/WVnjXitC5Yt0FvwXn3ZB8vAhGV/Snt5/R5ZuKS86JXnlslTRv+X9S3ve3Th+jNOXb+stPLKZWBgIOR2Fz28oDxzs7eVrXY4KiSvqyFXX3pYue3mk8tKk1YOIej95+HihY+UV7/htpC8rob0B7wf7l0mTFwSRrDkkZXKdjv/s+/grRTtDXjz599UJqw0sTLpTy/X/0MY+1/RoP/HWEan6P/RojF5+n+MY3RKSv9fvFLZ7jmf9pesVRZrefr/w398oPLdvJwAgWUJWPB28Nk45NAPlSlT1ij/dd215Q+//31/qbThRhuVffbdv2y/w46DS6YLfn5+ecPrDhgUGuoTvL1fXj/n5jJlypT+d/FOnDix//oTP3d8+dQnju2/drgF77qbbDtiBRY8eH+ZsGitsttLfjTitS5YtkBvwLv+2qPKGk9bN4zpnjtuLnu+/GcWvJWiZ5y6QVl7o5llwoSVKpP+9PIH7r2rrDdtn7Ll9keG5HU15OrLDi9/uPtHZfJT1gkhWPzII+XeO28sr379rSF5XQ3pDXjn/vilZer6G4cRzLv7rrLltsda8FaK9hbvA6vMLyuvtkZl0p9erv+HMPYXvPp/jGV0iv4fLRqTp//HOEanpPX/bY6x4K0s1vL0/9/ffFXlu3k5AQLLErDg9WwsJbDHnnuVk752cn9J2/uO3k2fucHg75e14D3ofYeUg9/3gcHreq/bfLONB7/Pd7gF79T1ZoxYgYUPPVgmTVi37P7SH494rQuWLdAb8K67+qNltTXXDGPqLUX2fMU5FryVor1P8Ky5zgZlYMKEyqQ/vfyP8+4tG6z/2rLlDha8NaBXX3ZY+d1vzyirTplaEzP42iWLHym9f2de/QYL3hrQ3oB3zo9fUqas/bSamKVe+8e5c8vWO3zKgrdSdPaZe5VFA/9dJq2yemXSn16u/4cw9he8+n+MZXSK/h8tGpOn/8c4Rqek9P/77y9bb/cJC97KYi1P//+f395U+W5eToDAsgQseD0bTxA49/yLysYbP7P/8+fssE25667f9f95WQveCRMmlDk33lpWWWWV/nWnnvKNctiH/rzw9R28zXjIfAdvM+ow1Cl8B18za+M7+JpZl7Tv4PMdvNUFj/4OPt/BW12SfoD+H+OYkaL/Z6jWZ+r/9YYZCWn933fwVpcruv9XH0gAgY4KWPB2tPDD3fa3Tju97LzLrv1LDtjvVeWySy8ZdsHb++XHjv1keeOb3tL/zt4tNp9R5s+fP/gWFrzNeMgMeM2ogwVvc+vw+JMZ8JpZq7QBz4K3uuDRA54Fb3VJLHhjCNNSLHjTaKuC9f8qvrQXp/V/C97qmkX3/+oDCSDQUQEL3o4WfrjbvvCSK8r06ev3L9lskw3LggULRlzw9j69+8Ld9ih3/e635dprr1kq3oK3GQ+ZBW8z6mDB29w6WPC2ozZpA54Fb/UDED3gWfBWl8SCN4YwLcWCN422KtiCt4ov7cX6fxptdXB0/68+kAACHRWw4O1Y4V/4wt3736977rmzh7zzvfZ+SfnySV/v/+6BBx4os2ZuMnjdsr6iYSRCC96RhFbM7y14V4zzk3kXA96TUct/jQEv3/jJvIMB78morZjXRA94FrwxddP/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha8Hav58Z/9l/LqffYtv//9XeVb3zy1XHThBeWKyy8r09abXt79nr8pr33dG/oL4N6fYz52ZPnSFz5vwTtOnhEDXnMLacBrZm0MeM2siwGvmXXpnSp6wLPgjam1/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1YzR9d8I5029ddd215xUv3Wuoyn+AdSa3ZvzfgNbc+Brxm1saA18y6GPCaWRcL3ubWRf9vbm30/2bWRv9vZl30/2bWJaP/N/dOnYxAswUseJtdn/DT7bHnXuWIvz+qPGPjZw5+Uvexb7Jw4cLyz//vH8vnPnvcE957rbXWKtdef0P/5yd/42vlI4d9cFTne/QrGu67776y9RbPGtVrHnuRT/AsN9mQLzDgxThmpBjwMlTrMw149YYZCQa8DNWYzOhP8Oj/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2ref+Oe38p2pZbbV022WRG2egZzyh33H57ufjii8otv765cSIGvJiSGPBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d9wb8J76F9uW3V92VuvO3qQDG/CaVI2lz2LAa2ZtDHjNrIsBr5l16Z0qesCz4I2ptf4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cWvDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R1b8MaUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswRtTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7wLHhj6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xBW9MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHFrwxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dW/DGlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMEbUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8Cx4Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQVvTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xxa8MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAc+CN6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHVvwxpTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zBG1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvAseGPqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEFb0zJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cWvDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R1b8MaUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswRtTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7wLHhj6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xBW9MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHFrwxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dW/DGlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3lLKOuusW979nr8pmz1rZv8JuPzyS8t/nPHdcvNNN3bviWjgHVvwxhTFgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2BcbvgPfFfvlSe/4Ld+hXtDQjP2WHr8sc//vEJFX7HO99VDjv8iDJhwoQn/O60b3+zfOD9B3XvqWjYHVvwxhTEgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2BcbvgvemWO8ukSZP6Ff31zTeV3V+46xOqu8OOO5V/O/17ZWBgYJmVv+qqK8s+r3xp956MBt2xBW9MMQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdExiXC9699n5J+fJJXx+s5qtf+dJy9VVXPqG6s8/9edlkxqaDP+8NEnfeeUdZe+2/KKuvvvrgz9994NvLmT/4fveejobcsQVvTCEMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3RMYlwveL375q+XFL3lZv5rXXXdtecVL93pCZf/iL55Wrrj6vwZ/fsOv5pRXvGzvsmDBgv7PvnXa6WXnXf70qd9777mnbLv1s7v3dDTkji14YwphwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA54Fb0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J7AuFzwnvnjs8sWW2zZr+YnP35M+fyJJzyhsu9+z9+WD3748MGfv+zFe5brr//zwrf3i1/ddFtZddVV+9e8aI/nlxtvuKF7T0gD7tiCN6YIBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeBZ8MbURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JjMsF78WXXVWmTVuvX819X/3ycuUVlz+hst849VvlhS/cvf/z3/zmzrLLc7Z/wjWfOf7Esu9++/d/3vvL1np/6Zo/K17AgjfG3IAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9gXG54L1+zs1lypQp/WpuvOG0snjx4idU9tIrrinrrvv0/s9/+pMfl7e/9U1PuObNb317OeroY/s//+pJXy5HHvHnT/x271EZuzu24I2xN+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPYFwueG+65c4yadKk8tBDD5VnzdhoyKrecvvvyoQJE/q/O+rIj5aTvvzFJ1y354v2Lid97eT+z88775zyxr98XfeekAbcsQVvTBEMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3RMYlwvea6+/oay11lr9T+72PsH7+D8bP3OTcu5/Xjj442V9v+573vt35dAPHda/7odnfr+8651v794T0oA7tuCNKYIBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPeBa8MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewLjcsE7+9yfl01mbNqv5t4vemH51Zw5S1X2oIMPKQe//wP9n/WGh2ds8Kevanj8n96nd3uf4u39+eK/nFiOPeao7j0hDbhjC96YIhjwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAZ8EbUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6JzAuF7xf+eo3yov2enG/mhddeEF53Wv2W6qyF15yRZk+ff3+z26//bby/F12GrLyP7/osrLBBhv2f3f4hw8tp5z89e49IQ24YwvemCIY8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuicwLhe8m262WTl79vmD1Tz1lG+Uo/7+I2XGjE3LoR8+vOy22x6DvzvuM/+vfPqf/uEJlV9zzTXLNf/1q8Hv6X3NAfuUSy6+qHtPSAPu2II3pggGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7gmMywVvr4xnfO+HZdvtth+2ogsXLizbbzOrzJ079wnXfekrXyt7v/il/Z8vWrSozNh4/f7XOfiz4gUseGPMDXgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TGLcL3mnT1is/+snsMnXq1GVW9f0H/235t+98+wm/3+gZG5fzzr+oDAwM9H93+WWXlv33fWX3no6G3LEFb0whDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TGLcL3l4pJ0+eXE4/48zyrJkzB5e1vZ/Pnz+/HPahQ8oZ3z19yIp//4c/KVtttfXg79777r8u3//ef3Tv6WjIHVvwxhTCgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2Bcb3gfbScEydOLLvv8aIyecrkct2115abb7px2EofdPAhZb3p0/vX9L6e4bAPfaB7T0aD7tiCN6YYBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeBZ8MbURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JdGLB272yjq87tuCNqacBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPeBa8MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2II3pmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7gmMywXvvvsdUF7y0pf1q/nxYz9Wbrv1lqUqe8D/eW3Za+8X9392zNFHljvuuH3Iyr/hL/+qvHC33fu/+/uPHl7uuut33XtCGnDHFrwxRTDgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T2BcLnhP/eZ3yvOe/4J+NYf6C9K+ddrpZedddu3//h1ve3P5yVk/GrLyZ3zvh2Xb7bbv/+71r92/XHjBz7v3hDTgji14Y4pgwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA54Fb0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABa8Fb+OfegvemBIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwWvB2/in3oI3pkQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8FrwNv6pt+CNKZEBL8YxI+W7p0wvixcvLAMDAyHxvX9nNn32u8pWOxwVktfVEANeMytvwGtmXXqnih7wLHhjaq3/xzhmpFjwZqjWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7DgteBt/FNvwRtTIgNejGNGigVvhmp9pgGv3jAjwYCXoRqTGT3gWfDG1EX/j3HMSLHgzVCtz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DBa8Hb+KfegjemRAa8GMeMFAveDNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkWLBm6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CC14K38U+9BW9MiQx4MY4ZKRa8Gar1mQa8esOMBANehmpMZvSAZ8EbUxf9P8YxI8WCN0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFrwVv4596C96YEhnwYhwzUix4M1TrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRooFb4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQELXgvexj/1FrwxJTLgxThmpFjwZqjWZxrw6g0zEgx4GaoxmdEDngVvTF30/xjHjBQL3gzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvBa8jX/qLXhjSmTAi3HMSLHgzVCtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSkWvBmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wTG/YL3oYceKr3/eeyfNddcs0yYMKH/owcffLA8/PDDQ1b+sde9/rX7lwsv+Hn3npAG3LEFb0wRDHgxjhkpFrwZqvWZBrx6w4wEA16Gakxm9IBnwRtTF/0/xjEjxYI3Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiewLhf8EaV1II3SnL5cyx4l99sqFcY8GIcM1IseDNU6zMNePWGGQkGvAzVmMzoAc+CN6Yu+n+MY0aKBW+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC95R1tyCd5RQCZdZ8MagGvBiHDNSLHgzVOszDXj1hhkJBrwM1ZiOCrVOAAAgAElEQVTM6AHPgjemLvp/jGNGigVvhmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9gXG54N1qq63L1ttsG1rN0//9O2X+/PmhmcJGJ2DBOzqnka4y4I0kNHa/t+AdO/vh3vmqSz5Ufv2rk8rAwEDYASestGrZ5w23heV1MciA19yqRw94Frwxtdb/YxwzUix4M1TrMy146w0zEvT/DNWYzOj+H3MqKQS6JzAuF7zdK+P4vmML3pj6GvBiHDNSLHgzVOszLXjrDTMSDHgZqjGZ0QOeBW9MXfT/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwDlPz/Q94TXn+C3brX3HM0X9f/vu/7+7eE9KAO7bgjSmCAS/GMSPFgjdDtT7TgrfeMCPBgJehGpMZPeBZ8MbURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAXvMDU/43s/LNtut33/Ct/BO3b/cljwxtgb8GIcM1IseDNU6zMteOsNMxIMeBmqMZnRA54Fb0xd9P8Yx4wUC94M1fpMC956w4wE/T9DNSYzuv/HnEoKge4JWPBa8Db+qbfgjSmRAS/GMSPFgjdDtT7TgrfeMCPBgJehGpMZPeBZ8MbURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAWvBW/jn3oL3pgSGfBiHDNSLHgzVOszLXjrDTMSDHgZqjGZ0QOeBW9MXfT/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwWvA2/qm34I0pkQEvxjEjxYI3Q7U+04K33jAjwYCXoRqTGT3gWfDG1EX/j3HMSLHgzVCtz7TgrTfMSND/M1RjMqP7f8yppBDonoAFrwVv4596C96YEhnwYhwzUix4M1TrMy146w0zEgx4GaoxmdEDngVvTF30/xjHjBQL3gzV+kwL3nrDjAT9P0M1JjO6/8ecSgqB7glY8FrwNv6pt+CNKZEBL8YxI8WCN0O1PtOCt94wI8GAl6Eakxk94FnwxtRF/49xzEix4M1Qrc+04K03zEjQ/zNUYzKj+3/MqaQQ6J6ABa8Fb+OfegvemBIZ8GIcM1IseDNU6zMteOsNMxLm3X9zOefMvcuiRQ+ExU+cOKVsv+vxZfqGLw/L7GJQ9IBnwRvzFOn/MY4ZKRa8Gar1mRa89YYZCRa8GaoxmdH9P+ZUUgh0T8CC14K38U+9BW9MiQx4MY4ZKRa8Gar1mRa89YYZCRkL3pUmTi477vrZst6GL8s4cmcyowc8C96YR0f/j3HMSLHgzVCtz7TgrTfMSLDgzVCNyYzu/zGnkkKgewIWvBa8jX/qLXhjSmTAi3HMSLHgzVCtz7TgrTfMSLDgzVCNyYwe8PT/mLro/zGOGSn6f4ZqfaYFb71hRoIFb4ZqTGZ0/485lRQC3RMYlwverbbaumyz7XbV1Xz3e/+2TJu2Xj/n9a/dv1x4wc+rMwUsv4ABb/nNhnqFAS/GMSPFgJehWp9pwVtvmJFgwZuhGpMZPeDp/zF10f9jHDNS9P8M1fpMC956w4wEC94M1ZjM6P4fcyopBLonMC4XvKd+8zvlec9/QWg1LXhDOZcrzIC3XFzLvNiAF+OYkWLAy1Ctz7TgrTfMSLDgzVCNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkWDBm6Eakxnd/2NOJYVA9wQseEdZcwveUUIlXGbAi0E14MU4ZqQY8DJU6zMNePWGGQkWvBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxIy+r+/ZDWmUtH9P+ZUUgh0T2BcLniP+tjHyz777h9azdcesE+ZM+eXoZnCRidgwBud00hXGfBGEhq73xvwxs5+uHc24DWzLhkDnr9kLabW0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMSMvq/BW9MpaL7f8yppBDonsC4XPB2r4wxd/yZ4z43+NUWr3/d/uXGG25YKnjy5MnlvPMvHvzZ7Nlnl0MPOXiZbz4wMFDOOe+CMmXKGv1rbr31lnLAfq9a7sMa8JabbMgXGPBiHDNSDHgZqvWZBrx6w4yEjAHPgjemUtEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEjL6vwVvTKWi+3/MqaQQ6J6ABW/3aj7kHR/6ocPKe977d4O/6y1iL7v0kqWufcrUqeWa6+YM/qw3eG23zaxy7z33DJn5zgPfUw77yBGDv5s7d27ZatZmyy1uwFtuMgveGLIVlmLAW2HUy/VGBrzl4lphF2cMeBa8MeWLHvD0/5i6WPDGOGak6P8ZqvWZ+n+9YUZCRv+34I2pVHT/jzmVFALdE7DgHaHmvU+hvnqffcvsn51d7r///nH5hOy73wHlM8d/bql7G82Ct/eCM3/wvfLuA98xpMvV180pU6dOteBtyFNjwGtIIYY4hgGvmbUx4DWzLhkDngVvTK2jBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGQ0f8teGMqFd3/Y04lhUD3BCx4l1HzHXd6Tvmbvzu47LLL88qkSZPKeP1L1rbbfofy79/9fpkwYcKTWvAuXry4/6ncefPmLfX6ffbdrxx3wueX+plP8I7tf8AY8MbWf7h3N+A1szYGvGbWJWPAs+CNqXX0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxIy+r8Fb0ylovt/zKmkEOiegAXvY2q+/voblL896H3lpS97RVlzzTWXehrG44J32rT1ynk/v7isssoq5aGHHio//tEPS28x2/sz0id4r7zi8tJbDvf+nPbtb5YPvP+gpbwuvOSKMn36+uXuP/yhTJ4ypay++urFgnds/wPGgDe2/ha8zfVf1skMeM2sWcaAZ8EbU+voAc+CN6Yu+n+MY0aKBW+Gan2m/l9vmJGQ0f8teGMqFd3/Y04lhUD3BDq/4O39xWHv+Ot3lde87vX9heSy/uy/7yvL5ZddOm6ekNVWW61cdMmVZepTn1p6n8Ld51UvK72vanjLW98+qgXvKSd/vey+x559s4ULF5ZZMzcpCxYs6L925112Ld867fT+P/f+ErYjjz7WgrcBT44BrwFFWMYRDHjNrI0Br5l1yRjwLHhjah094FnwxtRF/49xzEjR/zNU6zP1/3rDjISM/m/BG1Op6P4fcyopBLon0NkFb2+Z+fa/PrDMmrVF6X3P7lB/el87cPZPzionnPCZcvNNN46rp+Ps2f9ZNt3sWf17eu+7/7p8/3v/0V/ELs+C9+KLLiifPfGL/YyvnvTlcuQRh/f/+ayfnltmbr754Cd2f3nDLRa8DXh6DHgNKIIFb3OLMMTJDHjNLFfGgGfBG1Pr6AHPgjemLvp/jGNGigVvhmp9pv5fb5iRkNH/LXhjKhXd/2NOJYVA9wQ6teDdYcedBr9Xd+WVVx6y2r1Po/7neeeUz55wXOl9DcF4/HPS104ue75o7/6t/fOn/7F85tP/1P/n5V3wHv7hQ8tV1/yiPHXttfuf3p256TPKJjNmlLNnn9/P++THjymfP/GEYsHbjKfIgNeMOgx1CgNeM2tjwGtmXTIGPAvemFpHD3gWvDF10f9jHDNS9P8M1f/P3nnH2VWWa/vJEBLIJJBQBQLSe+9dIIAUacI5CIogKiUUAakBFRQEVJCOepSeA8JRkY5SpQhISQKBGESqgjQJIYGEEL7f2vkYCZlkMvPcN1l73mv+OZLZ65p3Xc/G+9yPO2vyTPI/79BBcOQ/C17NpNT5rzkVFAyUZ6DbL3irRwh89Fzdueeeu8MJ337bH2Lfffbq8HXN+oJjjjs+Bh90aOP4N914fRy4/5RHMnR1wbv3PvvG908+tXH9OWefGeuuu36sv8GGMX78+FhxuSWjKmcseOvxbqHg1WMOLHjrO4dPnoyCV89ZOQoeC17NrNUFjwWvZi7kv8ajg8KC12E1zyT/8w4dBEf+s+DVTEqd/5pTQcFAeQa65YK3er7sfvsPjt332HO6z9WtSsPfnh4dV1xxWTz7zDNx2dCrGtPvzgveXXf77zjzrHMb9/nUk0/GNltvPtU7viuf4K0AI0c9E3379m08i7dnz56NR15ccP45cfqpp0z5WTN4RMOCS63R4b91E8a/HS2T+sdm29zU4Wt5wfQNVAVv5IiTot/8C8o0vfHiMzFo+9ujte9iMmaJoGuHDoz5Prti9Ghpkdz+O2++EgsvtHOsstaJEl6pkGEPDYlXX78lWvsvIFEw+YMP4s2Xno6d9nhOwisVUhW8u2/dPgYssrhMwdhXX45V1zw1Fl5sOxmzRNAdN20dPXqPi15z9pPcPvkv0Rjkv8ajg0L+O6zmmeR/3qGDQP47rGqYncn/fz3zmOaHQsEABqYx0C0XvFf879Wxyaafa3fcL7/8z/jtb66Jn194fuMZsdXXhhttHFf++jeN/9ydF7yPPPZEzDf//FE9W3i7zw+KiRMnTuXoqGOOi93+a/fGnw0+4BvxyMMPx7vvjm/z1H/AgBj++KjG96tfslY9oqH6OuyII+PwI45qY1XcFZZdIiZNmtT4Mxa89fhvHgpePebQ3ikoePWcDQWvnnOh4NVzLtWpOlPwZuYuWPDOjKWOX0P+d+xoVr2C/J9V5mf8c8n/es6F/K/nXDqb/yx46ztHTtb8BrrlgnfoldfExpts2jadapF7y803xrln/zRefPGFaaa2wYYbxVVX/7bx5yUseDvztn39tddirTVWblwyvQVvS0tLjHr6uejdu3fjdUOvuCyGHPufhS+PaOiMcd9r+SuaPrdZMn9FM2vQcz1/RdPjNUt1/BVNHtGQncqU69V/RZNHNGjmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPANFLHhHjnwiLvrlL+I3/3d145mwn/xiwTv9N/7MLHirq39wymnx1b2/FpMnT46VV1g6xo0b1wZlwVuP/2Kh4NVjDu2dgoJXz9lQ8Oo5FwpePefCgre+cyH/6zsb8r+esyH/6zkX8r+ec3Hkf33vlJNhoN4GuuWCd3qPaKieEfvQgw80ng977z1/aptMKQve+eabP/rNNdd035HVYxZ22nmXxvcPO/SgGDbssRj79tvx+uuvNf5sep/grb5XfXr3c5ttEa+8/M8YMWL4VD+DBW89/kuAglePObDgre8cPnkyCl49Z0XBq+dcHAWPT/BqZk3+azw6KCx4HVbzTPI/79BBIP8dVjVMPsGr8QgFA1kD3XLBO/fcc8fggw+NL+76X7HAAu3/QqnqE6a33/bHOOfsM2L++Rco4hm8Hb1ZuvpL1jrisuDtyNCn830K3qfjuSs/hYLXFWv+ayh4fsdd+QkUvK5Y+3SuURc8FryauZH/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwfnyMSy29THzrsG/HllttHa2tre1O+L333os55pij8b3u/Azejt7eLHg7MtTc36fg1Xd+FLx6zoaCV8+5UPDqOZfG/w91w6B4683Ho0ePHpJDsuCVaAzyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6PYL3o+PdLPNtogDDzok1l5n3ejZs2e70x47dmz8/MLz46Jf/WKq58iW8NZgwdu9p0zBq+98KXj1nA0Fr55zoeDVcy4seOs7F/K/vrMh/+s5G/K/nnMh/+s5F0f+1/dOORkG6m2gqAXvR6NoaWmJr+y1d+OXgi29zLLtftKk+tTIX0eNiisuvySGXnFZ45eHdfev7534g9j3G/s1bnOXnbaPRx95eKpbrh59MWLk6MafXX7ZJXHCkGNmSslHj2h46623YrWVl5upaz7+oimf4FkzNt/ulk5fywX/MUDBq++7gYJXz9lQ8Oo5FwpePefiKHh8glcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUw+wavxCAUDWQNFLng/Lq36xWGDBx/SeF7v/Ass0K7Parm7/TZbxpNPjsz65vouGGDB2wVp7VxCwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZKH7B+/GRL7PssnHot74dg7bcaprn9e6x+65x/333lvcOqcEds+DVDIGCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPAgnc6M998iy1j8EGHxJprrd14Xi8L3ln3LwcLXo17Cp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPAAveDmZePa93zy/vFTfccF289e9/l/cOqcEds+DVDIGCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPAgvdjM+/Xr1/jF669/fbb5b0TanzHLHg1w6HgaTw6KBQ8h9U8k4KXd+ggUPAcVjVMdcFjwauZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx02wXv2uusG6uutnpjotUvSbvskosa//eTX3POOWecdc75MWjLrWP22WdvfPu9996Lp54cGQfs9/V45ZWXy3tX1OyOWfBqBkLB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5Rnotgvevzw6IhZYYMHGRCdNmhQrLLtETJw4caoJV5/WffDhYbHggp9pd/LV67+5795x1113lPfOqNEds+DVDIOCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQLRe81WK3WvB+9HXxRb+ME797/DTTPe1HZ8Qee35lhlOvPvW7+irLx5gxY8p7d9TkjlnwagZBwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3mOOOz4GH3RoY5rV4xZWWn6pxqd4P/n11789H3PMMUfjj6vv33TjDfF/V1/VeLTDYUccGT179mx879Zbbor9vvG18t4dNbljFryaQVDwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa65YL319f8LtbfYMPGNIdecVkMOfaoaSa7xaCt4uJLr2j78/PPOzt+dNoP2/65eobvb353feOfq4KxyorLxNixY8t7h9TgjlnwaoZAwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3jvvvi+WXGrpxjQPPfiA+P21v5tmsh9/PMOECRNi+WUWn+aXsN12x59imWWXa1z71S9/Ke6++87y3iE1uGMWvJohUPA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BrrlgnfYiKdiwDzzNKa51uorx+uvvzbNZG/9412x/AorNP58xIjhscN2W0/zmuoxDYcfMeXTvz8+/dQ479yzynuH1OCOWfBqhkDB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5Rnolgvep//+YvTq1avxXN2lFl+k3ak++de/R2tra+N70/slbDvtvEucc97PGq+57vfXxiEH7V/eO6QGd8yCVzMECp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPQLdc8I5+5oXo3bt3TJw4MZZZctFpplp9r3rNR1/77rNX3H7bH6Z53c67fDHOPvfCxp9Xj2eoHtPA16dvgAWvxjkFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54H3pkeCy44Gca01xisYWmebbuVltvE7+86NK2aa+43JIxbty4aaZ/yqk/iq/stXfjz3991f/G0UceXt47pAZ3zIJXMwQKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc8FryauZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwXnvdTbHGmms1pnn6qafEBeefM9VkL7rk8hi05ZRn7laL3WrB297X9Tf9IVZddbXGt3502g/j/PPOLu8dUoM7ZsGrGQIFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54Dzn08Djy6GMb0xw/fnxsvumG8corLzf+eeDAReOe+x+KlpaWxj/feeftsc9ee7Y7+REjR8fcc8/d+N7gA74RN95wfXnvkBrcMQtezRAoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwD3XLB26NHj6h+iVqfPn0aE50wYULce8/dscgii8Zyyy8f1fc/+vryHv8V997zp2kmv+12X4if/eJXbX++/jprxMsv/7O8d0gN7pgFr2YIFDyNRweFguewmmdS8PIOHQQKnsOqhqkueCx4NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654K3G+M39D4wTvnPiDCc6YsTw2GG7KY9q+OTXsBFPxYB55mn88Wuvvhprr7lKee+OmtwxC17NICh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPddsFbjfLAwYfEsUNOaHeq//rXK7Hl5pvE22+/Pc33Dzr4W3H0sUPa/vyySy+O7xw/5ZEPfH36BljwapxT8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGuvWCtxrneutvEHvvs2+svsaa0WfOPvGPf/4jbr7xhjjv3LOmO+37H3wkFlpo4bbvb7jeWjyeYRb+u8GCVyOfgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFjwWvZi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsoz0O0XvOWNtPvdMQtezUwpeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHg7OfMLfvY/sdrqa8QxRx3R7i9n6ySOl8+EARa8MyFpJl5CwZsJSbPoJRS8WSS+gx9LwavnXCh49ZxLdSp1wWPBq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDg7eTMH/jLY43HN5ww5Ji4/LJLOnk1L++KARa8XbE27TUUPI1HB4WC57CaZ1Lw8g4dBAqew6qGqS54LHg1cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrydnDkL3k4KE7ycBa9AYkRQ8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPB2cuYseDspTPByFrwCiSx4NRJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvJ0cOwveTgoTvJwFr0AiBU8j0USh4JnEJrEUvKRA0+UUPJNYAVZd8FjwCoZC/mskmijkv0lsEkv+JwWaLif/TWIFWHX+C44EAgNFGmDB28mxs+DtpDDBy1nwCiRS8DQSTRQKnklsEkvBSwo0XU7BM4kVYNUFjwWvYCjkv0aiiUL+m8QmseR/UqDpcvLfJFaAVee/4EggMFCkARa8nRw7C95OChO8nAWvQCIFTyPRRKHgmcQmsRS8pEDT5RQ8k1gBVl3wWPAKhkL+aySaKOS/SWwSS/4nBZouJ/9NYgVYdf4LjgQCA0UaYMHbybGz4O2kMMHLWfAKJFLwNBJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvJ0cOwveTgoTvJwFr0AiBU8j0USh4JnEJrEUvKRA0+UUPJNYAVZd8FjwCoZC/mskmijkv0lsEkv+JwWaLif/TWIFWHX+C44EAgNFGmDB28mxs+DtpDDBy1nwCiRS8DQSTRQKnklsEkvBSwo0XU7BM4kVYNUFjwWvYCjkv0aiiUL+m8QmseR/UqDpcvLfJFaAVee/4EggMFCkARa8nRw7C95OChO8nAWvQCIFTyPRRKHgmWBu13AAACAASURBVMQmsRS8pEDT5RQ8k1gBVl3wWPAKhkL+aySaKOS/SWwSS/4nBZouJ/9NYgVYdf4LjgQCA0UaYMHbybGz4O2kMMHLWfAKJFLwNBJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvDMY+4knnRxbb7Nt4xV777VHPD16dFR/tvIqq8bJPzgxhj32aJFvmk/7plnwaoy/+Oy18egD344PJr2jAUZEy2x9Yqsd747WvovJmCWCKHj1nDoFr55zoeDVcy7VqdQFjwWvZtbkv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIJ3BjO/9rqbYo0112q8Yo/dd43777u3vHdIDe6YBa9mCBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLngseDVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQngEWvCx4a/+uZ8GrGREFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABS8L3tq/61nwakZEwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMHLgrf273oWvJoRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwsuCt/bueBa9mRBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLngseDVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQngEWvCx4a/+uZ8GrGREFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABS8L3tq/61nwakZEwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMHLgrcp3vXzzLdObLbtDU1x1roe8sXnrotH/3x4fDDpHdkRW2brE1vteHe09l1MxiwRRMGr59QpePWcCwWvnnOpTqUueCx4NbNmwavx6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgZcFb+3c9n+DVjIiCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQLRe8e355r9hu+x3S01xjzbWib9++Dc4eu+8a9993b5oJoPMGWPB23ll7V1DwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa65YJ36JXXxMabbCqdJgteqc5OwVjwdkrXdF9MwdN4dFAoeA6reWZV8J4dfXEe9DFCy2xzxM57Pi9llgaj4NV34uqCx4JXM2vyX+PRQSH/HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAvemZw5C96ZFGV4GQtejVQKnsajg0LBc1jNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeyYI379BBIP8dVjVMdf5rTgUFA+UZ6JYL3uoRDdtu9wXpNI89+tvxj3+8JGUCmzkDLHhnzlNHr6LgdWRo1n2fgjfr3M/oJ7PgredcKHj1nEt1KnXBY8GrmTX5r/HooJD/Dqt5JgvevEMHgfx3WNUw1fmvORUUDJRnoFsueMsbY/e+Yxa8mvlS8DQeHRQKnsNqnsmCN+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHfMglczMgqexqODQsFzWM0zWfDmHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap7Jgjfv0EEg/x1WNUx1/mtOBQUD5RlgwTuDmQ+YZ5449NDDY4cdd46999ojRo58orx3SA3umAWvZggUPI1HB4WC57CaZ7LgzTt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8kwVv3qGDQP47rGqY6vzXnAoKBsozwIL3EzPv2bNnfHWffWOvvfaOJZdauu27/JK1WfcvBwtejXsKnsajg0LBc1jNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeyYI379BBIP8dVjVMdf5rTgUFA+UZYMH7/2c+aMut48DBB8daa68TLS0t07wTWPDOun85WPBq3FPwNB4dFAqew2qeyYI379BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNMFrx5hw4C+e+wqmGq819zKigYKM9A0Qve5ZZfPr512Ldj8y22jD59+rQ7/cmTJ8cTTzweX99nr3j11X+V9w6pwR2z4NUMgYKn8eigUPAcVvNMFrx5hw4CBc9hVcNUFzwWvJq5kP8ajw4K+e+wmmey4M07dBDIf4dVDVOd/5pTQcFAeQaKW/BWz9U9+OBvxc677BrzzT9/uxOvCsXfn/lbDB16eVx+6cUxceLE8t4ZNbpjFryaYVDwNB4dFAqew2qeyYI379BBGDvmb3HnTZ+PSZPekeFn69ka62x0Xiy82HYyZokgdcFjwat5F5H/Go8OCvnvsJpnsuDNO3QQWPA6rGqY6vzXnAoKBsozUMSCt3qu7le+uk/svffXpnqubnvjHvXUU/Hfu+0UY8aMKe/dUNM7ZsGrGQwFT+PRQaHgOazmmSx48w4dBNuCd+PzY+FFt3UcuRimuuCx4NW8dch/jUcHhfx3WM0zWfDmHToILHgdVjVMdf5rTgUFA+UZ6NYL3i0GbRWDDzpkus/VrcZdLXKrT+uuseZajenfftsfYt999irvnVDjO2bBqxkOBU/j0UGh4Dms5pksePMOHQQWvA6rGqa64JH/mrmQ/xqPDgr577CaZ7LgzTt0EFjwOqxqmOr815wKCgbKM9AtF7z7fmO/OOro46b7XN0JEybEvffcHeec/dMY9tijseFGG8eVv/4NC96avv8peJrBUPA0Hh0UCp7Dap7Jgjfv0EFgweuwqmGqCx75r5kL+a/x6KCQ/w6reSYL3rxDB4EFr8OqhqnOf82poGCgPAPdcsE79MprYuNNNp1qmtUvS3vs0UfiFz+/MG65+capvrfBhhvFVVf/lgVvTd//FDzNYCh4Go8OCgXPYTXPZMGbd+ggsOB1WNUw1QWP/NfMhfzXeHRQyH+H1TyT/M87dBBY8Dqsapjq/NecCgoGyjNQxIL34ot+GSd//3sxadKkdifMgrfeb3wKnmY+FDyNRweFguewmmdS8PIOHQQWvA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOgi3/+SWr6XGp8z99IAAYKNRAEQvearZvvvFGXHfdtXHu2T+N119/bapxs+Ct97ufgqeZDwVP49FBoeA5rOaZFLy8QwfBVvD4JWvpcakLHvmfHkkDQP5rPDoo5L/Dap5J/ucdOgi2/GfBmx6XOv/TBwKAgUINdMsF74GDD4kjjjw6evXq1e5YX3jh+bhy6BXxq1/+PKrn8bLgrfe7n4KnmQ8FT+PRQaHgOazmmRS8vEMHwVbwWPCmx6UueOR/eiQseDUKbRTy36Y2BSb/U/psF9vynwVvembq/E8fCAAGCjXQLRe8H81yp513iW/sd2Csssqq0aNHj2lGXBWHkSOfaDybd6+v7tP4/u23/SH23WevQt8O9bxtCp5mLo4Fb8/Z+8WgL9wZrX0X1RyyUMq1Qz8bkye/J7v76t+ZZVY8MFZd+yQZs0QQBa+eU7cVPBa86YGrCx75nx4JC16NQhuFBa9NbQpM/qf02S625T8L3vTM1PmfPhAADBRqoFsveD+aae/eveMb3zwg9vjyV2LRRReb4ajvv+/e2GP3XQt9O9Tztil4mrk4Frwts/WJrXa8O1r7zvjfK80ddF8KBa+es6Xg1XMutoLHgjc9cHXBI//TI2HBq1Foo5D/NrUpMPmf0me72Jb/LHjTM1Pnf/pAADBQqIEiFrwfn+1CCy0ch3zr8Nj+CztG//792x37+PHj4647b4/zzjmr8QlfvmatAQqexj8LXo1HB4WC57CaZ1Lw8g4dBFvBY8GbHpe64JH/6ZGw4NUotFHIf5vaFJj8T+mzXWzLfxa86Zmp8z99IAAYKNRAcQvej8959TXWjG8ddkRsvMnnpvu83rfeeituufnGOPn734uxY8cW+jaZtbdNwdP4Z8Gr8eigUPAcVvNMCl7eoYNgK3gseNPjUhc88j89Eha8GoU2CvlvU5sCk/8pfbaLbfnPgjc9M3X+pw8EAAOFGih6wfvxme+8yxcbz+tdeeVV2n1eb/XYhurxDd3xa7755o/qMRb/+MdLtbw9Cp5mLCx4NR4dFAqew2qeScHLO3QQbAWPBW96XOqCR/6nR8KCV6PQRiH/bWpTYPI/pc92sS3/WfCmZ6bO//SBAGCgUAMseD8x+DnnnDO+/o39G8/rHTjwP784qrsseKtfNveVvfaO//7SnrHkkktFa2vrVAvtN994Iy695KI45+wzY/LkyVPZqV579z0PtP3ZHXfcFkcfefh0/9Wpftadd98Xffv2a7zmueeejd2+uGOn/1Wj4HVaWbsXsODVeHRQHAVv2ZW/FausebzjuMUwRzx8YoweeX60tLTI7rlltjli5z2fl/FKBNkKHgve9NtJXfDI//RIWPBqFNoojvznl6zmx8WCN+/QQbDlPwve9LjU+Z8+EAAMFGqgWy54+/XrF/37D2iM9KWXXoyqIHTla5FFBjae17vNttvHV7+8e4wYMbwrmFpds9lmW8SlV1zZ4Zkef3xEfGHbraZ6Xf8BA2L446Pa/qzyuubqK0W1FG7va/8DDoohJ3y37VtjxoyJVVdatsOf/ckXUPA6razdC1jwajw6KBQ8h9U8k4KXd+gg2AoeC970uNQFj/xPj6QBIP81Hh0U8t9hNc8k//MOHQRb/rPgTY9Lnf/pAwHAQKEGuuWC94r/vTo22fRzjZEOPuAbceMN1xc63mlv++ML3mr5PeyxR2P4sGHxYXwYgwZtFRtsuFHbRT8988dx1pk/afvnTy54q2/ceMN1MfiAb7brd9jjo2LAgCmL9uqLBe+sfRtS8Gat/xn9dApePWdDwavnXGwFjwVveuDqgseCNz2SBoD813h0UMh/h9U8k/zPO3QQbPnPgjc9LnX+pw8EAAOFGuiWC96hV14TG2+yaWOkBw/eL66/7veFjnfa215llVXjtB+fGd/7zpB4+C8PTfOCwQcdGsccN+WvdVefWN5hu63bXtPegrd6jEP1qdxP/gK66pnGZ5974VR8Fryz9m1IwZu1/lnw1tf/9E5GwavnzGwFjwVveuDqgseCNz0SFrwahTYKC16b2hSY/E/ps11M/tvUpsHq/E8fCAAGCjXAgrfQwU/vtqtnEI96+rnGt6tfurbhemu1u+B99JGHY8211m587+pfXxlHffuwqZD3P/hIVI+4eO3VV6O1b9/o06cPn+Cdxe81FryzeAAz+PEUvHrOhoJXz7lQ8Oo5l+pU6oLHglcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezGd4xzvsuFOcd8EvGq+56647Yu+v7NHugveKyy+NzbcY1Fjivv/++7HS8kvFhAkTGq+tHvNw1dW/bfzn6pewnfj9U1jw1uB9RsGrwRCmcwQKXj1noy541d946Df3MvH5ne+v5w03yanGjn027v3DbvHu+JdkJ+45e79Ye+MLYuGB//lbKzJ4QaC7btkxXv/Xn2W/mJAFr+bNQ/5rPDoo5L/Dap6pzv/qRPyS1fxcWPDmHboILHhdZuFioHMGWPB2zle3ffXAgYvGbv+9exx8yGEx++yzR7WI2GTDdRu/pO6jr48/oqFa8D7w5/valsEXX/TLOPG7Ux7tcOsf74rlV1ih7RO7T41+lgVvDd45FLwaDIEFb32H0M7JKHj1HBcFr55zqU7lKHifGbhNbLj5pfW96SY42T9euDkevv9b8cH7Y2SnnWPOhWLTra+LvnMtJmOWCLr12vVj3NhnZbde/Y8iy6x4YKy69kkyZokg8r+eUyf/6zkXV/7X9245GQbqa4AFb31n86mc7PwLfxGbb7FltLa2tv286rEK3z780Lj77junOsMnF7zHH3d0PDb8yZhn3nkbn95dfpnFY6mll47b7rincd1pPzw5Lrzg3GDB+6mMssMfwoK3Q0Wz7AV8gmeWqZ/hD6bg1XMuFLx6zsVR8PgEr2bW5L/Go4Oizv/qAxorrn5crLjaEY7jFsN8cviPYtSIM6T3yyd48zrJ/7xDF8HxP/C6zgoXA93ZAAve7jzdmbi3u/50fyyx5FJtr5w0aVL89jfXxAlDjml75MJH32xvwbv3PvvG908+tfGSc84+M9Zdd/1Yf4MNY/z48bHicktGVc5mtOAdsPDSHZ7y/ffGRa/ZFo7Ntrmpw9fygukbqAre48O+E3PONZdM09jXXolBX7gzWvvyCZ6M1N8NXSTmXnCx6NGjJYNpu/bdsW/GogN3j1XWPlHCKxUy7KFj4+WXr485+vaXKPhw8gdR/Tuz055TnnPOV9cMVAXv7lu3j9Z55+saoJ2r3h0zJlZf58ex8KLbypglgu64cauY1OP1mL13H8ntk/8SjUH+azw6KOS/w2qeqc7/yR98EGNffyV2Jv9Twxn79jNT8n+eeVOcj19M/mtUdib///3Pv2l+KBQMYGAaA91+wTtx4sTGM2KzX//1xR1j5MgnspjaXX/IoYfHeutvEAPmmSeWXHKpxqMUqq9qQfu5jdePV1/9V9uZ21vwVt8cOeqZ6Nu3b8Nzz549o0ePHnHB+efE6aee0rh2RgveBZdao0MnE8a/HS2TBsRm29zY4Wt5wfQNVAVv5IiTot/8C8o0vfHiMzFo+9tZ8CaNVgVv/s+uFD1aNAved958JRZeaOdYZS0WvJnRDHvouHjt9VujT/8FMpi2a6uC9+ZLT8dOe7DgzQhtLHj/8IUYsMjiGcxU17796sux2lqnseBNGr3jpq2jR+9x0WvOfknSlMvJf4nGxoKX/Ne4VFPIf7VRDY/813hUU8h/tVEdrzP5/69nHtP9YEgYwMBUBrr9glc17z123zXuv+9eFa62nNN+dEbssedXGucb9dRT8fmtNms76/QWvIcdcWQcfsRRba+rluorLLtEVJ8Grr5mtODtNWffDl1M/mBS9Jtrxdh825s7fC0vmL6BquAN+8sx0aNlylwUXx+8/2FsucNdLHiTMqu/otmzd+/G/zii+Jo0cUIsuezXeQZfUuawB4+N558dGrP17JUkTbm8+hsNk9//IHba83kJr1RI469o3rxNtPT8UKbgww9aYq0Nz2HBmzRa/RXNceP+Fi2z9UySplxO/ks0Nha85L/GpZpC/quNanjkv8ajmkL+q43qeJ3J/4nvvqP7wZAwgIGpDLDgnck3RCkL3krHR5/IrRa0Sy2+SJuh6S14W1paYtTTz0Xv3r0brx16xWUx5Nj/LHx5Bu9MvsnML+MZfGbBCbz6GXz8kpXEMD52Kc/g1XhUU3gGn9qojqd+Bh/P4NXMhvzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa6/YK3WjY+9OCf05O99Zab4913301zmgHw8efyrrPmqm2PaZjegre6px+cclp8de+vRfXLHVZeYekYN25c262y4K3H1Cl49ZhDe6eg4NVzNhS8es6FglfPuVSnUhc8FryaWZP/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1/wHjx4v7j+ut+XN9nEHQ9/4q/Rv3//xl8nXvKzCzeWttXXjBa81ad3P7fZFvHKy/+MESOGT/XTWfAmhiG8lIInlClGUfDEQkU4Cp5IpBhDwRMLFeLUBY8Fr2Y45L/Go4NC/jus5pnkf96hg+DI/9l79Y+1N7ogFho4yHHkYpj33f7lePmlP0T1N3v5wgAGZp0BFryzzv0s+cn77T84Hn74oXj0kYfb/fm7/dfuccZPz2l876233orVVl6u7XUzWvDO6GZY8M6SUU/zQyl49ZhDe6eg4NVzNhS8es7FUfBm69ka62x8Ps/gTY6cBW9SoOly8t8kVoAl/wUSDQjy3yBVgCT/BRJNCHX+m44JFgPd3gAL3m4/4qlv8L4HHo6BAxeN559/Lq6+6sp48ME/x2OPPhJLLb10HHzI4bHDjju1/aKnM3/yozj7rDNY8HaT9wgFr76DpODVczYUvHrOhYJXz7lUp1IXPD7Bq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLWzmHy14O7rtJ554PLbfZsupXsYneDuyVu/vU/DqOx8KXj1nQ8Gr51woePWcCwve+s6F/K/vbMj/es6G/K/nXMj/es7Fkf/1vVNOhoF6G2DBW+/5yE/3lb32jv0PPCgWW+yz7bInTpwYZ535kzj/vLOn+f7cc88dI0aObvz55ZddEicMOWamzvfRIxo++ciHmbo4ovEs4HnmWzM23+6Wmb2E17VjgIJX37cFBa+es6Hg1XMuFLx6zsVR8Mh/zazJf41HB4X8d1jNM8n/vEMHgfx3WNUw+QSvxiMUDGQNsODNGmzS63v16hXLLbd8rLDiSrH4EkvEiy+80Hg279Ojpyxw6/RFwdNMg4Kn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5Brrlgnf3L+0Z22y3fWOa3z/xu/Hs358pb7Ld6I4peJphUvA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPQLdc8M7sGFtbW+Pdd9+NyZMnz+wlvG4WGKDgaaRT8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9AMQvegQMXjSOPOjaWXnbZWOgzC0X1C8N69uzZmPh7770Xr7/+Wrzw/PPx4AN/jrPPOqPx3Fe+6mGAgqeZAwVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHT7BW/v3r3jRz85K3baeZfo0aPHTE34nXfeie+ecFz85v+unqnX8yKvAQqexi8FT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx06wXvZpttEb/41SVRLXm78vX3Z/4Wn99q85g4cWJXLucakQEKnkYkBU/j0UGh4Dms5pkUvLxDB4GC57CqYaoLHvmvmQv5r/HooJD/Dqt5Jvmfd+ggkP8OqxqmOv81p4KCgfIMdNsFb79+/eLhx56IOeaYo22qVVEY9tijMXLkE/H006Pjub//PWbv1SuWX36FWGbZ5WLd9daLhRZaeKp3wR133BZf++qXy3tn1OiOKXiaYVDwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCR/5q5kP8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgoz0C3XfD+32+vi3XWXa9tog/8+f448ohvxYsvvjDDKe+w405x4kmnxHzzz9/2uoMH7xfXX/f78t4dNbljCp5mEBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg0D+O6xqmOr815wKCgbKM9AtF7ybb7FlXHLZ0LZpXnLxr+J73xky09NtaWmJhx4eHvMvsEDjmuqXsC239Gdn+npeqDVAwdP4pOBpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654D39x2fGl/aY8liFUU89FZ/farNOT3axxT4bd/7p/ujZs2fj2g3XWyv+8Y+XOs3hgrwBCl7eYUWg4Gk8OigUPIfVPJOCl3foIFDwHFY1THXBI/81cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ6BbrngvfGW22LllVdpTPO/d9s5Hnzgz12a7GVDr4rPfW7zxrVHH3l4/Pqq/+0Sh4tyBih4OX8fXU3B03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPdcsH7+JNPx1xzzRVVMVhisYUa/7crXwcfclgcdcxxjUuvufqqxjN8+fr0DVDwNM4peBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wyH/NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54n33h5aieoztu3LhYcbkluzzVDTfaOK789W8a1z/6yMOxy07bd5nFhV03QMHruruPX0nB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPdcsE7ctQz0bdv38Yndxdf9DNdnuo39z8wTvjOiY3rf3/t7+LQgw/oMosLu26Agtd1dyx4Ne7cFAqeTF/k4QAAIABJREFU23DX+BS8rnlzX0XBcxvuOl9d8Mj/rs+C/Ne4c1PIf7fhrvHJ/655c19F/rsNd52vzv+un4QrMVC2gW654L31j3fF8ius0JjsDtttHSNGDO/SlH918WWx5Vafb1x7wpBj4vLLLukSh4tyBih4OX8fXc0neDQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwnnXOBbHLF3dtTPO+e++JPb+0W6cnO2CeeeLBvwyL3r17N67dZMN144UXnu80hwvyBih4eYcVgYKn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BrrlgnennXeJc877Wds0T/7BifE/P7+wU9O960/3xxJLLtW4ZuLEibHMkot26nperDNAwdO4pOBpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654K3GeNsdf4plll2uMdGqIFz96yvje98ZEu++++4Mp7zSSivH2ede0HZt9eITv3dCXPyr/ynv3VGTO6bgaQZBwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCR/5r5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwD3XbBu8ACC8afH3o0evbs2TbV999/P2668YZ47LFH4onHR8Sop56Mvn37xSqrrhYrrrhSbLbFoFhjjTWnehdUz++tnuPL16wzQMHTuKfgaTw6KBQ8h9U8k4KXd+ggUPAcVjVMdcEj/zVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQnoFuu+CtRrn7l/aM0398ZvTo0aNLkx0zZkxssuE6Uf1fvmadAQqexj0FT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx06wVvNc6FFlo4zr/wF7HW2uvM9HQnTZoUl1z0y6ie3VuVC75mrQEKnsY/BU/j0UGh4Dms5pkUvLxDB4GC57CqYaoLHvmvmQv5r/HooJD/Dqt5Jvmfd+ggkP8OqxqmOv81p4KCgfIMdPsF70cjXWfd9eLY406IRRdbLAYMmCd69erVNu2qQIwfPz5ef/21eHzE8Dh+yDHx1r//Xd67oaZ3TMHTDIaCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWP/NfMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQaKWfB+crS9e/eOVVdbPd5669/x9OjR5U2+ie6YgqcZFgVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHTLBe/Xv7l/7LjTLo1pHnPk4TFq1FPlTbYb3TEFTzNMCp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPPJfMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3qFXXhMbb7JpY5oHD94vrr/u9+VNthvdMQVPM0wKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHT7Be9NN14fj48YkZ7sFZdfEm+//XaaA6DzBih4nXfW3hUUPI1HB4WC57CaZ1Lw8g4dBAqew6qGqS545L9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQ7Re8qpHusfuucf9996pwcDphgILXCVkzeCkFT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gyw4J3JmbPgnUlRhpdR8DRSKXgajw4KBc9hNc+k4OUdOggUPIdVDVNd8Mh/zVzIf41HB4X8d1jNM8n/vEMHgfx3WNUw1fmvORUUDJRnoNsveN955514d/z49GT3+NKu8fTo0WkOgM4boOB13ll7V1DwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCR/5q5kP8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgoz0C3X/AePHi/uP6635c32W50xxQ8zTApeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wyH/NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABW95M2+6O6bgaUZGwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCR/5r5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TEFTzMyCp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPPJfMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMFb3syb7o4peJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHdMwdOMjIKn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjCp5mZBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg0D+O6xqmOr815wKCgbKM9AtF7yXXnFlbLbZFo1pfvPr+8Qfbr25vMl2ozum4GmGScHTeHRQKHgOq3kmBS/v0EGg4Dmsapjqgkf+a+ZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8A91ywVveGLv3HVPwNPOl4Gk8OigUPIfVPJOCl3foIFDwHFY1THXBI/81cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrzlzbzp7nhKwVsjNt/u1qY7e50OTMGr0zSmPgsFr56zoeDVcy4UvHrOpTqVuuCx4NXMmvzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5ZFby///Wi6NGjRx72/wkts80RO+/5vIxXIoiCV9+pqwseC17NrMl/jUcHhfx3WM0zWfDmHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc9kwZt36CBQ8BxWNUx1wWPBq5kL+a/x6KCQ/w6reSYL3rxDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7ZsGrGRkFT+PRQaHgOazmmSx48w4dBAqew6qGqS54LHg1cyH/NR4dFPLfYTXPZMGbd+ggkP8OqxqmOv81p4KCgfIMsOAtb+bT3PFCCy0cb775RkyYMKGWNljwasZCwdN4dFAoeA6reSYL3rxDB4GC57CqYaoLHgtezVzIf41HB4X8d1jNM1nw5h06COS/w6qGqc5/zamgYKA8Ayx4C5t5796948DBh8QXdtgxFhm4aMw555xtz5d8//3347ln/x7fPuJbMXzYY9OYaW1tjbvveaDtz++447Y4+sjDp2uwem7lnXffF3379mu85rnnno3dvrhjp42z4O20snYvoOBpPDooFDyH1TyTBW/eoYNAwXNY1TDVBY8Fr2Yu5L/Go4NC/jus5pksePMOHQTy32FVw1Tnv+ZUUDBQngEWvIXN/JBDD48jjz62w7v+4cnfj5//7PypXtd/wIAY/viotj+riteaq68Ub77xRru8/Q84KIac8N22740ZMyZWXWnZDn/2J1/AgrfTyljwapR9ahQK3qemulM/iAVvp3R9ai8e+/YzceeNW8ekSe/IfuZsPVtjnY3Oi4UX207GLBGkLngseDXvIha8Go8OCvnvsJpnsuDNO3QQWPA6rGqY6vzXnAoKBsozwIK3sJl/fMH79Oi/xvDhw+JvTz8dG2y0UayzznrRp0+fhpGqVG01aNN4evToNkOfXPBW37jxhuti8AHfbNfisMdHxYABA9q+x4J31r7ZKHiz1v+MfjoFr56zYcFbz7mw4K3nXKpTqQse/wOvZtbkv8ajg0L+O6zmmSx48w4dBBa8Dqsapjr/NaeCgoHyDLDgLWzmO+/yxfjSHl+J44ccE8/87elp7v6Gm/8Yq6yyauPPf/GzC+KUk0+a4YJ38uTJjU/ljh07dipW9XPOPvfCqf6MBe+sfbNR8Gatfxa89fU/vZOx4K3nzFjw1nMuLHjrOxfyv76zYcFbz9mQ//Wciy3/Nz4/Fl5023redJOcigVvkwyKY3Z7Ayx4u/2IO3eDWwzaKi6+9IrGRX956MGpnpn78U/wPvrIw7HmWms3Xnf1r6+Mo7592FQ/6P4HH4lFFhkYr736arT27dv4ZDAL3s7NQv1qCp7aqI5HwdO5VJIoeEqbOpat4PGIhvSQ1AWPT/CmR9IAkP8ajw4K+e+wmmeS/3mHDoIt/1nwpselzv/0gQBgoFADLHgLHfz0bnvjTTaNoVde0/j2/ffdG3vsvmvbSz++4L3i8ktj8y0GNZa41S9nW2n5pWLChAmN126w4UZx1dW/bfzn6pewnfj9U1jw1uB9RsGrwRCmcwQKXj1nQ8Gr51xsBY8Fb3rg6oLHgjc9Eha8GoU2CvlvU5sCk/8pfbaLbfnPgjc9M3X+pw8EAAOFGmDBW+jgp3fbJ//w9Njrq/s0vn35ZZfECUOOme6C94E/3xfnXfCLxvcvvuiXceJ3j2/851v/eFcsv8IKbZ/YfWr0syx4a/A+Y8FbgyGw4K3vENo5GQWvnuOyFTwWvOmBqwseC970SFjwahTaKCx4bWpTYPI/pc92sS3/WfCmZ6bO//SBAGCgUAMseAsdfHu33draGo+NeCp69+7d+PYmG64bL7zw/HQXvMcfd3Q8NvzJmGfeeRuf3l1+mcVjqaWXjtvuuKdxzWk/PDkuvODcYMFbjzcZC956zKG9U1Dw6jkbCl4952IreCx40wNXFzwWvOmRsODVKLRRyH+b2hSY/E/ps11sy38WvOmZqfM/fSAAGCjUAAveQgff3m3f8oc7Y4UVV2x86+G/PBS77rLDVC/75CMaqgXv3vvsG98/+dTG6845+8xYd931Y/0NNozx48fHisstGVU5m9GCt3XAZzqcwKT3J0SfORaPzbe9pcPX8oLpG6gWvCMeGRI955hdpum9se/EljvcGa19F5MxSwT9bujAmHOueaJHjx6S25/w7thYYom9YpW1//NLEiXgwiDDHjouXnrhmph9jlbJnX/44eSYMPbt2GnP//wPZxJwYZCq4N118zbRq7WP7M7ff29irLnuGbHwYtvJmCWCbr9xy5gw8aWYbfYp/0Nx9ov8zxqccj35r/HooJD/Dqt5Jvmfd+ggWPL/3Qmx5vo/5ZesJQfWmfwf9+9Xkj+NyzGAgekZYMHLe6Nh4MKf/zK2237KQnfcuHGx3tqrxdixY6ey096Ct3rByFHPRN++fRvP4u3Zs2djSXXB+efE6aee0rh+RgveBZdao8MJTBj/drRM6h+bbXNTh6/lBdM3UBW8kSNOin7zLyjT9MaLz8Sg7W9nwZs0eu3QgTHfZ1eMHi0tSdKUy99585VYeKGdY5W1TpTwSoUMe2hIvPr6LdHafwGJgskffBBvvvR07LTHcxJeqZCq4N196/YxYJHFZQrGvvpyrLrmqSx4k0bvuGnr6NF7XPSas1+SNOVy8l+isbHgJf81LtUU8l9tVMMj/zUe1RTyX21Ux+tM/v/rmcd0PxgSBjAwlQEWvLwh4qyzz49ddt2tYWLixImx3TaD4unRo6cxM70F72FHHBmHH3FU2+srxgrLLhGTJk1q/Bmf4K3Hm4xP8NRjDu2dgk/w1HM2fIKnnnOxfIKHT/BKht2ZT/DMzA/kE7wzY6nj15D/HTuaVa8g/2eV+Rn/XPK/nnMh/+s5l+pUncl/PsFb3zlysuY3wIK3+WeYuoMLfvY/sf0Xdmwwqk/gfnGn7WPEiOHtMqe34G1paYlRTz/X9uzeoVdcFkOO/c/Cl2fwpkYku5hn8MpUykE8g0+uVALkGXwSjXKI7Rl8PIM3PSv1M/h4Bm96JA0A+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mjTuuHqNwzW9+H+usu17jn6tn5u74hc+3+8ndjxRNb8Fbff8Hp5wWX937azF58uRYeYWlG495+OiLBW893mQUvHrMob1TUPDqORsKXj3nQsGr51yqU6kLHgtezazJf41HB4X8d1jNM8n/vEMHgfx3WNUw1fmvORUUDJRngAVveTOP1tbWuPHmP8YSSy7VuPu33norPr/lZvHKKy/P0MaMFry9e/eOz222Rbzy8j+n+QQwC956vMkoePWYAwve+s7hkyej4NVzVhS8es6FBW9950L+13c2LHjrORvyv55zIf/rORdH/tf3TjkZBuptgAVvvecjP92iiy4WN9z8x+jfv3+D/cILz8d2nx80zS9Ua+8Hz2jBO6ODsuCVj7FLQApel7R9KhdR8D4VzZ3+IRS8Tiv7VC6g4H0qmrv0Q9Sf4OETvF0awzQXkf8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgozwAL3sJm/tAjw2PBBT/TuOvqMQpn/OT0qArU9L5uv+2P8fxzzza+zYK3ud8sFLz6zo+CV8/ZUPDqORcKXj3nUp1KXfBY8GpmTf5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseAub+bART8WAeeaZ6bs+5+wz44wfn86Cd6aN1feFFLz6zoaCV8/ZUPDqORcKXj3nwoK3vnMh/+s7G/K/nrMh/+s5F/K/nnNx5H9975STYaDeBljw1ns+8tM9NvzJmGfeeWea+9MzfxxnnfmTxuvnnnvuGDFydOM/X37ZJXHCkGNmivPRIxqqZ/2utvJyM3XNx1/EJ3g6razdCyh4Go8OCgXPYTXPpODlHToIFDyHVQ1T/Qke8l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813j9DvGoAAAgAElEQVR0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7rgregHlXjy22/0PTnb1OB6bg1WkaU5+FglfP2VDw6jkXCl4951KdSl3wWPBqZk3+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8Oyu+GDozJH0yMHj16SPDVvzPLrHhgrLr2SRJeqRAKXj0nT8Gr51yqU6kLHgtezazJf41HB4UFr8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgteh9U8k4KXd+ggUPAcVjVMdcFjwauZC/mv8eigsOB1WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABW95M2+6O2bBqxkZBU/j0UFhweuwmmdS8PIOHQQKnsOqhqkueCx4NXMh/zUeHRQWvA6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHLHg1I6PgaTw6KCx4HVbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODwoLXYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrzlzbzp7pgFr2ZkFDyNRweFBa/Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFBY8Dqs5pnkf96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM4c9dFw8M+pXsl9+V52oZbY5Yuc9n88frmACBa++w1cXPBa8mlmT/xqPDgoLXofVPJMFb96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KCx4HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHfMglczMgqexqODwoLXYTXPZMGbd+ggUPAcVjVMdcFjwauZC/mv8eigsOB1WM0zWfDmHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KC16H1TyTBW/eoYNAwXNY1TDVBY8Fr2Yu5L/Go4PCgtdhNc9kwZt36CCQ/w6rGqY6/zWngoKB8gyw4C1v5k13xyx4NSOj4Gk8OigseB1W80wWvHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgoLXofVPJMFb96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CO+8/fe448YtY9KkcTJ8z559Y62NzolFFttexiwRpC54LHg17yLyX+PRQWHB67CaZ7LgzTt0EFjwOqxqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CCx4HVY1THXBI/81cyH/NR4dFPLfYTXPZMGbd+ggsOB1WNUw1fmvORUUDJRngAVveTNvujum4GlGRsHTeHRQKHgOq3kmC968QweBBa/DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg8CC12FVw1Tnv+ZUUDBQngEWvOXNvOnumIKnGRkFT+PRQaHgOazmmRS8vEMHgQWvw6qGqS545L9mLuS/xqODQv47rOaZ5H/eoYPgyP/ZerbGOhudFwsvtp3jyMUw1flfjDhuFANiAyx4xUKbEffto46Jr+37zXjxxRdi2623mO4ttLa2xt33PND2/TvuuC2OPvLw6b6+R48ecefd90Xfvv0ar3nuuWdjty/u2GlFFLxOK2v3AgqexqODQsFzWM0zKXh5hw6Co+DxDF7NpNQFj/zXzIX813h0UMh/h9U8k/zPO3QQHPnPglczKXX+a04FBQPlGWDBW97Mp7rjAfPME/fc91D069cv3n777VhlxWWma6T/gAEx/PFRbd+viteaq68Ub77xRrvX7H/AQTHkhO+2fW/MmDGx6krLdto4Ba/TyljwapR9ahQK3qemulM/iILXKV2f2osdBY8Fr2Z86oJH/mvmwoJX49FBIf8dVvNM8j/v0EFw5D8LXs2k1PmvORUUDJRngAVveTOPNddaO760x5dj6aWXiVVXWz1mn332hoXOLnira2684boYfMA327U47PFRMWDAABa8NXmPUfBqMoh2jkHBq+dsKHj1nIuj4LHg1cxaXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgiO/GfBq5mUOv81p4KCgfIMsOAtb+Zx4vdPia/t+41p7rwrC97Jkyc3PpU7duzYqXg77/LFOPvcC6f6Mz7BO2vfbBS8Wet/Rj+dglfP2VDw6jkXR8FjwauZtbrgseDVzIX813h0UMh/h9U8k/zPO3QQHPnPglczKXX+a04FBQPlGWDBW97MY9CWW8e+X//Pp27X32DD6NmzZ6c+wfvoIw83PglcfV396yvjqG8fNpXJ+x98JBZZZGC89uqr0dq3b/Tp0ydY8M7aNxsFb9b6Z8FbX//TOxkFr54zcxQ8FryaWasLHgtezVzIf41HB4UFr8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5v5NHc8bMRTUT2LtzOf4L3i8ktj8y0GNZa477//fqy0/FIxYcKEBnuDDTeKq67+beM/V7+ErfrEMAveWf9Go+DN+hlM7wQUvHrOhoJXz7lQ8Oo5l+pU6oLHglcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezGUL3gf+fF+cd8EvGryLL/plnPjd4xv/+dY/3hXLr7BC2yd2nxr9LAveGrzPKHg1GMJ0jkDBq+dsKHj1nAsFr55zYcFb37mQ//WdDflfz9mQ//WcC/lfz7k48r++d8rJMFBvAyx46z2fT+V0Xf0E7/HHHR2PDX8y5pl33sand5dfZvFYauml47Y77mmc+7QfnhwXXnBusOD9VMbY4Q+h4HWoaJa9gII3y9TP8AdT8Oo5FwpePefiKHh8glcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUw+wavxCAUDWQMseLMGu8H1mQXv3vvsG98/+dSGhXPOPjPWXXf9qJ7pO378+FhxuSWjKmczWvD2mrNvhwYnfzAp+vVbPjbf7tYOX8sLpm+gKnjD/nJM9GiZJNP0wfsfxpY73BWtfReTMUsEXTt0YMzWq1f06NFDcvuTJk6IJZf9eqy69kkSXqmQYQ8NieefuTxmm72XREH134eT3/8gdtrzeQmvVEij4N20dbT0/FCm4MMPZos1N/hpLLLY9jJmiaCq4I0b97doma2n5PbJf4nGIP81Hh0U8t9hNc8k//MOHQTy32FVw+xM/k989x3ND4WCAQxMY4AFL2+KyCx4K30jRz0Tffv2bTyLt/plbdWS6oLzz4nTTz2lYXdGC94Fl1qjwwlMGP92tEyaOzbb5uYOX8sLpm+gKngjR5wU/eZfUKbpjRefiUHb386CN2n02qGLxryfXT5aWmZLkqZc/s6br8TCC+0cq6x1ooRXKmTYX46PV1+7OVr7LyBRMPmDD+LNl56OnfZ4TsIrFVIVvLtu2TYGDFxCpmDsa6/EKmucwoI3abRavPfoPS56zdkvSZpyOfkv0dhY8JL/GpdqCvmvNqrhkf8aj2oK+a82quN1Jv//9cxjuh8MCQMYmMoAC17eEOkF72FHHBmHH3FUm8mJEyfGCssuEZMmTfmk6IwWvAMWXrrDCbz/3viYvWXB2HzbWzp8LS+YvoGq4D0+7Dsx51xzyTRVS5FBX7iTBW/SaPUJnrkWWDR6tLQkSVMuf3fsm7HowN1jlbVZ8GaEDvvLkHj5n9fGHH0HZDBt1344+YOo/p3ZaU8WvBmhVcG785Ztou+882cwU1377pgxsdrap7PgTRq948atYlKP12P23n2SpCmXk/8SjY0FL/mvcammkP9qoxoe+a/xqKaQ/2qjOl5n8v/f//yb7gdDwgAGpjLAgpc3RHrB29LSEqOefi569+7dsDn0istiyLH/WfjyDN56vMl4Bl895tDeKXgGXz1nwzP46jkXnsFXz7lUp1I/g49n8GpmTf5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMub+TR3nH1EQwX8wSmnxVf3/lpMnjw5Vl5h6Rg3blzbz2HBW483GQWvHnNgwVvfOXzyZBS8es6KglfPubDgre9cyP/6zoYFbz1nQ/7Xcy7kfz3n4sj/+t4pJ8NAvQ2w4K33fD6V0ykWvNWndz+32Rbxysv/jBEjhk91bha8n8oYO/whFLwOFc2yF1DwZpn6Gf5gCl4950LBq+dcHAWPT/BqZk3+azw6KOS/w2qeSf7nHToI5L/DqobJJ3g1HqFgIGuABW/WYDe4XrHgnZEGFrz1eJNQ8Ooxh/ZOQcGr52woePWcCwWvnnNhwVvfuZD/9Z0N+V/P2ZD/9ZwL+V/PuTjyv753yskwUG8DLHjrPR/L6Xr16hX9+//nlwbdduc9Mffcc8c777wTm2+6YdvPfPPNN9p+UVr1h/0HDIjhj49qfP+Kyy+N4487eqbOx4J3pjTZX0TBsyvu8g+g4HVZnfVCCp5Vb5fhFLwuq7NfqP4ED5/g1YyM/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzOPGkk+NrX/9mh3d+ztlnxhk/Pr3tdSx4O1RW6xdQ8Oo7HgpePWdDwavnXCh49ZxLdSp1wWPBq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/m8b0TfxD7fmO/Du/87LPOiDN/8qO211Wf8h0xcnTjny+/7JI4YcgxHTKqF3z0Cd633norVlt5uZm65uMvouB1Wlm7F1DwNB4dFAqew2qeScHLO3QQ/h975x0nRfG08TIrioIKouQcJOecc06KiJIzSM45Sg6Sc845Z46ccxAOEBEUUZEoAsbf+6m+d8e9uz1u97p6b/bm6X/kdmee6f7W9JRV21ONAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYBngqq+JgI8fYYmFBDgmaAqoykd4MH/y9gF/l+GowkV+H8TVPU14f/1GZpQgP83QVVGU9r/y/QKKiDgPAJI8DrP5gE3YgR4MiZDgCfD0YQKAjwTVPU1EeDpMzShgADPBFUZTekAD/5fxi7w/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrN5wI0YAZ6MyRDgyXA0oYIAzwRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKvD/Jqjqa8L/6zM0oQD/b4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLA02doQgEBngmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMAzQVVfEwGePkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQK/L8Jqvqa8P/6DE0owP+boCqjKe3/ZXoFFRBwHgEkeJ1n84AbMQI8GZMhwJPhaEIFAZ4JqvqaCPD0GZpQQIBngqqMpnSAB/8vYxf4fxmOJlTg/01Q1deE/9dnaEIB/hlXGp0AACAASURBVN8EVRlNaf8v0yuogIDzCCDB6zybB9yIEeDJmAwBngxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGAZ4KqviYCPH2GJhQQ4JmgKqMpHeDB/8vYBf5fhqMJFfh/E1T1NeH/9RmaUID/N0FVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAAzwRVGU3pAA/+X8Yu8P8yHE2owP+boKqvCf+vz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zecCNGAGejMkQ4MlwNKGCAM8EVX1NBHj6DE0oIMAzQVVGUzrAg/+XsQv8vwxHEyrw/yao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wecCNGgCdjMgR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ/OAGzECPBmTIcCT4WhCBQGeCar6mgjw9BmaUECAZ4KqjKZ0gAf/L2MX+H8ZjiZU4P9NUNXXhP/XZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqCPBMUNXXRICnz9CEAgI8E1RlNKUDPPh/GbvA/8twNKEC/2+Cqr4m/L8+QxMK8P8mqMpoSvt/mV5BBQScRwAJXufZPOBGjABPxmQI8GQ4mlBBgGeCqr4mAjx9hiYUEOCZoCqjKR3gwf/L2AX+X4ajCRX4fxNU9TXh//UZmlCA/zdBVUZT2v/L9AoqIOA8AkjwOs/mATdiBHgyJkOAJ8PRhAoCPBNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYBngqq+JgI8fYYmFBDgmaAqoykd4MH/y9gF/l+GowkV+H8TVPU14f/1GZpQgP83QVVGU9r/y/QKKiDgPAJI8DrP5gE3YgR4MiZDgCfD0YQKAjwTVPU1EeDpMzShgADPBFUZTekAD/5fxi7w/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrN5wI0YAZ6MyRDgyXA0oYIAzwRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKvD/Jqjqa8L/6zM0oQD/b4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLA02doQgEBngmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMAzQVVfEwGePkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQK/L8Jqvqa8P/6DE0owP+boCqjKe3/ZXoFFRBwHgEkeJ1n84AbMQI8GZMhwJPhaEIFAZ4JqvqaCPD0GZpQQIBngqqMpnSAB/8vYxf4fxmOJlTg/01Q1deE/9dnaEIB/t8EVRlNaf8v0yuogIDzCCDB6zybB9yIEeDJmAwBngxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGAZ4KqviYCPH2GJhQQ4JmgKqMpHeDB/8vYBf5fhqMJFfh/E1T1NeH/9RmaUID/N0FVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAAzwRVGU3pAA/+X8Yu8P8yHE2owP+boKqvCf+vz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zecCNGAGejMkQ4MlwNKGCAM8EVX1NBHj6DE0oIMAzQVVGUzrAg/+XsQv8vwxHEyrw/yao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wecCNGgCdjMgR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ/OAGzECPBmTIcCT4WhCBQGeCar6mgjw9BmaUECAZ4KqjKZ0gAf/L2MX+H8ZjiZU4P9NUNXXhP/XZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqCPBMUNXXRICnz9CEAgI8E1RlNKUDPPh/GbvA/8twNKEC/2+Cqr4m/L8+QxMK8P8mqMpoSvt/mV5BBQScRwAJXufZPOBGjABPxmQI8GQ4mlBBgGeCqr4mAjx9hiYUEOCZoCqjKR3gwf/L2AX+X4ajCRX4fxNU9TXh//UZmlCA/zdBVUZT2v/L9AoqIOA8AkjwOs/mATdiBHgyJkOAJ8PRhAoCPBNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQWbMwEf3zz5/03HPPicjznEmdoQVlztlfRM+pIgjw7Gl5BHj2tAv3SjrAg/+XsTX8vwxHEypI8Jqgqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlSQ4DVBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAoSvCao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUkeE1Q1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oYIErwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUJXhNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqCDBa4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGC1wRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKkjwmqCqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVJDgNUFVX/P00R50NXiG2OZ33KPnX3iVqn56Xb9zDlZAgGdf40sHePD/MraG/5fhaEIFCV4TVPU1keDVZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqSPCaoKqviQSvPkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQKErwmqOprIsGrz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUkOA1QVVfEwlefYYmFBDgmaAqoykd4MH/y9gF/l+GowkVJHhNUNXXRIJXn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMFrgqq+JhK8+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMqSPCaoKqviQSvPkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYLXBFV9TSR49RmaUHj02zXiQOKfv38Xk3/xxTcoR4FxlDBJBTFNJwpJB3jw/zJ3Efy/DEcTKkjwmqCqr4kErz5DEwpI8JqgKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUJXhNU9TWR4NVnaELBWII3/1eUMGlFE112jKZ0gAf/L3PrwP/LcDShAv9vgqq+JhK8+gxNKCDBa4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLBq8/QhAISvCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFJDgNUFVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAErwmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBWP+HyWatM0l7f+1OwQBEHAoASR4HWr4QBo2AjwZayHAk+FoQgUBngmq+poI8PQZmlAwFuChRIO2uaQDPPh/bZMoAfh/GY4mVOD/TVDV14T/12doQsGY/0eCV9tc0v5fu0MQAAGHEkCC16GGD6RhI8CTsRYCPBmOJlQQ4Jmgqq+JAE+foQkFYwEeErza5pIO8OD/tU2CBK8MQmMq8P/G0GoJw/9r4TN2sjH/jwSvts2k/b92hyAAAg4lgASvQw0fSMNGgCdjLSR4ZTiaUEGAZ4KqviYCPH2GJhSMBXhI8GqbSzrAg//XNgkSvDIIjanA/xtDqyUM/6+Fz9jJxvw/ErzaNpP2/9odggAIOJQAErwONXwgDRsBnoy1kOCV4WhCBQGeCar6mgjw9BmaUDAW4CHBq20u6QAP/l/bJEjwyiA0pgL/bwytljD8vxY+Yycb8/9I8GrbTNr/a3cIAiDgUAJI8DrU8KaHHfftt+ne3bsil0GAJ4IRNfhkMBpRQYBnBKu2KAI8bYRGBIwFeEjwattLOsCD/9c2CRK8MgiNqcD/G0OrJQz/r4XP2Mnw/8bQagtL+3/tDkEABBxKAAlehxrexLCHDh9FJUqWonjx4tNzzz1Hf/31F9269SPNmjmdZs+cHuVLIsCLMrpQJ2IFrwxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59lcfMTPP/88rd2whTJnzhKh9pzZM6lv7x5RujYCvChhC3cSAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zufiIx0+cSpWrVFW6jx49otWrVtDpUyepcJFiVKlyFeIEMLd2bVqp73xtCPB8Jeb5eAR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ3PxEV++eoNeeeUVVZKheJECdOPGdesaFSpWoklTZqi/L18KplIlivh8fQR4PiPzeAICPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrO56Ihr1PyYRo8drzRXr1pJ7dq0DKe/7+BRSpIkqfo8W5YMdPfOHZ/6gADPJ1wRHowAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wuOuLJU2dQ+QqVlGaTRvVp29bN4fSHjRhNn9Suoz7v0qk9LV2yyKc+IMDzCRcSvDK4/KqCAM+vuL2+GAI8r1H59UAEeH7F7dPFpAM8+H+f8MP/y+Dyqwr8v19xe30x+H+vUfn1QPh/v+L26WLS/t+ni+NgEAABiwASvLgZtAisXL2ecubKrTRSJktIf//9dzi9qtVr0FfjJqnPx301mkaNGObTNRHg+YQLAZ4MLr+qIMDzK26vL4YAz2tUfj0QAZ5fcft0MekAD/7fJ/zw/zK4/KoC/+9X3F5fDP7fa1R+PRD+36+4fbqYtP/36eI4GARAwCKABC9uBi0Cu/YcoBQpUymNpIne86hVtGhxmrtgsfpuxfKl1LF9G5+uiQDPJ1wI8GRw+VUFAZ5fcXt9MQR4XqPy64EI8PyK26eLSQd48P8+4Yf/l8HlVxX4f7/i9vpi8P9eo/LrgfD/fsXt08Wk/b9PF8fBIAACFgEkeHEzaBE4ceo8vRsvHv3777+UPMn7HrWyZM1G6zZsUd/t37eX6tT+yDruvZTZIr3+H48f0nN/vUnFyoVooEWNANfg+/psf4odz3MiPiqqd76/SiUq7KTX30gSldNxzv8TWLMoMb2TJB09//wLIkwe3f2JPni/KmXK0U9Ez6kiZ471op9vb6TX48jMmX//+Yfu/nCFqtT+zqlIRcbNAd6uzWXp7UTJRfRY5LfbP1GmrIMoYdKKYppOFAraVJqee+V3evm12CLDh/8XwUjw/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKavvj/n6+ekrkoVEAABMIRQIIXN4UWgdPngilu3LiqNAOXaPDUPvwwI23aulN9FdUE75+//UVJU9TS6qvTT35wP5ju3TtGb8b3nIiPCp9fb1ymZCnr0MsvvxWV03HO/xMIPj+G3k2aQTTB++pLiSl+giJgrEHg51u76c9/b4omeH+9EUzpMrbV6BVO/fPPe3T926X0TuKQt0ck2sOff6S338lLb76VRkLOsRrXv11Cr7z5imiCF/5f/3aC/9dnaEoB/t8UWT1d+H89fqbOhv83RVZf1xf/jwSvPm8ogEBEBJDgxb2hRWD/oWOUOHES4tcokyVO4FGrYKHCtHDxcvXd+nVrqXXLptZx3qzg1eogTgYBEAABEAABEAABEAABEAABEAABEIh2AkjwRrsJ0IEYTAAJ3hhsXH8Mbf2mbZQ5cxZ1qYhq8FaqXIUmTJqmjpk2ZRINHtQfCV5/GAfXAAEQAAEQAAEQAAEQAAEQAAEQAAGbEECC1yaGQDdiJAEkeGOkWf03qNlzF1DxEqXUBcuULErBwRfDXbxLtx7UqnXIK8l9+/SkObNm+K+DuBIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIxGACSPDGYOP6Y2gdO3elNm07qEtNmTyBhgweGO6yG7fsoIwZM6nPK5YrRefOnfVH13ANEAABEAABEAABEAABEAABEAABEAABEAABEIjxBJDgjfEmNjvA2LFj07kLV+i5556ju3fuUI5sGenff/+1LpooUWLad/AoPf/88+r7bFkymO0Q1EEABEAABEAABEAABEAABEAABEAABEAABEDAQQSQ4HWQsU0Nde2GLZQ1azYlf+rkCerWpaMq1ZC/QEGaNHk6xX37bfXdpInjaNiQwaa6AV0QAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQcBwBJHgdZ3L5AadOk4bWbdhKsWLFssT/97//qVW9rvbDD99TyWKF6MmTJ/IdgCIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIOJQAErwONbz0sOPHf4/WbdxC77//QShpTvQeP3aUPq5ZNVTpBunrQw8EQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEnEgACV4nWt3gmF9//XUqWqw4pU2Xno4eOUwHD+xHYtcgb0iDAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAg4mwASvM62P0YPAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQwASQ4A1g46HrIAACIAACIAACIAACIAACIAACIAACIAACIAACziaABK+z7Y/RgwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIBDABJHgD2Hjour0JvPbaa1Tzo1qULn0GeuON2HTt26s0e9Z0evDggb077oDeVahYibJmzU7vf5CQbv/yMy1YMI+ufnPFASO39xATJUpMFSpWpnTp0tO///uXTp08QYsWzkcdbxuYDXPGBkbw0IXsOXKquvfJk6ek3357SFs3b6I9e3bZs7MO6hX8v32NjWeZPW0D/29Pu3CvMGfsaRv4f3vaBb0CgegmgARvdFsA149xBJ577jnq3LU7NWnagl5++eVQ4/vf//5Hl4KDaeaMqbRs6eIYN3a7D6hS5So0cNBQivv22+G6+vPPPymbjP9qDP3xxx92H0qM6t9bb71Fo8aMo5KlyhDPH/f2999/05HDh2jM6BF07OiRGDXuQBgM5ow9rcQ/gnw1fjKlS58+XAcfPXpE27duoRHDh9DNmz/YcwAxtFfw//Y1LJ5l9rQN/L897cK9wpyxp23g/+1pF/QKBOxCAAleu1gC/YgRBBInTkKbtwVR7NixQ43nr7/+opdeeinUZ8EXL9JHNSrTw4cPY8TY7TwIDrq3bNsVLhny77//qm4///zzVvfZHp/WqkHnzp2185BiTN+qVqtOo8aMpxdffDHSObNi+VLq2L5NjBm7nQeCOWNf6wwdPopqf/pZqA7yj4f8Y4i7n+HnW49unWnxogX2HUwM6hn8vz2NiWeZPe3CvYL/t6dtMGfsaRfuFfy/fW2DnoGAXQggwWsXS6AfAU+AV+seOXaa3n7nHTUWDrjXrF5FfXp1U0ncN998k5q3bE2f1qlLcePGVcc8fvyYqlUuT8HBFwN+/HYewPyFS6lwkaJWFzl5+0Wr5qpsBid3P6ldhxo2akKp06S1bMeJES4PgGaOQNp06VTi3ZVg//PPP2nk8KFqhTsnq5KnSElt23agCpUqW6vhb9y4TiWKFiQ+Fs0cAcwZc2x1lOs3bEz9Bwy2JH69fZs6dWxHu4J2qM8KFipMLVu1ofwFClqr4deuWU1tWjfXuSzOjYQA/L99bxE8y+xpG/h/e9qFe4U5Y0/bwP/b0y7oFQjYjQASvHazCPoTsATWrNtE2bLnUP3nhG7F8qXp+nfXwo2Hk1nLV66lnLlyq+9+++03ypc7m/ovmjyBdu07UfuOnZUwJ92bNKpP27dt8Xihrt17quSI69ia1SvT8WNH5TsFRbXK/dDRU9Zq9/Pnz1HNapXoyZMn4egkTJiINm7ebpXWOH36FFWpWBYUDRHAnDEEVlOW6+2tWrPBStzOnjmd+vXt5VG1eIlSNH3mHGtlPJc4GTt6pGYPcHpEBOD/7Xlv4FlmT7vA/9vTLtwrzBl72gb+3552Qa9AwI4EkOC1o1XQp4Aj0K5DJ2rfISSJyK/Fli1dTNXafVYbMWosfVyrtjrkmyuXqUSxQgE3brt3OHPmLLR+0zarm3379KQ5s2Y8s9v8yuDYcZNUEuXp06eUL092unvnjt2HGnD9W7thC2XNmk31+97du5Q7Z5Znrsp95ZVXaMu2IEqRMpU6Z97c2dS7Z7eAG7fdO4w5Y08L8Q+DXwdfwLi9OgAAIABJREFUpVixYqkO7tu7hz779ONndjZlqtS0YdM265z6detYK33tOcrA7BX8vz3thmeZPe3CvYL/t6dtMGfsaRf4f3vaBb0CAbsSQILXrpZBvwKGACcCg698R6+++qrqc+eO7bzeQO3YybMUP/576rz8eXJgQxxhq2/csoMyZsykVHnVbuOG9by6wtTps6hsuQrq2AH9+9DM6VO9Og8HeUcgQ4YPVa1qblyKoXjRgh5Xu4dV4/InJ06dVyUdeMV7xvQhyV40OQKYM3IsJZU6delGX7RpryRv//KL+kHEVUP8WdfhH6x4MzZuhw4eoE8+ri7ZLcdrwf/b9xbAs8yetoH/t6dduFeYM/a0Dfy/Pe2CXoGAXQkgwWtXy6BfAUOgYeOm1LffQNXfn366RXlyZvW67yVKlqZZc+bT7t1BVO+zkNW8aDIEOHHOCXRuXJrhw3Qp6ffff/dKnOslnzp7kX57+JCyZg6/S71XIjgoQgKLl65UNUK5rV+3llq3bOo1rTFjJ1D1mh9R966dUCPZa2reHYg54x2n6Djq3IUrqo47t+ZNG9HmTRu87saBw8eJy5wUzJeLfvjhe6/Pw4GRE4D/j5xRdByBZ1l0UPfumvD/3nHy91GYM/4m7v314P+9Z4UjQQAEiJDgxV0AApoE1qzfTNmyZVcqo0cOp6/GjvJJccasudSxfRt68OCBT+fh4GcTcK8jdurkCapaubxPyDp06kKnT52ioJ3bfToPB0dO4OLla9Zr40UL51eb3XnbXnvtNZo0dQY1qFvH21NwnJcEMGe8BOXnw5IkSUr7DobUAueNOdOnSe5TD/LkzUelS5elgQP6+nQeDo6cAPx/5Iyi4wg8y6KDunfXhP/3jpO/j8Kc8Tdx764H/+8dJxwFAiDwHwEkeHE3gIAmgTPnL1GcOHHU67LpUiejP/74Q1MRp0sQcN8FmEszRLSxmsS1oOE9gRdffJGufndTnXDz5g+qNAmaPQhgztjDDmF78Xnd+jToy2Hq4zWrV1HbL1rYs6MO7BX8vz2NjmeZPe0C/29Pu3CvMGfsaRv4f3vaBb0CATsTQILXztZB3wKCwKkzF4hrg0ZlZZX7AAsWKkwdOnahVi2a0q1bPwbE2O3cSS59wSUwuOnUN+bdnpevXEf9+/VSNSzR9Alc/+FnJRKVldXuV+/avSfFixefenTr/MwN2vR77AwFzBl72rnmR7Vo1JhxqnNReUvEfVQcxAcF7aDZM6fbc7AB1iv4f3saDM8ye9qFewX/b0/bYM7Y0y7w//a0C3oFAnYmgASvna2DvgUEgaMnztB77yWgp0+fUtpUSaPc5+Mnz1G8+PHVSmDePMrberFRvmAMP3Hi5GlUsVIVNcpC+XPTjRvXozTi6TPnUOky5dS5zZo0pC2bN0ZJByf9R8AV4J09e4YqlQ9JwvvauF7ckeOn1YZrXFe0QN6cvkrg+DAEMGfseUtUqFiJJk2ZoTrHJYA4yRuVVq16TRo7bqI6ddWK5dS+XeuoyOAcNwLw//a8HfAss6dduFfw//a0DeaMPe0C/29Pu6BXIGBnAkjw2tk66FtAENi97xAlT55CbeTFSSZ+7dzX1rJVG+LViNyOHT1CNatX9lUCx4chMHT4KKr96Wfq0759etKcWSEJEl9a6jRpaPvOvcQ7pf/222+UKUNqZWc0PQLXbtxSiVmuO535wzRRElu5ej3lzJVbnfvloAE0dUpI4got6gQwZ6LOzuSZ+fIXoCXLVqlLHNi/jz79pKbPl+P5xhu1vPHGG+oZVqpEYbpy+bLPOjghNAH4f3veEXiW2dMu3Cv4f3vaBnPGnnaB/7enXdArELAzASR47Wwd9C0gCHxa53MaMmyk6uvePbvp8zq1fOo3bxp19uvL9PLLL6vVu3lyZqVffgl5hR0t6gTef/8DOnT0pErO3r9/n7JkTOuz2I6gvZQ6Tch5XPeS61+i6ROYu2AxFS1aXAn16tGV5s+b45Mobxq1bMUadQ7PlVzZM/t0Pg72TABzxr53xulzwRQ3blyVnM2XO7vPZXz6DRhMDRo2VgPcumUTNW3cwL6DDaCewf/b01h4ltnTLtwr+H972gZzxp524V7B/9vXNugZCNiRABK8drQK+hRwBI6dPEv8yjgH3316dad5c2d7PQb316I40cUJL0+N68mePHmc7t2967W20w+cPHUGla9QSWHg0gpcYsHbVqlyFZowaZo6/Nur31CxIgU8npouXXqVnOdyA2jeEeCa1SdOnVereHlTwprVKvnEz/VaNF+tdq0adPDAfo8X5lfS165ZpX44QfOOAOaMd5z8fVSVqtVo3IQp6rJckqRc6eL08OFDr7rhPt/+/PNPypopnccSQK+88gqVLlOW1q9b65UuDgohAP9vzzsBzzJ72gX+35524V5hztjTNvD/9rQLegUCdiWABK9dLYN+BRSBIkWKqVUJvFqU2+qVK6h3r27qtf5nteQpUtKuPQfUeVxzl2vvekpGxYkb10qIjRoxjCaMHxtQfKKrs2+++SYdPnaaXn/9ddWF4IsXqXHDuvT99zee2SW2B6+q5vO5lSlZlIKDL3o85+CRE5QwYSK1cVGDunWia6gBd92evfpS0+YtVb/5nh/Qv48qoxFZCYxGTZpRn74D1HnP2qStbLkKNHX6LHr06BE1a9KA9u/bG3CMoqPDmDPRQd27a27eFkQZMnyoDmbf0qRRPa82fuTyDvyaJ7eRw4fS+HFjPF5w7LhJVK16Dbp+/TuqWrk83b1zx7uOOfwo+H973gB4ltnTLtwr+H972gZzxp524V7B/9vXNugZCNiNABK8drMI+hOwBLJmy06Ll66kWLFiqTFwoupScDAtXryAzp87S2+9FYdSpExJM6dPtZK4W7fvpnTp06vjO3dsR8uWLvY4/gWLllGhwkXUd+O+Gk2c5EXzjgAnx9dt2EJJkyazTvjpp1u0auVyVVKDk7mpU6eh3bt30fXvrqlj3IOPnTu2UcP6n3u8WN16DWjg4KHqu3PnzlLFcqW86xSOUgTqN2xM/foPsn4Y+euvv+jokcO0eNF8unnzJiVMmJBefvkVWrlimTqeVxhyHVH+b2Svqp85f4nixImjzmO7sH3QvCOAOeMdp+g4yn2FFV+fE707tm2lNatX0u+Pf1f14H/88ab1g0b2HDlp9dqQjSE5YZstSwaP3U6SJCntPXBEzcXHjx+reuN///13dAwxIK8J/29Ps+FZZk+7wP/b1y6YM/a1Dfy/fW2DnoGAnQggwWsna6AvAU+A/8do1er1lDJVao9j+fX2bcqRLaP6rniJUjR77gL17xs3rlOh/CEbRoVtmTNnofWbtqmP7927p16vRfOdwKQp06lCRc+b1/EKUq5ryYnf2LFjq3pXL774InHCMXuWDB5fheayDJxsfPXVV1WysWC+XOrVaTTfCHACat6CJYq7p7Z92xZq3LCe+mrUmHFU86OQGtdLlyyiLp3aezynS7ce1Kp1W/Xdnj27qG6dT3zrFI5WBDBn7HkjNGjUhHr17qeeUZ5ah3ZfWD+KHDh8nBIlSqwOq/dZbdq9O8jjORu37KCMGTOp73p270IL5s+15+Bt3Cv4f/saB88ye9oG/t+edoH/t69d4P/taxv0DATsQgAJXrtYAv2IUQQKFipMnbp0VwHzSy+9ZI3t809r0d69u9Xf7qt3q1WpQCdPHPfIYP+hY5Q4cRL1HSe6OOHlavw6Fa/s/f3R73Ts2BGPdRVjFFjNwTDHfgMGUd58BdRu8q62cME86tGts/qzd5/+1Lhpc/XvWTOmUf9+vT1edeTor+ijj0MSh6tWLKf27VqHOi5L1myUJEkSVdoBu9VHbjhezVu/QSNKlix5qBW92TKnV6sUeWXh5as3VL1jriOaPk1yjysMeU6cOntRJb94BSIn6B88eIA5E7kJPB7hrznD9ZgLFy5Kr772Gp0+dVL92IIWMQHenLNHr75UrlwFihc/vnXgtWvfUtFC+dTf/Azitxe4Xb4UTKVKhLwFEra5/9jIP1IVyJsz1CF8D2TPkYN+/PFHOn7saKRlVJxuN/h/e94B/nqWueYe/L/39wH8v/es/Hmkv+YM/L9vVoX/940XjgYBpxFAgtdpFsd4/U6A67NycPziiy/R6lUr1PXfeustVeOV27Vvr1LRwvk99qv2p5/R0OGj1HcXLnytNtZxtfETp1LlKlWtv3kVKdck7de3F505fcrv4wy0C3IiMEfO3JQ8RQpV+9VV+/j02YsU9+23VXIwbaqkHpOIbFNeGcdJx6dPn6rXmTnpyI03XVuxen2oFan379+nJYsX0NAvByE54sWNwgw/zJiJbt360dpAzX0u8OpCXmXoqc2et5CKFy+pvpo0cRwNGzIYc8YL5t4cYmrOfF63PvUbMDjUilR+q2H0yOHWM9Ob/jn1GP4xI1v2HOrZs3fvHqvUzJz5i6hYsRIKS83qlenY0SMeEbmeefxllUrlVIKdG5dC2bItiFKkTGWdx885/pGxV89uqNHrxQ0H/+8FpGg4xNSzDP5f35jw//oMTSiYmjPw/3rWgv/X44ezQSAmEkCCNyZaFWOyPQHeXG333oOqn55Wf/Ln7LQ5CcwbhHHytkihfFbg3qNnH2rWopU1Tv7etcEb/5s3YePNdDw1/qU8fvz3sEIugruEV4lyYsPTSjbXKWvWb6Zs2bKrPzmhPnvmdPVv/lWdyztw2QZP7eeff6LqVSpGWMqBX6VGmQfPhunUpRt90SakJEP9unVoV9COcAfyBlS8EQU3XrWb+cM01jE6c+bdd+PRb789pD/++MP2z5bo6KDOnOHNv7h2ufvzy/VvHsvBA/vp8zq1IqwHizkTscVdZRfYJyRLnMDjge3ad6L2HUPeXmDWtWvVsI5zf8sk7Mmc6G3WpCEF7dzuURd2idgu8P/R8ZTy7po6zzL4f+8YR+Uo+P+oUPPPOTpzBv7fnI3g/82xhTII2J0AErx2txD6FyMJcPDLK0C5cUKP67dyEO7evhw6gup8Vld9tG7tGvqiVTPr64uXr6nN3HjVae+e3Wj5siVUv0Fj6tCpi5Vc3LRxPbVo1jgcv8FDhivd1StXUOdO7bCRThhCLra8gjdXjszhVqnxa+TzFy1VZ/EK07y5slkKbdt1VDbgFnzxItWp/RF98MEH1L1nH8pfoKD6nOv6lilVjK5+cyXUlfm13oWLl9OpUyepeZOGSMCHsQsndznI47Z61Upq16ZluHt7975DapMpbi2bN6aNG9aLzBn+MeaDhIlo6JBBqmwHWmgCOnNmzbpNavUptyWLF6qV2WXKlqOevfsRr350zTN+Robd9Atz5tl3ojtb3iiSN4x0b1z3msuZcBkh9iXZs35I9+7eVYfwpmv7Dh5V/3748CHV+7w2/XjzJn3Rtr3yH64kPNfB5nrYnnTv3btLrVs2oyOHD2HKuBGA/7fv7aDzLIP/N2dX+H9zbHWVdeYM/L8u/YjPh/83xxbKIGB3Akjw2t1C6F+MJcDBMwfR3G7e/IGGDRlE69etVYF2ggTv06GjJ4lX2/KqQS4B4L568Lvvf1IB9u1ffqGc2UM2xuHGKw03b9upVuhy41ecvxobUuKBG39+5PhppcsrsDKmT4VViWHusBGjxtLHtWqrT7n8AjNcvGi+tdHaiVPn6d148dT3YV97HjN2AlWv+ZH6rm2blrRm1UpL3T1A4ZqyubJnoidPnljfHz95zqql+azXqWPshIhkYLw66vzFb6zX+Hm14ehRw63XzmvU/JhGjx2vVDzVG43qnKlWvSaNHTcxQl2n2sN93Dpzxn0TMF5l6vqhi59vCxYtI07icuPyM1Urlw+FG3Pm2Xdf0aLFae6Cxeog5sqlTaZNmaQ29eQ2Y9ZcKlW6rPp32HrjxYqXpDnzFqrvtm3dTE0a1bcuxj9WzZ2/WNXDZt3qVSuGqiE/feYcKl2mnEddzJcQAvD/9rwTdJ5l8P/mbAr/b46trrLOnIH/16Uf8fnw/+bYQhkE7E4ACV67Wwj9i7EEUqdJQ6vXbgpVq5WDZU688ooqTsJyGzywP02bOikUB/eaiWETiVxegMsE8ArfLwcNoKlTJlKtTz6lTJmz0IcfZiTetZib67sYCziKA2N+GzZtozRp04VS4AT7Cy+8YCUYjx45TB/VqBLqGPc6sbxJFK/udV+Z3bFzV2rTtoPaNIyT9ryBBa+ovnjha6vkBtfJ5AQvWngCVavXIA6iXXODj+BVnf/8848qq8GNeZcoVijcCmlf54zLLrz6mjfkY91SJQpjwzwPN6bOnHGvE7th/Vpq1aJpqCts2LydMmXKrBL5PC/4RzHMGe+fDsNGjKZPatcJdYKrXjgnaLm5nkfuzyquQ37qzAX1QyLPsSIF84YqH+PawM19XsxfuJTWrllFvAEln+dJ1/uex+wj4f/taV+dZxn8v1mbwv+b5RtVdZ05A/8fVerenQf/7x0nHAUCMY0AErwxzaIYT0AR4E0L+g/4koqVKElx48YN1/dffvmZcmXPHO5z99WKvOKXayHyKitXK1e+IvUfOJhy58iiVlmdu3AlVF3YsCt/AwqanzrbrkMn+ujjT4hfpw3bmDnb5ddfb4f6ipMavEL6vfdC6l2eP3+OqlQsG+rV8oNHTtDwoYNpzepVtGnrTpV0dzXWzZMzK7Hd0TwT4Dq7nHTNkzefldR1P3LL5o1qPoRtvswZV/LKXWPrlk3UtHEDmOUZBKIyZzhhu2vvQeuHE65nzXWtXY3fStiz/7BKMPJ8w5zx/RasVLkKNW/5BfHccf9xxKXU9osW6nkUtk2eOoPKV6ikPuYyDbzJp3uN8K/GT6ZXX31Fzbeu3XtSy1ZtQklEpOv7CGLmGfD/9rVrVJ5l8P/m7Qn/b55xVK8QlTkD/x9V2t6fB//vPSscCQIxhQASvDHFkhhHwBPgTdU4+N5/6JiVIOQNb/hVdG5vvfWW2jjK1fr2G0gNG4esduNVVP379bY2++LPWIsThpzgnTBpKpUp+9/rzZzgbVCvDp07dzbguZkeAAdtvGnaqDHjqELFkJW18+fNoV49uqp/M18+xlVCg8tr7Ny9X6365MblN8qWKmaVeHDZhb/jsg1cs9eVdOGVdd26dKSVK5aZHlaM0OeVI3Hjvm2VM2F+WTOlo99//11rzvDKaq6z7Krny2K8grRxo3p0/969GMHO5CAimzNhn2UlSpammbPnWXVdt2/bQo0b1rO6iDkjZy3etLNkqdI0bsIUJfrt1W+oWJEC1gXC2mbLtl2UPkMG9T0/4/ithTOnT1nHs63Z/3BJh4mTp6lNQV2Nk/Xsl8LWl5cbTcxRgv+3py0je5bB/0ef3eD/o4/9s64c2ZyB/48+u8H/Rx97XBkE/EkACV5/0sa1QMALAvwKerUaNVXNyWpVKqgzeBUb1+QtX7ZEqFfE3eu68nHt2rSi1atWhLtKoybNqE/fAeE+37NnF33RslmoxLEXXXTkIXXrNaBeffqr1bhcu5iT59wmTZlO8eLFD1Wu4e133qFt23dbNXU5ycubRLnOcQHk3dR37TlgJbZcn1+79i21bNaYLlz42pGsfRk0s549dyFlzZqNRgwbQhPGjxWZM0uWrSLe4dm9se25VumXgwcgaeWFkSKaM0dPnKEZ06aGKj3DrPkVfy5Pwy3sxpKYM14A9/KQnLly05SpM9XzqXTJInQpOFidySt9vhw6krJkTBvqWbV46cpQm0QWL1LAquPruiQH9We/vky8KtW9cZmGXj26eFwh7GV3HXUY/L89zQ3/b0+7wP/b0y7cK/h/e9oG/t+edkGvQECSABK8kjShBQJCBLgswOMnj+nunTtKceny1ZQ3X366fv07KlwgT6irNGjUhPr1H6Q+4xVWaVMlDZV84lUOXKKB/+ta6duhYxcrEOekVb7c2VEWwAvbMcNkyZNbCZGUqVLTzl37VIK2ft06tCtoh6XCxx4+eoo4AOE2ZfIEGjJ4YKirbN2+m9KlT68+mzRxHJUpU45Y09U6tPsCq3m9sAsfkjlzFjp79ox1tM6c4f8BXrl6vdLiObhkyUJq2qylVUbg1q0fVX1ltMgJhJ0zTZq1oF69+9Fff/1FObJ+GOrHpXTp0tPmbUHWivbyZUrQ11+fx5yJHHOUjuBSJK7VuPwMYz8RO3ZsWrJ4IXXt3CGUJm94V6hwEfXZxQsXqGzpYqG+79mrLzVt3lJ9xm+dPH36hIqXKGUdwxuItm4Zur5ylDrtgJPg/+1pZPh/e9oF/t++doH/t69t4P/taxv0DAR0CSDBq0sQ54OAHwis37RNJbC4bdq4nlo0axzqqitWraNcuUMSvzWqVaLjx45a348dN4mqVa+h/nYF7hzMd+/Rm3hl748/3qRC+XP7YRQx7xKcCGT2rhINNatVCpVk5PpivFs6t7CvQpctV4GmTp+lvnNP3FepWo0GDxmhykJkz5LBKu0Q8+iZHZHOnOE6yQkTJlIdrPdZbdq9O0iVSBk3cQrxzsRLlyyiLp3amx1ADFV3bTTIw+N6rlzXleu7ulqLll9Qtx4hNXjdS6Hw35gz5m4K3qX+xOmvVYkF/iGwT6/uNG/ubOuCXCaDV+hyApi/T5Y4pM44tzhx49KJU+fVDyCcuHc9t7heJr/hwG8quOaRuRHEXGWdZxn8v7n7Av7fHFtdZZ05A/+vSz/i8+H/zbHVUYb/16GHc0HAfgSQ4LWfTdAjEAhHgH8FP3LsNPHO5tz41f06tT+yVvhu3LKDMmbMpL6rXLGstSqLa4lygpETkI8fP6ZMGVKH2vCLA/M3Xn8j1MY5wO8bAffyF1yCgWvocgKQG6/GDdodUkP5yuVLVLJ4YUv8zPlLFCdOHPV3xXKlQtVDZnulT58BJRp8M0Woo6M6Z/i1woGDhyotrlHNtnFvadOlo6vffBNqHml005GnLly8nAoWCpkLnNz9tFYN6/7v1KWbqk3NbfasGdSvT0/MGT/dJZyQZV/iqgm+eNEClejl2tb82cXL19QPT0+fPlVviria++recV+NplEjhoXqMW8kGXYltp+GFCMuE9VnGfy/efPD/5tnHJUrRHXOwP9HhbZv58D/+8bLX0fD//uLNK4DAuYJIMFrnjGuAAIiBLi24fKV66xX+lmUa7v+9vA36zNOlnAS19XcE789u3ehBfPnRtiX/AUKUs/e/YiDQk4w/njzpior4Kmmr8iAYpBIrU8+paHDR4XaLI0TGvw/TBxocOPNhrh+K7cu3XpQq9Zt1b+5DnLdOp9ESINXkg4fOYb49fXXYsWiO3d+pbVrVtG4saNV4gUtYgK+zhneMIdfU+ckFq9S5LrJvMo0osblBj799DOK/14C+vOPP+jy5Us05MuBdPrUSZglEgIjR39FH338333PG0jyKves2bKr5w/z5zcLvv/+hs9zBs+yqN9+nIxdsny1VcKHf7S6fOkSvfvuu/RuvHhKmFe084pcbvxmCa+W43bv3j21yWFEjefX4CHDqUDBQhQnTlx69Og3OnL4MA0e2I9++ulW1DvtgDN9fZYxEvh//9wY8P/+4ezrVXydM/D/vhKO+vHw/1FnZ/JM+H+TdKENAv4jgASv/1jjSiAgQoBrHXLdXddmRC5RDq4rlC2pkr7c+FXyuQsWq39zkqpA3pwer88JSF6BlTtPXo/fc9KlYvnS9Pvvv4v0P6aK8GrdmbPnUfLkKcIN0b3+Lr/ifPpcsHqdmesf8+vMnNzy1Pr2G0j1Gza2Esfux7A9qlUpb9UDjqlcJcbl7ZzhRDoH69xWrVhO7du19nj51GnS0Nz5i60yDmEPeta5EuOJKRq8qReXI+HyF+6N50XTxg1o546QxKG3cwbPMpk7g1/XnDFrnkrEcrLdvfHmn9WrVrQ2YeM3RLgUDbfGDevR9m1bPHaCbT185FiKFStWuO85mc8lT5YtDfFXaBET8PZZBv/v37sI/t+/vH25mrdzBv7fF6r6x8L/6zM0oQD/b4IqNEHAvwSQ4PUvb1wNBEQIcHKwYaOmlCdvXnrnnXcpOPgi9e/bi548eWLpb9+5h9KkDVlNVa1KBTp54rjHa69Zt4myZc+hvuNAm1eU/v7oEeXLV8DaIIyTx0UK5okwESkyqBgikilTZqrzeT1KnTqNsgfXsdy2dbM1Ok7aNmwcstnQjGlTaOCAvh5H3rZdR+rQqYv1HZcLuBR8USXiXQkVToR99unHdOjggRhCz9wwIpsz/Ar6pW+uE6/i4c0KM6ZP5XGFNNcoPXL8jEo6cuPSJzt3bKe4ceNS9hw5rQTWsaNHqGb1yuYGFIOUOdArVbocJUmShH7++ScaOWIoXbl82ec5g2eZ7E3x7rvxqEmz5pQpUxY1L3YF7aSJE76yLsKrrdeuD3m2BV+8SGVKFfXYAT6ObeNKFvNq3f379lK69BnUWw6ukhBjRo2gsWNGyg4iBqpF9izjIcP/R4/h4f+jh3tkV41szsD/R0bQ3Pfw/+bY6ijD/+vQw7kgEL0EkOCNXv64OggYIcC1ek+fvRhp4N21e09q2aqNOo7LO1StXJ6ufnPF6hMnGDnRyA0bS8mYylV7l5OI6VIns1bCuavny1+AFi9dqRIi/Io07z6/ccN665DChYvS7HkL1SrgGzeuY5M8AdN8Xrc+DfoypHbo1MkT6cvBAzyqbt4WpJJS3LgMR42qFa0fVthey1eutTY8/PzTWrR3726B3jlbwps5g2eZ/++R+QuXUuEiIUld3iyPa8OHbfya9OFjp9XmbdzmzJ5JfXv3sA6LH/892rp9l/oxkX+wypA2hfqBBS3qBOD/o87O9JnePMvg/01bIbw+/L//mXt7RW/mDPy/tzTljoP/l2MJJRCQJoAErzRR6IGADQjwRlDbduxRPQm7UZGrexxwn7/4jVo9xSt3y5YqplYCh22uVXFc7zV1isQ2GF1gd+HKt9+r1XBhN13pIs5GAAAgAElEQVRzH9XhY6fo/fc/UB8NGtiPpk+dHG7Q7it8y5cpgU2MNG+L7j17U/MWISUZ3DcqdJctW64CTZ0+S310//59ypU9k8dVvrwZFb+KfvHCBSpbuphmz3B6ZHMGz7LouUe2bNtF6TNkoL/++otSJU/ksRPjJ06lylWqqu8OHthPtWvVCHdc8hQpaffeg+pz93I20TOqwL8q/L99bRjZs4x7Dv/vf/vB//ufubdXjGzOwP97S1L2OPh/WZ5QAwFJAkjwStKEFgjYhACvijp28qzqzS+//EzFixSg3377LVTv3H/xnjZlEg0e1N9j77mcAJcV4JYyWUK1ygot6gR4Ey9e1cZJkcoVyoRb9carQ3mVKLdnvfbMJQI4Qc+tV4+uNH/enKh3CmeqWsf9BwxWJIKCdlCDunXCUdm0dSfxJhTcIkoC83e8+po3+uIkcJaMaUFXk0BkcwbPMk3AUTx90ZIVqk4vt+5dO9GihfPDKV2+ekNtNPmssid8Er9xwitPI9t0MopdddRp8P/2NXdkzzL4/+ixHfx/9HD35qqRzRn4f28oyh8D/y/PFIogIEUACV4pktABAZsRcHe+XCd0yaIFNG/eHLr27VXV0xOnzqtd0Tlhmz5Nco8rEfm4jp27Upu2HdQ5SRO9F2qUdes1oMxZslKPbp0jPN9mWKK9O+4Jcy6/sGXzRpo1czpxzVZuvFFbyVJl1L/r1P5I1ar01JImS0579x9WX/EGRVxCw9W4VMCyFWto9KjhqM/rg8XPfn3Z2vDr1q0faeaMabR82RK6f++eqrnLgQazvX79OypcIE+Eyhs2byeuxXjv7l3Kmjl9qONGjRlH58+fo9kzp/vQM2cfGtmckXiW8SZJQ4eNpDatWxDbHi1yArzydteeA1ZtXd6AbeaMqbR500blV2rU/JhGjx2vhJYsXkhdO4f4EU+N61+/+uqr4X5cwbMscjt4OgL+P2rcTJ8V2bMM/t+0BSLWh/+PPvbPunJkcwb+P3rsBv8fPdxxVRDwhgASvN5QwjEgEIAEODCeMWuulSzkIWzcsI5aNm+iRuNaWXX82FGqUa1ShCMM2r2fOPnBZRySJU5gHcersjjhxf+9e+cOZcuSIQApRU+XmzZrST169bESI7yxVO4cWVRnNm7ZQRkzZqLff/9d1aOMqA0cPJQ4wc6tWZOGKlHsar379KfGTZurP7G613sbcx3Q9Ru3UqJE/5Ui4frH69etJffXyIcNGUyTJo7zKMx1kYOvfEcvvfSSShTmzZXNOi5X7jy0YtU69XfQzu3UoN5n3nfO4Uc+a87oPssY7dbtuyld+vSq5nXBfLno5s0fHE7cu+HzPb1g0TKVnOXG/LJn/VD9uNGpSzf6ok179XmOrBnp119vexTlH0P4RxFu69auoS9aNcOzzDv8ER4F/68J0ODp8P8G4WpIw/9rwDN8Kvy/YcBRlIf/jyI4nAYChgkgwWsYMORBILoJ8A7mvXr3o1SpUlOBfDlV4pCbq67VhvVrqVWLph67mTpNGtoRtE99F7ZcwLgJU6hK1WrqO34V/fixI/T06VOVDHNPNkb3+O16fX6Ntk+/gVS0WHFq2ri+qk/JzbWJl3vSN+wYOHi/cOlbVeeVayOnSZlEJeC58WvOJ09/be1Mv2P7VvXvy5cv0eyZM4h3sEd7NoGaH9WiFi1b05OnT6liuVLqYPe50LJ541Cb3rmrtWvfidp37Kw+CrtZm3ttRd6g7eefbtHt27dp/tzZdO5cSEkVtIgJRDRndJ9l5cpXpCnTZqoLc4Jy+7Yt9MILL9D+/fvUmw9PnjyBWZ5BgH/U4Dc9eN5sXL+O+vXtpY52f3U27Nsf7nKuOu/8mXs9cTzL9G87+H99hiYU4P9NUJXRhP+X4SitAv8vTVRGD/5fhiNUQECSABK8kjShBQIBRMBV1+ratW+paKF8Hnt+8MgJSpgwZPMc96RWkiRJae+BI9YK1LAnc9KxScN6tHt3SC1ZNO8JuOq38ivOaVMl9VjzeOy4SVSteshmRWET9O6v5nq66onjx9SKbVdC2PueOftI97qWCxfMU2VJwrYECd6n/YeOqdW7zDdThtRW7Wv3Gn+eSP56+zaVK1NC1cxG842AzrOMr+T+am7YK7Mdp06ZSEMGh9QhR/OegPurtR/XrEpHDh8Kd3KlylVowqRp6vOwP2rhWeY9a1+P1Jkz8P++0vb+ePh/71n580j4f3/S9u1aOs8y+H/fWPtyNPy/L7RwLAjIEkCCV5Yn1EAgYAi4v8bvaYOcqdNnUdlyFdR4wr5q7r7Z1N49u1VN0vfee49y58lHceLEUedwYqRRg7q0c8e2gGFih45myZqN1m3YorqybetmatKofqhufVyrNo0YNVZ9xhu1Fcqf26oZ6n4ub6q3edMGtblRrlx5KE3atNaq3mdt3mYHBnbtg+s1fv4Bo0rFsqE2yOOdnLcH7bV+EHF/1fzll19W5Uz4NXaeF2tWr6IHD+6rDdu4hjWXOeH26NEjKlG0IFZZ+3gD6DzL3FeZ8o9dvJKe7ZEvfwHLltwdrpnsWpnqY/ccezi/OcC1dfn+Zx/C97brDRKGwqviN28NUj+IcGvTujmtXbNa/RvPMrO3jc6cgf83Zxv4f3NsdZXh/3UJmjlf51kG/2/GJqwK/2+OLZRBIDICSPBGRgjfg0AMJfDaa6/R6XPBVu1E3uRr5Ypl9M8//1Db9h2tOqSczOIkouvV/hIlS9OsOSG7pf/ww/dUIG/OUITadehE7TuErG68eOEClS1dLIYSNDcsV5kGvsKNG9dpxbKlqsQC19zNX6CgdeHmTRupJK6rHTh83LIb13flOq+uxqtLN27erjbW41a6ZBG6FBxsbhAxUJnZ86pCLpHBK6w5Ac8rqJMlS0Gt27RTJTO4ff/9DVXH1dV4YzV+7ZPbiuVLqWP7NtZ3/D/BvGorb7786rMpkydgtaiP905Un2VvvfUWnTxzgfgVQ7Zn9iwZ6MGDB9bVCxcuSrPmLlAJSH4Opk7xX21mH7vo2MO79+xNzVu0VuPnH53WrF5Ju4J2UomSpejTOp9bb4GEnRd4lpm9ZaI6Z+D/zdqF1eH/zTOOyhXg/6NCzfw5UX2Wwf+btw38v3nGuAIIeCKABC/uCxBwMAF+7Wzz1p1W0i8sCk+lFk6fvajqvHKrXLEsnTl9KhxBV61RrsnboV1rSpo0uVrFtXHjOrpy+bKDiXs3dE4gLlm2ykr6hT2LV4FOGD+WRg4fan3FyZIhw0aqv7m+K9eyDNtKlylH02fOUR8vX7aETp86Se8lSEDXv/tOJV44yYX2bALuST9PR3KphVIli6iNB7nxhm1ctoFtyvOByzbwvHJvnOT99vqP6pgrly/RxAnjKGnSZPT48WNatmwx3b93D2aJhEBUnmVzFyymokWLK2XeNI83zwvb3GuNt2vTSj373n77bTp25Ajt2bMLdvGCgPuPfp4OP3rkMH1UowqeZV6wlDwkKnMG/l/SAp614P/NM47qFeD/o0rO7HlReZbB/5u1iUsd/t8/nHEVEHAngAQv7gcQcDgBTrwOHDyUKlWuSvyaOTd+9X/P7iBq07pFqFdqO3TqQm3bdVTH7N+3l+rU/sgjvfMXv6HYsWN7/I43ZBs2ZBAtWhiyChgtYgKNmjSjli2/sBLwvAHUN1cuU/NmjenqN1esE3kFIpcA4BWknPwtXCCPWvkbtvFOxD179/V4QdbmhG/dzz6x6sbCNp4JJE6chIYOH6US8MyeGydjZ0yfQqNGDAt10vpN2yhz5izqsz69utPcObPCibrX9/N0RV4p37RRfZW4R4uYgC/PMi6Pwa+ac+NnUpaMaT0KL1+5lnLnyevxOy5/wj+MdOnUHmaJhAAnRvr0G0CpUqexVu3yjyHdu3VWK+FdDc8y/95KvswZ+H//2gb+37+8vb0a/L+3pPx7nC/PMvh//9oG/t+/vHE1EECCF/cACICARYBrT74WK5bHFYOcsD119qJ6XZlXeubMnonu3b0bjl6FipVo0pQZ6nNOev148wdViylJ0mRWMoy/w6vo3t94vKInXrz4EW7AxcnG2p9+pgS5vmvbL1p4FD964gy9914C9R0ngB///lit4I0bN651PL9GXahAbo+29b7HzjmSX/Pjlbmc7AvbihQpRvMWLlEf37z5A+XPk8MjmImTp1HFSiErGDnp9euvv1LsN2PTBx8ktJJhnIBvULcONi708tZ61rOMJXbvO0TJk6dQas2aNKQtmzeGU44TNy6dOnNBPb+Y//XvrtEff/xJyZInt0rb8Ennzp2liuVKedkzHMY/aNy+/YvHjR7xLIu++wP+P/rYP+vK8P/2tAv3Cv7fnraB/7enXbhX8P/2tQ16FnMIIMEbc2yJkYCAUQIzZ8+jkqXKqGvMmDaFBg7wvBL0xKnz1orTsCUcWn/Rjjp16aaSVpwwyZA2BT158sRov2O6ONfWPXT0pEpCcZKRSwB4SjbWqPkxjR47XuG4cOFrKlc65NV0bu+//wGtXrdR/Zdb2HqYMZ2hqfG5z4Ua1SrR8WNHw12K7cclTXhOsN14TrhKZXCQMmX6LCpevKQ6z1PNa1N9j8m6XA+Z6yJze9aGg+7PvLAlHAoWKkyz5iywNsir91ltJN81bxo8yzQBGjwd/t8gXA1pzBkNeIZPhf83DDiK8vD/UQRn+DQ8ywwDhryjCCDB6yhzY7AgEDUCadOlo2079qiTeYUnJxG5FEDY1rJVG+Jdabnxpm01q1cOd8zYcZOoWvUa6vOG9T+nnTu2Ra1TOEsRWL12I2XPEbLR3aCB/Wj61MnhyHDyl0s4vPHGG8pupUoUDlcLmV+N/ubaDyrR+KzVpsDuHQH+MaNz1+7q4MOHDlKtj6p5PHHl6vWUM1du9d2XgwbQ1CkTwx3n2nCKbZcsccgKbLSoEeC5wCVkuBwN8yxRrFCocicu1dRp0tCOoH3PfOa5bzi1etVKatemZdQ6hbPwLLPxPQD/b1/jwP/b0zbw//a0C/y/Pe2CWMa+dkHPApMAEryBaTf0GgT8SmDthi2UNWs2dc3WLZvS+nVrw12fd7I9+/VltZkar87NlT0z/frr7XDHjRg1lj6uVVt9HtEmbX4dXABfzD0J9fPPP1HuHCG1XsO2/gO/pPoNGqmP+VV0fiU9bOPELm/0xf8DzBt9lSxeOIDJRH/XL31zXb3G/6y5kCdvPlq2Yo3q7C+//KzmjKe27+BRSpIkqaqNnSp5ougfXAD3wH3Dj40b1lHL5k08jmbnrn2qXiw3LnnCpU/CNq4rN3/RUvXx7FkzqF+fkB+30HwngGeZ78z8dQb8v79I+3YdzBnfePnzaPh/f9L2/lrw/96z8ueReJb5kzau5QQCSPA6wcoYIwhoEnj7nXdo0uTp9FacOKFe7XeXnTRlOlWoGLJid/68OdSrR1ePV+UkMNct49fQ06dJTn/++adm75x9Otfe7dm7HzVpVI8OHTwQDgbbjl8V5MQts86aKV2ojfNcJ9Rv2Jj6Dxis/ly6ZBE2jtK8rbJmy05cW3f7tq0RJv7cayLXrlWDDh7YH+6qiRIlpv2HjqmV1Vw3uVD+kNW+aFEjwPNgwKAhalPJvLmyeiwRU6lyFZowaZq6wLdXv6FiRQp4vNiiJSuoQMFC6rvPP61Fe/fujlqncJYigGeZPW8E+H972gVzxr52gf+3p23g/+1pFzzL7GsX9CwwCSDBG5h2Q69BwFYEkqdISbv2HFBJqN9//50ypk+lVi6GbU2btaSevUNq9wbt3E4N6oVsDOZqxYqXpOYtWlHiJEnozz/+oMuXL9GI4UPClROw1eBt3pkly1ZRvvwhCaqRw4fS+HFjwvWY7cYlHHgjPX5tPVuWDKE2WUuZKjX17NWHUqRMpVZo37h+nWbO4OTlFpuP3r7da9KsBfXq3U918NTJE1S1cnmPnV2+ci3lzpNXfde5YztatnRxqONatW5LpcuWowQJEtD9e/fp2LEjNHLEUI8bJdqXhn16xnOBf4R68803VadKlyxCl4KDw3WQn3m79x5Un9+9c0fNGfeGOSNvU4lnGT/jevXpT1mzZqc4cePQrVu3aOvmTao0iiefJT+KmKcI/29fm0rMGTzL5O0L/y/PVEIR/l+CohkNiWcZ/L8Z20DVfgSQ4LWfTdAjEAg4Alu376Z06dOrfnds30Zt0hW2cWKQa1/yxlGcRCyQN6eq9cqNVynOmDWP0mcInSRxaezbu4c+r1PLY93fgIPlxw5zbVeu8RpREsrVle49e1PzFq3Vn0FBO6hB3Trq3/w/u7PnLaRixUp47DXbr2ql8qq8AJr3BHgOcELdNRfy5c5Ot279GE6AaytzjUVP9uMfQ8ZPnKKS8mEbz68xo0bQV2NHed8pHKkI9OzVl5o2D6mly/XBuU64p7Zl2y7redWlU3u16h1zxtxNpPss457x67lftGlPXG88bHv69Ck1avA57d+319wgYqgy/L89Das7Z+D/zdgV/t8MVwlV+H8JivIaus8y+H95m0DR3gSQ4LW3fdA7ELA9gdJlytH0mXNUP69f/44KF8jjsc9jv5pI1WrUVN/xKkRejciN/2f36ImzFCdOHPX37V9+oQ3r11KixIkpT9781ko6TiYWK5yf/vjjD9szsUsHDx45QQkThtRsrfdZbdq9Oyhc1+LEjatKOHDSg2u8Zs+SgR4+fKiOc189ygmQTRvW09///E2FixQl3vGWG9ujWuXy9PXX5+0ybNv3w32jwSWLF1LXzh089tndfvXr1qFdQTvUcfz6Jyd++XVDbsEXL9Ke3UGUI2cuypwlq1plzS2iesu2BxRNHeTSMSfPXLDmQrbM6dWmkmGb+zMvbNkMzBkzxtN9lrlvAMordTmRe/WbK1SwUGFVa5mTWfzDSJ9e3Wne3NlmBhEDVeH/7WtU3TmDZ5kZ28L/m+Gqqwr/r0vQ3Pm6zzL4f3O2gbI9CSDBa0+7oFcgEDAE3n//A5oyfRZlyZKVKpQt6THRlzhxEuKNojiIfvz4MWXKkFrV4OXmvoGLe+LXBaBr957Ezpnbs2r7BgwwP3a0UZNm1LVbT7p0KZgqlS/t8crzFy5VCVtuXL6Byzhw+3LoCKrzWV31b05icXLdZTP+rETJ0jR1+ix66aWXnlmn1I/DDZhL5S9QkMaNn0yvv/FGqLngPoDP69anQV8OUx+dP39OzS1ucd9+m44eP2MlccNuesiJ+qXLVxOveOD2cc2qdOTwoYBhE50d5cT48BFjqGr1GjTuq9E0euRwj905fS6Y4saNq77jeXX27BnMGcOG03mW8bNq1pz5qof8g1TJYoXUM83V+A2S9Ru3Etea5R+5MqRNgdrwXtoT/t9LUNFwmM6cgf83ZzD4f3NsdZTh/3XomT1X51kG/2/WNlC3JwEkeO1pF/QKBAKOQPz470X4qv7GLTsoY8ZMaky8+RonarmVLVdBJQld7cGDB2o14+ZNG0KN37WZEQfnaVImCTg20dlhXiH96quvErMN2zJlykwbNm9XH9+/f5+yZEyr/v3666/T18FXVUKeGyc9pkyeYCV/XTruG7OVLF4ItZJ9NHREc4aTtFzCIVasWGpVIW+s9v33N5T6+IlTqXKVqtaVrly+RC2aNw7H3rWZoXty2MfuOfbwZz3LOnXppl7z57Z3z25VOgZzxj+3SlSeZdyzw8dOESciXW3H9q3Urk2rUKuz3TczdP+hyz8jC/yrwP/b04ZRmTPw//6xJfy/fzj7ehX4f1+J+ef4qDzL4P/9YxtcxX4EkOC1n03QIxCIUQS4VuiceQvVmLjMQv48Oazxrd+0jTJnzqL+5iQirwblxq+ct2zRRL1Cy+3TOp/TkGEjVbIrWeIEMYpPdA6GV1UnSZJUdaFJo/q0betm9e8OnbpQ23Yd1b///PNPa7XovXv3VGkN1+ZqnAD+7vuf1HERlYCIzvEF6rWHjxxDtT75VHV/9aqV1K5NSE1Ybpe+ua4S9vyaOfN3vVrOtmvftrXa5JDb3AWLqWjR4vTDD9+retdo+gR44zUu4cDPKV7NniNbRmszO8wZfb46ChE9y1KnSUM7gvaFe5axv5kwfiyNHT3SuqxrZTbXkOda8mj6BOD/9RmaUoD/N0VWTxf+X4+fqbPh/02R1deF/9dnCIWYRQAJ3phlT4wGBGxH4NSZC+rVV27VqlSgkyeOq3+/9tprdPHyNZWg4tq9/Ar62HETqWSpMup7TuZu2rheBdq86/lnn9cLl+Dl+rH7Dx6j1atWUN/ePbALug/W5wQiBxLcOKFeplRImQZuR0+coffeS6B4pk6RWG1OxJuwuRLwFy9coGZNG1L8+PFpxap16py6dT6hPXt2WRqjxoyjPHnzUasWTenM6VM+9MzZh/JKw0NHT6p5wSvWM6ZPZb0uXqFiJZo0ZYYCxLV7Z0yfQpOnzKDUaUJWXnPS6qsxo1Spjd17DxLvbs8rfwvmy2VBxZyJ+v01e+4CKl6ilBKYOnkifTl4gOicYZvdunWLWrVsSnfv3Il6Rx125rOeZRMnT6OKlaooIrVr1aC33opDw0aMJq63yO3e3bvUoX0b2r1rJ1359ntVf3n5siXUqUNbiyLXmR09djwN6Ndb1Y9H854A/L/3rPx5JPy/P2l7fy34f+9Z+ftI+H9/E/fuevD/3nHCUc4igASvs+yN0YKAXwlwEnfNus2ULn16OnhgvwqwXY0TTWfOBas/J00cR8OGDFb/TpsuHU2ZOpNSpEyl/uYVpNy4PtatWz9S3lzZLA33+rED+vehmdOn+nV8gXwxTpj3GzBYJTSKFMpH17+7Zg3n/MVvKHbs2HThwtdUrnRx9TmvXvhqwmQqXjykFiwn4HkDKv6cE8GciHStHnWvuczH8Hdo3hHgshnzFy1TNV779+tNs2ZMs05s2qwl9ezdV/3tXhKjUuUq9OXQkdaGhJy04lq93NauWU1tWjfHnPEO/zOP4o0iuT4v39OZP0yj5oCr6c4Z95rLhw4eoE8+ri7QY2dIPOtZ5tooKmx5H67tzvOJn3/cfr19m96NF0/92/1tBv7bveYyv4HCb6KgRU4A/j9yRtF1BPx/dJF/9nXh/+1pF+4V/L89bQP/b0+7oFfRSwAJ3ujlj6uDgCMI8Aqo48ePhlqV5v56/4xpU2jggJDElatVqVqNBg8ZoRKNrvbloAE0dcpE9SeXduASD9w4wThoYD+VFLsUfJE2rF8XKvniCMhRGCSzLVqsOK1ftzbU2afPXlQJwrAre/mgDBk+pElTpqvVoa527OgRqlm9svW3e83lXbt20umTJ9Ur7WtWr1QlA9AiJ/BxrdrhVgu6r1QoX6ZEqA0NeT5179GbeDMKV9KKr8LlGVzMMWci5x7ZEfzKf5w4cYnvefemM2fcay6zJq/A5uTxnTt3aPnSxdYPJ5H1zcnfR/Qsmz1vofpRile3p0qeKBQiXsU7buIUVcrE1R49ekQfpvvv2eZec/nnn3+iObNm0muxXqNdQTutt1GczN2bscP/e0PJ/8fA//ufubdXhP/3lpR/j4P/9y9vb68G/+8tKRznFAJI8DrF0hgnCNiQwLUbt+j555+nb69+Q8WKFAjXQ05a9ek7gHgzLw7Q06VOZpVhcK+5FPZETibuCtpBLZs3wW7oUbC76/V+Xj2dNVM6jwmmatVr0qAvh9Ebb7xBlSuWtcowuNdc9HTp27/8Ql06d6CgnSGbu6F5TyBX7jxWSQzeqJA3LAzbeGX8hIlTqVDhIqFWYPNxmDPes/b1SJ05M2LUWOKA3lPjRO+l4GBq3LCutdGer31z8vGDhwxX5X248apoXh0dtn34YUaaPG0mJU2aLNTbJO41Fz0xfPz4sSrVMXbMf3V8ncza17HD//tKzD/H6zzL4P/N2Qj+3xxbXWWdOQP/r0s/4vPh/82xhbK9CSDBa2/7oHcgEKMJuP+PzbNKLPBq0jRp0tKRw4cUD/eVjA8fPqTLl4LphRdeoAwfZiTeadXVFsyfSz27d4mUYY2aH9Oqlcux6vf/SbkHaWFLa7jD5OR8iZKlrU3X+Dv3motff32eHty/T0mTJaOECf9bPccJeF5N5/6Kuycj8cqvY8eOqDqZaCEEXElaXrVeuUIZOnfurEc0vFr37t271updyTnDqyUKFylKGzesh1k054x7zUX+Eev8+XP0x9OnlD7Dh1adWL7EtW+vUtHC+SPljTkTGhEnaU+dvahWtXNd4yKF8hL7jIieN7yBpOu55F5zkVfB//D99/TOO+9QylSp1Q+TrsZvL4Rd0R1Wn5PI7KPOnj0TqQ2dcgD8vz0tDf9vT7vA/9vXLlGdM/D/Zm0K/2+WL9TtSwAJXvvaBj0DgRhPgJOxZ7++TK+++qoa68YN66hnj67PTOhxYM31Ll9//XUViIetH8sbUY0cPU7V7M2WOX2EwbwL7szZ89TGblcuX6KSxQvHeObeDnDT1p3ESQluvMK6aZMGdOXy5Wee3rZdR+rQKSShHjYxzK9Dcw3fYsVKqNIDnTu2e6ZW3XoNaODgoWoFNtc7ffLkibddj9HH5cyVm1auDkmscpJ35PChqmwJJ80japJzhutq7tl/WG3CN2f2TLW5IVoIgajMmTXrNlG27DnU+WFrLvProLPnLiSuaV2/bh31VsKzGuaMZzpcb7dlqzbqS64T/kWr5rRzR0h5n4gal6LZvC1Ifc0JYfeayzyfuHQDa/ImhoXy545Ua93GrWqTyjq1P6L9+/ZiyhCpH2Ph/+15K0TlWQb/b96W8P/mGUf1ClGZM/D/UaXt/Xnw/96zwpExhwASvDHHlhgJCAQkAV7ZuXb9ZooXP77V/xs3rtOe3bvox5s36cqVy6FWiLq/csO1Y1u3bBpu3Pyaeu7ceWnb1s3qOy71sGzFGho5Yqi1Cpg/Hz9xKlWuUlUlESuWL6VehXYdH9nq0oCE7UOneRnlu/cAACAASURBVMXbwsXLKW++/1YN3rt3T9nlmyuX6eHDBzR3zixLkRPuZ85fUkkMTjzmyJYxVM1l14G8SdWGdWuthOSoMePUKtQ5s2ZYWvy6Oq/u4sYrsHklNuzyn/GKlyhF02bMVqy5MW9e+XnowH66f/++Kn8RHHzROiEqc4ZXKX45ZDi1a9NKbW7IjX802b3vkFqNzZ8VKZiXePMq2CYEta9zpmChwmqOcfvpp1uUJ2dWjzO05ke1aMXypdZ3mDM+PMj+/9Au3XpQq9ZtrRP5vj106ACdPXOa/vzjT5oxfUqoH5Fcr9zyCexjwtYp58+zZstOT548tvwGJ9gzZc5C3bt2sp5vnKTftGWnmjtbt2yipo0b+N75GHwG/L89jevrswz+3392hP/3H2tfruTrnIH/94Wu3rHw/3r8cHbgEUCCN/Bshh6DQIwjwP9jNHPOfCpSpJhKxro3DpYXLZyvPoof/z06cvy0ej3Wl5Wd7dp3ovYdOyuN48eOUotmjalz1+6q7iWvfKxWubz16iy/ajVj1lyVHObjnN46du5KLVp+YSUTXTx27w6iep/9Vzd0+sw5xK+Hc5s9czr169srUnSc/NgRtE8dxwlDXlmXIEEClXjn+8B9RSPbPmjPAfrl55+oerVKdP/evUj1Y/IBnBhZuHhZqM3ueLz8w0TBfLms0gxRnTNr1m+mbNmyK72lSxZRvz491YrG5MlTENdR5lfdeTUkt959+lO9Bo1o2NDBNH3q5JiM3auxeTtnjp88Z/2w5c1r/nxxzBmvTODxIH62fzV+UqjSF3wgl4DJmjm9dQ7XFx87LmQzT1/e7Lh4+RrFihWLnj59SoMH9qPdu4Joe9Be9YbKnj27qG6dT5QmP9s2bw2ihIkSUcP6n0Va3iHqIw6MM+H/7Wsnb59l8P/+tSH8v395+3I1b+cM/L8vVPWPhf/XZwiFwCGABG/g2Ao9BYEYT4BX3nbq3I2KFC1GCRK8r1a1ub/+umLVOuKNJrgN/XIQTZ403ismvHpqyLCRxLV2ObjmpBX/l1c+flSjikr6cstfoKBaUccJ5CmTJ9CQwQO90o/pBzGPxk2aK36JkyRRyd6c2TLSgwcP1NA56bR9517F9LfffqNMGVJHWl/Xxaxh46bUrXuvULWT+bsRw4bQhPEhq3i5BvOefYdVYoZXqlYoWzKmI/d6fMy+a7eelDlLVooXL76qJd2xfcjr6NyiOme4NtzkqTOs8gGuOcOruIsUzGPZnoOZNm07KHtzwp8TWWikniHPmjP8o0m3HiE/gnD9Vk7wetswZ7wl5fk4rhvestUXlCp1GvVMadSgrlWygZ9h5y5cIa4zzfd0qRKFIy1N47pKvvwFaNyEyeqHSG6uOXP0yGHlZ1zN9VouPyuLFspHv/56W29AMeRs+H97GjKyZxn8f/TZDf4/+tg/68qRzRn4/+izG/x/9LHHlf1HAAle/7HGlUAABDQI5MmbT5VZ4MYrCHNmz+SzWqJEiWnL9l0qeOfGr+n27tlNrVDk2mbLV65ViZl5c2erz9G8I7AjaC+lTpNWHdy2TUtas2qldyf+/1Fci3H1uk1WzV9OjHBZhj69utMbb7xBe/cfUUleXk1XqkQRr5PHPnUiBh4sMWcKFy5K8xYusVbW//LLz9S4YT06c/qUeuWdX31je/Gr566SKDEQpeiQuI4x1x7lH574RyYuzcBcfWmYM77Q8v7YfgMGU4OGIW9uRLWkQveeval5i9bWRQ8dPEAtWzRRJWuWLl+tyt7w6vcSRQta5U+876Ezj5R4lsH/m7l34P/NcNVVlZgz8P+6Vgh/Pvy/PFMpRfh/KZLQiW4CSPBGtwVwfRAAAa8IHD1xRm3sxK12rRpqE69ntSRJkhLX8nVvrtWGnFS58+uv1uvRvEM6a/PK1OXLllCnDv/VavSqcw4+qFLlKjRh0jRFgDdjK1akgM92cV85zTZj23F79OgR/fXXXxQ37v+x997xURxJ+3h9fu/3fL4722dscDhjchAZkUUQkhBZ5BwEEgghEYQIJomcgwCRJRAIJEQUEiAyQhI555xMso1tOIN9d8a+e+/e3+epvRnP7s7uzu7OCmm36x8bbU9P99PTXd3VVU8VoocPv6RA/0ZWk4l58DCodt2eOYNLj9+99ZYZb7LkbYixQCi1lBDx9q1b5FWhAht3hw2NpJ07MgT8GhFYvnIVBbUxeHSmJK+jCePHiDmjETtXFvvgww/pwqXrMgVQ9SpeMg2J2nthMPzmm6/ZSC+JMtrgu+++ZW9eKVrk8eNHTHECCoemAb5m+smVfSvodduzlqGvQv/nzYgL/Z83ODvyFnvmjND/jiDs2DNC/zuGm6ufEvrf1QiL+vMSAWHgzUu0xbsEAgIBhxBQhgBeuniB2rdtZbWe4D4hNGPWXDpx/BgNHhTOHItSSBQMUqF9e3NG+v4DBjI9ADzpIDBiNfCp5fH8rvYM0qYt25naAtI80M8ouZdpPZ9/XoyOnTzLmecHRwxg3mMkKtqekcnGw1XxK2jmjKlc39Jl8VS4SBG5ig7tWtPFC+ftaZpHl7V3zqSkbiEk/UDivKmTJ7DhVhpbzAt/3/r06tVLmjtvIXXo1Fn26MUYtm3dXHhV2/G1gQLgvffeY+Nh5QpljAyEYs7YAaTORcMHDqKYiZO51th5c2jpkkVW3yAllUSkAZLgYUylaIObN29Qq+ZN6C9/+YyWx69mPmtJFi2cT3ELY3VuvftWZ+9aJvR/3n0LQv/nHdb2vMneOSP0vz3oOldW6H/n8HPV00L/uwpZUe+bQEAYeN8E6uKdAgGBgN0IIKkEsscPHzbEZlgrQmQHRgyWPadg6G3kawjtR+K0fXt38/thcMzKOSZ7JeJvSLq2ZnUCzZ413aLRCh5Z3jVq0qNHD808Hu3umBs8AEN5iRIlbdJaIPtzwuq1skEd3JTAEZ7ToGSIGTea0QBNBhKqwdtNKUjsFjU4QuZ/VYMO3LGFCxemGzeuWzWcuQHsNrtgz5xJ37GbataqzXXCoAuP6SpVqtLPP//MntNff/0V/waPLSkJntQAcInGjPvCqhcvsqxXqFiJbly/Rq9fv7bZdncugAslGMqPHM2xSWeSF3PGy6sCvf7lF3r86KE7w66pb7hcwmVgcK9uVssXLlyEDh0+QvD6gcA7949/+CNHhTy4f48CA3zl9Wde7CLq1r2nUX0Pv3xAEeH9rV6IibXsN8jsWcuE/tf0qetWSOh/3aDUtSJ75ozQ/7pCb7Uyof/zDmt73yT0v72IifL5FQFh4M2vIyPaJRAQCDiFQMlSpSk+YQ2HkUsCLyspARUOz4dzjxMMT0gMNXXyRIpPSKRy5b24OMqhvFKKlyhJ61M2sjETRl4IjFvxK5bJCcGcarQHPAy8YxcuppatgmQMQZHRoF4t7j1w3X8wh8cNXMutWgTSzNlzqWmzFvzb4ayD1C8k2AypiZOmUo9ewTyeEBjzL1+6SMOiBgvDlcbvCskncIkCSgxJ4O2effgQ/xNjgGzpGIepUybSV0+f0vwFcfT+++8z3t7VKrK3vFJaB7WhmbPmMYeyJBjvSRPGy4mtNDbPY4u5Ys7gkLk+ZRMnrcQFCwR0KPv37aUR0UPon//8p8fibU/Hh0WPpKHDhssY4oKwpndlOQpk6vRZFBLany8OO7RtRYHNmtOgwVFcHpy8mDOmItYye0ZAvazQ/85j6IoaXLGWoZ1izjg/WkL/O4+hK2pwxZwR+l+fkRL6Xx8cRS36IyAMvPpjKmoUCAgE8gkCHTp2prgly41aA+7QCTFjKGl9KidbM81gD4NU7+AQ5vlVCgySy1YkMJWAmsBI3KdX93zS8/zdDBy+D2blyp68aO3Lly/pi5HRNGz4SPYcffXqFfk2qCN76yLkcP6CxRQW2sco6zw2qki+B09gNYGhqmf3zjzOQmwjELdkBXXo+Nu3D8Mtkk1tT9vG3tfwrjYNX0eitXfffc/Mg3vylOnULyzc4ktnzZhGCfHG89N2Cz2zhJ5zBhdVOzP3GRnylaiCO7ZZoJ+gqtHwqUEfHD1xhuAtJwkM5cuWxNHv3/49G3PB0du1c3t5DYLegV7akbGdMnftlJ8Ta5kGwO0oIvS/HWDlYVE91zIxZ/QdOKH/9cVTr9r0nDNC/+s1KsTnQaH/9cNT1KQfAsLAqx+WoiaBgEAgHyEAg+zKhET2NoQh6d333uXM5pK3GpoKY2/zpn42W61MJILC4AGOX7mcPitalPqHhcuHe1Njsc2KPbAAEhMdyj5Kf/zjH5kjGUmm5s5fSH/+859lNMBN6tugrpEh1xJUJ06fJ9QJAZ3Alk2plJV1kDp36U7tO3SUaTrA4QuPXiGWEZg5ex71Du7L3oZ9g3tQaL8wCmza3OiB+JXLaPbM6TZhXBS3jDp27sLlYCQGLUrqhmRCVu7efUJkT+v5c2cL73cbaOo5Zz755FPmwZZ4x7/99hklxK+g599/R3369qM6detxaxCZULVSOY+nObE2NLjsyMo+SqXLlGVv3NCQ3hS7II7KlisvP4Zvv2/vHhwlYkvEWmYLIe2/C/2vHau8LKnnWoZ2izmj3+gJ/a8flnrWpOecEfpfv5ER+l8/LEVN+iMgDLz6YypqFAgIBN4wAv4BgZS0fgMb9xYtmE9xiwwJbZBZG7etEr0Ce1otjbOa8Ob9QoXo3IWrskHENOs96tq97xBVrlyF31GlYln66aef3jAC+fP1yCifc/QkvfPOO3Th/Dnq2D6IGwoML1+7zaH+EBhFDh7Yx3zLMPZaEulAgt9h3A1o3MCIn9nPL4CSklMNnL6HD3FyPSHqCCDENSw8gg163bt2pDOnT3FBKWGR9BQ8rUePGs7jY0kw/9Ylp8pjGR4WalQehwxwX8OT0VKYuhgnAwJ6z5ncoycJ3kCQ+/fuMlcs5psk4C/FRRgEHvVbt2wSQ6GCANasvQcOU8WKlTjaoHGjerLHc+qmbZywUBJcJA6KHMDcvGItc/3nJPS/6zF25A16r2VC/zsyCkL/64ea62vSe84I/a/PmAn9rw+OohbXISAMvK7DVtQsEBAIvAEEwPV5/uI1Dp1JWLmcZs2cxq2AMQkZzpEUBwlx/vPvf8uGDvCGBrVqRuAGNZV9B7P5EA/JyTlMIcHGyXLwd3hwZece5zJasq+/AVjyxStPnrnA3s5IgIYM85Js3JxGDRo2YiMtvKPx/xAY4IcNjaQ9uzPN2g/u0LT0Xfx3GCUD/BoSEheZyp79WWx8R90VypXMFzjkt0aAlmRFfCIb+vB9I5kdpFp1b0LyFcwleFtXrVad5xHk2rWrFNSyqVlXwBd3/tJ19tCGjBszijamppiVA63D4CHD+O8NfWrT06dP8hss+aI9es6ZMeNimDIA8uL5c6pbuzp7a5vK3QdP6Pe//z3PxfZtW+ULHPJbIxYvXckRAvB09mvkI0cbSJm4pUsq8Fpi/uDf65LW0JRJMWItc+FgCv3vQnCdrFrPtUzofycHQ/G40P/6Yal3TXrOGaH/9Rsdof/1w1LU5BoEhIHXNbiKWgUCAoE3iADCwMHJujhuAbfiD3/4Ax05fpo+/vgTNiThQM5Jbzp2phmz5rIHaeUKZczCkZEdetJkg4EYBsJqlcurJh+Ch+jDJ8+4HMLQx4/94g32Pv++GqFmg4ZEUcy40bLX4JqkZKYB+PXXX6l5U3820oKDd3n8aipevAS1bBZAN2/eMOvUtZv36L333uO/Y5wXxs5T7bhUP4zAJYt9mn/BecMtg2Hq4cMv6dDB/dwSL68K7JkOSpOM9O0UHTWI5wnmQ0i/MLpy5TK1b9PSrNWbt6aTT/0G/PerV69Qm1bNVHvWqXNXWhi3lH+Dx/CpkyfeMAL58/V6zRlcQh3OOSZHL2BcMD5qcuHSdSpcpAh/D1grhZgjAAP4pCnTacWyJfT1119xgT59Q2n6zDn8/9FRgykjPY0QAbJseQI18m1sFE2irFGsZfp+YUL/64unXrXptZahPWLO6DUqhnqE/tcXT71q02vOCP2v14gY6hH6X188RW36IyAMvPpjKmoUCAgE8hEC8J6CcRcbJfBNgtsVxkRJYJxF0gE178/rt+7LHosR4f2ZR1RNJA8I/Ibw9S2bN+YjBPJvU6RbcHjqtm4ZSHdu3zZqLBKr3bt716wDSsM7jCv166onWMODZy9cYcM+vLSrV62Qf8HIRy1DCP+BQzm8iQUVw4D+IUatg5ccBJgq5fPPi9HxU+f4T7hAqV2zKlMwqMnylasoqE07/qlsqc9VL07yEST5pimOzhml4X1HRjp7xqsJuHnhwQtjfnZ2FoX26ZVv+p6fG6K8sMAF1oaU9UbNxQFbjaJBrGWuHVWh/12LrzO1O7qWiTnjDOq2nxX63zZGb6qEo3NG6H/XjpjQ/67FV9RuPwLCwGs/ZuIJgYBAoAAhgAPekmUrOdy8RVN/DqnVIkruUVvJ2NZv2ETge4X4+dY3MxbDUNmrVx/yqd+Q/vW//6LzZ8/QwgXzPJ6rF+Hi4QMjqU/v7ha9CdXG6vLVWyQZGdu1aWkxeRq8565cMxiNr1+/Rq1bBBpVh8RuwX1CKaBJIBvyb9++zXzN1rgytXw7Bb0MLkMS1ybTt989U6UksdS/dSkbyd/fQL2xKn4FzZwx1SIU4FwuVKgQX7aUK13MrBy88Dp26kJVq1WjH374gfbt20NrE1cZ8cUWdJwdab8jcwY8frjogNEWeFcsX0qVmgHt6dkrmGbPNXCWL12yiClnlCLmjPqoNW7sTwsWLaGEhBW0OmGl5qHVay3DC3v07E3NWrSkEsVL0NOvntLa1atkuhXNDXKzgkL/598BdWQtQ2/0mjNiLVP/NoT+d685I/S/68dT6H/XYyzeYB8CwsBrH16itEBAIOAhCEhhyugu+GLBG6sm4PRFWXgCq/G89gsL57B2KbGbVAcoA+DppcZP6iEQO9TNNm3b0bIVq/hZNaOtstJViUnUvIWBQxQUDhJlB/5do2YtQjIkiStW+dyunTto6OCBDrXPUx/CYfnK9Tv8nf/yyy/Md4xvXE3AXQpPFIgaz6ty3JTPI+Fe5w5tVCk7PBV3Lf1eEb+aWge15aJqRltlHeAvL/LRR/wn8ForLzvEnNGCtvYyeq1luMjK3HOAk4iaypcP7jO/vLVkldpb7Dklhf7Pn2Ot15wRa5m+4yv0v7546lmb0P96oqlfXXqtZUL/6zcm7lSTMPC602iKvggEBAK6IAAPhhOnz3Nd1nhE8fvadSmERDoQZVI3/BuGSChxSX766Sd6/fpnpgyQZPmyxTRvzixd2u0JlYAXFhy9kGaBjc1oHSQMlF4L//znP6l8meKywRHe2eDKlIzuoIh49uwbAsWA9LeLF85Tx/ZBHu8xqvWbGvnFGIoaNoKLW+NExu+XrtzkZIcQJRcsErTtP5RjZKjCuLzzzrsyVQqoH/qHBHu8Z6LWcUG5O/cf09tvv82Gd6+yJSx+0527dGMvVIhp1IKYM/Ygrq2sHmtZpUqVKS0jU76oQjK3J08e06ef/oVAtwF5+fIlR6+AokiIbQSE/reN0ZsqocecEWuZ/qMn9L/+mOpVo9D/eiGpbz16rGVC/+s7Ju5UmzDwutNoir4IBAQCuiCgpGewxqkLrrKcIyfYKAgjIUKfYUyERA4aSmPHT+D/x6EbHqGZu3byv3GAhCELtAAQNVoHXTrihpVI4Zm2OHU3bdlO9Rs0ZATAhwlvaUjFipVo74HDsiE3JXkdTYwZy2OEcN5dew4QNk0QW4ZKN4TX4S4p6RmQsNASFUpo/wE0ZeoMfg94r/HtS5KWvouQHR3y97//nT0PJW7sZs1bUsLqtewpD0MlDPZCbCMAHmVw6kKscepiDYMHNjyxIMrEd2LO2MbZkRLOrmUw4F64fENONgmjfOeObeS5h3mG+QaxdVHpSPvd9Rmh//PvyDo7Z8Ra5pqxFfrfNbg6W6vQ/84i6LrnnV3LhP533di4Q83CwOsOoyj6IBAQCOiKwNLlCdS2XXuu01oCqKMnzlDx4iW4XHraNhoePYT/H0nbco+eZGOUqXFXamjhwkXo/KVrbGjctHEDjR09Utc+uGtlD588Y1wP7N9L4WGhqt30Dwikdcmp/BtoAmBwRIgynkPoreQ9imR4MOArBeOBMPXCRYrQw4dfkl8jH3eFUtd+5R47RSVLlqLn339PtWpUUa0bxkMYpH73u9/x7/1Cgulw1kH+/97BfWnm7Hn8/zDgBvo3oqdPDYZJSZQepl07t6czp0/p2gd3rMynfgNCghXIkEHh8iWTaV/nzl9I3XsYEqp99dVTalCvFv+/mDOu+yqcWcvQKqVRBWtVQOMGZrQoUoQJ1sFSxf8iIhI0DKfQ/xpAekNFnJkzYi1z3aAJ/e86bJ2pWeh/Z9Bz7bPOrGVC/7t2bNyhdmHgdYdRFH0QCAgEdEVgZUIitWrdhussWexTVS5RpYcuqBdqVq8ke++eOX+ZPvnkU37emvEWHnPvv/8+h9Q2ql9H1z64Y2Uwvj56+i137dDB/RTWr69ZN+GFiwReknf0nFkzaOWKpVxu+cpVFNTGQJlhzXibnLqZkDQBRhGMvxDbCCCJF6hHXjx/TjW9DR7QpqL00D139gx17mjghUU4+fFT59iDGtK3dw9VCoY//OEPdPveIy6zdcsm+mJktO2GeXgJJc9bcM9udPRorhkiXl4VOKIA8wsXUuAcv3nzhpgzLvx2nF3L2rXvQEuWxXMLETVSy7sy/fjjj2YtVl6cWBp/F3azQFYt9H/+HDZn54zQ/64bV6H/XYetMzUL/e8Meq571tm1TOh/142Nu9QsDLzuMpKiHwIBgYBuCDRs5MsJuCBTp0yktYmGpF6SwEM0af0GOcy/U4c2dP7cWf4ZmaHHjIvh/wf3oXfVCha9pm7dfcjciZcvX6J2QS10a787VyR5TQNbnzre9Pr1a7m72DTtO5BNFSpW5L8pk7CBTgNe1RAYsRo38qHHjx6qQrVj117yrlFTUAHY8SFJHqDAtnlTPzNu5ImTplJYeATXiGSEMEhJiZ/Sd+ymmrVq829Hj+RScK9uqm8GRzIMwZBFC+dT3MJYO1romUXhtfbg0dfsiXvi+DHq2b2zERDgqs45epLeeecd/ruSE1zMGdd+M46uZWjVjdsP5DEDxUzy+iTVxg6LHkkjRhnoaRr61DbzindtDwtm7UL/599xc3TOiLXMtWMq9L9r8XW0dqH/HUXO9c85upYJ/e/6sXGHNwgDrzuMouiDQEAgoDsCkvEVFS+MnceGj3//+98cSj5txmw2mEDA4Tph/Bj5/Vdv3FXlsTRtYNly5Sgr+xj/WXgjah++oVHDadTosfwAkgZ179qJeVph/EtITJL5c3/99VeqXaOK7NUGgz0O7hAYQ2AUsSTgLAV3mfCs1j4upcuUpezc4/wAPApBn5GTnUVInDZpynQ5/B+/9+nVnY4cyeGyyoRGeK56FS/Z8Gv6dlyc4AIFIrwRtY+NdGGBJ3JyDlN01GB69fIl1a3nQ4lrk2UO1y8f3Cf/xg3kisWc0Y6xIyUdXcv6hvRjHQR5cP8eBfgZuMbVBHzj4BQX0Qj2jZDQ//bhlVelHZ0zYi1z7QgJ/e9afJ2pXeh/Z9Bz3bOOrmVC/7tuTNypZmHgdafRFH0RCAgEdEMAYcsZu/YaZSf/3//9X5k/FC8ypQno0LEzxS1Zzm1AiHPLZgEW26MMAx05PIrStm0xKgtj5MhRY6i8VwXOhv7ixXNKTUlmQzMO654sCE1GiJIk8AiFJ7Qk4HDt1aOL7FVd6IMP6NKVm+xxDcMvkuFhLNVEGdIGfljwxCoFdAKz58VS9Wre9O5773FCI5SbMX0KIfGbJ0uPnr1p9txY2bMdBlvw7QJ3CLx7p0+bTGtWJ8gwKXlEVyxfQnNnz7QI4bmLVwkepxCvsiWMvLfxt/4DBlKPHr2YAxtz5OmTx7Qgdh7t27vbk4eFjez7DmbLfOEAw3TOgHe3dcumbPiF6DlnxFpm+fOzdy1DTeARB0c4pE2rZpxATU0whhcv3+DLyB/++lfyrmaIbJAEf581Zz75NvZjehWsm9euXqFpUybKFB2eOnGE/s+/I2/vnNFzLRP63/J3IfR//pwzQv/nz3FBq+xdy4T+z79jmd9aJgy8+W1ERHsEAgKBfIMAeHS378hkL0OlwFA1c8ZUWp2w0ujvJ89coM8+K8p/ax7oR7dv31LtizLBGg7VMFahTkmih4+i6BGjZMOYspKvv/6KWjT1J/D+erIg7Bg34JIntYQFDFVBrZoZGVvjFi+nDp0MoemL4xawR7YlURpPTMfQ19eP1qxLYYO7qcBw3KVTO7py+ZInDwtzF69ctYaNikrBd967Z1cC964k4Ny9//Ar/s5hcKzkVdri5YXy8kRJvYG68A2kpG6RPbRNB8ASX7MnDRQwBkaNfBubdRv4DOgfYrQG6TVnxFpm+yuzZy0LaNKU6YEgMOzCwGtJEteup6bNDNQ/S5csoth5c+Si0G279uxnw66pQBeBmihpzWrbjXfjEkL/59/BtWfO6LWWCf1v+3sQ+t82Rm+ihND/bwJ1be+0Zy0T+l8bpqIUkTDwiq9AICAQEAjYQKB2nbrUrn1H+vjjj+nEieO0c0e6qrcmEoBhI2Ua6mxafVJyKgUEBPKfk9Ym0pRJBs5eiDIRCP597+4dunjxAhuvJOMxkukE+jei77//zqPHDkm3QkLDqGq1avTXv/6VMnftoDOnT5lhAt5WUDjAa7dMyaIWOZG7de9J82IX8fPAPTDAQOkAMfVOAfY52YepWjVvKu/lxeMOr9HQPr1UE4R52kDBIIvD3v/3P/9Dhw7uowP798lJCCUscGBO2WjwXDelOjHF6/LVW+xVClFyXsO4i/GV5gbG+OyZ0/Ty5Q/k29hfTrZnyxjmKeODy6rgviFUpkxZI4SyCQAAIABJREFUunHjOu3ckcFh/qaix5wRa5n2r0rrWha7cDF16drdbB6YvgnGydPnLvG6BE/6CuVKylELoAfau/+wfFEFLuzDWYeoSJEiVKt2HTlKxZZHvfbeFeySQv/nz/HTOmf0WMuE/rfvGxD63z688qq00P95hbR979G6lgn9bx+unlxaGHg9efRF3wUCAgHdEFAmgLJ2MK5W3Zt27d7P74UxqnKFMnKoeafOXWlh3FL+DV5U/UP7cPi/JDETJlN4xCD+55bNG2n0qOG6td+dK7pz/zG9/fbbVmkzwLl7+dptmerBlCf22MmzsrewqVEet+prkpL5d8Hbq/1LGhczkSIih/ADzQIbmyVmk2oC5zK8tSGm+K5KTKLmLVrxbzBUBTRuwNzMEBi3du87RJUrV+F/g7bj+LGj2hvowSWdnTNiLXPNx7Nz936qXt2bjbZlSxlHlijfuGd/lvzdKzneMSeQ8V6iOrl75zY1C/STL71gGM7KOcYXI7iwKl3iM4+nBNIykkL/a0HpzZRxdi2DUUzof/3HTuh//THVq0Zn54zQ/3qNhHE9Qv+7Bld3rFUYeN1xVEWfBAICgTxHQBlC3jaohcVQ/fMXr1GRjz7i9im9FkHbAI8rcJZChg2NpB0Z6Wb9yDlygkqVLkMvnj+nmt6V87yfBe2FMGjAsxqSnraNhkcbDIqmogxnNvXAPnH6vEzTsWvnDho6eKDZ8zNmzaXgPoYw9yoVyzI3rxDrCIAyAPyfwKzE5+ah4nganrnwwJKoOJTJ1Vq0bE0Jq9fyS2DwauLXkA3ApvLg0dcEOoisQwf40kSIdQScnTNiLXPdFyZRyICKpkG9Wqov6tylGy1YtESeFzWrV5IpffB3/A4B3Y9vg7pmfOTw4t2ekcllRkQPpe1pW13XITepWej//DmQzq5l6JXQ/64ZW6H/XYOrs7U6O2eE/nd2BCw/L/S/67B1t5qFgdfdRlT0RyAgEHgjCJQsVZpyj57kd0+ZPEGVvxDh/6ABgDx79g3Vq+0ttzUr+yiVLVee/52dncWh/moCT9HAps2tGsXeCAD5+KWSN8KF8+eoY/sgs5Y2a96SVq9Zx3+HVzUMJ5IX6JRpMym0Xxj/ppaoSKpM6bHQt3cPQdOg4XsAz/TwEV9wydo1qppRjuCgceT4aTk5GOgEooZEcPn33nuPzl+6TvC8howdPZI2bTRwk5qKlk2xhuZ6VBFn5oxYy1z3qUgePPBWR7JIU0ESKMwZaV4MGRROmbt2crH6DRrSpi3b+f/hnQvj7tOnT8zqwGXKwycGL3gk/0QSUCHWERD6P/9+Ic6sZUL/u25chf53HbbO1uzMnBH631n0LT8v9L/rsHW3moWB191GVPRHICAQeGMISDyh8CZsF9TCKBP5mHExNGiw4aCMw3XjhvVkb0M/vwBav2ET/4ZkVNWreMm0Daadyc49TqXLGDxEQe8gxDYCSs7jCePHsOe0JOCJXZeyUfYQVRoKwYt1/dZ99v6EdGjXmi5eOK/6wukz51CfvqH8W7UqXvTq5UvbDfPwEn/+85/p6o27jAK8CeGB+/r1axkVZZg5PNZr1agih5Iruchu3rxBLZsFWERT8uA9dfIEde/a0cNR19Z9R+eMWMu04etoKSVP+P59e2jggH5yVfCcyj12Suadzj58iEL79pZ/V3oiWqMRqlGzFmXs3MPPTZs6idasTnC0uR71nND/+XO4HV3LhP537XgK/e9afJ2p3dE5I/S/M6jbflbof9sYiRIGBISBV3wJAgGBgEBAJwQQoo9QfQg8QU+cOMYGwfbtOxI8fCQx9fA9nHOMypQtxz+DVxf8umoCzyoYq/Bf0yRgOnXBLavx8qpAmXsPykmFrl27SlkHD1Aj38ZUs1Zt5mqF5OQcppBgg4c1ZOr0WRQS2p//35pXNX4HR1+xYsXpX//6FydyMxWMmX9AIPn5B9BXT5/S7sydbNT0dAHFAqgWILi0wLi8evWS2nfsTIUKFZLnUqsWTWSOXhjcb997xHQmoHeAJ7zkcW2KpzKRmyl3slQWNBDtO3SiwoUL05kzpwmGM08XR+eMWMtc++VgHQGVz8cfGyhNQNWwJ3MXfVa0KCES4a233uK/40Kkbu3qMv1C3Xo+tDVtB//28ocfqHrVChYbOn9BHHXt1oN/t0Y35NqeFrzahf7Pn2Pm6Fom9L/rxzM/6H/X97LgvcHROaOn/gcPfKvWbahK1Wp0+9ZNpgpSOgAUPFSdb3F+0f9Vq1ajoDbt6Nd//soJWi9fuuh850QNuiIgDLy6wikqEwgIBDwdgTZt29GSZfGyR6gSDxh9o6MGySGz+K1Spcq098BhLvb8++/ZS9GSjB47ngYPGcY/qyVZQwK3//vPf+jq1StyFfAaTt++zaIBzFPGq3iJkrRn3yHZu8203+uS1tDkiePlP8PoizA1hDrD4xp8x6BoUBPlGKolWYOxZO78hWbfBIz/Pbt39vhNq8RfrIbtq1evqH3bVvTwywfyz0pv+AP791J4mMFzWk2UXsCmSdZwgEhLzySvCsbGLoS/x4wbTRnpaZ4yPVT7ae+c0XMtAwWHf0ATAi2HJFhbv//+ezpz+pRHjwuMuJl7Dpp9txIoWP87d2hDv/76q4zTgUO5cnlL/O4ojAPkrbsPOSmlpSRruJA5f+4svXjxnOuHp2Pk4KG0JG6hGZ+vpw2U0P/5c8TtXcuE/s+7cXxT+h89FHtmy+Ns75zRU/8rI7SkFkIfpW5IJkThebK8Sf0Pw/+29F1MkaYUOFj07tmV7t01ROQJefMICAPvmx8D0QKBgEDAzRAoW64cTZ8xh71DoYxBu3Dv3l0aOjjCyFCFbqdu2kYNG/kyAhHh/Wnf3t2qaMBr8eadL9ngCK9FeGCZ0gBcunKTPvjwQ+ZVPHfmDFWuUoXKlffigzroBTz9lhWbkslTZ7DH6DvvvMPGCGC1YP4cI6M7BqBvSD+aNmM2j4WlxGrSQBkZT6IG0Y50A88lROkNh39j7CSPYfwbnnbNm/rLxhI3mwqauwPvw3HjJ1Cx4iWYEuPHH3+kc2dP06CIAUaGKlQIWgeEd+K79q5W0SIdBg5vu3bv5zaYXp5go5qWkWlk8Ed9UjI3PLMwdh4tjluguQ/uWNCeOaPnWpa0fgMFNGlKMPCfPHGM3n33Pfa4hyxaMJ/iFsW6I9x29WnI0GjmB/+wcGF+7vvvv2Mvp7mzZxrVowyFxkGsbq3qFt8zPmYSDYwczL8fPLCPBvQPMSoLjt9TZw3eOjduXKe7t2+Tf5NA9rb/+9//zrRBWOM8WYT+z5+jb89aJvR/3o5hXut/qXdiz2x9nO2ZM3ro/z/96U+UvmOP0eWl6b4MVFs9unXyeD2T1/ofyVlxnlHukZXnGUQv9undnU6eOJ63i4d4myoCwsArPgyBgEBAIOBCBGDMs3bgPXvhCofb/vzzz1ShXEmLLVGGCx49kkvBvQyZ0CWB0k3esFk2gih/g7GsWuXyHr8hUmJia1xWxK+m1kFt+REkXUMotJrUrlOX0tJ38U8wRgFnSSZPmU79wsL5n/gGYJiKX7mMjVUTJk2lDh078W8wzCDJmBADAtbGRpnh+dLFC+zda0mU4YJK7mUcWs5dvMZeipAH9+/R8OihdOXyJWoS2IwWL10hG36HmRjsPXmMbM0ZvdYyYDxq9FiOVlAeJqR51LiRDz1+9NCTh8Ks79bGBl6ly1as4mdi582hpUsWqWIHT1xcnuBS0hL1CWhoNmzaKic+VFaEgx0O3kJ+QyCv5ozQ//Z9dbbGReh/+/DUs7Sr9b/UVjFn7Bs1W3NGD/1/6PARdkqB4MJw7OgR7HxRsWIl3pdJv+3dk0mRAw3Jj4VY3zProf996jegzVvTZaj37N5F06ZMopcvf6C+If1p/IRJ8r4dZyCcOYW8WQSEgffN4i/eLhAQCHg4AvcffsVcotYOx59/XoyOnjgjGzt8G9azaOAAN9Ly+NXMByvJoIgw2rM708ORtq/7klfuTz/9RFUqllV9GBteeIAU+uAD/n3OrBm0csVS/n94j+7M3CdvegZHDjAbA2VoorUxta/l7l1aGQY4dcpEWptoMFyZSs9ewTR7rsHLEweFSl6/cWDvyNxH3t41+LcvH9ynJv6N2BtYko8++pg5lWEAvnTpIrVv09K9QdWpd3qvZZhXy1esogYNG8ktxGFvyCDDpYkQbQjMmbeAevQ0JFuDx7slqhkkm/T3b8Llzp09Q507Gi641ATePIhwgMcVxBaNjbaWel4pveeM0P/6fENC/+uDo9616KH/Tdsk5ow+o+TsWhY9fBQNH/kFNwYOL00DfI0cK7DfxqU9kkzbcojRp0fuUYuz+h9Roxev3OSoRwhoMsaPNYyTJEhWnZy6mf8pIqzyx3cjDLz5YxxEKwQCAgEPREDpjQiuyaghEaoo5Bw5QaVKl+HfbHGOogy8RuE9ChHJ2Bz7sC5cuk6FixShZ8++4SReaqI00MILt07Nauz5BoqBC5dv0Pvvv8+PWfKaQ9b7C5evcxlTDmDHWu3+T3Xq3JUWxhmM6O3atFSlHYGHLvCXEk6NiB7KoeumcwOGX++qFeif//ynGXDwyoZ3Nmg8Spf4zP2BdbKHrlrLwAN45NgpvijBOFWtVM7jOavtHar1GzYRsptjbSrxuSE5m6mAJgghthAYaxvVr2MxakF6dtOW7VS/QUP+Z9Ka1YTkoUK0I+CqOSP0v/YxsFRS6H/nMXRFDc7qf0ttEnPGudFydi0Drc2hw0dlh4jWLQKZAshUIgcNpbHjDXrG0v7PuZ6439PO6n+lnrcWNXfj9gM2At+/d5edJoS8WQSEgffN4i/eLhAQCHg4Apev3mIPUHgS+jduYIbGlGkzmWcR8vLlS6pRraKRt6HpAzBqXb91X+bqbdrEVxDfO/CNJSWnUkBAIIFXCt6fyoRFqA6h/GuSkuUNqRLnRXHLqGPnLvxWcPw29Kmt2gIk+cJYQRJXxdP0aZMdaKlnPaLkE1UzKuGgcTArVw7lO37sKCG5GgR4X752mw3wkLB+fenQQQNHr6mkpG4h38Z+PP5lShb1LJAd7K3eaxmasf9gDlWoWJFbNGvGNEqIX+5g6zz3sW7de9K8WAMtQ6cObThBmlI++eRTyj5yQvbGnTwphtatTbQKWI2atShj5x4u87e//Y2jHDyde9eRL0zvOSP0vyOjYP6M0P/64Kh3Lc7of0ttEXNGn1FyZi07cfo8FS36OTdk29bNNGqEIZm0qQT3CSE4VkBaNW+iagTWpzfuU4sz+h/nnLXrUhgM7IVr16xKL3/4QRWcK9fvsFPL7Vu3qHlTP/cBsID2RBh4C+jAiWYLBAQC7oEADt5QwBDTpDbjYiZSROQQ/g2H5zatmtG1a1etdjxu8XLq0Kkzl9Hi7eseKOrfC6VHG7x4m/g1pH/84x/8InjD4QAo8YMqPXQRzoRkeDAiYsxwkw2OVzUJ7T+ApkydwT8JGg3tYwj6BImCZGLMWEpen8QPYzx27t5PCLmEwEMXFyKScX7WnPnUq3cf/g2JOrp37Wjxpddu3uNMwd999y17ZguxjYDeaxkS76xes45fbJokz1JrwNv744+v6HDWIfa+F2KYFw8efc3/hRd0u6AWdPPmDYYGdCSHc4/LWbFt8VpLeJ48c4E++8xw8aGFp7q8lxd17NSFjuTm0OlTJ61eUnrSmOk9Z4T+1+frEfpfHxxdUYuj+t9SW8Sc0WeUHF3LEAUCL1EIKNHA4aqkzFK2TulNimgUcaloe+yc0f+5x05RyZKl+CXTpk6iNasTVF+I5N6gq4PsztxJgyMFjZbtkXFtCWHgdS2+onaBgEBAIGAVARiR9h/KkQ/Lv/zyC926dZPKlSsve1ShAi3ea+DqxeZXCmeuXsVLNkqKYbAfgVWJSdS8hSGJFzacd+/coUIfFOKkeJLk5mZT39495H8rPa6zDh2g/qEGg6Ka7DuYzckjIKbcmOC2RGI9HDT/9Kd36NWrl8zTPGf2DIs36Pb3sGA+AQNuWkYme6lD4Nn++PEjqly5iuydC0MWEj5J3orY5N65/1hOIFXLuwq9ePFcFQCMCcYGosZF2rRZCxozdjx9+pfP2Kvh66+/otWrVtKOdMMhxVNFz7UMGMLbulChQgwnxtJWdmZfXz9K2bhFhv/F8+eUtDaRExuCasOTJaRfGF8mQTdA8M3+/I9/UJmy5eS/gWYmoHED9si1JkovKkuRJ6bPKw+KWEsxljOnT5ENzZ46NnrOGUf1P/iZm7VoSSWKl6CnXz2ltatXEfSap8ub1P+ejr21/jui/y3VJ+aMfl+ao2uZxHeNlijptExbhj3c7XuPeN9nmlcBZUHnNGduLJUtW45+99Zb9Pz77yh9exrrf0sGY/16n79rckT/I4/Irt2GCDfspWp6V7bYyTHjYmjQ4Cj+XctZNX+j5R6tEwZe9xhH0QuBgECgACOAjUvGrr1Uvbo51ysMVQP69dV04NqzP4uNXBBr2dILMFR53vSYCZMpPGKQ6nuXLF5IC+YbwsUkufvgCW9AsaGsUb2SRWMsDimZew/yY6ZeokOjhlP0iFGysVJZP+r9YmQ0pW37zZCV56DkgxcinA/fu8RzrGwSvD3btG5u5MEJPIePMCSGQAbgQREDLPZCaXg39aw23SibvrdTx7YWEyDmA9hc3gS91rJRo8cS5gFEq1epkqtc2VEkZBkYFkpHj+a6vP/5+QW4mIhftUZ1XYHBFVQmtg7CiEyAd/sf//hH7mrzQD+6ffuW1W77BwRS0voNsiFZWTg7O4v1mycb4PWaM/bq//cLFaLMPQeMErJKYwPDfVCrZh5/Qfwm9L80BjCw9OsfTpUrV6aPP/mUfv3lF7pz5zZt3bKRdmT8ltE+P685rmqbvfrfUjvEnNF3hOxdy8C9m5V9THUfbNoypRHR1EtUolRR6w0uLDt1CKI7t2/r29kCVpu9+h/RcNKZFIltkeBWTbAnQNSidO6BBzY8sZUCD98RI0dTde8ahEsVyKNHDyk76xAtX7bYo/W/qz4jYeB1FbKiXoGAQEAgYCcCCP0fEhVNxUuUoL//7W906tRJWrp4kaZQYxyi1yWn8huRJR0eoY4KFHXfkP7UslVrilsYS0eO5DhalVs8V7JUaYqZMIkqVqrMYc4XL5xnz0B4dyqlSpWqtHvfIf4TuF3B8WpJlF4LMNhu3bKJi7Zr34GWLIuXH/vqq6fs7ebtXYOzB0u0EIvjFtDC2Hluga+jnYA3IpKjdOnSnYoUKULfPPuGcnMOcxZfU0MVsi/DWxEhfdiA/vjjj6qvVXKLms4j5W+oB4dsJJRoFdSGKlSoyGMDQ1X/kGBNFzKO9rsgPOfMWgZPIGRt/t3vfsfj5VOnhqY1ELhgDHBo7NGjN7Xv0In5zSWZOX0qrUpYURDgc1kbge3osTHUoEFDevfd9+ju3TuUvn2b5gsjZRju4ayD1C8kWHNbMRb16zegsAERfNCT1jJ4B9WvV9OM51xzxW5S0Jk5Y6/+r1SpMkdBSIZ6zLMnTx7Tp5/+RU5OiciIFk396dtvn7kJwo51Iy/1v7SGLVi4RObxV2v1q1evaPLEcR5t6LVH/6thKOaMY/NBy1Na1zJEqYWE9ucqo6MGU0Z6mmr14ElGEi/8F2uVMgJr8dKV1L7Db3RbuBB+9OgR1fPx4fUMgv1gz+6dmZrLk8Ue/Q9aJxhvbXnvTpw0lcLCDQnCsw8fotC+vY0g7hvSjyZOnsb7OTVBFFzK+iSaOmWiJw+N7n0XBl7dIRUVCgQEAgKBvEcA/Ee4JYWAMsDeEEtslpGhGLywCFGXDt+ob8XyJTR39sy871QBeyP4P0ePHc+t7tOru0XDuJJbFDfdSFAEwRjc+/KpvBFCaNnsmdNlFOC1AgMywtaxYYUR/9XLlwUMpTfTXCSzQ5I1a0nv0DJlsg9sONcmrpIbHLdkBXXo2In/beq9DSMAwtmwgQZXM+hR4H0vxH4E4O0Z0KQpP7hl80YaPcrgyeuIIPwc3MtYz7TymDvyHk94BoflU2cv8jqFQxn4rU09dbTigGRJW9N2kleFCvwIqFSQAE6IYwjYo/9hJLlw+YbMu4ykOJ07tpGpOUDlgX0A5OrVK8z9L8Q2As7qf7wBl1Pbtu+SqWnwt3t377Dn7gcffEhVq1XnTPWSpG5IpvFjDZEpQuxDQMwZ+/ByRekt2zKonk993s+WLvGZxQgSZeJiODyAsglSq3Yd2p6Ryf8P/d67Z1dCYl1JkCQMVCswVOKiqm6t6q7ohtvVieiOK9cMHs/Wkt7h0vbchavymaVBvVoEpxQIMN+15wDhMlES0EBdvXKZ9xCVKlchJHiVRCvdk9uB7aIOCQOvi4AV1QoEBAICgbxCYFj0SBoxajS/DknYgloajCNaBIaU8IGRvFFSu2G1lShMyzs8pQyyzWJDCcyQAEJNcLgGtyg4diFKr8IOHTtT3JLl/HdLB2ull3DG9jSKHjbYU+B1qp+Pnn7Lm8qM9O0UHaVOuaGcRwjrq1yhjNE7ldQNDX1qs7FYKdjI7j1wmP9kapx3qvEe9LCXVwU6kGWgUgC1Ai4/nA3fb9+xEy1eYvDcNeXM9iBone7qjl17ybtGTa5HjZ7G3hdgPuJwWOSjj/hRzDdb/L/2vsMTytur/9elbCR//yYMzcOHXzLvsmnEg6TL8PdSxf8ikhlp+JCc1f8wiJy/dF027sKjOmJAP7px47rR2+ERN2nKdDagbN6USmO+GKGhdaKIEgExZ/LH93D63CX2sgUnfP26Bt1iKthXgUoD+gJ766ZNfOne3btcLHHtegL1AMRSVJuS2gERJ4g8EWIdAaUTCpIRW/J8Vu4Jzp45TV06tZMr3rg5jRo0bMT/htPDuDEjaeeODKMX165Tl9YkpRAufJFHw7dBXTE0OiEgDLw6ASmqEQgIBAQCeYEAuFsTk5Jp7OhRHA4DQ+GV63fkcGYYnqQbVEvtAbfb0KhoauTrR2+//bZcDF5ZUNIfflhY9qzauyeTIgeG5UXXCvw75sxbQPAYhFQsX0qVv1CZuOXundvUtEljud/KzVLnjm3NKCCkguC7wrhj04XNlxDrCOBg8OXjb9iL89jRI+zlYSrwjkaCQslzXS2pV+SgoTR2/AR+dM6sGbRyxVKzeiRPYaWXiRgfdQRgoDh64gxtSt1AS5cs4kK5R08SvKEhMeNG04aU9brA9/DJMx5bW+GGurzMDSoBZ3WLFq1pYHg/5pRGssfUTdu4Zwjdh4e6HqKkfLAWoqvHu9yhDmf1v5ICCBEGtbwrq9LV9A7uSzNnGyiAgnt283j+ai3fjrP6X2kQsWR4l9qBi7C16zewQcTZCzAtfSvIZcScyb+jJyXfBOUIqLNMBXu3sxeu0Ecffcw/IaJKGcp/6+5DppnBHChb6nNVD2A8e+7iVX5+2tRJtGZ1Qv4FJJ+0zKd+A9q81cDzbYl/V+mQguTgtWtUkSN6QJ02eYoh+hC/NfFraPFcCkrAw7nHOU+C6WVWPoGjQDZDGHgL5LCJRgsEBAKeikBW9lEqW86wEbp+/Rq9/vlnwi0oJD1tGw2PHmIRmukz5zAvJcLIJYGHDrxFk9aupp0Z6UyAD6MLNlY4AOIgj9tXIbYRgGEKBirIgf17KTws1Oih8TGTaGCkweMW2NatXZ35kiUB/QI8dK15APO4/5duAFzAHdq1NmsYuGK/evqUEA4lxICAlDACuCPkWJkYqnDhIoSDBigcIOBDBi+yqcAgeef+Y/acAocv5obS8w2eKPBIkeZm6xaBchXhAwdRSL/+NGzoIIuGe08bqynTZlJoP8PlEebBnj2ZFNwnhP+NSyqE+9kr8PYxPST4+vpRykZDUkLTSxV76/eE8kqqGKxFuzN3kY9PfSpcpAh3H9zi4Bi3RxCKiUP4ixfPjR7DpUqxYsX5b4g8QQSKEMsIOKP/USt4LKUQ/4kxYyl5fZLqy5QejmrRCmKMzBFwRv8rDSKoGZcoP/z1BeVkH6a4RbHCs92JDy6/zBnJA9WJrrjdo8rkt6YXusALnrtSiD882hvVr2OEAfZjcFJ59uwbqlfbPEk1CivpBubPnU3Llsa5HY6u6JASW3/f+vT69Wv5NeBYRiQIxsh0T1Dey4v2H8yRnSWw5wY9xvVrV2nO7JkenYTYFeNkqU5h4M1LtMW7BAICAYGAkwjgEBGfsEb2sJWqwy0pwpkt8X52696T4C0FwaH9wf17lJqaQhuS1xk9o8wqbGkzhBtXcPjhwA7epJTkdRaTIzjZ3QL3uNJggWQPSxYvoufff8eJjXwb+8n9GRY1iHakbzfqHzym4DkF6dq5PZ05fcqs/zCG4B0Q1N++bSujMvBSlLLcb0xNIRziTcNvCxyoOjS4Zasgil+1hmvCHAGFwuaNqdSufUcaPHSYbPT47rtvqU7NavIb8a0nJCZR9WrefFCQNrQooAz3x6XJ0RNn5fBapYcvaDlglEddEHjJwyve1NilQzcLVBXwQl8Yt5Sat2hlhCs60a5NS7p86aJd/cFFV1r6LjaO5OZk04aUdcxZiYsViX4GXOLgFBdiHQGEvc5fEGfEBYonbt28SS2a+dsN36HDRzjJ4c2bN2h72lbm4Rs7boJ8OYlLREQ9CLGOgKP6H7UitH/ajNn8Auj/AL+GFl8GqhkYVqA7Shb7jScRDwj9b3mMHNH/0A+IypHWKOzPlHoG/4Yu18q1C297OAE8++YbOnPmFL384QePnlb5Yc6A0xrc1vBUvX3rJi1cME91f+dpA4XQfJwlpG8fTioJ8cupdJky9MWY8VSypEEn4KwBb3VQOShFivjB7+XLFFf1Zh80OIpA0wBBYmJQOSgF+5DWQW2pSJGP6Natm3Tq5HEjY6anjYnUX+j/rt168D+ff/89XzRhXxU5eCj17BUsG3B3Z+6kwZHhMkzZucc5ITSinVM5AAAgAElEQVTEdC3D33BuCe7VTVxaufjDEgZeFwMsqhcICAQEAq5AoEXL1jR3/kJ6//33uXrQK8yeNV01/AhGPxiYsJGBwh05PIoP2aYCPl4kOIJYC2U2zVqL8jigr0lMoAXz57qiuwWmThx+9x04LG9wTBuOAzMOaps2GnBWCjxvM3bu4T/BSOXn62OWRE1J8YCw9th5c4zqgJd2n76/eQ5jXKZOnsDJqjxdEFK2aPEyM2OihMv9e3fZYC7xgCKBxKGsIzJHKMbum2++5sPIxx8bOJYPHthH7777HmHsJAMukuK0ahEoX5xg/mFclJti1AX6gckTx3u8AR6JhVbGJ8qRCcAVB70xo0fYlahOmZxN7Vu3xGsNw71pskIcUGAE83QZ+cUYAjWJdACHsWhQ5AACBYlWgfcuPNuVRivlszicI9pBcCNqRZTIHv0v1Xrh0nXZCxtRDJgPaoJ17+LlG3yAh2c9knkqReh/y+PkiP5XRjKcO3uGQM+ENTF6+CgeZ0SMQJAMr3nT3y6JTVsxYGAkwfNaikSRfkekV1hoH/Zy9GR5U3MGBnxcuivp0DAOMJqNGjHM7oTI7jaG+NZ3Zu6X81KY9u/vf/87de3UTjV8XxkVJ80d0+fPX7wm7+FwqaXU60gsvWDREiPdhL3Z0aO5FDU4QpW+xt3wt9YfpZFXrZxpHhBl0jvso6tWKseOEQPCIyi4T6i8NiG/QgOfWkYRjJ6Ea170VRh48wJl8Q6BgEBAIOAiBEaPHU8DIwbLhwB4IEaE9yeE70vyhz/8gVJSt8jeUtJhIWJgf3r45QO53OWrtwiHO0ifXt3pyJEc1VbjNhwccJ9++hmVKVvWKDkbjGSdO7XzaK8RGDIWLlpKbdq1N8IGRvM+vbtb5ZlSHp7habp40QL2NoURxJRvuUb1SkYbJFANgGtM4pFVDh7C2wZHDLB4qHfR55nvqoWXJxLZgXNXEmzo4U1tSm8iJQBBOcwr8Ihh04pD/Omzl+iDDz806h/qQQZnjDEuUkwFhq7lK1dxQkNJcHiZNGGc6oVLvgPPxQ1qHdSGZs9dwAk3IIhKmDFtMkcIaBUYJIdGDecDGy43vv7qKb148YI2piZT5q6dZtVIh++f//EP2rRpA507e5aTTtZv0JApcEAboDaWWtvjDuXgnY45gwSSksALJzSkt+Z1HpEHm7Zul+cdjFX/+b//0I3r12j61El2H6RBh+LpBiuMhRb9j3LKy1tLFx3S2CoTF6ldIgr9b31W26v/kXS1UKFCXKmpAQr7sZ2Z+6h48RL8+6r4FTRzxlSzBoAvE7yZkph6zmEvAb1kKVmSO6xTWvuQ13MGaxWoiDCWFStVpooVKxnt0SyNqdb+uEM57KXWrE3mJJ7SRSC+YXjUwrhrLfnmyTMX6LPPijIMoCWbNmWirOuNuON/+IGqV60gwwXarJiJk432YthjS++HERJzBoZjTxZ4n48cNcbo4gh7symTYswcVdZv2ESgb4CYeksD12UrEiiojSERm60LK2uYC/1v+4sUBl7bGIkSAgGBgEAgXyMAg8jiZSvlzNjw0E3bZuCcVAqMW1CwMDRBsIFCEjWUh5F4+Mgv+O+XL1+idkGGzLS2BEobYTwIt5UMXo7yZ9p6V0H7HZ432LB+VrQohzaZegla6s+sOfOpV+8+8s8w7oLDCsYoKdmEWrKwbdt3Up269fi5pLWJnJUW46L0HDl6JJeGDonQ3JaChrnW9mIO1K5Th549e0bnzxkoL5SCb/nSlZv8J3gt+tStYRS2BwMxeHvh2YjxQfZg5aWKtXbUredDS5fHy17AKIukOjDAe3qSCawnSGQXNiCCL62yDh2g/qG/zQUt44t1DnMBdUUNiTDL3Kyso7p3DaZ1kDxUlb+JdcwYbVzqrUxIpFKly7DXuU+dGrwu2SMSzzieq1uruj2PslfjkKHDqUlgUz5sYs4MGhjGtA+eLFr0f+zCxdSla3eGqVOHNqprHn5TelvDKFihXEmrSbyE/rf85WnR/zD64WJd0gF+jXzMKsQFPYzA0OMwdFWuUMaoDC61ooaN4L9hXsKwAsM8jCBhAwZS/wEDeS3Eb+CNB3+8p8ubnDO4IEZUxNBhw2XHjAnjx9h1kemu44d1vXadeowLkkhrSSCIZzZtTef8FZLAOPvts2/ok0//wknYIErOccyHuw+e8J4aMmxoJO3ISOd/d+7SjSZPncHzDWekxo18BG8sEYFbt3LlqnT+/DmLeMBTHRfCGDfoDjXKwH0Hs/mSA4LoEGUeEmvftdD/9s16YeC1Dy9RWiAgEBAI5FsEwJkX0i9MNUGUstFI6AHDnxRSDiUMr09sqrChQXIjU64rW53Ghgm8fZLiXr5sMc2bM8vWY+J3Cwhgszp+wmQ22EohmlJRbJ6Q+EbpwSbxj6IMDoHgY8ZYYsM6d95C6tCps+yZgOcTV8fT7JmGLLdCzBFQ8rbhO8b3bCrK8EBHvHBw8B4zNkaeh6g/J+cwDRsS6fGHcIT1zZw1l8aOHmnkvYN5gWgEJCj89ddfLX66SADi799ENcTc9CEcEOGhGti0udFPbYNa0JXLhqR5Qn5DoH3HTvTZX4qazYkdmfso6+ABq0ls4CEFvlEIEhkioaE1gcERHNlBQW3NPObx3KIF85kbUAgxZ64l/a9MMols85ZEycFvKdmk2rNC/zv2BeKi8MRpQ7TVrBnTmH9UTXAJJSXTxfgpDSeYT5hXELWM9/DshYcvRC35q2Mtd4+n3uScAQ0QEsBh743xLFe6mMdHizjzVbVr34EvOoCrKR0QPHtr1/jNAKycd2rJ23Dxcvb8Fd4/I8+If+PfvOOdaaO7P3vr7kM2qFuiy0D/cbmBS3zIiOihVqPXhP53/IsRBl7HsRNPCgQEAgKBAosANi7z5i8iHNaVmyGEmPfq0cWhfsFQAq5fiMhWrw3Cxo396a3f/95qVnrcXB/MOiKH9al5aCvpBNQSuGFDG796rezlYI1jWVvL3bsUwvxHjR7LnQzr11d1fDCHsKGFAd70AKEVHVyyzIuNo/YdOsqPgFcZHlhCzBE4euIMhyurebArSy9dnkBt27XnA3OJzw18ybZk2YpV1KatIXzQmXXQ1nvc8XeEZSI8E16CgQG+FvmLMVfuP/yKdQ54lk1pUYANPIDCwiPYk0oKvZUwg1FfupiEZ70y5NYdcdWrTxL/rjWvdOANPkoIDE41q1ein376SXMThP7XDJVcELRKFy5f539PnhRD69YmqlaSufcgVa1qSP7p51tfptZCNMjWtB38d2vUGzlHTrDnPbx3wYspxDYCeTFnJD2F1jSqX4dgbBRiHQFEG+7amWGVogf5DmbPNVz8waHB37e+Ebbw4L5y/Q7rIUtnlXExEykicohdewhPHzvpsunE8WPUs3tnVThGjBrNXOEQNQogof/1+YqEgVcfHEUtAgGBgECgQCKg5OaTOnDp0kUOF7fXixcH7zv3H/OmSS05S4EEyMWNRuglNptjvhih6s2GG+wDWblyMj1QakQODDNqFby2pk6byX8D7ygO5q9fv1ZtOQwx8xfG0ajhwyxyLLu4ywWieniKIpwckpG+naKjBqm2G8YqhPcD94rlDRmf7RF4qiasWkv1fOrzY0iuhzBaIeYIwNPpxu0HcsjluqQ1nKTOVLD+IFQQBietBl4lfzUOhLVqVNHMLyvGikh5aINREN7PSn53CSMl76HSwAvDb3DfUOrVK5jKlC1ndOmIZETI1L1i+VLauz9LTpjTLyRYJGbT+PFJHryW1imE8x85flo2nqt5gtp6ldD/thAy/11pFN+2dTMn3TIVlLl64y5f8JqO34xZcym4Twg/YomaC79JHsDgfK/kVdr+hnrgE3kxZ+IWL+foKsiA/iGctFWIZQTgqHD81DmSEq+p0fP4+vrxZaOUi8KSl6iSKgDevbikVwq4xhHJBQkMaET37t4VQ2MDAaxTOM88ffqEowzVROmMgmhRXDoK/a//pyUMvPpjKmoUCAgEBAIFBoHs3OMc0gTB4UEK9Rs3ZhRtTE1R7QeUMTa/qSnr2Sgp8WQhdNq3sSHL8/59e2jggH5mz8+cPY82bkj2eK5RAKPMOIt/g1NyzeoEOn78GH344YfUPyycWrYKko0d2DTBy8M06ZMyrBb1/Otf/+LkbFq9QOGJ2rxFS+YJtpbMosB81Do1FJQjCOGEV2LXzu3Nkm0gJHDJsnh+G5Kw1alp8LDSKvBiiIoeIVNwYB71Dwn2+Kza1vADD9ze/YdlzC6cP0c9unUyomuQ6BlQDw6ALZsZkn5Yky3bMmQje+KqeJo+7bfkK7aeFb8bEEhav4GTeUHwLeMiSmmwMB275oF+dPv2LaZeQDiskgcZRmLQPSxZskg2FCtpU8BV3ap5E1Xoq1X3pmtXr/C8FWJAoFv3njQv1hAVYKqbcbkBPnEYEiHgvgzt29sidM7ofzEe5ghIUQmYM80C/cy83/cfzKEKFSvyg6YXvMh/gEz3kCmTJ1DSmtWqEB86fITKlffixJXlyxQXw6ABAT3njNrrkE/h2Mmzco6EalW8PD43gq1hmTxlOoFiDoJ9MPInrElcRdevXeXvG3zU2LNJkrE9jaKHDZb/jctf7LsDmgRS06bNqWy58vybqRcvKBqOnzxH77zzDr8Hc8aUEmrAwEhCJFxGepqtZnvM73PnL6TuPXpxf9UomCSvaPwuRb3prf89BmwbHRUGXvElCAQEAgIBD0VAaaCCt279ujU5dMbPP4A6tGttEZU58xZQj56GAyA2P/DUKlzkIw6tlf7WvKkf3bl926gOhD8jDBqSm5tNUYMjPJ5rFIcIeOFIyR7UQAfGMLbHjBttkaOtRs1aNG3GbKNEE7du3qRuXdrbxFiZgAcG3p070mn+vNkef9iAt0jO0ZM8NhgDJOFYl5RIly9dJIQATp85RzY0WuLpVRtPJPZalZhklGTt0sUL1C80WHPCCQ9dsrjbwC910zY+fEFgyANXLtawRr5+7EEirUMw/trKHK+8aIFhESHMppconoy3PX1X0lzgORyAL1w4R0WKfGSUIV1poN20ZTvVb9CQMT+cdZCWL1tilrAQiabgHSTNRd8GdVXDmXsH9yVcIqIuJLXckbGdFsTO9fiLK3izwXPq448NdCXwmtqTuYsTgDZr3lLWPxgv8FtbS27kjP7v2KkL/fnP79OTx49pz55Mq9RE9nx3BbmskmYBuKdv30YbUtbzhce8+QvlC3jQZuCCV5nYEEbCcxevcvdxQayWpE1ZRkRWaf9S9Jwzpm8tVqw47T+UIztU3L93l5r4NzJrHNrgHxDIe/Kvnj7lSAZ7I+u097hglIQREftmU55dZesxV5C4bsvmjfKfcYGFaDhT2h+pAMqOHjWc4AG8aPEyKlykCP+EvVn7tq2MwIFREhQeGB+cfwZFDPD4ZJ8ACFEciJ6SaJSOHMmhDcnr6fatmzRl2gxqEthMxlHyWNdT/xeMLzhvWikMvHmDs3iLQEAgIBDIVwgow5jRMGuZtU0bDkPt3PmL5M2p8nd4MkZHDaaTJ44bPYb34YAuGYHxIw4zqxJW0NzZBnoBTxUYLeB50K17LypUqJAMAzxxv3r6hIYOjqBr1wyHOFsCnr6UjVtlSge1BBLKOhCae+rsRbPNMgwkKcnrOPOwJwvw2bl7n5ExFtgoDxc7d2RQ1JAImzDBO37p8nijTS5CDRFaC686NYGHFg78ksEFXpB16tTz+IzbwHLjlu1Uvbq3Rdy1ZiZXhgxqDU2Hl+j//ec/zHspCTxMMVZKA4zNj8INC4DXPXbBYiOPXGU34bmD0EwcwqEPoBek+QTjRdSQSPbMUsqK+NXUOqgt/8nSfINnKQ6XUtZ06XnM1+1pW3meebJAz2TuOUheFSqowoBvuXOHNlaTF+JBR/S/qeFfagAoaQZFhJntFzxtnFoHteFoENOEqhIOuMTq27sHHT2aawaNMvrg8uVL1LtHF6MLjUVxy6hjZ0NeBVOPRqmy4iVKUmDTZlSvng+9996f2bMe3sJnTp/ytKEw6q9ec0aqFIYvJI0Et6tkBFPjiEV56H4YMyWqAamOixfOM7+pJRouTxgwUJdNmzGLL3SV6/3PP/9MV69cpvCwECPHBhhks3NPyPtrXHTEr1xOe3bvoq3bd8hGX8wzJd7Xr1+jNq2amUWDSEZJJdbZ2VmcINce3nJ3HCusJbt275fPIGp9lPJM6Kn/xVpmjLQw8Lrj7BJ9EggIBAQCNhBQcu+ePnWSunXpYBdm8KjCJse7Rk0+TGBDhTApS5ub8TGTaGCkIVQKYYJvv/22/D4k/gAH7b69u+1qgzsWBq4VKlaib77+2mFDEQ6J2UdOcDIqCMI2Eb6pJjhklCxZiuDlU6dePYKHldLD4fatW9SyeYBHhztjw//FmHHUOzjE6IICBqrNm1I1GcH7hvSjCZOmyp5ykkfwqBFRFr3lpBBRvAdZiV++/IGat2jFhjNrWYrdcV5Y6hO4kr8YO57q1vXhAzMOywjPh3EXXqK2RMlfbcmLSq2OS1duMrUAaFPOnTlDlatU4RBRHBAR/QAvb08WGEYGhEdScN8QvhyBARfr/Pp1ayhuYazReoIkkivjE+VwWeAGr+tBkQPYo71kqdKEJFGoA2GyVSqWVTVCYt1r7BdARYsW5bFo1rwFr2uSPHv2DYEWAu3wZBkyNJpC+4XRh4ULMwwwuMMAbs9Fqz36H9EKWLcgmJ/wiCv6+eeEyzMI1kLQCS2YP9eTh4UwD+bOW0iIxpEuPCSv9lEjoy1ygmMswJ8seWdjDYIhOG3rZnr86BFl7NrLhmPU5VOnhlFyKjy7KnGdTK1lOgBIZAgPeFz2erI4M2fgrdujV29q1qwFJ7pTGhCxF+4fGsxJPZUC2g0YeCUxvVSGp33zpv704sVzTx4W7jv0cKlSpenO7VsWIzWUUWrQA038GjIlHQQRP6fOXpIdVnDphLNMVtZB1aSHmJ8ZOw0X8nDCwNyS5iv+Hb9yGcGA6cmCdQXJg1u0bGUUnfjg/j2aNHG80feul/4Xa5nxFycMvJ48A0XfBQICAY9GAKHOOFD06tHFbKOIDUvf0P4WszoDOJQ5e+EKH6Jzcg5TSHBPVTyRSArhTNgI4fCBQ0bFSpVp4aIlBK4rSWBMxKEemwAhlhGAARbYI8zWkihDyCT6Da2YgpN5y9Z0OZmRFLqm9Xl3LgfPUXy7P/30oxkFiVq/sXldk5QiG9tRBuPRr29v9pKyJk2btaC4JctlKgJl2alTJtLaRAPdiRDHEIAREh6f0mWT1kQqOKAnb9hMjXwbm70YxsNqlcsLigcHhgSeobPmxMqXKNAVyeuTqH79BmywhcyYPoVWJ6zUXDs83hPXJhOMLBDoGNAHCTEgAD2iRkeil/5XJl6DcTfAryE9fvSQ3419Qdr2nbJhXyTN++2rxPf6u7feoi8f3Ne0lmC8Fi1eTqDdMvX4lGo9eiSXgnt1k1/SomVrDkVXekBi/frll9f0wQcfGnngY960ad2Mve49XSzNGeACz1LkofDxaUDVvb2p6OfFVOm3gOOe3Zk0MWaMmVHSlGd20YL5bDR89933+JK4Q8dOPAQSh6mnj4eW/l++eovPGljrQMFk6oiiNNra4u0/eeaC7ASBBG7nz5/jRLkSTzba8+rVK+agFUnzDAb4Tz7+hO7fv2d1/XBG/4u1zHwWCAOvlpVBlBEICAQEAh6GwJSpMyi0/wCydeiSPA1wc12mZFFVlJTJ1zZt3EBjR4+Uy0UPH0VDoqLlwwQ2YOvXraXJE8d7GOLau4vsv4ULFyZk/rUmML7Dq8fa2Fh6HsZ4hE7DoIkxwdha42XU3nrPKAn8YhcuofYdOsreHcBvYew8Wr5ssWYQcJicPHUGwQNYOriDAqBureqa6xAF1RFYsGgJde5iMHgcOrifwvr1tQsq0KEsj18tGw/xMMLNcXAX4hgC+N7HjZ9I/QcMNAtXd8agAQ9geM9BbOk0x1ruXk/ppf8Rrnv0+GkGx5JxHRyyuCSGUQSXI0JsI4DLKTVjKwzqCP+vWbs21apVR/ZKROh63VrVZMMWeMfT0nfJugnRDiOGDTG6dOzTN5TGxUxiAzD2AI0b+cjGedst9LwSx0+do88/L6baceCH9Qve61s2b+JEhmoC6p+dmfvki5fBkQPM9AlyNgT3CeHHfRvWE2Oi4VO7cfsBX5TDe7debXVap6zso/JlEyiE1BwogDvwh5hyXuNCHuchJc0aKB5atwjU0EJRBAg4ov/FWqb+7QgDr5hTAgGBgEBAIGCEAAxJ9758ygdshJD51K1hMfnT3gOH5ay1xYv+Fg4rVQgjSObeg/xPHDIQXmtqKETyA3iSYIMEgQEMSauEmCOAhBvrklP5B0t8evgNB8C7D57whgneCsDdXlEeJFo2CxBJJDQCCKMuPBFhHJfkwvlz1L9fH4thttaqNuWv7tyxLVM0CNGOAJJ71Klbl+bMmsHGCiTQw4Ec2OICxLtqBYcScSGjNzyuIPfu3qHAAF/tjRIlLSIA785lyxOMvKRhIAEPKTys7BWM/9p1KfxYeto2Gh49xN4qPKa8nvofe4g79x/zXsKScSVy0FAaO95AIVS6xGfiItHGlwb9MmPWPE6oZilEH0kLN25Okw2FXTq1k3UG9NK5i9dk/QT6BVDaqAn2Zodzj3MSSyRFEqKOgFIPoASoLWAABFXPoUMHmHLGVuJOzJELl2/I3KUST6npGwsXLkIXLhvoh9YlrRHOEBo+Ssn4bu0SCRz6Y8bFcG3YJ6xcsdSoZlOO91bNm6jSQCGfBtY0UGkJA6+GwVEpolX/i7XMMr7CwOvYtyeeEggIBAQCbo3A4qUr2fsQAiMvOHpNeSVr16lL27bvtGpEPHbyrOzhhhvx7l06Mm+lmiCcffSY8eIgYeXLgkcUPA1gwIUg6zw80kwlce162WC+IyOdhg2NtPt7TU7dTI0b+/Nzal5vMARg0yvCNg3QwmgIOgZlEiMkURs+bIhToXrjYiayVxZEcO/a/RnzA/BGB9ceQpDHjRlJ4RGD5QRtCIGNWxRrd8WYg9dv3WfuXxzemzbxpXt379pdj3hAHQEctnHoNhUkfgR1gz2iNCI6uh7a876CXlYv/Q8c1qVsJH//JgyJ2uWU0pNeXCTa/nKw5sDwCr07c8ZUIxot6GR4wIeFR8gRH+A3VnKC7t53iMBdDsFle+aunXTjxjVan7RGVZdL7wL/tRB1BJAgD/QYksDAOzx6KOVkZ2mGTJkMD3vkhj61VZ/FeOAbgCSuiqfp0yZrfoenFlQ6K0SE91fN96GMNJw1YxolxC83gkvJi4y5EBbaRzXpIR5C8jCUnzFtisXzjqeOhdZ+a9H/Yi2zjKYw8Gr90kQ5gYBAQCDgYQhs2LhV9qCCAQMeo0i4AUOtadIoU+oFQAUDyI7MfVSxYiWjpCEbUtZb9BjxMIgd6i64k7dnZMohzOB0nT1zGh/UwDMWuyCOAps257odNTwhCd+apGQ+JIILE55V+K9S5sUuovYdOvHhcVXCCof64k4PgcctYfVaDjeW5svIEVFOJagz5a8GNQM8GYXYhwAOzx06dZbXIeVBvHrVCvZV9t/ScYuXc52QA/v3UnhYqEP1iIfMEYAx/uKVmzJvO9YYZJ9HIhVrc6BDx840Z94C2rUzg5NLwtsXF5FICAqPKoglD3gYTv7n//0/evXypRgSInJG/yNUHUlVsSaCTxbYQpCQtXaNKvT69Wv+N8Zma9oO1jNqVELgZRw8JJquXLlEe3dn0pEjOR4/NvDMbdCwkYwDjE3gNf73v/9DpUqX5gsnSfeb7rV6B/elmbPnqWII/Q6qmiGDBmq+tAW/5uuff5bH05MHB17Ti5euMErsCA/OiAH9bBr5MGY373wpJ8Nr4t/IYi4KUKeBQgWiRgmEtQ4cypgzKeuT6Nq1q548LNx3rC+45MU6hEuNwZHhtH+fIVGatA5Jzir4N2gcEHGgFOj7oLbtjLipL144T316d7cr+kfMGdufoxb9r/daZrtVBauEMPAWrPESrRUICAQEAnmKwIhRoylq2Agzw4iyEU+ePCbfBnUthqDB6Dhj5hxq1bqN7FUCIzG8dUyTHZh2rmEjXxo5agyV96rABmOEJKamJDONg6nBMU+BecMvw6E5LWOXnDlbOtBJ2Xyl5o0bM4o2phpCk7UKPFHgwSXVlZubzaHRSkEG9FNnL8plYHSMGhLJoYieLrj8OHP6lM0kalpwUnqVWAul1VKXp5eBh3X86rWy9xrwwAG8a6d2ckZtrRjBgIXoBMwReNJVr+Jldx1a3+WJ5ZRen6kbkmn82C9Yd9SsVdsqPcmV63fkEGfgBqOhZNiVxtuUExHr3ey5C+SQdRgAbt26SVMnT/B4KhRH9D8uIGEskaJMgDvomaRkXqAyiRk/hvmvO3bqIl9Umq5vmFtIgigZh1EPPPBTN6yn+XNne7T+B3YxEyZzAiM1efH8OYX06Wlm3Lt87bbMEQovxdevf6aAwKYcqSNxvAPjoJZNCfs6SwKPyO49eslzC0bmI7nZNGXSBE4i6skyMGIwjRo9Vv7+cdmLqIExXwwnS17QU6bNpNB+YQxb1qED1D+0j0UIkYMBThMQ72oVjejTcCGybIVx8lWMx4L5c2l72lZPHhamktuStkNeT3D2OHf2NCevw0WTtN+1FuGBOTJ85BcUNiBCXs+wtiF54flzZ63iK+aM9s9Pi/7Xay0zbRXOq7jktUWpor03b6akMPC+GdzFWwUCAgGBQIFBAF44s+fEGoWeS42HgaR7lw6abrBhlNy6fQfBOAi5dfMmtWhmoABQEyRgix4xStW4jE1ri6b+Ng3EBQZkBxqKDen0mXP4kKzke0VV//jHP2jOrOl2hTKDAzkqegSBN1mSly9fUp2aVc08enbs2kveNWqatRoeDZEDw4rv9sUAACAASURBVAiJwIQ4hwDCaBGCJo1n5QplNBk1QOGBEM8Z06eyFxA8fsaOm0CrV600CtV1rnUF92k/vwDm/JaMIzDQLolbSAhl1ip79mdR5cpVuLglrkTTunD4njRlOi1dvIg2b0plb1RwmMMDLjIiTNA7/BcwGC9gxIBY4m23NE44qK9OXMeRDBDQC/3P//wP/e2nn5ivcnHcAqNHBwyMpAkTp1gc9m1bN9OoEcO0fhZuWc4e/Q/dsXP3ftlYeOzoEUKmeVwArl6zjpo1b6mK0YrlS2ju7JlGv8HoODd2IRtgoN+Ul5c//PWv1LVLe4+fM1jLEEVToWIl+s///YduXL9Gx48fpR3p281wRtn1Gzbx33HBjkRSksCDNHFtMvk29uM/YX9Vv665fsdvSuOL6Utw6T7mixG0dYvhPZ4qWNvnxcYR1nzpu4Vxd+6cmbRmdYIZLMiXgDEAfjWqV7LI1a/MafHdd99SnZq/7dVQKYyIdevWI/D0Yg1UzpmcnMPUr29vTXsIdx03rCOpm9PI27uGahcz0rdTdNQgm93HWCWtT5U96aGnsE9GhIKaiDljE1K5gBb9r9dahpdirsYtWU516tST5wyMu8+ff89Rq7Hz52iOaNDeS9eXFAZe12Ms3iAQEAgIBNwCARhE4GVQrFgJ+uGvL2jDhmSLYWSWOowN55nzl2XP09GjhtOWzRvNii9fuYqC2rST/w6vn4sXLxA8ej/7rCj/HZ4mgf6NRMg6EYFSoUXLVryhv3rlMiE009YNtJdXBWoV1IbpHMqVK2/k6QZ8kfW8W9cOZiHLGIPUTdvkMchITyNk3JY8gHBIwZgicYtpQj23mAh51Aklf/UXI6M1HZrr1vPhkGdJ8A1IhzwY/SuWL5VHrc//rxkaNZwvNCRPQ638n8pEhzA0wYtKi2TnHqfSZQzJDpXjgn/DI3HZ0jgt1bh9Gazv4LKuULEijR09kkD/Y49gHQKFDQyTuKCq5V1ZdR365JNPWRdJ44HEnvAOhcGsZ68+8oUmEiR2bB9kTxPcsqwW/Q8DIg7fkIMH9pnx6ecePUklS5Xm30GfsSk1hTIzd9pMPgmDyoDwSOoTEirvHaBbkNTw4ZcP3BJvvTulNLDHjBvNewRTUUaMwDBv6vWp9BDF5cmgiAFsVO4b2o969OgtX6w4ymuud5/fdH3ImZCwai2vZZIcP3aUevXoIv9beZELioywfn0tNvvAoVx5XbK1JwC9U3T0SOrWo5fsbSqSfhmgxRo0bNgIKlu+PP3pj3+kp0+fUtLaRMo+bLhQ1yorExI5MhGSnZ1FoX16mT0q5oxWNA3ltOh/PdYyvKtFy9Z82S9Fl6i1FFFA2J+ZcjLb16u8Ly0MvHmPuXijQEAgIBBwWwQQngaDnzWeUOUNrVo4WqfOXWlhnCGDLQwhCFdDMjFJEJoYHmG4ZYchEUZiIdYRwEEjKKgt1apdm8qV9yIYN5AgzVSA953bt/nWGocNNTl/8RoV+egj/klKWIHD/4qVq8mnfgP5EXg1TJ86yW6KCDGWRN269yRwHEMQKtuofh3NsMDzDfOncJEiRs/YOhBqfoEbFYRHDzb4b/3+9xQS3FNTzy5duSl7/4K6BBQmWgRGqvkLFlPbdu3NvBG1Gom1vMddysDwocYfCS9Q7xo1zDw+lf2GkffW3Yf09ttvW8w0r8yarmZYUeoZSxeR7oK1Xv0AjyjmFIyvZUoWNbtkhJ64ePkGf//2XI4o2zd5ynTqFxbOf8I+o3YNQ8IwIdYRgGd19ere7I1WttTnqoVxAYWLKAi816KHDTYqp0y8Gh1l2OtJgjm3d/9hNmbikhc6C57CQogT3iLpVqFChWjIoHDOlyDJ4CHDaPTY8fzPPr26W+SZxroHwxYE9AJVKhouC20JEn7tP5QjO0aYjput5z31dzgy/P73bxudPUyxwDp25/5j9r4GLUpN78pmcIk549gXZEn/ozY91jLsr7HPlgQe8cnrkuj+/XtUtmw56tKtOxUvXkL+HREmiDQpKCIMvAVlpEQ7BQICAYFAPkcAN68nTp9njxr/xr8Z+kybDY+5e18aNv4PH35Jfo185CIILTt97pLsTTpsaCTzl5lKzpETVKp0GYubqnwOVZ42D3iDyxDGDlPBQQzJJC5fusiJonDwsMZtrMxGDw/f5k0NIZ2S1Kpdh5YsWykfJvD3AL+Gdnt65ylA+exlOCgjS7ZEuwE+REcSpSgPFvYaifMZJPmmOcOiRxJ4SSEYE4yNvYLLliPHTslGXnuMxPa+yx3Lg2cXSVjgVQtKGEsiecCb6hipvHItA3XDwljz5FPQRaAUEvNH25ckcSCbUgAon1Z6iXbq0MYmd6Xam5UUKaAS8HTeVy2jk75jN3NYv3r1iqpVLq/6COYVklFBbty4Tq2aNzEqJ9WBPzb0qW2WPAzPgxsTOkxcvptD3DqoDe3ZnWn0w9p1KdQksBlfhpT4/BPVccEeDrhKe4KZ06faldgW9GhYDyHgisW8E2IdgctXb9Gf3nmHatesajXxpuTwgH1zyWKfmlUq5oz+X5qza1n7jp1o8RJDYmjMO1zgqtHK4FIF0aTg8ceFFajPCooIA29BGSnRToGAQEAgkM8RUCPGV2syvG/ghQPZuSODooZEyMXAH1q2nOHwYSnkCb+tSUpmagFrm+J8DleeNW/BoiWc0EaSSxcvUNahg5wUxR7DIbiqcPiTQtqtGW6RaGz8hMl0/dpVcZiwMdKbt6bTDz/8lUYOj+Js5MhyjgzBEGSNh1ePvaKXkdje97pTefAdJiYl09jRozh0E4drGLCw2ce6AwOHIx5qoIZAEh6Io0Zid8LZnr74+vpRysYt/Aj4DpsH+qka97BGwbMK88CSlyfG88btB2xot2QETkvfxQl4EI1QoVxJe5rqkWWli1eE73uVLaFKEwRufSQqgjhKTaLUaY7QeHji4GzZlkH1fOpzoq9ypYupQjBmXAzBsx2iltQTIc0Jq9fy76BOAfamgjn1zjvvEPYZ7du28kSo7erznHkLqEfP3vwMKJRApWQqqxKTqHkLA5Z379ympk0a2/UOFH7w6GuO2oKRCrpLiGUEMB4YF8iXD+4z3mp0Y0qaHzhK1KvtbVapmDP6f2nOrGVItnvk+Gk5gtGSE5HUauwDW7RqTaBwKkgiDLwFabREWwUCAgGBQD5GoGy5crTvQLbsfXvyxHHmGlN6hMLLN/fYKVXeSyVxPg6IyEwPg5eaSHyWOOQj+ZQQywj0HzCQk2xJhlkYp5A8aNyYUXZx5JqGNCFMcMqkGIvZmfE+GMOkAwu+j+0Zuyl23my7kr+589jC4xl8oRCEzq5ds4rCBw5iwxQOFDWqVWSuaXsFyVaC+4TwY1qNxOAs/erpU8Fp/V+wlZdN4C5EMjQY+yDpadtoePQQe4dFNyOx3S92oweUvIeYM32DexB0jVK2bd9JderW4z+pJc6BURdzb/HSFXK0gWnoNOgEzp6/wmuY0DPaPiClYSRh5XKaNXOa2YNILIiM9pCJMWOt6gKESRcuXNgoiufdd9+lU2cvEf4LqVurukjqqWF4oFdiJk7mkrNmTDPjlPzoo485AkvaJ5h6RuOCt36DRgRjIwyF4KaEoVCZUFW5hzt96iR169LBqGWYd7ZyA2joilsVAR8suKkhiKIKDws16t/4mEk0MNJAlYH1rm7t6kxvYo+079CRFi9dyY+oXSqKcTFGE3Pg6IkzckLo599/T0Gtmhl968Ds+KlzBIMhJH7lMpo90+C4Iomzc0bsmdW/cmfWMikqR1kzLr3OnjlNc2fPsMvpxZ45mNdlhYE3rxEX7xMICAQEAm6MAAwgGzenyYcEHIy3bEqlI7k51KBRIwrtN4D5qiCmIf6Hc45RmbLl+DdrnIcwfsEbAf9F8jUkWlETeGghuzSSgFgyFLvxUBh1DViAlxVeIFLSLRjRZ06fotnYikNd39D+FBE5mHAYlATGlZA+PdkzyJooE4QgpHbIoIFWQ6w9ZWzg0TYkKtosyZ3agUELJhgbJI+SjMTghXv18qXVR1EWNB5INrExNYUNL9aoOrS0o6CXwcE7PmGNnNRG6g/mDfgPcdi2V5SeWGocl6b1Ya28cPkGG/vhSQSvOiXvpb3vd5fyScmpFBAQyN2BwQhGi62bN/IahPVJmcwOdEFSIi6sg+k79lB5Ly8jHmTUA4NVQOMGTMeAUPMjx07LSaP27N7FCaXUBMkqX//yCz1+9NBd4HWqH5IXLyoBvRJ42F+8eM51Ro8YRcNHGLx3sb7Ay9ea3pAoH1AGye4ePLhPbdt14PGBQI/AEClEGwKIwJGwW5e0huIWxXKCO3iprU/ZJHOLIwEekk5C8H0jyqTQBx+YvQRei8AfY4kLE1ysSMlWTS9MJGoaeMM/ffKE1q9bI/j5/4uoMqEqPJ+XLF5Ez7//jkaPjSHfxr/RYA2LGkQ70rdrG+z/lmrZKohwKSbt+xAplLbNEAUhyaYt29m7G/MUhi4YKh2JTrGrYfm8MOZJVs4xea8L/QCu9q1bNlOxYsUoatgIOc8Bvul6tavLl/F6zRmxZ7b8kTiylsHpAc4PEOiUv/30E6950pqFv+/ft4ciB4Zp3v/mV/0vDLz5fIERzRMICAQEAgUNAfDopqXvlLNlq7UfHgj16njLhzt49MCzB4Lb8lo1qljsNhJSIDEFRI3nDTxnM2fNMzqQYLM6acJ4qwkTChrOjrQXHgEr4xNlGgzU4YixFRjHLlwiZ59FGHSdmtWseuf07BVMEydPM8pYC+Pw4EHhdnukONL3/7+984CO4si+/tv1eh2xkf/GNiYnkUEimJyjyTkHIXLOiJxzElGILBGNAZMzCJFtkxE5mmRwAmPjxQbW+51b+rrpGU1qaRRGc985e9aoq6qrflU93X371XtJuQ680ZDsC8lYNDtz5rR06djOdHxJbVs52nFVJB4zbqK0av3Kcwhe16NGDFXXl7cbtlhOmjJdUqZMqVDgRW/C+DGyeOF8U2hw7e3Zd1C9aLsqEsPrCt5XRsPcLF40X6ZNiX5R8VZr07a9DB8x2uLlzJqFUczAi9y+iEO6iAWOXx87IteuXZVOnaO9sfG3P/54avEBCx8iq39e0WK3Azy8IIjhgyY8fLV1sXPHdunTq1usxP/kMo/4KLFm3Ubx9y+gDwn3+9f//W/d6xaifFD/Pg5/X/Chak/EQf26s+aD+1aj+nW8Xogys27wYQMfOBBCQTOIU8Ys8vgoX+wzf+W1XrxESUHMZC0hKwTdI4cPKZFYu1fh3v/WW2/rc4t2l4UvVR8JjbZz936VgM1o+B0MmTNLEAPbmw3XzI5d+/QPU9YsIKAPHthfhcVw1SBa4Tm5b/8gXdy9ffs7KV0ieheKZn7+BWTTlh0xmsXvXmBAC9PPH672zxPK4V4dErpQqlW3H7MYc1O9akXBRxGYO68ZPjPbXyVmf8vQkjFBLnaXHj50UP224f7fpVsPPca1s9BZnnD/p8DrCb8w7CMJkAAJeCABCEaBbdtbCL14GELc3WFDgtQLhGYrV68VbMeEderQVnZs32pzxLgZI1M3HojxkuiXL6eFd6Ixw7atBmxtTfRAtHHuMgTaCZOm6d48aPDY0SPSpXN7l8VWeMNt2bZLfymxtb3QuqOYP8SYRfZazaMEayI8bIkSFL19+yZEQHiNap7sWjiN/n17uTTnEJwg8MIQ2gHJdJwxxQeZ46fO2RTK4M3YtVN7OXfurEvnT86F8GGpY6euutiBrMv4rXKU6MvIwxjyYeSIobJ08UKnuBATEx4iqVOnkazZsll4eV+/dlUa1K+tPPC81dKlSy+DhgxTYpO2tRwsIERhd4IxW/2W7buVpyIM28orliul34O6de8l/YMG6Rjxm/TTTz9K5P4ItZvEaPBEhCDi4+NjEzvWReWKZZ16zSf3OYO3LrbSaomhtPGCbZ9e3V3yRMc9YnrwbKnXoKGqvnvXDpXl/OujR1XoGbOGhHlYG95s7733nixbucZCgAcP3CfgoTigfx/9NwXPWtr87d2zS9q2aaWjQ2gheO1qhg9f9+7ekfDwpTZ/2yA0+vh8IFmzZhOEA9J2cqE+vLObNKrn1R9GtLVes3Ydi9/5n3/6SVq1aKKS3jkz/AbCw71+g0YWH59QDx9ZypcrGeN+AUGyXLkK8knqTyW/n59kyJDRYk6x0wpejd5sYNS3X5Bat0ZvT3hb9+3T0yKJsDuvGTDnM7P9lWfmtwz37YOHv1aN2YrLj3Aau/ZG6ut/+NBB6r3E2jzl/k+B15t/sTh2EiABEkgAAhCQ8uX3k99+eyJR587a3JL57cmz8vHHnzhNZjNqzHgJaNNW9frggUhp2fxV8rDgGXP0F0G8rEAkXrlimSAxT4tWAfqLSmwTuyQAqgQ9BV4oBg4eKu3ad9JFq9OnT0mdmp/r/cALg6Ot6PA8/fbkOeUBhG3kWTKmcWkMeNHGtkH/Aq+210LwHzokyPQWRJdO6GGFataqLeMnThU8wOIFD2EWXDGEZkDiD1iXTu1iZOy21YYxXunSJYsEXj6I2fzmm2/qxXGtde/WyetFK3iuzZwzT70Qw2xtd7XFGPM5J2SBOmQvGYuz+cX12qhxUzU38EaFYWdCiaKFnFX1iuP5/fyV5+2Vy5dUmAWj4SX52s276uUcXoP5cvvGuA8htFCJkqUcXju4trCdWhOTIRTPDw1R26lbtQ7U4/7itwzn8PYwJ4BZvkIlKVS4sLz/fkq5fOmi8to13lPSp88g339/32E8eG2HAbbVIua+mfAo+GjWrXtvqVCxkvIyRUI97IzQPO684uKwMUis5UqVq0jGjJnk/vf3ZevmTRbx18Ftb8QhVfPSxYtStXK5GNcUwsdgZwPu/YUL5nP54zAaql2nrowZN0n/yOxqrPjkPl/4rcJzUZq0adUHJkfhlSA2YV0jjAN2waVK9VGM0DOYmy2bNkqf3t1d+j3Cuhg2YpTUqFlbocazNLx+rX9Tk/s82BofPkrgI/o///FPORd1NsbcxOc1w2dm+yvO2W8ZahqT204cP1bmhcyO0WBKHx85c+6SuoaQdwGe2UbzpPs/BV5v/IXimEmABEggiRG4fuue8lrAlv2mjevb7B28tZD4QPuCXrpkUT3uYbnyFSVs2Ur9gRSJKuDtoxluzIinhRc8eDL457fcKpjEcCRod/BQM3tOqPKgxkvclcuX1fkhSo2bMEUl+rKVQVjrZPiK1YLkKrBSxT8z9SIAzwgkOjLG9EWsUcTAunz5UoJySGonw0MmEqzgxRdbyZxZYLsOAg92mKPY1MZ2jB6/EKUQWxYvdBCwJk2eLnXrN9BfGLEGFi0MjZFIxFm/kuNxvEwHBLYTVzyrMY+IFwexHtagXi05/u03scaC9hDOJleu3KqNuXNmelyG51gPPpYVkQgHCaRg+/bulsCAljFawofIE6ej1Hq35eGDCkiGhNjMMHhQI/670UMe3sRauAesjS/XrI5lj72n2snT5+Xs2dM250SjgDm5deeBmpvpUyc73dKP+33X7j2lRo1a+scQI9HgaVNU/FmafQLYPdClaw9VwN6HLHxwmjJthioDL8+O7QNNIYVgdvTrk3os01o1qsrZM6dNteFthbE1fcWqLwW/V0ZvUiMHfAi5dOmibN60QZaHLzX1QURrp0XL1mq3FcyWwO9t3F0Zb0JcM3xmdmUmYpYxCrxwRLH3TqPFfUcSaTwPG82T7v8UeGO3TliLBEiABEjATQTw0vbd3YeqNYRv6NGtk82WjclbjOEAsIXwxOnzehy5QUH9bCbvMMbuRfbnu3fvuGkEyaMZiN9a2AyjKBURsVfatGpud5DGRBCVK5bRBWIzVLD1HVuktXiW2PpWp1Y1M014VVl47mCL+JnTp9S4Iciev3RdD11SqUJpuXb1qlMmxozCthK4QBgLXbhE8ubNp9oy403s9OTJtAA+jGzbukX3ljJmQYewC4E3roZrFfMNu3rlslSqUCauTSb7+rfv/aDGuH3bFvUByZYZwzjg5Q4veZoZX95xHSCbva2XxKs37qjrkL9hzpcUBERwhTnacYAEX/Csgm3dskm6du4Qo3F8QGnXoZM0aNhY0qRJa3EcgpcWEgAhTRDaieaYAD5gjRo9ThWyTphmrHnl+m212wMhgeC1btYQ43z+wuit0IjFCwGfZp9ARORhi1i92CWA5Gi43x86eEBdH+56ttWeD7DrIXvWDJwWJwQS6ppBN/jMbG45du7SXe1YhGEXiDFEoNaScafP06dPJXeO6I+5ME+7/1PgNbc+WJoESIAESCAeCODlDS9x8N5E1nNrGzl6nLQJjH4pf/z4sfIq1ba/IsNzseLRdRArtGa1yjZ7iLhk02dEb8tBvDfEnKXZJoCt6MdPRekvxfaEd3gRwpsQgrCtL96u8EXd0WMnCDLc4r/hEQdPYHe9pLjSB08rs2//IRWnFx7viJs8YsQY5W0Lc9WTyvgyguRSBf1yy7Nnz2yigIf2lOkzpF/vnrGKfelpfGPb3yJFi8mX6zaqZF0jhw+R3bt3CjwU8eKA36sihfwstkHH9jwQqyCs4HrhjgTXKJ6Juqw+imBu8OJmKza18YNHQb88SjiBZcmaTXDNaXHDcY+xF5ca8/1hqlQqFEDZUsVc65yXlvq8Wg0JXbBYjR7XBxKv2fJ6NoZfWhAaIuPGjlJ1cF21bN1GmjdvqX4PtfnBMSRrhdgVMne2bN+5V1J99JGqA+9teHHTHBOASA6vdzC197EC/LH7CmVwXeXKntk0VoTwWBoenTzM0Qd+0w0nwwr4HYLAqxlClSCpozHWuDuHffSbk+pjCX4rM6b7xJ1NJ8u2Euqa4TOz+eVTt14DmTFrrqpoLwdCr979pHff/qqM8TnaE+//FHjNrxHWIAESIAEScDOByVODVeItGEIrtG8boJ/BuO0VD5p4uUaWUxjCNhw+dlz9t7M4cHPnLdDjimXLnC5W29bcPOwk3Ry8Njdu2aHH54WnYLu2AXpYDBz/Yu0GPSP32i+/kH59epoaE17u8NAFQVmz0HlzGAbAAUU83GPNw7sWBmEEf8P/8MLnlzeHetl2Ztt27pU8efLqxZAkZ2bwNJk9K9hZVR63Q6B1QKDgY5S2dRbzocVrXb4sTIYODjLFDgLKpq07ZeXycCV8aR6jyGyPuIvWLyKmGveywkgsGRK6SI0antSNGtSxiElZpkw5WbbyC3Uc1wLuEZoIbPyIuHHDV9Kze2eb9DDX8ODFtehs54OX4bc73LbtO8rwEaP14+A7fOhA5REKg6fa4KHD9eMIr4SPGohD/e2JsxYJqfCRce/uXTJrVrDcunlD1TF6CSNRVbUq0fGzac4JzJ47X2rVrqMKBk+fIjOmW4a1MH54dzUskPGsuE7w4QQCCmzggL6yelW02EuzTcDPv4DgWVa7/6MUwsV06tjWpV07rnLFR12E34LR691VaiLxfc3wmdn1ubAuGXXxmgqVhR0ddWtVs0hciBj+SJ6qfSQ0hovxxPs/Bd7YrxPWJAESIAEScBMB3HR37tmvb63EljDEEPP1zW6RhXv82NEyPzT6KywsbPkqPeGR0bPHVrc0Dy7c3H2zpHdTz5N3M4g1umrNepVIRTN4Rv39v79VUjzN7t+/Jwh74WpSIbycL1wUZpGFG3EvIexrYQeSN9m4jw4x8oYMG6mHJkGL1pnOnZ0FWaHhPa2FYEB5xNtr3LCOLrA4a4PHLQkgnnRI6EKVjEUzCIUF/HKbSkKEuhMnT5OmzVqoZtAGRKsPU32kx/PF36pUKhursCjeOG/Gj3zYonkgMkJ5DUIsB2cI6jCjGI/5RBJQvPjh3gEvRXvx+5o1bykTJkWLYPhQMnXyRG/EbHrMderWk2nBs3X+WNcIg/H2O+9Y3P9XLA+XIYMGqPZXr1kviEeJsvDInTtnlpw6GR1nWTNkRkf8awjvTBZlelrUDp6IA0d0MRH3+T27d6kEt60C2uix99GyWc9oXGs7d0dINt/sqmP4qILnMlefIcyPJnnVsHX/h3NEn17dbW4/NzN6hBmCUKmJXWFLF8uIYYPNNOG1ZePrmuEzc9yXFO4zM2aF6DsF8cEvYt8eyZkzl1SsVEVf78YQgJ56/6fAG/f1whZIgARIgATcQABebxs2bxc/P/8YrcETrn1ga4mMjNCPwesTAfHxEApBOKdvJrsvB7ixz5w9T9VlbERzk4UXsYVLwpWQbtwCq7WCUArINqt5XDlrvW//IOVVpYkpeKFDRtvJE8c7q8rjVgTAcPzEKYJkN9rcxCZJXb58+WX5qi91IR8ZsxEmgxZ7AhB4Z88NFWS/hmlJ6pDB2VZ4AFtnwov2pCnBFiKXVu6HHx5Krx5dVZgOmusEkIwQHqO2fsvQirWHLsT66jWi4yY7E21PnIrSQwGUL1tSbly/5nrHvLwktjevWLVGMmfJapPEnt07pV1ga3UMH4Qh3GpzCOGxR7fOcuL4txZ1jXPH7f+xX2CIkYtYubYMv2XYubNu7RqXT4BwWYiHaUyuai+Rm8uNemFBW/d/COVzZs2IVRJB3KuCBg6ROvXq69cW7jMILeTqPcsLp8HmkN15zfCZ2X2rCgm5Fy4Os9j5YWzdOk+Cp97/KfC6b82wJRIgARIgATcQwNawbj16SYaMGeXp77/LsWNHZfbMYHnw4HuL1vHQ06NnH/U3Z8k5Tp+9qGfTdhQ/0Q3dT7ZNIJld567dpVq1GvLmW2/Jjz/8oOIbwmvEFYPgNS90kS6AoM7581HSNqClPHz4wJUmWMYOAbyYzZu/SPwLFNRLfF65vFy8eMFlZnhZhLdWhgwZVZ2lixeqWGW0uBFo07a9DBw0VCUigpn9wAQvRHgrYm7hddqhXYCcjzpnkQAsbj30vtqI9z502Ejlgfh+ypRKzICQsWJZuITMnWUBREsihY+IObJltCt0ILnXaO03FgAAIABJREFUtODoupcvXVKe1TTzBNKnzyD9gwZL3nz51Ev4zRs3ZOyYETG81LP5+qr7ieYBijMhrj5ikiOEQ6bMWQSJWTXPayTNgwc2LXYEEG9/2IjRkjtPXkGSR3ywunH9ukyeNF55wTkyfIyv16CR1KpVR/LkzaeHrUEdCIfwdJ8ze0bsOsZa6iOi9f0f1wC2mTvLZVCo8GcqPBp2MXzySWoLmvfu3ZW6taq7JW68N05TXK4Z8OIzc/ysGtz/Bw0eJuXLV1T3f3wUuX37Ownq1ztGbH1Pvf9T4I2ftcNWSYAESIAE4pmAMTyDvayo6AIElpGjxqreYItz2dLF47lnbN5IAC+Dc0MXCmJcavaf//xHBgX1Vd5yNPcRwJblWbPnycv/vpSihS094eEhB7EDL232DNsAkSQK3vTwiite5JVg7L5eel9L2CI+eUqw8ozq3LGd7Ni+VYeAOWndpq2ELYmOD2vLUAZhAuDxtn//PgloGR2vnBa/BLDdFjF1YY5i6mJ+sJtEiyXOJJ7xOy/G1uHlPn7iVD1sCXaELAtfKsWLlxDf7DlU0bFjRsrC+dE7eGjxSwAfgkuULC0lSpaSgoUKS+bMWWzuQICwC4/rQQP7uTV2bPyOLmm3rt3/kVAQH6TwUQO73zTLniOHlC5TTooUKaqEdoTZ0uLFG0eGRMb4wAvHCVrCE+Azc8Izt3VGT77/U+BNGmuIvSABEiABEjBJIPLQMcmUKbPKll2owKtkUcZm8MJ98swFfTuO2ThxJrvE4lYEkEAH3otaoikc3r5ti9paTm+q+FsueEGAt6fRduyOkA8//FAKF8jn8MQQEvHiB6+GrJnSxl8nvbBlW/OCj0/4COXst2nKtBkqFAfnJeEWTrHiJQQJVmDdunSwm61+0pTp0qRpc1UOH1BKFC2UcJ3kmdSHK3hk4X6jhf7RsCC2u7PfPCJ0D4EZM+dK3foN7DaGME4XL5yXzZs2yPp1X/IZwD3YY7SCxIRY9xu+WqeO4cPtN8fPWDyHGSvhnoLfrSOHD8ny8KVy+fKleOoZm3VGgM/Mzggl3HFPvv9T4E24dcIzkQAJkAAJuJGAJkQhGUtB/zw2W1731WY92ZF1bCU3doVNWRHA1jTE7TVmesYLB2Ionj1zmrwSmADijoUtW6nOumH9OunVs6vNHkCIh8ciBBNkpIcHEC3+CMB76trNu0qUgsdVsSIF7CZi275rnyDpISxD2o/jr1NsWScA79A5IQvUv1s2aywHD0bGoJMjR06VIBTXDLwSq1WpYCo0CnG7j0BKHx+ZM3e+lCpdRm8U953WLZpyTtyH2WZLxpAYKIBdOndu35aoqLNy6GCk7N61U549exbPvWDztghoCQm1Ywh3dv3aNeVBvWPHVibpTALLhs/MSWASrLrgyfd/CrxJbz2xRyRAAiRAAi4Q0Lym7GWSHzZ8lLTr0Em1hJeNQv555I8//nChZRaJLQEIhMEz50iNmrX1JrBldu6cmcwoH1uobqiXIWMm2RtxUPfgQdZ5eIxa26Il4VKpclX1Z+tkU27oBpuwQQDJH5EEEgaRt3HDunLm9CmLkojFt3b9JgrvCbyCIMDf+O6+2sYM77ZmTSy9E1XIjINH5d1331U9w+8ck0Um8CRZnS5o0BCVxNPahg0ZqEI30OKHQNNmLWTCpKl6ci6EBpgZPI2xdeMHt6lWj3x9wuJjO2Lzd+rQVm5/d8tUOyzsfgJ8ZnY/U3e16Mn3fwq87loFbIcESIAESCBBCWTJmk0iIqMzyONlokO7NrI/Yq+K9zZ85Bh9yyyOt2reRA4c2J+g/fPGkyF5wdLwleLvX0ANPyrqnAS2bsEkHUlgMfj5F5D1G7boW5gRY3fCuNFq2znmbeq0GVKxUhXVU3w0qVShNGMjJtC8rVj1pe51CPbwsp42dZLaNts6IFCGDh+li/OrV62QgQP6JlDPeJqNm7fryQsR/xjhZX59/FiKFC0mi5Ys02O/3rxxXcqVKUFgiUgAIZlOnb2ofuPwYRHJu7p27ylIVFikkB/vQ/E8N4jzjnj72v0fp0OyL1wzfP6KZ/hOmsfW/6CBQwRxRbV7PO79/fr0YKiMRJwaPjMnInwXTu2p938KvC5MLouQAAmQAAkkTQK2vEaQeRvbZbWH2DGjR8jihfOT5gCSaa9Kly4r76d8327MymQ67CQ/LGSoX7dhs4qxqxkERe160f42KKifrFq5PMmPJzl1sE+/AdKjZ58Yc2Ec4507t6V0iSJKgKclDAF8MET86gwZMuonxI6Qt99+W/83hPjqn1dSwi8t8QgYE6+uXLFMBg/sr7yvkewLIZpoCUMA93/s5PkwVSr9hOfOnZXOHdo6TPKZML3z3rNA3J08dYbUrlNXv88gFwI+hCyYH+K9YJLAyPnMnAQmwUYXPPX+T4E3aa4n9ooESIAESMBFAmXKlJN5CxbHyNSM7c4tmjXii52LHFnMOwhAzB0zbqLUq98wxjWDECYTx4/hVuZEWgoFChaSCROnSo6cOWP04Pz5KGnSsG6M5HmJ1FWvOi2umeUr11jEdtUA7Nm9U9q3DaDonsgrAjEsIcTDIMAjfvjLly8TuVfeffqu3XpKrz799N0H2u6EoAF91K4rWuIQwIdePDPnyfMqOTFiVffo1lmOHT2SOJ3iWUkgiRLwxPs/Bd4kupjYLRIgARIgAXME6tZrIBB7//naa7Jn9w7ZtXMHXyLMIWRpLyNQvkIlqfp5NeXNc+7sGVmxPJxCVRJYA8h63iawnaRPn1Ee/fKzrFixTG5cv5YEeubdXUDSyJatAyRr1mxy4cJ52bRxA+cliSwJhAdYvHS55MyVS4UwQSgTWuITQHiMacGzpFr1mrrX6JMnTyRfbt/E75yX9wD3/+nBs1SIJs3GjhkpC+fP83IyHD4JxCTgSfd/CrxcwSRAAiRAAiRAAiRAAiRAAiRAAh5NIG/efCr2Oy1pEUDOhJB5C9XuBMR+7dalQ9LqoBf3Bl7W3br3ktdee00K+udRcZNpJEACnkuAAq/nzh17TgIkQAIkQAIkQAIkQAIkQAIkQAJJngC8Ro8dPSzPnj1L8n31pg6mSJFCChYsLJGR0WFOaCRAAp5LgAKv584de04CJEACJEACJEACJEACJEACJEACJEACJEACJODlBCjwevkC4PBJgARIgARIgARIgARIgARIgARIgARIgARIgAQ8lwAFXs+dO/acBEiABEiABEiABEiABEiABEiABEiABEiABEjAywlQ4PXyBcDhkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeC4BCryeO3fsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJcToMDr5QuAwycBEiABEiABEiABEiABEiABEiABEiABEiABEvBcAhR4PXfu2HMSIAESIAESIAESIAESIAESIAESIAESIAESIAEvJ0CB18sXAIdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTguQQo8Hru3LHnJEACJEACJEACJEACJEACJEACJEACJEACJEACXk6AAq+XLwAOnwRIgARIgARIgARIgARIgARIgARIgARIgARIwHMJUOD13Lljz0mABEiABEiABEiABEiABEiABEiABEiABEiABLycAAVeL18AHD4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEqDA67lzx56TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4OQEKvF6+ADh8EiABEiABEiABEiABEiABEiABEiABEiABEiABzyVAgddz5449JwESIAESIAESIAESIAESIAESIAESIAESIAES8HICFHi9fAFw+CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAp5LgAKv584de04CJEACJEACJEACJEACJEACJEACJEACJEACJODlBCjwevkC4PBJgARIgARIgARIgARIgARIgARIgARIgARIgAQ8lwAFXs+dO/acBEiABEiABEiABEiABEiABEiABEiABEiABEjAywlQ4PXyBcDhkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeC4BCryeO3fsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJcToMDr5QuAwycBEiABEiABEiABEiABEiABEiABEiABEiABEvBcAhR4PXfu2HMSIAESIAESIAESIAESIAESIAESIAESIAESIAEvJ0CB18sXAIdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTguQQo8Hru3LHnJEACJEACJEACJEACJEACJEACJEACJEACJEACXk6AAq+XLwAOnwRIgARIgARIgARIgARIgARIgARIgARIgARIwHMJUOD13Lljz0mABEiABEiABEiABEiABEiABEiABEiABEiABLycAAVeL18AHD4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEqDA67lzx56TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4OQEKvF6+ADh8EiABEiABEiABEiABEiABEiABEiABEiABEiABzyVAgddz5449JwESIAESIAESIAESIAESIAESIAESIAESIAES8HICFHi9fAFw+CRAAiRAAiSQlAmkSJFCfv/99yTXxffee09+++23JNWvN954Q1Kl+kju3bubpPrFzpAACZAACZAACZAACZAACcQvAQq88cuXrZMACZAACZAACbhIIG3adNK7b3/JmSu34L8hov7jH/+Q//3vf/Kf//xHHj36RbZv3SJzZs+IIa52695LmjZvoc6EMuPGjnJ61mHDR0nVatVVuVUrlsvcOTNt1kEfunbrKc1atBQfnw/k7bffVuXQr+fPn8sfT5/Kwx8eypZNG2X5sqW6IJ3N11fClq1y2g9nBRaEhkh42JIYxVL6+MjIkWMlT9688mmatPLOO++oMn///bf88vPPcuvWTdm8aYMsXxbm8BTZc+SQJWEr9DIvXryQ6lUryh9//OGw3r///W/ZtWe//PuNN/Ryg4P6y4ED+y3qzZ47XwoULOhsmDGOV61UzkLc37UnUt5N8W6Mci+eP5dff/1VHj9+JCdPnJCFC+bJX3/9Zfp8salgPTawq12jqjx58sRuc7PmhErBQoXU8cCAFnLl8mWnp169Zr2kz5BBL7d40QJZsmiB03pt2raXdu076uVu3rghLZs3dlqv8GdFZMasuXo5rPWypYrJy5cvLeramxNHJ7h75440aVTPaR9YgARIgARIgARIgARIwHUCFHhdZ8WSJEACJEACJEAC8UQgaNAQ6dS5m/zzn/90egaITRcunJeB/ftIVNQ5VX7h4jCpXOVz9d/Hv/1GGtSr5bSdrzZulYKFCqtyu3Zulw7t2sSoU7deAxk3YbIunjptVEQ2b9oo3bt2lOIlSgqEubjami9WyYB+vS2aqVOvvkyZOkMgsjqzixcvSLMmDeTxo0c2i5YtW17CV6y2OLZyxTIZPLC/w6YHDRmm5sxoI4YPkbAliyz+duTrE0qwN2uFC+STH3/8Qa/23d2HSvB3ZhC4v1q/Vvr27uGsaJyP2xrbzh3bpGP7QLttG+u0btFUIiMjHPYjS9ZsEhF52KIMuICPM5sWPEsaNLQUdJs2ri9Hj1i2Z93Ozt37JWeuXBZ/zpEtozx79szib67OibESPhzkyp7ZWdd5nARIgARIgARIgARIwAQBCrwmYLEoCZAACZAACZCAewl89NHHsnnbTkmd+lOLhjUv1OcvnquwA7aEzEULQmXM6BGqXnwIvBB3jV6MOA88NH99/Fj+ev6XfPhhKnnzzTdjALl86ZJUqVRWihQtJl+u2xhnYF+sXilB/fvo7YQtXyXlylWwaBeiNwTcJ09+lY8/Sa17GWuF4GkMAXt/xN4Y/bEl8GKcEPSsPTaNlS9dvRXjPO4UeP3z55JHv/yin9KsmLh1yybp2rlDnPk7asCWwIu5KFrYXx4+fGCzqlmBd+bseVKnbkyP1/JlS8qN69ccjs+WwHv92lWpUK6U3XrwPN8bcSjGcXcJvE+fPpXcObLE67ywcRIgARIgARIgARLwNgIUeL1txjleEiABEiABEkhCBLbu2CN5877yRMTW9rZtWiovXKP5fPCB1KlbXwYEDdZFxfgUeOEpevXGHV1YhtA5acI4tf0fAp5miHtbpEgxCWzfQSCUop4m8KIM+m3PTp25oHssBwa0lFOnTtgs+vtvv+lCa+MmzWTy1GC9HITwYUMGyorl4RZ133//fQlf8YX4+xfQ/45YxnlzZbPoPw7aEnjx9/nz5sr4caNt9imwXQcZMXJMjGPOBF6Ei5g2dZLTFQjGENKNZhR4K5YvJdeuXlWHIf6nS59BWrZsLc1btrb4GNCmdQuJ2LfH6fliW8Ao1qLPmocxPGThKWvLzAq8F6/ctOlBvmnjBunRrZPDrtsSeFGhZrXKcu7cWZt14XUO73NrcybwNmpQR65eveIU5csXL5JkXG2nHWcBEiABEiABEiABEkjCBCjwJuHJYddIgARIgARIIDkTqF6jpoSEvtrOD1EM8UEdeY1CzJs+Y47UrFVb4lPgbdkqQMaOfyVEIuSDtehsPTcZMmaSmbPmyp9//ulSjNEb392Xf/3rX6qZ+nVryonj3zqcboSvOH/pui72IclbnVrVHHpxDhg4WMUP1gxxW0eNHGZxHqPAi9i1EK1hGAdEPaOgrVU8c+6SLl7DO1jzsHYm8IbMnaWE8tiYPYHX2FauXLll2869unC+bu2aeA3VYBRrv1yzWho1bqp3xyhCG/toRuAtU6acLFv5haoOr2oI+W0C26l/uxLqwCjwYj41j/Pz56NUnGVrg1f6idNRSqhG3Gst3jTKORN47Y03NnPNOiRAAiRAAiRAAiRAAuYIUOA1x4ulSYAESIAESIAE3EAAYmXUxWvy7rvRSbOwbTtPzqw2xURbp0NisD///Etuf3dLHXZ3iIap02dKw0ZNXBbSYoPErMA7ctRYQdIszVyJ34qye/YdEN/sOVQ1iOcF/fNYeMcaBd579+4qcS9NmrSq/NTJE2X2rFcew/ibUZhHLORPP00jPj4+qnxiC7zog9ErHInmkBwsvsxarJ08LVg+/vgTdTrEh67xeaUYpzYj8Bq9aQ8fOig9u3eRk2fO6222at4kRlI74wmNAi9CVlSrXlMXv20JsnPnLZAaNWurJkLnzbGIsUyBN75WEdslARIgARIgARIggbgToMAbd4ZsgQRIgARIgARIwCSBz6vVkNAFi/VaSIgFb8vYmrsFXnjvwotXs/x5c8QIGRDbvmr1zAq8Rq9ZM8Jlfj9/2bx1p97diePHyryQ2fq/rQXeiePHyJyQBeo4wjpAeDfa4WPHJV269OpPdWtXlyVhK5KUwLvqi3VSomR0jNn79+9J8SIF4zpVdutbi7Wv/etfsiRsuV4efE6dtAy94arAi48g127e1b28teRoB498IxkyZFTnOHb0iENvcaPAi+sLHrkQeWHWyQjfeust5SEOr3J4ZWPeEaZEMwq88baM2DAJkAAJkAAJkAAJxJkABd44I2QDJEACJEACJEACZgkMGTpCOnTqoqq5I+mSuwVe6wRr27dtkc4do7fGu8vMCry37jzQvS/NCuJHvzmpe+Vu3rRRunftqA/DWuAtUbSQGMXkkSOGytLFC1X5wp8VkXVfbVb/fevmDSlburicibqcpATe/QeOSOYs0aL0yRPHpV6dGu6ashjt2BJrIw8elUyZo5OI3bxxXcqVKWFRz1WB1xgmxHiNdOnaQ4IGDVFtwiM7W+Z0gljMtsxa4J0wboweggGhN0oWKyzw2oaNGjNeAtq0Vf+NUBBDBwcJwmJoRoE33pYRGyYBEiABEiABEiCBOBOgwBtnhGyABEiABEiABEjALIGVq9dKyVKl7YpgZttzt8D7zjvvKOFSiy2L/iDmbcS+vbI/Yo9ERu6Ps0evGYEXydogumpWvmxJh7F3rfmtXb9JPitSVP3ZOv6qLYE3ILCdjBodHSv38ePH4pc3OsTD9l37JHfuPOq/A1o1l/0Re00JvIjr+uTJr06nF4JllYplLZJxuRKDt0DBQrJh0za9fcT7Rdzf+DJbYm2hwp/J+g1b9FNaJ3pzVeDdG3FQsvlmV+0YE6ohRvKV67f1hG5IsrcsfKnNIVoLvPgwYPRwjoyMEIT6QFgOtIm2wR7eu5grMwLvo19+kb+e/+UU9b27dwUxrWkkQAIkQAIkQAIkQALuI0CB130s2RIJkAAJkAAJkICLBIwiV0TEXmnTqrmLNW0Xc7fAi7O0DgiU0WMn2O0XtrE/ePC9nDp5UpYsmi/nzp01NQYzAm+lylVl0ZJwvf2M6T5xOV4xKk2eGiyNmzRT9SHE+efPpbdlS+DFwQuXb+gxkvv06i6nTp0UeKfCHj58IEUK+an/NuPBawZQ4QL55Mcff9CrOBN4A9t1kKCBQ/REYkhCljtHFlOczPQPZe2JtUj0lidP3hisHNUxnvv999+Xs+ev6CKudbxcY/vXrl6RiuWjP5ZYmy2BF97F2jzCi7eAX25p2rSFICEfbMvmTdKtSwd1bjMCr6vsXEkO52pbLEcCJEACJEACJEACJBBNgAIvVwIJkAAJkAAJkECCE7h09ZaKBwpbsmiBjBo5LE59iA+BFx1CrOCZs0OUZ6Mz+/mnn6R3z25y8GCks6LquBmBt3uP3tJvwEBVD8IytuWbsT79BkjPXn1VlRcvXkjWTNFJ1GD2BF5jnR9+eCjXr13TY9v27NFFNn61XtWPL4EXIjTEaM2MAi+E37/++kuFrHj33RQCj2vEjtXs119/lZbNGpkW3c0wRVl7Am82X1/ZG3FIbw4C+fp1X6p/u+LBixAMCMUA++nHH6VQgWixWLP6DRrJ9BnRcZQh0ubPk12ePHkSo/u2BF4U2rJ9t+TLl1+V37Z1s5QsVUYgKqMtcH/86FG8CbzuCMlidp5YngRIgARIgARIgASSOwEKvMl9hjk+EiABEiABEkiCBE6ePi8fpkqleqZ5DMalm/El8KJP8GSsXbeetGrVRnyz55AUKVI47OqI4UMkbMkip8MxI/A2aNhYINZpgh48eM3YyFFjpU3b9qqKdeI0ewIvxFNs2zeGqUB9Y8gG/NuMwLt0ySKZNmWi064jTAA8PY1mFHgdNYB4yV07d7Abl9bpyU0UcCTWrl6zXoqXKKlag+AMERbmisB7/NQ5+eijj1X5RQtCZczoERa9wppEArbXX39d/T103hxBfF1rsyfwWife0+ppIRu0dW/GgxcJ5eBN7MzwgQLiPI0ESIAESIAESIAESMB9BCjwuo8lWyIBEiABEiABEnCRwMYtO8Tfv4AqffnSJalSqayLNW0XMwq8ribWQqxWxGyF7dyxTTq2D3SpDxA+CxYqLOUrVJRixUuKn5+/vpUeDcBD1j9fTov4sbYaNiPwZsmaTSIiD+vNFPTLIz///JNL/UWhsOWrpFy5Cqq8deIvewIvyo4dP0mQ7Mto8LaG17VmZgRexMNFXNzYmFHghacp/geD2In/aWb0lo3NeczUcSTWpk79qRz79pTet3FjRsmC+SFOBV7ruQZrCMTWBsHex8dH/RkezQhpYW32BF6UMyaj0+ohwZ6WdM1siAbrMBJmOLIsCZAACZAACZAACZBA3AhQ4I0bP9YmARIgARIgARKIBYEp02ZIo8ZNVU1sLc+X2zcWrbyqYhQiHcUkNZ7EmMQKSaqQrCo2BiFvcdhyPfkY2kAyq3Vr1zhszozAi4aMAqeW4MzV/hrHum/vbgkMaKlXdSTwvvXWW3L+0nU9/IGt+KmJIfAaxcRPPkktB498o4fRgPCLJF4njn/rKp5Yl3PmjTt/4RKp+nl11T6SluXKnlkOHzsuadNGh9hAgjN4zRpt5ux5UqduPdN9siWwOhJ4jfOOk4FX/bo19fNS4DU9BaxAAiRAAiRAAiRAAolGgAJvoqHniUmABEiABEjAewm0aNlaxk2YrAOIq/efMSEa4sV+VjA6vqgjM26DHzo4SJYvC3NWxe5xCHYQ+zRbunihjBwx1GF7ZgVeY9KziH17pE3rFi7197333lMJu+B5DJs9K1imTn4VJsGRwKvKz50vtWrXUXVnzpgm06e+mjf8LbEFXvShUOHPZN1Xm3VvWYQBKFe6uO6N6hKoWBRyJvAiri34aOzhwVyrdl2HAu/FKzdVTGGztmnjBunRrZNFNUcCLwp+ffy04AMFrHLFMnLl8mW9PgVeszPA8iRAAiRAAiRAAiSQeAQo8CYee56ZBEiABEiABLyWQLp06ZUno2a3bt6QsqWLx5pH4c+KKIEP9vLlS8meNYP6f3uGuLKIL6sJb4gfeurkK4E2Nh0xJo6bO2emTJ443mEzZgXe9Ru2KCETBi9VbKe/f/+e067OCVkgNWvV1svV+LySREWd0//tTOD1+eAD6dsvSP773//KqBFDY8S2TQoCLwbTuEkzmTw1WB8XYgWXKFowRixfp8BMFHAm8KKpSVOmS5OmzVWrEJ5/+eVnXVS19uAtU6acLFv5hT7HM6ZPddibipWrSN680aEZbHlXOxN4cd3UrlNP7t65I/ND51qciwKviYXAoiRAAiRAAiRAAiSQyAQo8CbyBPD0JEACJEACJOCtBIxxc8HAOrarPS5FihaT0PmLZfXqFbqICo9HeD5qFjxtiswIti+O9e0fJD169tHL+2ZJb5H4CWIxksD17N5Fzp457XSKrD14a9Wo6rSeWYEX54AorsWbPXfurNSsVtlh37LnyCG79kTqdY5/+40KX2A0ZwKvs8EnFYFXraEx4yWgTVu9y9bxhp2NxexxVwTeN954Q4W5sE5Wh3NZC7xffPmVFCteQnXjwoXzUq1KdNxke5bN11f2RhzSD1u350zgddQ2BV6zq4HlSYAESIAESID+GmPTAAAIq0lEQVQESCDxCFDgTTz2PDMJkAAJkAAJeDUBCF/nLlyVN998U+dw5PAhadumpTx79iwGG8SDDQldKOUrVFLHFi0IlTGjR+jlVq9ZL8VLlFT//vvvv2XggL6y5otVMdpp2qyFjJ84RffePXggUlo2b2xRbtPWnSp5GgyiaLcuHeXhwwc25wtJsTZt2SEpUqRQx//880/lQezMzAq8aG/GrBCpW6++3jQ8eOvVrmGzbwGB7WTEyDH6OMGkSCE/lZDLaMlJ4MW41qzdIEWLvfIGP3Bgv7Rq3sTZdMTquCsCLxoOGjREunTtEeMcRkEW3uTXbt7V4x0P6Nfb5vq1buT02Yvywf/9n/rz18eOSuOGdfUiFHhjNa2sRAIkQAIkQAIkQAIeR4ACr8dNGTtMAiRAAiRAAsmHQIOGjQUilNGwjf3mjRty6dJFefr0d8mTJ69kzJhJUvr46J6oKG8t8CKUwIlTUbpAhjJIuHY+KkquXr0ivr7ZJXeePOKbPYd+OoRxKOifR359/NiiD0aBVzuALfD3792VixcvysOH30uaNOkkT968kilTZou6EBMhKjqz2Ai8EMVPnrmgi8k4B8Zw/do1iYo6K49++UWy58wpOXPmko8//sSiCwtCQ2Tc2FExupWQAi/E76e//+4MjQpBUb5sCfntt9/0ssYkc45iNkMohadzmjRp9bpLFi1QHuLuNlcFXnjDIoaydWxdo8DbslWAIFmgNqdZM6VVHJyZMcEg1kK2zOn0MBoJKfAiWeKL58+ddVfu3b8ntWtUdVqOBUiABEiABEiABEiABFwnQIHXdVYsSQIkQAIkQAIkEA8E4HUbErpIfHx8XG4dQlbf3t1l44avLOpYe606ahAerSOHD5HwsCUxii1eukwqVqricn9QEO0h7u68kNku1YuNwIuG4cm8NHylvpXf2clevHghQf37yPp1X9osmpACr7O+Go8XLpDPwtvYVYEXbUDsP3LshIWgCo/u1atWmOmC07KuCrxoqH3HzjJ02EiLNo0C796Ig5LNN7s6/u03X0vD+q/iJjvqCJKkIVmaZsOGDJRl4UvVPxNS4HUK6/8XsBUr2NW6LEcCJEACJEACJEACJGCbAAVergwSIAESIAESIIEkQWDkqLHSqEmzGF6OWufgzYgwCevWrpHZM4MtYuYaBwDPzSVhKyRHzpx2x3X+fJS0a9NKHjz43m6ZXLlyS+euPaRc+QoWHrPWFSDsRu7fJ31695DHjx65zPL6rXvy+uuvq/KuxOy1brh+g0YybMRoSZkypYVns1YOwu6VK5dV+Al49tqzkqVKy8rVa9Xh27e/k9Ilirg8BhQ0hggYOjhIli8Ls6h/6Oi3kj6985AV1if1z5/Lot+37jzQw00gIR8S8zkyzN+2nXv1Olg/GNudO7dNjc9RYePYmjauL0ePHHbYtjFeMQo2b9pQDh86qPp48/b3+jy2C2wte3bvdLmfR785qXssI4EeEunBkHQOyedgX6xeqYR+V806Bq91nGq0Y5wTV9v9/fffJU/OrK4WZzkSIAESIAESIAESIAEXCFDgdQESi5AACZAACZAACSQcAQhLEOcKFf5MPkmdWn788Uf57tYtOXQwUoUjcNWQ1Cq/n78UKFBIUn/6qTz4/ns5c+aUnDl9yq44bK9thEbInj2HCu+QOUsW1Q+Efjh18oT8/PNPrnYpXsqBV778flKqVBnlBQ3xGrGMrWPtxsvJ2SgJkAAJkAAJkAAJkAAJkECiE6DAm+hTwA6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQOwIUOCNHTfWIgESIAESIAESIAES8CACZcqUk0VLl7mlxzl9M5nyJnfLSdkICZAACZAACZAACZAACdghQIGXS4MESIAESIAESIAESCDZE6hZq7bMCVnglnFmy5xOnj9/7pa22AgJkAAJkAAJkAAJkAAJxJUABd64EmR9EiABEiABEiABEiCBJE8AicyyZI17cq+XL//rNMFbkofBDpIACZAACZAACZAACSQrAhR4k9V0cjAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALeRIACrzfNNsdKAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQrAhQ4E1W08nBkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeBMBCrzeNNscKwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLIiQIE3WU0nB0MCJEACJEACJEACJEACJEACJEACJEACJEACJOBNBCjwetNsc6wkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALJigAF3mQ1nRwMCZAACZAACZAACZAACZAACZAACZAACZAACZCANxGgwOtNs82xkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJCsCFHiT1XRyMCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAt5EgAKvN802x0oCJEACJEACJEACJEACJEACJEACJEACJEACJJCsCFDgTVbTycGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4EwEKvN402xwrCZAACZAACZAACZAACZAACZAACZAACZAACZBAsiJAgTdZTScHQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4E0EKPB602xzrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAsmKAAXeZDWdHAwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIA3EaDA602zzbGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkKwIUeJPVdHIwJEACJEACJEACJEACJEACJEACJEACJEACJEAC3kSAAq83zTbHSgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkKwIUOBNVtPJwZAACZAACZAACZAACZAACZAACZAACZAACZAACXgTgf8H0IBWq5lKGzQAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/markdown": [
+       "AI-generated follow-up questions:\n",
+       "\n",
+       "* What is the country name for each of the top 10 customers by sales?\n",
+       "* How many orders does each of the top 10 customers by sales have?\n",
+       "* What is the total revenue for each of the top 10 customers by sales?\n",
+       "* What are the customer names and total sales for customers in the United States?\n",
+       "* Which customers in Africa have returned the most parts with a gross value?\n",
+       "* What are the total sales for the top 3 customers?\n",
+       "* What are the customer names and total sales for the top 5 customers?\n",
+       "* What are the total sales for customers in Europe?\n",
+       "* How many customers are there in each country?\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Markdown object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vn.ask(\"What are the top 10 customers by sales?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "SELECT n.n_name as country_name,\n",
+      "       sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales\n",
+      "FROM   snowflake_sample_data.tpch_sf1.nation n join snowflake_sample_data.tpch_sf1.customer c\n",
+      "        ON n.n_nationkey = c.c_nationkey join snowflake_sample_data.tpch_sf1.orders o\n",
+      "        ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l\n",
+      "        ON o.o_orderkey = l.l_orderkey\n",
+      "GROUP BY country_name\n",
+      "ORDER BY total_sales desc limit 5;\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>COUNTRY_NAME</th>\n",
+       "      <th>TOTAL_SALES</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>FRANCE</td>\n",
+       "      <td>8960205391.8314</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>INDONESIA</td>\n",
+       "      <td>8942575217.6237</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>RUSSIA</td>\n",
+       "      <td>8925318302.0710</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>MOZAMBIQUE</td>\n",
+       "      <td>8892984086.0088</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>JORDAN</td>\n",
+       "      <td>8873862546.7864</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "  COUNTRY_NAME      TOTAL_SALES\n",
+       "0       FRANCE  8960205391.8314\n",
+       "1    INDONESIA  8942575217.6237\n",
+       "2       RUSSIA  8925318302.0710\n",
+       "3   MOZAMBIQUE  8892984086.0088\n",
+       "4       JORDAN  8873862546.7864"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdB5QkVdUA4LeIgIFkAFEk5yg5SZSoIKCICUWCqAgKmEUUcwZBgR9FgmBCMkgGCUaQJDmJKEowIEnSL/zn9f7TOzM7u1NdO2+7b9XX53iO7Lx6dd93392uvV1TPWneeed9NnkRIECAAAECBAgQIECAAAECBAgQIECAQDiBSRq84XImYAIECBAgQIAAAQIECBAgQIAAAQIECHQENHhtBAIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQLNEnjZyxZIa6+zTndRZ515Rvrf//3fZi1ywFcz33zzp3XXW68b5Tln/zw9+eSTAx618AgQIECAAAECBAgQIECg7QIavGPsgEmTJqVll11uQvfGM888k2655eYJnXMQJ5ttttnSEkssWSu0J596Kt15x+21jq160KKLLZ623W77tMjCi6YXv+QlaY455kh//etfO+e99dZb0rXXXJ0eeOD+qtMZV1hgy61elxZ4+cu7Z/nh8celp556qvBZ+zP9gZ/9Qtplt3d3T779tq9LV1/1+/4EU/Css88+e1pjzbXS8suvmJZZZtm04CtfmR599JFOHd511x/TH++8M91y803p3nv/VjCKsaf+8Ec/nvb+wL7dH77z7W9Jl176i5kehxMSIECAAAECBAgQIECAAIFeBDR4x9DabPMt01FHH9eLY6WxO7zh9enKK35XaWzUQe/adff02c99sXb4Cy84f+1jp3fgXnvvk/bc6wPpBS94wbjz33PPX9Jxxxydjv7+d91BOUor32W6+RZbdv/0tFNPTg8//PC4pnUH3HDzHWnOOefsHr71Vpul66//Q93pBvq4pjd4cx4P/NwX03bbvzHNOuus4+bikUceSb/65WXpqO8dOdP+3tTgHTctBhAgQIAAAQIECBAgQIDAAApo8I6RlM232Cp97/vHTni62tDgzXcg5kZV3ddEN3jzHbs/OOHHaaGFFu45pPzr8RddeH7aY/ddej62qQe8f68Ppo9+/JPd5b13j93SOWefVWy5GrzNuIN3t3e/J31y/09XauyOtZlOO/WU9MG931dsnw1NrMFbnNgJCBAgQIAAAQIECBAgQKCAgAavBu+EbqtBavB+7BP7p/ftuXfKj9wY/Xr22Wc7d57mR2fMM888Y47Jx+THASy52Csn1CjyZBq85bLX1Dt4p3VXf67Bxx9/PP3nscfSnHPNlfKjG6b1uvCC89Juu7yzHP7/z6zBW5zYCQgQIECAAAECBAgQIECggIAG7xioudGw8SabTpf77Tu9M22w4UbdMeede3Y65eSTpntMblI0/UuTRjd4f37WGemkn51Yaes+9dST6ZeXX1Zp7HiDNthgo3T8j3461bDLLr0kffMbX03XXXtNyg2moddyyy2f1t9go/T67bZPK6ywYvfPNXhHEs7sBu9O79g5vWLBBbtBHPqtgzpNwSa+mtjgnfdFL0rXXHfTiA9Q8peWHXfM99NB3/zaiFzmx6estfa6aY0110ybbLJZWmbZZbtp1uBt4o63JgIECBAgQIAAAQIECBCYKAEN3pqS+3/qM2mP9+7ZPfobX/tK+vahB9ecrTmHjW7w9sMl37F7zR9uTvPOO++IRu1HPrxPOu2Uk8fFzs3eI486pvNYBw3e/jZ4x01WgwY0scH7jYMOSW/a8S3dLP3nP/9Jm268fvrrX+8ZN3MLLvjK9M2DD01rr7Nu0uAdl8sAAgQIECBAgAABAgQIEGixgAZvzeRPdIN3lllmSautvkbnruAFX/HKdO21V6dfXHxR+vOf764Z4ZTD8p1xm7xm0/Tq9TdM//znP9L5552brr3m6hmed6wJBqHB+5kDP5923X2Pbnj5Tt311l69UlNp+Jo+/8WvpK23fn1aZeXlpmtVMndFkpRSmmfeedMWW2yV1lxr7XT//fel3/3mN+mKK3477t2xM/sO3hlZf24Q5npadbXV04P/+le66qrfp9/8+pfpoYce6mna/IHB0ksvk1ZZdbW0xBJLpn/+85/plltuTjfdeEO67757e5preoOn1+DNe2z99TdMG2/ymjTrc5+bLr7ownTZpb8Y+N8IuOKq69L887+su+wD9v94+sFxx/Rk9rqtt0lPP/2/6fzzzpnmcbPNNltaZpll08KLLJIWXHChNP/886enn346/etf/0o33nB9uvLK3427t/PkM/KIhmj7rackGEyAAAECBAgQIECAAAECAy2gwVszPRPV4M1fAnbCj36acnNgrFd+pMM5Z/887f3+94x4pMDosaedcXZ61Sqrdv443yW33NKLpbe9/R3p4588IM0999xTTZ2fPXvcsUenAz+9f02BsQ/rd4P3ZS9bIP3miqtTbogNvX524k/Sh/f74ISuM082Ubk77Ijvptdt/fpOfLkZvdjCL59urpdcaql0wUVTHmVxxOHfTl/98henWt+Nt9yZcnM/v6677tq07dZbpne/531p3/0+0v3z4QflPZHvuD7sO4dMNVdumufcTut5xqMPuOGG69PWW23W+ePR8R5+2KHpa1/5Unre856XPrDPfmnd9dZPiy++RHrhC1/YWfc99/wlrb/ump1jf3LiKZ07OPMr30291OILTTePs846a/ruUcekDTfaZJpf6JWbvbvvtnP6/ZVXTHeuHPfXvn5wp7E71rrzwbmJeOUVv0tHHnFYuuSSi2doj43V4M37+DuHH5kWWODlY86dz73jDtt1niU9/JX/Pvnlb67s/lFe83gfVAwN/uGPf5bWe/X63WN3fdc70sUXXVBrbTfd+scRe237bV+Xrr5q4r44Lj9ne6d3vCvNNddc040v76tf/+qX6bMHfirdesst0xzba4M38n6rlVAHESBAgAABAgQIECBAgMBACmjw1kzLRDR4c8Ps05/53Ihm5LTC+fsDD6Q37bBduuuPd4455MKLL0tLLrV092e333briP+e1ry56fG2t+ww3YZiL0T9bvDmhs+e7/9AN+Qnnngirbjckp3m4ES+JjJ3P/jhT9KGG27cDW+RV75suvlYccWV0lnnTGm4Hf+DY9OnPvmxqZZ3x133pOc+97mdP//XP/+ZHn3s0c5jJ8Z7nXvOz9N73r3riGFf/+a30o5vfut4h3Z//sc770gbb7he579XWmnldObZ53d/lu/g/Muf/5w+8rFPpHzn5ehXfkbrUCP35+de2H0mcm7SZZtpvVZfY810zHE/HLfZN3T8j390Qvr4Rz805nS7vfs9ndrs5ZX3Wf7ivrqv0Q3eW26+ecRzaKc1b74De8vNN+nkePjr2vyYkhe9qPtHu++6c7rg/HOnG15ulP7hxtu6De2ci6WXWLj23w+/v/r69NL55uue88Sf/jh95EP71CWa6rjTzjwnrfL/H2xVnXR6Dr00eKPvt6pexhEgQIAAAQIECBAgQIDA4Ato8NbM0Yw2ePd4z55p/wM+M9XZc0Py0UceSS968YunavzmuwVXe9XyY/6K+egGby/L+smPf5g+9pH9ejlkmmP73eA9+7yL0vLLr9CN74Tjj0v7f+KjE7K2oUkmOnczo8HbK8Cmm6yfbr/ttu5hX/36Qektb3175WnuvOP2tMlGr+6MH93gzXebDr/DevSkdRq8a6y5VjrplDNGTJXP889//CPd/8D9aZ555uk8KmCo4T00MDeyc0N7+Cs37vJco+/azfP9+8EH05xzzTXVPPn4iW7wVsZOKQ33Hjpun30/nPb90Ee609x8001py82nfJAw1vwHfu6LaZddd+/+6JSTfpb23WevXkIZMfbU03/eeUTG0OuRRx5J66616gw1woefYKwGb/4gIP8Ww3Oe85yUvzBzdB7z36ObbLjemI+/qdrgbcJ+q51UBxIgQIAAAQIECBAgQIDAwAlo8NZMyYw0ePNdizfcfEen+TD0ys/a3f71r0v/+Mffu3+2zeu3TQcfctiIZtJFF56f8q9Mj35Nq8H7m1//Kp133jnp3LN/3vl18i23em365Kc+M+LXpvPdrcsuteiEPM9zdIM3N1r+89hj6TmzztoJ+YknHk/33Xtvuu22W9MhB3+z5+fijpeum2+7Kz3/+c/vDttvn73TySedON5hlX9eInczs8Gbm1+/vPyydN65Z6czzzw9PW+O56XXbr1N+tQBB45ouubHF7xx+226Lnmvzjff/Gm33ffoPKph6PXZAw9IF5w39V2hDz30724Tb3SDdzR2/lDjz3f/KT39v/+bXvrSl3b26bprrdYZVvUO3tHPes3x77brOzsN2aFX/nX6XE+v33a77p/9+9//TiuvMOXO9/yDX1z6q7TY4kt0x+Qa+tIXPpv+8Ifrun+WHwWyxZZbpb0/sG/3DtVSDd58137O1fnnnpPuuOP2zuMnPvyRj011h35+JMb11/+hG2Peq7ke8rqHXmut/qrpPjc4/70055xzdobnvbL6KiuO+DupcqH8/8DRz2zOf5wb+PmxKfmxFjP6jPHcQF5xpZXTDdf/IZ16yknp9NNPnSrn+c7zz3z2C2mOOebohj/WXer5h1UbvE3Yb73m0ngCBAgQIECAAAECBAgQGFwBDd6auZmRBu/oX3fPjaNtXrv5mJHkZ2lecvlvRjR5R99dmQ8c3eC9++4/pfftsVu68cYbppo3/9r2pZf/dsSzeb996MGd56/O6Gt0g3e8+XJ8n/jYh9N1114z3tBKP7/rz/eOaFRutMG603ysRaUJRw0qkbuZ1eC94/bb0u67vWtMj3XXe3X68U9P7q42P7P1VSstOxVRnS9Zm1aDN39Ysf8nPpbuvfdv00xFlQZvfiRHfjTH0OvMM05Pe+055Uv2Rk9+wo9OTOtvsGH3j/PjLfJjLoZewx9tMS2H4XPu8KY3pw/u+6G06cbrd5qXdV+jH9Hw6KOPpv0/+dF02ilT8jJ87tF3x15zzdVpu222GnH6o489Pr1m0yl/t5x68klpnw++f8wQ8wdK3zn8u92fXXvtNZ3nNs/oa/RjGobPlz9cyl9Ul/fm76+8MuU9kb/Aruor3wk++vnDYx079Bzoobt5c9M8/90w+lWlwduU/VbV2DgCBAgQIECAAAECBAgQGHwBDd6aOZqRBu/wBlI+/QavXjvd/ae7phnJ6KZi/jKnnXca+TzU4Q3e/MVsiy/yiumuLH/ZVr5rc+iV76Qb+mKrmiSdw3pt8OZjcryv3fI10/3yo6ox3X3P/d2h4z2zteqcw8eVyN3MaPDeddcf00brrzPdJQ//Qqxp7aGJaPDm59Tuvus70+9++5txU1ClwTs87oceeqhzR27O/bRe+QOO/Hzaodepp5yc9vnAnp3/zF/8dsvtf+r+LN+Bnu9unxmvsb5kbXpfSJa/eO23V075YCQ3OhddaIERoS6+xJLp4kt+2f2z4Y+/GL2m0R8SvWXHN6R89/KMvvIjU048+fTOl+hVeeW9l+9EPvw7h6bzzzunyiGVxlx1zQ3pJS99aWdsvms8P1t49KtKg7cp+60SmkEECBAgQIAAAQIECBAgEEJAg7dmmuo2ePOXGF1/0+3ds950041pq803mW4U+Vem8zFDd5+N1YzttcGb73y7/Y9/6f76dm665V8xn9HXm9/ytpSf15rnu/++e9O//vWv9O9/P9i5q/alL52v8+vs+a7k0a/cSFtvndWn+qKoXuLJTvlXzIde02tm9TLv0NhSuZsZDd6xntE62uC8Cy4Z8aVe+UOC3Gwb/pqIBm/+krUD9v94pRSM1+DNjx+4809/7c510s9+mj6075Qv2ZvWSYY36UbfQT/6LvBDvvXNdNA3vlYp3hkZ1GuDN58r392/6KKLdU+73NKLpccee2xEGKPHjL5jOQ9+5SsXSr/8zZXd4/KXOq6+6oozspwRx+bG+dHHnpDWWXe9qZ6JO72T5C+O2/FN2414HvR4QS233PKd5/6+YsEF08tfvmCab7750lxzz52WXHKp7mNxpvXhz3gN3ibtt/Ec/ZwAAQIECBAgQIAAAQIE4gho8NbMVd0G74YbbpxyQ2/oVbUhNfzZmLmBkxs5w1+9NnjzscPvaBvr7r+aNOMelhu8n/vCl0b86ng+6OKLLki77LzTuMdPb8DwO3jzuEVe+bLp3s3Zy8lK5W5QGrz5i8Xyl0cNvZZZcpH0+OOPjyAatAZv/kK0k089sxtj/pX/hx96aNy0Dt3JmQeObmb+6re/n+pDiPzlYL/77a/TJb+4OF1w/nnTfY7tuCefxoA6Dd6jjj4ubbb5lMco5Ocm5+cPD3+9cYcd00Hf+nb3j+655y9pvbWnfPFZ/sERRx6VXvu6Kc9c/sqXvpCOOHzKMXXXNPq4F7zgBWnnd+2W3vDGHdIrF1p4xHNxp3WO/HdTvpt4end8599IePOb35qWWHKpSg3kug3eJu23icqpeQgQIECAAAECBAgQIECg/wIavDVzULfBm7+UKd8lNvT6+le/nL7z7W+NG8XwptNYzYk6Dd6LfnF5pyEy9BqroTduYDMw4LAjvpu23mbb7gz5Waxrr7HKDMyY0ui7L/OzjYd/OdaMTF4qd4PS4D3mBz9Mm2yy6XT3w6A1ePd4z55p/wM+MyNpTbl5u8KyU75U7dXrb5B++OOfTXfO3Ei+84470gnHH5t+9MPjKz0Hdrwg6zR4P//Fr6R37rxLd+r8POscz+jX8DuW888233TD7iNR8t31t9355+5zvvPa8uMLqjzbdrw1jffz3PBde5310gYbbpRWW32NtPjiS4z4ksSh46d1R/Hcc8+d8rOI86MoennVbfA2ab/14mUsAQIECBAgQIAAAQIECAy2gAZvzfzUbfB+46BD0pt2fEv3rPt84P2db38f75Wfozm8iZEfp5AfgzD0qtPgveCiS9NSSy/TnWOl5ZdK+RmmM+uVHzmRG7JDj56YiLuIb77trhENos8eeEA6+qgpXxw1I2srlbtBafCO/kKuCHfwjn4+dZ38jvV4ks232CrlDyBmm222caf897//nXZ665s6z42dkVedBu8Bn/5s2n2P93ZPO639/sUvfy3t9I6du+OGP8f7fXvunT7+yU91f3b6aaemD+w1Zc4ZWVOdYzfYYKN08CHf6T4vd2iOd7ztzemyyy7pTpkfxXDyaWeN2RDOf4/9/YH703333de5Q/vvf3+g8/dufv5yftVt8DZpv9XJjWMIECBAgAABAgQIECBAYDAFNHhr5qVug3ef/T6c9t3vI92zfu0rX0qHfeeQcaPIz8fMz8kceo1+9ECdBu+vf3dVesUrFpxuw2PcwGZwwDXX3ZRe9OIXd2dZd63V0l//ek/tWc89/xdp2eWW6x5/5hmnp7323KP2fMMPLJW70Q3e/EVZ07t7csUVV0pnnXNBN7Tjf3Bsys9VHf0a/oVwVZ7BG7HBu9+HP5o+uM+Huks/+JtfTz/4wTE95fvpp57q3MU7+pWft7rzLrulnXZ6Z1po4UW6z6sea/J81+uqKy835jxVg6nT4B3dcNx9153TBeefO9Up55l33s4Xyw3/MCXfpZvjvvLqP6T55pu/e8xaq7+qyCMoqjrkcdn+DzfelvIdvkOvnNtvHfyN7n+P/lK43LT9xcUXpn332Tv9+8EHpzrdaWecnVZZdbXp/n033jN4m7TfesmHsQQIECBAgAABAgQIECAw2AIavDXzU7fBu8lrNkvHHHdC96x1nsGbv5Bs2aUWHRF5nQbv6G+Dz3fwzuzX8OcA53PnZ4PmZ4TWfX3sE/unPd8/5Uu28peE5cbbRNyZXCp3oxu8q71qhfSPf/x9mgSD1ODNzfPcRJ/ea6WVVk5nnn1+d8hEfsna6Ocil7z7dMmllkqbbrpF2mjjTTqNwtlnn33Esk895eS0zwf2rLt1U50G709OPKXzxWVDr5VXXGbM5mb++SmnndV5DMLQK3953OWXXZrys5eHXjfccH163ZZTHtNRezETcODh//O99LqtX9+d6cSf/jh95EP7dP47f2nbLbf/qfuz3Nx97RavSflLK6f1mogGb5P22wSkyBQECBAgQIAAAQIECBAgMCACGrw1E1G3wZvvpLvu+lu6Z80Nia0232S6UeS72G685c7u3XdjfUlSrw3efDdwvit46HXLzTenLTbbqKZG/cPu/NNfu3dG5mbs4ou8ov5kKXXuch6+rjzZLy+/LL39rW+qNW/+Ff18l2N+lcrd6Dtnt9h0o3TLLTdPM95BavDmhltuvE3vVbLBm2sjf1Ax9Lrrj3emjTZYt1auezko3wl77PE/ShttNKV2/3jnHWnjDac0W3uZL4+t0+Adfvft008/nZZYdPId+WO98hfoDW/mPvivf6U777wj5S8OG3qNfgxCr2sYPX54/fQ61+gvfjv8sEPTV7/8xc40r1pl1XT6med0p7zyit+lHd4wpRk81rkmosHbpP3Waz6MJ2yyO4YAACAASURBVECAAAECBAgQIECAAIHBFdDgrZmbug3efLrhTc383xu8eu1095/ummYkX/36Qektb3179+e/+uXl6W1v2WHE+F4bvD/+6clp3fVe3Z3jlJN+lvbdZ6+aGvUO22W3d3eaWkOv++67N+VfD5/R1/BGztBcb33zG9Ovf/XLylPnBt73vn9sWn+DjTpfODX0KpG7zxz4+bTr7lMeI/GFzx+YvnfkEdOMdeVXrZLOOGvKr+HPzEc07PCmN6dvHnxoN7aDvvG1lO8End6rZIM3n/f2P/5lxLNy99tn73TySSdWzvXogTn3+Y7Q8V75sQa5wTr0euCB+9Maq6403mHT/HmvDd7XbLp5yh8ODL3uv/++tOZqK0/3/L+/+vr00vnmG3PMv/75z7TKylMeb1J7IcMO/NNf7kvXXnN12mvP9/R8Z/7oWPMHYUN36G712q3T/3z3+90zXXzRBWmXnXeabsgT0eBt0n6biPyagwABAgQIECBAgAABAgQGQ0CDt2YeZqTBO/pXj6+99pq07dZbjhnJy162QOeO1Oc+97ndn2+91WZTfaFTLw3e7d7wxnTIoYd358t3zq62ygrT/NXuqkTveOe70t4f3Dd959Bvpfxr+NN75Tttf3HZr0esa6J+vX6ZZZZN517wi+4dzzmO3LDLjdAD9v/4uMvJj2L4+jcO7nzJU757d8nFXtk9pkTuRjdNp3cn6Dt33iV96tOfHfF4gJnZ4M2251045Yuubrzxhs6vxk/vVbrBO/oDkJyz12z06vTnP9893bjyIxeOOe6H6cLzz0sHfmbyl4wtvcwyKT/HOe/FT3zsQ+nxxx+f5hxzzz135zmxQ6+//OXP6dXrTHkEwrgbbdSAXhq8+U7SSy//7Yhmbd7b49VdfnxJfozJWK9vfO0r6duHHtxr2NMdf/c993d+nuvv52edkT764X3TY489Nu45Rt/VPvru5NHN9ek1p3PD/vNf/ErnS+aGnkFc90vWcuBN2W/jJsEAAgQIECBAgAABAgQIEAgjoMFbM1Uz0uDNzZnrbrh1RHMzN/W23War9PDDD3cjyr/+/b2jjxtxd2K+CzXfjTr6NfoLh/IjF4479vvp1FNO6jap8p2fe75/77TlVq8bcfiRRxyWvvTFz9WUmHLY8C8oevTRR1N+vvCll/wi/e63v+42dfLaP33g59Ob3/K2EQ3Y/FzhV624THryySdnOI48wV5775M+8rFPTDVXvsvyf444LP3y8kvTrbdMeVTGQgstnN7+jnembV6/XfeL5/LBoxu8JXKXz335r68YEWu+S/vjH/1Qp0mZf77tdm9Ib37r20Z80d7QATOzwTvLLLOku/5874hYDz3koPTNr3+1+2cbb7JpeuELX9B9Nm/pBm9u2l17/S1pnnnm6caQG3innXJy+vQBnxhRU8stt3zKDfyc52WWXbYzfvhzsIc//iI3FU/4wbHp+OOPS/lL6oa/8gcUPzvl9LTAAi/v/vHwRwjU2cSjG7y333Zr5+7os848Y8QdxfnvhcOPPGrEF5Dde+/f0tprrDLuafOXl+Vn1w7/wCgflNe6zJKLpPxhz0S+hhq8Q3Pm81x+2SXp9NNPTWefdWb38Sf557m2dtn13WmXXXfvfLgy/DVW83r4lwjmsddcfVV6//v26H5JY953m22xZXrXLrunueaaa8R8M9Lgbcp+m8g8m4sAAQIECBAgQIAAAQIE+iugwVvTf0YavPmUH/rIx9IHPrjfVGfPXwb2xBOPp3nmmXeqL3F65plnOr8CPtYXcI1u8A6fOB+XmxJDd68N/9mDDz6YVllp2Uq/kj4e1ehvoB8+PjdK8/lHN5aGxrx3j93SOWefNd4pevr5Nw46JL1px7dM85jc5Mlx5eeEjmWTDxzd4C2Ruzznqaf/PK262upTxZpjnFZsQ4NnZoM3n/O0M89Jq6yy6ohYc5y5OZgbiDne4Xchl27w5kDWWnuddOJJp42Z69xUzB8gzDnnnCk3qEe/ptXgHV1Due7y3ae5Nuedd94R0zzxxBOdL/OrcnfqtDbk6Abv0Lhsm+fNvvmu4bH2w447bJd+99vfVKqPI7939FQf8uS7a/d877srHd/LoNEN3tHH5jXl/+UaHCs3efzZPz8zve89u0912q994+DOB0WjXznfz3nOc6Y5Xx4/Iw3epuy3XvJoLAECBAgQIECAAAECBAgMtoAGb838zGiDN582N0TznabjNfDy2Hxn705v2zFdd+01Y0Y8vQbvtJaY7/LdcYdtU24qT8Rreg3eac2fmzFf/tLn0/e/d+REhDDVHG99206dX8+eVmN5eifNTcFjjv5e+tpXvjTVsInMXZ58wQVf2bmLd1pNrqEAcmPq91dekfIXZg29ZnaDN9+9mmOd3r6d2Q3ebPHq9TdI3znsyDTvi17U01764Qk/SJ/8+Ec6x4x+BEWVifJd56/batN0+21THtdQ5bjRY6bV4J3eXLk5+qF9906nnXpK5VOOdcf4umut1r3ztfJEFQaed8ElncdeVPk7bvR0+YOpn534k85jHab1uuKq69L8879s3EiGGslzzDFHZ+yMNnibsN/GRTOAAAECBAgQIECAAAECBMIIaPDWTNVHP/7J9P69Ptg9+ktf+Fw68n8O63m2fHfjccf/OL3oxS8e89jciPjl5ZelXd+104hfZx49eHSD94Lzz00bbfyaMRub+W7A/PiGoW+k7znoaRwwz7zzpt3f/Z70+m237zxWYLymTv7m+91323mGn/07Xvyzzz57+vgnPpW22/6Naa655+7cZTqtV24433rrLenoo7477hd1TVTuhmLJZj8+8eROs3es1z33/CXt9q53pGfTs+n8Cy/tDsmxfvbAA6Y6ZPiXj+Vm/habbTRdqtF3di61+ELTfGRGfn7tsT/40TRjHf5c6dFN06O++z/p85/7zHhp6/x8+Bdj5YbfogstMO5x+Rmzu+62Rxpq5o11QM5zbpR/77v/ky668PwRQ/JjGvb90Ec6X7CX7yyd3l75yY9/mD7/2U9PyKNFPrH/Aem975vyRYeXXHJxWm+99af54UR+LMOb3rBtys/+7eW1zrrrpZ+cOKUhXGVv9DL/6LFDj17YYcc3p0UWWXTcvxdyM/bSSy5O++37gXH/bsi1fdgR302bbT72M8zznrn88kvTB/Z6Xzrq+8d1PxiZ1l764D4fSvt9+KPdJVS5MzrqfpuRnDqWAAECBAgQIECAAAECBAZLQIN3QPKRnxG54UYbp7XWXjfNPfc86a677kyXX3ZppwmVm7zjvcb6krV8N+jyy6+Qll1u+bToYoul2269tdPMGv6c3/Hmrfvz3NRZZdXV0uKLL5EWXWzx9JKXvDT997//TTfc8If0u9/8uvMlcVXWVff80zsuN9PXWmudzmMG8pc13f/Afenee+9NV/7utyl/aVivrxnN3ejzrb7GmmnttddNSyy5VHr66afSZZf+Il180YUz9Ov/va6p6vj8JYBrrLlmZ4/957H/dO4C/c2vf5Xuu2/kc3qrzjeR43JzNj93evXV1+zs/xzTzTfdlK7/w3UpN8urvPK+XWnlV6X87N48xyMPP9z5AODGG65PN9xwfcqNwpKv/GHEppttkVZ+1avSYostnvKzrfOjGM4//9xxm5/Tiuvn516YVlhhxe6Pd9l5p3TxRReUXMaIufMHGEsvs2xaaqml0yKLLppmn232dOedd3Tycs01V9X6jYKFF1k0bbrZ5mnFFVZKs80+W7r3b39LN910Yzr9tFMm/LnC04Jqwn6baZvAiQgQIECAAAECBAgQIEBgQgU0eCeUs3+TjdXg7V80zkyAwCAK5Mdr/PI3V3ZDy8/gzl9u6EWAAAECBAgQIECAAAECBAjEFdDgjZu7EZFr8DYkkZZBoKDA0ccen16z6ebdMxzyrW+mg77xtYJnNDUBAgQIECBAgAABAgQIECBQWkCDt7TwTJpfg3cmQTsNgaAC+bEpN9x8R/eL/PKzbpddatHpPts76FKFTYAAAQIECBAgQIAAAQIEWiWgwduQdGvwNiSRlkGgkMCBn/ti2mXX3buz5y9i3H3XnQudzbQECBAgQIAAAQIECBAgQIDAzBLQ4J1Z0oXPo8FbGNj0BIIL3HzbXen5z39+dxXrr7tm+vOf7w6+KuETIECAAAECBAgQIECAAAECGrwN2QPHnfDjtPba63ZW88jDD6fVV12xISuzDAIEZlRgpZVWTj875YzuNDdc/4f0xu23mdFpHU+AAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzDAECBAgQIECAAAECBAgQIECAAAECBAZAQIN3AJIgBAIECBAgQIAAAQIECBAgQIAAAQIECNQR0OCto+YYAgQIECBAgAABAgQIECBAgAABAgQIDICABu8AJEEIBAgQIECAAAECBAgQIECAAAECBAgQqCOgwVtHzTEECBAgQIAAAQIECBAgQIAAAQIECBAYAAEN3gFIghAIECBAgAABAgQIECBAgAABAgQIECBQR0CDt46aYwgQIECAAAECBAgQIECAAAECBAgQIDAAAhq8A5AEIRAgQIAAAQIECBAgQIAAAQIECBAgQKCOgAZvHTXHECBAgAABAgQIECBAgAABAgQIECBAYAAENHgHIAlCIECAAAECBAgQIECAAAECBAgQIECAQB0BDd46ao4hQIAAAQIECBAgQIAAAQIECBAgQIDAAAho8A5AEoRAgAABAgQIECBAgAABAgQIECBAgACBOgIavHXUHEOAAAECBAgQIECAAAECBAgQIECAAIEBENDgHYAkCIEAAQIECBAgQIAAAQIECBAgQIAAAQJ1BDR466g5hgABAgQIECBAgAABAgQIECBAgAABAgMgoME7AEkQAgECBAgQIECAAAECBAgQIECAAAECBOoIaPDWUXMMAQIECBAgQIAAAQIECBAgQIAAAQIEBkBAg3cAkiAEAgQIECBAgAABAgQIECBAgAABAgQI1BHQ4K2j5hgCBAgQIECAAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzDAECBAgQIECAAAECBAgQIECAAAECBAZAQIN3AJIgBAIECBAgQIAAAQIECBAgQIAAAQIECNQR0OCto+YYAgQIECBAgAABAgQIECBAgAABAgQIDICABu8AJEEIBAgQIECAAAECBAgQIECAAAECBAgQqCOgwVtHzTEECBAgQIAAAQIECBAgQIAAAQIECBAYAAEN3gFIghAIECBAgAABAgQIECBAgAABAgQIECBQR0CDt46aYwgQIECAAAECBAgQIECAAAECBAgQIDAAAhq8A5AEIRAgQIAAAQIECBAgQIAAAQIECBAgQKCOgAZvHTXHECBAgAABAgQIECBAgAABAgQIECBAYAAENHgHIAlCIECAAAECBAgQIECAAAECBAgQIECAQB0BDd46ao4hQIAAAQIECBAgQIAAAQIECBAgQIDAAAho8A5AEoRAgAABAgQIECBAgAABAgQIECBAgACBOgIavHXUHEOAAAECBAgQIECAAAECBAgQIECAAIEBENDgHYAkCIEAAQIECBAgQIAAAQIECBAgQIAAAQJ1BDR466g5hgABAgQIECBAgAABAgQIECBAgAABAgMgoME7AEkQAgECBAgQIECAAAECBAgQIECAAAECBOoIaPDWUXMMAQIECBAgQIAAAQIECBAgQIAAAQIEBkBAg3cAkiAEAgQIECBAgAABAgQIECBAgAABAgQI1BHQ4K2j5hgCBAgQIECAAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzzEALPPPM7OnJJ3dLKb1woOMUHIHJAg+nOeY4Nk2a9AQQAgQIECBAgAABAgQIECBAgEDPAhq8PZM5YNAFnnnmeenhh69Ozz47/6CHKj4CadKkv6a5514rTZr0nxAazzzzwvTf/y6VUpo1RLyCbLvA02nWWe9MkyY9HALi2WefTZMmTQoRqyAJZAF71j4gQIAAAQIECAyGgAbvYORBFBMooME7gZimKi4Qr8HrA5Tim8IJJkwgWn39978vSpMm5Q9PZpkwAxMRKCfwTErpv2mWWf5Z7hRmJkCAAAECBAgQqCSgwVuJyaBIAhq8kbIl1mgNKPVlz0YSUF+RsiXWaALR6iuar3gJECBAgAABAr0IaPD2omVsCAENqBBpEuT/C0T7B7L6snUjCaivSNkSazSBePU1T5o06bFozOJtqUB+/ElKc6ZZZnmwpQKWTYAAAQK9Cmjw9ipm/MALaEANfIoEOEwg3j+QPaLBBo4joL7i5Eqk8QRi1tfl6dln54uHLeLWCUya9Lc099ybBPqOhrnSs8/O5jnyrdupkRf8VJpllociL0DsBKYS0OC1KRonoMHbuJQ2ekEx/4HsSwwbvSkbtDj11aBkWsrACaivgUuJgBokEK++Zk9PPPH59OyzczUoC5bSXIEH0/Of/7k0adLjzV2ilbVSQIO3lWlv9qI1eJud36atLt4FvDt4m7YHm7we9dXk7FpbvwXUV78z4PxNFlBfTc6utfVbIFp99dvL+eMIaPDGyZVIKwpo8FaEMmwgBKJdYKivgdg2gqgooL4qQhlGoIaA+qqB5hACFQXUV0UowwjUEIhWXzWW6JCWCmjwtjTxTV62BlSTs9u8tUW7wFBfzduDTV6R+mpydq2t3wLqq98ZcP4mC6ivJmfX2votEK2++u3l/HEENHjj5EqkFQU0oCpCGTYQAtEuMNTXQGwbQVQUUF8VoQwjUENAfdVAcwiBigLqqyKUYQRqCESrrxpLdEhLBTR4W5r4Ji9bA6rJ2W3e2qJdYKiv5u3BJq9IfTU5u9bWbwH11e8MOH+TBdRXk7Nrbf0WiFZf/fZy/jgCGrxxciXSigIaUBWhDBsIgWgXGOprILaNICoKqK+KUIYRqCGgvmqgOYRARQH1VRHKMAI1BKLVV40lOqSlAhq8LU18k5etAdXk7DZvbdEuMNRX8/Zgk1ekvpqcXWvrt4D66ncGnL/JAuqrydm1tn4LRKuvfns5fxwBDd44uRJpRQENqIpQhg2EQLQLDPU1ENtGEBUF1FdFKMMI1BBQXzXQHEKgooD6qghlGIEaAtHqq8YSHdJSAQ3elia+ycvWgGpydpu3tmgXGOqreXuwyStSX03OrrX1W0B99TsDzt9kAfXV5OxaW78FotVXv72cP46ABm+cXIm0ooAGVEUowwZCINoFhvoaiG0jiIoC6qsilGEEagiorxpoDiFQUUB9VYQyjEANgWj1VWOJDmmpgAZvSxPf5GVrQDU5u81bW7QLDPXVvD3Y5BWpryZn19r6LaC++p0B52+ygPpqcnatrd8C0eqr317OH0dAgzdOrkRaUUADqiKUYQMhEO0CQ30NxLYRREUB9VURyjACNQTUVw00hxCoKKC+KkIZRqCGQLT6qrFEh7RUQIO3pYlv8rI1oJqc3eatLdoFhvpq3h5s8orUV5Oza239FlBf/c6A8zdZQH01ObvW1m+BaPXVby/njyOgwRsnVyKtKKABKyrD4QAAIABJREFUVRHKsIEQiHaBob4GYtsIoqKA+qoIZRiBGgLqqwaaQwhUFFBfFaEMI1BDIFp91ViiQ1oqoMHb0sQ3edkaUE3ObvPWFu0CQ301bw82eUXqq8nZtbZ+C6ivfmfA+ZssoL6anF1r67dAtPrqt5fzxxHQ4I2TK5FWFNCAqghl2EAIRLvAUF8DsW0EUVFAfVWEMoxADQH1VQPNIQQqCqivilCGEaghEK2+aizRIS0V0OBtaeKbvGwNqCZnt3lri3aBob6atwebvCL11eTsWlu/BdRXvzPg/E0WUF9Nzq619VsgWn3128v54who8MbJlUgrCmhAVYQybCAEol1gqK+B2DaCqCigvipCGUaghoD6qoHmEAIVBdRXRSjDCNQQiFZfNZbokJYKaPC2NPFNXrYGVJOz27y1RbvAUF/N24NNXpH6anJ2ra3fAuqr3xlw/iYLqK8mZ9fa+i0Qrb767eX8cQQ0eOPkSqQVBTSgKkIZNhAC0S4w1NdAbBtBVBRQXxWhDCNQQ0B91UBzCIGKAuqrIpRhBGoIRKuvGkt0SEsFNHhbmvgmL1sDqsnZbd7aol1gqK/m7cEmr0h9NTm71tZvAfXV7ww4f5MF1FeTs2tt/RaIVl/99nL+OAIavHFyJdKKAhpQFaEMGwiBaBcY6msgto0gKgqor4pQhhGoIaC+aqA5hEBFAfVVEcowAjUEotVXjSU6pKUCGrwtTXyTl60B1eTsNm9t0S4w1Ffz9mCTV6S+mpxda+u3gPrqdwacv8kC6qvJ2bW2fgtEq69+ezl/HAEN3ji5EmlFAQ2oilCGDYRAtAsM9TUQ20YQFQXUV0UowwjUEFBfNdAcQqCigPqqCGUYgRoC0eqrxhId0lIBDd6WJr7Jy9aAanJ2m7e2aBcY6qt5e7DJK1JfTc6utfVbQH31OwPO32QB9dXk7FpbvwWi1Ve/vZw/joAGb5xcibSigAZURSjDBkIg2gWG+hqIbSOIigLqqyKUYQRqCKivGmgOIVBRQH1VhDKMQA2BaPVVY4kOaamABm9LE9/kZWtANTm7zVtbtAsM9dW8PdjkFamvJmfX2votoL76nQHnb7KA+mpydq2t3wLR6qvfXs4fR0CDN06uRFpRQAOqIpRhAyEQ7QJDfQ3EthFERQH1VRHKMAI1BNRXDTSHEKgooL4qQhlGoIZAtPqqsUSHtFRAg7eliW/ysjWgmpzd5q0t2gWG+mreHmzyitRXk7Nrbf0WUF/9zoDzN1lAfTU5u9bWb4Fo9dVvL+ePI6DBGydXIq0ooAFVEcqwgRCIdoGhvgZi2wiiooD6qghlGIEaAuqrBppDCFQUUF8VoQwjUEMgWn3VWKJDWiqgwdvSxDd52RpQTc5u89YW7QJDfTVvDzZ5Reqrydm1tn4LqK9+Z8D5myygvpqcXWvrt0C0+uq3l/PHEdDgjZMrkVYU0ICqCGXYQAhEu8BQXwOxbQRRUUB9VYQyjEANAfVVA80hBCoKqK+KUIYRqCEQrb5qLNEhLRXQ4G1p4pu8bA2oJme3eWuLdoGhvpq3B5u8IvXV5OxaW78F1Fe/M+D8TRZQX03OrrX1WyBaffXby/njCGjwxsmVSCsKaEBVhDJsIASiXWCor4HYNoKoKKC+KkIZRqCGgPqqgeYQAhUF1FdFKMMI1BCIVl81luiQlgpo8LY08U1etgZUk7PbvLVFu8BQX83bg01ekfpqcnatrd8C6qvfGXD+JguoryZn19r6LRCtvvrt5fxxBDR44+RKpBUFNKAqQhk2EALRLjDU10BsG0FUFFBfFaEMI1BDQH3VQHMIgYoC6qsilGEEaghEq68aS3RISwU0eFua+CYvWwOqydlt3tqiXWCor+btwSavSH01ObvW1m8B9dXvDDh/kwXUV5Oza239FohWX/32cv44Ahq8cXIl0ooCGlAVoQwbCIFoFxjqayC2jSAqCqivilCGEaghoL5qoDmEQEUB9VURyjACNQSi1VeNJTqkpQIavC1NfJOXrQHV5Ow2b23RLjDUV/P2YJNXpL6anF1r67eA+up3Bpy/yQLqq8nZtbZ+C0Srr357OX8cAQ3eOLkSaUUBDaiKUIYNhEC0Cwz1NRDbRhAVBdRXRSjDCNQQUF810BxCoKKA+qoIZRiBGgLR6qvGEh3SUgEN3pYmvsnL1oBqcnabt7ZoFxjqq3l7sMkrUl9Nzq619VtAffU7A87fZAH11eTsWlu/BaLVV7+9nD+OgAZvnFyJtKKABlRFKMMGQiDaBYb6GohtI4iKAuqrIpRhBGoIqK8aaA4hUFFAfVWEMoxADYFo9VVjiQ5pqYAGb0sT3+Rla0A1ObvNW1u0Cwz11bw92OQVqa8mZ9fa+i2gvvqdAedvsoD6anJ2ra3fAtHqq99ezh9HQIM3Tq5EWlFAA6oilGEDIRDtAkN9DcS2EURFAfVVEcowAjUE1FcNNIcQqCigvipCGUaghkC0+qqxRIe0VECDt6WJb/KyNaCanN3mrS3aBYb6at4ebPKK1FeTs2tt/RZQX/3OgPM3WUB9NTm71tZvgWj11W8v548joMEbJ1cirSigAVURyrCBEIh2gaG+BmLbCKKigPqqCGUYgRoC6qsGmkMIVBRQXxWhDCNQQyBafdVYokNaKqDB29LEN3nZGlBNzm7z1hbtAkN9NW8PNnlF6qvJ2bW2fguor35nwPmbLKC+mpxda+u3QLT66reX88cR0OCNkyuRVhTQgKoIZdhACES7wFBfA7FtBFFRQH1VhDKMQA0B9VUDzSEEKgqor4pQhhGoIRCtvmos0SEtFdDgbWnip7fshRdZND3+n/+kBx64P6SOBlTItLU26GgXGOqrtVs15MLVV8i0CTqIgPoKkihhhhRQXyHTJuggAtHqKwirMAdAQIN3AJIwCCHsuvse6QMf3C/NM888adKkSZ2Qnn322fT3vz+QvviFz6bTTjl5qjC3eu3W6fNf+PJUf/7Ms8+kp556Kj3x+OPpuuuuTd878oh0yy03z7RlakDNNGonmgCBaBcY6msCkm6KmSagvmYatRO1UEB9tTDpljzTBNTXTKN2ohYKRKuvFqbIkmsKaPDWhGvKYbmZe8FFl6Yll1p6uku68ILz0m67vHPEmD3es2fa/4DPVKI45uij0oGf3r/S2BkdpAE1o4KOn5kC0S4w1NfM3B3ONaMC6mtGBR1PYNoC6svuIFBOQH2VszUzgWj1JWMEqgpo8FaVaui4bx16eNr+DW/srO7vDzyQjj3m++mHP/xBmn+++dO7dt09vXGHHdNss83W+fn+n/hoOuH447oSwxu899zzl/Tnu+/u/Gz22WdPz3/+C9Kiiy2W5phjju74/fbZO5180onFJTWgihM7wQQKRLvAUF8TmHxTFRdQX8WJnaDFAuqrxcm39OIC6qs4sRO0WCBafbU4VZbeo4AGb49gTRt+6x13d5qwTz/9dFp5haXTY489NmKJa629TjrxpNM6f3bN1Vel7V7/2jEbvF/50hfSEYd/eyqe733/2LT5Flt1/vziiy9Mu7zz7cUJNaCKEzvBBApEu8BQXxOYfFMVF1BfxYmdoMUC6qvFybf04gLqqzixE7RYIFp9tThVlt6jgAZvj2BNG373PZO/SO2hhx5KKy2/1JjL+9Nf7us8l/f+++9La662ck8N3pVWWjmdefb5nWNuvummtOXmGxcn1IAqTuwEEygQ7QJDfU1g8k1VXEB9FSd2ghYLqK8WJ9/Siwuor+LETtBigWj11eJUWXqPAhq8PYI1bfh1N9za+WK1/Np+29elq6/6/YglLr3MMun8Cy/t/NlZZ56e3v++PXpq8G63/RvSId8+onPMYd85JH3tK18qTqgBVZzYCSZQINoFhvqawOSbqriA+ipO7AQtFlBfLU6+pRcXUF/FiZ2gxQLR6qvFqbL0HgU0eHsEa9rww474btp6m207y3r22WfTN7/+1fTtQw/uLvOkU85Ia6y5Vue/37j9Nun3V15RucG73HLLp5NOPTO94AUvSM8880xaZ81V03333VucUAOqOLETTKBAtAsM9TWByTdVcQH1VZzYCVosoL5anHxLLy6gvooTO0GLBaLVV4tTZek9Cmjw9gjWtOFzzjlnOumUM9Myyy7bXdoTTzyRzjv3nPSKV7wirb7Gmp0/P/4Hx6ZPffJjI5Y//EvW8rN7H330kc7Pnzvrc9Psc8zRaezm11NPPZW2ee3m6ZZbbp4pfBpQM4XZSSZIINoFhvqaoMSbZqYIqK+ZwuwkLRVQXy1NvGXPFAH1NVOYnaSlAtHqq6VpsuwaAhq8NdCaeMhvr7wmLbDAy8dc2sHf/Hr61sHfmOpnwxu845k8/PDD6UP7fiCdf945I4bO+/Ilxju055//62/3pof+/fv07LPz93ysAwjMbIF8gTHPvOumeReIsV/V18zeIc43IwLqa0b0HEtg+gLqyw4hUE5AfZWzNTOBkvX14N/uAEygbwIavH2jH4wT57ts82MU8uMU8iMazjj9tLTKqqumhRZauBtg/vMjDv92+uqXvzgi6OEN3nvu+Uu6+09/6vw8fyHbHHPMkfLdwQsvsmiabbbZusft+d7d08/POrP73/MvvsqEQ9z/x9vSvx/U4J1wWBMWEcgXGPPOu26ab7GJ/7CjRMDqq4SqOUsJqK9SsuYlkK/3vH/ZBwRKCaivUrLmJVD2/ev+O69BTKBvAhq8faMfjBMP3bmbm7jvf9+7u83XBRd8ZfrCl7+aNt74Nd1Azzv37LTH7rt0/3t4g/crX/pCpwk81uuII49Kr33dNp0fPfjgg+lVKy7THTbb81444RBP/ue/6aGHrnYH74TLmrCEQOdXhOZZO83+vEklpp/wOdXXhJOasKCA+iqIa+rWC6iv1m8BAAUF1FdBXFO3XqBkfT31+KOt9wXQPwEN3v7Z9/3Mm2+xVfre94/txHHLzTenLTbbaKqYNnnNZumY407o/vkySy6SHn/88c5/V23w5rHX33R7mmuuuTrHDZ+jBIJnhJZQNWcpgWjPgFJfpXaCeUsIqK8SquYkMFlAfdkJBMoJqK9ytmYmEK2+ZIxAVQEN3qpSDRz3hS99Nb3jne/qrOzQQw5K3/z6V8dc5RVXXZfmn/9lnZ/tuMN26Xe//U3n//fS4L3ksl+nRRdbvHPcppusn26/7bZiohpQxWhNXEAg2gWG+iqwCUxZTEB9FaM1MQENXnuAQEEB718FcU3deoFo9dX6hAGoLKDBW5mqeQOHN3gPPujr6VsHTf1FannVPz/3wrTCCit2AN71zrenX1x8Yc8N3utuuDXNM888nef8Lrbwy9MzzzxTDFQDqhitiQsIRLvAUF8FNoEpiwmor2K0JiagwWsPECgo4P2rIK6pWy8Qrb5anzAAlQU0eCtTNW/gZptvmY46+rjOwv7613vSumutNtUiZ5111vSHG29L+cvYcnN26SUWTk8++WRPDd5P7H9Aeu/79uoc869//jOtsvJyRTE1oIrymnyCBaJdYKivCd4ApisqoL6K8pq85QLqq+UbwPKLCqivorwmb7lAtPpqebosvwcBDd4esJo2dLbZZkv5ztrnP//5naVdecXv0i47vz098sgjnf+e90UvSif86MTu3btX/f7K9Ibttu4yDH9Ew8UXXZAuuvCCzs9mm3329NKXvjQt8LKXp4023qQzz9Brrz33SGeecXpRSg2oorwmn2CBaBcY6muCN4Dpigqor6K8Jm+5gPpq+Qaw/KIC6qsor8lbLhCtvlqeLsvvQUCDtwesJg5da+110k9/dmqaNGlSZ3n50Qn/+Mff0yyTZkkvfslLun/+4IMPpnXWXKX7BWt57PAG73g2+e7fww87NH3tK18ab+gM/1wDaoYJTTATBaJdYKivmbg5nGqGBdTXDBOagMA0BdSXzUGgnID6KmdrZgLR6kvGCFQV0OCtKtXgcSuuuFI69DtHpMUWX2KqVebG7GmnnpI+9pF9u49mGBq027vfkz79mc9NU+app55Kjz7ySLr2umvSxz68X3rggftniqIG1ExhdpIJEoh2gaG+JijxppkpAuprpjA7SUsF1FdLE2/ZM0VAfc0UZidpqUC0+mppmiy7hoAGbw20ph7yilcsmFZfY4203PIrpMf/83i6+qrfp6uuujI99thjoZasARUqXa0PNtoFhvpq/ZYNBaC+QqVLsMEE1FewhAk3lID6CpUuwQYTiFZfwXiF20cBDd4+4jt1GQENqDKuZi0jEO0CQ32V2QdmLSOgvsq4mpVAFlBf9gGBcgLqq5ytmQlEqy8ZI1BVQIO3qpRxYQQ0oMKkSqD+gWwPECgqEO0C3vtX0e1g8gkWUF8TDGo6AsME1JftQKCcQLT6Kidh5qYJaPA2LaPWk/wD2SaIJBDtAkN9RdpdYlVf9gCBcgLqq5ytmQmoL3uAQDmBaPVVTsLMTRPQ4G1aRq1Hg9ceCCUQ7QJDgzfU9mp9sOqr9VsAQEEB9VUQ19StF1Bfrd8CAAoKRKuvghSmbpiABm/DEmo5SYPXJgglEO0CQ4M31PZqfbDqq/VbAEBBAfVVENfUrRdQX63fAgAKCkSrr4IUpm6YgAZvwxJqORq89kAsgWgXGBq8sfZX26NVX23fAdZfUkB9ldQ1d9sF1Ffbd4D1lxSIVl8lLczdLAEN3mbl02qSBq9NEEsg2gWGBm+s/dX2aNVX23eA9ZcUUF8ldc3ddgH11fYdYP0lBaLVV0kLczdLQIO3Wfm0Gg1eeyCYQLQLDA3eYBus5eGqr5ZvAMsvKqC+ivKavOUC6qvlG8DyiwpEq6+iGCZvlIAGb6PSaTFZQAPKPogkEO0CQ31F2l1iVV/2AIFyAuqrnK2ZCagve4BAOYFo9VVOwsxNE9DgbVpGrUeD1x4IJRDtAkODN9T2an2w6qv1WwBAQQH1VRDX1K0XUF+t3wIACgpEq6+CFKZumIAGb8MSajnu4LUHYglEu8DQ4I21v9oerfpq+w6w/pIC6qukrrnbLqC+2r4DrL+kQLT6Kmlh7mYJaPA2K59W4xEN9kAwgUmT7klzz71OmjTpsRCRa/CGSJMg/18g2gW8+rJ1Iwmor0jZEms0AfUVLWPijSQQrb4i2Yq1vwIavP31d/YCAv6BXADVlMUENHiL0ZqYQFJfNgGBcgLR/oHs+rDcXjDzxAuor4k3NSOBIYFo9SVzBKoKaPBWlTIujIAL+DCpEmhKGlB2AYGCAhq8BXFN3XoB9dX6LQCgoEC0BpR/fxXcDKaecIFo9TXhACZsrIAGb2NT296FucBob+4jrtw/kCNmTcxRBNRXlEyJM6KA+oqYNTFHEYjWgPLvryg7S5xZIFp9yRqBqgIavFWljAsj4AIjTKoE6g5ee4BAUQENqKK8Jm+5gPpq+Qaw/KIC6qsor8lbLqDB2/IN0ODla/A2OLltXZoGb1szH3PdLuBj5k3UMQTUV4w8iTKmgPqKmTdRxxBQXzHyJMqYAtHqK6ayqPshoMHbD3XnLCqgwVuU1+QTLBDtAkN9TfAGMF1RAfVVlNfkLRdQXy3fAJZfVEB9FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9HU3/ueAAAgAElEQVR8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgVlmuSfNNdc6adKkx0KQqK8QaRLk/wtEu4BXX7ZuJAH1FSlbYo0moL6iZUy8kQSi1VckW7H2V0CDt7/+zl5AwD+QC6CaspiABm8xWhMT8AGKPUCgoEC0fyC7Piy4GUw94QLqa8JJTUigKxCtvqSOQFUBDd6qUsaFEXABHyZVAnUHrz1AoKiAD1CK8pq85QLqq+UbwPKLCkRrQPn3V9HtYPIJFohWXxO8fNM1WECDt8HJbevSXGC0NfMx1+0fyDHzJuoYAuorRp5EGVNAfcXMm6hjCERrQPn3V4x9JcrJAtHqS94IVBXQ4K0qZVwYARcYYVIlUHfw2gMEigpoQBXlNXnLBdRXyzeA5RcVUF9FeU3+f+ydd5xV5dWFN0QBISAYUVEBQUEEwRY1Gk3svUYTW9QYe43tS0yMJbEhMV9UBOwl5UtisAB2ETuxd0UBC2IiVgREZSTM97tnwgQCOPfO3H3PWe9+5p8Ac+5+937WXr95XTO5E5wAAW/wBUh4fALehMWNOhoBb1TlNefmAq+pG11rEMBfGjrRpSYB/KWpG11rEMBfGjrRpSYBAl5N3ei6aQIEvE0z4gkxAgS8YoIFb5cLfPAFYHxXAvjLFS/FgxPAX8EXgPFdCeAvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBDwauhElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwGsiI927tLFPps92+rq6mTGJ4CSkYpG+Q9kdgACrgTULvB8/XJdB4pXmQD+qjJQykFgAQL4i3WAgB8BNX/5kaByagQIeFNTtIXz/PDAg237HXayNfv1s65dV7DWrVtnFZ968gnba89dF6q+40672DnnXrDIifPq52WB8Beff27PP/+cXXXFCHv11Qkt7Kz8l/MfyOWz4sn8CahdMPBX/jtDB+UTwF/ls+JJCFRKAH9VSoznIVA+AfxVPiuehEClBNT8Vel8PB+XAAFvXO0Xmrxt27b2lxtvtvU3+OZiibzx+mTb8rvfXuhzRxx5jJ1+xlllEbzu2qvt7DNPL+vZlj5EANVSgry+lgTULhj4q5bbwVktJYC/WkqQ10NgyQTwF9sBAT8C+MuPLZUhoOYvFINAuQQIeMsllfBz3bv3sNvuvNc6d+6cTfnll1/ak088bi+88JzNnDHT1t9gA/vss8/t+GOPXGLA+847U+3tKVOyz5fC4vbtO1iv3r2tXbt2ja85+cTj7aaRN7qTJIByR8wBVSSgdsHAX1UUn1LuBPCXO2IOCEwAfwUWn9HdCeAvd8QcEJiAmr8CS8XoFRIg4K0QWIqP3zr6Dltv/Q2y0V5++SU7YL/v2/SPP25y1AV/gnfw+efaiOFDF3nNVddcb9ttv2P27+PGjbVDDjqgybotfYAAqqUEeX0tCahdMPBXLbeDs1pKAH+1lCCvh8CSCeAvtgMCfgTwlx9bKkNAzV8oBoFyCRDwlksq0ef69O1rY8c9nE33wfvv2zfXH1j2pOUEvIMGrWNj7rgnqznhlVdsh+22LLt+cx8kgGouOV6XBwG1Cwb+ymNLOLO5BPBXc8nxOgg0TQB/Nc2IJyDQXAL4q7nkeB0Emiag5q+mJ+IJCDQQIOANvgm3jLq98X13d9tlB3v+uWfLJlJOwLvHnt+zS4aOyGoOu+wSGzL4/LLrN/dBAqjmkuN1eRBQu2Dgrzy2hDObSwB/NZccr4NA0wTwV9OMeAICzSWAv5pLjtdBoGkCav5qeiKegAABLztgZpPemGpt2rSxWbNm2cD+fWzzzb9rAwetYz1XW80++uhDe/KJJ2zcffcullVTAW///gNs5C1jrEOHDjZv3jzbZKP1bdq0d925E0C5I+aAKhJQu2DgryqKTyl3AvjLHTEHBCaAvwKLz+juBPCXO2IOCExAzV+BpWL0CgnwE7wVAkvp8VatWtlbU6dlI5V+sdq//vWvhX4p2vxZp0+fbqecdILdN7bhrRbmfywY8M6ePds+/XRW9qmll1ra2rZrlwW7pY+6ujrbdaft7NVXJ9QEHwFUTTBzSJUIqF0w8FeVhKdMTQjgr5pg5pCgBPBXUOEZuyYE8FdNMHNIUAJq/goqE2M3gwABbzOgpfKS1dfoY+MeeGSRcebMmZP9W9u2bRs/V/oJ3N132cFeeOH5xQa8TTGZOXNmFhLfc/edCz3aZpmvN/XSij8/57N/2YwZz1h9/YoVv5YXQKDWBEoXjGWX3dTaLFPrk5t3Hv5qHjdelQ8B/JUPd06NQQB/xdCZKfMhgL/y4c6pMQh4+qvu809jQGTKQhIg4C2kLLVpatfddrfLhl+ZHTZjxgy75OLf2nXXXJW9nULpo0ePnnbt9X+wPn3XzP5eehuHtddao7G5BX+C9513ptqUt97KPlf6yeB27dpZx44dredqvbK3gJj/ccxRh9ntt41p/PuKq69X9WHfe2OifTL9KQLeqpOloAeB0gWjc5fNbYVevT3KV70m/qo6Ugo6EsBfjnApHZ4A/gq/AgBwJIC/HOFSOjwBT3+993r5v9MovBAAqDoBAt6qI9UpuN/+P7TBQ36bNXz9ddfYWWf8YpHmS+HsU8++ZMsuu2z2uXUHrWXTP/44+3NT78E7v9iIK662nXbeNftr6e0e1h3Yr/GcLiv/JzCuFrmP//muzfiEgLdaPKnjSyD7DnLnzaxLtxV8D6pSdfxVJZCUqQkB/FUTzBwSlAD+Cio8Y9eEAP6qCWYOCUrA01/T/zk5KFXGLgIBAt4iqJBTDwMGrG133H1fdvq999xlh/344MV2ctU119t22++Yfe7kE4+3m0bemP253IC39OyLr0yyTp06Za/r12c1+/zzz92m5j1C3dBS2IGA2ntA4S+HJaCkGwH85YaWwhAw/MUSQMCPAP7yY0tlCKj5C8UgUC4BAt5ySSX4XOvWre3Nt9/NJnt1wgTbftstFjvleRcMsR8e2BD+XnjBeTZ82KUVB7wPPDTeevVePXvdNlttbpMmTnQjSgDlhpbCDgTULhj4y2EJKOlGAH+5oaUwBAh42QEIOBLg65cjXEqHJ6Dmr/CCAaBsAgS8ZaNK88HXJk/J3i939uzZ1n/Nxb8H6A1//LNtscVWGYC9v7ebPfnE4xUHvM+/9Jp17tzZ6uvrrXfPlRvf59eDKgGUB1VqehFQu2DgL69NoK4HAfzlQZWaEGgggL/YBAj4EcBffmypDAE1f6EYBMolQMBbLqlEnxt582jbcKONs+muvfpK+9XZZyw0aeltFZ55/hVbeumls3C2V49u2f+WPsp9i4afn36GHXX0cdlrPv7oI1tvnf6uNAmgXPFSvMoE1C4Y+KvKC0A5VwL4yxUvxYMTwF/BF4DxXQngL1e8FA9OQM1fweVi/AoIEPBWACvFR5dfvqs9+cwLVnq7hlJwe+Xlw23wBedmP2E7cOAgu+6GP1nXFRp++dNf//J/9tNTT2rEsGDAO+6+e+2+sfdmn2vTtq117drVuq20sm2x5VbWZbnlGl9z3DFH2JjRo1xREkC54qV4lQmoXTDwV5UXgHKuBPCXK16KByeAv4IvAOO7EsBfrngpHpyAmr+Cy8X4FRAg4K0AVqqPnvrT0+z4E/4T3JbmLAW8pdB3/sfUqW/bZptsuBCCBQPeptiUwuPSe/cOGXx+U4+2+PMEUC1GSIEaElC7YOCvGi4HR7WYAP5qMUIKQGCJBPAXywEBPwL4y48tlSGg5i8Ug0C5BAh4yyWV+HN77Pk9u+DC31r79u0XmrQUzP7h99fbGaeftgiBQw8/0s4869dLJFNXV2efzpplzz3/rP3s1JPt/fffqwlFAqiaYOaQKhFQu2DgryoJT5maEMBfNcHMIUEJ4K+gwjN2TQjgr5pg5pCgBNT8FVQmxm4GAQLeZkBL+SV9+va1b2/2Hev49Y722GPj7emnnnT9hWgeLAmgPKhS04uA2gUDf3ltAnU9COAvD6rUhEADAfzFJkDAjwD+8mNLZQio+QvFIFAuAQLecknxnAwBAigZqWiU/0BmByDgSkDtAs/XL9d1oHiVCeCvKgOlHAQWIIC/WAcI+BFQ85cfCSqnRoCA9ysU7d69hx108CG2Wq9eNmnSRBt168322quvprYDyc3DfyAnJ2nSA6ldMPBX0uuY3HD4KzlJGahABPBXgcSgleQI4K/kJGWgAhFQ81eB0NFKwQmEDnifff4V69ylSybR/140xIZe+rtGuX544MF27vkXWqtWrRaS8Nqrr7RfnX1GwWWN3R4BVGz91aZXu2DgL7UNi90v/oqtP9P7EsBfvnypHpsA/oqtP9P7ElDzly8NqqdEIGzAu+FGG9vIm0dnWs6dO9fWHdjPZs2alf19pZW62d+feMZat269WK0vGjJ4oTA4pYVIYRYCqBRUjDOD2gUDf8XZzRQmxV8pqMgMRSWAv4qqDH2lQAB/paAiMxSVgJq/isqRvopHIGzAO2zElbbLrrtnitz41z/b/5xyYqM6510wxEo/wTv/4+23p9icL76wPn3XzP7ps88+s/5r9rb6+vriKUpHRgDFEigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpEQgb8N5x9302YMDamZ5bbbGZvT55UqO2jz/1XPZTvKWPv934Fzv15J9kfy79xG/pJ39LH8cdc4SNGT0qtX1IYh4CqCRkDDOE2gUDf4VZzSQGxV9JyMgQBSWAvwoqDG0lQQB/JSEjQxSUgJq/CoqRtgpIIGzA++QzL9gKK6xo8+bNs149GsLc+R9vvv1u49szbLrxBvaPf7yTferQw4+0M8/6dfbn4cMutQsvOK+AktISARQ7oERA7YKBv5S2i17xFzsAAT8C+MuPLZUhgL/YAQj4EVDzlx8JKqdGIGzA++Irk6xTp042c+ZMG9i/T6OupZ/qLf10b+mj9FYMa/Xt1fi5Hj162sPjn8j+fvddd9gRhx2S2j4kMQ8BVBIyhhlC7YKBv8KsZhKD4q8kZGSIghLAXwUVhraSIIC/kpCRIQpKQM1fBcVIWwUkEDbgfejRx61nz9Wy99Ht3XPl7Cd5Sx9n//o8O+THh2V/fnXCBNt+2y0aZevff4Ddec+47O/jxo21Qw46oICS0hIBFDugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0YgbMD7pz//zTbb/DuZnocf+iO75+47sz+/NGGydezYMfvzH35/vf3yFz9r1PzoY463037xy+zv1159pf3q7DNS24ck5iGASkLGMEOoXTDwV5jVTGJQ/JWEjAxRUAL4q6DC0FYSBPBXEjIyREEJqPmroBhpq4AEwga8P9hnP/vNby/OJJkzZ47dcftttuFGG9mqq3ZvlGmbrTa3SRMnNv79//4y0r692ebZ30856QQb+be/FlBSWiKAYgeUCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AiEDXhLQj71zIvWdYUVFqtp6RerlX7B2vyPbt1Wtr8/8Yy1atUq+6fNNtnQpk59O7V9SGIeAqgkZAwzhNoFA3+FWc0kBsVfScjIEAUlgL8KKgxtJUEAfyUhI0MUlICavwqKkbYKSCB0wNuv31o28pYxjW/JMF+fL7/80rbfdkt7ffKkRsn++rdb7FubbJr9/b33ptlGG6xTQDlpqUSAAIo9UCKgdsHAX0rbRa/4ix2AgB8B/OXHlsoQwF/sAAT8CKj5y48ElVMjEDrgLYlZer/dU079mW248besbZs29vLLL9vZZ51u0z/+eCGtxz/+tLVfpn32b0OHXmzXXHVFaruQzDwEUMlIGWIQtQsG/gqxlskMib+SkZJBCkgAfxVQFFpKhgD+SkZKBikgATV/FRAhLRWUQPiAt6C60FYLCBBAtQAeL605AbULBv6q+YpwYAsI4K8WwOOlEGiCAP5iRSDgRwB/+bGlMgTU/IViECiXAAFvuaR4ToYAAZSMVDRqZmoXDPzF2ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDwmlmbNm1s3/0OsAFrD7Q11uhjnTt3trffnmKHHPzDRmUOPfzI7N9LH6NH3WKTJk7MTzVO/koCBFAsiBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagfAB7yGHHm6n/fyX1q5du4W0nTVrlq291hqN/3bf/Q/bGn36Zn9/5OGH7ID9vp/aLiQzDwFUMlKGGETtgoG/QqxlMkPir2SkZJACEsBfBRSFlpIhgL+SkZJBCkhAzV8FREhLBSUQOuA96+xz7MeHHbFYaf474O3Tt6+NHfdw9mxdXZ316d29oJLSFgEUO6BEQO2Cgb+Utote8Rc7AAE/AvjLjy2VIYC/2AEI+BFQ85cfCSqnRiBswDtgwNp2+11jrVWrVpmm0z/+2EaNusW22nob69Gjp/13wFt65uHxT2SfK33st89eNv7RR1LbhyTmIYBKQsYwQ6hdMPBXmNVMYlD8lYSMDFFQAviroMLQVhIE8FcSMjJEQQmo+augGGmrgATCBrzDL7/Kdt5lt0ySRx952Pbfd+/sz9f/4f9syy23XmzAe+lll9vue+yZPTf4/HNtxPChBZSUlgig2AElAmoXDPyltF30ir/YAQj4EcBffmypDAH8xQ5AwI+Amr/8SFA5NQJhA975P407d+5c679mb5szZ06TAe8+++5vQy76XfbczSP/ZiedeFxq+5DEPARQScgYZgi1Cwb+CrOaSQyKv5KQkSEKSgB/FVQY2kqCAP5KQkaGKCgBNX8VFCNtFZBA2ID3tclTsl+sNm3au7bxN9dtlOarfoJ30KB1bMwd92TPjhs31g456IACSkpLBFDsgBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagbAB70sTJlvHjh3tH/94xzbdeINGXa/7/Z9sq622WexbNCz4E7xXjBhm55/369T2IYl5CKCSkDHMEGoXDPwVZjWTGBR/JSEjQxSUAP4qqDC0lQQB/JWEjAxRUAJq/iooRtoqIIGwAe9d99xva/Xvb3V1ddand/dGab7qJ3ivu+GPttXW22bPHnfMETZm9KgCSkpLBFDsgBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagbAB70X/e4l9/wf7ZnoOvfR3dtGQwdmflxTw9unb1+697yFr1apV9tyG6w+y999/L7V9SGIeAqgkZAwzhNoFA3+FWc0kBsVfScjIEAUlgL8KKgxtJUEAfyUhI0MUlICavwqKkbYKSCBswNuv31p21733Z4FtfX29nfPrs+yaq65YbMC76267229/N9Tatm2bSfjqhAm2/bZbFFBOWioRIIBiD5QIqF0w8JfSdtEr/mIHIOBHAH/5saUyBPAXOwABPwJq/vIjQeXUCIQNeEtC/vz0M+yoo49r1PTDDz6wZdq3tw4dOmSh77PPPG09evS05bt2bXym9O/f+fbG9vbbU1LbhWTmIYBKRsoQg6hdMPBXiLVMZkj8lYyUDFJAAvirgKLQUjIE8FcyUlR6utgAACAASURBVDJIAQmo+auACGmpoARCB7wlTUbePNo23GjjsuQphbult3K4bOjFZT3PQ/kQIIDKhzunNo+A2gUDfzVPZ16VDwH8lQ93To1BAH/F0Jkp8yGAv/LhzqkxCKj5K4YqTFkNAuED3hLEHXbc2X7z24utU6dOS2T6zjtT7UcH7W+TJk6sBndqOBIggHKES+mqE1C7YOCvqq8ABR0J4C9HuJQOTwB/hV8BADgSwF+OcCkdnoCav8ILBoCyCRDw/htV6b14Bw4cZBtsuJENGriOLbf8N2zau+/ac88+Y4899nd7843Xy4bKg/kSIIDKlz+nV0ZA7YKBvyrTl6fzJYC/8uXP6WkTwF9p68t0+RLAX/ny5/S0Caj5K201mK6aBAh4q0mTWoUgQABVCBlookwCahcM/FWmsDxWCAL4qxAy0ESiBPBXosIyViEI4K9CyEATiRJQ81eiMjCWAwECXgeolMyXAAFUvvw5vTICahcM/FWZvjydLwH8lS9/Tk+bAP5KW1+my5cA/sqXP6enTUDNX2mrwXTVJEDAW02a1CoEAQKoQshAE2USULtg4K8yheWxQhDAX4WQgSYSJYC/EhWWsQpBAH8VQgaaSJSAmr8SlYGxHAgkH/AefuTRduhhR1Qd3YEH7MMvXKs61eoUJICqDkeq1IaA2gUDf9VmLzilOgTwV3U4UgUCiyOAv9gLCPgRwF9+bKkMATV/oRgEyiWQfMB78SXDbM+99i6XR9nP7bfPXjb+0UfKfp4Ha0eAAKp2rDmp5QTULhj4q+WaU6F2BPBX7VhzUjwC+Cue5kxcOwL4q3asOSkeATV/xVOIiZtLgIC3meQIeJsJrgYvI4CqAWSOqBoBtQsG/qqa9BSqAQH8VQPIHBGWAP4KKz2D14AA/qoBZI4IS0DNX2GFYvCKCSQf8K6yyqrWf8DaFYNp6gUPPjDO6urqmnqMz+dAgAAqB+gc2WwCahcM/NVsqXlhDgTwVw7QOTIMAfwVRmoGzYEA/soBOkeGIaDmrzDCMGiLCSQf8LaYEAXkCBBAyUkWumG1Cwb+Cr2ucsPjLznJaFiIAP4SEotW5QjgLznJaFiIgJq/hNDSas4ECHhzFoDjq0+AAKr6TKnoR0DtgoG//HaBytUngL+qz5SKEJhPAH+xCxDwI4C//NhSGQJq/kIxCJRLgIC3XFI8J0OAAEpGKho1M7ULBv5ibZUI4C8ltehVjQD+UlOMfpUI4C8ltehVjYCav9T40m9+BAh4/82+y3LL2cYbb2Jt27YpS4277rzD5syZU9azPFRbAgRQteXNaS0joHbBwF8t05tX15YA/qotb06LRQB/xdKbaWtLAH/VljenxSKg5q9Y6jBtSwiED3jPOPNXdtCPfmxt2pQX7M6Hvd8+e9n4Rx9pCXte60SAAMoJLGVdCKhdMPCXyxpQ1IkA/nICS1kI8P9AYQcg4EqAr1+ueCkenICav4LLxfgVEAgd8F57/R9s6222qwDXfx4l4G0Wtpq8iACqJpg5pEoE1C4Y+KtKwlOmJgTwV00wc0hQAvgrqPCMXRMC+KsmmDkkKAE1fwWVibGbQSBswNu9ew975O9PNiKbN2+ezZ492zp27Jj92/Tp023mzBmNn+/Ro6e1atUq+/uUKW/ZIQf/0F6fPKkZyHmJNwECKG/C1K8mAbULBv6qpvrU8iaAv7wJUz8yAfwVWX1m9yaAv7wJUz8yATV/RdaK2SsjEDbgHX75VbbzLrtltKZOfdu2+u63bbPNv2vX3fDH7N9OPvF4u2nkjY00L/zN/9q++x2Q/f1/Lxpil1z828pI83TNCBBA1Qw1B1WBgNoFA39VQXRK1IwA/qoZag4KSAB/BRSdkWtGAH/VDDUHBSSg5q+AEjFyMwmEDXjvvvcB67fWWhm2nbbf2l5++SVbs18/u2fsg9m/DRl8vg277JJGrK1bt7aXJky2Dh06WF1dnfVdvYfV19c3Ezsv8yRAAOVJl9rVJtC69VTr2HFTa916drVLu9TDXy5YKepEQO0Cj7+cFoGyLgTwlwtWikIgI4C/WAQI+BFQ85cfCSqnRiBswPvkMy/YCiusaF9++aWt0WvVTNdSePvKa29kf77xr3+2/znlxIX0Lv1071Zbb5v9W+lzpWf4KB4B/gO5eJrQ0ZIJEPCyHRDwI4C//NhSGQJq/4HM/ZCdVSKAv5TUolc1Amr+UuNLv/kRCBvwln4at/R+u1988YWtuUbPRgXemjote6/dZ599xvbYdceFlPnxYUfYWWefk/3brbfcbD85/uj8lOPkJRLgAs9yKBEggFJSi17VCOAvNcXoV4mA2n8gcz9U2i56xV/sAAT8CKj5y48ElVMjEDbgffrZl2z5rl2t9MvVevXo1qjr8y+9Zp07d85+ydq6A/stpPfOu+xqwy+/Ovu3J5943Pb+XsN7+PJRLAJc4IulB918NQECKDYEAn4E8JcfWypDAH+xAxDwI6AWQPHfX367QOXqE1DzV/UJUDFVAmED3gceGm+9eq+e6brOwH72yfTp2Z//8Ke/2ne+u0X25xNPONZuuXlko/YL/qK1Rx5+yA7Y7/up7oX0XFwwpOUL1zz/gRxOcgauIQH8VUPYHBWOAP4KJzkD15CAWgDFf3/VcDk4qsUE1PzV4oEpEIZA2IB35M2jbcONNs6EHnz+uTZi+NDszwcdfIidc97g7M+fffaZ/e63v7Exo2+1n5x0iu2z7/5W+mVrpY+hl/7OLhrS8BwfxSLABaNYetDNVxPgP5DZEAj4EcBffmypDAH8xQ5AwI8A/vJjS2UIEPCyA6kSCBvw/uL0M+3Io4/NdH355Zdsp+23zv5c+kVrTz37krVv336Jms+dO9c22Wh9e//991LdC+m5CHil5QvXPBf4cJIzcA0J4K8awuaocATwVzjJGbiGBPBXDWFzVDgCav4KJxADN5tA2IB3nXXXs2uu/X0G7h///IftvssOjRDXXW99u3X0HdkvW1vcx7nnnG1XXTGi2dB5oS8BAl5fvlSvLgG1Cwb+qq7+VPMlgL98+VI9NgH8FVt/pvclgL98+VI9NgE1f8VWi+krIRA24G0K0g477mxHHX2srdV/gLVr187q6+vtgw/et1NOPMEeeuiBpl7O53MkQACVI3yOrpiA2gUDf1UsMS/IkQD+yhE+RydPAH8lLzED5kgAf+UIn6OTJ6Dmr+QFYcCqESDgLQPlct/4hn380UdlPMkjRSBAAFUEFeihXAJqFwz8Va6yPFcEAvirCCrQQ6oE8FeqyjJXEQjgryKoQA+pElDzV6o6MFf1CRDwVp8pFXMmQACVswAcXxEBtQsG/qpIXh7OmQD+ylkAjk+aAP5KWl6Gy5kA/spZAI5PmoCav5IWg+GqSoCA9ytwduzYMXsf3pkzZ1YVOsV8CRBA+fKlenUJqF0w8Fd19aeaLwH85cuX6rEJ4K/Y+jO9LwH85cuX6rEJqPkrtlpMXwmBMAHvNzfcyAats27GZt68efb766/N/ve/P5ZZZhm7+NJhtvU229nSSy+dffqLL76wCa+8bEcdcahNm/ZuJXx5NgcCBFA5QOfIZhNQu2Dgr2ZLzQtzIIC/coDOkWEI4K8wUjNoDgTwVw7QOTIMATV/hRGGQVtMIEzA++QzL9gKK6yYAZs7d66t1beX1dXVLQSw9NO6jz/1nK244kqLBVt6/vAfH2wPPDCuxeAp4EeAAMqPLZWrT0DtgoG/qr8DVPQjgL/82FIZAviLHYCAHwH85ceWyhBQ8xeKQaBcAiEC3lKwWwp4539cd+3VdvaZpy/CaPCQ39p++//wK9mVfup33YH9bMaMGeUy5rkaEyCAqjFwjmsRAbULBv5qkdy8uMYE8FeNgXNcKAL4K5TcDFtjAvirxsA5LhQBNX+FEodhW0QgRMD7s5+fbscce0IGqvR2CwP6rZ79FO9/f7w2eYq1a9cu++fS5++4/TYbeeNfsrd2OPHkU22ppZbKPnf3XXfYEYcd0iLwvNiPAAGUH1sqV5+A2gUDf1V/B6joRwB/+bGlMgTwFzsAAT8C+MuPLZUhoOYvFINAuQRCBLx//dst9q1NNs2Y/OmPv7dfnPY/i/DZautt7bob/tj478Muu8SGDD6/8e+l9/C96ZYx2d/r6+ttYP8+NmvWrHI581wNCRBA1RA2R7WYgNoFA3+1WHIK1JAA/qohbI4KRwB/hZOcgWtIAH/VEDZHhSOg5q9wAjFwswmECHjvf/BR6736GhmkE447ykbdessiwBZ8e4Y5c+ZYvz6rLfJL2MaOe8j69F0ze+1BB+xrDz54f7PB80I/AgRQfmypXH0CahcM/FX9HaCiHwH85ceWyhDAX+wABPwI4C8/tlSGgJq/UAwC5RIIEfA+98IE67LcchmTDdZd2z788INF+Nx97wPWb621sn9/4YXnbdedtlvkmdLbNJx0csNP//7mwgvssqEXl8uZ52pIgACqhrA5qsUE1C4Y+KvFklOghgTwVw1hc1Q4AvgrnOQMXEMC+KuGsDkqHAE1f4UTiIGbTSBEwDvpjanWpk2b7H11V19tlcXCeuW1N6xDhw7Z55b0S9h232NPu/Syy7NnRo+61Y4/9shmg+eFfgQIoPzYUrn6BNQuGPir+jtART8C+MuPLZUhgL/YAQj4EcBffmypDAE1f6EYBMolECLgnfj629a2bVurq6uzPr27L8Km9LnSM/M/fvyjA+2+sfcs8twee37PLhk6Ivv30tszlN6mgY/iESCAKp4mdLRkAmoXDPzFNisRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CIQIeJ94+nlbccWVMsq9enRb5L11t91uB7v62hsaVei/Zm+bPXv2Iqqcd8EQ++GBB2f//te//J/99NST8lOOk5dIgACK5VAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTIxAi4L119B223vobZNpdeMF5NnzYpQvpeO31f7Ctt2l4z91SsFsKeBf3MeaOe2zQoHWyTw0ZfL4Nu+yS1PYhiXkIoJKQMcwQahcM/BVmNZMYFH8lISNDFJQA/iqoMLSVBAH8lYSMDFFQAmr+KihG2ioggRAB7/EnnGSn/vS0DP9nn31mW35nU5s27d3s76uu2t0eHv+EtW7dOvv7/fffZz86cP/FSvXCyxNt2WWXzT53zFGH2e23jSmgpLREAMUOKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRCBHwtmrVykq/RK19+/aZfnPmzLFHHn7QVlmlu63Zr5+VPj//44D9vm+PPPzQIjrvuNMudvmV1zT++7c2XM/effefqe1DEvMQQCUhY5gh1C4Y+CvMaiYxKP5KQkaGKCgB/FVQYWgrCQL4KwkZGaKgBNT8VVCMtFVAAiEC3hL3w4882n55xtlfKcELLzxvu+7U8FYN//3x3AsTrMtyy2X//MH779s31x9YQDlpqUSAAIo9UCKgdsHAX0rbRa/4ix2AgB8B/OXHlsoQwF/sAAT8CKj5y48ElVMjECbgLQl39DHH22m/+OViNXzvvWm2zZab28yZMxf5/LHH/cR+etovGv/99zdcZ2ec3vCWD3wUjwABVPE0oaMlE1C7YOAvtlmJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mRyBUwFvCvPG3NrGDf/RjW3e99a39Mu3tH//8h915+2122dCLl6jC+Meftm7dVm78/KYbb8DbM+S3s02eTADVJCIeKBABtQsG/irQ8tBKkwTwV5OIeAACzSaAv5qNjhdCoEkC+KtJRDwAgWYTUPNXswflheEIhAt4wykccGACqICiC4+sdsHAX8LLFrB1/BVQdEauGQH8VTPUHBSQAP4KKDoj14yAmr9qBoaD5AkQ8MpLyAD/TYAAip1QIqB2wcBfSttFr/iLHYCAHwH85ceWyhDAX+wABPwIqPnLjwSVUyNAwJuaoszDL1ljB6QIqF0wCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHGMgJclkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxiHgZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+mMQJelkCLgNoFg4BXa7+id4u/om8A83sSwF+edKkdnQD+ir4BzO9JQM1fniyonRYBAt609GQaAl52QIyA2gWDgFdswYK3i7+CLwDjuxLAX654KR6cAP4KvgCM70pAzV+uMCieFAEC3qTkZJgSAQIo9kCJgNoFA38pbRe94i92AAJ+BPCXH1sqQwB/sQMQ8COg5i8/ElROjQABb2qKMg8BLzsgRUDtgkHAK7Ve4ZvFX+FXAACOBPCXI1xKhyeAv8KvAAAcCaj5yxEFpRMjQMCbmKCMw0/wsgNaBNQuGAS8WvsVvVv8FX0DmN+TAP7ypEvt6ATwV/QNYH5PAmr+8mRB7bQIEPCmpSfT8BYN7IAYAbULBgGv2IIFbxd/BV8AxnclgL9c8VI8OAH8FXwBGN+VgJq/XGFQPCkCBLxJyckwJQIEUOyBEgG1Cwb+UtouesVf7AAE/AjgLz+2VIYA/mIHIOBHQM1ffiSonBoBAt7UFGUeAl52QIqA2gWDgFdqvcI3i7/CrwAAHAngL0e4lA5PAH+FXwEAOBJQ85cjCkonRiD5gHfVVbvb2gMHVV22+8eNtTlz5lS9LgVbToAAquUMqVA7AmoXDPxVu93gpJYTwF8tZ0gFCCyJAP5iNyDgRwB/+bGlMgTU/IViECiXQPIB78WXDLM999q7XB5lP7ffPnvZ+EcfKft5HqwdAQKo2rHmpJYTULtg4K+Wa06F2hHAX7VjzUnxCOCveJozce0I4K/aseakeATU/BVPISZuLgEC3maSI+BtJrgavIwAqgaQOaJqBNQuGPiratJTqAYE8FcNIHNEWAL4K6z0DF4DAvirBpA5IiwBNX+FFYrBKyaQfMB76OFH2qGHHVExmKZecPCB+9mkiRObeozP50CAACoH6BzZbAJqFwz81WypeWEOBPBXDtA5MgwB/BVGagbNgQD+ygE6R4YhoOavMMIwaIsJJB/wtpgQBeQIEEDJSRa6YbULBv4Kva5yw+MvOcloWIgA/hISi1blCOAvOcloWIiAmr+E0NJqzgQIeHMWgOOrT4AAqvpMqehHQO2Cgb/8doHK1SeAv6rPlIoQmE8Af7ELEPAjgL/82FIZAmr+QjEIlEuAgLdcUjwnQ4AASkYqGjUztQsG/mJtlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoF41//WsVmzhxrZiu68KAoBKpJoFWrd6xjx53sa197p5pl3Wrx9csNLYUdCKh9/cJfDktASTcC+MsNLYUhIPcDNkgGgXIJhA94O3fpYsccc7ytt/4G1r1HD/va175WFrv9992bX7JWFqnaP8QFvvbMObH5BLjAN58dr4RAUwTU/DV37nI2a9Z4M1uhqdH4PARyJ1D6BkqnTttY69bv595LOQ1wPyyHEs8UhYDa1y/8VZTNoY9yCKj5q5yZeAYCJQKhA95111vf/vzXm6x9+/YVb8N+++xl4x99pOLX8QJ/Alww/BlzQvUIqF0w8Ff1tKeSPwH85c+YE+ISUPPXv/61ks2c+QDfQIm7slKTN/w/ULa3r33tXYm+581b1mbOfNzq6/kGpYRgwZts1Wqqder0XWvd+pPgJBg/NQKhA94JE99sVrhbWgIC3uJagQCquNrQ2aIE1P4DGX+xxUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AmED3oMOPsTOOW9wRr6+vt5uuWmkzf5sth140I+yfxs+7FJ7+KEHG5UZetnltnzXrtnff3rqSXbTyBtt7ty5+SnHyUskQADFcigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpEQgb8N46+o7sfXdLHxcNGWxDL/2dbbjRxjby5tHZv5115ul2/bVXN+q9/gbftFtG3Z79/dUJE2z7bbdIbReSmYcAKhkpQwyidsHAXyHWMpkh8VcyUjJIAQngrwKKQkvJEMBfyUjJIAUkoOavAiKkpYISCBvwPjz+CevRo2f207trrtHT5syZY926rWyPPflsJlXpJ3gvvOC8hWS7+94HrN9aa2X/tvmmG9nbb08pqKyx2yKAiq2/2vRqFwz8pbZhsfvFX7H1Z3pfAvjLly/VYxPAX7H1Z3pfAmr+8qVB9ZQIhA14n3/pNevcuXMW7PZdvUemaatWreytqdOyP48bN9YOOeiAhbQuvaVD6a0dSh/XXn2l/ersM1LahWRmIYBKRsoQg6hdMPBXiLVMZkj8lYyUDFJAAvirgKLQUjIE8FcyUjJIAQmo+auACGmpoATCBrwvvjLJOnXqZHV1ddand/dGeSa/+Y4tvfTS9uabb9gWm2+ykGw77rSLXX7lNUsMgAuqcbi2CKDCSS49sNoFA39Jr1u45vFXOMkZuIYE8FcNYXNUOAL4K5zkDFxDAmr+qiEajhInEDbgHf/407bKKqtm8q3WfaXsrRpKH+MeeMRWX6OPzZs3z9Zfd4BN//jjRokX/MVszz7ztO2x207i8qfZPgFUmrqmOpXaBQN/pbqJac6Fv9LUlamKQQB/FUMHukiTAP5KU1emKgYBNX8VgxpdKBAIG/Dedc/9tlb//plGP9h7D3v8sb9nfz73/AvtwIN+lP35wQfvt4MO2Df781JLLWXjHnzUevZcLfv7zSP/ZiedeJyCxuF6JIAKJ7n0wGoXDPwlvW7hmsdf4SRn4BoSwF81hM1R4Qjgr3CSM3ANCaj5q4ZoOEqcQNiAd/jlV9nOu+yWyTd61K12/LFHZn9eZ931bPRtdzXKOmvWLJs8eZINHDgoC3nnfxxz1GF2+21jxOVPs30CqDR1TXUqtQsG/kp1E9OcC3+lqStTFYMA/iqGDnSRJgH8laauTFUMAmr+KgY1ulAgEDbg3f+AA+2CCy/KNPr4o49svXUafpq39DFsxJW2y667L1G/yZMm2tZbbq6gb8geCaBCyi47tNoFA3/JrlrIxvFXSNkZukYE8FeNQHNMSAL4K6TsDF0jAmr+qhEWjkmAQNiAt0OHDrbtdttnEk7/eHr2dgwLfowd95D16bvmIhK/8fpk+/5ee9iHH36QgPxpjkAAlaauqU6ldsHAX6luYppz4a80dWWqYhDAX8XQgS7SJIC/0tSVqYpBQM1fxaBGFwoEwga85YjTvXsP+8G++9kmm3zb3pk61e6/f6yNuvWWcl7KMzkSIIDKET5HV0xA7YKBvyqWmBfkSAB/5Qifo5MngL+Sl5gBcySAv3KEz9HJE1DzV/KCMGDVCBDwVg0lhYpCgACqKErQRzkE1C4Y+KscVXmmKATwV1GUoI8UCeCvFFVlpqIQwF9FUYI+UiSg5q8UNWAmHwJhA94TTzrVDj284Rerbbrx+lb6ZWpNfVx62eW25VZbZ4/ttP3WNnXq2029hM/nQIAAKgfoHNlsAmoXDPzVbKl5YQ4E8FcO0DkyDAH8FUZqBs2BAP7KATpHhiGg5q8wwjBoiwmEDXgvvmSY7bnX3hnA0i9YK/2itaY+fnH6mXbk0cdmj5191i/tumuuauolfD4HAgRQOUDnyGYTULtg4K9mS80LcyCAv3KAzpFhCOCvMFIzaA4E8FcO0DkyDAE1f4URhkFbTICAt4KAd9vtdrCrr70hg/6H319vv/zFz1osAAWqT4AAqvpMqehHQO2Cgb/8doHK1SeAv6rPlIoQmE8Af7ELEPAjgL/82FIZAmr+QjEIlEuAgLeCgHe//X9og4f8NmM7ZvQoO+6YI8rlzHM1JEAAVUPYHNViAmoXDPzVYskpUEMC+KuGsDkqHAH8FU5yBq4hAfxVQ9gcFY6Amr/CCcTAzSZAwFtmwNuqVSu7974HrU/fNTPYQy/9nV00ZHCzwfNCPwIEUH5sqVx9AmoXDPxV/R2goh8B/OXHlsoQwF/sAAT8COAvP7ZUhoCav1AMAuUSCBPwnv3r82yVVVZp5LLueuvbCiusmP39oQcfsC+++HwRZqVQd6mll7aOX+9o/Qesbe3bt298Zt8ffM/+Pv7RcjnzXA0JEEDVEDZHtZiA2gUDf7VYcgrUkAD+qiFsjgpHAH+Fk5yBa0gAf9UQNkeFI6Dmr3ACMXCzCYQJeCdMfHOhgLbZxMzszTffsC0236QlJXitIwECKEe4lK46AbULBv6q+gpQ0JEA/nKES+nwBPBX+BUAgCMB/OUIl9LhCaj5K7xgACibAAFv2agaHnzppRft0B8daNOmvVvhK7Ueb9OmjY267S7runxXmzVrpm353W8vMsCOO+1i55x7wSL/Pq9+ntXV1dkXn39uzz//nF11xQh79dUJNQNAAFUz1BxUBQJqFwz8VQXRKVEzAvirZqg5KCAB/BVQdEauGQH8VTPUHBSQgJq/AkrEyM0kECbgPfHkU23llf/zFg3f3mxzW3XV7hm20aNutc8//2yJCGd/+mkWUD711JP2+uRJzUSt9bLb7xpra689MGt67ty5tvpq/2E3f5IjjjzGTj/jrLIGu+7aq+3sM08v69mWPkQA1VKCvL6WBNQuGPirltvBWS0lgL9aSpDXQ2DJBPAX2wEBPwL4y48tlSGg5i8Ug0C5BMIEvP8N5OJLhtmee+2d/fN66/S3jz/6qFxmyT83dNgVttvuezTOWU7A+847U+3tKVOy17Rt29bat+9gvXr3tnbt2jXWOfnE4+2mkTe68yOAckfMAVUkoHbBwF9VFJ9S7gTwlztiDghMAH8FFp/R3QngL3fEo7868AAAIABJREFUHBCYgJq/AkvF6BUSCBvwLveNb1ifPn1t3rx59uQTj1eILd3Hjz/hJDv1p6ctNGA5Ae/g88+1EcOHLgLmqmuut+223zH793HjxtohBx3gDo8Ayh0xB1SRgNoFA39VUXxKuRPAX+6IOSAwAfwVWHxGdyeAv9wRc0BgAmr+CiwVo1dIIGzAWyGnEI/vvMuuNvzyq7NZ33h9chZ+r9Gnb1lv0bCkgHfQoHVszB33ZDUnvPKK7bDdlu4sCaDcEXNAFQmoXTDwVxXFp5Q7AfzljpgDAhPAX4HFZ3R3AvjLHTEHBCag5q/AUjF6hQQIeP8NbOtttrP99j/AevZczVZYcSUr/ZKxz2bPtnenvWuvT55sF//uInvzjdcrxKvz+IABa9ttd95rrVu3tk8++cQ23Xh9GzXmTuvTd80WBbx77Pk9u2ToiAzEsMsusSGDz3eHQgDljpgDqkhA7YKBv6ooPqXcCeAvd8QcEJgA/gosPqO7E8Bf7og5IDABNX8FlorRKyQQPuDt07evDR9xlfVds99Xoquvr7d777nLSu8jO2vWrAoxF/vx5Zfvag+Pf8Lat29vdXV1tuV3NrXSe+qOHfdQiwLe/v0H2MhbxliHDh2ynwbeZKP1bdq0d91hEEC5I+aAKhJQu2DgryqKTyl3AvjLHTEHBCaAvwKLz+juBPCXO2IOCExAzV+BpWL0CgmEDnhLP7V6+11jrVWrVmVjK/0ytg3WWzsLLFP4KP2k8vjHnrauK6xgpRD7+3vt3viexJUEvLNnz7ZPP20Ivpdeamlr265dFuyWPkqh8a47bWevvjqhJsgIoGqCmUOqREDtgoG/qiQ8ZWpCAH/VBDOHBCWAv4IKz9g1IYC/aoKZQ4ISUPNXUJkYuxkEwga8yyyzjD3x9AvWqVOnRmyvTphg99xzp70+eZLNmDHTunXrlv1k7x577mVdunRpfO6eu++0ww/9UTNwF+8ld9x9n5WC7tLH/5xyot341z83NllJwNvUZDNnzrRTTjrBSuwW/OjQZaWmXlrx5z/9eKbNmPG01devWPFreQEEak2gdMHo1Onb9vXlvl7ro5t1Hv5qFjZelBMB/JUTeI4NQQB/hZCZIXMigL9yAs+xIQh4+mv29GkhGDJkMQmEDXiPP+EkO/Wnp2WqfPnll7b7LjvYyy+/tESVjj3uJ/bT037R+PnNN93I3n57SjFVLbOrYSOutF123T17+ooRw+z883690CsrCXhLb+kw5a23steXfiK6Xbt21rFjR+u5Wq/s/Yznfxxz1GF2+21jGv++4urrldlt+Y+998ZE+2T6UwS85SPjyRwJlC4Yy3be3FbsvXqOXZR/NP4qnxVP5k8Af+WvAR2kSwB/pastk+VPAH/lrwEdpEvA01/vvf5suuCYrPAEwga8o267y9ZdtyFcPPLwH9tdd97epFjXXPd722bb7bPnzjrzdLv+2qubfE2RH5jyzntZe888/ZQdfeRhi7R64023Zr90bv7755YemDHjE/v888+zZ4848hg7/Yyzsj8PPv9cGzF86GLHHXHF1bbTzrtmn5s+fbqtO/A/73fMT/AWeUPorRYEPL+D7NE/P8HrQZWaXgTwlxdZ6kLADH+xBRDwI4C//NhSGQKe/uIneNmvPAmEDXhfee2N7D1iSz+9u0avVcvSYONvbWI3jrw1e/a2MaPs2KOPKOt1RX1ofsBbSX+lXzR32I8PrijgLT384iuTGt8Oo1+f1RpD4krOLvdZ3iO0XFI8VwQCau8Bhb+KsDX0UC4B/FUuKZ6DQOUE8FflzHgFBMolgL/KJcVzEKicgJq/Kp+QV0QlEDbgfW3ylOxtBGbMmGGDBvQtS//OXbrY8y++mj373HPPZm/roPzRnIB37L1326GHHFRxwPvAQ+Ot17//L+jbbLW5TZo40Q0dAZQbWgo7EFC7YOAvhyWgpBsB/OWGlsIQyH6Ct2PHTa1169kSNPj6JSETTf6bAP5iFSDgR0DNX34kqJwagbAB78Pjn7AePXpafX29rda9vF/0tfsee9qll12e7cCCP8mquhTdu/ewpZZeeont/+FPf7HSM6W3aNhqi82y5z768AMr/cK00ke5b9FQevb5l16zzp07Z7x791w5q+n1wQXeiyx1PQioXTDwl8cWUNOLAP7yIktdCDS8RQMBL5sAAR8C+MuHK1UhUCKg5i9Ug0C5BMIGvFdfe4Ntu13DT+D++f/+aKf99JSvZFb6xWF/f+IZ69Zt5ey5nxx/tN16y83lcpZ8rpJfsvZV78H789PPsKOOPi5j8PFHH9l66/R35UEA5YqX4lUmoHbBwF9VXgDKuRLAX654KR6cAP4KvgCM70oAf7nipXhwAmr+Ci4X41dAIGzAu+tuu9tlw69sRFUKec/51Zk2e/ai/zezNfv1s8uGXWF912z45WCln0Ltu3oPq6urqwC13qOVBLzj7rvX7ht7bzZkm7ZtrWvXrtZtpZVtiy23si7LLdc4/HHHHGFjRo9yhUEA5YqX4lUmoHbBwF9VXgDKuRLAX654KR6cAP4KvgCM70oAf7nipXhwAmr+Ci4X41dAIGzAW2L0pz//zTbb/DuNuEpvGzBlylv23rRpNnPmDOu6woq20korNf7U7vwHL7zgPBs+7NIKMGs+WknA29SEpVC8xGzI4POberTFnyeAajFCCtSQgNoFA3/VcDk4qsUE8FeLEVIAAkskgL9YDgj4EcBffmypDAE1f6EYBMolEDrgbdOmjT3y9ydtxRXLew/eEtQU3nu33OW4974Hs59anjt3rq2+2iqLvOzQw4+0M8/69RLLlX7C+dNZs+y555+1n516sr3//nvlHt2i5wigWoSPF9eYgNoFA3/VeEE4rkUE8FeL8PFiCHwlAfzFgkDAjwD+8mNLZQio+QvFIFAugdAB73xIxx73E/vJSadY27Ztl8jtg/fft1NOOsEefPD+ctnyXE4ECKByAs+xzSKgdsHAX82SmRflRAB/5QSeY0MQwF8hZGbInAjgr5zAc2wIAmr+CiEKQ1aFAAHvvzGWfpp3o42/ZYMGrWtr9R9gnZbtZNPefddeefkle+bpp+zFF1+oCnCK+BMggPJnzAnVI6B2wcBf1dOeSv4E8Jc/Y06ISwB/xdWeyf0J4C9/xpwQl4Cav+IqxeSVEggR8G6y6bdt429tkrH54+9vsA8//KBSTjwvRIAASkgsWjW1Cwb+YmmVCOAvJbXoVY0A/lJTjH6VCOAvJbXoVY2Amr/U+NJvfgRCBLwL/jK14445wsaMHpUfcU52J0AA5Y6YA6pIQO2Cgb+qKD6l3AngL3fEHBCYAP4KLD6juxPAX+6IOSAwATV/BZaK0SskQMBbITAeLz4BAqjia0SH/yGgdsHAX2yvEgH8paQWvaoRwF9qitGvEgH8paQWvaoRUPOXGl/6zY8AAW9+7DnZiQABlBNYyroQULtg4C+XNaCoEwH85QSWshAw4y2G2AIIOBLg65cjXEqHJ6Dmr/CCAaBsAgS8ZaPiQRUCBFAqStFniYDaBQN/sbdKBPCXklr0qkYAf6kpRr9KBPCXklr0qkZAzV9qfOk3PwIEvPmx52QnAgRQTmAp60JA7YKBv1zWgKJOBPCXE1jKQoBvULIDEHAlwNcvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBBAaehElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRCBfw/vIXP7M777i9xcQ//PCDFteggA8BAigfrlT1IaB2wcBfPntAVR8C+MuHK1UhwDco2QEI+BLg65cvX6rHJqDmr9hqMX0lBMIFvJXA+apn9/3B9+zv4x+tVjnqVJEAAVQVYVLKnYDaBQN/ua8EB1SRAP6qIkxKQeC/COAvVgICfgTwlx9bKkNAzV8oBoFyCRDwlkvqv57bb5+9bPyjjzTz1bzMkwABlCddalebgNoFA39VewOo50kAf3nSpXZ0Avgr+gYwvycB/OVJl9rRCaj5K7pezF8+AQLe8lkt9OTe39vNnnzi8Wa+mpd5EiCA8qRL7WoTULtg4K9qbwD1PAngL0+61I5OAH9F3wDm9ySAvzzpUjs6ATV/RdeL+csnEC7gPe6YI2zM6FHlE+JJOQIEUHKShW5Y7YKBv0Kvq9zw+EtOMhoWIoC/hMSiVTkC+EtOMhoWIqDmLyG0tJozAQLenAXg+OoTIICqPlMq+hFQu2DgL79doHL1CeCv6jOlIgTmE8Bf7AIE/AjgLz+2VIaAmr9QDALlEiDgLZcUz8kQIICSkYpGzUztgoG/WFslAvhLSS16VSOAv9QUo18lAvhLSS16VSOg5i81vvSbHwEC3vzYc7ITAQIoJ7CUdSGgdsHAXy5rQFEnAvjLCSxlIcA3KNkBCLgS4OuXK16KByeg5q/gcjF+BQQIeCuAxaMaBAigNHSiywYCahcM/MXmKhHAX0pq0asaAfylphj9KhHAX0pq0asaATV/qfGl3/wIEPDmx56TnQgQQDmBpawLAbULBv5yWQOKOhHAX05gKQsBvkHJDkDAlQBfv1zxUjw4ATV/BZeL8SsgQMBbASwe1SBAAKWhE102EFC7YOAvNleJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mRyBEwNu//wAbOGidjPJdd95uM2bMyI84J7sTIIByR8wBVSSgdsHAX1UUn1LuBPCXO2IOCEwAfwUWn9HdCeAvd8QcEJiAmr8CS8XoFRIIEfBWyITHxQkQQIkLGKx9tQsG/gq2oOLj4i9xAWm/0ATwV6HloTlxAvhLXEDaLzQBNX8VGibNFYoAAW+h5KCZahAggKoGRWrUioDaBQN/1WozOKcaBPBXNShSAwKLJ4C/2AwI+BHAX35sqQwBNX+hGATKJUDAWy4pnpMhQAAlIxWN8h687AAEXAmoXeD5+uW6DhSvMgH8VWWglIPAAgTwF+sAAT8Cav7yI0Hl1AgQ8KamKPMY/4HMEigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpESDgTU1R5iHgZQekCKhdMAh4pdYrfLP4K/wKAMCRAP5yhEvp8ATwV/gVAIAjATV/OaKgdGIECHgTE5RxjICXJZAioHbBIOCVWq/wzeKv8CsAAEcC+MsRLqXDE8Bf4VcAAI4E1PzliILSiREg4E1MUMYh4GUHtAioXTAIeLX2K3q3+Cv6BjC/JwH85UmX2tEJ4K/oG8D8ngTU/OXJgtppESDgTUtPpjECXpZAi4DaBYOAV2u/oneLv6JvAPN7EsBfnnSpHZ0A/oq+AczvSUDNX54sqJ0WAQLetPRkGgJedkCMgNoFg4BXbMGCt4u/gi8A47sSwF+ueCkenAD+Cr4AjO9KQM1frjAonhQBAt6k5GSYEgECKPZAiYDaBQN/KW0XveIvdgACfgTwlx9bKkMAf7EDEPAjoOYvPxJUTo0AAW9qijIPAS87IEVA7YJBwCu1XuGbxV/hVwAAjgTwlyNcSocngL/CrwAAHAmo+csRBaUTI0DAm5igjMNP8LIDWgTULhgEvFr7Fb1b/BV9A5jfkwD+8qRL7egE8Ff0DWB+TwJq/vJkQe20CBDwpqUn0/AWDeyAGAG1CwYBr9iCBW8XfwVfAMZ3JYC/XPFSPDgB/BV8ARjflYCav1xhUDwpAgS8ScnJMCUCBFDsgRIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwaAQLe1BRlHgJedkCKgNoFg4BXar3CN4u/wq8AABwJ4C9HuJQOTwB/hV8BADgSUPOXIwpKJ0aAgDcxQRmHn+BlB7QIqF0wCHi19it6t/gr+gYwvycB/OVJl9rRCeCv6BvA/J4E1PzlyYLaaREg4E1LT6bhLRrYATECahcMAl6xBQveLv4KvgCM70oAf7nipXhwAvgr+AIwvisBNX+5wqB4UgQIeJOSk2FKBAig2AMlAmoXDPyltF30ir/YAQj4EcBffmypDAH8xQ5AwI+Amr/8SFA5NQIEvKkpyjwEvOyAFAG1CwYBr9R6hW8Wf4VfAQA4EsBfjnApHZ4A/gq/AgBwJKDmL0cUlE6MAAFvYoIyDj/Byw5oEVC7YBDwau1X9G7xV/QNYH5PAvjLky61oxPAX9E3gPk9Caj5y5MFtdMiQMCblp5Mw1s0sANiBNQuGAS8YgsWvF38FXwBGN+VAP5yxUvx4ATwV/AFYHxXAmr+coVB8aQIEPAmJSfDlAgQQLEHSgTULhj4S2m76BV/sQMQ8COAv/zYUhkC+IsdgIAfATV/+ZGgcmoECHhTU5R5CHjZASkCahcMAl6p9QrfLP4KvwIAcCSAvxzhUjo8AfwVfgUA4EhAzV+OKCidGAEC3sQEZRx+gpcd0CLQuvU71qnTJtaq1WyJxgl4JWSiyX8TULvA4y9WV4kA/lJSi17VCOAvNcXoV4mAmr+U2NJrvgQIePPlz+kOBPgPZAeolHQjQMDrhpbCEDD8xRJAwI8A/vJjS2UIqAVQ/PcXO6tEQM1fSmzpNV8CBLz58ud0BwJcMBygUtKNAP+B7IaWwhAg4GUHIOBIgK9fjnApHZ4A/gq/AgBwJEDA6wiX0rkSIODNFT+HexAg4PWgSk0vAlzgvchSFwJGwMsSQMCRAF+/HOFSOjwB/BV+BQDgSEDNX44oKJ0YAQLexARlHN6Dlx3QIqB2weAbKFr7Fb1b/BV9A5jfkwD+8qRL7egE8Ff0DWB+TwJq/vJkQe20CBDwpqUn0xgBL0ugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDQEvOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxuEneNkBLQJqFwwCXq39it4t/oq+AczvSQB/edKldnQC+Cv6BjC/JwE1f3myoHZaBAh409KTaXiLBnZAjIDaBYOAV2zBgreLv4IvAOO7EsBfrngpHpwA/gq+AIzvSkDNX64wKJ4UAQLepORkmBIBAij2QImA2gUDfyltF73iL3YAAn4E8JcfWypDAH+xAxDwI6DmLz8SVE6NAAFvaooyDwEvOyBFQO2CQcArtV7hm8Vf4VcAAI4E8JcjXEqHJ4C/wq8AABwJqPnLEQWlEyNAwJuYoIzDT/CyA1oE1C4YBLxa+xW9W/wVfQOY35MA/vKkS+3oBPBX9A1gfk8Cav7yZEHttAgQ8KalJ9PwFg3sgBgBtQsGAa/YggVvF38FXwDGdyWAv1zxUjw4AfwVfAEY35WAmr9cYVA8KQIEvEnJyTAlAgRQ7IESAbULBv5S2i56xV/sAAT8COAvP7ZUhgD+Ygcg4EdAzV9+JKicGgEC3tQUZR4CXnZAioDaBYOAV2q9wjeLv8KvAAAcCeAvR7iUDk8Af4VfAQA4ElDzlyMKSidGgIA3MUEZh5/gZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+m4S0a2AExAmoXDAJesQUL3i7+Cr4AjO9KAH+54qV4cAL4K/gCML4rATV/ucKgeFIECHiTkpNhSgQIoNgDJQJqFwz8pbRd9Iq/2AEI+BHAX35sqQwB/MUOQMCPgJq//EhQOTUCBLypKco8BLzsgBQBtQsGAa/UeoVvFn+FXwEAOBLAX45wKR2eAP4KvwIAcCSg5i9HFJROjAABb2KCMg4/wcsOaBFQu2AQ8GrtV/Ru8Vf0DWB+TwL4y5MutaMTwF/RN4D5PQmo+cuTBbXTIkDAm5aeTMNbNLADYgTULhgEvGILFrxd/BV8ARjflQD+csVL8eAE8FfwBWB8VwJq/nKFQfGkCBDwJiUnw5QIEECxB0oE1C4Y+Etpu+gVf7EDEPAjgL/82FIZAviLHYCAHwE1f/mRoHJqBAh4U1OUeQh42QEpAmoXDAJeqfUK3yz+Cr8CAHAkgL8c4VI6PAH8FX4FAOBIQM1fjigonRgBAt7EBGUcfoKXHdAioHbBIODV2q/o3eKv6BvA/J4E8JcnXWpHJ4C/om8A83sSUPOXJwtqp0WAgDctPZmGt2hgB8QIqF0wCHjFFix4u/gr+AIwvisB/OWKl+LBCeCv4AvA+K4E1PzlCoPiSREg4E1KToYpESCAYg+UCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AgQ8KamKPMQ8LIDUgTULhgEvFLrFb5Z/BV+BQDgSAB/OcKldHgC+Cv8CgDAkYCavxxRUDoxAgS8iQnKOPwELzugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDW/RwA6IEVC7YBDwii1Y8HbxV/AFYHxXAvjLFS/FgxPAX8EXgPFdCaj5yxUGxZMiQMCblJwMUyJAAMUeKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRIOBNTVHmIeBlB6QIqF0wCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHH4CV52QIuA2gWDgFdrv6J3i7+ibwDzexLAX550qR2dAP6KvgHM70lAzV+eLKidFgEC3rT0ZBreooEdECOgdsEg4BVbsODt4q/gC8D4rgTwlyteigcngL+CLwDjuxJQ85crDIonRYCANyk5GaZEgACKPVAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTI0DAm5qizEPAyw5IEVC7YBDwSq1X+GbxV/gVAIAjAfzlCJfS4Qngr/ArAABHAmr+ckRB6cQIEPAmJijj8BO87IAWAbULBgGv1n5F7xZ/Rd8A5vckgL886VI7OgH8FX0DmN+TgJq/PFlQOy0CBLxp6ck0vEUDOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxuEneNkBLQJqFwwCXq39it4t/oq+AczvSQB/edKldnQC+Cv6BjC/JwE1f3myoHZaBAh409KTaXiLBnZAjIDaBYOAV2zBgreLv4IvAOO7EsBfrngpHpwA/gq+AIzvSkDNX64wKJ4UAQLepORkmBIBAij2QImA2gUDfyltF73iL3YAAn4E8JcfWypDAH+xAxDwI6DmLz8SVE6NAAFvaooyDwEvOyBFQO2CQcArtV7hm8Vf4VcAAI4E8JcjXEqHJ4C/wq8AABwJqPnLEQWlEyNAwJuYoIzDT/CyA1oE1C4YBLxa+xW9W/wVfQOY35MA/vKkS+3oBPBX9A1gfk8Cav7yZEHttAgQ8KalJ9PwFg3sgBgBtQsGAa/YggVvF38FXwDGdyWAv1zxUjw4AfwVfAEY35WAmr9cYVA8KQIEvEnJyTAlAgRQ7IESAbULBv5S2i56xV/sAAT8COAvP7ZUhgD+Ygcg4EdAzV9+JKicGgEC3tQUZR4CXnZAioDaBYOAV2q9wjeLv8KvAAAcCeAvR7iUDk8Af4VfAQA4ElDzlyMKSidGgIA3MUEZh5/gZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+m4S0a2AExAmoXDAJesQUL3i7+Cr4AjO9KAH+54qV4cAL4K/gCML4rATV/ucKgeFIECHiTkpNhSgQIoNgDJQJqFwz8pbRd9Iq/2AEI+BHAX35sqQwB/MUOQMCPgJq//EhQOTUCBLypKco8BLzsgBQBtQsGAa/UeoVvFn+FXwEAOBLAX45wKR2eAP4KvwIAcCSg5i9HFJROjAABb2KCMg4/wcsOaBFQu2AQ8GrtV/Ru8Vf0DWB+TwL4y5MutaMTwF/RN4D5PQmo+cuTBbXTIkDAm5aeTMNbNLADYgTULhgEvGILFrxd/BV8ARjflQD+csVL8eAE8FfwBWB8VwJq/nKFQfGkCBDwJiUnw5QIEECxB0oE1C4Y+Etpu+gVf7EDEPAjgL/82FIZAviLHYCAHwE1f/mRoHJqBAh4U1OUeQh42QEpAmoXDAJeqfUK3yz+Cr8CAHAkgL8c4VI6PAH8FX4FAOBIQM1fjigonRgBAt7EBGUcfoKXHdAioHbBIODV2q/o3eKv6BvA/J4E8JcnXWpHJ4C/om8A83sSUPOXJwtqp0WAgDctPZmGt2hgB8QIqF0wCHjFFix4u/gr+AIwvisB/OWKl+LBCeCv4AvA+K4E1PzlCoPiSREg4E1KToYpESCAYg+UCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AgQ8KamKPMQ8LIDUgTULhgEvFLrFb5Z/BV+BQDgSAB/OcKldHgC+Cv8CgDAkYCavxxRUDoxAgS8iQnKOPwELzugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDW/RwA6IEVC7YBDwii1Y8HbxV/AFYHxXAvjLFS/FgxPAX8EXgPFdCaj5yxUGxZMiQMCblJwMUyJAAMUeKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRIOBNTVHmIeBlB6QIqF2lqB1qAAAgAElEQVQwCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHH4CV52QIuA2gWDgFdrv6J3i7+ibwDzexLAX550qR2dAP6KvgHM70lAzV+eLKidFgEC3rT0ZBreooEdECOgdsEg4BVbsODt4q/gC8D4rgTwlyteigcngL+CLwDjuxJQ85crDIonRYCANyk5GaZEgACKPVAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTI0DAm5qizEPAyw5IEVC7YBDwSq1X+GbxV/gVAIAjAfzlCJfS4Qngr/ArAABHAmr+ckRB6cQIEPAmJijj8BO87IAWAbULBgGv1n5F7xZ/Rd8A5vckgL886VI7OgH8FX0DmN+TgJq/PFlQOy0CBLxp6ck0vEUDOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUzQlo7TunVr69ZtZfvnP/9h9fX1LS2Xy+sJoHLBzqHNJKB2wcBfzRSal+VCAH/lgp1DgxDAX0GEZsxcCOCvXLBzaBACav4KIgtjVoEAAW8VICqXKIW5PznpFNtiy63sG99Y3tq0adM4zhdffGGPPTbeTvrJcfbxRx8tMuaOO+1i55x7wSL/Pq9+ntXV1dkXn39uzz//nF11xQh79dUJNcNEAFUz1BxUBQJqFwz8VQXRKVEzAvirZqg5KCAB/BVQdEauGQH8VTPUHBSQgJq/AkrEyM0kQMDbTHCpvOzW0XfYeutv8JXjzJs3z3bZcVt7+eWXFnruiCOPsdPPOKssFNdde7WdfebpZT3b0ocIoFpKkNfXkoDaBQN/1XI7OKulBPBXSwnyeggsmQD+Yjsg4EcAf/mxpTIE1PyFYhAolwABb7mkEn1ufsBbCnGffebpLMR9/733bPsdd7K11upvSy21VDb5jBkzbNCAvksMeN95Z6q9PWVK9vm2bdta+/YdrFfv3tauXbvG15x84vF208gb3UkSQLkj5oAqElC7YOCvKopPKXcC+MsdMQcEJoC/AovP6O4E8Jc7Yg4ITEDNX4GlYvQKCRDwVggstcfPH/wbW3rppe2cX51pM2fOXGi8Dh062JPPvGil/y197LjdVvbKKy83PrPgT/AOPv9cGzF86CJ4rrrmettu+x2zfx83bqwdctAB7ggJoNwRc0AVCahdMPBXFcWnlDsB/OWOmAMCE8BfgcVndHcC+MsdMQcEJqDmr8BSMXqFBAh4KwQW7fGLLxlme+61dzb2f4e45QS8gwatY2PuuCd7/YRXXrEdttvSHSEBlDtiDqgiAbULBv6qoviUcieAv9wRc0BgAvgrsPiM7k4Af7kj5oDABNT8FVgqRq+QAAFvhcCiPT7kot/ZPvvun439q7PPsGuvvrIRQTkB7x57fs8uGToie82wyy6xIYPPd0dIAOWOmAOqSEDtgoG/qig+pdwJ4C93xBwQmAD+Ciw+o7sTwF/uiDkgMAE1fwWWitErJEDAWyGwaI/f/+Cj1nv1NbKx99pzV3vqySfKDnj79x9gI28Zk73FQ+k9fjfZaH2bNu1dd4QEUO6IOaCKBNQuGPiriuJTyp0A/nJHzAGBCeCvwOIzujsB/OWOmAMCE1DzV2CpGL1CAgS8FQKL9PiGG21sI28enY386aef2oB+qy80/oI/wTt79mz79NNZ2eeXXmppa9uuXeN799bV1dmuO21nr746oSb4CKBqgplDqkRA7YKBv6okPGVqQgB/1QQzhwQlgL+CCs/YNSGAv2qCmUOCElDzV1CZGLsZBAh4mwEtwkuWXXZZe+zJ56x9+/bZuKW3Vii9xcKCHwsGvE0xKf0Ct1NOOsHuufvOhR7tsnLDTwdX8+Pjf75rMz55yurrV6xmWWpBwIVA6YKxbOfNrEu3FVzqV7so/qo2Uep5EsBfnnSpHZ0A/oq+AczvSQB/edKldnQCnv6a/s/J0fEyf44ECHhzhF/Uo9u2bWsPPvKYdeu2ctbiSy+9aDvvsM0i7S4Y8L7zzlSb8tZb2TOtWrWydu3aWceOHa3nar2sTZs2ja895qjD7PbbxjT+fcXV16s6hvfemGifTCfgrTpYCroQKF0wOnfZ3Fbo1dulfrWL4q9qE6WeJwH85UmX2tEJ4K/oG8D8ngTwlyddakcn4Omv915/Njpe5s+RAAFvjvCLePRSSy1l9z803nr06Jm19+67/7TvbvYtmzNnzlcGvIPPP9dGDB+62JFGXHG17bTzrtnnpk+fbusO7Nf4XJtlvl51DHM++5fNmPEMP8FbdbIU9CCQfQd52U2tzTIe1atfE39VnykV/QjgLz+2VIYA/mIHIOBHAH/5saUyBDz9Vff5pwCGQG4ECHhzQ1+8g0u/DO2e+x60VVftnjX33nvTbMvvbGql99dd3MeCP8H7VQFv6bUvvjLJOnXqlJXp12c1+/zzz90A8B6hbmgp7ECgVatSwLuJtWq1eJ85HNmikvirRfh4cY0JqL3HGv6q8YJwXIsI4K8W4ePFEPhKAviLBYGAHwE1f/mRoHJqBAh4U1O0mfMsv3xXGzvuIeuy3HJZhTffeN2233bLxf7k7vwjKgl4H3hovPXq3fBL2rbZanObNHFiMztt+mX8B3LTjHiiOAQIeIujBZ2kRwB/pacpExWHgNp/IHM/LM7u0EnTBPBX04x4AgLNJaDmr+bOyeviESDgjaf5IhP37z/Abrr1tsZfqPbss8/YnrvtZPX19V9Jp5KA9/mXXrPOnTtnNXv3XNnmzZvnRp4LvBtaCjsQIIBygEpJCPybAP5iFSDgRwB/+bGlMgTUAij++4udVSKg5i8ltvSaLwEC3nz55376DjvubKX3yG3dunXWy5jRo+y4Y44oq69yA96fn36GHXX0cVnNjz/6yNZbp39Z9Zv7EBeM5pLjdXkQ4D+Q86DOmVEI4K8oSjNnHgTwVx7UOTMKAfwVRWnmzIOAmr/yYMSZmgQIeDV1q1rXU955r7HWK6+8bH+78S9LrF366ds//eEGq6ury55ZMOAdd9+9dt/Ye7N/b9O2rXXt2tW6rbSybbHlVo1v+1D6XCk8LoXInh8EvJ50qV1tAmoXDPxV7Q2gnicB/OVJl9rRCeCv6BvA/J4E8JcnXWpHJ6Dmr+h6MX/5BAh4y2eV5JMLBrzlDPidzb5lU956c5GAt6nXlsLh4cMutSGDz2/q0RZ/ngCqxQgpUEMCahcM/FXD5eCoFhPAXy1GSAEILJEA/mI5IOBHAH/5saUyBNT8hWIQKJcAAW+5pBJ9rtKAd7NNNrSpU9/OaBx6+JF25lm/XiKZ0k/6fjprlj33/LP2s1NPtvff/89PC3viJIDypEvtahNQu2Dgr2pvAPU8CeAvT7rUjk4Af0XfAOb3JIC/POlSOzoBNX9F14v5yydAwFs+K54UIUAAJSIUbWYE1C4Y+IvFVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwEsHtUgQACloRNdNhBQu2DgLzZXiQD+UlKLXtUI4C81xehXiQD+UlKLXtUIqPlLjS/95keAgDc/9pzsRIAAygksZV0IqF0w8JfLGlDUiQD+cgJLWQjwDUp2AAKuBPj65YqX4sEJqPkruFyMXwEBAt4KYPGoBgECKA2d6LKBgNoFA3+xuUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AgS8+bHnZCcCBFBOYCnrQkDtgoG/XNaAok4E8JcTWMpCgG9QsgMQcCXA1y9XvBQPTkDNX8HlYvwKCBDwVgCLRzUIEEBp6ESXDQTULhj4i81VIoC/lNSiVzUC+EtNMfpVIoC/lNSiVzUCav5S40u/+REg4M2PPSc7ESCAcgJLWRcCahcM/OWyBhR1IoC/nMBSFgJ8g5IdgIArAb5+ueKleHACav4KLhfjV0CAgLcCWDyqQYAASkMnumwgoHbBwF9srhIB/KWkFr2qEcBfaorRrxIB/KWkFr2qEVDzlxpf+s2PAAFvfuw52YkAAZQTWMq6EFC7YOAvlzWgqBMB/OUElrIQ4BuU7AAEXAnw9csVL8WDE1DzV3C5GL8CAgS8FcDiUQ0CBFAaOtFlAwG1Cwb+YnOVCOAvJbXoVY0A/lJTjH6VCOAvJbXoVY2Amr/U+NJvfgQIePNjz8lOBAignMBS1oWA2gUDf7msAUWdCOAvJ7CUhQDfoGQHIOBKgK9frngpHpyAmr+Cy8X4FRAg4K0AFo9qECCA0tCJLhsIqF0w8Bebq0QAfympRa9qBPCXmmL0q0QAfympRa9qBNT8pcaXfvMjQMCbH3tOdiJAAOUElrIuBNQuGPjLZQ0o6kQAfzmBpSwE+AYlOwABVwJ8/XLFS/HgBNT8FVwuxq+AAAFvBbB4VIMAAZSGTnTZQEDtgoG/2FwlAvhLSS16VSOAv9QUo18lAvhLSS16VSOg5i81vvSbHwEC3vzYc7ITAQIoJ7CUdSGgdsHAXy5rQFEnAvjLCSxlIcA3KNkBCLgS4OuXK16KByeg5q/gcjF+BQQIeCuAxaMaBAigNHSiywYCahcM/MXmKhHAX0pq0asaAfylphj9KhHAX0pq0asaATV/qfGl3/wIEPDmx56TnQgQQDmBpawLAbULBv5yWQOKOhHAX05gKQsBvkHJDkDAlQBfv1zxUjw4ATV/BZeL8SsgQMBbASwe1SBAAKWhE102EFC7YOAvNleJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mR4CANz/2nOxEgADKCSxlXQioXTDwl8saUNSJAP5yAktZCPANSnYAAq4E+PrlipfiwQmo+Su4XIxfAQEC3gpg8agGAQIoDZ3osoGA2gUDf7G5SgTwl5Ja9KpGAH+pKUa/SgTwl5Ja9KpGQM1fanzpNz8CBLz5sedkJwIEUE5gKetCQO2Cgb9c1oCiTgTwlxNYykKAb1CyAxBwJcDXL1e8FA9OQM1fweVi/AoIEPBWAItHNQgQQGnoRJcNBNQuGPiLzVUigL+U1KJXNQL4S00x+lUigL+U1KJXNQJq/lLjS7/5ESDgzY89JzsRIIByAktZFwJqFwz85bIGFHUigL+cwFIWAnyDkh2AgCsBvn654qV4cAJq/gouF+NXQICAtwJYPKpBgABKQye6bCCgdsHAX2yuEgH8paQWvaoRwF9qitGvEgH8paQWvaoRUPOXGl/6zY8AAW9+7DnZiQABlBNYyroQULtg4C+XNaCoEwH85QSWshDgG5TsAARcCfD1yxUvxYMTUPNXcLkYvwICBLwVwOJRDQIEUBo60WUDAbULBv5ic5UI4C8ltehVjQD+UlOMfpUI4C8ltehVjYCav9T40m9+BAh482PPyU4ECKCcwFLWhYDaBQN/uawBRZ0I4C8nsJSFAN+gZAcg4EqAr1+ueCkenICav4LLxfgVECDgrQAWj2oQIIDS0IkuGwioXTDwF5urRAB/KalFr2oE8JeaYvSrRAB/KalFr2oE1Pylxpd+8yNAwJsfe052IkAA5QSWsi4E1C4Y+MtlDSjqRAB/OYGlLAT4BiU7AAFXAnz9csVL8eAE1PwVXC7Gr4AAAW8FsHhUgwABlIZOdNlAQO2Cgb/YXCUC+EtJLXpVI4C/1BSjXyUC+EtJLXpVI6DmLzW+9JsfAQLe/NhzshMBAignsJR1IaB2wcBfLmtAUScC+MsJLGUhwDco2QEIuBLg65crXooHJ6Dmr+ByMX4FBAh4K4DFoxoECKA0dKLLBgJqFwz8xeYqEcBfSmrRqxoB/KWmGP0qEcBfSmrRqxoBNX+p8aXf/AgQ8ObHnpOdCBBAOYGlrAsBtQsG/nJZA4o6EcBfTmApCwG+QckOQMCVAF+/XPFSPDgBNX8Fl4vxKyBAwFsBLB7VIEAApaETXTYQULtg4C82V4kA/lJSi17VCOAvNcXoV4kA/lJSi17VCKj5S40v/eZHgIA3P/ac7ESAAMoJLGVdCKhdMPCXyxpQ1IkA/nICS1kI8A1KdgACrgT4+uWKl+LBCaj5K7hcjF8BAQLeCmDxqAYBAigNneiygYDaBQN/sblKBPCXklr0qkYAf6kpRr9KBPCXklr0qkZAzV9qfOk3PwIEvPmx52QnAgRQTmAp60JA7YKBv1zWgKJOBPCXE1jKQoBvULIDEHAlwNcvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBBAaehElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwEsHtUgQACloRNdNhBQu2DgLzZXiQD+UlKLXtUI4C81xehXiQD+UlKLXtUIqPlLjS/95keAgDc/9pzsRIAAygksZV0IqF0w8JfLGlDUiQD+cgJLWQjwDUp2AAKuBPj65YqX4sEJqPkruFyMXwEBAt4KYPGoBgECKA2d6LKBgNoFA3+xuUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AgS8+bHnZCcCBFBOYCnrQkDtgoG/XNaAok4E8JcTWMpCgG9QsgMQcCXA1y9XvBQPTkDNX8HlYvwKCBDwVgCLRzUIEEBp6ESXDQTULhj4i81VIoC/lNT6//buO06KIm3g+GM6T0URPRRPSYLkLCCiSBDMBAVBjJgBkWDAgFkxoAKioCiSBDEBIqiISM5ZQMnmnMBw5lffz1Nz09c7O6Fnd2p3avpX/yg73dVV36rq6Xm6upqyuibA+HKtxSivSwKML5dai7K6JuDa+HLNl/IWnwAB3uKz58iWBAhAWYIlWysCrl1gML6sdAMytSTA+LIES7YIcIOSPoCAVQG+v6zyknnIBVwbXyFvLqqfhgAB3jSw2NQNAQJQbrQTpYwIuHaBwfii57okwPhyqbUoq2sCjC/XWozyuiTA+HKptSirawKujS/XfClv8QkQ4C0+e45sSYAAlCVYsrUi4NoFBuPLSjcgU0sCjC9LsGSLADco6QMIWBXg+8sqL5mHXMC18RXy5qL6aQgQ4E0Di03dECAA5UY7UcqIgGsXGIwveq5LAowvl1qLsromwPhyrcUor0sCjC+XWouyuibg2vhyzZfyFp8AAd7is+fIlgQIQFmCJVsrAq5dYDC+rHQDMrUkwPiyBEu2CHCDkj6AgFUBvr+s8pJ5yAVcG18hby6qn4YAAd40sNjUDQECUG60E6WMCLh2gcH4oue6JMD4cqm1KKtrAowv11qM8rokwPhyqbUoq2sCro0v13wpb/EJEOAtPnuObEmAAJQlWLK1IuDaBQbjy0o3IFNLAowvS7BkiwA3KOkDCFgV4PvLKi+Zh1zAtfEV8uai+mkIEOBNA4tN3RAgAOVGO1HKiIBrFxiML3quSwKML5dai7K6JsD4cq3FKK9LAowvl1qLsrom4Nr4cs2X8hafAAHe4rPnyJYECEBZgiVbKwKuXWAwvqx0AzK1JMD4sgRLtghwg5I+gIBVAb6/rPKSecgFXBtfIW8uqp+GAAHeNLDY1A0BAlButBOljAi4doHB+KLnuiTA+HKptSirawKML9dajPK6JMD4cqm1KKtrAq6NL9d8KW/xCRDgLT57jmxJgACUJViytSLg2gUG48tKNyBTSwKML0uwZIsANyjpAwhYFeD7yyovmYdcwLXxFfLmovppCBDgTQOLTd0QIADlRjtRyoiAaxcYjC96rksCjC+XWouyuibA+HKtxSivSwKML5dai7K6JuDa+HLNl/IWnwAB3uKz58iWBAhAWYIlWysCrl1gML6sdAMytSTA+LIES7YIcIOSPoCAVQG+v6zyknnIBVwbXyFvLqqfhgAB3jSw2NQNAQJQbrQTpYwIuHaBwfii57okwPhyqbUoq2sCjC/XWozyuiTA+HKptSirawKujS/XfClv8QkQ4C0+e45sSYAAlCVYsrUisNtun0rJksfIbrv9bCX/TGfK+Mq0KPnZFGB82dQl77ALuPYDme+vsPdYt+rP+HKrvSitWwKujS+3dCltcQoQ4C1OfY5tRYALeCusZGpJgACUJViyRcDMkOcGCh0BAVsCjC9bsuSLAE940QcQsClAgNemLnkXpwAB3uLU59hWBAjwWmElU0sC/EC2BEu2CBDgpQ8gYFWA7y+rvGQecgHGV8g7ANW3KkCA1yovmRejAAHeYsTn0HYECPDacSVXOwJcwNtxJVcEVIDxRT9AwJ4A48ueLTkjwPiiDyBgT8C18WVPgpxzTYAAb661KPURArx0ApcEXLvAYHy51LsoK+OLPoCAPQHGlz1bckaA8UUfQMCegGvjy54EOeeaAAHeXGtR6kOAlz7glIBrFxgEeJ3qXqEvLOMr9F0AAIsCjC+LuGQdegHGV+i7AAAWBVwbXxYpyDrHBAjw5liDUh0hwEsncErAtQsMArxOda/QF5bxFfouAIBFAcaXRVyyDr0A4yv0XQAAiwKujS+LFGSdYwIEeHOsQakOAV76gFsCrl1gEOB1q3+FvbSMr7D3AOpvU4DxZVOXvMMuwPgKew+g/jYFXBtfNi3IO7cECPDmVntSGyHASydwS8C1CwwCvG71r7CXlvEV9h5A/W0KML5s6pJ32AUYX2HvAdTfpoBr48umBXnnlgAB3txqT2pDgJc+4JiAaxcYBHgd62AhLy7jK+QdgOpbFWB8WeUl85ALML5C3gGovlUB18aXVQwyzykBArw51ZxURgUIQNEPXBJw7QKD8eVS76KsjC/6AAL2BBhf9mzJGQHGF30AAXsCro0vexLknGsCBHhzrUWpDwFe+oBTAq5dYBDgdap7hb6wjK/QdwEALAowviziknXoBRhfoe8CAFgUcG18WaQg6xwTIMCbYw1KdZjBSx9wS8C1CwwCvG71r7CXlvEV9h5A/W0KML5s6pJ32AUYX2HvAdTfpoBr48umBXnnlgAB3txqT2rDEg30AccEXLvAIMDrWAcLeXEZXyHvAFTfqgDjyyovmYdcgPEV8g5A9a0KuDa+rGKQeU4JEODNqeakMipAAIp+4JKAaxcYjC+XehdlZXzRBxCwJ8D4smdLzggwvugDCNgTcG182ZMg51wTIMCbay1KfQjw0gecEnDtAoMAr1PdK/SFZXyFvgsAYFGA8WURl6xDL8D4Cn0XAMCigGvjyyIFWeeYAAHeHN9nc+sAACAASURBVGtQqsMMXvqAWwKuXWAQ4HWrf4W9tIyvsPcA6m9TgPFlU5e8wy7A+Ap7D6D+NgVcG182Lcg7twQI8OZWe1IblmigDzgm4NoFBgFexzpYyIvL+Ap5B6D6VgUYX1Z5yTzkAoyvkHcAqm9VwLXxZRWDzHNKgABvTjUnlVEBAlD0A5cEXLvAYHy51LsoK+OLPoCAPQHGlz1bckaA8UUfQMCegGvjy54EOeeaAAHeXGtR6kOAlz7glIBrFxgEeJ3qXqEvLOMr9F0AAIsCjC+LuGQdegHGV+i7AAAWBVwbXxYpyDrHBAjw5liDUh1m8NIH3BJw7QKDAK9b/SvspWV8hb0HUH+bAowvm7rkHXYBxlfYewD1tyng2viyaUHeuSVAgDe32pPasEQDfcAxAdcuMAjwOtbBQl5cxlfIOwDVtyrA+LLKS+YhF2B8hbwDUH2rAq6NL6sYZJ5TAgR4c6o5qYwKEICiH7gk4NoFBuPLpd5FWRlf9AEE7AkwvuzZkjMCjC/6AAL2BFwbX/YkyDnXBAjw5lqLUh8CvPQBpwRcu8AgwOtU9wp9YRlfoe8CAFgUYHxZxCXr0AswvkLfBQCwKODa+LJIQdY5JkCAN8calOowg5c+4JaAaxcYBHjd6l9hLy3jK+w9gPrbFGB82dQl77ALML7C3gOov00B18aXTQvyzi0BAry51Z7UhiUa6AOOCbh2gUGA17EOFvLiMr5C3gGovlUBxpdVXjIPuQDjK+QdgOpbFXBtfFnFIPOcEiDAm1PNSWVUgAAU/cAlAdcuMBhfLvUuysr4og8gYE+A8WXPlpwRYHzRBxCwJ+Da+LInQc65JkCAN9dalPoQ4KUPOCXg2gUGAV6nulfoC8v4Cn0XAMCiAOPLIi5Zh16A8RX6LgCARQHXxpdFCrLOMQECvDnWoFSHGbz0AbcEXLvAIMDrVv8Ke2kZX2HvAdTfpgDjy6YueYddgPEV9h5A/W0KuDa+bFqQd24JEODNrfakNizRQB9wTMC1CwwCvI51sJAXl/EV8g5A9a0KML6s8pJ5yAUYXyHvAFTfqoBr48sqBpnnlAAB3pxqTiqjAgSg6AcuCbh2gcH4cql3UVbGF30AAXsCjC97tuSMAOOLPoCAPQHXxpc9CXLONQECvLnWotSHAC99wCkB1y4wCPA61b1CX1jGV+i7AAAWBRhfFnHJOvQCjK/QdwEALAq4Nr4sUpB1jgkQ4M2xBqU6zOClD7gl4NoFBgFet/pX2EvL+Ap7D6D+NgUYXzZ1yTvsAoyvsPcA6m9TwLXxZdOCvHNLgABvbrUntWGJBvqAYwKuXWAQ4HWsg4W8uIyvkHcAqm9VgPFllZfMQy7A+Ap5B6D6VgVcG19WMcg8pwQI8OZUc1IZFSAART9wScC1CwzGl0u9i7IyvugDCNgTYHzZsyVnBBhf9AEE7Am4Nr7sSZBzrgkQ4M21FqU+BHjpA04JuHaBQYDXqe4V+sIyvkLfBQCwKMD4sohL1qEXYHyFvgsAYFHAtfFlkYKsc0yAAG+ONSjVYQYvfcAtAdcuMAjwutW/wl5axlfYewD1tynA+LKpS95hF2B8hb0HUH+bAq6NL5sW5J1bAgR4c6s9s6Y2pQ46SHZ+912xlIcAVLGwc9ACCrh2gcH4KmBDs1uxCDC+ioWdg4ZEgPEVkoammsUiwPgqFnYOGhIB18ZXSJqFamZAgABvBhDJIiJw/6CH5cTWbaR06UNkt912kz/++EM+//wzGf30UzLm6aeKjIkAVJFRc6AMCLh2gcH4ykCjk0WRCTC+ioyaA4VQgPEVwkanykUmwPgqMmoOFEIB18ZXCJuIKhdQgABvAeHY7X8Cu+++u0ybMVPq1KmbkGXsmKfl9ltvLhI2AlBFwsxBMiTg2gUG4ytDDU82RSLA+CoSZg4SUgHGV0gbnmoXiQDjq0iYOUhIBVwbXyFtJqpdAAECvAVAY5e8Ao8OHynt2ncwf/zpp59k6pSXZN3aNXJC85bStl170QCwpr69rzKf2U4EoGwLk38mBVy7wGB8ZbL1ycu2AOPLtjD5h1mA8RXm1qfutgUYX7aFyT/MAq6NrzC3FXVPT4AAb3pebB1HYOuOj2Tvvfc2SzK0an6cfPTRh95Wp5/RVkY8Mcr8e+uWzdLmxObWDQlAWSfmABkUcO0Cg/GVwcYnK+sCjC/rxBwgxAKMrxA3PlW3LsD4sk7MAUIs4Nr4CnFTUfU0BQjwpgnG5nkFOnbqLIOHPmr+OHXKZOnbu2c+ooVLVki5cuXN3+vXrSHfffutVUYCUFZ5yTzDAq5dYDC+MtwByM6qAOPLKi+Zh1yA8RXyDkD1rQowvqzyknnIBVwbXyFvLqqfhgAB3jSw2DS/wOMjR8lpp7c1H1x+aTeZ9cbr+TZ64MHBck7X88zf+1/XT55/7lmrlASgrPKSeYYFXLvAYHxluAOQnVUBxpdVXjIPuQDjK+QdgOpbFWB8WeUl85ALuDa+Qt5cVD8NAQK8aWCxaX6ByVOnS8NGjc0HlSocLn/++We+jTqc1VEeGTbC/H3YI4Pl4QcfsEpJAMoqL5lnWMC1CwzGV4Y7ANlZFWB8WeUl85ALML5C3gGovlUBxpdVXjIPuYBr4yvkzUX10xAgwJsGFpvmF5g7f7EcWamy+aD8EYfGJWrRopWMmzDJfPbSi8/Ltf16W6UkAGWVl8wzLODaBQbjK8MdgOysCjC+rPKSecgFGF8h7wBU36oA48sqL5mHXMC18RXy5qL6aQgQ4E0Di03zC6xeu1H+Vbq0/PXXX1Kx3GFxierWqy+vzJhpPlu0cIGc1/Vsb7tDK9XPOOuX722VXTtXyd9/xw84Z/yAZIhAIQT0AqNUqaZyyJGRGyXZnhhf2d5ClM8vwPiiPyBgT4DxZc+WnBFgfNEHELAnYHN8fbljrb2CkzMCKQQI8NJFCiWwbsNmKVWqlFmaQZdoiJdq1qwlr73xlvmoSAK8OzbJr79eJn//vV+h6sbOCBSFwG67/Sj77DNWDjmyalEcrtDH+JLxVWhDMig6AcZX0VlzpPAJML7C1+bUuOgEGF9FZ82Rwidgc3wR4A1ff8qmGhPgzabWcLAsi5aulLJly8nff/8tFcqWiVuD45udIBMnvWg+m/7KNOnV8wpvOxszeB1kpMgIIIAAAggggAACCCCAAAIIIOCwAAFehxsvB4pOgDcHGrE4qzD9tVlSp05dU4REa/C2bddeHhvxpNnmySdGyMB77iTAW5yNxrERQAABBBBAAAEEEEAAAQQQQCCjAgR4M8pJZmkKEOBNE4zN8wqMGTdBWp3Yxvzx5NYtZPPmTfmI+t94s1zVq4/5++23DZCxo0fBiAACCCCAAAIIIIAAAggggAACCCCAAAIZECDAmwHEMGdx7fU3SO8+1xiCJx5/TO4beHc+jldnzpZatWqbv59xahvZsGF9mMmoOwIIIIAAAggggAACCCCAAAIIIIAAAhkTIMCbMcpwZrT//vvLhne3yW677SbfffutHF2/lvz1118exhFHlJWFS1bI7rvvbj6vX7dGOKGoNQIIIIAAAggggAACCCCAAAIIIIAAAhYECPBaQA1bltNmzJR69eqbaq9ds1pu7H+tWaqh6XHHy4jHn5JSBx1kPhsxfJg8cN/AsPFQXwQQQAABBBBAAAEEEEAAAQQQQAABBKwJEOC1RhuejI+qUkVemfGG7Lvvvl6l//77bzOrN5o++eRjad2ymfzyyy/hgaGmCCCAAAIIIIAAAggggAACCCCAAAIIWBYgwGsZOCzZH3LIofLKqzPlsMP+nafKGuhdtXKFdO7UIc/SDWFxoZ4FE9hnn324GVAwOvYqRoF//OMfUmL//c1yNK6nPffc01Thzz//dL0qlD+EAvod8uuvv4pegxQk0f8LosY+yQT0+vjzzz8DqZgFSpYsab7X/vOf/xRzSTi8iwL6e/ebb77mN62LjUeZEQiJAAHekDR0UVVzv/32kxYtW0nVatVlxfJlsmTxIr4EY/BPPe0Mufue+wI3yVkdzpCPPvpQEu335//9Kb/8/LN88MH7MvyxYSagHjQ9OnykHHtsU7P5X3//JSe2OF5+/PHHhLvHluHjjz+SM9ufHnd7ndk96bnJ5rNbb7lJXn9tRsJ8L7iwm3Ts1FnKl68gB5YqZdZs1h/mP//8s3z26ScybuxomfDMuDw/1u8eeL+cemr8Y8c70NW9usvSJYuD0rCdRYGTTj5V7r1vUNwjfP/9LjmxZTPvs9h2njHjFbnjtgFx973ksiukZ8+rzWfNmzXJ8wMuXn/5v7/+z4ydn3/5RT75+COZ/srLMv2VaWnV/KpefaTDmWfJ4UeUFT3/afrjjz/MD4B339ko113bN2HAV7efv3CZdzwdy6ec1Ep27dwZtwxz5y+W/fc/QF5//VW5dcCN3jax+aSqwJYtm+W8rmfn2UyfuOjT91o574IL5cADS4kGq8154a+/jOPOnd/JrJmvy6inRuYJUqTTlrHluvCii72XdOpnN9/UX2a98Xqq4vN5FggkOv/+/sfv8p+ffpJ169bK0MEPyaeffhK3tLp+/9z5S8xnsf053g7LVq6VPffYUxYvXiR9ru6RbxMN2txz7yA5oXkLKVGihEQDtDoW9XtEyzFl8ovy7ITxcQM7xdH/y1eoKJOnvOLVJdm5LQuaPOeKEHvenDNntvS/rl/Cemof0XNwiRL7m230mqvTWe0Sbt+yVWvp0+9aqVChohx44IHmqTa9rtn53Xfy/vvvyb0D70p4vab7PvjQkLTM9fujSaPIcmnxUrrnWxs+L7/ymui7OWKTXn/+/vvv8tWXX8rLUyfLc5Mmmn/709577y2Llq6U3eR/Twf6P+94Vjv58IP38+Wt32UPDBosDRs3ljJlDvO+2/QG0OeffSqLFi0036eJbgbdc+8Dcsopp5l8Y68rYg+mL57u2vV88+cO7U4TfXoxmhLVPV5bpWrLtDoGGxuBqtWqycRnX4yrkajv6MZly5aT+wc9LFWqVpWDDjrY+27R30r6G0i/U54ZPzahcmG/KxNd3+l37e+//SZffvmlbNywXkY+MUK++urLtFq7sOeEgl6zplVINkYAgbQFCPCmTcYOCBRO4Iore8qAW28PnEnb006S9evflqD7vbdju5zcpmW+i+PYA+pF75btH5pgajQNe2SwPPzgAwnLFq8MfXtfJVOnvJRvn0aNj5GX/vvjdeDdd8qTI0fk2+bww4+Qcc88K0dVqZrSQ3+o33P3HTJ29Ciz7YuTp0njY5qk3C+6QZ/ePeXlKZGAM6l4BTQQe/sdd8cthM6sqVThcO+z2HbWH2EN69c2AdTYNPC+QXL+BReZP9etXS1PoDRof9Fg0OSXXpBbbr4hKZL+UJz0/EtyZKXKSbfTfnvzjdfLC89Pyred3sx4e8PmPH9/c9ZMueySSB1i0/sffW7Gq948O7tje+/jePkkK9TXX30lDRvU9jbRmzHTps/0AtSpeke3C8+TuXNmm83SacvYfBcvW5Xnx/6GDevljFPbpDo8n2eBQNDxNHXyS9K3z1X5SnzQwQfL2rffNX+P7c/xqvfhJ5Efrps3bZKT27TIs0m3Sy4z5xP/d1kiIr1hUbHcYXk+Lq7+P2ToY3JWp//daNGAU9XK5bOgdcNRhNjzpn63NKhXM+ENuSu7XyU333Kbh/P9999LnZpV8mHpzYXhjz8ppwS4AT3p2QnmvRWxSW96a2Ax3VT+iEMT7pLu+daGz8ZN20Vv7qRKGjw7pU3LPAFS3U/3T5Tatz1V1q1dk+djfRfIk6PGpjymBt31puc772zMl71ex+r1rKbY64rYjZ96eqzoTU9Np518Yp78gtY9mmeytkzlx+f5BY5tepw898KUuDTtzjhF3l63Nt9nPXpeLf1vvDnld4ve0LzwvC6i54TYVNjvynSu77Zu2SzXX9cv3zhI1B8Ke07QfAtyzUr/RAABuwIEeO36kjsC+QT8QVJ9lPurr75KqtTtwnPNjDn/fjob6eOPPjIXHfpI+GFlDvNeZqeZaZC3ZfPjkuYbL1irx0k2AyTePjt37pR6tavlO1aqAK/eTZ85a6534aQ/vFevWikb1r8tX3zxhdSrX1+qV68hOssp+sN9xvRpclWPK8yx/BdNO7Zvkz/+SP4oef/r+8W9gKOLFr1AuXLlvcBGv2uuNwXQsTBu3Gj54YcfZPSoJ71Cxbs4nj9/rlx43jn5Ch40wKsvg9TA6z777is68++AA0qaGVb+NOetN+XiiyIzcWLTv/5VWnRG4V577WU+ivbd1atXmvHcuPExckyTplKqVClv10eHDZGHBt2fJ6t4F+4aZDiuScO4Mx+DBHg1SPTB+/lnMfkPvOndd7ygm74Ec/HSVV5wV+vy4YcfyKKFC+THH3+Q2rXrypGVKsm//324t656z+6Xyaszppss02lLfxn05s6S5avzeGjdq1epyPIsRT8k0z6if1zqePrtt99kjz32MONIZ7P71+TX2U2xN0wyFeDVYIoGVaJJy7F16xZZuGCeme1eo0ZN00dLH3KIt40/cFJc/V8LEy/gc+Xll8jM119Nuz3YIX2BeOffV2e8Ij27Xx43s3UbNuc5pycK8MYGTfSmhH43bNm8SWrXqStHH90wz41BvYGvN/L96Zgmx8pdd6d+0qvMYYd53116/qxQtkzcshfkfGvDJ9rn9Xtm2dLIDH69vvvnPvtI6dKl83zPfPP113J0/VpefaKz7HUCb8+reovO6NV8Hhn6sNlGrxv0+iGa2rZrL4+N+N+1hN68Xb58qaxcvtx8d+s1qk4SiD6ton46Izv2KbhMB3j1OFs2572xG9toOjPy9FNap9+p2SOhgH7nXHvd/27ct2x1oui40BQvwBt7A+7LL7+QFcuXm7Fcrmw5qd/gaKlXv4F3XaRPOtWvU918F/pTYb8r/eNQj6G/kfQmkrl2LVnSzCqOXovqcfXatt3pJ8u7776TtDdk6pxQkGtWuikCCNgVIMBr15fcEcgn4A+S3n/vPfL4iEcDKaXar81Jp5gfutGX2zU95uiEj8fqAectXCoVKx5pHkv77LNPvQudZk0bmyUh4qXYIHP04khn1j418vE8u6QK8C5cssL88NakgeUuZ58V9/E6Xbfu6bHPSM2atSRRgLd+3Ro5se5poI6QYxtFZ+bpzBmd8RKbohfH0aUCdBaP9tnmzY7N11+CBnjj9Rd9DO+aa/vLmR07eWNoyksvSr++vfKVadLzk0VnBmnatWuXdDqrrWzbujXPdjoOnxw1xpvNozOT9ceqf/kF/4W73rSJjif94dvl7DPzHTdIgHfliuVJHxuOzfSOO++Riy+NBDT0RknrVifEXVZH150bPPRRaXZCc/EHeP35pWpL/7b6yGPXcyMBdA2AVKte3fz/gw/cJ489OjTHennuVcf/ozXeeLrjroFy8SWXmYprYEUD9/6UqQCv/3skXiA5eswGRzeUwUOGScUjK4k/wFtc/V/PH3oeie3/a1avSrjsUe71ouKtUbwApn7P6Kzc2KWqdBmeRx7Ne40TL8Cr51LtU5r0nH/tNb3jPjl0+ZU9ZMAtt3vfNZdf2i3t5Wn0nKxLFmigU1O867CocEHOtzZ8ogHen376SWpWq5SvA1SqfJTMmj3Pewy+RtUj4y6psm79JjOpQYNpVSqVi9uR1r+z1QTBNG3cuEE6d2yfLy89D02b/rp3Larfw3rt7E+ZDvAmqnvxjobwHf3xkaPktNPbmorHBnh1Ysn8hUu98alLxA24qX8+JP2dM37Cc94NzalTJkvf3j3zbFfY70r/OIx3fafXmmd3Pkeu63+jHHpo5AaPjgt9sXmi33K6TWHPCYW5Zg1fb6PGCBStAAHeovXmaAjkmYmbyQCv0vofD7v3nrtk5BPD44rrD4OVa9Z7F76vTn9Fbrgpsq7pSy8+L9f26x13P3+At3ev7uYHj15c6F1lvVj3r2GWLMDr/xGkF7u1axyVcq3m9h3OlN1338NbDiLVRRNdzQ2BVEFBf4BX18nTIK4mnTWoa9z5U2ECvNF8Op3dRR4eMszLdsjgB81aotFUp05dmf7aLPNP/QGvs9eTrVutjwTqo4Ga5s2bIxed39XLy3/hrj8gTj+jnTdD7KTWzfPN8rER4H3jzXlecPXUk1qlnPWhgfBdu3bGrXOqtvS3VfTHt/4Q0bW/NVChSdcs1BnMpOwWCHL+XbVmgzdztlGDOnnWB8xUgDc6JnTWUuWKkdlYyVK1atVl8+ZN3ibF1f8nTnpRjm92gilH61bNvCVSNMCoyzTErj+aql58nr6A//yrgXW9CaBJl9O5/tq+eTLUpw30Bpwub7NfiRImoBMb4NVZde9s3iH//Oc/zb6XdLtA3pod+a6Ily69/Eq57fa7zEeJnoRKtK/Oel26Yo1ZU1aTzvrW2d+JUkHOt5n20bKlCvDqNnPmLRIN9GqK9z2of08V4NXH6nV9fE1BvlM2vLtNDjjgALP9TTdcJ89OfMajJMCb/thyYY9kAd5XZ86WWrUiy1glutEfraNOVFmweLm3xvbxxzbKs7RIYb8rUwV4o+XQmehzFyzxlr3S32V6fZrou6Sw54TCXLO60D8oIwIuCxDgdbn1KLuTAqlm4iaqVJD9/LORxo8bk+dFTP58ddF/XVxf0zV9r5bXXp0um7a+by5QNFhVq3r8dUX9ZdBH2a64soc3Q3HE8GHywH0DvcMkC/CuXrtR/lW6tNlWX2ry/HPPpt2WQS6a0s6UHYpcIFVQ0B/g1bUz/UGj6PrU0UJnIsCreenY0DGiKXa2jT8w8+ILz8l110R+RCZK+kIZ82KY/75gx/8IbWyAVx8NHTosclMm3oxmGwFe/wzIROtpB+0Uqdoymk/DRo1l8tTIEg+z33xDLr34QrPkhc7W16TLxPC2+aDqxbNdkPPv7DkLvPXV9WWcGkSLpkwHePXmot4oTHazJZ5UcfR/PRdse+9j81ht9DF0feFpu/YdTBGTzcQsntbOzaPGnn+jj2zrzQK9YR191Nq/dqder+js9HgB3ou6XSJ3/fcFuvryJQ30pEr+Waa67JAuPxQkPfvcS3Lc8ZGXkeoL21o0OzbhbgU932baRwsYJMAb/Y5PNjs3VYDX76o3VfXmarKk63jfeVfk+jW27QjwBumR7m2TKMDrX+tZb+LrjH4NliZL/vEYe11Y2O/KoAFeLd8+++wjCxev8G6sJppElKlzQkGvWd3rLZQYAbcECPC61V6UNgcEggRq41UzyH5jxk+UVq0i63bFzkLw5xm9ONYfMkcdWdbMvPXfsT6n81mydMnifMWIDfBu27bVvChHZ5PoXWL9URS9W5wswLvjg0/NI3h60aSP4BUkBbloKki+7FO0AqmCgrEB3lNPO0OeePJpU8htW7eYJQWiKVMBXs1PZ2KVKFHCZO0fDxqs1VmsmhI9Phor6J8lqLNTo2/Wjv0BrY8A+gOdehNFH8mLJhsB3nETJkmLFq3MIfSRO53FG+9FIUF6Raq2jOYx9plnpWXLyHIc0Ucj/TOuEr14KEgZ2KZoBIKcf6PfM1oifYzavzZhpgK8/nVRk73sJZFKcfR/XZpEH4/VNObpp+SO228RfdHb7DkLzd9SBeyKpoVz/yix599lSxd7a7aOGT1K7rgt8lRT9PwdnbGrN8PjBXgfGvyIeVRakz5tojfZUyVdpuGK7pFHuoc8/KAMHfK/p0US7XvNdf2lT9/Ii9n0GqpJo3p51p6N3a+g59tM+2i5kgV49Zrw3vsflC7nnGuqoBMPelwZWeYlNqUK8H7w8RfmpqouoVS3VuqX+Gr+etNFZ0HGLilDgDdVL3bz80QB3ubNW8r4ic+ZSi1cMF/OP7dzygrqWu+vz4rcRFi7do10aBt50Z6mwn5XphPg1eP5XwaZ6LskU+eEgl6zpgRlAwQQKJQAAd5C8bEzAukL+IOk+kKknxPcGf7++13S4oSm3gFSBXj1kTadMaXBVn3MUx/NiReoqV27jsx4/U2Tr75ISd8crKljp85mjc3Yv/trGBvg1eDTgw8Plc5dIo+d+wMziQK8+oKq1esibyrWlzmdcFzk7cTpJv9Fk95lT5W6X3GpedsrKbsEUgUFYwO8Wnr/rLsLzu0iCxbMM5XKZIDXf8PDvy5s9Md90EfCtVy6Fu/Jp0SWk9ClTaa9PNX8f7wArwZbNeikKfbiPEiAV/dLNR4+eP89ObFlZPaXviRE1yCMJr3Zoy9pfHvdOlm6dLHMnj0r8PrWqdoyeozoD2n/I866VuLbG7eYH+WJXl6UXT033KVJ9aPVP5sx3ss7MxXg1aWF9IVL0aTjUtfb1Dei601KfdlastlXxdH//Td8jq5XS7755mtTfP+TLf6/h7un2at9vPOv3rDWvqk3I6odVUEqVa7sBd6js+ESBXhffuU18+IlTbFPlySqhX9t31TLLGgerU5sI2PGTTDZ6XXeGae2MU97JEsFPd9m2kfLGA3w6vfMV199aYqt5/y99/6n6MzJeC/UjVe3ZAFe/8ujYm8CJ3PyPx2kT9pElxzLdIA3yHe0tq1OviDZE0gU4NWbJ3oTRVP0BlyqUmgf1psKmrRf65JE0VTY78p0A7y6zvy8BZEXGCaaRJPJc0JBrllTefI5AggUToAAb+H82BuBtAX8QdJkO2uQplKFw71N/Pvpkgb6GNA+/9xHyleoYNby07eJRy+Ox455Wm6/9ea42fvX6e3apaMsWbzIu8iOPjbqn9nrzyRegFdf8KEX7TrzQS9KdbaEvsk4UYD39DPayognRplsg94dj1cR/0VTkEbo07tn3JedBNmXbewJpAoKxgvw6hvGX3jpZVMo/0tRMhng9S9jEl2T0X8Rv/O776RenciLwVIlfxBq1JNPyN133W52ifcDWv/uX4Pwsksu8m5MBA3wpiqPriPZsEFkfTlNsUGy2P31RtT6gJy8IAAAIABJREFUt9eJrkccPV/EO0aqttR9OpzVUR4ZNsLs/tykiXLD9dd4WSV7pD9Vnfi8aAX8519d+/Pbb7+RAw4oKRUqVpR27c+UevXqmwJpkOTii86XuXNm5ylgpgK8munUaa9666fGU9BlG+bOeUsefODeuC+dKcr+r+t86uPjei6JvcHpfzFdsu/wom3p3D1avPOv/8bEsEcGS+PGTaTJsU3NrE59YkP7c6IAr77XQN9voEmv3VLdaNPt/DO39WWTJ7dpkRBcl/vRl+Pq0h6a9F0J+s6EZKkw59tM+2g5owHeVL1KnfW75sLzz4nrmCzA27Zde28m9pw5s+XiC89LdTjz+WtvvGVe5qtJX/gaDZzbCPAGKZD/ZZBBtmeb9AQSBXj9f09nCbmtOz4yLzyMvflf2O/KdAO8qhB9SlJ/k+nSZv6U6XOC5p3uNWt6LcXWCCCQrgAB3nTF2B6BQgr4g6QaaPnyv7MYYrPVAJL/0aAggWG9sLj5xuvNS0ISpehFSLw3+frXkYp3YRMvwKvHuXnAbXJlj6siF8n/fawuUYDX/3hqQR6pjdbLf9GkLzL5+edfkraMBqd2bN9WyNZj90wLpAoKxgvwahn8s+Cis2IzGeC9acCt0r1HL1Pd6IsH9SaG3gTRFDtLI5nLtdffIL37RAKZEyeMN2NUU6IAb9169eWVGZHZ5v7jBAnw6iOpeuMkWdJZTY8MjTwiHk06XnUc16lbz3uDebw85rz1pgnYxUup2lL38c+M9i9XoZ/510FM54d5pvsk+aUWCHKDTb/D9AmReDMMMxng1dKee94FcvkV3UVnL2nwNF7SoNF9A++O+/LRour/+qbzq3v3M8WLXR/R/3RLOjeQUrcWW8QTSHT+jS7Po9dTumyA9if/OwYSBXj9S5IEDc7puuO6LI+mZEtz6HfP8pXrzOzi2O+RZK1bmPNtpn20nNEArwae/MuA7bHHHubldYceeqgXJNftP/roQ2nWtHG+KiYL8PqvMYPMio5mrk+26RNumvS8pU+4acp0gFfr/uqMyBr0iZLeHOjbO7J0B8mOQKIAr3/5Av8TV6lKsWX7h+YFi7FB1cJ+VxYkwBudoavfef73PmgdbJwT0r1mTWXJ5wggUDgBAryF82NvBNIWSLXUQqIMgwR4U72cxb9+qb7w5s47bs1zuGOPPU5uvPkW87d4s0kSBXh15rD+KNJ16fSCQl+SVLZcOXNhrGng3XfKkyMjs/b8M1a2b9vqPSqeLmSqx57SzY/ti0cgVVAwUYC3WrXq8sbsyNIM0WBIJgO8/pep6Uyuhx98wBwreuGc7AUwsZJDh42QM8/qaP6sa5bp24c1JfoBrZ9NmzHTmwUZvdkSJMCry6bo2r2FSfoj9/hmzaVR48ZSo2Yt7+Vn0TwTrRWZqi31BSDRlznqLP8LzuuSp5g6My16ztC1vHlEtTCtaHffID9aW7U4PuFNNX+AN0ifjfatVLMcNRDWpElTadK0qTRqdIx5yVupUqXyYPhn58VTstX/9VjLV62TMmUiM6o6d+qQZ11i/dvY8c965U1VTrstnPu5Jzr/9r3mOul3TeQmnCY9F1WvUtGbSZoowOu/6ajLa73/3o6UiCe2PklGj33GbKcvWNMXrcVL/uUfdAmS00+JvGshWSrs+TbTPlrWIC9Z01m0U195zcyG1OT/zozWN1mA139tENRK812yfLXo8g6a9BH76BIS/gCvPrWj1xuJkv8JudjxG6TuqdqUzzMnkCjA65+w8uiwIfLQoMgLd1Ol6LrPO3fuNEvkRVNhvyvTDfDqUyIb3o1MZtGnr6pWLu+VxdY5QQ+QzjVrKks+RwCBwgkQ4C2cH3sjkLZAJgK8Optk3JjR5tgXX3qZN9NQg6tnd2yf58VM/gL6fySkKni8t5InCvBqXv6F/RcvWmge544X4NVtoxdC+uhsreqVUxUl7ucEeAvElnU7pQoKJgrwakX8P7xuv22AHHVUFTn/gotMHevWria7du6Me5Fdv26NlOvKrlj9thx6aBmz/+WXdpNZb0TWqfX/3b9OXzJY/yPkJ7duIZs3bzKbJwvw+tdRi65JW1QB3ti66E2ZJ0Y+LZWPqmI+il3iIbp9qrbUmYs6gzFo6nN1D3l56pSgm7NdEQr4z7/6Yr7v/hv0GDVmvDcLToP4xzU5Ou4LoPSmoPZnTe+++455uV+i5P/Bqm/t7nhm27Rq2uakU2TII4+ZNT416VjWMR00Zar/l69QURYsWhb0sPLGzNfkissuDrw9G6YnkOj8q31z87YPvACj/6kLPUKiAO+IJ56S08+I3FwLOvOv19V95fobbjL7jHx8uNw78K58lbjjznvk4ksvN3/X4NExDevmuzEQr+aFPd9m2kfLGDTIecllV8jtd9xtqrVg/rx8NwOTBXiTrYearIe8u+U92W+//cwkBf+sRw3AayBeU+tWzWTb1q0Js5n0/GRpetzx5vPYdbSD1j29XszWBRVIFOD1L/ERdAa43rTTm3eaYm9CFva7Mt0Ar7/8sevf2zonaL3TuWYtaJuxHwIIBBMgwBvMia0QyJhAJgK8sY92jhk/UVq1iszo0NkmLU9oKp98EnmUPJp0ZpM+QhRdpzdIhfwzF3X7ZAFe/VxfknTggQearHXW4aCHhpj/98/g1X/r3WX90a4p6MtIYstLgDdIC2b/NqmCgskCvLom4aKlK80jtLrkyLSXp8h5519oKl2YAG/VatXMEhCab+xMUv9NEp0BP3rUk0mRddzp7Hb9ryZ/UDhZgFe3nfDsC9LshOZmvwfuG2gCATp+VyxfZm7kRFO6PwAK0ivKli1nrKPnmHiza1O15eJlq0TbLGjasGG9eYkQKfsEEp1/tZ8vWbZaSh9yiCn0xx9/ZB6xjr6wyF+T6Gx4/zra8WrqfzHolJdelH59I0unpJOu6tVH+t8YWZc+VUA5Xr6Z6P9Dhj4mZ3WKvNQ0SIqdfRVkH7YJLpDs/Btdg10ft9ab0P4X9SUK8PqDJ7p+rL7jIFXyrzves/tl+R7d9wdrdMmIVs2Pi7uOdLzjFPZ8m2kfLWPQIGfDRo1l8tTIMga6xIvOhvWnZAFe3S7aRnre0fOPnoeSJf/xYpdHGXDL7XJF98hyCZd0u0B0SbBE6c235kuVqtXyBYnTqXuqPsPnmREYNXqc6M0/Te3OOMW8mFOTf9kUvUlZu8ZRKQ/ovwkzY/o0uarHFd4+hf2uTPf67rkXpsixTY8zx3/i8cfMskTRZPOcoMcIes2aEpQNEECgUAIEeAvFx84IpC9gI8CrpdC3puodVE06y0NnTvl/lPhn2E57eaqMHRN50Vls0lmLTzz5tPlz7N3fVAHeTmd3kYeHDDP7fvP11/Kv0qXN/8cGeMdNmCT65lVNqX7cR8unj/QeUvoQb/YjAd70+1427pEqKJgswKv18c+u8fe5ggZ49SU58xctM8uNaJr+yjTp1fN/F+sXXNhN7rk3slxDvHWsY411W91HU+wai6kCvFoWnTGsgWZ9yY+u75bpAK++oDG61mCq/hGdQZyo3sna0v9mc325VN/ekTW74yX9gaKP5+qPc300+pdfkq+vnarcfJ55gWTnX53NtGDxcm8GpK61eU7ns/IVYu3b75o1RTWIpi+wStTOOpNPZ/Rp8t/c1LGgL1z0r+WZqKb6g1f7lSb/khBF1f/1uP61XXV5hkRp0IODzdISmvQFdjqLjJR5gWTnXz3/NG/RSr74/DNZv/7tPAdPFOD133DUHZItUaKf+/ukBm/1BbX+azadOT5z1lxvTXT/CzdTaWTifJtpHy1z0ACv/3s2NmCm+aQK8D4z8Xk5oXnkhXVBloCZO3+xHFkp8jRZbFDMf10bXY8/nr+ej3QShd7kivcdGbTuqdqWzzMj4A+Exk408U9WiZ1QE3t0XfZAJ61EX354wbldZMGCyPJhmgr7XZlOgNf/ok7/S6+1HLbPCXqMoNesmWlBckEAgUQCBHjpGwgUsYCtAK8+frpk+RpvZux7O7ZLy+aRu7ia9Ad3+fIVzP/71xeLV/3oD2/9TGc/6IsuNKUK8Oo2/kfYo3nHBnh19u7qde94sxr1B2yPKy8zP/TjJZ19dc11/c0P3eidcQK8RdxxLR2usAHeUgcdJGvWvZNvZnpBArwa7Hls+EjRPDXpEiIN6tYws3j9SV+Ko7M8NOlMLV1LNt4b0zuceZYMeWS4VzadjaqzUqMpVYBXtxv++JNyRtv/zdY1YyyDM3g1WKHBhdtuuTHpcgj+2Wm6fveZ7U/P1yOSteUDDw6Wc7pG3mZ+x+23yJinn0rYo/xBe13/TtfBI2WXQKrzb4OjG8qUl2d4LzzTdad1LU1/8gdhpk6ZHPelQhoAXrx0lXfDxf+IdHSmlb48s1fPK83M3ETJv0zKgw/cJ489OtRsWlT9Xx/b1se3o+eMZLM7/QGltWtWS4d2p2VX4+dIaYKcf+NVNVGAV7cd9tgT0r7DmWY3Xcqm7eknmxvlsUmDt1NeftW7Xot9WkqDRstXvS0lS5Y0u6azFqhun4nzrQ2fIEFOHfMLF6+QEiVKmLpf26+3edGpP6UK8MZeFyRaN17z9N+EjTdjW88zS1es8Z7oifeEnPle8y2lEW/cBql7jgwtJ6qx/p2t3viqUqlcnmVP/O8r0eujS7tdYNbIjk26pMfkqTOkeo0a5qN4Tx0V9rsySIBXf//dNOA27wk2Lcug+++V4Y894hW5qM4JQa5ZneggFBIBhwUI8DrceBTdTQFbAV7V0Bm8+ohY9E5y9KUdeld15ZpIYEmXbtC31ydL0ccTdRv/I7FBArytTmwjY8ZNyJN9bIBXP/Svsab/1nVGdQ26RYsWmIDy8cc3k2OaNJXWbU7ygmn+mRz+i6Yxo0fJTz/9mLROE58ZH/eHlpu9yO1S60wXfWO8pmi/3LZ1i5x7ztny+x+/x107N/bNxH4BnTWuQRF/Shbg1QDPjz/+IAccUFLKHHaYlClTRho2OsZbXkTz0aCuvqws+tieP+9GjY/x1pfWv+sjnY88MljeenOWfP31V9LshBbS9dzzRMdCNC1cMF/OP7dznjIG+QGtN0PWrt/kzeLSDJIFePXFMM8/92zSDvLB++97P5ijwYrouUFn8y5dutise6ipXr0GclWv3qKPsGrSWbVndThDNMirKWhbRn9MaTvq8g7xAuLRQvsflw1yvnJ7NLhZ+lQ/WrVWXc4511umR/+t62SPHf2/J0c0kLN67UbvBoj260eGPizLli4x54dWJ7aW2++8x8xc1xT7Eir/o7T6uc60XLFsqSxevEiWL1siBx10sFni5Kqr+3hLg+hNG13DNDpTsqj6/7PPvSTHHd/M1OOi87vKvHlzEja8ztjf/v4nZszreNGX5MTeZHKz12RXqYOcf+OVOFmAV2f+aiAvuiSPBof0BbOz3pgp699eJ0c3bCSnn95WLrr4Uq/f79q1y8ze9Sf/Wq66VMdTTz4eCC96nZOJ860Nn2iQU/vznbdHXuir/b1kyQPNE1/16tWXuvXqezb6hJder0aXeNHzgn7nzJ670ATnNJ/o9Wz0pWhRKH/ANXp+eHrUSJk3d47suceecmLrNtK9x1XezF3dJl4wWf/+6PCR0q59ZNa9HvO+e++WWTNfl88++9S0ac9evb1l0rSsxx/bKN8yadG6a5/QWcLJ0p9//ClDhzwUqM3ZKLmALsOgbf3ajOnmKSp9OqJ3n35Sv8HRZkftNzrpJTb5l0/Rz/TJx6lTXpLFixZI+QoVpFWrNtK77zXejYhEy4EU9rvSPw51POjvpD323FMOPfRQKVPm31KpcmWpVau2dzNVy6rLiOhyIv5UVOeEINes9FkEELArQIDXri+5I5BPwGaAVw/WslVrE2DVi2ZNukbonnvtJRdeFHlZS7KZDNHC+l8Y4H8RWpAAr+bhXy5C/x0vwKt/v2nArWZWcNB1gceOeVpuvzWyjmKQN9P68fv07ikvT4nMoCIVr4C+MEZ/fMVL+uOncsXIm6z97ZwswBv7iJzulyzAm6r2+iOga+eOSW8IdOzU2cySit5MSZbn3LlvyRWXdssXpAn6A3rgfYO8l8fpcZIFeFPVTT/3vyQt+mKZIPvpNnfdeZs8/dRIb/MgbekP2K5du0Y6tD015eGiP4Z1wyaN6nNzJqVY0W4Q5EerlujOu++VbhdfagqnP4A1uOmfCdW333XS79rrUxZelyhp0qieuREYTf7vqZQZiJiZ6u1OPznPTN+i6P/6XazrDeu5Quuhy46kSv7HhxN9f6bKg8+TCwQ9/8bmkizAq9vWqFFTJk560Sw/kirpDawunc7MFwz0P3GVKg//57r0ja43G12/tjDnWxs+/vN6qnrp91Sb1s3NDVRNOktR90+U/OuoRrfR705dlz96PZxoXz036cuLddZjvKSB+1VrN3ozrpOVXScc3HHbgHybpFN33bn8EYemIuLzAAL+JX5iN0/2YmoNVI6f8JwXCE52KD2v9+x+ucydMzvfZoX9rvSPw1TV1e847ceDHxqUZ9NMXYMFPSekumZNVQ8+RwCBwgkQ4C2cH3sjkLbApZdfKbfdHnlTcjo/3NLZr0fPq+XGmyOzIzR9//0uM0NCL2b0hQEatE2VlixfbdZs0hRdn8pfBn2Tub7RPF7Sx3P1kdhoig0K+ffRWVhPjR4n1avXyDNLMbqNXrBs3LDeBKb9gQH/D+BUddHPg77VOkhebFM4gW6XXCZ33jUwbiaxAd5oO+uMz0oVDk944Ftvu1Muu6K793mdmlXyBIMS9RcdE//3f/8nP/7wg6xcuVzuv2+g6CPfQZI+BqqPmSfquxqMGnDT9WYd33hJZyDprApNz4wfK7fcfEPc7WJf1Ba7pqk/nyDl9s9Y0dn9V3bvKW3bdxBdfzteUiN99FCDB7E2Qdpy5FOj5ZRTI0s69Lm6R9KlIKLHH/rIcDmzYyfzT13OQZd1IGWPgH881atT3QvCxCvh8y9OlSbHNjUf6fhu2KB2nln6uhbpiMefShgQm/XG69K7V4+4a/TWrFlLelzVW1q0bGUCQPGSnjtee3WG3Hzjdfm++4qi/+sj+/rovqY3Zr4mV1wWudmaLPmfhNGnG1q3OiHVLnyepkDQ829sttEAb7yZt9FtNaCoL9U7vW07bzavP5/ffvtNnp0wPuF5bd7CpVKx4pFp1ihyftXHyzNxvrXhkyzIqTdxNVD23XffymPDhuZ7EkUfh9cbMolSohf26vWovldCx3q8QK+2Y5dOHbz3OyTKX2fUPzzkUbMER7x89PtevyPnvPVm3CwI8KbdnTOyww03DZCeV/XOl5cundLn6p6yfNnSpMfRyTH9bxwQ9/tFv1v0d9Al3c7Ps362P8PCflf+/ddf3nVibEH12kzXrte1wseNGyPjxjwd94WmmboGC3pOSHXNmpGGJRMEEEgoQICXzoEAAlkjoAGzY4451vyw+eKLz2XL5k1J11XMmoJTkNALlC1bzgSZ9LHwZcuWyOpVK5MuQ5CNYDqTXpd5qVSpslSoUFG+/fYbWbdubeCAdzbWiTK5I6Czg44+upHUrlPH3JzRdSz15l6y5Tz8tdOZ/FWrVZeqVavJwQf/S957b4dZSiT20e1EIvR/d/qKSyXVft2s2QlSpWo1eWfjRlmyeKH88MMPLlUhZ8pap05dOe74E+Tfhx/uPdUW9EW/UQQN7upNXZ0VWfqQQ+Tdd94x3/dBzzM5g+lQRXRpj2rVq5tlQL775ltZu3Z1oIku/ipq0LJJk6bSsHFj+eTjj0WX3Yq3vrZDLBQVAQRyVIAAb442LNVCAAEEEEAAAQQQQAABBBDIK7Djg0+9p8bO63q26PrzmvTR/H333c9MMiAhgAACCCDgmgABXtdajPIigAACCCCAAAIIIIAAAggUSODpMeOldZuTvX31xYv6yHuJEiXyrXNfoAOwEwIIIIAAAsUgQIC3GNA5JAIIIIAAAggggAACCCCAQNEL6Jq6b741X46sVDnfwWNfZFr0peOICCCAAAIIFEyAAG/B3NgLAQQQQAABBBBAAAEEEEDAUYG27drLyaecLhUqVpQ/fv/dLM3w/KRnZd68OY7WiGIjgAACCIRZgABvmFufuiOAAAIIIIAAAggggAACCCCAAAIIIICA0wIEeJ1uPgqPAAIIIIAAAggggAACCCCAAAIIIIAAAmEWIMAb5tan7ggggAACCCCAAAIIIIAAAggggAACCCDgtAABXqebj8IjgAACCCCAAAIIIIAAAggggAACCCCAQJgFCPCGufWpOwIIIIAAAggggAACCCCAAAIIIIAAAgg4LUCA1+nmo/AIIIAAAggggAACCCCAAAIIIIAAAgggEGYBArxhbn3qjgACCCCAAAIIIIAAAggggAACCCCAAAJOCxDgdbr5KDwCCCCAAAIIIIAAAggggAACCCCAAAIIhFmAAG+YW5+6I4AAAggggAACCCCAAAIIIIAAAggggIDTAgR4nW4+Co8AAggggAACCCCAAAIIIIAAAggggAACYRYgwBvm1qfuCCCAAAIIIIAAAggggAACCCCAAAIIIOC0AAFep5uPwiOAAAIIIIAAAggggAACCCCAAAIIIIBAmAUI8Ia59ak7AggggAACCCCAAAIIIIAAAggggAACCDgtQIDX6eaj8AgggAACCCCAAAIIIIAAAggggAACCCAQZgECvGFufeqOAAIIIIAAAggggAACCCCAAAIIIIAAAk4LEOB1uvkoPAIIIIAAAggggAACCCCAAAIIIIAAAgiEWYAAb5hbn7ojgAACCCCAAAIIIIAAAggggAACCCCAgNMCBHidbj4KjwACCCCAAAIIIIAAAggggAACCCCAAAJhFiDAG+bWp+4IIIAAAggggAACCCCAAAIIIIAAAggg4LQAAV6nm4/CI4AAAggggAACCCCAAAIIIIAAAggggECYBQjwhrn1qTsCCCCAAAIIIIAAAggggAACCCCAAAIIOC1AgNfp5qPwCCCAAAIIIIAAAggggAACCCCAAAIIIBBmAQK8YW596o4AAggggAACCCCAAAIIIIAAAggggAACTgsQ4HW6+Sg8AggggAACCCCAAAIIIIAAAggggAACCIRZgABvmFufuiOAAAIIIIAAAggggAACCCCAAAIIIICA0wIEeJ1uPgqPAAIIIIAAAggggAACCCCAAAIIIIAAAmEWIMAb5tan7ggggAACCCCAAAIIIIAAAggggAACCCDgtAABXqebj8IjgAACCCCAAAJFK7DPPvvIb7/9Jn/99VfRHpijIYAAAggggAACCCCAQFwBArx0DAQQQAABBBBAAIGEAhd1u0RatzlZKlWuLKVLHyL/+Mc/zLa///67/PTjj7Jjx3YZNnSwLFgwD0UEEEAAAQQQQAABBBAoBgECvMWAziERQAABBBBAAIFsF6hU+SgZO36ilCtXPlBRf/zxR3nx+Uly5x23BtrexY2u6tVH+t94syn6iuXL5OyO7V2sBmVGAAEEEEAAAQQQyDEBArw51qBUBwEEEEAAAQQQKKzANdf1l959rpHddtstT1b/+c9/5Ntvv5GSJQ+UAw44IN/nf/zxh1SueERhD5+1+/e95jrpd831pnxr16yWDu1Oy9qyUjAEEEAAAQQQQACB8AgQ4A1PW1NTBBBAAAEEEEAgpUCdOnVl+muz8mw3dcpkueH6fmbt3WjS4G/devXlhhsHSNPjjjd/JsCbkpcNEEAAAQQQQAABBBDIuAAB3oyTkiECCCCAAAIIIOCuwLKVa+Www/7tBWwv7XaBzJ8/N2mFjm92gjw24kkpUaJEoBm8u+++e1a9pC1oeZjB626/puQIIIAAAggggEAuCxDgzeXWpW4IIIAAAggggEAaAv41ZnW3B+4bKCOGDwuUg87o1ZexvTlrZr7tdR3fBx4cLEcdVUUO/te/RAOqP//8s3z6yceis4OHP/ZIwmNMmzFT9txzT/l+1y4595xOCbcb/viTUqHikebz88/tLDu/+87bVgPWo8aMN//evm2b9Lm6h5x62hnSvWcvqVSpsuy///4m4Lxr506ZNGmCDLr/3jzH2W+//eSFydPk34f9Ww46+GDz2a+//irbt2/Ls90333wtF53f1fytbbv20r3n1eb/X546WZ4a+bh5Qd3Jp5wqrVq1kcpVqsjvv/0mEyeMk0suu9Jb7qJ3rx6yIyZf/0E0Dy3LXnvtZf58XtezTblJCCCAAAIIIIAAAuEVIMAb3ran5ggggAACCCCAQB6B5avWSZkyh5m/ffftt1K/bo1CC11wYTe56577TFA3Udq8aZN07tRevv/++3ybfPjJl+ZvGoCtWC5Stnhp46btJlCrqXWrZrJt61Zvs3r1G8i06a+bf+s6wlu3bJb6DY5OmNe6dWul/RmneJ+ridqkSv4lKu68+17pdvGlZpcF8+fJxAnjZfDQR0WDxf408/VX5ZgmTaVUqVLmz2/NniWXdLsg4aH8s4i1LjWqRoLaJAQQQAABBBBAAIHwChDgDW/bU3MEEEAAAQQQQCCPwLb3PjazTDXde89dMvKJ4YUS6nru+XL/oIe9PDRI++WXX8j3u76XI8qWNUs6RNM3X38tR9evle94mQ7wxh5Ay/Tnn3969Y5+3qvnFTL9lWnmn6UOOkhWrdkge+yxR54Xy+l+/vTjjz9KvdrVzJ/8AV49RqIAtwZ4t27dYl5qp0nzrFq5vPlvvLRu/SZTHk3PjB8rt9x8Q6HaiJ0RQAABBBBAAAEE3BcgwOt+G1IDBBBAAAEEEECg0AI6+1VnwUZTxzPbyqqVKwqcrwY0Nb/ojNXPP/9MOrQ9Tb744nMvz779rhOdkarLO2i6/9575PERj+Y5pq0A78oVy+WB+weK/ldT7dp15KWp0+Wf//yn+fd7O7ZLy+bH5SlLOmvw+gO80Ux0hu+2bVtl+dIl8s0330jlo6rIwgU0HXaQAAAS8klEQVTzZMb0afLulvfMUhSaHhp0vzw6bEg+e13reOKkF83f//77b6lTs4r88MMPBW4jdkQAAQQQQAABBBDIDQECvLnRjtQCAQQQQAABBBAolECLFq1k3IRJXh5HHVlWfv/99wLnecNNA6TnVb3N/jobtVb1yvLLL7/ky++hwY/I2Z3PMX//7bffpEqlcnm2yXSAV8ty8YXnyYIF8/KVpdfVfeX6G24yf9fZuFpmfypMgHfJ4kVyxWXdTL7x0pjxE6VVq9bmo0SzmXU94nr16pttli1dIl3OPrPA7cOOCCCAAAIIIIAAArkjQIA3d9qSmiCAAAIIIIAAAgUWuLp3P7mu/41mf/9asgXN8LU33pKaNSNLLkx7ear07tU9blYHHHCAvL1xi7eEQYsTmsr77+3wts10gHfXrl1St1bVuGU55JBDZeWa9eYznSFboWyZPNsVNMCrwd2uXTompTyqShWZPWeht02ns9p5s4v1j/pytzXr3vFmO59xahvZsCFSVhICCCCAAAIIIIBAuAUI8Ia7/ak9AggggAACCCBgBDp26mxeApYouJku09q33zVBSU19ru4hL0+dkjALXd+29CGHmM+v6Xu1TH7pBW/bogzw6kGjx9P/L3/EoXnKXNAAr75k7YLzuqQkXLB4uZQvX8Fst3rVSjmrwxnePoMeGiJdzjnX/PvTTz+RpsckfklcygOxAQIIIIAAAggggEBOCRDgzanmpDIIIIAAAggggEDBBI44oqwsXrbK2/nk1i1k8+ZNBctMRHZ88Km3pmyqvN54c55Uq17dHGvM00/JHbff4h23qAO8H3z8hTdLtqgDvJ27dJUHHx5q6q4ziHWm8ffff2/+vWX7h976wANu6i8TnhlX4LZhRwQQQAABBBBAAIHcEiDAm1vtSW0QQAABBBBAAIECC7z/0efeUgm33XKTjBs7usB5+QOlxzVpKJ988nHCvGbOmivVa9Qwn0+cMF5uvvH6UAZ4tdKbtr4v++67r6n/+HFj5NYBN0rXc8+X+wc9bP7266+/StXK5QvcLuyIAAIIIIAAAgggkHsCBHhzr02pEQIIIIAAAgggUCCBdRs2S6lSpcy+a1avkjPbn16gfHSndzbvkBIlSpj9u114nsydMzthXkuWr5bDDz/CfD7w7jvlyZEjvG2jM3jjrYnrz3Djpu2y//77mz+1btVMtm3d6n1cr34DmTb9dfPvZGvw6ufFOYNXj6+BXA3oavrpp5+kZrVKsnDJCilXLhLUnfTsBLmx/7UFbhd2RAABBBBAAAEEEMg9AQK8udem1AgBBBBAAAEEECiQwIuTp0njY5p4+15wbhdZsGBegfKat3CpVKx4pNl3yOAHZejghxLm419+oHOnDrJ82VJv22Rr4vozLOoA78aNG+T0U1onrNOdd98r3S6+1HwedA1e3bbUQQeJrl+82267mX0HPzRIrrmuv/l/DXLXq1Nddu3cWaA2YScEEEAAAQQQQACB3BQgwJub7UqtEEAAAQQQQACBtAUOO+zforNpd999d7Pvzu++k+OObSj/+c9/kua15557ykODh0nrNidJreqVzbZjxk+UVq0iAVDNRwOT8ZJ/+QH9vEqlcvLbb795m25//xPZa6+9zL87ndVOVq5Yni8bDYa+u+U9b2kDWzN4L7zoYrl74P3m+B9//JEcf2yjhC4FDfBqhi+/8prUb5D/JWqrVq6Qjme2Tbtd2QEBBBBAAAEEEEAgtwUI8OZ2+1I7BBBAAAEEEEAgLYGbBtwq3Xv08vbRNV/79r5KXn9tRtx82px0igwdNtwsx/DHH39I5YqRpRYqVT5K3pq70JuJOvLx4XLvwLvy5KHLMrwxe563tMKSxYuka5eOebbR2awHHXyw+dvaNaulQ7vT8nzeslVrc/wDDzzQ+7utAG+DoxvK1GmvmuPobNrGR9eVr776Mq5LYQK8xzY9Tp57YUq+fHXJDF06g4QAAggggAACCCCAgF+AAC/9AQEEEEAAAQQQQCCPwIrVb8uhh5bJ87cvv/xCdmzfLls2b5LDjzhCqlarLmXKHCZ77723t50/wKt/HDV6nGgAOJp0WYNXXp4q3377jZmh2uWcc73ZuX/99Zc0alBHvvnm6zzHfWzEk9K2XXvvb/qytrVr1kjJkiWldu06ZkmD2GQrwKt13bztA2+Gs85s1sD3jz/8IBWOPFLKHlFWTmzZzBSnMAFe3X/12o3yr9Klvap9/vln0qRRfXoqAggggAACCCCAAAL5BAjw0ikQQAABBBBAAAEE8gj84x//MEsutGvfwZuBG4Ro29Yt0rrVCd6mBxxwgLw6c7b3grBEeWhw947bBsi4saPzbbLffvvJ2xu3eIHgeHn8+eefostERJOtAK/mP+ihISYwHS/5A9yFDfD2urqvXH/DTd5hbr9tgIwdPSpIM7ANAggggAACCCCAQMgECPCGrMGpLgIIIIAAAgggEFSgRo2aMvzxJ6Vc+Qp5Aqj+/XW9XF0bVl+kFm99XN1W16294MJucYPFusTBued0km1btyYsVs2atWTCsy94SzX4N9ywYb1cctH58ta8RaIBZU0tTmgq77+3w9tM93/tjbfMv5OtB6yfv//R52aGri7BUKFs3lnM+rl+9uDDQ6Vjp8756vPzzz9L9SoVzXFuve1OueyK7ub/58yZLRdfeF5QdrPd+RdcJAPvG2T+X42rVi5vykRCAAEEEEAAAQQQQCBWgAAvfQIBBBBAAAEEEEAgpcCBpUpJo0bHSJ26deXPP/4UXSph1aqV8uEH76fcN7pBnTp15YTmLc3yChs3rpf58+fJrp07A+2vL1Jr2KixNG16vOisXj32/Hlz8ryQLVBGGdpIl2vQNXmr16gpP3z/vWzbtlXeXrc2Q7mLedmdrlGs6cUXnpPrrumTsbzJCAEEEEAAAQQQQCC3BAjw5lZ7UhsEEEAAAQQQQAABxwUaNT5GXpryiqmFztptUK+mfPftt47XiuIjgAACCCCAAAII2BIgwGtLlnwRQAABBBBAAAEEECiAwPTXZonOdta0ds1q6dDutALkwi4IIIAAAggggAACYREgwBuWlqaeCCCAAAIIIIAAAlkvoMsy6PIM0dTprHYJ1zbO+spQQAQQQAABBBBAAIEiESDAWyTMHAQBBBBAAAEEEEAAgdQCTz09Vk46+VSzob6ArlGDOql3YgsEEEAAAQQQQACBUAsQ4A1181N5BBBAAAEEEEAAgWwSGDV6nFSoUNEU6fERj8nkl17IpuJRFgQQQAABBBBAAIEsFCDAm4WNQpEQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgAgR4gyixDQIIIIAAAggggAACCCCAAAIIIIAAAgggkIUCBHizsFEoEgIIIIAAAggggAACCCCAAAIIIIAAAgggEESAAG8QJbZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUIAAbxY2CkVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCCBDgDaLENggggAACCCCAAAIIIIAAAggggAACCCCAQBYKEODNwkahSAgggAACCCCAAAIIIIAAAggggAACCCCAQBABArxBlNgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIQgECvFnYKBQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIIkCAN4gS2yCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkoQIA3CxuFIiGAAAIIIIAAAggggAACCCCAAAIIIIAAAkEECPAGUWIbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCwUI8GZho1AkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgiAAB3iBKbIMAAggggAACCCCAAAIIIIAAAggggAACCGShAAHeLGwUioQAAggggAACCCCAAAIIIIAAAggggAACCAQRIMAbRIltEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLBQgwJuFjUKREEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIAIEeIMosQ0CCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAgR4s7BRKBICCCCAAAIIIIAAAggggAACCCCAAAIIIBBEgABvECW2QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEslCAAG8WNgpFQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEgggQ4A2ixDYIIIAAAggggAACCCCAAAIIIIAAAggggEAWChDgzcJGoUgIIIAAAggggAACCCCAAAIIIIAAAggggEAQAQK8QZTYBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEIBArxZ2CgUCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCJAgDeIEtsggAACCCCAAAIIIIAAAggggAACCCCAAAJZKECANwsbhSIhgAACCCCAAAIIIIAAAggggAACCCCAAAJBBAjwBlFiGwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAsFCPBmYaNQJAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIgAAd4gSmyDAAIIIIAAAggggAACCCCAAAIIIIAAAghkoQAB3ixsFIqEAAIIIIAAAggggAACCCCAAAIIIIAAAggEESDAG0SJbRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSwUIMCbhY1CkRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSACBHiDKLENAggggAACCCCAAAIIIIAAAggggAACCCCQhQIEeLOwUSgSAggggAACCCCAAAIIIIAAAggggAACCCAQRIAAbxAltkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJQgABvFjYKRUIAAQQQQAABBBBAAAEEEEAAAQQQQAABBIIIEOANosQ2CCCAAAIIIIAAAggggAACCCCAAAIIIIBAFgoQ4M3CRqFICCCAAAIIIIAAAggggAACCCCAAAIIIIBAEAECvEGU2AYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhCAQK8WdgoFAkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgiQIA3iBLbIIAAAggggAACCCCAAAIIIIAAAggggAACWShAgDcLG4UiIYAAAggggAACCCCAAAIIIIAAAggggAACQQQI8AZRYhsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCALBQjwZmGjUCQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCIAAHeIEpsgwACCCCAAAIIIIAAAggggAACCCCAAAIIZKEAAd4sbBSKhAACCCCAAAIIIIAAAggggAACCCCAAAIIBBEgwBtEiW0QQAABBBBAAAEEEEAAAQQQQAABBBBAAIEsFCDAm4WNQpEQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgAgR4gyixDQIIIIAAAggggAACCCCAAAIIIIAAAgggkIUCBHizsFEoEgIIIIAAAggggAACCCCAAAIIIIAAAgggEESAAG8QJbZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUIAAbxY2CkVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCCBDgDaLENggggAACCCCAAAIIIIAAAggggAACCCCAQBYKEODNwkahSAgggAACCCCAAAIIIIAAAggggAACCCCAQBABArxBlNgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIQgECvFnYKBQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIIkCAN4gS2yCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkoQIA3CxuFIiGAAAIIIIAAAggggAACCCCAAAIIIIAAAkEECPAGUWIbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCwUI8GZho1AkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgiAAB3iBKbIMAAggggAACCCCAAAIIIIAAAggggAACCGShAAHeLGwUioQAAggggAACCCCAAAIIIIAAAggggAACCAQRIMAbRIltEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLBQgwJuFjUKREEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIAIEeIMosQ0CCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAgR4s7BRKBICCCCAAAIIIIAAAggggAACCCCAAAIIIBBEgABvECW2QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEslCAAG8WNgpFQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEgggQ4A2ixDYIIIAAAggggAACCCCAAAIIIIAAAggggEAWChDgzcJGoUgIIIAAAggggAACCCCAAAIIIIAAAggggEAQAQK8QZTYBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEIBArxZ2CgUCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCJAgDeIEtsggAACCCCAAAIIIIAAAggggAACCCCAAAJZKPD/mPLQmOuKNKgAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/markdown": [
+       "AI-generated follow-up questions:\n",
+       "\n",
+       "* What are the total sales for each country in descending order?\n",
+       "* Which country has the highest number of customers?\n",
+       "* What are the total sales for each customer in descending order?\n",
+       "* Which customers in the United States have the highest total sales?\n",
+       "* What are the total sales and number of orders for each customer in each country?\n",
+       "* What are the total sales for customers in Europe?\n",
+       "* What are the top 10 countries with the highest total order amount?\n",
+       "* Which country has the highest number of failed orders?\n",
+       "* Which customers have the highest total sales?\n",
+       "* \n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Markdown object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vn.ask(\"Which 5 countries have the highest sales?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "with ranked_customers as (SELECT c.c_name as customer_name,\n",
+      "                                 r.r_name as region_name,\n",
+      "                                 row_number() OVER (PARTITION BY r.r_name\n",
+      "                                                    ORDER BY sum(l.l_quantity * l.l_extendedprice) desc) as rank\n",
+      "                          FROM   snowflake_sample_data.tpch_sf1.customer c join snowflake_sample_data.tpch_sf1.orders o\n",
+      "                                  ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l\n",
+      "                                  ON o.o_orderkey = l.l_orderkey join snowflake_sample_data.tpch_sf1.nation n\n",
+      "                                  ON c.c_nationkey = n.n_nationkey join snowflake_sample_data.tpch_sf1.region r\n",
+      "                                  ON n.n_regionkey = r.r_regionkey\n",
+      "                          GROUP BY customer_name, region_name)\n",
+      "SELECT region_name,\n",
+      "       customer_name\n",
+      "FROM   ranked_customers\n",
+      "WHERE  rank <= 2;\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>REGION_NAME</th>\n",
+       "      <th>CUSTOMER_NAME</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>ASIA</td>\n",
+       "      <td>Customer#000102022</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>ASIA</td>\n",
+       "      <td>Customer#000148750</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>AMERICA</td>\n",
+       "      <td>Customer#000095257</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>AMERICA</td>\n",
+       "      <td>Customer#000091630</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>EUROPE</td>\n",
+       "      <td>Customer#000028180</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>EUROPE</td>\n",
+       "      <td>Customer#000053809</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>MIDDLE EAST</td>\n",
+       "      <td>Customer#000143500</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>MIDDLE EAST</td>\n",
+       "      <td>Customer#000103834</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>AFRICA</td>\n",
+       "      <td>Customer#000131113</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>AFRICA</td>\n",
+       "      <td>Customer#000134380</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   REGION_NAME       CUSTOMER_NAME\n",
+       "0         ASIA  Customer#000102022\n",
+       "1         ASIA  Customer#000148750\n",
+       "2      AMERICA  Customer#000095257\n",
+       "3      AMERICA  Customer#000091630\n",
+       "4       EUROPE  Customer#000028180\n",
+       "5       EUROPE  Customer#000053809\n",
+       "6  MIDDLE EAST  Customer#000143500\n",
+       "7  MIDDLE EAST  Customer#000103834\n",
+       "8       AFRICA  Customer#000131113\n",
+       "9       AFRICA  Customer#000134380"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdebyM5f/H8Q+JlF22rMe+Z9/3ZKkQkexLSJQobSiVVJasUZJs2couspN9y87h2LeoSBItfPk9Prff3GbmzH7PmDPnvK7H4/v4Zuba7ud1z/zxPtdcd6K0adPeFgoCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxAkkIuCNuDVjwggggAACCCCAAAIIIIAAAggggAACCCCAgCFAwMuNgAACCCCAAAIIIIAAAggggAACCCCAAAIIRKgAAW+ELhzTRgABBBBAAAEEEEAAAQQQQAABBBBAAAEECHi5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQgVIOCN0IVj2ggggAACCCCAAAIIIIAAAggggAACCCCAAAEv9wACCCCAAAIIIIAAAggggAACCCCAAAIIIBChAgS8EbpwTBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEECDg5R5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiVICAN0IXjmkjgAACCCCAAAIIIIAAAggggAACCCCAAAIEvNwDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhAoQ8EbowjFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJd7AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFABAt4IXTimjQACCCCAAAIIIIAAAggggAACCCCAAAIIEPByDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAhEqQMAboQvHtBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJe7gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBCBQh4I3ThmDYCCCCAAAIIIIAAAggggAACCCCAAAIIIEDAyz2AAAIIIIAAAggggAACCCCAAAIIIIAAAghEqAABb4QuHNNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIeLkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCBUg4I3QhWPaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAS/3AAIIIIAAAggggAACCCCAAAIIIIAAAgggEKECBLwRunBMGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlHkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCJUgIA3QheOaSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgS83AMIIIAAAggggAACCCCAAAIIIIAAAggggECEChDwRujCMW0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQICAl3sAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIUAEC3ghdOKaNAAIIIIAAAggggAACCCCAAAIIIIAAAggQ8HIPIIAAAggggAACCCCAAAIIIIAAAggggAACESpAwBuhC8e0EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABAl7uAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEIFCHgjdOGYNgIIIIAAAggggAACCCCAAAIIIIAAAgggQMDLPYAAAggggAACCCCAAAIIIIAAAggggAACCESoAAFvhC4c00YAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQcQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEIFSDgjdCFY9oIIIAAAggggAACCCCAAAIIIIAAAggggAABL/cAAggggAACCCCAAAIIIIAAAggggAACCCAQoQIEvBG6cEwbAQQQQAABBBBAAAEEEEAAAQQQQAABBBAg4OUeQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEIlSAgDdCF45pI4AAAggggAACCCCAAAIIIIAAAggggAACBLzcAwgggAACCCCAAAIIIIAAAggggAACCCCAQIQKEPBG6MIxbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgICXewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhQAQLeCF04po0AAggggAACCCCAAAIIIIAAAggggAACCBDwcg8ggAACCCCAAAIIIIAAAggggAACCCCAAAIRKkDAG6ELx7QRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXu4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgQgUIeCN04Zg2AggggAACCCCAAAIIIIAAAggggAACCCBAwMs9gAACCCCAAAIIIIAAAggggAACCCCAAAIIRKgAAW+ELhzTRgABBBBAAAEEEEAAAQQQQAABBBBAAAEECHi5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQgVIOCN0IVj2ggggAACCCCAAAIIIIAAAggggAACCCCAAAEv9wACCCCAAAIIIIAAAggggAACCCCAAAIIIBChAgS8EbpwTBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEECDg5R5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiVICAN0IXjmkjgAACCCCAAAIIIIAAAggggAACCCCAAAIEvNwDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhAoQ8EbowjFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJd7AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFABAt4IXTimjQACCCCAAAIIIIAAAggggAACCCCAAAIIEPByDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAhEqQMAboQvHtBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJe7gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBCBQh4I3ThmDYCCCCAAAIIIIAAAggggAACCCCAAAIIIEDAyz2AAAIIIIAAAggggAACCCCAAAIIIIAAAghEqAABb4QuHNNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIeLkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCBUg4I3QhWPaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAS/3AAIIIIAAAggggAACCCCAAAIIIIAAAgggEKECBLwRunBMGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlHkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCJUgIA3QheOaSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgS8Lu6BRIkSSaFChYN6d9y6dUsOHYoOap9xubPUqVNLteo1JH+BgpI3bz7JniOn3L59W06eOCExhw/Jli2bZPu2rSG5hIcfziAZM2Z02/f/bv1P/vvvhly58of8fumSX3OoV/9JyfLII2abaVMny3///edXH1SO+wJp0qaVJs80kwIFChr3UsqUqeTSpYty/PgxOXz4kOzbu1eOHT0S9y+EGSKAAAIIIIAAAggggAACCCCAQLwXIOB1scSP16knX309OeiL37RJw5CFmkGfbAAdJk2aVHq//pY0atxEMmfO4rWHs2fPSO9XX5HNmzZ6retPhRWrfjSCZV/LX3/9JRs3rJPxX37hdX32Rx+VlClTml0/Vf9x2bdvr69DUc9HgTp160vmzJmN2vpHgXXr1vrY0lq16tVryqfDR0kGD38gsI1w5coVWTB/rgwfNsTvPxRYm6X11o+WKCmPPlrC6OjatWsyZ/a31julBwQQQAABBBBAAAEEEEAAAQQQCIsAAa8Ldg2Xxk+YFPQFie8Bb6XKVWTGrDl+u437fIx8NPADv9u5a7By9TrJl79AQP15mwsBb0Csfjc6ePi4PPTQQ0a7CxfOS/kyd8LIUJXkyZPLF+O/lho1agU0hO5Kb9b0afnj8uWA2t/rRnPnfy+ly5Q1h82ZLdO9ngLjIYAAAggggAACCCCAAAIIIIBAkAQIeF1AEvAGdne5C3j1eApb8JUqdWpJkiRJrAFaNH9GNm3cENjATq2sBLza1TdTJ0vft99wORcC3qAskddO7mXAqzv2Pxs7Th544AGX87p+/bpcv3ZN9NgGV/eurVHd2jUi5hgWAl6vtyAVEEAAAQQQQAABBBBAAAEEEIgYAQJeF0uVLFkyqVmrtsdFbNW6rXHGrK0sW7pE5s6Z7bHNyhXL5ObNmxFzc/g7UfuAV489mPDVOPlmymT59ddfHLp6uUcv6flqb4ew7PLly1KimO/HKniam3PA+0zjBvLbb7+ZTVKlTCkpU6WSXLmipGGjxlK+QkVJnDix+b6eqZsvd3aXQ7Ru006yZstmvjdqxDD5+++//aWivheBexXw6nEbO/ccFD1exL6cO3dW+r79pmzauF7+/fdf862sWbMZn/vH69Q1viPs7xsCXm5rBBBAAAEEEEAAAQQQQAABBBAIhwABb4Dqffv1ly5du5mthw7+REaPGh5gb/GjWYGCBWXqtFkydsxomfT1Vx4vSh9WNm781w51NFQNxgPLnAPe0iWKysWLdwNe54mVLVdevpuzQPTherZSo1olOXH8WPxYmAi8insV8E6ZNlP03F1b0QcBTp0ySd7p+5ZXNd3RO2LUGKlZ8zGjLgGvVzIqIIAAAggggAACCCCAAAIIIIBACAQIeANEDXbAqzsB9UxM3R2YLWt22b17p6xZvUpOnz4V4AzvNtOzTGs9VluqVK0uly5dlOXLlsruXTst92u1gy3bd0mWLI+Y3bRr3ULWrl1ttVvxN+DVATds3i7Zs+cwx36vfz+ZOGG85bnYOtD1rVathtR8rLakTp1GLl38TbZu3SIrli8VDRUDKaHoU+eROnVqqVK1mlSoWFnuu+8+417R4zP0oXj+Ft3xWqp0aSlcpKixe13Pqj148KAcP3bU43Xfi4BXg/3Zcxc6XNIbvXvJrJnT/brMpxs3kY8HfWoEvMH4vPozuK5VqdJlpXjxR40zi48dOyrRBw8YR0V4+mNJsI5oCOX3lu6urv14XalcpaocO3pU5s2dbZzH7K6kTZdO6tSpJ+XKV5Dz53+WbVu2yJYtmwL+o1GRIkWlWvWaUqBAQTl58oRs27ZFdmzfFnB//qyrrW6gn59AxqINAggggAACCCCAAAIIIIBA5AoQ8Aa4dsEKeKNy55Fvps+SbNlcHwmgodgPSxbLy91f8BiIzV+4REqULGVcjZ4ZWrhAbmnZqo281ecdI7BzLnou7uRJX8t77/YNUMB6sznzFkmZsuXMjgYOeF++HDfWcseBBLxr12+WqKjc5tjdunaSxd8vijWXmd/OlQoVKxmva4CWP8/dUNjVxDNmzCTTZnxrPPTNfoewra72sW3rFiPEspX+7/Qx1sZdCUWfOpYenfFSj55uz6LVuX74QX+Pc9N+UqVKJR98+Ik0aNjI7Zm1GmofPnRIpn0zWaZPm2oeXRJz7LRxXIKzlbsQ/Ml6teXAgf0B3TM7du6TDBkzmm3PnDktVSreffBYQJ3+fyOd//FTP5vX8f2ihfJSty4eu5y3YLGULFXaqKPHfhTKH+Wyvvbd/aVX5MXuL0uKFCnc9qkhp4ai474Ya56BvXT5GilYqJDPvp+PHS2DPh4Ya4xQfm/pGeiDhw6XtGnTxhr32rVr8slHA2TK5InGexowvz/gI2narLk8+OCDLr/n9PNkq+9tTTVQnTptpuTOk9fl51Xb6/3WuuWz8vulSy67y5c/v6xYtc58b+yYUTL4k49EH+TXo+erUqlyVcmTJ6+xdnpf6x9Oqla6+z1o5fPj7fp4HwEEEEAAAQQQQAABBBBAIH4KEPAGuK7BCHg7PN9Z3u3/gcM5nu6m89uvv0qzpk+7PTbAOdQ8EnPYCBW9Fd2Z2fK5pgHvIvXWv6f3V6/dIHny5jOrtG/bStasXmmlS6NtIAFvdMwJh4DI3bEOi5eulKJFixnjaDiTK3tmt/Nt/lxLGfjxYLn//vv9uiYNg8Z8NtJlm1D0mS59epkxc44R/PlSNOBq3PAJh7Npbe0KFy4ii5Ys9/gwMucxPnj/XZkwfpzx8onT5336PNj6aNqkoWzfttWXaTvU0RBu5er1Dq81alA/aDvbNXjUa7EV3ZmuO9Q9lRWrfpT8Be6cQ61/2MmTK2us6no++KYtP8nDGTL4fM2bN22U555tYtRfv2mb5MiR0+e2elxFvz5vOtQP1feWfp50rnqWt6ei9To/394423vajO9Ed/p6K199+YUM+KC/x2rtO3aSd95936d798aNG/LWG6/J7O9mxepTd1PrZ8BWNFw+c/q0vP7m27HOetY6esaz7Q9FVj8/3hx4HwEEEEAAAQQQQAABBBBAIH4KEPAGuK5WA94uL3STvu/EDhz++ecf+evqVdHQzf4BTjpNDRVKlygiV65ciTVr51DTn8uaOWOavPn6q/40CUpd3a2pgZWtlCheSC7//rvlvv0NeCdOmSa17B6qp4GhBoeuiq8B7+N16slXX0922YfusNbQ113w6y7gDUWfuqtQHzLmvPtR77HzP/8sSZPeL5kyZzF+/m9fFsyfJz1e6urwmgZtm7ftihW4aSD3xx9/GDsYH3jggVgmVgJefYCe/mze3/Lm232lW/ceZjM9b1nPXQ5WCVXAO3/RD1Ly/3fq28/16tWrxj9dhZ32Ae+6jVslZ85cPl+mc8AbV763bDu6Xe2Kd3VxGpgXLZTX7QMR3+77jnR98SWHpvp9qyGyPgAyY8aMkiFDRoddvdpnmVLFYn1nOQe8+msJ5+9y+4FsAW8wPj8+LywVEUAAAQQQQAABBBBAAAEE4pUAAW+Ay2kl4NWfoO+PPuoQburZnY0bPunwMDD9ifvwkWMcgsBVK5dLx/ZtYs3aXcCr4c6yZT/I0iWLjYC4Xv0npE+//g6Bnf70Xn8OroHFvSqdX3hR+r3znjmc/vRaj5UIRnG2eOXlF+X3S3eD45SpUsrDD2cwdks+1aCRpEmTxhx2186fjHDXnYUvAa+GOXv2HzaOKrAVDe7f6N3TOPbB1rcenaEOzz3XyuGoAFcBbyj61LmN/WK8PPnU3TD7l18uyPPt28i+fXsdlkLn+dbb/czdjRqwVatc3uHM2Q8/GiRt2rY322k49ubrr8naNatEQy4tGhRXrVbD+Km6nnGqxT7g1eMnNPRfuWa9GQbrT+EbPlUv1q1h+3l7IPeMHmliOw5B269csUye79A2kK5ctglFwOt8ZrB+nt/t97Z8v2iB/Pnnn8Y8bGfidu7SVfSoAw1A7QNevedSpUot4ydMlkKFC5tzd3c0hd4PtrN87+X3ln4OFy1aIAvmzTXuufpPPuXx1w4/7dguixcvMo6keDD5g8Y9raGtfQA88euvXB5Jo98F23fuNUNYva++mTrZeNCe/dEgmTNnMY5vsO2yVrwN69dJqxbNHO4B54DX+QbR74LTp07KjZs3JUOGDMb3cqXypSUYn5+g3cB0hAACCCCAAAIIIIAAAgggEFECBLwBLpeVgHfIpyPk2eZ3f669d+8eafBEHZcz0bN59XxY+92etWtVlSMxMQ71nUPNU6dOyotdnnd5Pqk+jOjH9VsczuYdPWq4DB38SYAa/jXTnWpbd+xxCJnHfT5GPhr4gX8duakd6G5mPQuzepUKHoNuXwLejz4ZIq1a3w0L9XiNx2pWcbnzWi+h/hNPyRdfTjCvxlXAG4o+bWeF2kIwfYBV+TIl3K5B23YdZMDAu/fIuh/XSptWzc36y1asdTjmQXdM2naWuupUz4z+eNBQGTZ0sPGwOfsS6oesOZ+5HOz7PxQBrx4f0KnL3V3T3h4Ip8HlkE+Hy6mTJ0UfGmhfAnnI2r343tKd3t1f7GwEp85FH2Y3cvTnDi/rjv/Ondq7PKZD/9igoamt7Nq1U55uUD9Wv85ngevOdN2h7q7oH2/s/yjk/MsDdwGv/nGu79tvGg+Ac1WC+fkJyhcpnSCAAAIIIIAAAggggAACCESMAAFvgEtlJeA9euKsQ2BbrUoFOXXyhNuZOAcrrs7ztA813Z3faT+A8w5a3UFs/6CfAFl8auYcZOgOQQ0D9afKwSiBBrw6tu401V2DPV/p7nIqvgS89uGkdtKi+TOiZx27K74EvKHo0z7k052K1atW9Hgf6vx37ztkPvzq3Lmzxs5DW9l7IMbhjwZ6P+l9FUgJdcD70679DufY6pmuy5f9EMhUXbYJRcCr581WqVrNHE//IKPBdCAlkIA31N9b+tnLnfMRt+eB2x5cZzvuwP7sWlcGuvNX52z7A4YGqxXKlnSoqn9A27hlh/mafk718+qp6MMr9Q8TtqK/qNDw1lacA17dXd2pY1vZumWzx36D+fkJ5J6gDQIIIIAAAggggAACCCCAQOQKEPAGuHaBBrz6s/19B4+Yox48eEDq16nlcRa641Xb2IIKV2GsvwGvhiRHjp8xf3KvIUSxwncfeBYgi9dmI0aNlcZNHAOUTh3bxdrB6bUjDxWsBLy2bo8eiZHHH6tuHi1ge91bwOsc7OlOaj3KwFPxFvCGok+dz649B42znrXo7uXKFcp4ZbcPBvWn5gXy3n1gl/P5rt6Ou/A0WKgDXv082R+h4WpXvFcMDxVCEfAOGjJMnmvRyhxVz0mu81h10Z3X/hZ/A9648r21e2+06C8QtHgLeLWO/Tq7OgamabPm8unwUSafPghP/4DmqegxInqkg62MHPGpsQvdVlw9ZE2Pe/BWgvn58TYW7yOAAAIIIIAAAggggAACCMQvAQLeANcz0IC3evWaMmXaTHNUfQr7a73uPuzJ3XT0zF7bA5RcBRX+Brw6jv0uRt09F5UjS4AavjVzPmNSWzk/xMm3njzX8uUha3oWbJo0aSVT5szSsOHTxlm8GTJmdOjY1dy8Bbx67MCCRXd3gi7+fqF069rZ44S9Bbyh6FMndOzkOYczdS9dvOiV3/nhf7myZzZ3XGpQpoGZfdHzRXfv2ik/rl1jhPiHDkV7HUMrhDrg3bFzn8N6e/tZvk+TtqsUioC3Zq3aMmnKNIep6M5r/WOE+q5atUK2bN4U648Srubub8AbV763tmzfJVmyPGJcku78z5c7u8elsf+Oc/6DhDZ0/k66+NtvPi31wxkymPWWLV0iXTp1MP8daMAbzM+PTxdBJQQQQAABBBBAAAEEEEAAgXgjQMAb4FIGGvC+3KOX9H7j7m6uIYM+ls9Gj/A6C/0Zsf6cWIuGOhqs2ZdAAt5Va9ZL3nz5zW4K5svl9inzXifopYLz+aFa3ZfwM5BxfQl4nfvV3dF6FmfpMmXNtzT01qMjNFC3FW8B7wtdu0uffu+a9UeNHCafDrl7Dqir6/EW8IaiT90FqbshrZbiRfKbZwtraK5HOOjDuNwVNf3553OyYP5c0XOXdReqqxLqgNf5DN6JE8bHOqfWik0oAl6dj/Nn1nmO+t3wx+XLsnbNahk9eoQcO3r31wL2df0NeOPK95b9LldfAt5NW3+SrFmzGZfuKuD9bs4CKVe+gpWlNkL15s0am30EGvAG8/Nj6YJojAACCCCAAAIIIIAAAgggEHECBLwBLlmgAe/QYSOl2bPPmaP27NHdePK7t7J67QbJk/fuEQp6nIIeq2ArgQS8K1b96PBEePuwztt8/HlfH8ylD+iyL2vWrJL2bVr6043PdQMJeG2dHzh0TFKkSGGO1b5tK1mzeqX5b28Br/O16k+zp0ye6HHu3gLeUPRZrVoNmTp9ls+m7io634dRufPI3HmLzKMfPA2gZ0X3eet1mTVzeqxqoQ545y9cIiVL3T0/2JezV/3BClXAmyxZMvl2zgIpUcLxLFl3c/t21gx5/bWesd72N+CNK99b9sF8MALe9Zu2SY4cd48Z8WeNbXWd751AA17tL1ifn0CugzYIIIAAAggggAACCCCAAAKRK0DAG+DaBRrw9ny1t/R69XVz1MGffCRjPhvpdRYbNm+X7NlzmPXsfxqvLwYS8NrvbnO1K9jrpHyo8OVXE6VuvSccai5auEBe6tbFh9aBVbES8C5ZtkqKFClqDux8vqa3gPf5zi/Iu/0/MNuPHTNKBn080OOFeAt4Q9GnhloabtnKzp92yPMd2/oFrrtxdbeoq/LkUw3kxe49JE+evPLggw967LdVi2ayYf06hzqhDnjf7vuOdH3xJXNMPce2fJkSfl2/p8rOAe+PP66Rtq3u/mHHVVv7P7h4e1Ci3qNv9uknJUqUcniwnat+XR014m/AG1e+t4Id8C5aslw0kLUVfeDl1at3/3Dmyw3x19WrxnERtmIl4LX1YfXz48u8qYMAAggggAACCCCAAAIIIBB/BAh4A1zLQAPeWo89LhMnf2OOGsgZvNevX5dC+aMcZh5IwGsfoulP5XUHb7CKHnmgIVKp0o4P7pr49Vfy3rt9gzWMy36sBLzOP9n2N+CtWKmyzPx2rjkvX8JsbwFvKPrUCZ48c8F8cN/58z9LhbK+7Qr1d/EefjiDPF6nrtSoWUvKV6gkadOmdeji3LmzUqn83d20+qb9vfnrr79I2VLF/R3WY/18+fPLytXrHep0bN9GVq1cHpRxnAPeHdu3yTONG3js25+A176j5MmTS/UataRmrcekarXq5pEEtjr6x5u8UdlEQ2Nb8TfgjSvfW8EOeJ13Jnd+vr0sX3b3DO1AboZgBLz24wby+Qlk3rRBAAEEEEAAAQQQQAABBBCIXAEC3gDXLtCAN03atLJn3yFz1IMHD0j9OrU8zkLPZtSjAzQ01XL27BmpXMExOPU34NXdwLor2FYORUdL3cdrBKjh2EwfBqc746Kicju84etuZauTsBLw2p91rPPQXZe6+9JWvO3gTZUqlew7ePfc08uXL0uJYgU9XpK3gDcUfeqE9uw/LGnSpDHmpuFfgbw5HUJAq+vgrn2btu2Nh1vZiqvdqvYB7++XLknJRwsHfTr2Dy7Uzv/44w9jrTQQ9bfoucP2uzj1s6oBuj+fr0ADXue5Fi5cxPj8JUmSxHxLw2UNmW3F34A3rnxvBTvgdb4Xv5k6Wfq+/Ya/y+9QP9gBr/NkfPn8WLoAGiOAAAIIIIAAAggggAACCEScAAFvgEsWaMCrwx07ec4hfNGfBZ86edlNyssAACAASURBVMLtTAYNGSbPtWhlvr9xw3pp+VxTh/r+BrwzZs2RSpWr3A18Zn8nvXre/cl6gCzGeZbf/7DC4WfjGpi91quHzJn9baDd+tUu0IBXdxtr8GUL0nXeuXM+InoUga14C3i1Xsyx06JnpdpKh3atZfWqFW6vYcSosdK4yTPm+66C8FD0+cPy1aJhoK3ozkXdwRhoUTdfw1HncDVntkwOw+7ac9A8x9fVjvVA52jf7pWer8mrvR3DvEkTJ0j/d/r41b0+BE+PfHj8sWpyJCbGbHv0xFm5//77jX9fvXrVeGCfp+LvZ9hTX7O+mycVKlYyq+iRKLqb3Fa+njRVHqtdx/y37qDWndSeSlz43gp2wOu8k1s/61UqlvVq4ckp0IA3mJ8fv25gKiOAAAIIIIAAAggggAACCES8AAFvgEtoJeAd+8V4efKphubIu3fvkkZP1XM5k8yZsxg7bW1BkVZ6qv7jsm/fXof6/oRDTzd5RkaOGmu21x2UpUsWdXueqq9EGhhP+Wamw1x1V2OL5s847B70tb9A6wUS8JavUFG+mf6t6E5MW/nllwtSrvTd8zn1dV8C3v7vDZCOne6eMayhUY+XujoEbNrX042byPsDPjZ30drGdRXwhqLPmrVqy6Qp0xyYdZ4L5s/zSK87tMd8MV4yZMjosPv88NFTEn3wgLzSo7vHP1ho5/a7h12d/7xsxVopWKiQOY/atao6hKeB3hv27TRQ06DZ/qF6+r7udO3QrpXDQwxdjacPPRw2YrT5wLO6tWvIoUPRZlX7kFpfbNqkoWzftjVWVxkzZhI9q9r+oW+udjVrIJ8+fXp547Vesnbtao8Eei/rcQ224rwTvU/fd+WFF7ub7/tyVnS4v7d0ssEOeLXPdRu3Ss6cuUyL06dPSe2aVeXff//1aKw77/WIh3ZtWjh8vwUa8Abz8xOMzwd9IIAAAggggAACCCCAAAIIRI4AAW+Aa2Ul4NUjFzTgsg9tjx87Ko0a1HcIlWrUqCXjv57sEDo6P7HdNn3nUFOPXJg8aYLMmztb/v77b6PaoyVKSrfuL0u9+k86XPW4z8fIRwPvPhgsQBKH0M7Whz5gTM939bVs3rRR9IFXVoqzxVtvvCZ6VIKt6JmlGk6mfzi9PPJINqleo2asB1VpKPtkvdqiR2jYF18CXv1pfHTMCYd10z7++ecf0fNkU6ZIKfqTd9tOYedrdRXwhqJPHdc5CNTX9u7dIy91e8EhpM2S5RGp/XgdqVO3vlSpWk30jFnno0JsO1Y1sF2zZpWMGT1Sftqx3WFXr4bDoz77XPRMV1txdUzJ+AmTjLFs5fLvv0u9OrXMeyNd+vTSokVrmTplotcg1tO9pJ+JBYt+iLUWGu5N+GqcrF2z2ghlbbu49biMZs1bSOMmTaVYMcdzgZ0DXudjEG7cuCG9Xukuy5ctlf/973+GQYOGT8tTDRoanvbFVcBrf4TDkZjDMnjQx7J+3Vrz863t9Z7q/tIr8vqbb5vd6bXo8Rv2u6td/ZGnY7vW5nEk+oeOps2ay/59e437QUuov7e8PVhO5xCKgDcqdx5Z8+NGh3tAzYYO/kS+nvCleWyJrpH+Eat69ZqifhrMa2nXuoVD4B5owBvMz4+V70/aIoAAAggggAACCCCAAAIIRJ4AAW+Aa2Yl4NUhX3v9TenxyquxRteHnf3zz9+SJk1ah5/5a0UNmfRhUxcv/harnXOoaV9B22nw4ypQ1OCzZPFCPv+03hPX3gMxsYJSf3l92UnorU9PFt7a2t7XIyX0AXjOxZeAV9u0aNlaPh401G2I62ke7s4qDkWfGtrt2hsd616z3W96tMCDDz7o8McI29zdBbz216ahot7Tv1+6KClSpjSCdfv7UN/X40b0Dxf2RY+O0B2rzkXvZf2f7XxZd7tifV1nrfdM02eNnZjOIat9Hxr46R9kPNVxDnhdPcjN13l5C3jt+7l27ZrxhwMNZTV0tP/DkdZz9QccvQ4911vX1vm7wt536pRJ0q/Pm2aVUH5vhSvg1Ytz3iFvb6J/mNFwXv844aoEO+ANxufH1/uMeggggAACCCCAAAIIIIAAAvFDgIA3wHW0GvDqsL3feEteermnTyHgn3/+Ka1bPit7du9yOeNAQk3d5fts00ZGABeMEh8C3hMnjsvbb/YW3Unsqvga8GrbEiVLyfSZs42dj+6KBpvz582RwUOHm1Ve6dFN5s+d47JJKPrMmjWbfDlhkhQtWsyv20CtalStaLY5cvxMrF3LnjrUcFetZ0z/xmW1yd/MEN3F7qkEI+DV/osUKSrTZ82JdVyGLyAaiK5auVxe7t7VYTettnXeieyuP32QXOL77nN46F2eXFkdqjufmezL3L5ftEC6v3j3uBD7Nm3bdZABAz/x2I1zwBvK761wBrx6XV1e6GbsfLY/psUX4+eebeLwfRHoDt5gf358mTt1EEAAAQQQQAABBBBAAAEE4ocAAW+A6/jGW32Mn0LbykcffiDjvhjjd28aBkyeOsN8oJRzBxqCbVi/Tjq2by16nq274hzwrli+VGrUfMzlzkvd8afHN+jxCcEsu/cdkrRp01rqcuSIT2XY0MGW+li6fI0UKlzYax9qq//TXarHjx+T4UMHmz9Rd9d4/sIl5lmpGuxF5cjicRwNdxs2aiyVKleVYsWKyX1JksjRo0eMoH7ViuXGWcoaLPV9p7/Zj7fzZkPRpw7eoGEjGfDhJ5I2XTq316ReejzA9OnfyLSpkx3uSd092qPnq8axA2nSpPHYh97TenSG7gL2VPSs2M4vvOh252yDJ+qYRwh4XXAfKrRs1Ua6v/yKsRPWU9CnDvpQsu9mzZTxX34u+plyV/RBbrpb39UOeg01p06eKO/172fsWLY99E53jOaNyubQpc7n+U4vSOu27SRbtuwer+bY0SPSt8+bbv9QYWusaz546IhYO3lt77vbUR+s7y37z6qra3a+yNVrN4iefaxFd1Xnz5PDo8P6TduMBz9q0TUqXCC3x/q6S/ezz7+UKlWqOTwI07mRfmesWa3HkIxwOHdZ6xUsWEiWrVxrNvnqyy9kwAd3P9/uJhCKz48PtzxVEEAAAQQQQAABBBBAAAEE4oEAAW8cWUQ921PPgi1foZKkTp1GTpw4JuvX/Wg8vMf+7Ex303X1kDX9GbbuTCxUuIhE5c4tMYcPGzsNdTcwJe4I6PEAzZ59zpxQruyZfVpzT1dgpU8NIgsUKChly5U37p2/r183ziLev3+vcQ/5cj9qCF24SFEpWqy40ZeWmJjDxkPY9FxXDch8LXocQ/FHS0jpMmUlXbp08ssvv0jM4UOyZfMm82xcX/vyp56e1axjli5dVqKicssfV/6Qn8+dk8OHomXdurU+OdjG09BcP99ly5Y3Pt/ah/4Rxv6hbP7MTT/bhQoVNnz1/1OmSiUnjh+X6OiDsm/vHuPIBn+KHidRpkw5yZEzp1z+/bKcPHlCNm/a4HWdrH5v+TPHe103derUUrpMOSlZqpRkypTZ8D14YL/s2bvb8gMpvV1LMD8/3sbifQQQQAABBBBAAAEEEEAAgcgXIOCN/DU0rsBVwBtPLi1eX4aGqXoWqu0YBz3vUx+IZaWEok8r86EtAggggAACCCCAAAIIIIAAAggggEDoBAh4Q2d7T3sm4L2n3F4H092vjzzyiCxcMN/tTk/9yf2kKdOlcpWqZn/Ll/0gnZ9v77L/UPTp9UKogAACCCCAAAIIIIAAAggggAACCCAQpwUIeOP08vg+OQJe363uRc2xX4yXJ59qaBwhcPLEcdEHkh05EiPHjx2TLI88Ypy1WqVqdYcHsOkZpCWLF3L7s/hQ9HkvLBgDAQQQQAABBBBAAAEEEEAAAQQQQCB0AgS8obO9pz0T8N5Tbq+D2cJYrxXtKnh7wFwo+vRnftRFAAEEEEAAAQQQQAABBBBAAAEEEIh7AgS8cW9NApoRAW9AbCFr5E8Ye+3aNenzVm+ZP2+ux/mEos+QAdAxAggggAACCCCAAAIIIIAAAggggMA9ESDgvSfMoR9k8jczpEKFSsZAV//8U8qUKhb6QRnBrUDx4o9Kh46dpUTJkpI5yyPywAMPSOLEiY36N2/eNNbowoULsmPHNnnv3b7Ga95KKPr0NibvI4AAAggggAACCCCAAAIIIIAAAgjEbQEC3ri9PswungkkSZLEpzDXn8sORZ/+jE9dBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQT8E+jwfGfp1PkFl43++/dfuf7333Li+HEZ/+Xnsmf3Lv86D1PtJEmSyN4DMZIoUSJjBu3btpStWzaHaTYMi0DCEiDgTVjrzdUigAACCCCAAAIIIIAAAggggECYBT4dPkqaNmvu0ywu/vabtGrRTA4divapfrgqJUuWTGKOnTaH79rleflhyffhmg7jIpCgBAh4E9Ryc7EIIIAAAggggAACCCCAAAIIIBBuAX8CXp3rf//9J0/Ue0yOxMSEe+puxyfgjbNLw8QSgAABbwJYZC4RAQQQQAABBBBAAAEEEEAAAQTijoB9wHvw4AGpX6eWObl06dNLmTLl5JVer0nRosXM18+dOyuVypeOOxfhYiaVKleRJPclMd7ZunWz/Pvvv3F6vkwOgfgiQMAbX1aS60AAAQQQQAABBBBAAAEEEEAAgYgQ8BTw2l/AN9O/larVqhsv3b59W3Jlz+zX9SVOnFhu3brlVxv7ynqu7s2bNwNu70tDq3O0HyOYffkyd+ogEFcECHjjykowDwQQQAABBBBAAAEEEEAAAQQQSBACvga8OXNFyboNW0yTZ5s+7fHBZdmz55CPPhkiBQoWlPTpHxYNaPV4h0uXLsqqlSukX583jaDYU2nXvqO0adtecuTMJXrsgpbr16/Lxg3r5NTJk1KhUmXjtaGDP5E1q1c6dDVxyjTJmDGTMUaTRk8aY7sqL/foJY2ebixZs2WXBx980AihL128KDExh+WN3r3k7NkzLts1aNhIunZ72Xhv/rw5Mn7c59KzV2/R17PnyGnM98aNG/Lrr79I/3f6yorlSxPE/cRFIkDAyz2AAAIIIIAAAggggAACCCCAAAII3EMBXwNeDWiPnTxnzqxTx3ZuQ8vnO78g/d55T3QXq7vy+6VL8lzzJnL40KFYVVKlSiVTp38rJUqU9Eli+LAhMmLYUIe6R46fkaRJkxqvFS+SX65cueLwfpq0aWXWt/OkYKFCbsfQHcPv9H1Lpk+bGqvO+wM+kvYdnjdeP37sqKRImdIIlN2VsWNGyaCPB/p0PVRCIJIFCHgjefWYOwIIIIAAAggggAACCCCAAAIIRJyArwFvmbLlZM68Reb1lS1V3Nid6lzeeKuPdH/pFfPlv/76S47EHJYrf16RnDlySlTuPOZ7v/xyQcqVfjRWH2vXb5aoqNzm67ZdtTf/d1PSpk0nDzzwgEObQALeXXsOip4xbCtXr16Vc2fPSuo0qSVTpswO4fRrvXrI7O9mOYxpH/A6X4DuFtZA3D7g1msoVaKIXP7994i7R5gwAv4IEPD6o0VdBBBAAAEEEEAAAQQQQAABBBBAwKKArwHv4qUrzQetXbt2TQoXuBvA2qaggelPu/abwebUKZOMHbD2RzGULVdeZsyaI/fff7/R7IP335UJ48eZV6HHMnzw4cfmv1etXC66W9j+/N7yFSrKF+MmmAGtvwHvSy/3lNfffNsYQ+f26ZBBMnrUcHPMLFkekQXf/2AEvVo0/C1WOJ/DdTgHvNrPt7NmyJjPRsmpkyeMdm3bdTCuJVGiRMa/1UOPpqAgEJ8FCHjj8+pybQgggAACCCCAAAIIIIAAAgggEOcEvAW8epbu8JGfiQaztjJk0Mfy2egRsa5Fg9tKlasYr69du1ratW7h8nr1rNper71uvKe7e2vXqmbWi445YZyFq2X9uh+ldctnXfYxf+ESKVmqtPGevwFvzLHT5pm+M2dMkzdffzXWGA899JDsPRBj7MTVMuazkTL4k4/MevYB78XffpNGDeq7PK933oLFUqp0GaPdtq1bpNkzjeLcPcCEEAimAAFvMDXpCwEEEEAAAQQQQAABBBBAAAEEEPAiYB/w6pmz58//bLR4INkD8lCKFGbYautGjyrQIwtclYOHj4sGo1oeLVZQ/rh82WU9raN1tejZuHpGrpa06dLJ7r3Rxn/rjlg9vsHVMRD6fqABb778+WXl6vXGGLorWMfWHbquymdjvzQemqZl//598mS92mY1+4B33Y9rpU2r5i770OMq9NgKLWfOnJYqFctyTyIQrwUIeOP18nJxCCCAAAIIIIAAAggggAACCCAQ1wTsA15Pc7t+/bp0bN9aNm/a6LKaHkNw8swF871Tp056vNScOXMZ72vIGpUji/HfTz7VQMZ+8ZXx33pWYehj/wAAIABJREFUbYni7h+AFmjA+2zzFjLk0zu7j3/79VcpU6qY23k+3eQZGTlqrPG+7tItXbKoWdfXgLdxk6YyYtQYo527M4fj2j3BfBCwIkDAa0WPtggggAACCCCAAAIIIIAAAggggICfAs4Br/1Zt/YPCbtw4bxULFfK4Sxc+6GKFCkqS5at8nP0O9VzZstk/P87774vnbp0Nf7b+egG544DDXjtg9lD0dFS9/Eabudsf003btyQvFHZzLq+Bry1HntcJk7+xmhHwBvQ7UGjCBMg4I2wBWO6CCCAAAIIIIAAAggggAACCCAQ2QKezuD9ZPCn0qJla/MCd+38SZ5u+ITLC36sdh35etJU8z0NaH0pN27elPp1ahlVP/xokLRp29747+iDB6VenZpuu7A/23b4p0NkxPChDnWPHD8jSZMmNV7TYxj0KAgtI0aOkcbPNDX+e9eunfJ0g/pux8iZK0rWbdhivG+/01j/TcDry+pSJyEKEPAmxFXnmhFAAAEEEEAAAQQQQAABBBBAIGwC3h6yZh+k6iTdncHrfH5uruyZ/b6m9h07yfsfDDTa6Y7h8mVKuO0j0B28L3Z7Wd7q08/o9+zZM1K5wp0HoLkq9rtv9ZzeooXymtUIeP1eXhokEAEC3gSy0FwmAggggAACCCCAAAIIIIAAAgjEDQFvAW+SJElk09afJFOmu4HtRx9+IOO+uHOurH05dvKcaH0tuiv34MEDfl1k2XLlZfbchUYb3TFbMF8u+ffff132EWjAW7FSZZn57Vyjz3/++UcK5M3pdo6v9n5DXun5mvH+iRPHpUbVimZdAl6/lpbKCUiAgDcBLTaXigACCCCAAAIIIIAAAggggEBcE7h9+7bow8JCVULdfyDz9hbwap8PP5xBNm7ZIQ888IA5RKeO7WTF8qUOQ27fuVcyZrxznu7xY0elZvXKXqeULFkyM8RNnjy5RMecMNfg66++lPffeydWH1mzZpPFP6wQ3TWsZfiwITJimG9HNDz00ENy8PBxs883eveSWTOnu5zn7r3R5hirVi6Xju3bmPUIeL0uLRUSqAABbwJdeC4bAQQQQAABBBBAAAEEEEAAgbgg8FDSxFK3aCbJm+GhkExn+cFfZdfpKyENkf2duC8Br/ZZvPijsuD7pWJ78NrNmzflyXq15dChaHPIps2ai/ZnK4sWLpCePbqJ1nUu+fLnl+Ejx0iqVKmkWuXy5ttffT1ZHq9Tz/y3HgkxftzncubMaalarYY0erqx1H/iKQdDfwJe7fi7OQukXPkKxhh69ELd2jXk3LmzDlPs26+/dOnazXhNg/nqVSvKqZMnzDoEvP7eadRPKAIEvAllpblOBBBAAAEEEEAAAQQQQAABBOKgQMpk98mXbUtI3SIZQzK77tP2yvRtZyMy4FWQxk2ayohRd49muH79ulSuWEZ+v3TJ9Fq8dKUULVrM/LfWWbN6pRw8cEAefOhBKVu2vOTNm0/SpU9v1NHgtkrFsmZ9ff2nXfvNINmXhfA34M2cOYts3rbTHOPGjRvGLl59iFz69A9Lo8ZNpEiRoubQy5YukS6dOjhMhYDXl5WhTkIUIOBNiKvONSOAAAIIIIAAAggggAACCCAQRwQIeA8YZ+d6KvY7W7XeL79ckErlS5u7dPU4h9lzF0hU7jw+rapzwKuNdLfwjG/nSooUKVz2oWPqrmA9qkHLwAHvy5fjxjrUPXL8jCRNmtR4rXiR/HLlyhWH9zs831n6vzfAa9iuZ+82eKKOsdPXvhDw+rS8VEqAAgS8CXDRuWQEEEAAAQQQQAABBBBAAAEE4opAQgx4Bw8dLs2fa2kswf79+4xjF7yVb6Z/K1WrVTerrV/3o7Ru+axDs5at2kiffv0lZcqULrvTnb3r162Vz0aNkL1798Sqo+1e7tFL9MFruXJFyZU/r8ixo0fkx7VrZMrkibJy9TrJl7+A0a5Vi2ayYf06hz5ijp0WPd9XS9FCeWMFtPq6HhMxY+YcyZAx9o5tPZZh0sQJ8t67fV3O/51335dOXboa761evVI6tG3lsl61ajVk6vRZxnvnz/8sFcqW9MbL+whEtAABb0QvH5NHAAEEEEAAAQQQQAABBBBAILIFEmLAG+oV0120j5YoKSVKlpJEkkiOHj0ie/fslosXf7M09N4DMZI6dWqjj2KF88mff/4ZcH9p0qaV6tVrSNGixY2dvut+XOMydA54ABoikIAECHgT0GJzqQgggAACCCCAAAIIIIAAAgjENQEC3ri2Iq7n06BhI/ls7JfGm3p+bt6oO0c1UBBAIPwCBLzhXwNmgAACCCCAAAIIIIAAAggggECCFSDgjRtLv3b9Zrl08aLMnzdHtmzZJEePHBE9MkEfjta5S1d5vvML5tm5U6dMkn593owbE2cWCCAgBLzcBAgggAACCCCAAAIIIIAAAgggEDYBAt6w0TsMfPjoKXnggQccXtOAN1GiRA6v6Tm+RQrmkVu3bsWNiTMLBBAg4OUeQAABBBBAAAEEEEAAAQQQQACB8AkQ8IbP3n5kVwGv88wORUfL8x3ayNmzZ+LGpJkFAggYAuzg5UZAAAEEEEAAAQQQQAABBBBAAIGwCRDwho3eYeCatWpLvfpPSPFHSxgPUnvwwYfk5o0bcuGXC3L82DH5Ycn3xv8oCCAQ9wQIeOPemjAjBBBAAAEEEEAAAQQQQAABBBKMAAFvgllqLhQBBEIkQMAbIli6RQABBBBAAAEEEEAAAQQQQAAB7wIEvN6NqIEAAgh4EiDg5f5AAAEEEEAAAQQQQAABBBBAAIGwCRDwho2egRFAIJ4IEPDGk4XkMhBAAAEEEEAAAQQQQAABBBCIRAEC3khcNeaMAAJxSYCANy6tBnNBAAEEEEAAAQQQQAABBBBAIIEJEPAmsAXnchFAIOgCBLxBJ6VDBBBAAAEEEEAAAQQQQAABBBDwVYCA11cp6iGAAAKuBQh4uTMQQAABBBBAAAEEEEAAAQQQQCBsAgS8YaNnYAQQiCcCBLzxZCG5DAQQQAABBBBAAAEEEEAAAQQiUYCANxJXjTkjgEBcEiDgjUurwVwQQAABBBBAAAEEEEAAAQQQSGACBLwJbMG5XAQQCLoAAW/QSekQAQQQQAABBBBAAAEEEEAAAQR8FSDg9VWKeggggIBrAQJe7gwEEEAAAQQQQAABBBBAAAEEEAibAAFv8Ohv374dvM5c9JQoUaKQ9k/nCCAQmAABb2ButEIAAQQQQAABBBBAAAEEEEAAgSAIEPAGAVFENNxNmixNcDpz0cutWzfk9q2bcuvWfyEbg44RQCAwAQLewNxohQACCCCAAAIIIIAAAggggAACQRAg4A0C4v8HvDnztJQylUcEp0OnXo4d/lr27ugvtwl4Q+JLpwhYESDgtaJHWwQQQAABBBBAAAEEEEAAAQQQsCRAwGuJz2ysO3gJeINjSS8IRJoAAW+krRjzRQABBBBAAAEEEEAAAQQQQCAeCRDwBmcxCXj9d0yePLn8888/xvEWFAQiWYCAN5JXj7kjgAACCCCAAAIIIIAAAgggEOECBLzBWcCEFPCOHjNOKlasZMDdun1LHqtRRa5eveoVMnXq1PLhR4OlWvUakiJFCkmSJInR5saNG3L9+nU5d+6szJ3znUz/Zopcu3bN7O+9DwbKU081dNn/5s2b5OXuL7gdO9C5er0YKiBgJ0DAy+2AAAIIIIAAAggggAACCCCAAAJhEyDgDQ59Qgl4kyZNKoePnpLEiRObcKNGDpNPhwzyCNm+Yyfp/94Ah3buGty6dUuicmQx354xa45UqlzFZfWjR2LksZpVXb4X6FyDc0fQS0ISIOBNSKvNtSKAAAIIIIAAAggggAACCCAQxwQIeIOzIAkl4O3yQjfp+05/B7Tz53+WCmVLuoWsU7e+jJ8wyXz/33//lZiYw7J+3VpJmTKVFC5cRHLkyCkZMmY06+TMlsn87ypVq0mZsuWkZKnSUqNGLeP1Xbt2yto1q+RQdLQs/WGxy7EDmWtw7gZ6SWgCBLwJbcW5XgQQQAABBBBAAAEEEEAAAQTikAABb3AWI6EEvGvXb5aoqNzGubk//3xOsmbNZgBWrVROTp8+5RJz/aZtRoCrZeqUSdKvz5su65UqXUaGDR8lUbnziH3Aa6vc/LmWMnjocOOfY8eMkkEfD/S4eIHMNTh3A70kNAEC3oS24lwvAggggAACCCCAAAIIIIAAAnFIgIA3OIuREALejBkzyfadew2w/fv3yeJFC+XNt/sa/5793Sx5rVcPl5gnTp83jmbQs3bzRt0JhD2VggULyaFD0bGq+BPwBjpXb3PjfQRcCRDwcl8ggAACCCCAAAIIIIAAAggggEDYBAh4g0OfEALeAQM/kbbtOhhgr/Z8WZYsXiTRMSckUaJExkPWihbK6zHgVaNihfP59EA2Vx35E/AGOtfg3A30ktAECHgT2opzvQgggAACCCCAAAIIIIAAAgjEIQEC3uAsRkIIeHfvjZa06dIZO3Hz5c5uHNOweOlKKVq0mIH43LNNZPOmjbFAd+87JGnTpjVeX7F8qXTq2C4gdH8C3kDnGtDEaJTgBQh4E/wtAAACCCCAAAIIIIAAAggggAAC4RMg4A2OfXwPeIsVKy7f/7DCwNqwfp20atHM+O9nmj4rw0aMjvW6vaoe49Ct+93jGzQg1iMe9uzeZQTC+rC1a9eueV0IXwNeK3P1OgkqIOBCgICX2wIBBBBAAAEEEEAAAQQQQAABBMImQMAbHPr4HvCOnzBJ6tStb2C1aP6MbNq4wfhvPZ7hyPEzcv/99zvs7HVWnbdgsehD1NwVPeJhzepVMmTQR24f1uZrwGt1rsG5I+glIQkQ8Cak1eZaEUAAAQQQQAABBBBAAAEEEIhjAgS8wVmQ+B7wxhw7LcmSJZO//vpLihTM44A2feZsqVylqvHaG717yayZ012itmzVRjp36SpRufMYwbCroo4fDxwg474YE+ttXwPeYMw1OHcFvSQUAQLehLLSXCcCCCCAAAIIIIAAAggggAACcVCAgDc4ixKfA976TzwlX3w5wYDa+dMOef+9dxzQKlasLG/16We8dig6Wuo+XsMjatKkSaVChUpSoVIlKVu2vOTLX8A8o9fW8Im6j8mBA/sd+vEl4A32XINzd9BLfBcg4I3vK8z1IYAAAggggAACCCCAAAIIIBCHBQh4g7M48Tngnb9wiZQsVdonKHUoVjif6JEL/pTH69ST4SM/k5QpUxrNli/7QTo/397vgPdezNWf66JuwhAg4E0Y68xVIoAAAggggAACCCCAAAIIIBAnBQh4g7Ms8TXg1d22h4+eksSJE/sMNWrkMPl0yCCf69sqdn/pFXnjrT7GPw8ePCD169TyK+C9l3P1++JoEK8FCHjj9fJycQgggAACCCCAAAIIIIAAAgjEbQEC3uCsT3wNeF/o2l369HvXQFowf55MmviVS7BMmTKbxzicP/+zVChb0qinwXD5ChVl86aNXqErVqosM7+da9Tbvm2rNG3S0K+A1+pcvU6QCgi4ESDg5dZAAAEEEEAAAQQQQAABBBBAAIGwCRDwBoc+vga86zZulZw5cxlIZUsVl19//cUt2K49ByVd+vTG+1UrlZPTp09JliyPyJbtu+TY0SPyUrcXjJ257sq8BYulVOkyxttDBn0sn40e4VfAa3WuwbkT6CUhChDwJsRV55oRQAABBBBAAAEEEEAAAQQQiCMCBLzBWYj4GPBmzJhJtu/cawCdPXtGKle4E766KwMGfiJt23Uw3p47+zvp1fMlM+C1tdm7d49s27JZNm7cIFu3bJJ06dJL1WrVpfvLr0i2bNmNanp+b/kyj8q1a9eMfydPnlxSpkwljZs0NXcTT50ySUaNGCZ//33dqB+MuQbnTqCXhChAwJsQV51rRgABBBBAAAEEEEAAAQQQQCCOCBDwBmch4mPAax/YDv90iIwYPtQjVubMWWTrjt1mSFu0UF6xf80X6Rs3bkjDJ+s67PSdMWuOVKpcxWXzIzGHpXatahKMufoyP+og4EqAgJf7AgEEEEAAAQQQQAABBBBAAAEEwiZAwBsc+vgY8OruXd0Zq9dWrHA+Y6est7Jp60+SNWs2o1qDJ+qI7tgtUqSovNi9h9SoWUtSpkzpsoubN2/KksXfS5+3escaZ/rM2VK5SlWPAW+w5urt+ngfAQJe7gEEEEAAAQQQQAABBBBAAAEEEIhTAgS8wVmO+BjwBkfGsRc9bqFAwUJSoEBBSZ/+YTl+/Jjs/GmHx7N9QzEP+kQgmALs4A2mJn0hgAACCCCAAAIIIIAAAggggIBfAgS8fnG5rawBb7ZcjaV46feC06FTL6eOzZTofcPk9q3/QtI/nSKAQOACBLyB29ESAQQQQAABBBBAAAEEEEAAAQQsChDwWgT8/+Ya8CZJ8pBIotvB6dCpl1u3/ie3b/1PRPR/FAQQiEsCBLxxaTWYCwIIIIAAAggggAACCCCAAAIJTICAN4EtOJeLAAJBFyDgDTopHSKAAAIIIIAAAggggAACCCCAgK8CBLy+SlEPAQQQcC1AwMudgQACCCCAAAIIIIAAAggggAACYRMg4A0bPQMjgEA8ESDgjScLyWUggAACCCCAAAIIIIAAAgggEIkCBLyRuGrMGQEE4pIAAW9cWg3mggACCCCAAAIIIIAAAggggEACEyDgTWALzuUigEDQBQh4g05KhwgggAACCCCAAAIIIIAAAggg4KsAAa+vUtRDAAEEXAsQ8HJnIIAAAggggAACCCCAAAIIIIBA2AQIeMNGz8AIIBBPBAh448lCchkIIIAAAggggAACCCCAAAIIRKIAAW8krhpzRgCBuCRAwBuXVoO5IIAAAggggAACCCCAAAIIIJDABAh4E9iCc7kIIBB0AQLeoJPSIQIIIIAAAggggAACCCCAAAII+CpAwOurFPUQQAAB1wIEvNwZCCCAAAIIIIAAAggggAACCCAQNgEC3rDRMzACCMQTAQLeeLKQXAYCCCCAAAIIIIAAAggggAACkShAwBuJq8acEUAgLgkQ8Mal1WAuCCCAAAIIIIAAAggggAACCCQwAQLe4C347du3g9eZi54SJUoU0v7pHAEEAhMg4A3MjVYIIIAAAggggAACCCCAAAIIIBAEAQLeICCKiIa7qe+/Lziduejl5q3bcvP2bfkvtBlyyOZPxwjEZwEC3vi8ulwbAggggAACCCCAAAIIIIAAAnFcgIA3OAukAW+zR9LI4CJZg9OhUy9Tz/wuAw9fkP9C0judIoCAFQECXit6tEUAAQQQQAABBBBAAAEEEEAAAUsCBLyW+MzGBLzBcaQXBCJRgIA3EleNOSOAAAIIIIAAAggggAACCCAQTwQIeIOzkAS8wXFMSL0kT55c/v7774R0yfH2Wgl44+3ScmEIIIAAAggggAACCCCAAAIIxH0BAt7grFFCCnhHjxknFStWMuBu3b4lj9WoIlevXnULWf+Jp2TAhx+b7w/88H2ZN3e22/oFChaUadO/M99fMH+uDPigv/nvhx56SH5cv8XnhTt8+JC0atHMrD9/4RLJli27Q3u9jr+uXpU//vhDNmxYJ5+PGe0yfE2WLJls2LxdEonrB94906ShnDp5wuXcypYrL6++9oZE5c4tDz+cQe6//36j3j///COXL/8uep1jRo+UP//80+215cwVJXPmLjTf//77hfLeu319tqBiaAQIeEPjSq8IIIAAAggggAACCCCAAAIIIOCDAAGvD0g+VEkoAW/SpEnl8NFTkjhxYlNl1Mhh8umQQW6VurzQTfq+czegvfjbb1K6ZFG39WfPXSgahtrKhvXrHALaNGnTyp59h3xYlTtVfvv1VylTqphZf3/0UUmZMqXH9rdu3ZLer74ic2Z/61BP22l7d6VRg/qye9dOh7fVbPSYL6Re/Se9zlnvo8XfL5TuL3ZxWXf4iM+kSdO7YbWGwwXy5vTaLxVCK0DAG1pfekcAAQQQQAABBBBAAAEEEEAAAQ8CBLzBuT0SSsDrHNaq3vnzP0uFsiXdQrpq81K3LrJo4YJYbTJnziJbtu+SRInu7pD1FPBqwHnyhOsds7bOow8ekJ6vdDfHsgW8GuJu23pnJ7CGsGnSpJFcUbnN8FrXtEunDrJ82Q9mW53XKz1fE93A2617D9EdvdrPyBGfGnW+/upLhx24GoTv3HNQ0qZNa/ZxKDpa9u7dLYcORUvBgoWkaLHikidPXqMvLb/8ckHKlX7UpaercPqFzh1l6Q+Lg3Mj00tAAgS8AbHRCAEEEEAAAQQQQAABBBBAAAEEgiFAwBsMRZGEEvCuXb9ZoqJyG9f788/nJGvWbAZg1Url5PTpUy4xXQW8586dlUrlS8eq/+VXE6VuvSccXvcU8G7ftlWaNmno1yLaQtK//vpLihTM49BWg95Fi5dLwUKFjNd37fxJnm7oOB9bg917oyVtunTy77//Sv48OVzOYfDQ4dL8uZbGexpGv9y9q0NgbGuUJEkS+XT4aGn0dGP59ddfXAa8lSpXkRmz5hhNNCS2zXHnTzukcSPvu4P9QqKyXwIEvH5xURkBBBBAAAEEEEAAAQQQQAABBIIpQMAbHM2EEPBmzJhJtu/ca4Dt379PFi9aKG++fef819nfzZLXevVwiWkf8O7Yvk3KlC1n1GvXuoWsXbvabKNn62r4qrteNbi1HdNwLwNenYzupI05dtqYl6sQ2DZhbwFvVO48subHjeZu5Dq1q8vhQ56PltAdvU81bCRDB38Sy3LajO+kStVqxuu1a1WVBYuWiprpDmI9puG///4Lzs1ML34LEPD6TUYDBBBAAAEEEEAAAQQQQAABBBAIlgABb3AkE0LAO2DgJ9K2XQcD7NWeL8uSxYskOuaEEWDqQ9aKFsrrEtM+4G3ftpV8PWmqEeKeOH5MalS787A2LQM/Hiyt27QzdgfrrtkFi+4cjXCvA14d8+iJs8ZD0G7evCl5cmV1eV3eAt6vvp4sj9epZ7RdvWqFdGjXOuCbTY2PHD9jzMl2hrE+7K5ho6eNPj8c8J6MH/d5wP3T0JoAAa81P1ojgAACCCCAAAIIIIAAAggggIAFAQJeC3h2TRNCwGsLNG/cuCH5cmc3gtjFS1dK0aJ3HmD23LNNZPOmjbFA7QNePU6hQ8dO8uRTd45VeKZxA9FdvRr46sPb9IiEjRvWyxu9e8nGLTuMOvc64E2ePLkcOnLSGPvy5ctSolhBlzeJt4BXd+/mznMn9C5fpoRcuHA+4JutRcvW8sngO+f8TpwwXt7r30/y5c8vK1evN147ceK41KhaMeD+aWhNgIDXmh+tEUAAAQQQQAABBBBAAAEEEEDAggABrwU8u6bxPeAtVqy4fP/DCuOK7QPXZ5o+K8NGjI71ur2qc8B74vhx2bFrn7HzN/rgQalXp6b07NVber32utGsWpUK8r+bN30KeLW+7rL1VE6eOC6P1axqVvF0Bq9W+mb6t1K1WnWj/oL586THS11ddu8t4D1w6JikSJHCOEIhKkcWSzfashVrzTN3S5coKhcv/mb099Ou/fJwhgzGf9u/bmkwGvstQMDrNxkNEEAAAQQQQAABBBBAAAEEEEAgWAIEvMGRjO8B7/gJk6RO3foGVovmz8imjRuM/7Y/OsB+Z6+9qnPAq+fr2p8nW7d2DZk9b5GkTJlSdu3aKU83qC/ZsmX3OeD1toK//fqrlCl1Z5exFlvAqw9Ha9WimfFa5syZJXfuvNKqTVvJlCmz8dqff/4pVSqWkStXrrgcwlPAqy4nz1ww2v3xxx/yaNEC3qbp9v1UqVLJ3gMxhvWpUyelWuXyZt33Phho7IjWMmniBOn/Tp+Ax6Fh4AIEvIHb0RIBBBBAAAEEEEAAAQQQQAABBCwKEPBaBPz/5vE94NWHjunDx1w9dGz6zP9j7y7ArKr6PY7/QVJeaUFeSrq7u1E6FQnpUFDU18KkEelQFFFARRQJKSkRhu7uljAABZHu+/zX3HM8M3NmTu3h1Hfd5z7MnL3W2mt91h7vfX6zZu1ZUqly5A5ZPVphxnfTo6A6C3izP55DVq/daOpdvXrVvCxMS8N6dWTPnt1uB7wanq5ZvSrORTxy+JCMHRN5vIEWW8AbVyMNsDs82zrOF5fFFfDqURN6Zq4W25m53j5pr73RR17s/YppPnTIIPlkQuSOaS3p0z8q23buNV9fvHBBihct4O1taOeDAAGvD3g0RQABBBBAAAEEEEAAAQQQQAAB3wQIeH3zs7UO5YC3Xv2G8ulnX5ipbt+2Vfr3ey8KWoUKlaTP2++azw4eOCBP1Kke5bqzgFcrzFu4RIoXL2Gvq0Fs7ZpVzffu7uDV3cB6rq8nxVXAqy+MK1oorzlaIa7i6ogGWyge14va3Bn3pq075bHHIo94eLplU9Gdx45l6lfTJU2aNOaj+k/Ukn37IgNfyoMTIOB9cNbcCQEEEEAAAQQQQAABBBBAAAEEogkQ8FrzSIRywDt3/iIpUbKUW1DqUKRgHtGQ1FZiC3iLFi0mCxYts9dzPPrhQQS8165dkxpVK5r7J02WTBYtWW7OzNWyY/s2adq4fpxzdhXwrt+0TTJnzmL6KFYkv/x98aJbho6VHHc6u9N46ZJF0r1rJ3eqUsdCAQJeCzHpCgEEEEAAAQQQQAABBBBAAAEEPBMg4PXMK7baoRrw6lEDh46elIQJE7oNNW7sKBk5/EN7/dgCXq2wImKt5MqdR86cOS2Vype2t3kQAW/04yby5M0rS5atlESJEplxzJo5Q159pXes83YV8H47Y7ZUrFTZtP/4o7EybOgQtw1tFUeP+Uiat4w8J9idcuPGDcmXO7s7ValjoQABr4WYdIUAAggggAACCCCAAAIIIIAAAp4JEPB65hVb7VANeHs810vefvd9M+15c3+QqVM+d0qgLyazHePw+++/Sfky/x69EFfAmynTf6VI0WKyf99eE/KJ+M3IAAAgAElEQVTaij8CXr23vkhOXyhnK0MGDZCJn37sdM6uAt42bZ+VDz4cYdrqMQ2lShR2uYtXX6RWtlx52bRxg2m37+Axs6tYX2CnxzPEVoYNHyV58ka+yK1Ht86yZPGP1jzY9OKWAAGvW0xUQgABBBBAAAEEEEAAAQQQQACB+BAg4LVGNVQD3tXrNkn27I8bpDIli8q5c2djBduxa7+kTZfOXK9SsaycOnXSfB1XwBtbZ/4KeHU8L738qvzvtTfsQ+vauYP8tGxJjKG6Cni1QcSaDZIjR07TVj1aNG0Uq2G1ajVk/ISJcuPGdSlbqpjZ/au7gLXoS9/0CIvYSsunWsnI0ePMZXeOl7DmqacXmwABL88CAggggAACCCCAAAIIIIAAAgj4TYCA1xr6UAx4M2TIKFu27zZA0Y9QcKY2cPBQad8h8vzXObNmyisvv2C+js+AVwPnGd9Nj3MRfzlxwhy3YCu2l6xFP6LBsZPPPp8iTzwZeQav7r5t8GRtOXjwgPk+ffpHzZEVy1eukVSpUsmtW7fsx0tED8D1+ImfV64R3Zlr62va11/KiuU/yY4d26R48ZJSoVIlqVylmuiZxFrOnv3DBLzTv5sllSpXMZ91aNdaIiJWxDpP7f/oiTPmeAl9OZwe06DjojwYAQLeB+PMXRBAAAEEEEAAAQQQQAABBBBAwIkAAa81j0UoBryOge3okcNlzOjI4wZiK489lkk2bd1pLutL1goXyG2+js+A153VO3/unJQuWcRe1Z2AVysvX7HafuyBvpCtUoXScvvWLdH2sZXGDZ+UXTt3RLncoGEjGT5yrKRIkcKd4cqRw4ekTq1qcuT4aUmcOLHovQvkzeGy7Xffz5EKFSuZeoMH9pfPJk5w2YYK1ggQ8FrjSC8IIIAAAggggAACCCCAAAIIIOCFAAGvF2hOmoRiwKu7d3UXr86tSME8JrR1VdZv2iaZM2cx1RrVryu7d++SLt16yPt9B5jPWjRrJFu3bHbVjejZvBu3RAalq1dFyLNtW9nb6K7Z3fsOu+zDVkF31erxErZiC3gdQ2hnnSVPnlw2btkpqVOnNpd1F3PdWtVk/6Hjsd7bNufoFXRn7cjR46V+g4aiL66LXtT4l19OyJQvJsmXUydLk6bNZNxHn5pqS5csku5dI3dGx1Vq1qojU76cZqpoSFy7ZlVXTbhukQABr0WQdIMAAggggAACCCCAAAIIIIAAAp4LEPB6buasRSgGvNbI0Et0gaRJk0qp0mWkcOGicuXKZTlx4rh5qZoerUAJTgEC3uBcN0aNAAIIIIAAAggggAACCCCAQEgIEPBas4wa8DbKmFLezvuYNR1G62X2b3/L+OPnhVNV44WXThHwSYCA1yc+GiOAAAIIIIAAAggggAACCCCAgC8CBLy+6P3bVgPeFA8llPuR79KyvNy9d1/M//7/y7osvwEdIoCA1wIEvF7T0RABBBBAAAEEEEAAAQQQQAABBHwVIOD1VZD2CCAQ7gIEvOH+BDB/BBBAAAEEEEAAAQQQQAABBPwoQMDrR3xujQACISFAwBsSy8gkEEAAAQQQQAABBBBAAAEEEAhOAQLe4Fw3Ro0AAoEjQMAbOGvBSBBAAAEEEEAAAQQQQAABBBAIOwEC3rBbciaMAAIWCxDwWgxKdwgggAACCCCAAAIIIIAAAggg4L4AAa/7VtREAAEEnAkQ8PJcIIAAAggggAACCCCAAAIIIICA3wQIeP1Gz40RQCBEBAh4Q2QhmQYCCCCAAAIIIIAAAggggAACwShAwBuMq8aYEUAgkAQIeANpNRgLAggggAACCCCAAAIIIIAAAmEmQMAbZgvOdBFAwHIBAl7LSekQAQQQQAABBBBAAAEEEEAAAQTcFSDgdVeKeggggIBzAQJengwEEEAAAQQQQAABBBBAAAEEEPCbAAGv3+i5MQIIhIgAAW+ILCTTQAABBBBAAAEEEEAAAQQQQCAYBQh4g3HVGDMCCASSAAFvIK0GY0EAAQQQQAABBBBAAAEEEEAgzAQIeMNswZkuAghYLkDAazkpHSKAAAIIIIAAAggggAACCCCAgLsCBLzuSrmud//+fdeVfKiRIEECH1rTFAEE4kuAgDe+ZOkXAQQQQAABBBBAAAEEEEAAAQRcChDwuiRyq4IJdx9J7lZdbyrdv3NXEty9Jwlu3/WmOW0QQCAeBQh44xGXrhFAAAEEEEAAAQQQQAABBBBAIG4BAl5rnhANeG8+WUquv9bCmg6j9ZJ03kZJNnGRJCTgjRdfOkXAFwECXl/0aIsAAggggAACCCCAAAIIIIAAAj4JEPD6xGdvTMBrjSO9IBCMAgS8wbhqjBkBBBBAAAEEEEAAAQQQQACBEBEg4LVmIQl4rXH0Ry+pUqWSO3fuyNWrV/1xe+4ZAgIEvCGwiEwBAQQQQAABBBBAAAEEEEAAgWAVIOC1ZuVCOeCdO3+RZMmS1S2oO3fvSPkyJex15y5YLFkyZ5EzZ05L08b14+zjm29nSr58+eXixQtSp1Y1e90UKVLIqjUbY7TVe136+5JcuPCXzJo5Q2bP+t6tMSZJkkQ+HDZKSpctK489lkn0ey03btyQ33/7VdauXSPvvdNHYntpXr36DWXgoA+cjufixYuybesWGTF8qPx98WKUOrHNI7ZBHzp0UNq2fsqtOVHJvwIEvP715+4IIIAAAggggAACCCCAAAIIhLUAAa81yx/KAe/eA0flkUcecRsqe5aM9rr7Dh6T//znP3L58mUpXCB3nH1s3b5HHs2QQW7fvi25c2Sx102dJo3s2nPQ5f11B26jBk/IsaNHYq1bsVJl+ezzqS7nc/HCBROu7tu3N0Zf3Xv0lHfe6xvnePR5+O7bb6TPG696PA9bg/PnzknpkkVczpsK/hcg4PX/GjACBBBAAAEEEEAAAQQQQAABBMJWgIDXmqUPh4BX53joYNxBq+6qbfBk7XgLeDXE3bN7l+n/4RQpJF26dJI5879hsO7CrVS+tPz55/kYC9uocRP5aMJn9s+vXbsmmzZtkC2bNknixImlTNlyUrZcefuOXp1vy+aNZeuWzVH6cgx4f/31jJw+dcq0SZ06tWTOklWSJk1qr//5Z5/KwAGRYbBjUK3j/OXEiTgfvgP798nLL/Wy5gGll3gVIOCNV146RwABBBBAAAEEEEAAAQQQQACBuAQIeK15PsIh4L1y5YoUyp/LIzCrd/Bu2bzJhK6ORQPen1asFj0CQcuIYUNl/LjRMca5e99h0fN2tezdu0eebtEkxrm7adOlk3kLFku2bNlNPQ1wK5YrFaUvx4B36JBB8smE8VGu9+03UDp37W4+0+ciZ/b/yr1796IEvM7m4REslQNKgIA3oJaDwSCAAAIIIIAAAggggAACCCAQXgIEvNasNwGvc8cHEfDqnZs2byFjx00wg3AWnr7R523p9cJL5rqeB6y7fOMqe/YfkZQpU5oqb735mkz/5mt7dVcBr1ZcsmylFChY0LR5tk0rWb06goDXmh+1gOyFgDcgl4VBIYAAAggggAACCCCAAAIIIBAeAgS81qwzAa9zxwcV8BYsWEgWL1thBqFn8NasXjnKgBx373Zo11oiIiLrxlY6du4q/QcMNpdPnz4llSuUsVd1J+AdOmyktG7TzrTR3cS6q9jxiAZ28FrzcxcovRDwBspKMA4EEEAAAQQQQAABBBBAAAEEwlCAgNeaRSfgde74oALeVs+0kWEjIo9l0PBWQ1zH8svpPyRBggTy999/S7HC+dxa9CPHT5uzdfWs3gJ5c3gU8I4d/4k0bdbctHn/3bfky6mTCXjdUg/OSgS8wblujBoBBBBAAAEEEEAAAQQQQACBkBAg4LVmGcMh4FWpO3fuxAmmZ83myZnVXudBBLwJEyaU7bv2S5o0acx9e3TrLEsW/2gfg57Ru37TNvP9kcOHpHbNqm4t+tbte+TRDBlM3cezPmbO09Xiagdv8uTJZeeeg5IsWTJTv0rFsnLq1MkoAa87lr+cOC61alRxa6xU8q8AAa9//bk7AggggAACCCCAAAIIIIAAAmEtQMBrzfKHS8Drjlb2LBnt1awOeDWgfavP65IoUSLR4LZI0WLyTOu29jB1x/Zt0rRx/SjDbNS4iXw04TPz2YoVy6VT+7buTEMWLf1ZChUqbOrWf6KW7Nu313wdV8BbsVJlGTf+E3swfPzYUalRrZJp53hEgzsDOH/unJQuWcSdqtTxswABr58XgNsjgAACCCCAAAIIIIAAAgggEM4CBLzWrH44BLy6O/fHhQviBNMdvi/37mmvY3XAG9vN1f+TCePlww8iz811LHoWrp6Jq0V39uoOX3fKwsU/SZEiRU3Vp1s2lU0bN5ivHQPemzdvyvXr181RDrpzV4+BsJXbt29L9SoVzEvdtDgGvHpUxJrVq+IchobZY8dEjpsS2AIEvIG9PowOAQQQQAABBBBAAAEEEEAAgZAWIOC1ZnnDIeC9cuWKFMqfyyMwW8DrTlvbkQgajObOkcV+H3d2vm7dsllaNGvkdGz58xeQpcsjzLW9e/dIgydruzUHPdZBdwlryZ/ncRPkanEMeGPrSMfTpXN7+fviRafz4CVrbi1B0FQi4A2apWKgCCCAAAIIIIAAAggggAACCISeAAGvNWtKwOvccceu/ZI2XTq5detWlLN5ndXes/+IpEyZUq5evSoF8+V0Gozu2bNbunZqb64VLFRYJk/92r5rdvTI4TJm9IgYXeuuWn3JmpZz585KmZKRu3Jdlf2HjkuKFClijN0x4D1x4ricOH5MdHfzLydOyJ49u2TL5s3y669nYnTvGFQT8LrSD67rBLzBtV6MFgEEEEAAAQQQQAABBBBAAIGQEiDgtWY5CXidOy79KULyFyhgXlCmLyqLqxw9cUYSJ05sjjSoVL60vWpcweiz7TvKoCEf2uu+0LO7LJg/L8ZtDhw+IQ8//LAZh7707PTpU3GOpXSZsjL7h8jjKM6e/UPKlipmr+/qJWuxdUzAa83PWiD2QsAbiKvCmBBAAAEEEEAAAQQQQAABBBAIEwECXmsWmoDXuaPusK1Vu6652KFda4mIWOG0YvESJWXegsXmWvTdra6C0SFDh0vbdpG7enUnbZOGT8ru3bui3Ofrb2ZI1WrVnfbvbEArV62TnLlym0vfTPtK3u7zur0aAa81PzOh1AsBbyitJnNBAAEEEEAAAQQQQAABBBBAIMgECHitWTACXueOjjtsdWdutcrlRV/E5lj0CIUly1aanb5aRgwbKuPHjbZXcRXwasUf5v0oJUtF7vq9ceOGuc8ff/xu7yNN2rSyfec+SZgwofkstuMc9JruCNZxa7l27ZoUKZgnypgJeK35mQmlXgh4Q2k1mQsCCCCAAAIIIIAAAggggAACQSZAwGvNgoVDwKsvP/v0k4/iBLtz+06Mc3A3btkhmTL917Q7f+6c9O/3rqxeFWF221aoWFn69h8oWbJkNdcvXrwoxYvkj3IPdwLeRIkSib4ULWPGyGMgLvz1l5QvW0Ju3rxp76tf/0HSqUs3+/e6y/eLzydKxMoVkuihRFKrdh157vle9p27WvG9d/rIV19OiTIeKwJePQt4xnfT47TUM31nzZxhzQNKL/EqQMAbr7x0jgACCCCAAAIIIIAAAggggAACcQkQ8FrzfIRDwOuuVPYsGaNU1Z21ep6tbfdsbP2oYeeOz8qKn3/yOODVBunTPypr1m82Z+1qOXjggDxRJ/JYBlsZ/MEwc5yD7hqOq+hYxowa4fSlbVYEvO5YahheumQRd6pSx88CBLx+XgBujwACCCCAAAIIIIAAAggggEA4CxDwWrP6BLz/OkYPePWK7uD9YurXUqhQYafgRw4fMuHuqVMnY1xPlSqV7N532Hy+edNGeapFk1gXrWjRYjJv4RJ7mKw7YF99pXeU+ho4f/rZF5IhQ8YYQa+uox4l0alDWzlyOPKe0UuXbj3k/b4DzMeDB/aXzyZOcOshcpyHOw10l2+ZkkXdqUodPwsQ8Pp5Abg9AggggAACCCCAAAIIIIAAAuEsQMBrzeqHcsBrjVBkL0mTJhV9oVrJkqXloYcekt27dsqOHdvk8uXLVt7G7b40EK5Uuarcun1L1q1ZLQcPHnC7LRURsAkQ8PIsIIAAAggggAACCCCAAAIIIICA3wQIeK2hNwFvjaJyo3s9azqM1kuSZdsl2TcrJeHtu/HSP50igID3AgS83tvREgEEEEAAAQQQQAABBBBAAAEEfBQg4PUR8P+ba8B7P3lSSSD3rekwWi/3794TuXdfEuq/FAQQCCgBAt6AWg4GgwACCCCAAAIIIIAAAggggEB4CRDwhtd6M1sEELBegIDXelN6RAABBBBAAAEEEEAAAQQQQAABNwUIeN2EohoCCCAQiwABL48GAggggAACCCCAAAIIIIAAAgj4TYCA12/03BgBBEJEgIA3RBaSaSCAAAIIIIAAAggggAACCCAQjAIEvMG4aowZAQQCSYCAN5BWg7EggAACCCCAAAIIIIAAAgggEGYCBLxhtuBMFwEELBcg4LWclA4RQAABBBBAAAEEEEAAAQQQQMBdAQJed6WohwACCDgXIODlyUAAAQQQQAABBBBAAAEEEEAAAb8JEPD6jZ4bI4BAiAgQ8IbIQjINBBBAAAEEEEAAAQQQQAABBIJRgIA3GFeNMSOAQCAJEPAG0mowFgQQQAABBBBAAAEEEEAAAQTCTICAN8wWnOkigIDlAgS8lpPSIQIIIIAAAggggAACCCCAAAIIuCtAwOuuFPUQQAAB5wIEvDwZCCCAAAIIIIAAAggggAACCCDgNwECXr/Rc2MEEAgRAQLeEFlIpoEAAggggAACCCCAAAIIIIBAMAoQ8AbjqjFmBBAIJAEC3kBaDcaCAAIIIIAAAggggAACCCCAQJgJEPBat+D379+3rjMnPSVIkCBe+6dzBBDwToCA1zs3WiGAAAIIIIAAAggggAACASWQJGFyuXXvRryNKTI4ui8EPPFGHLYdE/Bas/T6M5oiSWqJr4j37r3bcvf+Hbl775Y1A6YXBBCwTICA1zJKOkIAAQQQQAABBBBAAAEE/CeQ5KEU0qb4B1Iua4t4GcTCAyNl4cGRBLzxohvenRLwWrP+GvBWyt5GOpYeY02H0XpZeWyyzNzdV+7cJ+CNF2A6RcAHAQJeH/BoigACCCCAAAIIIIAAAggEioAGvO1KDJPy2VrGy5AW7B8u8w8MJ+CNF93w7pSA15r1J+C1xpFeEAhGAQLeYFw1xowAAggggAACCCCAAAIIRBMg4OWRCFYBAl5rVo6A1xpHegkNAT1OKFmyZHL9+vXQmJCLWRDwhsUyM0kEEEAAAQQQQAABBBAIdQEC3lBf4dCdHwGvNWsbygHv3PmLJEuWrAbq3PlzUv+JWnGiTZw0WUqVKmPq3Jf7UqFsSblz5475vu4T9WTIB8Octr906W+pVaOK/Vq9+g1l4KAPotTV/m7cuCHXrl6T8+fPybq1a+SLzyfKrVtxH13hOAdbh3fu3jHtLly4IEcOH5Kvv5wiu3fvinNujmPq3+9dWTB/nssHKEWKFLJqzUaX9WwVDh06KG1bP+V2/YGDh0q9eg3crv/iC8/JhvXrnNbP/ngOmT1nvv3awoXzpd/777jV95P1Gkift96RTP/NbMJds/7375uQ9/Llf2TTxo1mrXbu2G6urYhYKylTpnKr7+iVOjzbWvbt2+tV2/hoRMAbH6r0iQACCCCAAAIIIIAAAgg8YAEC3gcMzu0sEyDgtYYylAPevQeOyiOPPGKH+t/LL8rsWd87hcuWLbusWb85yrW8ubLJzZs3zWedu3aXvv0GOm2rIXCuxzPbr3Xv0VPeea+vywW6d++eCSyf79FFLl265LR+9DnE1un5c+dk5IgP5dvp05xWcRzT0CGD5JMJ412OL3WaNLJrz0GX9WwVdAylSxZxu/7M2fOkbLnybtd/qXdPmTtnttP6o8d8JM1b/hsua5ieL3f2OPtOkiSJLFseITly5nJrDN99+428+fr/5Ngvv0qiRIncahO9Uod2rSUiYoVXbeOjEQFvfKjSJwIIIIAAAggggAACCCDwgAUIeB8wOLezTICA1xrKcAp4z579Q8qWKuYU7qtvvpNq1WpEueYY8GoAbAsQX/nf66behb/+ki+/nCz//POPTP78M3tbxzD111/PyOlTpyRp0qSSOnVqeeSRlJIuffoo55KfO3dWqlYq5/RYAFvAq2Hw5k0bJWHChKaPlKlSSurUaUR32TqW9999S76cOjnGHH0NeDUw/eXEiTgfugP798nLL/Vy+8F0DHiPHT0it29H7paOrbzx+iuya+cOp5edBeE9unWWJYt/jLW/xctWSMGChezXdR3U+Mjhw1KocGHJnTuPZMmaTTQI1rJwwTzp9Xx3+e77OZImTdoY/ebKnVsSJ05sPj944IDT+77Qq7vpP1AKAW+grATjQAABBBBAAAEEEEAAAQR8ECDg9QGPpn4VIOC1hj+cAl4V69q5g/y0bEkUPN2punP3gRgvg3QMeB0bnDxz1nyrf2rv7NgHV2GqhrI9nu8lzz3/ggl+tZw6dVKqVS4vGuQ6FltweeXKFSmUP+ZO0zJly0mft96V0mXK2pu99OLzMveHOVH6cTUmZ0+T4w7eLZs3Scvmja156P6/F8eAt0SxgiYw96ZUrFRZvp0RubNXg9X8BQqYr7dv2yrNmjg/AqJo0WKyYNEyU+/atWtSu0YV0TA+etGduu/1HSDtnu1gwmINeGMrEWs2SI4cOc3xDo9nfcybqTzwNgS8D5ycGyKAAAIIIIAAAggggAAC1gsQ8FpvSo8PRoCA1xrncAh4T58+JZky/df8Wb0GqVUq/huGquKYcROkWfMWJpjTM23z5stvcOMr4LWtXK7ceWTx0p/tIe+OHdulaaN6URbWVcBrqzzuo0+lSdNm5ludh4axW7f8e+REKAe833w7UypXqWrmXrtmFZm3YInZ2axhuR7T4Oyc47ffed+E7Fo+/+xTGTgg7iM19KgP3TGtz1JshYDXmv8m0QsCCCCAAAIIIIAAAggggICHAgS8HoJRPWAECHitWYpwCHhPHD8mO3fskGYtWhq0Z55ubn9Zl/75/f5Dx82f1q9Ysdz86X2JEiVNvfgOePUe+fMXkB+XLLef6VqpfGk5c+a0fXHdDXi1wZSvvpGaNWubttF33IZqwJsgQQI5cvy0Wb8/z5+XUiUKy/iPJ0rjJk2Nw6CB/WTSxE9i/LAMGzFaWj3TxnyuO7p1Z7evhYDXV0HaI4AAAggggAACCCCAAAIIeCVAwOsVG40CQICA15pFCJeAt0mjerJzz0Fzhq3u0q1dM3LH5zvv9pXuz/U0u141XP3400kPNODVMcyaM1/0qAUt+pK0Pm+8al9cTwLe9OkflW0795q2uns1R7ZM9n5CNeBt3aadDB020sxzyheTpF/fdyVP3ryyfMUa89mJE8elepUKMX5Y2rR9Vj74cIT5XHf4Nm/SQPbs2e3TDxUBr098NEYAAQQQQAABBBBAAAEEEPBWgIDXWzna+VuAgNeaFQiXgLd61Yoy5ctpUrNWHQPXqH5dE+jp7t2HH37YvuN17oLFDzzgfe2NPvJi71fMuKKfG+tJwKvtDx+LfKGblnKli8sff/xuvvY14NU+7tyJ+yVov5w4LrVqVHH7wXQ8g9dV39rpc927xDg/eelPEfYzd0sVLyx//nne3H/bjr2S/tFHzdeOn9sGp0a79x2WZMmS2cerL+HTl7ht3rxJVvy8XPTFb54UAl5PtKiLAAIIIIAAAggggAACCCBgmQABr2WUdPSABQh4rQEPp4A3c+Yssm7jVvMyNQ13582dI+++189A6tmtRw4fFn8EvMVLlJR5CxabcUQ/I9jTgHdFxFrRs321PNumlaxeHWG+tiLgdfXEnT93TkqXLOKqmv26Y8DrTqOXeveUuXMiX6amJWXKlCak1fU8efIXqVopche0ln4DBkunzl3N11OnfCF933s7xi1q1a4rEydNNsc7OCsaOmtoPWXy5zLt6y9dDpGA1yURFRBAAAEEEEAAAQQQQAABBOJDgIA3PlTp80EIEPBaoxxOAa+KOR6HcPPmTbPbdf/+fVKvbk0D6o+AN1u27LJmfeQL0fT8XT0qwlY8DXiXLFspBQoWNM07tGstERErzNe+Brx///23rFm9Ks6HTo++GDsm8rgEd4pjwPvz8mVy7dr1OJuNHjU8yq5ax53PQ4cMkk8mjLe3dzyu4uKFC1K8aAGnfWu9ocNGSMVKVcyL2WIrui6NGjwhF/76K9Y6BLzurDp1EEAAAQQQQAABBBBAAAEELBcg4LWclA4fkAABrzXQ4Rbw5sufX5YtjxpUtmjWSLZuiQxY/RHwdujYWQYM+sDcX3cWN6wXeYyEFk8DXt3RmipVKtO2auXycvKXE+ZrXwPe6C9ts+Lpcwx4SxQrGGd46ux+m7bulMceizxn+OmWTUUDe8cy9avpkiZNGvNR/Sdqyb59kecTx1ayZs0mVapWk3LlK0rRokXl8Rw5zZnNtrJjx3Zp2qherO0JeK14KugDAQQQQAABBBBAAAEEEEDAYwECXo/JaBAgAgS81ixEuAW8quZ4bmv0l3D5I+Cd8OkkadCwsVnQeXN/kN4vPGdfXE8CXg0jj5/8zRxZoOuqL1nTf7WEWsCb/fEcsnrtRrd/CJYuWSTdu3Zyu75W1CMgBn8wXBo3aWpvp6b6AjtnhYDXI14qI4AAAggggAACCCCAAAIIWCVAwGuVJP08aAECXmvEwzHgLVO2nDmqQUunDu1kxc8/2TEfdMCbJEkS2bJ9j6ROndqMIfpOU08C3i7desj7fQeYfg7s3y9P1q1hn1eoBbyjx3wkzVs+5fYPwY0bNyRf7uxu13esqC/isx3fYDurmYDXK0oaIYAAAggggAACCCCAAAIIxIcAAVQIxQ8AACAASURBVG98qNLngxAg4LVGORwDXpWrXKWqPJTwIVm1amUUyAcd8C5fsVry5M1nxvDHH79LudLFo4zH3YC3Zq06Mnnq12b3rpaez3WVHxcuCNmAd9/BY/Kf//xHbt++bY5niK0MGz7K7tujW2dZsvhHU1VfbHfs6BG5fPmyyx8k285crVimZFE5d+6s0zbs4HVJSQUEEEAAAQQQQAABBBBAAIH4ECDgjQ9V+nwQAgS81iiHa8Abm96DCnj1iIFxH30ixYuXMEPRdWjwZO0Y58S6Cng10H22fUfp23+QJEqUyPSl5wnrucKOJZR28FasVFm+nTHbTG/9urXSulWLWH8YWj7VSkaOHmeu79i+TZo2rm++njt/kRQuUlS++Hyi6AvabEdZRO+oZKnSMmfuQhOcX716VQrmyxnrvQh4rflvEr0ggAACCCCAAAIIIIAAAgh4KEDA6yEY1QNGgIDXmqUg4I3qGFvAq+fbpk//qKm8Zftu8++Rw4ekzTNPya3bt+TvixftHTmGqStX/iwrf14uyZIll0z//a9kyJBBihQtJtmy/XtcgK7BwAF95YtJE2Msqi3gvXXrlgwa0FcSJEwo6dKlMy8Xy5w5i+hxE3rMg62cPfuH1Kha0YSRjsVxTPrCtI0b18f6AOkZs6NHDpdUqVPLrj0HTT3dtTrju+lxPnS/nDghs2bOcPvBdHzJ2pTJn8uVK3Hvpv3m66/k999/k+nfzZJKlauY+3Ro11oiIlbEek8NZo+eOGPCb52XHtOglhrwlihZyrS7cuWKRKz8WbZs2SyrIlbKn+fPmV2/nTp3k4aNGttftKYmY0aPiPVeBLxuLz0VEUAAAQQQQAABBBBAAAEErBQg4LVSk74epAABrzXaBLxRHWMLeDt16Sb9+g9yiq7HBOTOkcV+zTFMdbVKly5dkpde7CkrVyx3WtUW8LrqR9dRj5vo1L6t05eAeTImvVfeXNkk+cMP2wNeV/fX6+fPnZPSJYu4U9XUcQx43Wn0Uu+eMu+HOXLk+GlJnDixXLt2TQrkzeGy6Xffz5EKFSuZeoMH9pfPJk4wu3JLlS7jsq2twooVy41tXIWA121OKiKAAAIIIIAAAggggAACCFgpQMBrpSZ9PUgBAl5rtMMh4D1+7KjUqBYZ8Lkqjjs78+TManZ7aunYuav0HzDYafPoAa/jy86iN9BdpLpjVM9/HTNqRJy7T7VtbAGvrpve96+//pQli36U0aOGi4bFsZW4xuSsjc49efLksnvfYVdk9uu6y1fPqHW3OAav7rTp/cJzptq4jz41/y5dski6d+3ksqmeTzzly2mmnu66rl2zqiRNmlTate8orVu3ldx58trPLo7eme6IfuvN1+Xn5ctc3mflqnWSM1duc9zD41kfc1k/ECokSJMmzf1AGAhjQAABBBBAAAEEEEAAAQQQ8F6AgNd7O1r6V4CA1xr/UA54rRGil3AQyJTpv5I3bz7JkSuX3Lt7V3bt2in79u6RO3fuhPT0CXhDenmZHAIIIIAAAggggAACCISLAAFvuKx06M2TgNeaNdWAt0yWZvJU0X7WdBitl/Unv5MfD4ySO/cjd8JSEEAgcAQIeANnLRgJAggggAACCCCAAAIIIOC1AAGv13Q09LMAAa81C6ABb9JEKUQkfv5Q+969u3L//l3R/6EggEBgCRDwBtZ6MBoEEEAAAQQQQAABBBBAwCsBAl6v2GgUAAIEvAGwCAwBAQSCWoCAN6iXj8EjgAACCCCAAAIIIIAAApECBLw8CcEqQMAbrCvHuBFAIFAECHgDZSUYBwIIIIAAAggggAACCCDggwABrw94NPWrAAGvX/m5OQIIhIAAAW8ILCJTQAABBBBAAAEEEEAAAQQIeHkGglWAgDdYV45xI4BAoAgQ8AbKSjAOBBBAAAEEEEAAAQQQQMAHAQJeH/Bo6lcBAl6/8nNzBBAIAQEC3hBYRKaAAAIIIIAAAggggAACCBDw8gwEqwABb7CuHONGAIFAESDgDZSVYBwIIIAAAggggAACCCCAgA8CBLw+4NHUrwIEvH7l5+YIIBACAgS8IbCITAEBBBBAAAEEEEAAAQQQIODlGQhWAQLeYF05xo0AAoEiQMAbKCvBOBBAAAEEEEAAAQQQQAABHwQIeH3Ao6lfBQh4/crPzRFAIAQECHhDYBGZAgIIIIAAAggggAACCCBAwMszEKwCBLzBunKMGwEEAkWAgDdQVoJxIIAAAggggAACCCCAAAI+CBDw+oBHU78KEPD6lZ+bI4BACAgQ8IbAIjIFBBBAAAEEEEAAAQQQQICAl2cgWAUIeIN15Rg3AggEigABb6CsBONAAAEEEEAAAQQQQAABBHwQIOD1AY+mfhUg4LWO//79+9Z15qSnBAkSxGv/dI4AAt4JEPB650YrBBBAAAEEEEAAAQQQQCCgBAh4A2o5GIwHAgS8HmDFUVXD3dQPJ7amMye93L57T+7cvS+37sZviBxvE6BjBEJYgIA3hBeXqSGAAAIIIIAAAggggED4CBDwhs9ah9pMCXitWVENeNuVyyLj2xS1psNovXy+5qS8O/cAAW+86NIpAr4JEPD65kdrBBBAAAEEEEAAAQQQQCAgBAh4A2IZGIQXAgS8XqA5aULAa40jvSAQjAIEvMG4aowZAQQQQAABBBBAAAEEEIgmQMDLIxGsAgS81qwcAa81joHYS5IkSeTOnTty7969QBweYwoAAQLeAFgEhoAAAggggAACCCCAAAII+CpAwOurIO39JUDAa418OAW84z+eKBUqVDRw9+7fk1rVK8vly5djhaxXv6EMHPSB29DNmzaUU6dOysDBQ6VevQYx2t26fUuuXrkiO3fukDGjRsivv55x2ne/AYOlYcPGTq9t2LBeXuzVw+m1DBkyysDBH0i+/AUkY8bH5OGHHzb1bt++LZf/+UfWrVsrw4d9ICd/ORHnnJavWC2pU6cxdU6fPiXNmsSci9soVAxoAQLegF4eBocAAggggAACCCCAAAIIuCdAwOueE7UCT4CA15o1CZeAV3ezHjp6UhImTGiHGzd2lIwc/mGskN179JR33uvrNnSj+nVl9+5dMnP2PClbrrzLdj/MniUvv9QrRr1vZ8yWipUqO21/9MhhqVWjSoxrPXv1lldff1MSJUrk8r4aQlepWNZpvZq16siUL6dFuVa7ZhU5cviwy36pEHwCBLzBt2aMGAEEEEAAAQQQQAABBBCIIUDAy0MRrAIEvNasXLgEvM7C2t9//03KlynhVsB74a+/5Ny5c3Gid2zfRrRPx4B3x/ZtcvPmTXnooYckderUkjlLVvvOWu3s66+myrtvvxml38pVqkrpMmWlRMlSUr16TXNtx47tErHyZzl44IAsWfxjlPrTpn8vVapWs3929uwfsnXLZtm1c6dkypRJihQtJrnz5DX3t5XsWTI6nYuzcHr+vLmx7hq25imkF38JEPD6S577IoAAAggggAACCCCAAAIWChDwWohJVw9UgIDXGu5wCXgj1myQHDlyis73t99+lcyZsxhA3cmqO1qdFcdQeOiQQfLJhPFuoTuGpCWKFRQNhx2LHsHQqXNX89G1a9ekQN4cTvtt9UwbGTZitLk24eNx8uEHg2PUq1Gztkz96hvzuc5Nx+isnl7v1uN5ebPPO5I4cWJxFvDq7l/d5az/njt3VtKnf9TseL569aoUzJfTrblTKbgECHiDa70YLQIIIIAAAggggAACCCDgVICAlwcjWAUIeK1ZuXAIePVs2i3bdxuwvXv3yI8L5subb71jvp81c4a8+kpvp5jxFfDqzbZu3yOPZshg7lumZFETqEYvrgLeBAkSyK69hyRVqlSm6fAPP5CPxo+J88FImTKlvPt+f3njtVdi1OvQsbMM+P8zhz/+aKyUK1fB7CTW0qFda4mIWGHNQ0cvASNAwBswS8FAEEAAAQQQQAABBBBAAAHvBQh4vbejpX8FCHit8Q+HgFdfeta+QycD9r+XX5RFPy6QA4dPiAak+pK1wgVyO8WMz4BXX2SWJ28+c199idn2bVtjjMFVwNuseUsZM+5j0053CetuYV/Kioi1kit3HrMTuGihvFKxUhWZOGmy6XLjhvXS6qlmvnRP2wAUIOANwEVhSAgggAACCCCAAAIIIICApwIEvJ6KUT9QBAh4rVmJcAh4d+4+IGnSppXbt29LnpxZTYD545LlUrhwEYP4zNPNZcP6dTFA4zPgtY1Jb5o3VzZzTm/04irgHTTkQ3m2fUfTzJ3du3E9MeqjY9Jy5PAhqV2zqvn68LFTkjRpUrlz546xu3fvnjUPHr0EhAABb0AsA4NAAAEEEEAAAQQQQAABBHwTIOD1zY/W/hMg4LXGPtQD3iJFisrCxT8ZrLVrVkvb1k+Zr1u0fFpGjYk8U9fxc0dVx4D3xo0bcu3qVafoly79LdWrVrRfc3UGr+NRCHG96M1VwDtrznwpU7acuW/rVi1k/bq1Xj8U77zbV7o/19O0f//dt+TLqZE7d7+Y8pXUrvNEjM+9vhENA0qAgDegloPBIIAAAggggAACCCCAAALeCRDweudGK/8LEPBaswahHvBO+mKq1H2iXowQVI9nOHL8tHnhmOPOXkdVx4A3Lm3d3Zrr8cz2Ko4Bb49uneWvv/6UlClTyeM5ckjjJs2kePESpq7ad+rQTlauWO60e1cB7+ZtuyRjxsdM2/x5Hpfr1697/VDYzgTWHbo6F9tO3eIlSsq8BYtNv0ePHJZaNap4fQ8aBp4AAW/grQkjQgABBBBAAAEEEEAAAQQ8FiDg9ZiMBgEiQMBrzUKEesBrO2LgypUrUih/riho07+bJZUqRwaW+tKxGd9Nj3LdMeA9f+6cnHXyIjRtcPHCBWnX5ml7W8eAN7ZV0ja6m3jfvr2xLqSrgNfxmIcc2TJ5fXxCnrx5ZfmKNWYcWzZvkpbNG0cZ0+59h82L3PRZKV60gPx98aI1Dx+9+F2AgNfvS8AAEEAAAQQQQAABBBBAAAHfBQh4fTekB/8IEPBa4x7KAW+9+g3l08++MFD6ErP+/d6LglahQiXp8/a75rODBw7IE3WqR7luxRm8sa1SzeqV5djRI3EuoquAd9HSn6VQocKmjyaN6snOHdu9eig+mvCZNGrcxLQdPWq4RKxcEaWft95+T8pXiDyCYuInH8uQwQO8ug+NAk+AgDfw1oQRIYAAAggggAACCCCAAAIeCxDwekxGgwARIOC1ZiFCOeCdO3+RlChZyi0odShSMI9cvnzZXt+KgLde3Zpy4cIF0+fnU74SPRNYyz///COVypcy/8ZWXAW8Y8d/Ik2bNTfNBw3sJ5MmfuLWXKNXOnD4hDz88MNutdWdzKVLRr6cjhL8AgS8wb+GzAABBBBAAAEEEEAAAQQQEAJeHoJgFSDgtWblQjXgTZIkiRw6elISJkzoNtS4saNk5PAP7fWtCHhLFCsoF/76y/SpY1q/cZs8miGD+f706VNSpWJZc/SBs+Iq4O3ctbv07TfQNN27d480eLK223O1VaxZq45M+XKaR+1q16wiRw4f9qgNlQNTgIA3MNeFUSGAAAIIIIAAAggggAACHgkQ8HrEReUAEiDgtWYxQjXg7fFcL3n73fcN0ry5P8jUKZ87BdOXlNmOcfj999+kfJnIF6BpsTrg1T4feyyTrF63SZImTWrusWH9Onnm6chduNGLq4A3c+Yssm7jVtEXxmnp1qWjLFsa+UK0uErFSpVl/bq1psqsOfOlTNly5uuXe/eSkyd/iXUsz7Rua67NnzdXXuzVw9VtuB4EAgS8QbBIDBEBBBBAAAEEEEAAAQQQcCVAwOtKiOuBKkDAa83KhGrAqyFq9uyPG6QyJYvKuVhekKbXd+zaL2nTpTN1dUftqVMnzdfxEfBqvyVLlZY5cxfag9lpX38p77z1RowFdRXwaoMhQ4dL23btTdtr165Jx/ZtZNPGDU4fjixZsprdunnz5ZfsWTJKokSJ5Mjx02aXsx4VoUdUxFb0JWu79h4yY7569aoUzJfTmgeQXvwqQMDrV35ujgACCCCAAAIIIIAAAghYI0DAa40jvTx4AQJea8xDMeDNkCGjbNm+2wCdOXNaKpUvHSfWwMFDpX2HTqbOnFkz5ZWXXzBfx1fAq307hrf6fd/335GpkyN3GSdPnlweeSSlNGve0r4L+euvpsq4MaPk+vVrUc4J1sBVg1cNYG1l+U9LZf68H2T16lWSJXMWqVK1upQtX16qVathP7JCA96OnbtK/wGDTbNZM2fIq6/0jtNpRcRayZU7MgTu2L6trFyx3JqHkF78JkDA6zd6bowAAggggAACCCCAAAIIWCdAwGudJT09WAECXmu8QzHgdQxsR48cLmNGj4gTS49N2LR1p6mjL1krXCC3+To+A17tv//AIdKxUxdzL12HDu1ay6pVK+XbGbNFj1FwVo4cPiS1a1aNcilP3rwyeeo0yZYtu1sPxe3btyV3jiziGNhWr1pRThw/Fmf7Lt16yPt9B5g6mzdtlKdaNHHrflQKXAEC3sBdG0aGAAIIIIAAAggggAACCLgtQMDrNhUVA0yAgNeaBQnFgFd37+ouXp2bHjugoa2rsn7TNtEzbbU0ql9Xdu/eJY6B5uCB/eWziRNcdWOuf/f9HKlQsZL5unjRAnLxwoVY282Y+YOUr1DRXNfgtXTJIjLhk0lSqXIVp22cBby2it16PC8vvfyqPPLII07b6sve5v4wW0aNHCY3b96Uw8dOmSMXzp87Z+7rqji+uM4WErtqw/XAFiDgDez1YXQIIIAAAggggAACCCCAgFsCBLxuMVEpAAUIeK1ZlFAMeK2RCd5eNLQtXLiIOes3QcKEcvrUKdm8aYNbQXfwzpqReyNAwOuNGm0QQAABBBBAAAEEEEAAgQATIOANsAVhOG4LEPC6TRVnRQ14W5TIJAOaFrCmw2i9fLv5jAxfelRu3b0fL/3TKQIIeC9AwOu9HS0RQAABBBBAAAEEEEAAgYARIOANmKVgIB4KEPB6CBZLdQ14UyRNZE1nTnq5e++e3Ll3X+7ei7db0DECCHgpQMDrJRzNEEAAAQQQQAABBBBAAIFAEiDgDaTVYCyeCBDweqJFXQQQQCCmAAEvTwUCCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggIDHAW/BgoWkVeu2Ru7ggf3y7fRpKCKAAAIIIIAAAggggAACCPhZgIDXzwvA7b0WIOD1mo6GCCCAgBHwOODtP3CIdOzU5f8D3gPyRJ3qUCKAAAIIIIAAAggggAACCPhZgIDXzwvA7b0WIOD1mo6GCCCAgHcB78jR46TlU61M45+WLZGunTtAiQACCCCAAAIIIIAAAggg4GcBAl4/LwC391qAgNdrOhoigAAC3gW8Xbr1kPf7DjCN165ZLW1bPwUlAggggAACCCCAAAIIIICAnwUIeP28ANzeawECXq/paIgAAgh4F/BmyZJV1m3cahpf+OsvKVGsIJQIIIAAAggggAACCCCAAAJ+FiDg9fMCcHuvBQh4vaajIQIIIOBdwKuttmzfLRkyZDQdVK5QRk6fPgUnAggggAACCCCAAAIIIICAHwUIeP2Iz619EiDg9YmPxggggIDnL1lTs6JFi8mCRcsM39Ejh6VWjSpQIoAAAggggAACCCCAAAII+FGAgNeP+NzaJwECXp/4aIwAAgh4HvBWrVpdGjdtJvUbNJIUKVIYwoiIFXL+3Dm3OIcOGSR//nnerbpUQgABBBBAAAEEEEAAAQQQcE+AgNc9J2oFngABb+CtCSNCAIHgEkiQJk2a+54MeczYj6VZi5aeNIlSt3WrFrJ+3Vqv29MQAQQQQAABBBBAAAEEEEAgpgABL09FsAoQ8AbryjFuBBAIFAEC3kBZCcaBAAIIIIAAAggggAACCPggQMDrAx5N/SpAwOtXfm6OAAIhIOBxwFurdl15utUzXk+973vvyB9//O51exoigAACCCCAAAIIIIAAAgjEFCDg5akIVgEC3mBdOcaNAAKBIuBxwBsoA2ccCCCAAAIIIIAAAggggAAC/woQ8PI0BKsAAW+wrhzjRgCBQBEg4A2UlWAcCCCAAAIIIIAAAggggIAPAgS8PuDR1K8CBLx+5efmCCAQAgIEvCGwiEwBAQQQQAABBBBAAAEEECDg5RkIVgEC3mBdOcaNAAKBIuBTwFu8REl57fU+ki17dkmf/lFJmjSpnD37h1QsV8o+vy+nfSvp0qU3348bM0qWLV0cKHNnHAgggAACCCCAAAIIIIBAyAgQ8IbMUobdRAh4w27JmTACCFgs4FXAmyJFCvl88ldSsVLlGMO5fPmyFC6Q2/75pC+mSt0n6pnvD+zfL0/WrWHxFOgOAQQQQAABBBBAAAEEEECAgJdnIFgFCHiDdeUYNwIIBIqAVwHvzNnzpGy58k7nED3gTZkypezae0gSJkwo9+/fl3y5s8vNmzcDZf6MAwEEEEAAAQQQQAABBBAICQEC3pBYxrCcBAFvWC47k0YAAQsFPA54GzVuIh9N+Mw+hJUrf5Yxo0bIq6+9KVWrVZfoAa9WXLT0ZylUqLBp81z3LrJ40UILp0BXCCCAAAIIIIAAAggggAACBLw8A8EqQMAbrCvHuBFAIFAEPA54v/5mhglytYwbO0pGDv/QfD316+lSo0YtpwHvoCEfyrPtO5p6Y8eMlFEjhgXK/BkHAggggAACCCCAAAIIIBASAgS8IbGMYTkJAt6wXHYmjQACFgp4HPBu2b5bMmTIKDdu3DDHLdhKXAHvk/UayMRJk03VHxfOl57PdbNwCnSFAAIIIIAAAggggAACCCBAwMszEKwCBLzBunKMGwEEAkXA44D3yPHTkiRJEjl9+pRUrlDGrYC3dJmyMvuHBabu0iWLpHvXToEyf8aBAAIIIIAAAggggAACCISEAAFvSCxjWE6CgDcsl51JI4CAhQIeB7w7du2XtOnSyblzZ6VMyaL2oUz56hupWbO20yMaunTrIe/3HWDqjh45XMaMHmHhFOgKAQQQQAABBBBAAAEEEECAgJdnIFgFCHiDdeUYNwIIBIqAxwHvnLkLpVTpMnLv3j0pmC+nXL9+3cwlriMalv4UIfkLFDD12rd9RlatWhko82ccCCCAAAIIIIAAAggggEBICBDwhsQyhuUkCHjDctmZNAIIWCjgccDbr/8g6dQl8gzdlSt/lo7Ptokz4G3avIWMHTfBPuTCBXKbXb4UBBBAAAEEEEAAAQQQQAAB6wQIeK2zpKcHK0DA+2C9uRsCCISegMcBb8qUKWXrjr2SNGlSo7F+3Vrp2rm9fPzpJKlRo5b9iAY9p3fk6PHSuElTu9qSxT9Kj26dQ0+RGSGAAAIIIIAAAggggAACfhYg4PXzAnB7rwUIeL2moyECCCBgBDwOeLVRvfoN5dPPvohCeP/+fUmQIIH57OrVq5IiRYoo12/evClFCuYR/ZeCAAIIIIAAAggggAACCCBgrQABr7We9PbgBAh4H5w1d0IAgdAU8CrgVYoXe78iL//vNUmUKJFLmUuXLkm3Lh1k08YNLutSAQEEEEAAAQQQQAABBBBAwHMBAl7PzWgRGAIEvIGxDowCAQSCV8DrgFennCZtWpnwySQpU7acJE6cOIaC7tZdMH+uvP7qy+albBQEEEAAAQQQQAABBBBAAIH4ESDgjR9Xeo1/AQLe+DfmDgggENoCPgW8jjR6Nm+p0mUlR86ccvDAftm2dQvHMYT2s8PsEEAAAQQQQAABBBBAIIAECHgDaDEYikcCBLwecVEZAQQQiCFgWcCLLQIIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJWBLwZn88h6RLl86tQe3csZ3zeN2SohICCCCAAAIIIIAAAggg4L4AY5WVAAAAIABJREFUAa/7VtQMLAEC3sBaD0aDAALBJ+BVwJsoUSJ59fU35dn2neSRRx7xaNatW7WQ9evWetSGyggggAACCCCAAAIIIIAAAnELEPDyhASrAAFvsK4c40YAgUAR8DjgTZgwoazdsEUyZ87i1RwIeL1ioxECCCCAAAIIIIAAAgggEKcAAS8PSLAKEPAG68oxbgQQCBQBjwPefgMGS6fOXaOM//bt23Lz5k3Rf12VZ55qJgcPHnBVjesIIIAAAggggAACCCCAAAIeCBDweoBF1YASIOANqOVgMAggEIQCHge8G7fskEyZ/mumeunSJWn7TEvZs2d3EE6dISOAAAIIIIAAAggggAACoSNAwBs6axluMyHgDbcVZ74IIGC1gMcB76GjJyVZsmRmHE+3bCqbNm6wekz0hwACCCCAAAIIIIAAAggg4KEAAa+HYFQPGAEC3oBZCgaCAAJBKuBxwLt732FJlSqVmW6uxzPLnTt3gnTqDBsBBBBAAAEEEEAAAQQQCB0BAt7QWctwmwkBb7itOPNFAAGrBTwOeOfMXSilSpcx42jb+ilZu2a11WOiPwQQQAABBBBAAAEEEEAAAQ8FCHg9BKN6wAgQ8AbMUjAQBBAIUgGPA97X3ugjL/Z+xUz3hzmz5eXePYN06gwbAQQQQAABBBBAAAEEEAgdAQLe0FnLcJsJAW+4rTjzRQABqwU8DniTJk0qO3YfkBQpUsi9e/ekSsWycubMaavHRX8IIIAAAggggAACCCCAAAIeCBDweoBF1YASIOANqOVgMAggEIQCHge8Osc6dZ+Uzyd/aaZ78uQvMmniJ5I4SRK3pj9zxrdy+fJlt+oGU6XkyZPL9evXg2nIjPUBCKRJm1YuXrjg1Z18afvII4/IzZs35datW17d29tGet8UKf4jf/zxu7ddeN0uS5ascu36Nbnw118e95E+/aPySMqUcuL4MY/bagNf1sqrG9IIAQQQQAABBBBwIkDAy2MRrAIEvMG6cowbAQQCRcCrgDdBggSyc89BSZ06tcfzaN2qhaxft9bjdoHWoEzZcvK/V9+QHDlzioZDiRMnNkO8ceOGXLx4QebNnSMfjx8r//zzj9+GnjVrNkmbLp1cuXJFjh094rdxBNuNW7R8Wt56+z2ZM3umDBk8wAx/4qTJUqpUGencsZ3s3r0rzikNHTZSatWuI48+mkH0Z+X27dvy+++/yeQvJsmULybF2bbdsx2kx/O9JFOm/5pn6v79+3L+/DlZvSpCXn2ld5xtixYtJsNHjpVs2bPLww8/bOpeunRJDh08IN26dpS/L150ayleff1N6dS5m5w+fUrq1a0ZZ5uSpUrLc8/3knLlK0rKlCklYcKE9vrXrl2TpYsXSf/+73kUcufJm1e+/maGJHookWzevFF6Ptctxhg0SO75Qm+pV7+hsUqWLJm9jpppUDtq5DBZMH9erOOvWKmyfDh8lGgw7Dhu/XmZ9vVU+fCDweavFGIrvqyzWwtBJQQQQAABBBBAwEMBAl4PwageMAIEvAGzFAwEAQSCVMDjgFePaFi89GfJlTuPV1MO9oA3SZIkMv7jT+XJeg1czl+Dph8Xzpdez3d3WTc+KqzdsEU05L169aoUzJczPm4Rkn1+9/0cqVCxkowaMUzGjhlp5njk+GnRtVdH9XRWNCSct3CJaNAaW5k65Qvp+97bTi+/935/6dr9uVjbHti/XxrWryN37tyJUUd31X/2+ZQoQaVjJd01r2GthrZxFd2JumbdZtEAVX85UaRg3D/nv5z+w4TYcRW9d5VKZd0KeVOnSSPrNmyV//znP6bL48eOSo1qlWJ0P3L0OGn5VCuXz9/HH42VYUOHxKg3+INhomF6XOXcubNSoWzJGN6+rrPLQVMBAQQQQAABBBDwUoCA10s4mvldgIDX70vAABBAIMgFPA54X/7fa/LK/163T1tDzL/+/FMuX7ksN2/cdMnRvVsnOfnLCZf1ArGCBjvbd+2XNGnS2Id38MAB2b17pxw8eEDy5y8ghYsUlVy5cosG4VrOnv1DypaKPfCLz3kS8Hqnu/fAURNwVipf2pwvreu6dHmECSiLFy0Qa6fjP54ojZs0Ndd1F+gPc2bJzh3bpWq1GtKocRN7+Ppy717mmmPRnaiffvaF+Uh3jf64cIFErPxZihQtJs1bPGV2x2r5adkS6do5ajCp52HrmG27UDesXydLliySVClTSbMWLSVHjshw/8/z56VUicIxxq+7cJ9p3VZy584jRYsVt+9G9yTg1Z3C27dvld27dpr/HpQqXVbqN2ho72vnzh3SpOGTcS6Ijl+f2cyZs9jruQp49b8/Bw7slz27d8m+vXskdeo00rRZc8mZK7e9j9o1q8iRw4ft3+svZ3RHthY9xuLb6dPMjt2LFy5K+46d5NlnO5qd71oiIlZIh3ato4zbl3X27omkFQIIIIAAAggg4J4AAa97TtQKPAEC3sBbE0aEAALBJeBxwKs7FIsXL2FmeerUSaldo4oJScKhDBsxWlo908ZMVY9ieLHXc7Js6eIYU0+UKJGMHD1emjRtJroLkIA3eJ4ODfZ27NoverxAgbw5zMDffud9c2zCihXLpVP7trFO5vCxUybY1yMZalarZH4+bKVBw0Yy4dPPzbeHDx2UOrWqRennxyXLpXDhIuaz6AGwHkGwet0ms4NY+86TM6s5usFW3ujztvR64SXzrR5J8ELPf3eM6+7aNes3m53cWho3fFJ27dwR5d79BgyWTp27xpiXOwHvkmUrZcrkSTLju+kx2mswvuSnlWaHr/685MudPc4HYfYPC6R0mbJR6sQW8Pbs1VtKlS4t77z1ptPzfh370l3YuhvbVhYsWmbfZf3M081FA3HHouG+vkhSj8hwfA5sdXxZ5+D5SWCkCCCAAAIIIBCMAgS8wbhqjFkFCHh5DhBAAAHfBDwOePcfOi66Y1BL/Sdqyb59e30bQZC0zpEzl6xctc7+5+h1a1eTQwcPxjl6DbgaNm4iI4YNNfXqPlFPypUrb14yN2b0CKdtu/foKRkzZpS9e/fE2OWpDYqXKCkdO3aRHLlySdq0ac1uyZMnT5ozf1f8/JPpU//M/oUXXpJn2rQzf+quf9I/dXJkuGgrc3+YLXv27LZ/r+Hh8z1fFD1bOGeuXHL1yhXZt3evGcOqVSudjrVN22fNbmUNMr+cOllq1a4rLVo+ZXaBXrl8RVav0vDvc3P+rJbsj+eQTp26SOmy5SR9+vRy5vRpmT3re7ODMq7ydKvWUr1GTSlQoKAkTZZMfjlxwoRy48eNjtFMd3927hJ5ZutXX001u8U1cK9WvaaULlNGbly/Id9M+0r+/PO801t27tpd+vYbKDt2bJemjeqZOhpiFihYUPq88WqsY9Vze0eNGW/q/zBntrzcu2eM/jVozZYtMuQsUayg/WVgqVKlkl17D5ln69dfz0jFcqVitHX85cI7b70h076OfMmhlm079kr6Rx81oW+ObJmihL96vXKVqvLNtzNNXV3L9m2fidK/rpvNTC+Ur1DRmLkT8Ma5cCKye99h0fnp2B7P+lis1R3np3PTX6RowBpbwOvqvh06dpYBgz4w1eb+MEdeevF5e5Ot2/fIoxkymO/1CApn52Rv3LLDnO2rJXuWjPa2vqyzqzFzHQEEEEAAAQQQ8FWAgNdXQdr7S4CA11/y3BcBBEJFwOOA1xYmKUCuxzM7PQ80VHAc5/H55C9FzznVokFqpw7tPJ7mD/N+FP1zeP0TfA3inJUDh0+YF2SdOHFcqlepYK+i4d+sOfNj7HB07OPvv/+WYoXzib486tsZs+Mc34SPx5mXSGnRM2OnfTvTBHHOypLFP8rzPbrGeOHUlu27JUOGjOZM2sOHD0mJEiVjNNdrVSuVk249npMez/Vyel6rnlPs7EVajz2WSb6dMSvKn9s73kCPHGjTumWUoF13TY/76FNT7b13+pgjMzQgdjwnVsM+Df1Mnff7y9P/vytbv0+ePLkJFnWN9JgFLbqjU9vrXO7evWs+mz1zhvTr+659OJ9M/FzqN2hkvu/WpaPTnd36Qi89CkHLG6+9Yt/1qsc3fDThM/P5vLk/SO8XYp7D67im0XcSnzxz1rTVIL18mcjd9dHLiVO/myMcXB0zoe127j5gfknga8Cr5+lqX2p38eJFKV4kv9OxdevxvLz7Xj9zbeOG9dLqqWZy9MQZnwJex/V4683XZPo3X9vvrS9wq1qtuvl+8uefSf9+78UYl+3M5ehHrPiyzk4nz4cIIIAAAggggICFAgS8FmLS1QMVIOB9oNzcDAEEQlDA44B32vTvpUrVyD8vjy3ICkEns3vXdq5nudLFnf5ZuKt5+xLwOgZLuiNXX5alAWe27Nnl0UczmPBOP9fQvWDBQjJ9xmxJnTq1PdjUgM2xjBj2gdkFmj79o6JBre38Vq136OABc5Zp3nz57J+vW7tG2jzTMkoftoDX8cNbt27JP5cumTNMbX3q7k3HgFVDxiRJk9p3gmv7J2pXN+cY24ruKNZdrRp2a9HwUo8W0OC1VOkykjFj5G5QPQKjTMmi9naOAW/0+9oqOQa8jsG9q/VzvB495Hc8EiC2X3w0bd5Cxo6bYLoZN3aUjBz+oflajxt48613zNfvvv2mfP3VVKdDsQW5uvO6Yb06po6u37adkbvoV6+KkGfbOn/xmG3XqjtHJfga8Gog3rRZC3np5VftO2Vff/Vl+X7GtzHmVbNWHZk89WvzfOgzXaViWbPb19uAV3e4t23X3oT6WpydO+x4XIbWWf7TUun9wvP2l+fpTvY+b0eG97oWuia24ss6e/J8URcBBBBAAAEEEPBGgIDXGzXaBIIAAW8grAJjQACBYBbwOODV4GT4yDFmzq7OJA1mmOhj33fwmDnuIK7dt67m60vAa9tRqC+zKle6mFy/ft1+Oz0yo//AIVK7zhNRdkm685I13emru0O1aACnQZyt6HECCxf/ZN/Zq6Gi47EOjgGvBsO9ez0nq1dHmOYaPOqRBLaAVkM7Paf1/Xffsp/ZPHrMR9K85VOmfvQ/ox87/hPzsiwten6qnqPqWPQlWfqyLC1933/HfgSFY8Cr1/TM2kU/LpSfly+VE8ePS6HCReTn5T+ZYFiL2qVNG/lCrXTp08u8BYvNzt1qlcubz/Slgs+27yhr16w2RzTYyoULf9kDQf3M8RcAjn/S7zjm6tVrypfTIkPOWTNnyKuv9DZfDxryobmHlp7PdTUvWHNWfjn9hwlC9cVv+gI4LXqkhu7s1rJwwTzp9fy/5+869rFu41bJkiXy7N64jkrQNt4GvJ26dJOXX3nN/GLBVvTnZeiQQTLx049jTClP3rzm+As9DkKPLalYrqT9uARPA94VEWslW/bH7S9105vpCxA7tm9jPyLEcQD63zBbCKyf6zg3bdwgJ0/+Yt9lrcekNG/SIMoZ476ss9NF5UMEEEAAAQQQQMBCAQJeCzHp6oEKEPA+UG5uhgACISjgccCrBo4hR6P6dWX37l0hSPPvlDRU03BNi+0YBG8m7G3Aq7tZNeDVEtef4Ucfk6uAV48jOHjkF9Mstj+h13ODJ30RuaN065bN0qJZ5DEEWmwBr4Zzepap44u/9Pr4jydK4yZNTd3oLw7Tz1KmTCl79h8x13ds3yZNG9c3X+vO3+MnfzNh5s6dO6RJw8ijMRyLmhw6etLU1fC1bevIoNgx4D2wf78806q5/B1t93Jsa2c7KmDL5k3SsnljU00D7iJFiprg29kOVFtftqNL4voFQLHiJWT+wiWmieOYv5jylQnntbRu1ULWr1vrdIi20FND/qKF8po6jmfCfvftN/Lm6/9z2nb5itWSJ28+cy1/nsej/IIgegNvA97BHwyTds92iNKdHrmgdo4vnNMKenzDug1bzS9NNITXl86dOH7M3tbTgNd2BIWtAzX65OPx8smEyHORnRU9ykOfF2dFw90GT9aOccmXdY51IFxAAAEEEEAAAQQsEiDgtQiSbh64AAHvAyfnhgggEGICHge8VatWly7de4juRtSiwaD+ibO7RXfzxfaCK3f7eND1HANWZ3/y7e54vA14tf8du/abYw+0aAD54dDB5t+4iquAt0LFSvLd95Fn0U6d8oX0fe9tp93ZzgWOfhyCLeCNLRzWP9H/32tvmD5j25lqC/Iczxx2DELXrF5ldoo7K33eeleSJk1qdl3qOb9aHAPe6C8jc7VOtt3MQwYNsO841RA5WbJkUjBfzig7dqP3tXPPQUmTJo39mAxn9ypUqLAsWvqzueQY8H71zXdSrVoN87kGy7Gtq7OAVwNVDVa1RD9OwHEMS3+KkPwFCpiP4ivg1TOqn+3QUVKmTCXZs2W3P68a/OsZzosXLTT311B+/aZt5iVmek1f+mbb+W0bs6cBr+74zpAhg3l5X+48ee3Hgxw7ekRqVo/coe5Yhgwdbo5y0KIhdLLkyaVYseJRjhLRoL1zx3ZRwnBf1lnvlTGX8zOSXT2bXEcAAQQQeLAC9+/fk2uXnL+Q1aqRPJwqg9N3E1jVP/2Ep8D182elZd53pHy2qEerWaWxYP9wWXF2mvwnrfP3iVh1H/oJP4Hbfx2Xj5/KLU8UinwZstXlhel7ZP4xkRSpH/Wq67PHdnjVjkYIIIDAgxLwOOAdM/ZjadbC+/+HIa4dig9q0t7c5/CxUyZMtJ1z600fvgS8egRDx05dotxWd4vqS6D0yIEB/d6L8qfkWtFVwKsvPXv73fdNn3Gd/bpxyw4Txun5unlyZrWPwVXAq3+y36//IFM/toDXFqA6Brydu3aXvv0Guk3sGDD7EvDqbmLdVWw7Yzn74zlk9dqNcb4gzDZIm3VcRyBUrlJVvvl2pmmyYP48eaFn5HEKI0aNlaeefsZ8rS/v0/N9nRXbLtU//vjdjFGLBsMaEGv5YfYsefmlXk7b6nEZeuSGltiOkLA19HYHb/Qb16vfUPTsaN2Jrc9OvtzZzVEIzZq3lDHjIo9sGD1quHw3/ZsYY9YjJfToBj2OokXTyF3j+gsGbe+q6C9klixbIbly5zFVP//sUxk4oK+9mePOcj2HWn8RoEWP63jt9T7SvmNnc28t58+dk9Ili9jb+rLO2gkBr6vV4zoCCCAQGAKX/v5NLmdLIXdzxU+I9dCR3+SRM9clVer46T8wFBmFPwQIeP2hzj2tECDgtUKRPhBAIJwFCHjdXH3dcZg5cxZTu1iR/G7/2b9j974EvNqPntXa6pk2ogFW9KJ/5j5+7OgoZ9W6Cng1RNUwVctz3bvYd1hG7ztizQbJkSNnjPOHXQW8HTp2lgGDPjDdxRbw2nYHOwa8GgprOKxF/9T+ypXLca7SsaNH7S8X8yTg1dAzTZq09r715WC2e+q/iRMnNmcIa2ir5/LaSoN6deTkLyeijGnBomVStGgx81lsAWqjxk3kowmfmTqffTpBBg/qb77WXc6621nLS717ytw5s53O1/aSNT1b9ok61U0dDW11HlqWLV1sXnzorGzetsu8mC56SO+srlUBr/at5wPrOcFabLuTHY+ViHNho110dsxHbO0zZMhojhDRcvzYUalRrZL5Wn929Jc1Gjrrz0zuHJE/045Ff5mhz7zu3NbieF9f1tmTuVIXAQQQQMC/AvcSJZQbXZ+Umy0i/++H1SXpzDWSfPJPkuDOXau7pr8wF+CIhjB/AIJ4+hzREMSLx9ARQCAgBDwOeGvVritPt4rcbehN6fveO6I7EIOtOL6M7OOPxsqwoUM8noIt4I1rl6ezwNPxRhpM1axVR+rUfUJKlCglufPkse821HpP1K4uBw8eME1cBbwaFg8bMdrU/fCDwTLh43FO52Q7HuLq1avmqAJbia+A1/FFfuqs3u4WTwJe265sd/u21Yv+sjn9fMqX08y6RF8Dx77f6PO29HrhJfOR44vhHOc78ZOPZcjgATGGpLtR9UViWtatXSNtnoncRa/HHejOXi2OwW/0DmxzdTy/N7Z5WxnwOp7La1tLbwPe/738osye9b3by2Xb8ez43Dq+lE5fGKhr6axM+HSSNGgYeQ7zN9O+krf7vG6+9mWd3R44FRFAAAEE/C5AwOv3JWAAXgoQ8HoJRzO/CxDw+n0JGAACCAS5gMcBb5DP1+vht2n7rHzw4QjTXo9pKFWisMtdvBrGli1XXjZt3GDazZj5g5SvUNF8nSNbJqd/bu4q4I0+Ab2HBsclSpYyl8aOGSmjRkSeyWr7s/wbN26YP4+PXvLlzy/Llq8yH+s5t53at41RR4+l0BexaZCoL8qqUrGsvU58BbyOu1L1fNRWTzl/EZazxfQk4E2TNq0kSxq5S3PS5C/Ny9Q+/eQjmTr5C/OZBuT6p/pVK5eXWzdv2m+nL7qLXl59/U3p/VLkC860jw8Gxzxi4scly6Vw4cg/93cMiR3DW30x3JN1I8/jdSyvvdFHXuz9ivko+pEDtmMuYtud69h/XCGw7X5WBrzTpn8vVapWM13bdnGradb/Py7C2Rqa5zFirXnmfv31jLRt/bSpdvrUSfOz507R4xb2HzpuquoxJmVLRe6uLl2mrMz+YYH5OrYX+Ok1R+85s2bKKy+/YNr4ss7ujJs6CCCAAAKBIUDAGxjrwCg8FyDg9dyMFoEhQMAbGOvAKBBAIHgFCHg9WDvbUQXaRMNOPRtUzwV1VvRs1PETJsqNG9ft4dLwkWNEd2tqef3Vl+X7Gd9GaVr3iXoycdLkyF2ZJ45L9SoVzPXUadLI62+85fScXb3e8qlWMnJ05O5bDXc15NUyd8FiKVGipPm6cIHccvly1KMONBzWnZ36Z+t6tmnxIvnNkQiOZeDgodK+QyfzkWPQpd/HV8CrfTvuru3QrrVERKxw6lyxUmXJkDGj/VgDTwJexw73HjgqekRD5Qpl5PTpU5I/fwFZujxCLl64IMWLRr6cLK6ibfUMXzW98Ndf5hcAjufFZsmS1QTuurZ6vUSxglG6s1lqm+pVK0Y5AkL71CMW9NgB3f2t4/n74kV7ez3ntn6DyHNq+7zxqnw7fVqUvid9MVX02YrtuYs+L3cDXn2pmr5YLvpzbOsva9ZssnrdJvsLz1y9qM5xHK5esqbHi0z8dEKsfw3gOOfVqyLsR3iope7s1X81LNazjJ299HHu/EX2X5r06NZZliz+0QzP13V29RxxHQEEEEAgMAQIeANjHRiF5wIEvJ6b0SIwBAh4A2MdGAUCCASvAAGvB2unOyF/XrnG/sZjDYj0JU0rlv8kO3Zsk+LFS0qFSpWkcpVq9vNYHXcPOv4pvu6qffP1V2TXrl1StWq1/2PvLKCjOrf2/7R/WqzFipS2QCEQQgiB4O7u7u6QYKU4FCoUDRCsSNHirsVdSrEEC+70FmmhuN3e/td+5zvTM5PRJJOZSZ691re+4ZxXf/uka93n7PO8aNq8Jfz9cxtXoxd4c/j6YufuA8o/dfFPC7ByxTKcO3dWVZeWLFkaY0MnKn9ViWqVyyMy8pz6PWnydNSr30D9PnH8GHqGdMPjx3+hYqUquHL5EuQT9d5ffIk+Xxg+P3/y5IkSwiLCTyrRV0Tlzl27q3syd2BuX7x8+dK4RlcKvHpWImrKp/mTwyYq4VPyUKFCJdRv0Ai5/P2V+CsisER0BF6p5BVR88WLF8jlm1WNM2jIMHTtFoI9e3ahbavmDj0l6zdtRb58Qapt+MkTSmwVuwwRoaf/MBsyj4RYYYglhj70eZBD43r36I59+/YoC44xYyegQMFCqrnkVnKsD32FrgjEYiewbu1qJE2WDD169Db6LL9+/Rq+Ppmj7EVynSpVauP1nXsOIGXKlMp3uFxpQ8W5xMOHf5pU0E6cNBX1GzZSz82qFctw4MB+HDt6BB988CGaNGuO7sE91cGEGo+6tas7xFEa2RN4b9y+q8Y6fuwoNm5Yh8OHD+LmjRuK05BhI1Q1toQ8O7VrVMHp06eMc+srqeUQtWZNG+DypUvqvgjw4hvdqrXBy9jclkSuxSTPDgNgQxIgARIgAbcSoMDrVvycPAYEKPDGAB67upUABV634ufkJEAC8YBAjAVe8eRt1rwFsmT5HOkzfKyEwRfPn+P3u79DDr+aNHE8rl+7Gg9QGbZQo2YtjAsNg3wC7khcvnQRFcuXNjbVqiPt9bUk8Or7iHAlVYj62L1rB9q1aWm8JFWjYjNg3k4a6EVGzcpB6ygioQhd+tB7xmrXXSnwyhzzf1qCcuUq2EMVY4FXDnSTg930n+xv2b5bCe6DBnyJJYt/srsGaSBC/IZN29TBbFqY5+nOnduoWK6UiVAubeXvZvuufeowO2shLwXq1a5uFPD17TSx1VpfWcfQwQPUCwnz0B9qZ2ujk8MmIHTcGGMTe3NqDUUkLVIwb5QKcltzOSLwWnquzce0ZJeRIkUK/Hr8lEmeRFSXavu0adOpw/Uk5O9AxGF5EaKPmOTZoQeJjUiABEiABNxOgAKv21PABUSTAAXeaIJjN7cToMDr9hRwASRAAl5OINoCr4gcUpXom9PPJgIRlnZs3wo5IMncIsBb2UnlbOjEKaheo6YS5sxD9nzjxnXMmzMbC+bPNbktvreLl6xEuvTpTa6LwNQrpBt+mDVHicciisun+hJJkybFqDGhqFylqkVhWavsHTF8aJS1yEFq330/Jso6J4aOU+K7FuMnhCmrB3PRTHLWrk0LHDv6a5SxxTZAKoet2RhIFaTMLaH/zF0/kPikmu9Xf1+sBeQgOLECMA+poJZK2TGjRxrXV6t2HUydPks1tWRXYOmZm7dwMcqXr2jiX6x5Iefxz6EqVB0NsVHYsHkrMmb8xKSLPBNSbdq4YV2L3svSWNjLYX7i02yeB6kEr1OzGiz5/2oTiT9sSI/eUcR5EYa7du6APbt3WtyG2B2079jZ7hb1/s7SWPxsh0q1bGBek4P+tIFkz5s2bkDfPj0g1cPOhCbwXr1yGeXLlozSVZ4AVc45AAAgAElEQVSrmrXqWHwupLHYYPTpFWLV2kNsT8KmTEfZsqbV0NpEIvYHd+0EEeQtRUzy7AwHtiUBEiABEnAPAQq87uHOWWNOgAJvzBlyBPcQoMDrHu6clQRIIP4QiJbAmzt3AOQzZ0cq6DRUlnxJ4wNG+QRdPgsPCAjEs2dPlXeuHKqm918136dwkz5FihTD8xfPsW3LzzaFO31/EabyBuaDr5+fElYjz51VNgD25pNq1Fz+uZXH7qmIcIvewVK1K+sqXrwkHjy4j31796hDrjwhREjPmy9IiYkP7t/DqYgI5YPsqSGiddly5ZHTLxeO/noEhw8dtJkj/T7k+RCRt1jxEpAK8L17djv1ckReIlSoUFk9jzu2b3P42YoJy6zZfBAQEKDsM6RiVyxBTp+KcPhQtOjOLdW48lzL/6VNmxYXL5zHsaNHrXrzms8jVhQFChZWlipJkyVVa/71yBGLvryW1hiTPEd3z+xHAiRAAiTgegIUeF3PmDO4hgAFXtdw5aiuJ0CB1/WMOQMJkED8JuC0wCvVpEdPnIYIK1pcOH8e27dvgVTbPX78BBkzZlSVvXXrNTCpsNu+bQs6dTB4WzJIgARIgARIgARIgARIwBMJUOD1xKxwTY4QoMDrCCW28UQCFHg9MStcEwmQgDcRcFrg7dGzD77sP1Dt8e3bt6hTs6o68MtaBIf0Qv+Bg423SxUv7NGVl96UPK6VBEiABEiABEiABEgg9glQ4I19phwxbghQ4I0bzpwl9glQ4I19phyRBEggYRFwWuDVnyBvzVfVHOGceQtRsVIVddnSYV0JCzl3SwIkQAIkQAIkQAIk4MkEKPB6cna4NlsEKPDy+fBWAhR4vTVzXDcJkICnEHBa4NUOxZLq3exZP3NoH0WKFsOKVetU200b1yO4m/0DnRwamI1IgARIgARIgARIgARIIJYJUOCNZaAcLs4IUOCNM9ScKJYJUOCNZaAcjgRIIMERcFrgvXjlJpIkSaIO6wrM7esQMDkY7NSZC6qtnE4vtg4MEiABEiABEiABEiABEvBEAhR4PTErXJMjBCjwOkKJbTyRAAVeT8wK10QCJOBNBJwWeA8cPorMmbPgn3/+weeZPnZor3Xq1sPkqTNU2x3bt6Jj+zYO9WMjEiABEiABEiABEiABEohrAhR445o454stAhR4Y4skx4lrAhR445o45yMBEohvBJwWeH+cuwCVKhsqcJcuWYSB/fvaZPLOO+/gl6MnkTHjJ6pdrx7dsG7tmvjGkfshARIgARIgARIgARKIJwQo8MaTRCbAbVDgTYBJjydbpsAbTxLJbZAACbiNgNMCb63adTB1+izjgkXk/fbrr/D8+fMom8jp54ep02bCN6efuidVv74+mfHmzRu3bZgTkwAJkAAJkAAJkAAJkIAtAhR4+Xx4KwEKvN6aOa6bAi+fARIgARKIGQGnBV6ZbvHSlShZqrRx5v/973+4efMG7t29iydPHiNd+gz4+OOPjVW7WsMxo0Zi+rTJMVsxe5MACZAACZAACZAACZCACwlQ4HUhXA7tUgIUeF2Kl4O7kAAFXhfC5dAkQAIJgkC0BN73338fB385hgwZHPPgFZL03k0QzxM3SQIkQAIkQAIkQAJeT4ACr9enMMFugAJvgk2912+cAq/Xp5AbIAEScDOBaAm82pqDQ3qhV5++SJw4sdVtPLh/H3379MS+fXvcvFVOTwIkQAIkQAIkQAIkQAL2CVDgtc+ILTyTAAVez8wLV2WfAAVe+4zYggRIgARsEYiRwCsDSzVv4SJFERiYD7n8cyNFyhS4+/vviDx3FidPHMeZM6eZARIgARIgARIgARIgARLwGgIUeL0mVVyoGQEKvHwkvJUABV5vzRzXTQIk4CkEYizwespGuA4SIAESIAESIAESIAESiA0CFHhjgyLHcAcBCrzuoM45Y4MABd7YoMgxSIAEEjIBpwXe3n2+RIdOXRSz4kXy4+nTp3b5TZ46A+XKV1DtqlepgNu3b9ntwwYkQAIkQAIkQAIkQAIk4A4CFHjdQZ1zxgYBCryxQZFjuIMABV53UOecJEAC8YmA0wLvpLBpqNegoWIQlNcfD//80y6PwUO+QpduwardiOFDMW/ObLt9vK1B0qRJ8fLlS29bNtfrYgKp06TBo4cPozVLTPp++OGHeP36Nd68eROtuaPbSeZNnvwD3L37e3SH8Lp+CXHPXpckLpgESIAEnCRAgddJYGzuMQQo8HpMKrgQJwlQ4HUSGJuTAAmQgBmBOBF4K1Wuih/nLlBT/7RwPoYOHuD1iShUuAi+6NsfWbNlQ9q06fDee++pPb169QqPHj3E+nVrMG1KGJ48eeK2vWbKlBlpPvoIz549w9Url922Dm+buEHDxhg0eBjWrF6J70d+o5Y/c/ZcFChQCO3btsTp06dsbmn02FBUqFgJ6dKlxzvvvIO3b9/i99//g7lzZtt9udGyVRv1MiRjxk/UM/XPP//gwYP72L9vrzqs0FYEBubFuNAwZM6SBcmSJVNNHz9+jIsXzqNTx7b469Ejh1LRt98AtGvfSVXaV6tc3maf/AUKomu3YBQpWhwpUqTAu+++a2z/4sULbNvyM77+ephDIrewOnbiNJIkTYoB/fpg86aNDq1Xa7RsxRoE5AnEpo3rMbB/X6f6umvPTi2SjUmABEiABOKMAAXeOEPNiWKZAAXeWAbK4eKMAAXeOEPNiUiABOIpgTgReJs1bwkRvSQ2bliPkO6dvRanHCo3ZdoMVK1Ww+4eRJzbvGkDgru5Z78HfzkGEXmfP38O/5zZ7K6XDQwERCgsVrwEJowfi7BJhuf28rXb6kBB4Sg8LYWIm+s3bYUIrdZi/rw5GD5ssMXbw776Gh07d7Xa93xkJGpWr4T//ve/UdrIS5RZP84zEVj1jcRKRcRae/YoUjV84NBRSFWqvJzI45/D5mNx4/ZdJWLbCpm7VInCdkXeL77sj169DcKss5X+8sJl5er1ai2HDx1EsyYNHH6c3blnhxfJhiRAAiRAAnFKgAJvnOLmZLFIgAJvLMLkUHFKgAJvnOLmZCRAAvGQgMsFXhFcduzahxy+ORW+KZMnYvzY0V6JUgS8k6cikTp1auP6L5w/j9OnI3Dhwnn4+eVSFYQ+PtmROHFi1ebevbsoXMC64OdKEBR4o0f37PkrSuAsUbQg7ty5rfK6bedeJVDmC8xlddAp02aidp266r5UTa9dswoR4SdRukw51Kpdxyi+9u4ZrO7po1r1mpgxa4669L///U9Vr+7dswt5AvOifoNGqjpWYsf2rejYvo1J3+TJk0PWrFXP/nL4ELZu/RkpU6RUdipZsxrE/T8ePECBoIAo65cq3KbNWiB79hwIzJvPWI3ujMArlcInTx7H6VMR+POPP1CgYGFUr1HTOFZERDjq1KwaZW6pnJV5g/IXUFXLWjgi8EqldalSZRCQJw+y5/A1Cs2OCLzu3HP0nkr2IgESIAESiEsCFHjjkjbnik0CFHhjkybHiksCFHjjkjbnIgESiI8E7Aq8I74ZiU8//dS493xB+ZE+fQb1b/ls/NWrqL6zIuomeu89fPjBh/DPHWD8XFz6NG1cHyJAeWOMHT8RTZo2V0sXK4YewV2xfduWKFtJlCgRQidOQZ269XD//j0KvF6UbLG0CD8VCbEXyOWbVa1c85DevXsn2rVuYXU3l67eUsK+WDKUL1MCt27dNLatUbMWps/4Uf370sULqFShjMk4m7fuREBAHnXNXAAW4XP/oV9VBbGMnSNbJmXdoEX/gYMRHNJL/dO8Ql7+Fg8cPqoquSVq16yKUxHhJnPL33i79h2j7MsRgXfr9j2YN3c2li9bEqW/CONbd+xRwqv8veTMniVKmyvX7xhFYP1NRwTenbv3G18c6fs6IvC6c89e9OfApZIACZBAgiVAgTfBpt7rN06B1+tTmGA3QIE3waaeGycBEoglAnYF3vOXrpsItDGZ9/r1ayhbqlhMhnBb36zZfLBn3yFjlWDlimVw8cIFm+sRgatm7TrGiuXKVaqhSJGikE/WJ00cb7Fv5y7dkSFDBpw9eyZKlad0EIG9bdsOyOrjgzRp0qhqyZs3byrP3927dqgx5ZPzkJBeaNq8JT744AP1Sf/8uQZxUYt1a1fjzJnTxn+LeNitew/Ip+7ZfHzw/NkznDt7Vq1h3749FtfavEUrVa0sQuaC+XNRoWJlNGjYSFWBPnv6DPv3ifj3o/KflcjyeVa0a9cBBQsXQdq0aXHn9m2sXrUCS5csssmxcZNmKFuuPHLl8kfiJElw4/p19ZJAqsHN49NPP0P7Dp3U5YUL5+PmjesQwb1M2fIoWKgQXr18hcWLFuKPPx5YnLN9x84YPuJbhIefRN1a1VQbETFz+fsrX1dra5Vq0gmTpqj2a9esRu+e3aOML0Jr5swGkVN/QGHKlClx6uxF9Wz99tsdFC9SIEpf/cuFIYP6Y9FPBk9riRPhZ5E2XTol+mbNnNFE/JX7JUuVxuKlK1VbyWXrFk1Nxpe8aczkRtFixRUzRwRem4kDcPrcJcj+ZG2fZ/o4SnOpepbnWEJeJMnfmYQjAq/YORQuUtQ4puxTwhGB1517tseM90mABEiABNxPgAKv+3PAFUSPAAXe6HFjL/cToMDr/hxwBSRAAt5NIM4EXhEsO7Rthbt3f/dKYnJInPicSoiQ2q5NS6f3sXb9Zsin4fIJvghxlkIT1M3FcBH/Vq3ZgIKFClud96+//kLegJwoXqIkli5fbXN906dNxphRI1Ub8YxdtHSlEuIsxdYtm9GtS0e1bn0cO3laVXOLJ+2lSxcRFJQ/Sne5V7pEEXTq0hVdugZb9GsVn+LuXQ2irD4+/jgjli5fhWw+2S2uSywHmjdraCK0S9X05KkzVPthQwYqywwRiPU+sb16dMO6tWsMbb76Go3/rypb/p00aVJVUSp7FZsFCbFrkP6yl7///ltdW71yuRIhtfhh5o+oXqOW+menDm0tVnaPGTdBWSFI9P+yj7HqVewbpk6fpa6vX7cWPUOi+vDqc2peSXzzzj3VV4T0ooWCLLK6fut3ZeFgz2ZCOkecPq9eEsRU4E2VOrUaS9g9evQI+fL4WVybdlGq40XIlnBE4DUfTOPgiMBr3tdde7YJhDdJgARIgATcRoACr9vQc+IYEqDAG0OA7O42AhR43YaeE5MACcQTAnYF3t5ffIlPPvnXoqFEyVL47LNMavsb1q/Dy5cvrKKQKlDxpj1+/BiuXrns1cikelcTGosUzBctoTomAq9eQJSKXDksSwTOzFmyIF269Eq8k+s+n38Kf//cWLJ8NVKlSmUUNkVg08f4saNUFWjatOkgQq3m3yrtLl44j1SpUsM3Z07j9UMHD6B504YmY2gCr/7imzdv8OTxY4jVgTamVG/qBVYRGd9PnBjiHatFlYpl1bOihVQUS1VrsmTJ1CURL8VaQITXAgULIUMGQzWoWGAUyh9o7KcXeM3n1RrpBV69cO/MA2ou8q9eu9EovksOLB2EVrd+A4RNnq6mmRw2AaHjxqjf3YN7YsCgIer30MED8NPC+RaXogmYUnlds1ol1UbydyLirPotlimtWjSx2Pf4yTNIlz69VasEfaeYip0iiNet10AdmCZzSvTr2xsrli+1idibBd7o7tmZZ45tSYAESIAE4o4ABd64Y82ZYpcABd7Y5cnR4o4ABd64Y82ZSIAE4icBuwKv+bYnhU1TBzdJ6D8zj594/t3VuQtXld2BrepbewxiIvBevnZbebDKYVZFCubFy5f/eh+LUPr1t9+jYqUqJlWSjhyyJpW+Uh0qIQKcCHFaiJ3Api07jJW9IirqbR30Aq8Iwz2Du2L//r2quwiPYkmgCbQitopP61dDB+H169eqzcRJU1G/YSP1WypqRXjVImzKD6hbr77654TxYxE2KdQE78zZc1G1Wg11bfhXQ4wWFHqBV+6JZ+3Pmzdh185tuH7tGnIH5MGunTuUMCwh7NKk+Uj9/ihtWqzfuEVV7pYpafj0X15wtGrdFgcP7FcWDVo8fPinqujVQv8CIMtnBo9q8yhbtjwWLDKInKtWLkffPj3V7+++H6PmkOjetaM6YM1S3Lh9VwnlcvCbHAAnIZYaUtktsWnjegR362yx76Ejx9WLGWtWCfpO0RV423XohN59vlQvFrSQv5fR33+HmTOmWVyX/qI3Crwx3bNdKGxAAiRAAiTgFgIUeN2CnZPGAgEKvLEAkUO4hQAFXrdg56QkQALxiIDTAq9UZubI4auEzmNHf41HKKxvRUQ1EdckNBuE6Gw8ugKvCLsi8ErY+gzffE32BF6xI7hw+YbqZu0TevENnj3HUFF6/NhRNKhnsCGQ0ARe8RTO458jiver+KvWrlNXtTU/OEyupUiRAmciDZXd4SdPoG7t6uq3VP5eu/kfJWZGRISjTk2DNYY+hMnFKzdVWxFfWzQzCMV6gfd8ZCSaNqmPv8yql63lrlOXbhg6bIR6rhvWr62aicCdJ0+g3QpUzQfX1guAvPmCsGHTVjWufs1z5i1U4rxEsyYNlIespdAOJBORPzC3r2qi9/5dtnQxBvT7wmJf/YFkfjk+N3lBYN4hugLvyFFj0bJVG5PhjvxyWLHTHzhnjb83Crwx3bM1FrxOAiRAAiTgXgIUeN3Ln7NHnwAF3uizY0/3EqDA617+nJ0ESMD7CTgt8Dq6ZbEJ8MmeHZGRkV5vz6AXWMUWoUBQgKMYTNpFV+CVQcJPRSrbAwkRIMeMHmlXYLcn8BYrXgLLVhi8aOfPm4PhwwZb3JfmC2xuh6AJvNbEYflE/4sv+6sxrVWmaqKl3nNYL4Qe2L8P4jlrKQYOGorEiRPj5s0byudXQi/wmh9GZi9pWjXz9999Y6w4FRE5SZIk8M+ZzaRi13ysiDMXkDp1aqNNhqW5cucOwM/bdqlbeoF34eJlKFOmnLouwrK1FyeWBF4RVEVklBBrB7F4sBTbduyFX65c6parBF7xqG7Vpi1SpEiJLJmzGJ9XqRoWD+ctP2+ymQJvFHid3XMGH8seyfaeTd4nARIgARKIWwKPH/2Gh40L4nWDEi6ZOPHKA0izOgIpU1k+k8Elk3LQBEHg5YN7aOg7BEUzm1qrxdbmN0aOw+57i/BBGj67scWU4xgIvH1wGUWzJEPm1EldguTItUe4+ioFkqVMF63x710Nj1Y/diIBEiCBuCIQLYFXBKnPP8+q1jhj+lQsWfyTcb1S7fjT4uXqkCYtXr16hS4d22Hv3t1xta9Yn+fS1VtKTNR8bqMzQUwEXrFgaNuug8m0Ui16795dZTnwzYhhRusDrZE9gVcOPRs89CvV3Jb365Fj4ciY8ROIv26ObAb/ZQl7Aq98vj7i6+9UW2sCryag6gXe9h07Y/iIbx1GrBeYYyLwSjWxVBVrHstZPs+K/QePOHRAmMbalgVCyVKlsXjpSrWvjRvWI6S7wU5h/IQwNGrcVP2Ww/vE39dSaAelyUGFskYJEYbl71Fi7epV6N0r2GJfscsQyw0JaxYSWsfoVvCaT1ytek2Id7RUYsuzkzN7ligH9en7eKPA6+yeKfA6/GfNhiRAAiTgVgIUeN2Kn5PHgAAF3hjAY1e3Enh57xJ8P0qE9CmSuGQdkf95ij+QBslTUeB1CWAOSgIk4HYCTgu8mTJlhohZWpQvW9JYoSsC6ImIc5ADh8xDhK8O7Vpj187tbt90dBZw+NcT+PTTz1TXvHn8HP7sXz9XTAReGUe8WkUEk4pi8xCv2SlhE028au0JvCKiipgq0bVzB6sVlnsP/IKsWbNF8R+2J/C2adse33w3So1vTeDVqoP1Aq+IwiIOS4gdwbNnT22m7OqVK8bDxZwReEX0TJ363xcR2nMrc0q89957ykNYnl3x5dWiRrVKuHnjusmaNv68HYGBedU1awJqrdp1MHX6LNVm1ozpGPnd1+q3VDlLtbNEr57dsW7Naov71Q5Zu3D+PKpUKqvaiGgr+5DYvm0LOnUwePmax9ETp9TBdOYivaW2sSXwytjiDyw+wRK2qpPlfnwQeJ3ds80HmzdJgARIgATcRoAWDW5Dz4ljSIAWDTEEyO5uI0CLBreh58QkQALxhIDTAq/+QCi9V6nwCOnRG/0GDDKikQrTv//+WwllEs74x3oaX/1hZNOmhmHs6O+dXqIm8Nqq8rQkeOonkmrI8hUqoVLlKggKKoDsOXIgUaJExiZVKpbFhQvn1b/tCbx6QW3MqJGYPm2yxT1p9hByqJhYFWjhKoG3cZNmGBc6SU0jnIW3o+GMwKtVZTs6ttbO/LA5uT5vwSKVFwl9DvRj9x84GMEhvdQl/cFw+v3O/GEavh/5TZQl+WTPgd17Dd68hw4eQPOmhs/uxINYKnsl9MKv+QDaXvX+vdb2HZsCr96j1l4u44vA68yenX322J4ESIAESCBuCFDgjRvOnCX2CVDgjX2mHDFuCFDgjRvOnIUESCD+EnBa4F234WcE5S+giJhX5O3ZdwjZfLKre6dPn0K92tVV1acIjVr1q70qPk9F3bxFK4waM14tT2waxIfX3uFdIsYWLlIUvx75RfVbvnItihYrrn5nzZzR4ufq9gRecz4yhwjHWk7CJoViwniDJ6v2Wb5YZMjn8eaR088P23fuU5fF57Zd6xZR2khVthzEJkKiHJRVqnhhYxtXCbz6qlQ5pKtJo3oOPxbOCLxiI5IkseEToNlzF6jD1Gb8MBXz585R1+S5FfG8dMmiePP6tXEN8qLCPPr2G4CevQwHnMkYo0ZGtZjYvHUnAgLyqDZ6kVgv3srBcFUrG/x49fFl/4Ho0bOPuvTjrBn49pvhxtuazYW16lz9+LZEYG3A2BR4Fy1ZgVKly6ihrVVxa/PGF4HXmT07/GCzIQmQAAmQQJwSoMAbp7g5WSwSoMAbizA5VJwSoMAbp7g5GQmQQDwk4LTAq1kVSBWqiJTy/7W4fO220T6gTq1qiAg/qW7pxS8RH0WE9MbQrApk7SJ2NqhbC3LwmKUQb9Qp02fi1auXKFzA8Om+VKVKtaZEv769sWL5UpOulatUw8zZcw1VmdevoWypYup+qtSp0a//IIs+u3K/YaMmCJ1oqL7V8123cQuCgvKr6wG5suPpU1OrAxGHpbJTLB9EiM+Xx09ZIujj25Gj0bpNO3VpzaqV6NM7xHjbVQKvTKCvrm3TsplV/+biJUoifYYMRlsDZwRe/T7Pnr+irEVKFiuE27dvwc8vF7bt3ItHDx8iX6DhcDJbIX3Fw1eYPvzzT/UCQJhq8dlnmZTgLrmV+0F5/U2G01hKn7Kli5tYQMiYYrGQPn0G9fcm69G/XBCf2+o1aqnxBvbvi6VLFpmMPXvOfMizZe25M9+XowKvHDAmB8uZP8faeGLnsv/Qr2rPEvYOqvMGgTe292zvueJ9EiABEiAB9xCgwOse7pw15gQo8MacIUdwDwEKvO7hzllJgATiDwGnBV5NCBOxUERDLaRCV8RfCfGDzZ7V4FcrkTdfEDZs2qp+r1+3Fj1DunolQamE3LXngBLxJKSSd9FPC7B75w6Eh59Avnz5UaxECZQsVcboxyqHoGkCr/5TfKmqHdCvD06dOoXSpcugafOW8PfPbeSiF3hz+Ppi5+4Dyj918U8LsHLFMpw7d1ZVl5YsWRpjQycqf1WJapXLIzLynPo9afJ01KvfQP0+cfwYeoZ0w+PHf6FipSq4cvkSzpw5jd5ffIk+X/RTbZ48eaK8bEWYF9FXROXOXburezJ3YG5fvHz50rhGVwq8elYiaq5etQKTwyYq4VPyUKFCJdRv0Ai5/P2V+CsisER0BF6p5BVR88WLF8jlazg8cNCQYejaLQR79uxC21bNHXpe12/ainz5glTb8JMnlNgqdhkiQk//Ybbx4EGxwhBLDH3o8yCHxvXu0R379u1RFhxjxk5AgYKFVHPJreRYH/oKXRGIBw/sh3VrVyNpsmTo0aO30Wf59evX8PXJHGUvkutUqVIbr+/ccwApU6ZUvsPlShsqziUePvxTPfNaTJw0FfUbNlLPzaoVy3DgwH4cO3oEH3zwIZo0a47uwT3VwYQaj7q1q0eZW15evP+ewVO6Xv2GxkP/Jk4YhyWLDIc3vnn7xmK1vIjqSZMmM3ke5R8nTxxHl07tjdctvYRx554depjYiARIgARIwK0EKPC6FT8njwEBCrwxgMeubiVAgdet+Dk5CZBAPCDgtMB75Fg4Mmb8RAk9Pp9/akTQpWuwUZwx/5RfL/7u37fXeCCWN/KrUbMWxoWGIXny5A4t//Kli6hYvrSxrVYdaa+zJYFX30dET01o1q7v3rUD7dq0NDaTqlGxGTBvJw30IqNm5aB1FJFQq7rUruk9Y7VrrhR4ZY75Py1BuXIV7KGKscArB7rJwW4REeGoU7Oqmm/L9t1KcB804EssWWwQGu2FCPEbNm1TB7NpYZ6nO3duo2K5UiZCubQVwXH7rn3qMDtrIS8FxPZEE/D17TSx1VpfWcfQwQPUCwnz0B9qZ2uPk8MmIHTcGGMTe3NqDcW7uUjBvFEqyOX+let3jB7dtvZtyWJk5+79yOGb015alMWG+aF47tyz3QWzAQmQAAmQgNsJUOB1ewq4gGgSoMAbTXDs5nYCFHjdngIugARIwMsJOC3wrl67EQULGXxYq1epoCpJJTTrBvltXqWr969dvGihqjD05pDK2dCJU1C9Rk2jJYV+PyKm3bhxHfPmzMaC+XNNtiq+t4uXrES69OlNrkvVZq+Qbvhh1hwlHl+/dlV9qi+RNGlSjBoTispVqloUlrXK3hHDh0bBKp+9y8F4IiDqY2LoOEyaaPAUlhg/IUxZPZiLwVKp3a5NC8iBeuYhtgFSOWzNxqBV67ZqbgmpqNy6ZXOUMSIvXouyX30jsRYYO36isgIwD3nJIJWyY0aPNK6vVu06mDp9lmpqya7A0nM3b+FilC9fUVNhKBMAACAASURBVFmHaP7FmhdyHv8cqkLV0RAbhQ2bt6qXIObPxPFjR9G4YV2L3svSVtjLYX7i02yeB6kEr1Ozmjqo0FqIFYocdGguzosw3LVzB+zZvdNi1+EjvjVW+drap56PtJP/DgwdNgJ5AvOaHPSnjSF/B5s2bkDfPj0g1cOWIiYC745d++Cb089uasQ3Wl466cOde7a7YDYgARIgARJwOwEKvG5PARcQTQIUeKMJjt3cToACr9tTwAWQAAl4OQGnBd7+AwcjOKSX2rZUI4qXbKNGTdWn2lq0bd3CREyaMm0matepq25bqgT1ZobyCbp8Ph8QEIhnz54q71w5VE3vv2q+PxHvpE+RIsXw/MVzbNvys03hTt9fPmnPG5gPvn5+SliNPHdW2QDYm0+qUXP551Yeu6ciwi16B4swKOsqXrwkHjy4j3179+C33+54RHpEoBarDxETH9y/h1MREVFEO49Y6P8tQkT6suXKI6dfLhz99QgOHzpoM0f6tcvzISJvseIlIBXge/fstlj9am2/8hKhQoXK6nncsX2bw89WTPhlzeaDgIAAZZ8hFbtiCXL6VISJpUNMxvfEvglxz56YB66JBEiABFxBgAKvK6hyzLggQIE3LihzDlcQoMDrCqockwRIICERcFrglepVqbrUvDXNYYlvZ24/H+NlEebEt1drX6t6ZZw+fSohMeZeSYAESIAESIAESIAEvIgABV4vShaXakKAAi8fCG8lQIHXWzPHdZMACXgKAacFXlm4HIAln81b8nYN6d4ZGzesN+5v9NhQNGtu8IU1F389BQLXQQIkQAIkQAIkQAIkQAIaAQq8fBa8lQAFXm/NHNdNgZfPAAmQAAnEjEC0BF6ZUvw3R48Zj0yZsyjPT/mkf+S3I7B500aTFek9NtesWok+vUNitmL2JgESIAESIAESIAESIAEXEqDA60K4HNqlBCjwuhQvB3chAQq8LoTLoUmABBIEgWgLvAmCDjdJAiRAAiRAAiRAAiSQ4AhQ4E1wKY83G6bAG29SmeA2QoE3waWcGyYBEohlAhR4YxkohyMBEiABEiABEiABEvBuAhR4vTt/CXn1FHgTcva9e+8UeL07f1w9CZCA+wlQ4HV/DrgCEiABEiABEiABEiABDyJAgdeDksGlOEWAAq9TuNjYgwhQ4PWgZHApJEACXknAaYE3h68vihYtHu3Nrlm9Es+fP492f3YkARIgARIgARIgARIgAVcSoMDrSroc25UEKPC6ki7HdiUBCryupMuxSYAEEgIBpwXeSWHTUK9Bw2izadakAQ4fOhjt/uxIAiRAAiRAAiRAAiRAAq4kQIHXlXQ5tisJUOB1JV2O7UoCFHhdSZdjkwAJJAQCFHgTQpa5RxIgARIgARIgARIgAYcJUOB1GBUbehgBCrwelhAux2ECFHgdRsWGJEACJGCRgNMCb8tWbdC2XQeHcebwzWlse/nSRXRo3wY3b1x3uD8bkgAJkAAJkAAJkAAJkEBcEqDAG5e0OVdsEqDAG5s0OVZcEqDAG5e0ORcJkEB8JOC0wOsshIWLl6FMmXKqW6+e3bFuzWpnh2B7EiABEiABEiABEiABEogzAhR44ww1J4plAhR4Yxkoh4szAhR44ww1JyIBEoinBFwu8KZIkQInT0Xivffew6tXr5Dbzwf//e9/4ylObosESIAESIAESIAESMDbCVDg9fYMJtz1U+BNuLn39p1T4PX2DHL9JEAC7ibgcoFXNrhqzQYUKlxE7bVdm5bYvWuHu/fN+UmABEiABEiABEiABEjAIgEKvHwwvJUABV5vzRzXTYGXzwAJkAAJxIxAnAi8PXr2wZf9B6qV/rRwPoYOHhCzVbM3CZAACZAACZAACZAACbiIAAVeF4HlsC4nQIHX5Yg5gYsIUOB1EVgOSwIkkGAIxInAG9KjN/oNGKSghp88gbq1q8c7wEmTJsXLly/j3b64oZgRSJ0mDR49fBitQWLS98MPP8Tr16/x5s2baM0dk07RXXeiRInw8ccZ8dtvd/DPP/84vYQsn2fFyxcvcP/+Paf7pk2bDokTJ1ZzM0iABEiABEiAAi+fAW8lQIHXWzPHdVPg5TNAAiRAAjEjECcC79bte5DL31+tdPfunWjXukXMVu0BvcVy4ou+/ZE1WzaIOCQewxLiM/zo0UOsX7cG06aE4cmTJ25bbaZMmZHmo4/w7NkzXL1y2W3r8LaJGzRsjEGDh2HN6pX4fuQ3avkzZ89FgQKF0L5tS5w+fcrmlkaPDUWFipWQLl16vPPOO3j79i1+//0/mDtnNubNmW2zb8tWbdClWzAyZvxEPVMidD54cB/79+1F3z49bfYNDMyLcaFhyJwlC5IlS6baPn78GBcvnEenjm3x16NHDqWib78BaNe+E27fvoVqlcs71Cc6e/7008/QtXsIqlSthjRpPjL+DcmEwuzE8WP4ZsQwnDt31uoa2nfsjJ69vkCqVKkUawmN2cjvvrZ4qKO0E86NmzZHtmw+SJ48ubGv9H/4559YMH8uJodNwP/+9z+H9i+Nmrdopf6bIDFt2mS7uXZ4YDYkARIgARKIcwIUeOMcOSeMJQIUeGMJJIeJcwIUeOMcOSckARKIZwScFnilyi116jQ2MYgw9VHatMiTJxBt2rZHDt+cxvbDvxqC+XN/9FqM77//PqZMm4Gq1WrY3YMITZs3bUBwt85227qiwcFfjkFE3ufPn8M/ZzZXTBEvx1y2Yg2KFS+BCePHImxSqNrj5Wu3IbkXjsLTUrz77rtYv2krRGi1FvPnzcHwYYMt3h721dfo2Lmr1b7nIyNRs3oli4cUVqpcFbN+nAdZg6V4+vSpEmtFtLUVUn174NBRSAWwvJzI45/DZvuY7PnQkeP47LNMNseXv6GWzRvj4IH9Ju1EpN2xa5/Jf1ssDbRzxzZ0aNfa5FbZsuWxYNFSu8/umTOnUbNaJbvtpIE8L0uXrzYKxbSicQgbG5EACZCAxxKgwOuxqeHC7BCgwMtHxFsJUOD11sxx3SRAAp5CwGmBN3TiZDRs1CRa65dK0oJBAV5rZSBi1slTkUidOrVx/xfOn8fp0xG4cOE8/PxyISBPIHx8sqvPvSXu3buLwgWsC37RAulgJwq8DoIya3b2/BUlcJYoWhB37txWed22c6+yWsgXmMvqoFOmzUTtOnXVfXnW165ZhYjwkyhdphxq1a5jFF979wxW9/RRrXpNzJg1R12SqtHNmzZi755dyBOYF/UbNEKKFCnUvR3bt6Jj+zYmfaUCVdasibu/HD6ErVt/RsoUKVGvQUNkzWoQ9/948AAFggKirD9/gYJo2qwFsmfPgcC8+YyVtI4IvDHZsybwSrWuWLecO3sGV69eUX8/9Rs2RsqUKdVapSo+Z/YsJuueNHk66tVvoK49uH8fIpwvXrwQGdJnQNv2HSFV2CLISwwZ1B+Lflpg7K8XeCW/kqNTERH4B/+gQoVKSqzVYuKEcZg0YbzNBylz5izYtfegcT5pTIE3en977EUCJEACnkKAAq+nZILrcJYABV5nibG9pxCgwOspmeA6SIAEvJWA0wLvpLBpSjRyNl68eIHWLZvi2NFfne3qMe3Hjp+IJk2bq/WI6NQjuCu2b9sSZX3iJRo6cQrq1K2n/EAp8HpMCu0uRCwtwk9FQp7XXL5ZVfvBQ75Stgn27EUuXb2lhH0RLMuXKYFbt24a56tRsxamzzBUrl+6eAGVKpQxWcvmrTsREJBHXTMXgMWuYf+hX5WAKGPnyJbJxKO2/8DBCA7ppfpu3LAeId3/rRiXStcDh4+qSm6J2jWr4lREuMncI74ZiXbtO0Zh44jAG5M9i+3FrZs3MW7sqChewcLxePhZo7BdumRR3Lxx3bjGi1duIkmSJIpH3oCcUaqqixQthhWr1qn25r7f8mXB6HETVCX18WNHo+y7e3BPDBg0RF0XO45a1StbfW7kRcChIyeMYrTWkAKv3T81NiABEiABjyZAgdej08PF2SBAgZePh7cSoMDrrZnjukmABDyFgNMCr4hJHTp2sbt+qUJ88fw57j+4j8MHD0D8MJ3xs7Q7QRw3yJrNB3v2HTJ+gl25YhlcvHDB5iqk8rNm7ToYP3a0ale5SjUUKVIU8rn8pImWqwI7d+mODBky4OzZM1GqPGWMfEH50bZtB2T18UGaNGnw5x9/4ObNm8rzd/euHWoe+cw+JKQXmjZviQ8++EB90m9ui7Fu7WrIJ+haiHjYrXsPiLdwNh8fPH/2DOfOnlVr2Ldvj8V9iueoVFuKkCmepRUqVkaDho1UFeizp8+wf98ezJv7o/KflZBDsNq164CChYsgbdq0uHP7NlavWoGlSxbZ5Ni4STOULVceuXL5I3GSJLhx/TqkSnXK5IlR+omva/sOndT1hQvnK1FQBPcyZcujYKFCePXyFRYvWog//nhgcU7xdB0+4luEh59E3VrVVBvNQ3pg/75W1yoVoxMmTVHt165Zjd49u0cZX4RWqfaUCMrrr7xeJaRS9dTZi+rZkkO+ihcpEKWv/uWCeUXqifCzSJsunRJ9s2bOGOWAspKlSmPx0pVqTMll6xZNTcaXvGnM5EbRYsUVM3sCb0z27Mifr6xZ1i4hVctSvazFzTuGg9TEYzgwt6/F4W7cvquYOltFLwcmXrh8Q41pLR9yT8bed/AIsmT5XLWdGDoOffr2U78p8DqSYbYhARIgAc8lQIHXc3PDldkmQIGXT4i3EqDA662Z47pJgAQ8hYDTAq+nLDyu1/Hj3AUQn1MJEVLbtWnp9BLWrt8M+RxehG4R4izF+UvX1QFZ169fQ9lSxYxNRExatWYDChYqbHXev/76S1UzFi9RUvmB2orp0yZjzKiRqol4xi5aujJKFaLWf+uWzejWpWMUgf7YydNInz6Dqp68dOkigoLyR5lS7pUuUQSdunRFl67BJodZaY3Fp7h7V4Moq4+PP86IpctXIZtPdotbEcuB5s0amgjtUjU9eeoM1X7YkIHKMkMEYu0ALrneq0c3rFu7xtDmq6/VYVtaiLgnHtKSI7FZkJAqTekve/n777/VtdUrl2PE8KHGfj/M/BHVa9RS/+7Uoa3Fyu4x4yYoKwSJ/l/2wfJlS9RvsW+YOn2W+r1+3Vr0DInqw6vPqXklsSZ2ipBetFCQRVbXb/2uLBzs2UxI54jT59VLAnsCb0z2bHGRZhe150suB+TKrl6MaCGCuBysJlGvTg2cPHHcpHdOPz9s37lPXdu0cb1TPtj6fOzduxttWjazuNwly1ahRMlS6t7o77/D4cMHsWGTQYSmwOtIhtmGBEiABDyXAAVez80NV2abAAVePiHeSoACr7dmjusmARLwFAIUeB3MhFTvakJjkYL5cPfu7w72/LdZTARevZgmFblyWJYInJmzZEG6dOmVeCfXfT7/FP7+ubFk+WolgGnC5qNHj0zWO37sKOVLmjZtOoiQpvm3SruLF84jVarU8M2Z03j90MEDaN7U1JpDL8Bpg7958wZPHj+GWB1oY0plqV5gFZHx/cSJId6xWlSpWFb5GGshFcUi4onYLSHipVgLiPBaoGAhZMjwsbouFhiF8gca++kFXvN5tUZ6gVcv3DuTUHORf/XajUbxXXIguTCPuvUbIGzydHV5ctgEhI4bo37rLQGGDh6gxEFLoQm5+sO/JH8nIs6q5vv37UWrFpb9sY+fPIN06dNb9LM1n8tRgTcme7bGWp6ZipWqoHtwDwTlN1QyWzoobdoPs1CzVh11X/IsLPUV3fIyRKrRJRrUq2XRisF8DXLgW8PGTRDSo7dR5C9VvLDyYTaPr7/9Hm3bdVCX16xaiT69Q5A3XxAFXmf+iNiWBEiABDyYAAVeD04Ol2aTAAVePiDeSoACr7dmjusmARLwFAIOCbxSwaiFVDE6arUgPpraQUci/L1+/dpT9u30Os5duKrsDmxV39obNCYC7+VrtxVL+SS9SMG8JgfViVAqgpMIY/ny+BmX4cgha1LpK9WhEiuWL0W/vr2N/cVOYNOWHcbK3prVKpnYOugFXhGGewZ3xf79e1V/ER7FkkATaEWEk4rVr4YOMj4HEydNRf2GjVR7qagV4VWLsCk/oG69+uqfE8aPRdikUBO84t9atVoNdW34V0OMFhR6gVfuiUfrz5s3YdfObbh+7RpyB+TBrp07lDAsIezSpPlI/f4obVqs37hFVe6WKVlUXev9xZdo1botDh7YD7Fo0OLhwz9NfF/1LwCyfJbB4qOgP9xr1crl6Nunp2r33fdj1BwS3bt2VAesWQrNckAERzkATkJETBEzJWxVqmoHmkkePs9kEMethaMCb0z2bD53Dl9fLFu+RuVA/zJAxF2xZ5B160P+m7RqzUb45fr30Dvxxd62dQs+/fRTo9juSCWtiMXlylc0eeEgB7dJfizZk0iuJGcSeisPCrw2HyveJAESIAGvIkCB16vSxcXqCFDg5ePgrQQo8Hpr5rhuEiABTyFgV+AVX9aBg//9FF3/ab+9TegFQBFG/XNmMxEm7fX3lPsiOIm4JqHZIERnbdEVeEXYFYFXwtZn+OZrsifw6r1GRaDVi8PaWOIbPHuOoaJUDqSSakgttPzKp/N5/HNEEeGmTJuJ2nXqqubmB4fJtRQpUuBM5GV1X38QllRxXrv5HyX0RUSEo05NgzWGPoSJHLQlbUV8bdHMIBTrBd7zkZFo2qQ+/jKrXraWu05dumHosBHqIMCG9WurZiJwy6FcInyLAG4tNB9cWy8A9AKgfs1z5i1U4rxEsyYNcPjQQYvTXLl+R1WW6n1n9T64y5YuxoB+X1jsu3P3fuTwzanu+eX43ObfoaMCb0z2bL5IvVCt3bt58waGDxuCPbt3WuV+5Fg45BA6SyGeuNa8rvXt9+4/DPHY1kKqr9esXgmppjZ/KSUvQ8SaQZ5NqeIXoV2r1nZE4H0/6QdW98IbJEACJEACnkPg7T9v8bxtBbxuUMIli0q88gCSL9yL995J5JLxOWjCJfDu3++ieeAoFM3s/KHYjlDbGDkOm6+EIdF7iR1pzjYk4DCBpHiDGS3zoEru9A73caZh8JLTWH7yARK9974z3Yxt37w02PcxSIAESMBTCdgVeA//egJycJWEVO/KgUaWPj+3tEE5vGnu/J+Mt2b+MA3fj/zGU1lYXZdeYBVbhAJBAdHaQ3QFXpks/FSksj2QEAFyzOiR6v/bCnsCb7HiJbBshcGLdv68ORg+bLDF4TRfYHM7BE3gtSYO9+rdF1982V+Naa0yVRMt9Z7DeqHswP59EM9ZSzFw0FBIlbgIgeLzK6EXeM0PI7OXNK2a+fvvvsHMGdNUcxGRkyRJol5OyPNvLSLOXEDq1KmNNhmW2uXOHYCft+1St/QC78LFy1CmTDl1XYRla3m1JPC2bNUGI0eNVX1tVatu27HXWO0aWwJvTPZszkdE2tHjQpE8WXJ8nDEjMmXKbGwih+INHmg4vEwLqbxetXajsiOR6t4N69chKH9+4yF20k6u/zB9itFr2lruevTsgyJFiynf4WzZfIxV5y9evFCV3Fq1txwSuGvPASWyy7NQolhB5WmshSMCbwYfyx7J9p5N3icBEiABEohbAo8f/YaHjQu6VOBNszoCKVNZPpMhbnfL2eITgZcP7qGh7xCXCry77y3CB2n47Man58YT9vL2z2uY1ii7ywTekCVnsOEqkDxVumht997V8Gj1YycSIAESiCsCNgVeqWqT6jYtQrp3xsYN651a28rV61G4iOFz94d//omgvP5O9feUxpeu3lJiouZzG511xUTg1Xt+anNLtei9e3eV5cA3I4ZFqTa0J/DKoWeDh36lhrPl/apVSYrNRo5smYxbtyfwtuvQCSO+/k61tybwagKqXuBt37Ezho/41mHEeoE5JgKvVBNLVbHmsSyC3v6DR2BNwNYvUGNtywKhZKnSWLx0peomf0fy9yQxfkIYGjVuqn7L4X3i72sptIPSpHJU1ighwrAIxBJrV69C717BFvuKXYZYbkhYs5DQOjpawRuTPdtLrvjh7tp7UInrEubCt/ZMCu/gbp2MthbS77tRY1CuXAXjFNu2/ozOHdvZm9J4f/TYUDRrbjhE8cL586hSqaz6rfk1y5ytWzRVBwvqI09gXtVGQixHRo38Rv334o8/Hhibpf7E8oGBDi+ODUmABEiABOKEwLPnf+Jxs2IuFXhTLT+K5MnTxMl+OEnCIfD28RM0zjXcpQLvjjtzkDSFofCEQQKxRuDZXUxvktNlAm/wkjNYd+EVknxgOKjZ2Xj0nyvOdmF7EiABEohTAjYFXr1H6rlzZ1G9yr+iiaOrTJkyJU6eikSiRIZP0ArkCzARPBwdx93t9JXMefP4OfzZv37dMRF4ZRzx/WzStLnR11g/tnjNTgmbaOJVa0/gFRFVxFSJrp07YMvPmyxi3nvgF2TNmi2K/7A9gbdN2/b45rtRakxrAq9WHawXeEUUFnFYQuwInj17ajP9V69cMR4u5ozAK6Jn6tT//g8rzWta5pSQSk3xEBZBT3x5tahRrRJu3rhusqaNP29HYGBedc2agFqrdh1MnT5LtZk1YzpGfve1+i1VzlLtLNGrZ3esW7Pa4n61Q9b0oqOItrIPie3btqBTB4OXr3kcPXFKHUxnLtJbauuowBuTPdtM6P/d1NvD6KuT9bYhehb6MctXqIR5CxYZL9mrWjZfj+a5rX+ho7fScGT9Wht7grozY7EtCZAACZBA3BCgB2/ccOYssU+AHryxz5Qjxg0BevDGDWfOQgIkEH8J2BR4t2zfrT6Blhg2ZCAWLpgXLRJ6j8uvRwzD3B8NIpc3hf4wsmlTwzB29PdOL18TeG1VeVoSPPUTifeniFeVKldBUFABZM+RwyieS7sqFcviwoXzqos9gVfE4rHjJ6q2Y0aNhPgrWwrNHkI+SxerAi1cJfA2btIM40InqWmEs/B2NJwReLWqbEfH1tqZHzYn10VMlLyY50A/dv+BgxEc0ktd0h8Mp9+vNRsTn+w5sHuvwZv30MEDaN7U4KsmHsRS2SthTeyUe9pe9f691vbtqMAbkz07wlzvy3vi+DHUr1tTddMfSjc5bAJCxxkOPDMPTdSW640b1sWvR35xZFrVRv/frEL5A5VNAwVeh/GxIQmQAAl4PQEKvF6fwgS7AQq8CTb1Xr9xCrxen0JugARIwM0EbAq8x0+eQbr0BpPz0iWLRqladHTtM2fPRdVqNVRzWwdBOTqeO9o1b9EKo8aMV1NLVZ/48No7vEvEWLGn0ISl5SvXomix4mqMrJkzqopY87An8Jq3lzlEOA7KX0DdCpsUignjDZ6s2mf5r169Qs7shs/z9ZHTzw/bd+5Tl8Tntl3rFlHaiC3Fhcs3lJB469ZNlCpe2NjGVQKvvir1yC+H0aRRPYdT7ozAK56rSRIbLABmz12gDlOb8cNUzJ87R10TgVwqz+XZf/P6tXENctCdefTtNwA9exkOOJMxRo2MajGxeetOBATkUW30IrFevJWD4apWNvjx6uPL/gMhXrESP86agW+/GW68rdlcWKvO1Y9vSwTWBnRU4I3Jnh1JaOs27fDtyNGq6aaN6xHczVBtrhd4J04Yh0kTDH+X5qHn3bZ1C5uHtZn3PXX2IlKlSqWqt7Nl+UT9rYp9x0dprXt2BQQEGCu0Zb3jx43Bf9++xe3btxzZLtuQAAmQAAl4EAEKvB6UDC7FKQIUeJ3CxcYeRIACrwclg0shARLwSgI2BV6t6k/EDREkoxsdOnXBV8MNh6tZExKjO3Zc9tOsCmROETsb1K1lPIDJfB3ijTpl+ky8evUShQsYPt2XqlSp1pTo17c3VixfatJNPj0XMVxVZV6/hrKliqn7qVKnRr/+gyz67Mr9ho2aIHSiofpWxF0ReSXWbdyCoKD86ndArux4+tTU6kDEYcmxHCInOc6Xx09ZIuhDBDYR2iTWrFqJPr1DjLddJfDKBPrq2jYtm2Hv3t0WU128REmkz5DBaGvgjMCrH/Ds+SsQi4aSxQopQc7PLxe27dyrDtHKF5jL7mMmfcXDV5iK17S8ANAL+OINK4K75NaSF7XGUvqULV3c5GWKjCnVqOnTZ1CCo6xH/3Lhh5k/onqNWmqNA/v3xdIl/1oTyLXZc+ZDni1rz5355hwVeGOyZ+HRtHkLTJ40QdlGmIfs+diJ08YXTHqP6EqVqxq9bn/77Q6KFzG83NCHCPOnz12CHMYmzOQFx+v/E+k7d+mO48eP4uSJ4xbzqv97+uuvv5A3IKfd/EsDRw5Zc2ggNiIBEiABEnA7AQq8bk8BFxBNAhR4owmO3dxOgAKv21PABZAACXg5AZsCr1YZKMKIr8+/p9o7u+e69RsgbPJ01W3H9q3o2L6Ns0N4RHuphNy154AS8SSkknfRTwuwe+cOhIefQL58+VGsRAmULFXG6Mcqh6BpAq/+U3ypqh3Qrw9OnTqF0qXLoGnzlkY7DBlbL/Dm8PXFzt0HlBC2+KcFWLliGcQTWUSskiVLY2zoROWvKlGtcnlERp5TvydNno569Ruo3/KJe8+Qbnj8+C9UrFQFVy5fwpkzp9H7iy/R54t+qs2TJ0+Ul21E+Ekl+oqo3Llrd3VP5g7M7YuXL18ac+FKgVfPSgS61atWYHLYRCV8Sh4qVKiE+g0aIZe/vxJ/RQSWiI7AK5W8Imq+ePECuXyzqnEGDRmGrt1CsGfPLrRt1dyh52/9pq3Ily9ItQ0/eUKJrWKXISL09B9mQ+aRECsMscTQhz4Pcqhb7x7dsW/fHmXBMWbsBBQoWEg1l9xKjvWhr9AVgXjwwH5Yt3Y1kiZLhh49eht9lq39HUuuU6VKbRxy554DEO9s8R0uV9pQcS7x8OGf6pnXR3T3XK58RcxfuBjiHb3l583YtWs7jhw+jBcvnqNCxcoYMnS4UdyVdeTP628UaGW9UmEr/sgSx47+inZtWhhfYAjnRUtWI01w9gAAIABJREFUGKul9fYO0v7QkeMQgfnmzRtYsWwpfv31F5Uvn+zZEdKjD8QrWfsb178wsfcQUOC1R4j3SYAESMB7CFDg9Z5ccaWmBCjw8onwVgIUeL01c1w3CZCApxCwKfBqn/jLYp09pEi/Qf0n1XoLAU+B4Mw6atSshXGhYaoy0JG4fOkiKpYvbWyqVUfa62tJ4NX3EdFTE6G067t37UC7Ni2NzUTEEpsB83bSQC8y6vMs90QklEpTfeg9Y7XrrhR4ZY75Py1BuXL2D/aLqcArB7rJwW4REeGoU7Oq2p7mPz1owJdYsvgne+lS90WI37Bpm1F4lGvmebpz5zYqlitlIpRLOxEtt+/apw6zsxbyUqBe7epGAV/fTn8goqX+sg6pgpUXEuahP9TO1kYt+d1Gd8+awGsPrKy7WZMG+OXwIZOmRYoWg1ieaM+2PLN//PEA777zLj5Km9Z4XcTyYoWDTHhrAq+9uc+ePYMaVSvaa2a8T4HXYVRsSAIkQAIeT4ACr8eniAu0QoACLx8NbyVAgddbM8d1kwAJeAoBmwKv/hAlqbqV6tvohN4L09bn9tEZ2x19pHI2dOIUVK9RUwlz5iGi1I0b1zFvzmwsmD/X5Lb43i5estJYnajdFCGqV0g3/DBrjhKPr1+7qj7Vl0iaNClGjQlF5SpVLQrLWmXviOFDo6xFDlITgd18nRNDx2HSxH+9S8dPCFNWD+ZisNg6SHWkVEmah3aIlTUbg1at26q5Jbp0ao+tWzZHGSPy4rUo+9U3EmsBOQgudep/K0y1+1JNKpWXY0aPNK5Pqi+nTjcc4mfJrsDS8zJv4WKUL1/RxL9Y80LO459DVTY7GmKjsGHzVmTM+IlJF3kmjh87qg77suS9LI2FvRzmJz7N5nmQSvA6NavBkv+vNpF44ob06B1FnBdhuGvnDlY9aIeP+NZY5Wtrn9ZezkRnz2k++gjjxk9EseIlrb4skWrlzh3aWvWwFc/kyVN/QDaf7Bb/BtetXaOq5DVrBq1Ry1Zt0KVbMMTr2VLI35P4+jpzuJ+MI+vZtGWHGlIOpJSDKRkkQAIkQALeSYACr3fmjasGKPDyKfBWAhR4vTVzXDcJkICnELAp8Pbu8yX69DV8vq+3GnBm8SVLlcbipSuNXSx5wToznqe1lUPI5PP5gIBAPHv2VFkryKFq1kQ8TciTPkWKFMPzF8+xbcvPNoU7/Z7FjzdvYD74+vkpf9jIc2eVDYC9+fz9cyOXf27lsXsqItyid7BU7cq6ihcviQcP7mPf3j0Qj1NPCBGopUIyT2BePLh/D6ciIpQPsqeGiPRly5VHTr9cOPrrERw+dNBmjvT7EHFXRN5ixUtAKsD37tkdxT/Z1r7lJUKFCpXV87hj+zaHn62YsozunkUgDsgTiJw5/dSLCHk+T5w45vCeP/30MxQsVAj+uQPw8sVL5a0r/Z8/f25zSzKXzCl/F59nzYrbt24pb97Lly7FFAX7kwAJkAAJeDkBCrxensAEvHwKvAk4+V6+dQq8Xp5ALp8ESMDtBGwKvFk+z4p9B34xVhMuX7YE/b/s4/CiRUA5eSpSHV4l8ceDB+rwKQYJkAAJkAAJkAAJkAAJeCoBCryemhmuyx4BCrz2CPG+pxKgwOupmeG6SIAEvIWATYFXNvH96HFo0bK1cT9yYFFwt852qwLlsKvvR4/HBx98YOwrn6dLdSuDBEiABEiABEiABEiABDyVAAVeT80M12WPAAVee4R431MJUOD11MxwXSRAAt5CwK7AK5+Lh5+KhJxMr4X4ie7bt0f5n8qn8idPHEOaj9KicOEiCMpfAEWLFkPWbD4mDKR96xZNvYUL10kCJEACJEACJEACJJBACVDgTaCJjwfbpsAbD5KYQLdAgTeBJp7bJgESiDUCdgVemSlfUH4sWbbK6mFI9lZz+/YtVKtc3mFPTXvj8T4JkAAJkAAJkAAJkAAJuIoABV5XkeW4riZAgdfVhDm+qwhQ4HUVWY5LAiSQUAg4JPAKjESJEmH8hMmoW6++0ZPXHqS3b99i7OjvMWvmdHtNeZ8ESIAESIAESIAESIAEPIIABV6PSAMXEQ0CFHijAY1dPIIABV6PSAMXQQIk4MUEHBZ4tT3m8PXFsOHfIFs2H6RLlx5JkiQxbl+sG54+fYq7v/8H586dw/Bhg/D48WMvxsOlkwAJkAAJkAAJkAAJJDQCFHgTWsbjz34p8MafXCa0nVDgTWgZ535JgARim4DTAq/5At5//30E5s2Hx4//wuVLl2J7fRyPBEiABEiABEiABEiABOKUAAXeOMXNyWKRAAXeWITJoeKUAAXeOMXNyUiABOIhgRgLvPGQCbdEAiRAAiRAAiRAAiSQgAlQ4E3AyffyrVPg9fIEJuDlU+BNwMnn1kmABGKFAAXeWMHIQUiABEiABEiABEiABOILAQq88SWTCW8fFHgTXs7jy44p8MaXTHIfJEAC7iJAgddd5DkvCZAACZAACZAACZCARxKgwOuRaeGiHCBAgdcBSGzikQQo8HpkWrgoEiABLyJAgdeLksWlkgAJkAAJkAAJkAAJuJ4ABV7XM+YMriFAgdc1XDmq6wlQ4HU9Y85AAiQQvwlQ4I3f+eXuSIAESIAESIAESIAEnCRAgddJYGzuMQQo8HpMKrgQJwlQ4HUSGJuTAAmQgBkBCrx8JEiABEiABEiABEiABEhAR4ACLx8HbyVAgddbM8d1U+DlM0ACJEACMSNAgTdm/NibBEiABEiABEiABEggnhGgwBvPEpqAtkOBNwElO55tlQJvPEsot0MCJBDnBCjwxhLypEmT4uXLl7E0GoeJLwRSp0mDRw8fRms7Men74Ycf4vXr13jz5k205nZHp0SJEuHjjzPit9/u4J9//onTJcjcyZIlw5MnT6I1b0xyFa0J2YkESIAESMClBCjwuhQvB3chAQq8LoTLoV1KgAKvS/FycBIggQRAgAJvNJNcqHARfNG3P7Jmy4a0adPhvffeUyO9evUKjx49xPp1azBtSli0BaNoLsukW6ZMmZHmo4/w7NkzXL1yOTaGTBBjNGjYGIMGD8Oa1Svx/chv1J5nzp6LAgUKoX3bljh9+pRNDqPHhqJCxUpIly493nnnHbx9+xa///4fzJ0zG/PmzLbZt2WrNujSLRgZM36inikROh88uI/9+/aib5+eNvsGBubFuNAwZM6SRYmVEo8fP8bFC+fRqWNb/PXokUP569tvANq174Tbt2+hWuXyDvUxb9S8RSv19yExbdpki/v+9NPP0LV7CKpUrYY0aT4y/g1JH2F24vgxfDNiGM6dO2txDYeOHEfi9xPbXd+9+/dQo2rFKO1SpEiBmbPnIXdAHqRMmVLdf/HiBW7dvImhQwbg2NFfXZZnu4tmAxIgARIgAbcSoMDrVvycPAYEKPDGAB67upUABV634ufkJEAC8YAABV4nk/j+++9jyrQZqFqtht2eIs5t3rQBwd06223rigYHfzkGEXmfP38O/5zZXDFFvBxz2Yo1KFa8BCaMH4uwSaFqj5ev3YbkXjgKT0vx7rvvYv2mrRCh1VrMnzcHw4cNtnh72Fdfo2Pnrlb7no+MRM3qlfDf//43SptKlati1o/zIGuwFE+fPlVirYi2tkIqUQ8cOgqpAJZq1jz+OZzOsbBbuny1Erclflo4H0MHD4gyjgi0n32Wyeb48jfUsnljHDywP0q7G7fvGuewNYi8dMmZPYtJE5n35227jMKuef///e9/6N61E7b8vCnK0DHNs9NA2YEESIAESCDOCVDgjXPknDCWCFDgjSWQHCbOCVDgjXPknJAESCCeEaDA60RCRdg5eSoSqVOnNva6cP48Tp+OwIUL5+HnlwsBeQLh45MdiRMbKgvv3buLwgWsC35OTO90Uwq8TiNTHc6ev6IEzhJFC+LOndsqr9t27lVWC/kCc1kddMq0mahdp666L1XTa9esQkT4SZQuUw61atcxiq+9eware/qoVr0mZsyaoy6JuLh500bs3bMLeQLzon6DRpBqU4kd27eiY/s2Jn2TJ0+u1qyJu78cPoStW39GyhQpUa9BQ2TNahD3/3jwAAWCAqKsP3+BgmjarAWyZ8+BwLz5jJW00RF4M2fOgl17DyoxXAt7Aq9U64afPIFzZ8/g6tUr6u+nfsPGRvHVkkArY2sCr1hRXLFRoX739/+gfdtWJvs+cixcVUlL3Lp1E6tXrcDDP/9UL25KlCylrou4LPk2r3yOSZ6j90SyFwmQAAmQQFwToMAb18Q5X2wRoMAbWyQ5TlwToMAb18Q5HwmQQHwjQIHXiYyOHT8RTZo2Vz1EdOoR3BXbt22JMoL4eYZOnII6devh/v17FHidYOzupmJpEX4qUn2qn8s3q1rO4CFfKduE3bt3ol3rFlaXeOnqLSXsi2BZvkwJJRxqUaNmLUyf8aP656WLF1CpQhmTcTZv3YmAgDzqmrkALELk/kO/KtFUxs6RLZOJR23/gYMRHNJL9d24YT1Cuv9bMS5VtAcOH1WV3BK1a1bFqYhwk7lHfDMS7dp3jLIvZwVeEcUPHTkRpSrWmsArthdihzBu7KgoXsHC8Xj4WaOwXbpkUdy8cd1kjZrAe/bsGYsWDNYSldPPD9t37lO3xTqjeJECSlTXInTiZDRs1ET9c+6Ps/D1iGEmQ8Ukz+5+vjk/CZAACZCAYwQo8DrGia08jwAFXs/LCVfkGAEKvI5xYisSIAESsEaAAq+Dz0bWbD7Ys++Q8ZPwyhXL4OKFCzZ7S+Vnzdp1MH7saNWucpVqKFKkKORz+UkTx1vs27lLd2TIkAEiWplXeUqHfEH50bZtB2T18UGaNGnw5x9/4ObNm8rzd/euHWpM+cw+JKQXmjZviQ8++EB90j9/rkFc1GLd2tU4c+a08d8iHnbr3gPiLZzNxwfPnz3DubNn1Rr27dtjca3isyrVliJkLpg/FxUqVkaDho1UFeizp8+wf98ezJv7oxLRJLJ8nhXt2nVAwcJFkDZtWty5fVtVTi5dssgmx8ZNmqFsufLIlcsfiZMkwY3r1yFVqlMmT4zST3xd23fopK4vXDhfiYIiuJcpWx4FCxXCq5evsHjRQvzxxwOLc7bv2BnDR3yL8PCTqFurmmqzdfse5PL3x8D+fa2uVXx7J0yaotqvXbMavXt2jzK+CK1S4SoRlNdfVYxKiP/rqbMX1bMlB4yJ4Gge+pcLQwb1x6KfFhibnAg/i7Tp0inRN2vmjFEOKCtZqjQWL12p2ksuW7doajK85E1jJjeKFiuumDkj8Mra9x08gixZPldjTwwdhz59+6nf1gRem0kH1Jpl7RJStSzVy/qIrsA7Z95CVKxURQ0llb27dm43GVf2cu3mf1RF9KNHj5Avj5/xfkzybG+/vE8CJEACJOA5BCjwek4uuBLnCFDgdY4XW3sOAQq8npMLroQESMA7CVDgdTBvP85dAPE5lRAhtV2blg72/LfZ2vWbIZ/DS7WgCHGW4vyl6+qArOvXr6FsqWLGJiI6rVqzAQULFbY6719//YW8ATlRvERJ5YFqK6ZPm4wxo0aqJuIZu2jpSqt+pFu3bEa3Lh1Nqhyl37GTp5E+fQblSXvp0kUEBeWPMqXcK12iCDp16YouXYMteqaKT7H4nZrHxx9nxNLlq5DNJ7vFrYjlQPNmDU2Edqmanjx1hmo/bMhAZZkhArHmByvXe/XohnVr1xjafPU1Gv9fVbb8O2nSpMqiQHIkNgsSUpkq/WUvf//9t7q2euVyjBg+1LiuH2b+iOo1aql/d+rQ1mJl95hxE5QVgkT/L/tg+bIl6rfYN0ydPkv9Xr9uLXqGRPXh1efUvJL45p17qq8I6UULBVlkdf3W7wbB0o7NhHSOOH1evSRwRuBdsmyV0dpg9Pff4fDhg9iwySDIRlfg1Z4vGSMgV3b1YkQf0RV4tXFFEM+W5ZMoz7XMIRXTmlgtf6tahW9M8mwxMbxIAiRAAiTgkQQo8HpkWrgoBwhQ4HUAEpt4JAEKvB6ZFi6KBEjAiwhQ4HUwWVK9qwmNRQrmw927vzvY899mMRF49cKSVOTKYVkicGbOkgXp0qVX4p1c9/n8U/j758aS5auRKlUqo7AplYj6GD92lKoCTZs2nRJqNf9WaXfxwnmkSpUavjlzGq8fOngAzZs2NBlDL8BpN968eYMnjx9DrA60MUVI0wusIjK+nzgxxDtWiyoVyyofYy2koliqWkXslhDxUqwFRGgrULAQMmT4WF0XC4xC+QON/fQCr/m8WiO9wKsX7p1JqLnIv3rtRqP4LjmwdBBa3foNEDZ5uppmctgEhI4bo353D+6JAYOGqN9yGJkIopZCE3Kl8rpmtUqqieTvRMRZ9Xv/vr1o1cJgLWAex0+eQbr06ZW1iPmBY+ZtnRV4v/72e7Rt10ENs2bVSvTpHYK8+YKiJfDKMyPVtd2DeyAov6GSeeeObejQrnWUPWkC7+VLFxHcvTMSv58Y8pJDb41hiUXkxWvq2dNeiFhqM3vOfFVxL6G3h4hJnp15vtiWBEiABEjAvQQo8LqXP2ePPgEKvNFnx57uJUCB1738OTsJkID3E6DA62AOz124quwObFXf2hsqJgLv5Wu3lQfr48ePUaRgXrx8+dI4nYhVIrKJMKb/nNyRQ9ak0leqQyVWLF+Kfn17G8cVO4FNW3YYK3tFVNTbOugFXhGGewZ3xf79e1V/ER7FkkATaEVslYrVr4YOghyKJTFx0lTUb9hI/ZaKWhFetQib8gPq1quv/jlh/FiETQo1wSv+rXIglsTwr4YYLSj0Aq/cE8/anzdvwq6d23D92jXkDsiDXTt3KGFYQtilSfOR+v1R2rRYv3GLqtwtU7Koutb7iy/RqnVbHDywX1k0aPHw4Z+qolcL/QuALJ9lsPgolC1bHgsWLVX3Vq1cjr59eqrf330/Rs0h0b1rR3XAmqXQBE05+E0OgJMQSw2p7JbYtHE9grv967+rH+PQkeP47DODd+/nmQziuLVwRuCVdcv6JfS2Fs4KvDl8fbFs+RqVA/3LABF3xZ5B1m0eGg9L+xBGkydNMFZJ69tcvfGbsqCwdQCi3oe3Tctm2Lt3txoiJnm2CZ03SYAESIAEPIoABV6PSgcX4wQBCrxOwGJTjyJAgdej0sHFkAAJeCEBCrwOJE0EJxGTJGxV/dkbKroCrwi7IvBK2PoM33x+ewKv2BFcuHxDdTP3GtXGkipGqWaUOH7sKBrUM9gQSGgCr3w6n8c/RxQRbsq0mahdp65qa35wmFxLkSIFzkReVvfDT55A3drV1W+p4hQPVOEeERGOOjUN1hj6ECYXr9xUbUV8bdHMIBTrBd7zkZFo2qQ+/jKrXraWp05dumHosBE4dvRXNKxfWzUTgTtPnkAlfIsAbi00H1xbLwD0oqd+zXpP2GZNGuDwoYMWp7ly/Y6yjxCRPzC3r2qj94RdtnQxBvT7wmLfnbv3I4dvTnXPL8fnJi8IzDs4KvDKiwGxZpA8SUW7iM5a5bKzAq9eqNbWc/PmDQwfNgR7du+0uCdbAq/WYcP6degR3MXYX/+3LOOLfYil0B88Jy8lxGNaIiZ5lv7vJ/3A6jPEGyRAAiRAAp5D4O0/b/G8bQW8blDCJYtKvPIAki/ci/feSeSS8TlowiXw7t/vonngKBTNbPrlXWwR2Rg5DpuvhCHRe4lja0iOQwKKQFK8wYyWeVAld3qXEAlechrLTz5Aovfej9b4b14a7PsYJEACJOCpBCjwOpAZvcAqtggFggIc6BW1SXQFXhkp/FSksj2QEAFyzOiR6v/bCnsCb7HiJbBshcGLdv68ORg+bLDF4TRfYHM7BE3gtSYO9+rdF1982V+Naa0yVRMt9Z7DenHwwP59EM9ZSzFw0FAkTpwYeqFOL/CaH0ZmL2laNfP3332DmTOmqeYiIidJkgT+ObOZVOyajxVx5gJSp05ttMmwNFfu3AH4edsudUsv8C5cvAxlypRT10VYtpZXSwJvy1ZtMHLUWNXXltftth174Zcrl2oXGwKvHJi3a88BJThLJXOJYgWVv68Wzgq8GTN+gtHjQpE8WXJ8nDEjMmXKbBxLDsUbPNBwYJs+xLf4+vWruHL5Eu7evYsUKVIiRw5fNGvR0niYnbT/esQwzP3R4HGs/1u+dvUKypWx/D/cxZu5Y2eDF7Je4I1JnmWsDD6WPZLtPZu8TwIkQAIkELcEHj/6DQ8bF3SpwJtmdQRSprJ8JkPc7pazxScCr+7fxztv/8Z7/y+pS7b16r/P8HeyRPgwje0vwlwyOQeN1wTe/nkN0xpld5nAG7LkDDZcBZKnShctjveuhkerHzuRAAmQQFwRoMDrIOlLV28pMVHzuXWwm0mzmAi8ep9TbVCpFpXPzMVy4JsRw4zWB9p9ewKvHHo2eOhXqrkt79cjx8IhApz46+bIlsm4J3sCb7sOnTDi6+9Ue2sCryag6gXe9h07Y/iIbx1GrBeYYyLwSjWxVBVrHssiYu4/eMRqdbN+gRprWxYIJUuVxuKlK1W3jRvWI6S7wU5h/IQwNGrcVP2Ww/vE39dSaAelSbWsrFFChGERiCXWrl6F3r2CLfYVuwyx3JCwZiGhdXSkglfzLpb9tm7RVB2yp488gXkhbSTEfmPUyG/U384ffzxwKK9iJ7Fr70ElrkvYEr4tDfjtyNFo3aaduiWV3FUrGwR0Ca3y97ff7qB4EYPPr3mMHT8RTf7v8L2unTtgy8+bVJOY5Fn6p/7E8oGBDkFhIxIgARIggTgj8Oz5n3jcrJhLBd5Uy48iefI0cbYnTpQwCLx+9BcKZ6yNHB9Z/kopphRO/LYRkU8OIWkKQ+EJgwRijcCzu5jeJKfLBN7gJWew7sIrJPkgVbSW/Og/V6LVj51IgARIIK4IUOB1kPThX0/g008/U63z5vFz+LN//fAxEXhlHPE6FdFJqhDNQ7xmp4RNNPGqtSfwiogqYqqEXsQyH3vvgV+QNWu2KP7D9gTeNm3b45vvRqnhrAm8WnWwXuAVUVjEYQmxI3j27KnNLF29csV4uJgzAq+InqlT//s/rD788EPjnPJDqlPFQ1hETPHl1aJGtUq4eeO6yZo2/rwdgYF51TVrAmqt2nUgVacSs2ZMx8jvvla/pcpZqp0levXsjnVrVlvcr3bI2oXz51GlUlnVRkRb2YfE9m1b0KmDwcvXPI6eOKUOpjMX6S21dUTg1dtK2EyO2U174rK+ebfuPTBw8FB1yVZ1srX5NUFcKoylAlsL7aXCg/v3UTB/Hovdp8+YjRo1/z97Zx0fxdm9/dO+bYHSAqFIaYsGYiSB4BqCuya4BXd3KxSKE0JwD+7BnQDBnSS4ewUoLgEqz/u57v3NMrs7K8lmSXbmnH+eZObW60z6efjOmevW2XRUrVSOLl26KH62J8/x0YnbsgKsACvACiStAuzBm7T68+wJV4A9eBOuHfdMWgXYgzdp9efZWQFWwPkVYMBrYw7lh5HNmB5GE8aNsbHnx2YS4LVU5akEPOUTwUO0XPmKVLFSZfLzK0i58+QRB0ZJUblCAF25cln8ag3wAhajUhExfuxomjljquKeJHsIY1DmKMDboGFjmhgyRawFOkNvWyM+gFeqyrZ1bKmd8WFzuB6+eJnIC0KeA/nY/QcOpi5de4hL8oPh5PudM2sGjRk90mRJrrnz0L4onTfvkcOHqEkjna8aPIgBMhFy8Gs8gLRXuX+vuX0nF8Ar9+U9c/oU1atTI16punD5BgHaG1fdS8+zJdi9bWckeXvr4K/c0sKePMdr8dyYFWAFWAFWIEkVYMCbpPLz5HYowIDXDvG4a5IqwIA3SeXnyVkBVkAFCjDgtTGJTZo2p7HjJ4nWAEbw4bV2eBdgbJGixejE8WOi3+q1G6hY8RLi55zZsoiKWOOwBniN22MOgGO/ArpPzcOmhNDkSTpPVumz/Hfv3pF7bt3n+fJw9/Cg3ZEHxCX43LZq0dSkDWwpcBAbQOK9e3epdIki+jaOArzyqtTjx45Sw/p1bcyS4SFr1jx4XdKnp5QpdBYA8xYuFoepzZ41nRYtXCCuAZADnvuXKkYf3r/XrwEH3RlHn34DqHsP3QFnGGPsaFOLCTk0lENiObw1thOQ5unbfyB1695L/Dp/7mwaNXK4fglSRao5YCkf3xIElga0BfDCyuK7DOb9q7y9vfXVylu3bKJJE8fTP3//Tffv37M5l7BYgNUCAmN06aSrNrcl5Af1wRs4v6/Of1iM9X8H5+FnczBeAuKojM+dU1e5j7Anz7asm9uwAqwAK8AKJA8FGPAmjzzwKuKvAAPe+GvGPZKHAgx4k0ceeBWsACvgvAow4I1H7iSrAnQB7AysU5Nw8JhSwBt12sw59O5dHBUpqPt0H1WpqNZE9OvTk9asXmnQtVLlqjRn3kJdVebtWxRQuri4n87Fhfr1H6Tos4v7QfUbUkiorvoWcBeQF7Fxyw7y8ysgfvb2zE2vXhlaHQAOA2TB8gGwOb+Ph7BEkIfcy3T9urXUq2dX/W1HAV5MIK+ubdmsMUVF7VPUuUTJUpQpc2a9rUF8KnjlA0rVnqWKFxYQ0sPDk3ZFRomDw+Rw0NzjgkpRePhC06dPnogXAHKAD09ZAHfkFvf98nkZDCVpiT4B/iUMLCAwJiwWMmXKLOwisB75y4VZc+ZTteo1xXgD+/ehlSuWGYw9b8EiwrNl7rkz3pMtgNfan421Q9agR6MmTWnqlMnCNsI4sOdTZ85Rxky6U3SNPaJxuNyRI4fp9q2bikvB3wP+LhA4tA4evlLIrTKUXmzUqRdIYVNniubwQ4YvshT25tmabnyfFWAFWAFWIHkowIA3eeSBVxF/BRjwxl8z7pE8FGDAmzzywKtgBVgB51WAAW88codKyL37DwmIh0Al77Kli2lf5B6Kjj5D+fMXoOIlS1Kp0mX0fqw4BE0CvPJP8VFVO6BfL4qNjSV//zLUqEnsapiVAAAgAElEQVQz8vLKq1+NHPDmcXOjyH2HBAhbvnQxrV2zii5evCCqS0uV8qcJIaHCXxUh9wudMnUm1a0XKK7jE/fuXTvRixfPqULFynTj+jU6f/4c9ezdl3r17ifavHz5UnjZxkSfFdAXULl9x87iHub2zetGcXFx+jU6EvDKtQLUjFi3hqaGhQrwiTyUL1+R6gXWJ08vLwF/AYERCQG8qOQF1Hz79i15uuUU4wwaMow6dupK+/fvpeDmTWx6SjZt3Un58/uJttFnzwjYCrsMQOiZs+YR5kHACgOWGPKQ5wGHxvXs1pkOHNgvLDjGT5hMBQsVFs3hBYscy0NeoQtAPHhgP9q4IYJSff01devWU++z/P79e3JzzWayF+Q6XToX/fXI/Ycobdq0wne4rL+u4hzx9OkT8czbEtYAb9lyFWjRkuWECtkd27fR3r276fjRo/T27RsqX6ESDRk6XA93sY4C+bwMDhGUDv7D38G6tavp+NEj4qC3vN4+9PPwkVSosK7SHM9OxfL+dP3aNYNlS1XPuLgofAHNmBYm/jZq1KwtDr0DiEfI/56kAezJsy3acRtWgBVgBViBpFeAAW/S54BXkDAFGPAmTDfulfQKMOBN+hzwClgBVsC5FWDAG8/8Va9RkyaGhFHq1Klt6nn92lWqUM5f31aqjrTWWQnwyvsAXEmgWbpuXG2IKknYDBi3Q3s5ZJSsHKRxAAklwCVdk3vGStccCXgFeFu6gsqWLW9NKrsBLw50w8FuMTHRVLtGFTHfjt37BHAfNKAvrVi+1Ooa0AAgfvPWXeJgNimM8/TgwX2qULa0AShHW0DW3XsPiMPszAVeCtStVU1/4Je8XeiU6VQvqL7ZvlgHqmDxQsI45IfaWdro1LDJFDJxvE1a2Ap4rQ2GdTduGEjHjh4xaCoBXmv9zdllBAY1EFXvSn8b0pjmbCHsybO19fJ9VoAVYAVYgeShAAPe5JEHXkX8FWDAG3/NuEfyUIABb/LIA6+CFWAFnFcBBrwJyB0qZ0NCp1G16jUEmDMOQKk7d25T+IJ5tHjRQoPb8L1dvmKtvjpRuomqzR5dO9GsuQsEPMan5/hUH5EqVSoaOz6EKlWuogiWpcreEcOHmqwFB6n9Oma8yTpDQybSlFCdpzACVYv4pN0YeMHWoVXLpuIzd+OAbQAqh83ZGDRvESzmRnRo15p27thmMsalq7dM9itvBGsBHATn4vKxwlS6j2pSVMqOHzdavz755/dKdgVK6Q5fspzKlatg4F8seSH7eOURlc22BmwUNm/bSVmy/GDQBc/E6VMnqUFQHUXvZTSG9jjMDz7NxnlAJXjtGlVJyf9Xmgj+sF279TSB8wDDHdu3of37IhW3MXzEKH2Vr6V9yv2drekBP2N43SKWLA6nYUMGGnRJ/913NHFSKBUvUcrsyxJUK7dvE6zo2ws/4pbBrU3+jqRJnj9/Tt27dBRV0ObC3z+A5swPNwDyaIsXHADDxlXW8nHsybM17fg+K8AKsAKsQNIrwIA36XPAK0iYAgx4E6Yb90p6BRjwJn0OeAWsACvg3Aow4LUzfziEDJ/Pe3v70uvXr4R3Lg5VUzpATZoK8A59ihYtTm/evqFdO7ZbBHfyJcKPN59vfnLz8BBg9dLFC8IGwNp8qEb19MorPHZjY6IVvYNRtYt1lShRih4/fkQHovbTb789sFOhxOkOkI6qUB/ffPT40UOKjYkRPsjJNQDpA8qWI3cPTzp54jgdPXLYYo7k+8DzAchbvERJQgV41P59Jv7JlvaNlwjly1cSz+Oe3btsfraSSkvAUm8fX3J39xAvIvB8njlzyqY9w/bCx9uXcuXOTRkyZKCrVy4Lb174HNsamB8vT9KmTScgOMCyrWFPnm2dg9uxAqwAK8AKfHoFGPB+es15xsRRgAFv4ujIo3x6BRjwfnrNeUZWgBVQlwIMeNWVT94NK8AKsAKsACvACrACrICdCjDgtVNA7p5kCjDgTTLpeWI7FWDAa6eA3J0VYAU0rwADXs0/AiwAK8AKsAKsACvACrACrIBcAQa8/Dw4qwIMeJ01c7xuBrz8DLACrAArYJ8CDHjt0497swKsACvACrACrAArwAqoTAEGvCpLqIa2w4BXQ8lW2VYZ8KosobwdVoAV+OQKMOD95JLzhKwAK8AKsAKsACvACrACyVkBBrzJOTu8NksKMODl58NZFWDA66yZ43WzAqxAclGAAW9yyQSvgxVgBVgBVoAVYAVYAVYgWSjAgDdZpIEXkQAFGPAmQDTukiwUYMCbLNLAi2AFWAEnVoABrxMnj5fOCrACrAArwAqwAqwAK5D4CjDgTXxNecRPowAD3k+jM8+S+Aow4E18TXlEVoAV0JYCDHi1lW/eLSvACrACrAArwAqwAqyAFQUY8PIj4qwKMOB11szxuhnw8jPACrACrIB9CjDgtU8/7s0KsAKsACvACrACrAAroDIFGPCqLKEa2g4DXg0lW2VbZcCrsoTydlgBVuCTK8CA95NLzhOyAqwAK8AKsAKsACvACiRnBRjwJufs8NosKcCAl58PZ1WAAa+zZo7XzQqwAslFAQa8ySUTvA5WgBVgBVgBVoAVYAVYgWShAAPeZJEGXkQCFGDAmwDRuEuyUIABb7JIAy+CFWAFnFgBBrxOnDxeOivACrACrAArwAqwAqxA4ivAgDfxNeURP40CDHg/jc48S+IrwIA38TXlEVkBVkBbCjDg1Va+ebesACvACrACrAArwAqwAlYUYMDLj4izKsCA11kzx+tmwMvPACvACrAC9inAgNc+/bg3K8AKsAKsACvACrACrIDKFGDAq7KEamg7DHg1lGyVbZUBr8oSytthBViBT64AA95PLjlPyAqwAqwAK8AKsAKsACuQnBVgwJucs8Nrs6QAA15+PpxVAQa8zpo5XjcrwAokFwUY8CZSJlKlSkVxcXGJNBoPoxYFXNKnp2dPnyZoO/b0/fbbb+n9+/f04cOHeM/9xRdf0Ndff00vX76Md197OmDe77/PQr/99oD+97//xXuo7DlyUtzbt/To0cN497Vnz1999RXh7//Fixfxnpc7sAKsACvACiRPBRjwJs+88KqsK8CA17pG3CJ5KsCAN3nmhVfFCrACzqMAA94E5qpwkaLUu09/ypkrF2XIkJG+/PJLMdK7d+/o2bOntGnjepoxLeyTQzL5drJmzUbpv/uOXr9+TTdvXE/gTrXXLTCoAQ0aPIzWR6ylMaNHCgHmzFtIBQsWptbBzejcuViLooybEELlK1SkjBkz0WeffUZ///03/fHH77RwwTwKXzDPYt9mzVtSh05dKEuWH8QzBdD5+PEjOnggivr06m6xr69vPpoYEkbZsmcXgBYB6Hj1ymVq1zaYnj97ZrZ/mjRpaM68cMrr7UNp06YV7d6+fUv37t6loUMG0KmTJxT7duvei1oGt7bpIRn96y+0Yf06fdsff/yJOnbuSpWrVKX06b/T/w2hATQ7c/oUjRwxjC5evGB2/NZt21P3Hr0pXbp0QmuEpBnm27g+ItH3jAEB32fNnk+++fJT6tSpxRxSnvv27kEnjh+zSRNuxAqwAqwAK5A8FWDAmzzzwquyrgADXusacYvkqQAD3uSZF14VK8AKOI8CDHjjmStU602bMZuqVK1utSdA07atm6lLp/ZW2zqiweFjpwiQ982bN+TlnssRU6hyzFVr1lPxEiVp8qQJFDYlROzx+q37hNxDR+ipFJ9//jlt2rqTAFrNxaLwBTR82GDF28N+/oXatu9otu/lS5eoRrWK9M8//5i0qVipCs2dH05Yg1K8evWKqlYqR/fv3zO5/dNPWWn7rr16sGvc4L///qPOHdvRju1bTfpOnT6batepa9NzEDp5Ik2ZPEnf9sjx04S5LQX+hpo1aUCHDx00aAaYu2fvAcrj5m6xf+SeXdSmVYtE3XP1GjUpbNosAyBtPMHyZUto8MB+NunCjVgBVoAVYAWSnwIMeJNfTnhFtinAgNc2nbhV8lOAAW/yywmviBVgBZxLAQa88cgX4NnZ2Evk4uKi73Xl8mU6dy6Grly5TB4enuTt40uurrkpRYoUos3Dh39SkYLmgV88po93Uwa88ZZMdLhw+QbB4qBksUL04MF9kdddkVHCaiG/r6fZQafNmEO1atcR91E1jWrVmOiz5F+mLNWsVVsPX3t272JQyYr2VavVoNlzF4i+AKrbtm6hqP17ycc3H9ULrE+osEXs2b2T2rZuabAGVJBizRLcPXb0CO3cuZ3SpklLdQODKGdOHdz/6/FjKujnbbL+46eiRcUw4t69uxSxbg09ffJEvMQoWaq0uA7Qir0bVwHLAe+tmzco7t07s/qETBxPeyN36+9LgBeVr9Fnz9DFC+fp5s0b4u+nXlADPXBGVbx77uwG406ZOpPq1gsU1x4/ekQA58uXL6HMmTJTcOu2hCpsAHnEkEH9adnSxQb9E7pnVMSfPB2rh7uobF61crmA/nXq1jN48RNYtyadPnUyYQ8h92IFWAFWgBVIUgUY8Cap/Dy5HQow4LVDPO6apAow4E1S+XlyVoAVUIECDHjjkcQJk0KpYaMmogegU7cuHWn3rh0mI8DPMyR0mqhshB8oA954iJzETQHwomMvCXsCT7ecYjWDh/wsbBP27YukVi2aml3htZv3BNgHsCxXpqSApVKg6nPm7Pni12tXr1DF8mUMxtm2M5K8vX3ENWMADPh68MgJASwxdp5cWQ08avsPHExduvYQfbds3kRdO3+sGEel66GjJ0UlN6JWjSoUGxOtn9vdw4N2Rx4Qv8NGokTRggIwSxESOpWC6jcUvy6cP5d+GTHMYN1ywBvgX4Ju37ppcwZhewELiIkTxpp4BUPH09EX9GDbv1Qxunvntn7sqzfuUsqUKYUe+bzdTaqqixYrTmvWbRTtAY/r1KqWKHtet34zwZ4FsWRxOA0bMtBgv/jvA/47gcDffuECvjbrwQ1ZAVaAFWAFko8CDHiTTy54JfFTgAFv/PTi1slHAQa8yScXvBJWgBVwTgUY8NqYt5y5XGn/gSN6n89KFcrQ1StXLPZG5WeNWrVp0oRxol2lylWpaNFihM/lp4R+/FRdPkj7Dp0pc+bMdOHCeZMqT7TL71eAgoPbUE5XV0qfPj09+esvunv3rvD83bd3jxgK/qBdu/agRk2a0TfffCM+6V+0UAcXpdi4IYLOnz+n/x3wsFPnbgJe5XJ1pTevX9PFCxfEGg4c2K+4zyZNm4tqS4DMxYsWUvkKlSgwqL7wJX396jUdPLCfwhfOF+AQgUOwWrVqQ4WKFKUMGTLQg/v3RbXoyhXLLOrYoGFjCihbjjw9vShFypR05/ZtQpXqtKk6kCYP+Lq2btNOXFqyZJGAggDuZQLKUaHCheld3DvC5/N//fVYcU54ug4fMYqio89SnZpVRZudu/eTp5cXDezfx+xaUTE6eco00X7D+gjq2b2zyfgArdmy6SpR/fJ5iSpZBDxvYy9cFc8WDhgDZDUO+csF44rUM9EXKEPGjAL65syWxeSAslKl/Wn5yrViSOSyRdNG+uEXhC+hChUri99bBzc3qLDFNazp1t3fRXXws2fPKL+Ph8HS7AG8FpNOJNaMtSNQtYzqZSnuPtAdpAaPYd+8bopD3bn/p1i/cRW9PXu+eOWm+JvC4XVurtkUD4OLOniU8N8LBFfxWssy32cFWAFWIHkqwIA3eeaFV2VdAQa81jXiFslTAQa8yTMvvCpWgBVwHgUY8NqYq/kLFxN8ThEAqa1aNrOx58dmGzZtowIFC4kKSYA4pbh87bY4IOv27VsUULq4vglAFaoHCxUuYnbe58+fi2rGEiVL0crV5g+XwgAzZ0yl8WNHi7HgGbts5VqzHqw7d2yjTh3aGlR2ot+ps+coU6bMonry2rWr5OdXwGRtuOdfsii169CROnTsogfk8obwKYbHq3F8/30WWrl6HeVyza24Z1gONGkcZADaUTUN6IhAdSUsMwCIpQO4cL1Ht060ccN6XZuff6EG/1eVjd9TpUolPr9HjmCzgIBdA/pjL//++6+4FrF2NY0YPlS/rllz5lO16jXF7+3aBCtWdo+fOJkaNdZVAPfv24tWr1ohfoZ9w/SZc8XPmzZuoO5dTX145Tk1riSWYCdAerHCfopa3b73hw7SGtlMSDkEHM6V/QeTHGMwVA9nz55DjIvnVl7h60jAK60N83p75hYvRqQAEMfBaoi6tavT2TOnDfYtr0zeumWTgQ92QveMFwU37/wm5jEH4nFvyNDh1L6jDvDPnzubRo0crpgTvsgKsAKsACuQfBVgwJt8c8Mrs6wAA15+QpxVAQa8zpo5XjcrwAokFwUY8NqYCVTvSqCxaKH89Oeff9jY82MzewCvHCCiIheHZQFwZsuenTJmzCTgHa675viRvLzy0orVEQKASWAT1ZfymDRhrPAlzZAhowC1kn8r2l29cpnSpXMhN3d3/fUjhw9Rk0ZBBmPIAZx0A5WNL1+8IFgdSGMCHsoBKyDjVylSELxjpahcIUD4GEuBimJAPMBuBOAlrAUAFwsWKkyZM38vrht/Bi8HvMbzSmPLAa8c3McnocaQP2LDFj18Rw6UDkKrUy+QwqbOFNNMDZtM8KRFdO7SnQYMGiJ+Hjp4AC1dskhxKRLIReV1jaoVRRvk70zMBfHzwQNR1Lypzk7BOE6fPU8ZM2US1iJyP9tLV2+JPEgvB5T6zluwSFSfI4ytEuSAF5XBT58+EVW1eD6hf3wDzwwqijt36UZ+BXSVzEoHpc2YNZdq1Kwt7mMeaCmv6JZbKRhX0SZ0z4D/V67fEXPi7x//HVAKeTX3rp3bqX3bVvGVgduzAqwAK8AKJLECDHiTOAE8fYIVYMCbYOm4YxIrwIA3iRPA07MCrIDTK8CA18YUSp9mW6q+tTaUPYD3+q37woMV8KxooXwUFxennw6A7pdRYwQYk39Cb8sha6j0RXUoYs3qldSvT0/9uLAT2Lpjj76yF1BRbusgB7wAw927dKSDB6NEf4BHWBJIgBYQDhWrPw8dRO/fvxdtQqdMp3pB9cXPqKgFeJUibNoscWgVYvKkCRQ2JcRAXvi34hAwxPCfh+gtKOSAF/fg0bp921baG7mLbt+6RXm9fWhv5B4BhhHQLn3678TP32XIQJu27BCVu2VKFRPXevbuS81bBNPhQweFRYMUAJmo6JVC/gIg+0+ZFR+FgIBytHjZSnFv3drV1KdXd/Hzr2PGizkQnTu2FQesKYVkOYCD33AAHAKWGoCZCONKVfkY0oFmyEOOrDo4jkBFKipTLR0GKPfhbdmsMUVF7dP3lwNe4zUD9gPOjhzxs96mQ3FjRJTHzY1WrV4vciB/GYD+sGcwhsWoql63fgt5eH489A7wetfOHfTjjz/qYTtgOaC5POzZswSHAfC93HPpn2X5+LBRwXOEgJVIowa655iDFWAFWAFWwHkUYMDrPLnilRoqwICXnwhnVYABr7NmjtfNCrACyUUBBrw2ZALACXANYanS0dpQCQW8ALsAvAhLn+Ebz28N8MorEpX8VTEeKjdRwYk4feqk8BSVQgK8+HTexyuPCYSbNmMO1apdRzQ3PjgM19KkSUPnL10X9+UHYaGKE76v0D0mJppq19BZY8gDmuCgLbQFfG3aWAeK5YD38qVL1KhhPXpuVL1sLk/tOnSiocNG0KmTJyioXi3RDIDbx8dXgG8AcHMh+eBaegGQL78fbd6q85GVr1nuCdu4YSAdPXJYcZobtx8I+wi576y8WnTVyuU0oF9vxb6R+w5SHjd3cc8jTw7xgkD+XN+9e0dYaSjFiJGjqVXrtuIWAD38lqWwBHilNgC95QNKGRw6ZzyPHFRL97Cm4cOG0P59kWZ1P34qmnAInVKEhkw08bq2d8+SHzPmu37tKlWqEGBgWQFY3n/AYHEoH8LY8zi1y0e4bnZTfIMVYAVYAVYgyRV49+E1vWruT+8DSzpkLSnWHqJvlx+hlF99/JrJIRPxoJpT4H9xH6iR9ygqls3wy7vEEmLLpYm0884s+irVt4k1JI/DCggFvvz7Bc1q7EWV82ZyiCJdVpyjdedf0lcpE/bf3TfPdDyAgxVgBViB5KoAA14bMiMHrLBFKOjnbUMv0yYJBbwYKTr2krA9QABAjh83WvyvpbAGeIuXKEmr1ui8aBeFL6DhwwYrDif5AhvbIUiA1xwc7tGzD/Xu21+Maa4yVYKWcs9hOQg9dPAAwXNWKQYOGkopUqQgOZyUA17jw8isJU2qZh7z60iaM3uGaA6InDJlSlGtKa/YNR4r5vwVcnFx0dtkKM2VN683bd+1V9ySA94ly1dRmTJlxXWAZXN5VQK8zZq3pNFjJ4i+StWq0jp27YnSV7tKgFf+XN+6eYPKllH+Ryx8itu21/kCGwNe6F3aP4DOxcbQgwcP6M2b15Q1azYKKFueqlStJoA0wtJhaLgPSDtuYgil/jo1fZ8lixhDChyKN3hgPwNJUXm9bsMWYUeC6t7NmzaSX4EC+kPs0BjXZ82cpveaxjV794xKY0BegFwEKsRhLYJDCTN//71Yt3QP943XntlV2SPZ2rPJ91kBZ1Xgw7s39PaPG/T5Z585ZAv//vcfpcuUjT77Jr1DxudBtavAi2e/0dMGhRwKeNNHxFDadMpnMmhXed65vQrEPX5IQW5DHAp49z1cRt+k52fX3lxxf0MF/n5yi2bUz+0wwNt1xXnafJModbqMCZL+4c3oBPXjTqwAK8AKfCoFGPDaqPS1m/cETJR8bm3sZtDMHsALC4bgVm0MxkO1KD6th+XAyBHDTD4XtwZ4cejZ4KE/izEteb9KVZKoxMyTK6t+DdYAb6s27WjEL7+K9uYArwRQ5YC3ddv2NHzEKJsllgNmewAvqolRVSx5LGfPkZMOHj5O5gC2fIGS1sYWCPI2pUr70/KVa8WlLZs3UdfO7cXPkyaHUf0GjcTPOLwP/r5KIR2UJvd/BRgGIEZsiFhHPXvoKkeNA3YZsNxAyC0kJNsHS4eGTZgUSg3/7yC6ju3b0I7tW23KDWw6YA0BQI6oVKGMwYF4lgb56aestDfqsL6vMfiWnkno3aVTO72tBfr9OnY8lS1bXj+8sQ+uvXsuX6ESzZ0fbgBy5XuRez/jIL7wBfP0t7mC16ZHhxupSIEPca8oOFMK6pAjg0N2teXPFxR67yX9myqtQ8bnQbWrAFfwajf3zr5zruB19gxqd/1cwavd3PPOWQFWIHEUYMBro45HT5yhH3/8SbTO5+Nh82f/8uHtAbwYB16tAG2oQjQOVBJOCws18Kq1BngBUQFTEZbAXdShY5QzZy7xKXrObB/f1lsDvC2DW9PIX8eK8c0BXqk6WA54AYUBhxGo/Hz9+pXFLN28cUN/uFh8AC+gp4vLx6ov+LpKc+J/UX0KD2EAO/jySlG9akW6e+e2wZq2bN9Nvr75xDVzHrw1a9Wm6TPnijZzZ8+k0b/+In5GlTOqnRE9unemjesjFPcrHbJ25fJlqlwxQLQBtMU+ELt37aB2bXRevsZx8kysOJjOGNJLgP3xo0dUqICPYt+Zs+dR9Ro6y4qqlcrRpUsXLeZDfnPMuInUtFkLcWnCuDE0Y3qYzX07de5GAwcPFe3l1cly2xC5FvKBy5WvSOGLl+kvSVXLuJAYe8bLnr79BlLhosUoY8aM9P7dO7r/4D5t3rhBeFoH1dcddtcgqA6dOH7M5j1zQ1ZAbQrgv589cmWknq6O+dwy4vfnNPzKH/T2v/gf6qg2rXk/iasAe/Amrp482qdTgD14P53WPFPiKsAevImrJ4/GCrAC2lOAAa+NOZcfRgZIBVgV35AAr6UqTyXgKZ8HHqKAVxUrVSY/v4KUO08eg0rCyhUCxCfjCGuAF7AY1ZmI8WNH08wZUxW3JNlDwKIAVgVSOArwNmjYmCaGTBHTxBcKxgfwSlXZ8c2j8WFz6A+YiLwg5DmQj91/4GDq0rWHuCQ/GE6+3zmzZtCY0SNNluSaOw/ti9J58x45fIiaNNL5qsGDGJW9CHOwE/ekvRpbJUi5NQa/8gVs2xlJ3t46+CsHpbbo1qZdB/p5uG4/liwklMaS+/KeOX2K6tWpIZrJD6WbGjaZQiaOV1yKBLVxUw5aHb1n+YF2nm45DQ5EtEUzbsMKqEkBBrxqyqa29sKAV1v5VtNuGfCqKZva2gsDXm3lm3fLCrACia8AA14bNW3StDmNHT9JtIZNA3x4rR3eBRhbpGgxfQXf6rUbqFjxEmIMVMKiItY4rAFe4/aYA+DYr0BBcStsSghNnqTzZJU+y3/37h2559Z9ni8Pdw8P2h15QFyCz22rFk1N2qBS8cr1OwIk3rt3l0qXKKJv4yjAK69KPX7sKDWsX9fGLBkesmbNg9clfXpKmUJnHzBv4WJxmNrsWdNp0cIF4hoAOfxU/UsVow/v3+vXgIPujKNPvwHUvYfugDOMMXa0qcWEHJTKIbEc3uJguCqVdH688ujbfyB1695LXJo/dzaNGjlcf1uqSDUHaeXjG0Ng6RA5DGYOTEtwGFXiuXPqqthtjSlhM6huoA5G9+/bi1avWmFrV2rRshWNGj1OtN+6ZRN16aSrNpcD3tDJE2nKZN3fpXHI9Q5u0VR/WJsj91ynXiCFTZ0plhK5Zxe1aaWrXuZgBbSqAANerWbe+ffNgNf5c6jVHTDg1WrmnX/fDHidP4e8A1aAFUhaBRjwxkN/yaoAXQA7A+vUJBw8phTwRp02cw69exdHRQrqPt1HVSqqNRH9+vSkNatXGnTFp+dz5i3UVWXevkUBpYuL++lcXKhf/0GKPru4j8/BQ0J11beAu4C8iI1bdpCfXwHxs7dnbnr1ytDqAHAY8A6WD4DN+X08hCWCPADYANoQ69etpV49u+pvOwrwYgJ5dW3LZo0pKmqfos74HD5T5sx6W4P4VPDKB7xw+QbBoqFU8Wk/P2UAACAASURBVMJ0//498vDwpF2RUfTs6VPK7+tp9SlBX3j4QtOnT56IFwBygA9vWAB35Bb3/fJ5GYwpaYk+Af4lDCwgMCaqUTNlyizsIrAe+cuFWXPmU7XqNcV4A/v3oZUrPloT4Nq8BYsIz5bScye3jVCC/HJgCW9geARLAcuSipWr0KKF8xX1AUA/deac/qC1wgV89X8v0KNRk6Y0dcpkYRthHNgz+mbMpPusW+4RXbFSFZq/cLG4bs47GGD+3MVrhMPYoBlecLz/P0hvz54tPQh4QYCD3+A5jDkL+fnQX389tvrscANWQM0KMOBVc3bVvTcGvOrOr5p3x4BXzdlV994Y8Ko7v7w7VoAVcLwCDHjjoTEqIffuPyQgHgKVvMuWLqZ9kXsoOvoM5c9fgIqXLEmlSpfR+7HiEDQJ8Mo/xUdV7YB+vSg2Npb8/ctQoybNyMsrr341csCbx82NIvcdEiBs+dLFtHbNKrp48YKoLi1Vyp8mhIQKf1WE3CN1ytSZVLdeoLiOT9y7d+1EL148pwoVK9ON69fo/Plz1LN3X+rVu59o8/LlS+FlGxN9VkBfQOX2HTuLe5jbN6+bwefmjgS8cq0ACCLWraGpYaECfCIP5ctXpHqB9cnTy0vAX0BgREIAL0BkzLnL9PbtW8In9YhBQ4ZRx05daf/+vRTcvIlNT8mmrTspf34/0Tb67BkBW2GXAQg9c9Y8wjwIWGHAEkMe8jzgULee3TrTgQP7hQXH+AmTqWChwqI5/G+RY3nIK3QBiAcP7EcbN0RQqq+/pm7deup9lgE43VyzmexFqgDGjUXhC2jGtDDxnNSoWVscAAcobfxs4XfJCxe6bVi/jg4eiKJjRw/T//viC6pbL4j6DxisPyTNuBK7bLkKtGjJckJV8I7t22jv3t10/OhRevv2DeEQsyFDh+vhLvyPC+Tz0gNaPJuxF64Kf2TEqZMnqFXLpvoXGNB52Yo1elsJub2DtPmE7hn9ixYrTnm9fYTGf3/4QEWKFqfadepRrdp19P9tQKUyKpY5WAGtK8CAV+tPgPPunwGv8+ZO6ytnwKv1J8B598+A13lzxytnBViB5KEAA9545qF6jZo0MSRMVAbaEtevXaUK5fz1TQESJdBnqb8S4JW3xz+aJdAsXTeusESVJGwGjNuhvRwySlYO0jiAhBLUk67JPWOla44EvJhj0dIVVLZseasy2wt4caAbDnaLiYmm2jWqiPl27N4ngPugAX1pxfKlVteABgDxm7fu0oNHXDPO04MH96lC2dImvqyAlrv3HhCH2ZkLvBSoW6ua4iFnoVOmU72g+mb7Yh2ogsULCeMIDGogKsCVnhOprdwiQbomP+zMkkAAtMWL+IkXCFJIgNeasFh344aBdOzoEYOmgKywPJHWjGcW1bKff/Y5fZchg/46YDnmjouLM+if0D1jEMBn6cWH8fqxXsD7WTOnWdsa32cFNKEAA15NpFmVm2TAq8q0amJTDHg1kWZVbpIBryrTyptiBViBT6gAA94EiI3K2ZDQaVSteg1R6aoEee7cuU3hC+bR4kULDW7D93b5irX66kTpJkBUj66daNbcBQIe3751U3yqj0iVKhWNHR9ClSpXUQTLUmXviOFDTdaCg9TgWWq8ztCQiTQl9KN3KSo1YfVgDPlg64DqSFRJGod0iJU5G4PmLYLF3IgO7VrTzh3bTMa4dPWWyX7ljQARcRCci4uLSV9UUKNSdvy40fr1yT+/V7IrUEp3+JLlVK5cBQP/YskL2ccrjwGYtPa4wEZh87adlCXLDwZNATlOnzopDvtS8l5GY2iPw/zg02ycB1SC165RlZT8f6WJ4APctVtPEzgPMNyxfRu9B63SHvz9A2jO/HADOI12WCs8hY0rjnEPLxCmz5xDPr75DA76k8bHnnft3E7dunQ0sWFI/913NHFSKBUvUcrsyxJUK7dvEywsM5QClghTp8+iXK65Ff8GN25YL6rkJWsG40YJ2TPGUAK8+BuEXUTP7l1EBTwHK8AK6BRgwMtPgrMqwIDXWTPH62bAy8+AsyrAgNdZM8frZgVYgeSiAANeOzOBQ8jw+by3ty+9fv1KeOeeOH7MLMSTQB76FC1anN68fUO7dmy3CO7kS4Qfbz7f/OTm4SH8YS9dvCBsAMxBQ2k+VKN6euUVHruxMdGK3sGo2sW6SpQoRY8fP6IDUfsFtEoOAUCdL7+fgImPHz2k2JgY4YOcXAOQPqBsOXL38KSTJ47T0SOHLeZIvg/AXUDe4iVKEirAo/bvM/FPtrRvvEQoX76SeB737N5l87OFMQGo8SIhbdp0AggDsloLrNfT04vc3N0pR85c9PbNWzpx4hidi40RcMdaYE5vH19yd/cQLyLwfJ45c8rmPcMLuFDhwuSV15vi3sbR2TOnRf83b95Ym1rcj++e06ZNS/ABxrx//vkH7d+316wXt00L4EasgIoVYMCr4uSqfGsMeFWeYBVvjwGvipOr8q0x4FV5gnl7rAAr4HAFGPA6XGKegBVgBVgBVoAV0KYCDHi1mXc17JoBrxqyqM09MODVZt7VsGsGvGrIIu+BFWAFklIBBrxJqT7PzQqwAqwAK8AKqFgBBrwqTq7Kt8aAV+UJVvH2GPCqOLkq3xoDXpUnmLfHCrACDleAAa/DJeYJWAFWgBVgBVgBbSrAgFebeVfDrhnwqiGL2twDA15t5l0Nu2bAq4Ys8h5YAVYgKRVgwJuU6vPcrAArwAqwAqyAihVgwKvi5Kp8awx4VZ5gFW+PAa+Kk6vyrTHgVXmCeXusACvgcAUY8DpcYp6AFWAFWAFWgBXQpgIMeLWZdzXsmgGvGrKozT0w4NVm3tWwawa8asgi74EVYAWSUgEGvEmpPs/NCrACrAArwAqoWAEGvCpOrsq3xoBX5QlW8fYY8Ko4uSrfGgNelSeYt8cKsAIOV4ABr8Ml5glYAVaAFWAFWAFtKsCAV5t5V8OuGfCqIYva3AMDXm3mXQ27ZsCrhizyHlgBViApFWDAm5Tq89ysACvACrACrICKFWDAq+LkqnxrDHhVnmAVb48Br4qTq/KtMeBVeYJ5e6wAK+BwBRjwOlxinoAVYAVYAVaAFdCmAgx4tZl3NeyaAa8asqjNPTDg1Wbe1bBrBrxqyCLvgRVgBZJSAQa8Sak+z80KsAKsACvACqhYAQa8Kk6uyrfGgFflCVbx9hjwqji5Kt8aA16VJ5i3xwqwAg5XgAGvwyXmCVgBVoAVYAVYAW0qwIBXm3lXw64Z8Kohi9rcAwNebeZdDbtmwKuGLPIeWAFWICkVYMCblOrz3KwAK8AKsAKsgIoVYMCr4uSqfGsMeFWeYBVvjwGvipOr8q0x4FV5gnl7rAAr4HAFGPA6XGKegBVgBVgBVoAV0KYCDHi1mXc17JoBrxqyqM09MODVZt7VsGsGvGrIIu+BFWAFklIBBrxJqT7PzQqwAqwAK8AKqFgBBrwqTq7Kt8aAV+UJVvH2GPCqOLkq3xoDXpUnmLfHCrACDleAAW8iSZwqVSqKi4tLpNF4GLUo4JI+PT17+jRB27Gn77fffkvv37+nDx8+xHvuL774gr7++mt6+fJlvPtizf/9+y+9ePEi3n0///xzcs2dm/784w969epVvPvb0yFDhoz0bZo0dPvWzQQNY0+uEjQhd2IFnEQBBrxOkihepokCDHj5oXBWBRjwOmvmeN0MePkZYAVYAVbAPgUY8CZQv8JFilLvPv0pZ65cBDj05ZdfipHevXtHz549pU0b19OMaWEJgmQJXJJJt6xZs1H6776j169f080b1xNrWNWPExjUgAYNHkbrI9bSmNEjxX7nzFtIBQsWptbBzejcuViLGoybEELlK1SkjBkz0WeffUZ///03/fHH77RwwTwKXzDPYt9mzVtSh05dKEuWH8QzBTjy+PEjOnggivr06m6xr69vPpoYEkbZsmcXgBYB0Hr1ymVq1zaYnj97ZrZ/mjRpaM68cMrr7UNp06YV7d6+fUv37t6loUMG0KmTJxT7VqxUhVq3aUc+vvkoderUBEiL+O+//+ivvx7T+LGjad3a1WbnTZEiBY0aPY5q16lHKVOm1Lf7559/6Mb169S3d3c6f/6cTc/cqjXrydvHl7Zu2UQD+/ex2qdEyVI0fuJk+umnrPp1oxP+XpYtXSTWjn2YC3vybHVx3IAVUIkCDHhVkkgNboMBrwaTrpItM+BVSSI1uA0GvBpMOm+ZFWAFElUBBrzxlPOrr76iaTNmU5Wq1a32xD9st23dTF06tbfa1hENDh87RYC8b968IS/3XI6YQpVjAhQWL1GSJk+aQGFTQsQer9+6T8g9dISeSgG4uWnrTgJoNReLwhfQ8GGDFW8P+/kXatu+o9m+ly9dohrVKhLgp3EAtM6dH24AKuVtUBFbtVI5un//nklfAM7tu/bqwa5xA0DOzh3b0Y7tWw1uAUIfPxVt9Rk4cvgQNWkUZNIOLx8OHz0lwLClGDp4AC1dsshiG7xwWRuxSQD1o0cOU+OGgRbbjx47gQDTLcWjRw+peJECJnrbm2ergnEDVkBFCjDgVVEyNbYVBrwaS7iKtsuAV0XJ1NhWGPBqLOG8XVaAFUh0BRjwxkNSgJ2zsZfIxcVF3+vK5ct07lwMXblymTw8PEUFoatrbkJlIuLhwz+pSEHzwC8e08e7KQPeeEsmOly4fINgcVCyWCF68OC+yOuuyChhtZDf19PsoNNmzKFateuI+6gC3bB+HcVEnyX/MmWpZq3aevjas3sXcU8eVavVoNlzF4hLAKrbtm6hqP17RWVsvcD6hApbxJ7dO6lta0MwCUCKNUvVs8eOHqGdO7dT2jRpqW5gEOXMqYP7fz1+TAX9vE3WD0gLWIu4d+8uRaxbQ0+fPBEvMUqWKi2uA9Jg7/IqYDngBQw9feokXbxwgXLnzkNlAsqK6nEpRgwfalK9fOjoScqWLbtoEhMTTUsXh9PmTRuoZCl/ata8BVWoWFk/d+kSRUzgNCqtS5cuQ94+PpQ7j5uAuwhrgBf7QkU2AjYWK1csExW7z54+oxbBrah582D92qOi9lHLZo0NNLMnzwl7IrkXK+C8CjDgdd7caX3lDHi1/gQ47/4Z8Dpv7rS+cga8Wn8CeP+sACtgrwIMeOOh4IRJodSwURPRA1YM3bp0pN27dpiMAA/TkNBpVLtOXQL4YsAbD5GTuCmgZHTsJWFP4OmWU6xm8JCfhW3Cvn2R1KpFU7MrvHbzngD7sGQoV6akgKVSVK9Rk2bOni9+vXb1ClUsX8ZgnG07I8nb20dcMwbAAKkHj5wQFcQYO0+urAK4StF/4GDq0rWH+HXL5k3UtfPHinFAT4BUVHIjatWoQrExH6tu3T08aHfkAXEPNhIlihY0sCUICZ1KQfUbivsL58+lX0YM08+bzsWF1kVsojGjR9G+vXtMdOnTbwB179FbXMeLkMoVA/RtYANx7uI18fvdu3fIv2RRk/5jxk2kps1aiOuTJoyjaVNDDdpE7jtIedzcTfpZA7xbtu/WV1k3alCPAMTlAbgffe6ysMiQPwdSG3vybLJYvsAKqFwBBrwqT7CKt8eAV8XJVfnWGPCqPMEq3h4DXhUnl7fGCrACn0QBBrw2ypwzlyvtP3BEXyVYqUIZunrlisXeqPysUau2gFOISpWrUtGixcQBUlNCJyn2bd+hM2XOnJkuXDhvUuWJDvn9ClBwcBvK6epK6dOnpyd//UV3794Vnr8SZMOBT1279qBGTZrRN998Iz4xX7RQBxel2LghwsDbFPCwU+duhE/dc7m60pvXr0U1JipNDxzYr7jWJk2bi2plgMzFixZS+QqVKDCoPvnmy0+vX72mgwf2U/jC+QIcIrLnyEmtWrWhQkWKUoYMGejB/fuiWhQVlJaiQcPGFFC2HHl6elGKlCnpzu3bAsoZAz+M8eOPPwlPWMSSJYvo7p3bBOBeJqAcFSpcmN7FvaPly5YIf1ilaN22PQ0fMYqio89SnZpVRZOdu/eTp5eX8HU1t1ZUk06eMk2037A+gnp272wyvLxi1S+fl6iSRQB2xl64Kp6t3357ICCrcchfLgwZ1J+WLV2sb3Im+gJlyJhRQN+c2bIYwF80KlXan5avXCvaI5ctmjbS910QvkRfKds6uDntjdxtMDXWdOvu76I6+NmzZ5Tfx8Niroxv3rn/p9gXKprzerjqb8srlg8fOkhNG9c3GRd/L/MW6KwZYHUCmwh59OjZh4oULaa/hH0irAHe02fPU8ZMmURbH688ij7Z8qrm7D9l1s9hT57jJRw3ZgVUogADXpUkUoPbYMCrwaSrZMsMeFWSSA1ugwGvBpPOW2YFWIFEVYABr41yzl+4mOBzigBIbdWymY09PzbbsGkbFShYSFRIAsQpxeVrt8UBWbdv36KA0sX1TQDJ1q3fTIUKFzE77/Pnzymftzvh8KiVqyMsrm/mjKniECkEPGOXrVxr1oN1545t1KlDW5MDp06dPUeZMmUWnrTXrl0lP78CJnPiHqoz23XoSB06dtEDcnlDJXiH+99/n4VWrl5HuVxzK+4FlgNNGgcZgHZUTU+dPlu0HzZkoLDMACCWPt/H9R7dOtHGDet1bX7+hRr8X1U2fk+VKpWo3ESOACURqOhEf+zl33//Fdci1q4m2A5IMWvOfKpWvab4tV2bYMXKbhzo1aixrgK4f99etHrVCvEz7Bumz5wrft60cQN172rqwyvPqXEl8d0HD0VfgPRihf0Utbp97w8dpDWymZByCAiTK/sPioeKoXo4e/YcYlw8t5YOHjOeXJr35cuXAqZKgerf2PO6FySohi9cwMcEtA4aMow6duoq2nTu2FbYVlgKSQdrgHfp8tXkX0ZXTWxclSyNL3kuG1us2JNni4vnm6yAShVgwKvSxGpgWwx4NZBklW6RAa9KE6uBbTHg1UCSeYusACvgUAUY8NooL6p3JdBYtFB++vPPP2zs+bGZPYBXDpZQkYvDsgA4s2XPThkzZhLwDtddc/xIXl55acXqCEqXLp0ebKL6Uh6TJowVVaAZMmQkQD7JvxXtrl65TOnSuZCbu7v+utJBWRIclI/74cMHevnihfAwlcbEP/DlgBWQ8asUKQwO16pcIUD4GEuBimJUtQJ2IwAvYS0AuFiwUGHKnPl7cR0WGIUL+Or7yQGv8bxSIznglYP7+CTUGPJHbNiih+/IgdJBaHXqBVLY1Jlimqlhkylk4njxc+cu3WnAoCHiZ0sHikkA8/z5c1SjakXRHvk7E3NB/HzwQBQ1b6qzUzAOqWoVMNU9t873FnHp6i2RB+nlgFJfVNGimhbhX6qYqIq2JVANjpcSiFs3b1DZMiUNup08E6vPI6wQOrVvQ/C8RcBz+NDRU+IZhpa5c/5kUplsvAZbAa/cLgNjRO7ZRd27dtIfnodK9oGDdfAeh7shJ1LYk2dbNOM2rIDaFGDAq7aMamc/DHi1k2u17ZQBr9oyqp39MODVTq55p6wAK+AYBRjw2qjrxSs3hd2Bpepba0PZA3ilisIXL15Q0UL5KC4uTj8dAN0vo8aIT+3ln9DbcsgaKn1RHYpYs3ol9evTUz8uDsDaumOPvrIXUBFwUQo54AUY7t6lIx08GCVuAzzCkkACtPhHPipWfx46SBxshQidMp3qBek+zUdFLcCrFGHTZlGduvXEr5MnTaCwKSEG8uKQLByWhRj+8xC9BYUc8OIePGu3b9tKeyN30e1btyivtw/tjdwjwDAC2qVPrzsM7LsMGWjTlh2icrdMKd2n/z1796XmLYIJNgKwaJDi6dMneiCIa/IXAPJP+uWLDggoR4uXrRSX1q1dTX16dRc//zpmvJgDYalSVbI7wMFvOAAOIYeoW7dsoi6dPvrvyuc+cvw0/fSTzrs3R1YdHEfcvPObsLCwdBig3IcXB45JENYgIQq/yD1yx435lWbN1FlYSAELk3UbtogKaSkeP3ok7EZwsBxeEiB/qIjevy/S2nRkK+DFQBNDpojKbinwd33i+DHhByxVWcMmpV7t6vrn1d48W90AN2AFVKgAA14VJlUjW2LAq5FEq3CbDHhVmFSNbIkBr0YSzdtkBVgBhynAgNcGaVF9CriGsFTpaG2ohAJeVLMC8CIsfYZvPL81wAs7givX74hu5vxV5T6op0+dpMC6OhsChAR44SmMz+/lB3/h/rQZc6hW7TqirfHBYbiGKs3zl66L+9Fnz1CdWtXEz6j8he8rdI+JiabaNXTWGPKAJldv3BVt5R6ucsB7+dIlatSwHj03ql42l6d2HTrR0GEj6NTJExRUr5ZoBsDt4+MrwDcAuLmQfHAtvQDIl9+PNm/dKYaQr1nug9u4YaDwkFWKG7cfCPsIQH7fvG6iidwTdtXK5TSgn+5QM+OQw1aPPDnECwL5c23uoDOMM2LkaGrVuq0YEoAefsvWQm6vAGDu7ZlbsQIXEBfaSdXexuNWq1yeLl7UVShbi/gAXowFKw88L0oBuFu9SgWTW/bkGYOldvkI163th++zAmpQ4EPcK+qUJRX1dNX5Xid2RPz+nEbdekb/pkqb2EPzeBpX4N2H1/SqSSl6X+ejXVZiSpJi/RH6dtUxSvlV6sQclsdiBeh/cR+okfcoKpYtyCFqbLk0kXbemUVfpfr4gt4hE/GgmlPgy79f0KzGXlQ5r2P+P0OXFedo3fmX9FXKhP13980zHQ/gYAVYAVYguSrAgNeGzMgBK2wRCvp529DLtElCAS9Gio69JCoaEQCQ48eNFv9rKawB3uIlStKqNTov2kXhC2j4sMGKw0m+wMZ2CBLgNQeHcQhW7779xZjmKlMlaCn3HJaD0EMHDxA8Z5Vi4KChlCJFClF1CZ9fhBzwGh9GZi1pUjXzmF9H0pzZM0RzQOSUKVOSl3sug4pd47Fizl8hFxcXvU2G0lx583rT9l17xS054F2yfBWVKVNWXAdYNpdXJcDbrHlLGj12guhrbCcgX8OuPVHk4ekpLkmAV/5cK1koSP3hU9y2vc4X2BbA27hJMxo3QVdxDehfP7C24p7yuLlRxIatokIcVd3bt26hgHLlhY5SwFKiR7fOBB9oaxEfwDtm3ERq2qyFGPL4saOUMlUqypcvv4GVCEB76+BmBtXy9uQZc2V2VfZItrY3vs8KOKsCr5/+QW3S/eNQwDv2fhx9mUnnE87BCiSWAi9e/UFxjx8SfZZYIxqN8z+ir9N8R2kyZHXQBDysVhXAcxvkNsShgHffw2X0TXrl80S0qjvv234F/n5yi2bUz+0wwNt1xXnafJModbqMCVrsw5vRCerHnVgBVoAV+FQKMOC1UelrN+8JmCj53NrYzaCZPYAXFgzBrdoYjIdqUXxaD8uBkSOGGXxKjobWAC8OPRs89GcxpiXv1+OnoilLlh8I/rp5cn38h4g1wNuqTTsa8cuvYnxzgFcCqHLA27ptexo+YpTNEssBsz2AF9XEqCqWPJaz58hJBw8fN1vdLF+gpLWxBYK8TanS/rR85VpxacvmTdS1s85OYdLkMKrfoJH4GYf3wd9XKaQDy+D/jDUiAIYBiBEbItZRzx5dFPvCLgOWGwi5hYRk+/Dbbw+oRNGCin0nTAqlhv93EF3H9m1ox/atZnNTt14QTZmqg+OIQQP60orlS03a42XFqTPnhD0E/HfhwXzv3l3RDrYT4yeEkGvuj4eyWaugRj9bAa+8shw+1HgRgIBdR99+A6lFcGuxLgQsIwoV8NGv3548izm4gtfss8M31KkAV/CqM69a2JWo4G3uT+8DDf3jE2vvKdYeom+XH+EK3sQSlMfRK8AVvPwwOKsCXMHrrJnjdbMCrEByUYABr42ZOHriDP3440+idT4fD5s/+5cPbw/gxTjwagVoQ+WlccCrdFpYqIFXrTXAC4gKmIqwBO6iDh2jnDlzmfgPWwO8LYNb08hfx4rxzQFeqTpYDngBhQGHEbAjeP36lcUs3bxxQ3+4WHwAL6Cni0t6/diSFyzmRMAOAR7CgLawGZCietWKJgeNbdm+m3x984km5jx4a9aqTdNnzhVt5s6eSaN//UX8jCpnVDsjenTvTBvXRyjuVwKYVy5fpsoVA0QbQFvsA7F71w7hV6sU0oFmxpBeAuzGIFM+xszZ86h6DZ1lRdVK5ejSpYuKc8BHeNTocfoq2BHDh1L4gnmKbeX2CPPnzqZRI4ebtJN7E9tSOW8L4MXfDl7WwJ4CfzM4vM048DIDzzwqtxFyexF78mzxIeabrIBKFWAPXpUmVgPbYg9eDSRZpVtkD16VJlYD22IPXg0kmbfICrACDlWAAa+N8soPI5sxPYwmjBtjY8+PzSTAa6nKUwl4yicCmCpXviJVrFSZ/PwKUu48efTVhmiHSsgrVy6LLtYAL2AxqjMR48eOppkzpiruSbKHePPmjbAqkMJRgBeHX+EQLAR0ht62RnwAr1SVbevYUjvjw+ZwPXzxMpEX4xzIx+4/cDB16dpDXJIfDCff75xZM2jM6JEmS0I1674onTfvkcOHqEkjna8avGtR2YuQg1/jAaS9yv170UbKrTH4lffftjOSvL11VaySvYPx+HJIjecbB8hFrFtjVlr5oXT+pYqZAHN0lMNYWw43tAXwyg+lw4GByKVSyKH28mVLaPDAfqKZPXmO73PG7VkBNSjAgFcNWdTmHhjwajPvatg1A141ZFGbe2DAq828865ZAVYg8RRgwGujlk2aNqex4yeJ1rBpgA+vtcO7AGOLFC1GJ44fE/1Wr91AxYqXED/nzJZFVMQahzXAa9wecwAc+xXQfV4fNiWEJk/SebJKn+XDx9Q9t+7zfHm4e3jQ7sgD4hJ8blu1aGrSBrYUOIgNIBGf0JcuUUTfxlGAV16VCn/UhvWVD8JSSl18AK9L+vSUMoWuSnPewsXiMLXZs6bTooULxDUAcnyqDwD54f17/XQ46M44+vQbQN176A44wxhjR5taTMhBqRwSSC8WfgAAIABJREFUy+EtDoarUknnxyuPvv0HUrfuvcQl44pXqQrXHKSVj28MgaVD5DCu/OWAfG4JDpureJ0ydSbVrRcouuCZbh3cnPab8U2WxpUD3lLFC9P9+/eU0imqbfEMmptb3skWwFuocBGK2LBFdDN3gB/uyfVev24t9erZVfSxJ8+KG+SLrIDKFWDAq/IEq3h7DHhVnFyVb40Br8oTrOLtMeBVcXJ5a6wAK/BJFGDAGw+ZJasCdAHsDKxTk3DwmFLAG3XazDn07l0cFSmo+3QfVamo1kQoeYpWqlyV5sxbqKvKvH2LAkrrTm5O5+JC/foPUvTZxf2g+g0pJFRXfQu4C8iL2LhlB/n5FRA/e3vmplevDK0OAIcB0FApCTCX38dDWCLIA5/ct2jZSlySgy787ijAi7Hl1bUtmzWmqKh9ijqXKFmKMmXOrLc1iA/glQ944fINgkWDBBs9PDxpV2QUPXv6lPL76g4nsxToCw9faPr0yRPxAkAO8H/6KasA7sgt7vvl8zIYTtISfQL8SxhUtGJMWCxkypRZ2EVgPfKXC7PmzKdq1WuK8Qb270MrVywzGHvegkWEZ0vpuZPbRihB/jr1Ails6kzRF97A8AiWAvB7w+btemsKeOkG1a1JFy9esCYXhU2bRXXq1tM9pxvWU49unUz64BC2yH2HxPUHD+5TyWKFLI5rC+CFlqh4xv/iRQ28jP/667HJuBs3b9e/NOnQrrX+kDd782xVGG7ACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAFvPGRFJeTe/Yf0HqMARDikaV/kHoqOPkP58xeg4iVLUqnSZfTQC4egSYBX/ik+qmoH9OtFsbGx5O9fhho1aUZeXnn1q5EDXgl0oUJz+dLFtHbNKgHRANhKlfKnCSGhlDnz96Kv3CNVXll55vQp6t61E7148ZwqVKxMN65fI3yi3rN3X+rVW/f5+cuXL4WXbUz0WQF9AZXbd+ws7mFu37xuFBcXp1+jIwGvXCsAAnzuPzUsVIBP5KF8+YpUL7A+eXp5CfgLCIxICOBFJW/MucvisC9Pt5xinEFDhlHHTl1p//69FNy8iU1PyaatOyl/fj/RNvrsGQFbYZcBCD1z1jzCPAhYYcASQx7yPODQuJ7dOtOBA/uFBcf4CZOpYKHCojn8b5FjecgrdAGIYSewcUMEpfr6a+rWrafeZ/n9+/fk5prNZC9SBTBuLApfQDOmhYnnpEbN2uIAOEBp42cLv8+YNVe0kWJq2GRxIJ25uHzpIh07ekTcLlCwEK3fuFX/t2RsTYFq6mUr11K6dOlE+19HjaB5c2YZDA3YmirV1wbPI345e+Y0AcpKYfwSRl5JDe/hxo0C6fq1a6I59grfaPgJI4xtSXDNnjybFYdvsAIqVYABr0oTq4FtMeDVQJJVukUGvCpNrAa2xYBXA0nmLbICrIBDFWDAG095q9eoSRNDwih16tQ29bx+7SpVKOevbwuQKIE+SwMoAV55e/yjGVWI8jCusETVKGwGjNuhjxwySlYO0liAhBLUk67JPWOla44EvJhj0dIVVLZseas62wt4caAbDnaTf7K/Y/c+AdwHDehLK5YvtboGNACI37x1lziYTQrjPKEStULZ0gagHG0B1HfvPSAOszMXeClQt1Y1xUPOQqdMp3pB9c32xTqGDh4gXkgYR2BQA1EBrvScSG23btlEXTrpDuSTwtb8SO2NPW8liC7dx0uEJ0/+EtBWAru4B9Ddomkjk3VH7jtIedzcrebG2OM3TZo0dOJ0rEGeAKZRbZ8hQ0ZxuB4Cfwe1qlcWL0LkYU+erS6WG7ACKlOAAa/KEqqh7TDg1VCyVbZVBrwqS6iGtsOAV0PJ5q2yAqyAQxRgwJsAWVE5GxI6japVryHAnHHgH7R37tym8AXzaPGihQa34Xu7fMVaypgpk8F1AKYeXTvRrLkLBDy+feum+FQfkSpVKho7PoQqVa6iCJalyt4Rw4earAUHqf06ZrzJOkNDJtKUUJ2nMAKVmrB6MIZ8sHVo1bIpnTp5wmRs2AagcticjQGqIDE3Qv6Zu3ygS1dvmexXfh/WAjgIzsXFxWR+VFCjUnb8uNH69cktB5TsCpTSHb5kOZUrV8HAv1jyQvbxyiMqm20N2Chs3raTsmT5waALnonTp05Sg6A6it7LaAztcZgffJqN84BK8No1qpKS/680Efxhu3braQLnAYY7tm9j0RfX3z+A5swPN4CeGBeQE57CxhXHuCc/cMwWfZQ8b+vWCxIVs4CuxoGK40kTxtHcOTqLCOPYs/cAubl7WJ0avtGwVJEHbE/Cps2kgADDamipDdbapWM7YQ2hFPbk2eqCuQEroCIFGPCqKJka2woDXo0lXEXbZcCromRqbCsMeDWWcN4uK8AKJLoCDHjtlBQHQOHzeW9vX3r9+pXwzsWhakoHqElTAd6hT9GixenN2ze0a8d2i+DOGEzl881Pbh4eAqxeunhB2ABYmw/VqJ5eeYXHbmxMtKJ3MKp2sa4SJUrR48eP6EDUfvrttwd2KpQ43QHS8+X3Ix/ffPT40UOKjYkxgXaJM1PijAJIH1C2HLl7eNLJE8fp6JHDFnMknxXPByBv8RIlCRXgUfv3mfgnW1olXiKUL19JPI97du+y+dnCmACXeJGQNm06AYRhCfEpAp7HsG1wc3On+w/uEyxFzsXG2KxZQteYNm1aKlioiLBUSfV1KjHniePHFX15leawJ88JXTP3YwWcSQEGvM6ULV6rXAEGvPw8OKsCDHidNXO8bga8/AywAqwAK2CfAgx47dOPe7MCrAArwAqwAqyAGQUY8PKj4awKMOB11szxuhnw8jPgrAow4HXWzPG6WQFWILkowIA3uWSC18EKsAKsACvACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAGvQ2TlQVkBVoAVYAVYAVaAAS8/A86qAANeZ80cr5sBLz8DzqoAA15nzRyvmxVgBZKLAgx4k0smeB2sACvACrACrIDKFGDAq7KEamg7DHg1lGyVbZUBr8oSqqHtMODVULJ5q6wAK+AQBRjwOkRWHpQVYAVYAVaAFWAFGPDyM+CsCjDgddbM8boZ8PIz4KwKMOB11szxulkBViC5KMCAN7lkgtfBCrACrAArwAqoTAEGvCpLqIa2w4BXQ8lW2VYZ8KosoRraDgNeDSWbt8oKsAIOUYABr0Nk5UFZAVaAFWAFWAFWgAEvPwPOqgADXmfNHK+bAS8/A86qAANeZ80cr5sVYAWSiwIMeJNLJngdrAArwAqwAqyAyhRgwKuyhGpoOwx4NZRslW2VAa/KEqqh7TDg1VCyeausACvgEAUY8DpEVh6UFWAFWAFWgBVgBRjw8jPgrAow4HXWzPG6GfDyM+CsCjDgddbM8bpZAVYguSjAgDe5ZILXwQqwAqwAK8AKqEwBBrwqS6iGtsOAV0PJVtlWGfCqLKEa2g4DXg0lm7fKCrACDlGAAa9DZOVBWQFWgBVgBVgBVoABLz8DzqoAA15nzRyvmwEvPwPOqgADXmfNHK+bFWAFkosCDHiTSyZ4HawAK8AKsAKsgMoUYMCrsoRqaDsMeDWUbJVtlQGvyhKqoe0w4NVQsnmrrAAr4BAFGPA6RFYelBVgBVgBVoAVYAUY8PIz4KwKMOB11szxuhnw8jPgrAow4HXWzPG6WQFWILkowIA3uWSC18EKsAKsACvACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAFvIsmaKlUqiouLS6TReBi1KOCSPj09e/o0Qduxp++3335L79+/pw8fPsR77i+++IK+/vprevnyZbz7fvXVV4S/hRcvXsS7b2J2SOfiQm/fvLF5/xkyZKQUKVLQb789SNAy7MlVgibkTqyAkyjAgNdJEsXLNFGAAS8/FM6qAANeZ80cr5sBLz8DrAArwArYpwAD3gTqV7hIUerdpz/lzJWLAIe+/PJLMdK7d+/o2bOntGnjepoxLSxBkCyBSzLpljVrNkr/3Xf0+vVrunnjemINq/pxAoMa0KDBw2h9xFoaM3qk2O+ceQupYMHC1Dq4GZ07F2tRg3ETQqh8hYqUMWMm+uyzz+jvv/+mP/74nRYumEfhC+ZZ7NuseUvq0KkLZcnyg3imAEceP35EBw9EUZ9e3S329fXNRxNDwihb9uwC0CIAWq9euUzt2gbT82fPzPZPkyYNzZkXTnm9fSht2rSi3du3b+ne3bs0dMgAOnXyhNm+gJuzZs8n33z5KXXq1KKdtOe+vXvQiePHbHpmoNWpM+coZapUNKBfL9q2dYtN/dAIulWuUo3cPTyE7p9//rnoe/rUSQqsW9NgHMyD9g0aNaFcuVzFmnFNiqdPntDiRQtpathk+u+//8yuwZ4827wxbsgKOLkCDHidPIEaXj4DXg0n38m3zoDXyROo4eUz4NVw8nnrrAArkCgKMOCNp4yoUJw2YzZVqVrdak/8w3bb1s3UpVN7q20d0eDwsVMEyPvmzRvycs/liClUOeaqNeupeImSNHnSBAqbEiL2eP3WfULuoSP0VApAxU1bdxJAq7lYFL6Ahg8brHh72M+/UNv2Hc32vXzpEtWoVpH++ecfkzYVK1WhufPD9WDTuMGrV6+oaqVydP/+PZO+P/2Ulbbv2qsHu8YNADk7d2xHO7ZvNelbvUZNCps2S/+CQ2nxy5ctocED+1l9Vnr37U89evYR7UYMH2oVhqMdqm6RrwIFCymOf+vmDSpbpqTBvYCAcrR42Uqr6zl//hzVqFrRpJ29ebY6MTdgBVSkAANeFSVTY1thwKuxhKtouwx4VZRMjW2FAa/GEs7bZQVYgURXgAFvPCQF2Dkbe4lcXFz0va5cvkznzsXQlSuXycPDk7x9fMnVNbcAT4iHD/+kIgXNA794TB/vpgx44y2Z6HDh8g2CxUHJYoXowYP7Iq+7IqOE1UJ+X0+zg06bMYdq1a4j7qNqesP6dRQTfZb8y5SlmrVq6+Frz+5dxD15VK1Wg2bPXSAuAaiiejVq/17y8c1H9QLrEypsEXt276S2rVsa9EUFKtYsVa0eO3qEdu7cTmnTpKW6gUGUM6cO7v/1+DEV9PM2Wf/xU9GiYhhx795dili3hlDFipcYJUuVFtcBabB3eRUwqsNPno7Vw11U+a5auVwA8Dp16xm8BEEVLappjaNPvwGUO3ce8itQUL8GtLEF8OLlxdYdeyhdunRiWFQNYw34e3z54iUVKFiQ3r6No25dOhhMKwe8yC9yFBsTQ/+j/1H58hUF3JcidPJEmjJ5kkF/e/KcsCeSe7ECzqsAA17nzZ3WV86AV+tPgPPunwGv8+ZO6ytnwKv1J4D3zwqwAvYqwIA3HgpOmBRKDRs1ET1gxdCtS0favWuHyQjwMA0JnUa169SlR48eMuCNh8ZJ3RTQMjr2krAn8HTLKZYzeMjPwjZh375IatWiqdklXrt5T4B9gMZyZUoKWCoFKl1nzp4vfr129QpVLF/GYJxtOyPJ29tHXDMGwICvB4+cEBXEGDtPrqwCuErRf+Bg6tK1h/h1y+ZN1LXzx4pxWA8cOnpSVHIjatWoQrEx0fq+sDTYHXlA/A4biRJFCxrYEoSETqWg+g3F/YXz59IvI4bp+65bv5lgVYJYsjichg0ZaLAn/K3gbwaBv4PCBXxNtLtx+4Fi9a8tgHfj5u0CDCMuXrxATRvXt8nv2MfHl8ZNnCwqqZWgc+cu3WnAoCFiXNhx1KxWyWDd9uTZ7MPDN1gBlSrAgFelidXAthjwaiDJKt0iA16VJlYD22LAq4Ek8xZZAVbAoQow4LVR3py5XGn/gSN6r85KFcrQ1StXLPZG5WeNWrVp0oRxol2lylWpaNFihM/lp4QaVgVKA7Xv0JkyZ85MFy6cN6nyRJv8fgUoOLgN5XR1pfTp09OTv/6iu3fvCs/ffXv3iGHgidq1aw9q1KQZffPNN+KT/kULdXBRio0bIgifoEsBeNipczcB7HK5utKb16/p4oULYg0HDuxX3GeTps1FtTJAJjxLy1eoRIFB9YUX6+tXr+nggf0UvnC+AIeI7DlyUqtWbahQkaKUIUMGenD/vqgWXblimUUdGzRsTAFly5GnpxelSJmS7ty+TahSnTZVBw/l8eOPP1HrNu3EpSVLFtHdO7cJwL1MQDkqVLgwvYt7R7AM+Ouvx4pztm7bnoaPGEXR0WepTs2qos3O3fvJ08uLBvbvY3at8O2dPGWaaL9hfQT17N7ZZHyA1mzZsovrfvm8RJUsAp63sReuimcLh3wBshqH/OXCkEH9adnSxfomZ6IvUIaMGQX0zZktiwH8RaNSpf1p+cq1oj1y2aJpI33fBeFLqELFyuL31sHNaW/kboOpsaZbd38X1cHPnj2j/D4e+vsXr9wUzxcOcnNzzWYyLxpGHTxK+NtBKFXxohoWzzHixx9/1Le1BnjzuLlR5L5Dot/jR4+oUAEdHE+MwCFxV67fEUMZ58OePCfG2ngMVsDZFGDA62wZ4/VKCjDg5WfBWRVgwOusmeN1M+DlZ4AVYAVYAfsUYMBro37zFy4m+JwiAFJbtWxmY8+PzTZs2ia8QvEJPkCcUly+dlsckHX79i0KKF1c3wSgDRWThQoXMTvv8+fPKZ+3O5UoWYpWro6wuL6ZM6bS+LGjRRt4xi5budasB+vOHduoU4e2JgdOnTp7jjJlyiw+yb927Sr5+RUwmRP3/EsWpXYdOlKHjl0MDrOSGsOnGB6vxvH991lo5ep1lMs1t+JeYDnQpHGQAWhH1fTU6bNFe1SUwjIDgFh+iFaPbp1o44b1ujY//yIO25ICcA+HmyFHsFlAwK4B/bGXf//9V1yLWLta2AhIMWvOfKpWXXeYV7s2wYqV3eMnTqZGjXUVwP379qLVq1aIn2HfMH3mXPHzpo0bqHtXUx9eeU6NK4nvPngo+gKkFyvsp6jV7Xt/6CCtkc2ElENAmFzZf1A8VAzVw9mz5xDj4rmFNoDmN+/8Jq6Zg9K4N2TocGrfUQe758+dTaNGDldcHy7KK36tAV7pbwn9jKuSzU5g4w15PqKi9lHLZo0TJc82Ts/NWAFVKcCAV1Xp1NRmGPBqKt2q2iwDXlWlU1ObYcCrqXTzZlkBVsABCjDgtVFUVO9KoLFoofz0559/2NjzYzN7AK8cIKIiF4dlAXBmy56dMmbMJOAdrrvm+JG8vPLSitURwptUApuovpTHpAljRRVohgwZCZBP8m9Fu6tXLlO6dC7k5u6uv37k8CFq0ijIYAwJDsovoprz5YsXBKsDaUz8A18OWAEZv0qRguAdK0XlCgHCx1gKVBSjqhWwGwF4CWsBwMWChQpT5szfi+vGn/7LAa/xvNLYcsArB/fxSagx5I/YsEUP35EDpYPQ6tQLpLCpM8U0U8MmU8jE8eJnuSXA0MEDaOmSRYpLkUCu/PAv5O9MzAXR/uCBKGreVGenYBynz56njJkyCWsR99y6KmLEpau3RB6klwNKfectWCSqzxH+pYqJqmh5lSv+FvA3oRTyitddO7dT+7atzMocH8ArHXqHangfrzxUunQZ4VecPUcOevLkLzp18qS+ot3WvOKwuaAGDalrt556yF+6RBHhwyyFPXm2dR3cjhVQkwIMeNWUTW3thQGvtvKtpt0y4FVTNrW1Fwa82so375YVYAUSXwEGvDZqKn2Obqn61tpQ9gBeCWi9ePGCihbKR3FxcfrpAOh+GTVGfGov/4TelkPWUOmL6lDEmtUrqV+fnvpxYSeAQ6xgIYCoUbWiga2DHPACDHfv0pEOHowSbQEeYUkgAVr8Ix8Vqz8PHUTv378XbUKnTKd6QfXFz6ioBXiVImzaLHFQF2LypAkUNiXEQN458xbqD/Ea/vMQvQWFHPCiAzxrt2/bSnsjd9HtW7cor7cP7Y3cI8AwAtqlT/+d+Pm7DBlo05YdonK3TKli4lrP3n2peYtgOnzooLBokOLp0yeiolcK+QuA7D9lVnwU5Id7rVu7mvr06i7a/TpmvJgD0bljW3HAmlLcuf+nAOUAjjgADgFLDVR2I7Zu2URdOn3035WPceT4aQLARB5yZNXBcQSqcFGNa+kwQLkPL6pZUdWKkOAwYLaXey59XuXzwlIEmiJgq9GogS6nSmEr4IUG0AKB/KKqOmXKlCZD4pmExsa2E8YNZ8yaS2XLVTB44QDbB/Q1tiexJ89mN843WAEVK8CAV8XJVfnWGPCqPMEq3h4DXhUnV+VbY8Cr8gTz9lgBVsDhCjDgtUFiOVCyVOlobaiEAl5UswLwIix9hm88vzXAK6/CNPZXlcZC5SYqOBE4kAo+qlJIgFeqopQf/IU28FetVbuOaG58cBiupUmThs5fui7uR589Q3VqVRM/o/IXvq/QPSYmmmrX0FljyAOaXL1xV7QFfMUBWwg54L186RI1aliPnhtVL5vLU7sOnWjosBF06uQJCqpXSzQD4MahXADfAODmQvLBtfQCIF9+P9q8dacYQr5muQ9u44aBdPTIYcVppAPJAPl987qJNvIK2VUrl9OAfr0V+0buO0h53NzFPY88OcQLAvlzfffuHWGloRQjRo6mVq3bilsA9PBbRkjexPj5+rWrVKlCgIHFA8Bx/wGDxQF1CGP/X+O5bAW8rrnz0L4oU42kFwc46E4K5APPDw5LMxdyn2C0AbBeH7GWUE0tjSn1tSfPGMPlB2W7EbOL4xusgJMrEPfyCbXP+P+op2smh+wk4vfnNPruS/os7ccXVw6ZiAfVnAKv3zyhF42L0/vAkg7Ze4q1hyjd6pOUOrXOh56DFUgsBf5+8ZIaeA6nYtkMv7xLrPG3XJpIex4soFRpdAUSHKxAoinw+k+a2dCdKud1zP9n6LLiPG288o5SfpMuQUt+9vuNBPXjTqwAK8AKfCoFGPDaoLQcsMIWoaCftw29TJskFPBipOjYS8L2AAEAOX7caPG/lsIa4C1eoiStWqPzol0UvoCGDxusOJzkC2xshyABXnNwuEfPPtS7b38xprnKVAlayj2H5SD00MEDBM9ZpRg4aCgB5snhpBzwGh9GZi1pUjXzmF9H0pzZM0RzQGRUh6JCVV6xazxWzPkr5OLiorfJUJorb15v2r5rr7glB7xLlq+iMmXKiusAy+byqgR4mzVvSaPHThB9Ye0AKKkUu/ZEkYenp7glAV75c33r5g0qW0b5H7HwKW7bXucLLAe8OOgMkBcgF4FqWths4IC+zN9/T1mzZtPfw30cbjd4YD+zabAV8Mo9cgG7Ud0dvmCeHi6j8nzhoqV6oI0XEN6e5sFqt+69qGix4uJwwly5XPVV52/fvhWV3FK1NxZuT57RP7OrskeytWeT77MCzqrA66d/UJt0/zgU8I69H0dfZtL5hHOwAomlwItnv9HTBoUcCnjTR8RQ2nTKZzIk1j54HO0pEPf4IQW5DXEo4N33cBl9k56fXe09XY7d8d9PbtGM+rkdBni7rjhPm28SpU6XMUEbeXgzOkH9uBMrwAqwAp9KAQa8Nip97eY9ARMln1sbuxk0swfwwoIhuFUbg/FQnYhP62E5MHLEMJNqQ2uAF4eeDR76sxjTkvfr8VPRlCXLDwR/3Ty5surXYA3wtmrTjkb88qtobw7wSgBVDnhbt21Pw0eMslliOWC2B/CimhhVxZLHcvYcOeng4eNkDmDLFyhpbWyBIG9TqrQ/LV+5VlzasnkTde2ss1OYNPn/s3fW8VGc3du/2rctXghFStEQJAlJILgGTXB3dw/uVtwJIbi7uzskuJMESXALLVacom1/7+fc+8wyuzu7O5vNkuzuOf88m5lbrzP7fMp3z1x3COo3aCQ+0+F95O+rFNJBaXLPWwLDBIgptmzaiJ49NNWy+kF2GQQ+KeQWEpLtg6mD0iZNCRYHoFF06tAWe3bv1A5fvkIA5i9cogNy5XPLfZDNHZymFvA2btIMEyZpLDuM/TBB8Pp8+BWtvUg+Hw9xwJyaoLFpDopr0dGo6F9G282aPNMgPyVJrmYJ3IYVcBgF/vnyCYGZU9oU8I68+Qyff/haue8w4vFG4lWBL//3BX+3Km9TwJtseRh+/E7zIykHKxBXCnz/7/do4jPepoB3160Q/PAj//9uXOWMx9EokASfMbeZt80Ab9fVl7Du4jP88ONPsZL88wfNAdwcrAArwAokVAUY8KrMzMkzF5AxYybROq+3u+rX/uXDWwN4aRzyaiUIRvBKP6h6ckZIsI5XrTnASxCVYCqFPriTjx927BRcXbOLCknXLF9/rTcHeFu2aoNRY8aLoYwBXqk6WA54CQoTHKagCs13796azNLtW7e0h4tZAngJerq4fH01MkWKFNo56cOPP/4oqjkJUpIvrxRVK/uLg8bksWP3fvj45BWXjHnwyitP58+djbFjRor2VOVM1c4UPbp3wdbNmxT3Kx2yJoeOBG1pHxT79+1B+7YaL1/9OHshUhxMpw/pJcBOnrMF83sr9p09dwGqVtNYVlQOKIeoqKs67eiHj779BqJQkaJImzYtPn38iJiHMdi+dYvwd65XX3PwW4N6tXDm9CmjuVQLeOWV0Af270W7Ni0Vx5QfDte7Zzds2rje5HMkvyl5buv/oGNNnlVPzg1ZAQdSgD14HSiZTrYV9uB1soQ70HbZg9eBkulkW2EPXidLOG+XFWAF4lwBBrwqJZUfRjZrZggmTRinsufXZhLgNVXlqQQ85RORb2q58v7wD6gIX98CyJEzp071ZMUKZcRr8hTmAK8cqE0cPxazZ01X3JNkD0EWBWRVIIWtAG+Dho0xOWiamIZ0Jr3VhiWAV6rKVju21E7/sDm6vmTZSpEXCnkO5GP3HzgYXQN7iEvyg+Hk+503ZxbGjR1lsCS57+yJ48fQpJHGV408iKmyl0K/2lQ+iLRXuX/cUkjNAAAgAElEQVQv3Zdyqw9+5X137T0ILy8N/JXsHdRqJj/czSOXq87hgPpjqAW8avdM1hVkYUFh6vlW2ovcl7dQfh+tTYM1eVarGbdjBRxJAQa8jpRN59oLA17nyrcj7ZYBryNl07n2woDXufLNu2UFWIG4V4ABr0pNmzRtjvETp4jWVNVHPrzmDu8iGFu4SFFt1eK6DVtQtFhxMQZVwlJFrH6YA7z67WkOAse++QuIW+RHOnWKxpNVei3/48ePyJ1D83q+PHK7u2P/wSPiEvnctm7R1KANVWdeu3lPgMQHD+6jVPHC2ja2ArzyqtTTp06iYf3aKrOke8iaOQ9e8lxNnCixGHvB4mXiMLW5c2Zi6eJF4hoBcvKX9StZFJ8/fdKugQ66048+/Qagew/NAWc0xvixhhYTclAqh8RyeEsHw1UK0PjxyqNv/4Egr1iKhfPnYvSo4drbUhWuMUgrH18fAkuHyNFgxsC0BIepSjyHq6aKXU3UqlMXIdNni6YHD+xD29YtTHZTC3hpEGnP+j86yCdYtnINypQpJy6Z8jZWWlTkletIlSqVqN7OnvU37XfVmjyr0YzbsAKOpgADXkfLqPPshwGv8+Ta0XbKgNfRMuo8+2HA6zy55p2yAqyAbRRgwGuBrpJVAXUh2Fm3VnWdA5jkQ5E36ozZ8/Dx4wcULqB5dZ+qUqlak6Jfn55Yv26NzuwBFStj3oLFmqrMu3dQplQxcT+Viwv69R+k6LMr4FX9hggK1lTfEtwlyEuxdcce+PrmF5/pkCk6bEoeBIcJ3pHlA8HmfN7uwhJBHqPHTkCLlq3Fpc0bN6BXz0DtbVsBXppAXl3bslljhIUdVswUWQCkS59ea2tgSQWvfMAr0bdAFg0lixVCTMwDuLt7YN/BMOHbSv6t5oL6kocvafri+XPxA4Ac4GfKlFkAd8ot3ffN66kzpKQl9SnjV1zHAoLGJIuFdOnSC+BI65H/uDBn3kJUqVpdjDewfx+sWb1SZ2y5VYH+cye3jVCC/HJIS97A5BGsJgiWb9yyQxxQR2su6OuNv/56ZrKrJYB34+btKFS4iBhv8cL5GDlimM7Y5KV8MTJK2GzQ/PSDCv0vRYeOXXD+/FlcvHBecT3y79OrV6+Q1yu3tp21eVajHbdhBRxJAQa8jpRN59oLA17nyrcj7ZYBryNl07n2woDXufLNu2UFWIG4V4ABrwWaUiXkodBjAuJRUCXvyhXLcPjgAYSHX0C+fPlRrEQJlCxVWuvHSoegSYBX/io+VdUO6NcLkZGR8PMrjUZNmsHTM492NXLAmzNXLhw8fEz4p65asQwb1q/F1atXRHVpyZJ+mBQULPxVKeQeqdOmz0btOnXF9Qvnz6F7YGe8fv0KFfwr4tbNG7h8+RJ69u6LXr37iTZv3rwRXrYR4RcF9CWo3KFTF3GP5vbJk0vnFXtbAl65VgQIyD91ekiwAJ+Uh/Ll/VGnbn14eHoK+EsQmCI2gJcqeSMuReP9+/cgGwGKQUOGoVPnQISGHkKr5poDxszFtp17kS+fr2gWfvGCgK1kl0EQevacBaB5KMgKgywD5CHPAx3q1rNbFxw5EiosOCZOmooCBQuJ5uR/SzmWh7xClwDx4IH9sHXLJiRJmhTduvXU+ix/+vQJudyyGGxDqoalG3Ro2awZIeI5qVa9pjgAjqC0/rMlDVKkaDHk8fIW8335/BmFixRDzVp1UKNmLe33ZN3a1ejfV1N9rB/048VP/zvooHadetpD/4KnTsbqlStE889fPhtUy6dJkxb0/NHa6PkgT+MJ48cIqE5wecmyVUibLp3orz+/ZBtx//49rF+7BmfOnBL5csuRA4HdeoGgt/Qdl/9gIq3dmjybe4b4PivgaAow4HW0jDrPfhjwOk+uHW2nDHgdLaPOsx8GvM6Ta94pK8AK2EYBBrwW6lq1WnVMDgpBsmTJVPW8eeM6KpTz07YlkCiBPlMDKAFeeXv6R7MEoaTr+hWWVDVKNgP67ai9HDJKVg7SOATJJKgnXZN7xkrXbAl4aY6lK1ajbNnyZnW2FvDSgW50sFtERDhqVqsk5tuz/7AA7oMG9MXqVRrQaC4IxG/fuU8czCaFfp4ePoxBhbKlDLxoCajvP3REHGZnLOhHgdo1qhgcckbtg6fNRJ169Y32pXUMHTxA/CChH3XrNRAV4ErPidR2545t6NpZcyCfPIYMHa79EUD/Hs1JIHvO7BlG13Xr7kNRZWsqjFmMyG0rjD27VI1NVdnykACvuXxeuXIZVStVMGhmTZ7Nzcn3WQFHU4ABr6Nl1Hn2w4DXeXLtaDtlwOtoGXWe/TDgdZ5c805ZAVbANgow4I2FrlQ5GxQ8A1WqVhOVrkpg6969u1iyaAGWLV2sc5t8b1et3qCtLpRuUtVmj8DOmDN/kYDHd+/cFq/qUyRJkgTjJwYhoGIlRbAsVfaOGD7UYC302vuYcRMN1hkcNBnTgjWewhRUqUmvputDPrJ1aN2yKc6dPWMwNtkGUOWwMRuD5i1aibkpOrZvg717dhmMEXX9jsF+5Y3ItmLSlGC4uLgY9KUKaqq8nDhhrHZ9cssBJbsCpXQvWb4K5cpV0PEvlryQvT1zispmtUE2Ctt37UWGDL/pdCHIcf7cWTSoV0vRe5kak/Z0mB/5NOvngSrBa1arDCX/X2ki8ocN7NbTAM4TIO3UoS1CDx80ug0/vzKYt3CJDpymxgT7yVNYv+JYGkgJ8NLz+McfD9Gze1dRDW4qrAG8NG6t2nXEd0MO1ek66b1i+VIMGzLQYHo6eK1j564gr2eloPVPmzrF5OF+1uRZ7bPE7VgBR1CAAa8jZNE598CA1znz7gi7ZsDrCFl0zj0w4HXOvPOuWQFWIO4UYMBrpZZ0CBm9Pu/l5YN3794K79wzp08ZhXgSyKM+RYoUw9/v/8a+PbtNgjv5EumV9rw++ZDL3V2A1airV4QNgNKBbVI/goVUjerhmUd47EZGhCt6B1PVLq2rePGSePbsKY6EhQpQlxCCQHrefL7w9smLZ0+fIDIiQvggJ9QgSF+mbDnkdvfA2TOncfLEcZM5ku+D8kWQt1jxEqAK8LDQwwb+yab2TT8ilC8fIJ7HA/v3qX62aEwCl/RDQsqUqQQQJksIU5EyZUr4B1RCxoyZ8PjxI4QePmTUl9qWuaKq2hIl/ZAieQqcPn1SWJKY+k7QWuiZyp3bXXwvsrm6IubBA+HNe/PGDdVLtSbPqifhhqyAHSvAgNeOk+fkS2fA6+QPgB1vnwGvHSfPyZfOgNfJHwDePivAClitAANeqyXkAVgBVoAVYAVYAVZASQEGvPxc2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAG0eyJkmSBB8+fIij0XgYR1HAJXVqvHzxIlbbsaZvihQp8OnTJ3z+/NniuX/44QckTZoUb968sbjvTz/9BPouvH792uK+1nT4/vvvkSHDb/jzzz9AQImDFWAFEoYCDHgTRh54FZYrwIDXcs24R8JQgAFvwsgDr8JyBRjwWq4Z92AFWAFWQK4AA95YPg+FChdB7z794Zo9O9KkSYsff/xRjPTx40e8fPkC27ZuxqwZIbGCZLFckkG3zJmzIPUvv+Ddu3e4fetmXA3r8OPUrdcAgwYPw+ZNGzBu7Cix33kLFqNAgUJo06oZLl2KNKnBhElBKF/BH2nTpsN3332HL1++4NGjP7F40QIsWbTAZN9mzVuiY+euAlbSM0Vw5Nmzpzh6JAx9enU32dfHJy8mB4UgS9asAtBSEGi9fi0a7du1wquXL432//nnnzFvwRLk8fJGypQpRbv379/jwf37GDpkAM6dPWO0L4HoOXMXwidvPiRLlky0k/bct3cPnDl9SrFvPt/8WLhomarn6dChAxjQr7e2LenTo1cflClbDr/8kgYElqWg7+Dp0yfRq0cgXjx/rjj+kuWr4O3lo2ruAP8y2nEmTQlGuXIVVPWjRqdOnUS3rh1Vt+eGrICjKcCA19Ey6jz7YcDrPLl2tJ0y4HW0jDrPfhjwOk+ueaesACtgGwUY8FqoK4GkGbPmolLlqmZ70j9sd+3cjq6dO5hta4sGx0+dA0Hev//+G565s9tiCoccc+36zShWvASmTpmEkGlBYo8378QIiEg6kp5KQVWk23buBYFWY7F0ySIMHzZY8faw30eiXYdORvtGR0WhWhV//PPPPwZt/AMqYf7CJaA1KMXbt29ROaAcYmIeGNzOlCkzdu87pAW7+g3+++8/dOnUHnt27zToW7VadYTMmKP9gUNp7lUrl2PwwH4GtwIqVsaCRUtVPUMREeGoWa2Stu3W7bvhm7+Ayb607mqV/XH16hWDdqfPhQuIriZKFiuk1W3H7v0m86s/3q2bN1C+bCk103AbVsAhFWDA65BpdYpNMeB1ijQ75CYZ8DpkWp1iUwx4nSLNvElWgBWwoQIMeC0Ql+DZxcgouLi4aHtdi47GpUsRuHYtGu7uHvDy9oGbWw4kSpRItHny5DEKFzAO/CyY3uKmDHgtlkx0uBJ9C2RxUKJoQTx8GCPyuu9gmLBayOfjYXTQGbPmoUbNWuI+VU1v2bwREeEX4Ve6LKrXqKmFrz27dxX35FG5SjXMnb9IXCIwuWvnDoSFHoK3T17UqVsfVGFLcWD/XrRr01KnL1XN0poluHvq5Ans3bsbKX9Oidp168HVVQP3/3r2DAV8vQzWL4edDx7cx6aN60XFKv2IUaKkBk4SpKG9y6uAqTr87PlILdylKt+1a1YJAF6rdh2dH0Hq1q6O8+fO6swtB7yk7Z+P/jSq7eFDBzBl0gTtfQnwklbhFy8IiPv0yRNUrFwFHh6eIJsJCqpg9smTy+ieaV9RUVdNPiiNG9TRWk707T8Q5cr7m2xPVduennlEGwa8sfsOci/HUYABr+Pk0tl2woDX2TLuOPtlwOs4uXS2nTDgdbaM835ZAVYgrhVgwGuBovR6dsNGTUQPeg28W9dO2L9vj8EIBJeCgmegZq3aePr0CQNeCzSO76YELcMjo4Q9gUcuV7GcwUN+F7YJhw8fROsWTY0u8cbtBwLskz1BudIlQLBUCqp0nT13ofjzxvVr8C9fWmecXXsPwsvLW1zTB8BUaXr0xBlRQUxj58yeWcdntv/Awega2EP03bF9GwK7fK0YJ9h47ORZUclNUaNaJURGhGvnzu3ujv0Hj4i/yUaieJECAjBLERQ8HfXqNxR/Ll44HyNHDNPe27h5O8iqhGL5siUYNmSgzp7ou0LfGQr6HhTKr2uJIAe8M6YH6wBcc8/BuAmTBVgePfJ3AxsUAt7nLl7W2kVQ5bI+xJWgNvkU53LTaBNX0b5jZwwdNkIMt23rFnQPNF6VHVdz8jisQEJVgAFvQs0Mr8ucAgx4zSnE9xOqAgx4E2pmeF3mFGDAa04hvs8KsAKsgGkFGPCqfEJcs7sh9MgJ4alKEVChNK5fu2ayN1V+VqtRUwuuCGgVKVIU9Lr8tOApin07dOyC9OnT48qVywZVntSBfEtbtWoLVzc3pE6dGs//+gv3798Xnr9U5UhBnqiBgT3QqEkzJE+eXLzSv3SxBi5KsXXLJly+fEn7N8HDzl26CWCX3c0Nf797h6tXrog1HDkSqrjWJk2bi2plApnLli5G+QoBqFuvvvBifff2HY4eCcWSxQsFOKTIms0VrVu3RcHCRZAmTRo8jIkR1aJrVq80qWODho2F1ypVZiZKnBj37t4FVakSFNSPjBkzoU3b9uLy8uVLcf/eXVHNWbpMORQsVAgfP3wEWQb89dczxTnbtOuA4SNGIzz8ImpVryza7N0fCg9PTwzs38foWsm3d+q0GaL9ls2b0LN7F4PxCbRmyZJVXPfN66n1dSXP28gr18Wz9ccfDwVk1Q/5jwtDBvXHyhVfvWsvhF9BmrRpBfR1zZLB4JCxkqX8sGrNBjEk5bJF00ba4RctWY4K/hXF321aNcehg/t1pqY13bn/p6gOfvnyJfJ5u2vvX712WzxfdJAbQVKlw83Cjp4EfXco9Kt4rQG8Jh8YANNCZonqZYoJ48ZgzmxNbqSwFeAlnUgX8kCm7x3pRd93DlbAWRVgwOusmbf/fTPgtf8cOusOGPA6a+btf98MeO0/h7wDVoAViF8FGPCq1H/h4mUgn1MKAqmtWzZT2fNrsy3bdiF/gYKiQpJAnFJE37gr4NDdu3dQplQxbRMCbVQxWbBQYaPzvnr1Cnm9cqN4iZJYs26TyfXNnjUdE8ePFW3IM3blmg1GPVj37tmFzh3b6VR2Ur9zFy8hXbr04pX8Gzeuw9c3v8GcdM+vRBG079gJHTt11QJyeUPyKSaPV/349dcMWLNuI7K75VDcC1kONGlcTwe0U9X09JlzRXuqKCXLDALEEpin6z26dcbWLZs1bX4fiQb/q8qmv5MkSSIqQylHZLNAQXYN1J/28u+//4prmzasw4jhQ7XrmjNvIapUrS7+bt+2lWJl98TJU9GosaYCuH/fXli3drX4TPYNM2fPF5+NVXzKc6pfSXz/4RPRl0B60UK+ilrdffBIA2n1bCakHBKEyZ71N4Mc02BUPZw1azYxLj23pA1B89v3/hDXjEFpujdk6HB06KSB3Qvnz8XoUcO167Ml4JUDcao6pupjedgK8I4YNRat27QTU61YvhRDBw9QzAdfZAWcRQEGvM6SacfbJwNex8ups+yIAa+zZNrx9smA1/FyyjtiBViBb6sAA16VelP1rgQaixTMh8ePH6ns+bWZNYBXDhCpMpAOyyLAmSVrVqRNm07AO7ruli2j8P9cvW4TUqVKpQWbVH0pjymTxosq0DRp0gpQK/m3Urvr16KRKpULcuXOrb1+4vgxNGmkqYiUQoKD8mtUzfnm9WuQ1YE0Jv0DXw5YCTL+lCiR9hV66l+xQhnhYywFVRRTVSvBbgqCl2QtQHCxQMFCSJ/+V3Fd/9V/OeDVn1caWw545eDekoTqQ/5NW3Zo4TvlQOkgtFp16iJk+mwxzfSQqQiaPFF87tK1OwYMGiI+ExAkMKgUEsilyms6PIyC8nchQnOI2NEjYWjeVGOnoB/nL15G2nTphLVI7hyaKmKKqOt3RB6kHweU+tJBaARjKfxKFhVV0QTCr928J67Rd4G+E0ohr2zet3c3OrRrrW0mB7xUVb1y+VL8+9+/uHvnjqgKtibk31cl/18J8NI8lQLKIVnSpPjw8YOYWyl3atZCPsnhl6IF/CbrBzqQL7ZjqZmP27AC9qAAA157yBKvUUkBBrz8XNirAgx47TVzvG4GvPwMsAKsACtgnQIMeFXqJ72Obqr61txQ1gDem3dihAcrHRpVpGBefPjwQTsdAbqRo8eJV+3lr9CrOWSNKn2pOpRi/bo16Nenp3ZcshPYueeAtrKXoKLc1kEOeAkMd+/aCUePhon+BB7JkkACtPSPfKpY/X3oIAG/KIKnzUSdevXFZ6qoJfAqRciMOeKgLoqpUyYhZFqQjrzzFizWHuI1/PchWgsKOeClDuRZu3vXThw6uE/Auzxe3jh08IAAwxSkXerUv4jPv6RJg2079ojK3dIli4prPXv3RfMWrXD82FFh0SDFixfPRUWvFHKgmDVTesVHoUyZcli2co24t3HDOvTp1V18HjNuopiDokunduKANaW4F/NYgHI6+I0OgKMgSw2q7KbYuWMbunb+6r8rH+PE6fPIlEnj3ZstswaOU1AVLgFJU4cByn14WzZrjLCww6KvBIcJYhLMlPIqn5csRUhTCrLVaNRAk1MKOeDV3y99zwjojx0zEnR4myUh14RymcddYxEhD/nBcvr33rx5g9WrlovnTmlPxtYifyaDgyYbtWGxZC/clhWwdwUY8Np7Bp13/Qx4nTf39r5zBrz2nkHnXT8DXufNPe+cFWAF4kYBBrwqdCSoRnCNwlSlo7mhYgt4CewS4KUw9Rq+/vzmAK+8ClPfX1UaSw7hzp87K3xUpZAAL3mMenvmNPBgnTFrHmrUrCWa6x8cRteo4vFy1E1xP/ziBdSqUUV8pspf8n0l3SMiwlGzmsYaQx6kyfVb90Vbgq9NG2tAsRzwRkdFoVHDOnilV71sLE/S4VgEFOvVqSGaEeD29vYR4JsAuLGQfHBN/QCQN58vtu/cK4aQr1nug9u4YV2cPHFccZpbdx8K+wiC/D55cok28grZtWtWYUC/3op9Dx4+ipy5cot77jmziR8I5M/1/fv3hJWGUshtBwjQk98yheRNTJ9v3riOgApldCweCBz3HzBYHFBHoe//awrwyteh9OwYywP5GZ8+F6H9YWHShHGYNTPEoLkpwCs1JuuJksUKKdpW6A9I8Jy+b6QpfR+8PJRtRVx+U75u9MHiG6yAnSvw4c1zVE7+L+r85mKTnRx7/g5rn37E/3NRtj2yyaQ8qFMo8O7v53jduBg+1S1hk/0m2nAMqdadRbJkqW0yPg/qvAp8ef0GDTyGo2gW3Tfv4kqRHVGTceDhIiT5WVMgwcEKxJkC7x5jdsPcqJgnXZwNKR+o6+rL2HrtIxInTxWr8V/+eStW/bgTK8AKsALfSgEGvCqUlgNWskUo4Oulopdhk9gCXhopPDJK2B5QEICcOGGs2cpGc4C3WPESWLte40W7dMkiDB82WHFfki+wvh2CBHiNweEePfugd9/+YkxjlakStJR7DstB6LGjR0Ces0oxcNBQJEqUCHI4KQe8+oeRmUuaVM08bswozJs7SzQniJw4cWJRoSqv2NUfK+LyNbi4uGhtMpTmypPHC7v3HRK35IB3+aq1KF26rLhOYNlYxaoS4G3WvCXGjp8k+pryfN13IAzuHh6inQR45c/1ndu3ULa08j9iyae4XYdOoq8c8ObMlUtAXgK5FFQtTTYbdEBf+l9/RebMWbT36D7ZMAwe2E8rDR26N3DQEESEh4uD+ujgu19//RX58xdE3foNtZXjVAHoX94PN2/cMJlCehaOHD+NDBl+E+3ooMKqlSoo9unbfyCSJ0+BK5cv4emTJwLMkt1Jrdp1hQWIZCmiZE2iNKD03aZ7pmw20rspeySbezb5Pitgrwq8ffEIid49w0/faw4ojev48t//4fvEP+P/pdP4hHOwAnGlwOuXf+BFg4I2BbypN0UgZSr+cSKucsbjaBT48OwJ6uUaYlPAe/jJSiRPzc8uP3Nxq8CX53cwq34OmwHewNWXsf02kCxV2lgt/Mnt8Fj1406sACvACnwrBRjwqlT6xu0HAiZKPrcqu+k0swbwkgVDq9ZtdcajalF6tZ4sB0aNGGbwOrk5wEuHng0e+rsY0xSUkvuV5syeWbsGc4C3ddv2GDFyjGhvDPBKAFUOeNu064DhI0arllgOmK0BvFRNTFXFkscyAcijx0/DGMCWL1DSWt8CQd6mZCk/rFqzQVzasX0bArto7BSmTA1B/QaNxGc6vI/8fZVCOihN7nlLYJgAMcWWTRvRs4emWlY/yC6DLDco5BYSku2DqYPS5AeWderQFnt279QOX75CAOYvXKIDcuVzy32Q6VC6JYsWqM7rodBjyJFTU6k8d85MjB9r/JkgyBx69KR2j1TpTjYbllgsSAsrV94fi5euEJCXPHrlz7zS4uU2FM+ePkXB/N5G9/hTkuSq988NWQFHUOCfL58QmDklerrZphpn05+vMPLmM3z+IZEjyMV7SEAKfPm/L/i7VXmbAt5ky8Pw43eaH0k5WIG4UuD7f79HE5/xNgW8u26F4Icf+f934ypnPI5GgST4jLnNvG0GeLuuvoR1F5/hhx9/ipXknz9oDuDmYAVYAVYgoSrAgFdlZk6euYCMGTOJ1nm93VW/9i8f3hrAS+OQV2vDRk2EF69+UPXkjJBgHa9ac4CXICrBVAp9cCcfP+zYKbi6Zhevqrtm+fprvTnA27JVG4waM14MZQzwStXBcsBLUJjgMAXZEbx799Zklm7fuqU9XMwSwEvQ08Xl66uRKVKk0M5JH8gOgTyECVKSl6sUVSv7i4PG5LFj9374+OQVl4x58FavURMzZ88XbebPnS38ZSmoygX7m3kAACAASURBVJmqnSl6dO+CrZs3Ke5XOmTtWnQ0KvqXEW0I2tI+KPbv24P2bTVevvpx9kKkOJhOH1hKgN0UmJw9dwGqVtNYVlQOKIeoqKs6w9MPH337DUShIkWRNm1afPr4ETEPY7B96xbh71yvvubgtwb1auHM6VMmcym/WaRoMazfuFVcunD+HOrUqqbYl3yU9x86IjyGKehHj7J+xU1WXJtbhPTMUztzhyrK23Zs3wZ79+wyNzzfZwWcRgH24HWaVDvcRtmD1+FS6jQbYg9ep0m1w22UPXgdLqW8IVaAFfjGCjDgVSm4/DAy8vQkb09LQwK8pqo8lYCnfB6qKqQKQ/+AivD1LYAcOXPqVE9WrFBGvCZPYQ7wEiym6kyKiePHYvas6YpbkuwhyKKArAqksBXgbdCwMSYHTRPTGPNQNaa9JYBXqsq2NI/6h81R/yXLVoq8UMhzIB+7/8DB6BrYQ1ySHwwn3++8ObMwbuwogyW55ciJw2Eab165bQB5EFNlL4Uc/OoPIO1V7t9LbaTcmqpU3bX3ILy8NFWpkr2DWs3kh7t55HLVORzQ3BgE3K9Ea7yujFlI0GF+5C/skloD6u/euY2K/mVjVbkrXw9Zl5CFCYUp24zKVaph7vxFoh3ZTJQqXtjctvg+K+BUCjDgdap0O9RmGfA6VDqdajMMeJ0q3Q61WQa8DpVO3gwrwArEgwIMeFWK3qRpc4yfOEW0JpsG8uE1d3gXwdjCRYpqqxbXbdiCosWKizGoEpYqYvXDHODVb09zEDj2zV9A3AqZFoSpUzSerNJr+R8/fkTuHJrX8+WR290d+w8eEZfI57Z1i6YGbag689rNe+IwM32AZSvAK69KPX3qJBrWr60yS7qHrJnz4CUomDhRYjH2gsXLxGFqZAWwdLEG2BEgp1f//UoWxedPn7RroNf/9aNPvwHo3kNzwJkxOwE5KJVDYjm8pYPhKgVo/HjlQZ6x3br3EpcWzp+L0aOGa29LVbjGIK18fH0ILB0iR4MZA9MSHKYq8Ryumip2NVGrTl2ETJ8tmh48sA9tW7dQ003bhoA5gXMKpefT0zMPNm3dqT1QLTz8ImrXqGJw2J9Fk/6vsbxiP5dbFqPAWO6NbQoEx2YN3IcVcAQFGPA6Qhadcw8MeJ0z746wawa8jpBF59wDA17nzDvvmhVgBeJOAQa8FmgpfxWbYGfdWtVBB48pBXmjzpg9Dx8/fkDhAppX96kqlao1Kfr16Yn169bodA2oWBnzFiwWMFVuWZDKxQX9+g9S9NmlAegV+KBgTfUtwV2CvBRbd+yBr29+8dnLIwfevtW1OiA4TPCOLB8INufzdheWCPIYPXYCWrRsLS5t3rgBvXoGam/bCvDSBPLq2pbNGiMs7LCizmQBkC59eq2tgSUVvPIBqVKUKkZLFiuEmJgHcHf3wL6DYXj54gXy+WgOJzMV1Jc8fEnTF8+fix8A5ACf7AMIuFNu6b5vXk+d4SQtqU8Zv+I6FhA0JlkspEuXXsBLWo/8x4U58xaiStXqYryB/ftgzWoNFJViwaKloGeLQv+5k9tGKEFUOaQlb2DyCFYTBMs3btkhDqijNRf09RaHqMmDgPXSJQsNnkupjVT9S3/LD76jvytVrgraN+lJIfc0Nrc++m6SpsaeKf+ASli4eJkYhqw58ri7KQ7ZvmNnDB02Qty7evUKqlQsb25qvs8KOJ0CDHidLuUOs2EGvA6TSqfbCANep0u5w2yYAa/DpJI3wgqwAvGkAANeC4SnSkg6+IngEAVV8q5csQyHDx5AePgF5MuXH8VKlEDJUqW1fqzkByoBXvmr+FRVO6BfL0RGRsLPrzQaNWkGqkiUQg54c+bKhYOHjwn/1FUrlmHD+rUCKFF1acmSfpgUFCz8VSnkHqnTps9G7Tp1xXXyMO0e2BmvX79CBf+KuHXzBi5fvoSevfuiV+9+os2bN2+El21E+EUBfQkqd+jURdyjuX3y5NJ5xd6WgFeuFQGCTRvXY3pIsACflIfy5f1Rp259eHh6ClBHEJgiNoCXKnkjLkXj/fv3IBsBikFDhqFT50CEhh5Cq+ZNVD0l23buRb58vqJt+MULAraSXQZB6NlzFmhtBMgKgywx5CHPAx3q1rNbFxw5EiosOCZOmooCBQuJ5uR/SzmWh7xClwDx4IH9sHXLJiRJmhTduvXU+izTgWNUjaofUgUwXV+6ZBFmzQgRz0m16jXFAXASRFXy3yWf3Dxe3mK+L58/o3CRYqhZqw5q1Kyl/Z6sW7sa/ftqqo/lQQe8UW7DQg9hz+5dwnrixYvn4vszZtwE/Pqrxu+Znsu8Xrl1gLnkRyxpQt8JY0Fz0PeGnmGK6TPniueEvptr16zCqZMnxPcjw28Z0aVrN+FzLX3Hx4wegQXz5hgMTZpcvXZbWz1coVwp3LxxQ9Vzwo1YAWdSgAGvM2XbsfbKgNex8ulMu2HA60zZdqy9MuB1rHzyblgBVuDbK8CA10LNq1arjslBIaCDndTEzRvXUaGcn7YpgUTJL9RUfyXAK29P/2iWIJR0Xb/CkqpGyWZAvx21l0NGycpBGocgoQT1pGtyz1jpmi0BL82xdMVqlC1rvirSWsBLB7rRwW4REeGoWa2S2N6e/YcFcB80oC9Wr1qhJtUgEL995z4t9KNO+nl6+DAGFcqWMvCiJaBOB4XRYXbGgn4UIAsC/UPOqH3wtJmoU6++0b60jqGDB4gfJPSjbr0GogJc6TmR2u7csQ1dO2sO5JPHkKHDtT8C6N+jOQlkz5k9Q3FdBHhNzUmd6FmkHx2OHzuqM4Yc8KpJDtlsSAfjSYDXXD/6AYSsNJRi5OhxaNW6rbhFgLhRgzrmhuP7rIBTKsCA1ynT7hCbZsDrEGl0yk0w4HXKtDvEphnwOkQaeROsACsQjwow4I2F+FQ5GxQ8A1WqVhOVrkpg6969u1iyaAGWLV2sc5t8b1et3oC06dLpXKeqzR6BnTFn/iIBj+mwKHpVnyJJkiQYPzEIARUrKYJlqbJ3xPChBmuhasQx4yYarDM4aDKmBWs8hSmoUpOsHvSBG9k6tG7ZFOfOnjEYm2wDqHLYmI1B8xatxNwUHdu3wd49uwzGiLp+x2C/8kZkLUAHwbm4uBj0pQpqqpSdOGGsdn1yywEluwKldC9ZvgrlylXQ8S+WvJC9PXOKClK1QTYK23ftRYYMv+l0Ichx/txZNKhXS9F7mRqT9nSYH/k06+eBqk1rVqsMJf9faSLyAQ7s1tMAzhMY7tShLUIPHzS6DT+/Mpi3cIkOnKbGBFjJU1i/4lgaSAnw0vP4xx8P0bN7V1ENbizIjqSUXxmjP5bQjyOtWjQFQXH9sBTwStYbNA55+/4+fCSyuWZXBMzkNUzfDzpMUSkoN7fuPhQV9JTXYoXzm8yL2meH27ECjqgAA15HzKpz7IkBr3Pk2RF3yYDXEbPqHHtiwOsceeZdsgKsgO0UYMBrpbZ0CBm9Pu/l5YN3794K79wzp08ZhXgSyKM+RYoUw9/v/8a+PbtVAyLy483rkw+53N0FWI26ekXYACgd2CZtjYAUVaN6eOYRHruREeGK3sFUtUvrKl68JJ49e4ojYaEC1CWEIJCeN58vvH3y4tnTJ4iMiBCHviXUIEhfpmw55Hb3wNkzp3HyxHGTOZLvg/JFkLdY8RIgyBkWetioT63S/ulHhPLlA8TzeGD/PtXPFo1FgJp+SEiZMpUAwkrVwvI5U6ZMCfKszZgxEx4/foTQw4eM+lIby1XmzFnEs+nmlgP0fbp44TzOnTtjUOUc17mmueh5onmzZsuGmAcPcPr0KfHjCgcrwArEjQIMeONGRx7l2yvAgPfba84zxo0CDHjjRkce5dsrwID322vOM7ICrIBjKcCA17HyybthBVgBVoAVYAUSjAIMeBNMKnghFirAgNdCwbh5glGAAW+CSQUvxEIFGPBaKBg3ZwVYAVZATwEGvPxIsAKsACvACrACrIBNFGDAaxNZedBvoAAD3m8gMk9hEwUY8NpEVh70GyjAgPcbiMxTsAKsgEMrwIDXodPLm2MFWAFWgBVgBeJPAQa88ac9z2ydAgx4rdOPe8efAgx44097ntk6BRjwWqcf92YFWAFWgAEvPwOsACvACrACrAArYBMFGPDaRFYe9BsowID3G4jMU9hEAQa8NpGVB/0GCjDg/QYi8xSsACvg0Aow4HXo9PLmWAFWgBVgBViB+FOAAW/8ac8zW6cAA17r9OPe8acAA974055ntk4BBrzW6ce9WQFWgBVgwMvPACvACrACrAArwArYRAEGvDaRlQf9Bgow4P0GIvMUNlGAAa9NZOVBv4ECDHi/gcg8BSvACji0Agx4HTq9vDlWgBVgBVgBViD+FGDAG3/a88zWKcCA1zr9uHf8KcCAN/6055mtU4ABr3X6cW9WgBVgBRjw8jPACrACrAArwAqwAjZRgAGvTWTlQb+BAgx4v4HIPIVNFGDAaxNZedBvoAAD3m8gMk/BCrACDq0AA16HTi9vjhVgBVgBVoAViD8FGPDGn/Y8s3UKMOC1Tj/uHX8KMOCNP+15ZusUYMBrnX7cmxVgBVgBBrz8DLACrAArwAqwAqyATRRgwGsTWXnQb6AAA95vIDJPYRMFGPDaRFYe9BsowID3G4jMU7ACrIBDK8CA16HTy5tjBVgBVoAVYAXiTwEGvPGnPc9snQIMeK3Tj3vHnwIMeONPe57ZOgUY8FqnH/dmBVgBVoABLz8DrAArwAqwAqwAK2ATBRjw2kRWHvQbKMCA9xuIzFPYRAEGvDaRlQf9Bgow4P0GIvMUrAAr4NAKMOB16PTy5lgBVoAVYAVYgfhTgAFv/GnPM1unAANe6/Tj3vGnAAPe+NOeZ7ZOAQa81unHvVkBVoAVYMDLzwArwAqwAqwAK8AK2EQBBrw2kZUH/QYKMOD9BiLzFDZRgAGvTWTlQb+BAgx4v4HIPAUrwAo4tAIMeOMovUmSJMGHDx/iaDQexlEUcEmdGi9fvIjVdqzpmyJFCnz69AmfP3+O1dzx0en777+HW44cePzoEd6+fRsfS4j1nNbkKtaTckdWwA4UYMBrB0niJSoqwICXHwx7VYABr71mjtfNgJefAVaAFWAFrFOAAW8s9StUuAh69+kP1+zZkSZNWvz4449ipI8fP+LlyxfYtnUzZs0IwZs3b2I5g/XdMmfOgtS//IJ3797h9q2b1g/oJCPUrdcAgwYPw+ZNGzBu7Cix63kLFqNAgUJo06oZLl2KNKnEhElBKF/BH2nTpsN3332HL1++4NGjP7F40QIsWbTAZN9mzVuiY+euyJDhN/FMERx59uwpjh4JQ59e3U329fHJi8lBIciSNSuSJk0q2r5+/RrXr0WjfbtWePXypaoM9uk3AK3btEdMzANUDiinqo9+oyZNm4vvB8WsWdON7jtRokQYPXYCataqg8SJE2uH+eeff3Dr5k307d0dly9f0hmenun9B8IsWlfdOjVw/95dbZ8ly1fB28tH1RgB/mXw4vlzg7bW5FnVxNyIFXAABRjwOkASnXQLDHidNPEOsG0GvA6QRCfdAgNeJ008b5sVYAXiTAEGvBZK+dNPP2HGrLmoVLmq2Z70D9tdO7eja+cOZtvaosHxU+dAkPfvv/+GZ+7stpjCIcdcu34zihUvgalTJiFkWpDY4807MaDck46kp1JQBeq2nXtBoNVYLF2yCMOHDVa8Pez3kWjXoZPRvtFRUahWxR8EP/XDP6AS5i9cAlqDUlBFLMFagramgipRj504C6oAph8nvD1zWpxj0m7Nuk0CblOsWL4UQwcPMBiHQO3xk+eQLFkyk3NQXxpDiixZsuLYybMWratm9cqICL+o7XP6XLiA6GqiZLFCOrpZm2c1c3IbVsBRFGDA6yiZdL59MOB1vpw7yo4Z8DpKJp1vHwx4nS/nvGNWgBWIWwUY8FqgJ4Gdi5FRcHFx0fa6Fh2NS5cicO1aNNzdPeDl7QM3txygykSKJ08eo3AB48DPguktbsqA12LJRIcr0bcE4CxRtCAePowRed13MExYLeTz8TA66IxZ81CjZi1xn6qmt2zeKKCiX+myqF6jpha+9uzeVdyTR+Uq1TB3/iJx6b///sOunTsQFnoI3j55Uaduffz888/i3oH9e9GuTUudvgRIac0S3D118gT27t2NlD+nRO269eDqqoH7fz17hgK+Xgbrz1+gIBo1boocOXLCJ28+bTV6bAAvwddDYccFDJfCGOAlSEvtKSIiwrFi2RJs37YFJUr6oVnzFqjgX1HcI0BUqnhhLWRNmTIl1qzfbDa5WbNmQ/LkyUU7Y4CXxo6KumpyrMYN6ohKaCmsybPZRXMDVsDBFGDA62AJdaLtMOB1omQ72FYZ8DpYQp1oOwx4nSjZvFVWgBWwiQIMeC2QddKUYDRs1ET0ICuGbl07Yf++PQYj/PDDDwgKnoGatWrj6dMnDHgt0Di+m1JVaXhkFN6/fw+PXK5iOYOH/C5sEw4fPojWLZoaXeKN2w8E2CdLhnKlS+DBg/vatlWrVcfsuQvF3zeuX4N/+dI64+zaexBeXt7imj4ApkrToyfOCGhKY+fMnllATyn6DxyMroE9xJ87tm9DYJevFeNURUsglSq5KWpUq4TIiHCduUeMGovWbdoZ7MtSwEtQ/MTpCyAAKw8lwEttLl29IZrdv38PfiWKGMw/bsJkNG3WQlyfMmkCZkwPtujxkEA9AfN83u46kFaq4CWf4lxuGm3UhjV5VjsHt2MFHEUBBryOkknn2wcDXufLuaPsmAGvo2TS+fbBgNf5cs47ZgVYgbhVgAGvSj1ds7sh9MgJ7WvnARVK4/q1ayZ7U+VntRo1BZyiCKhYGUWKFBUHSE0LnqLYt0PHLkifPj2uXLlsUOVJHfL55kerVm3h6uaG1KlT4/lff+H+/fvC8/fwoQNiTHrNPjCwBxo1aSYqGOmV/qWLNXBRiq1bNul4mxI87NylG8hbOLubG/5+9w5Xr1wRazhyJFRxreSzStXKBDKXLV2M8hUCULdefVEF+u7tOxw9EoolixcK/1mKrNlc0bp1WxQsXARp0qTBw5gYbNq4HmtWrzSpY4OGjVGmbDl4eHgiUeLEuHf3LqhKVQn4ZcyYCW3athfjLV++VPiuEnAvXaYcChYqhI8fPmLVyuX4669ninO2adcBw0eMRnj4RdSqXlm02bs/FB6enhjYv4/RtZJv79RpM0T7LZs3oWf3LgbjyytWffN6an1dCXZGXrkunq0//niI4kUKGPSV/7gwZFB/rFyxTNvmQvgVpEmbVkBf1ywZdOAvNSpZyg+r1mwQ7SmXLZo20hmf8iZpRjeKFisuNLME8NLajxw/DaqapQgOmoxeffqJz0qAV16xfPzYUTRtXN9gz/R9WbBIY81AViddOmnyqiZ69+2PHj37iKYb1q9F394aAC5FbAGvNXlWs25uwwo4mgIMeB0to86zHwa8zpNrR9spA15Hy6jz7IcBr/PkmnfKCrACtlGAAa9KXRcuXgbyOaUgkNq6ZTOVPb8227JtF+h1eKooJBCnFNE37ooDsu7evYMypYppmxBA27h5OwoWKmx03levXiGvV24UL1FSeKCaitmzpmPi+LGiCXnGrlyzwaDyUuq/d88udO7YTqxbHucuXkK6dOmFJ+2NG9fh65vfYEq6R9WZ7Tt2QsdOXbWAXN7QGLz79dcMWLNuI7K75VDcClkONGlcTwe0U9X09JlzRfthQwYKywwCxJIfLF3v0a0ztm7RvOJPvrcN/leVTX8nSZJEWBTQXslmgYIqU6k/7eXff/8V1zZtWIcRw4dq1zVn3kJUqVpd/N2+bSvFyu6Jk6cKKwSK/n17Yd3a1eIz2TfMnD1ffN62dQu6Bxr68Mpzql9JfP/hE9GXQHrRQr6KWt198EhYOJizmaDOEZeixY8ElgDe1Ws3okTJUmLuCePG4OTJ49i+c6/4WwnwpnJxQeRlzQ8kVA1fKL+3wYGEg4YMQ6fOgaJNl07thG2FmqAqaqrepR8tPn/+DC+PHKBKXXnEFvBak2c1a+c2rICjKcCA19Ey6jz7YcDrPLl2tJ0y4HW0jDrPfhjwOk+ueaesACtgGwUY8KrUlap3JdBYpGA+PH78SGXPr82sAbxysEQVuXRYFgHOLFmzIm3adALe0XW3bBnh6ZkHq9dtQqpUqbRg8+XLlzrrnTJpvKgCTZMmLQjUSv6t1O76tWikSuWCXLlza6+fOH4MTRrV0xlDArzyiwTU3rx+DbI6kMakf+DLAStBxp8SJdI5XKtihTLCx1gKgnNU1Uqwm4LgJVkLEHgtULAQ0qf/VVwnC4xC+X20/eSAV39eqZEc8MrBvSUJ1Yf8m7bs0MJ3yoHSQWi16tRFyPTZYprpIVMRNHmi+Nyla3cMGDREfNY/UEy+JgnkXr58CdUq+4tblL8LEVfE56NHwtC8aUPFbZy/eBlp06UTMDV3Do3vrbGwFPCOHD0OrVq3FcNt3rgBvXoGIm8+X5OAl9qevRCpzSNZYnTu0BZhYYfFOOQ5fOzkOfEMk5Y5XDMZVCYbW39Q8HTUq6/RYe6cmRg/drRBUwnw0vNaKaAckiVNig8fP+DunTuKuZMGsCbPljxf3JYVcBQFGPA6Siadbx8MeJ0v546yYwa8jpJJ59sHA17nyznvmBVgBeJWAQa8KvW8eu22sDswVX1rbihrAO/NOzGiIpEOeypSMC8+fPignY4O2SLIRodSkdeoFGoOWaNKX6oOpVi/bg369emp7U8HYO3cc0Bb2UtQkeCiFHLAS2C4e9dOOHo0TNwm8EiWBBKgpX/kU8Xq70MHaaspg6fNRJ16mlfzqaKWwKsUITPmoFbtOuLPqVMmIWRakI688xYsRqXKVcW14b8P0VpQyAEv3SPP2t27duLQwX0C3uXx8sahgwcEGKYg7VKn/kV8/iVNGmzbsUdU7pYuWVRc69m7L5q3aAWyESCLBilevHguKnqlkP8AkDVTesVHoUyZcli2co24t3HDOvTp1V18HjNuopiDwlSl6r2YxwKU08FvdAAcBVlqUGU3xc4d29C181f/XfkiTpw+j0yZNN692TJr4LixsATw0rpp/RRyWws1gJcsTDZu2SEqpKV49vSpsBuhg+XoRwLKH1VEhx4+aHLN0k35DxYEjfO4uxlUnlNbCfAqDUqVy6tXLRfPnX7lrzV5VrUBbsQKOJgCDHgdLKFOtB0GvE6UbAfbKgNeB0uoE22HAa8TJZu3ygqwAjZRgAGvClkJqhFco5BsEFR0M2gSW8BLYJcAL4Wp1/D1JzQHeMmO4NrNe6IbAVo5HJbGkvugnj93FnVra2wIKCTAS57C3p45DSosZ8yahxo1a4m2+geH0TWq0rwcdVPcD794AbVqVBGfqfL3zv0/BcyMiAhHzWoaawx5kCbXb90XbeUernLAGx0VhUYN6+CVXvWysdy179gZQ4eNwLmzZ1CvTg3RjAC3t7ePAN8EwI2F5INr6gcAOfSUr3nRkuUCzlM0blgXJ08cV5zm1t2Hwj6CIL9PnlyijdwTdu2aVRjQr7di34OHjyJnrtzinnvObDo/EOh3UAt46YcBsmagPFFFO0FnqXJZDeCleQniknZStbf+WqpULI+rVzUVympi5er1KOWnOcBu7OiRmD9PUzGtH6YAr9SW/JBLFiukA4ityTONm95N2UJDzd4+vnuJ//tPYxFii0iULBW+/38/2GJoHtOJFXj34hHapvoHPd3S2USFTX++wviYD/gxncb/m4MViCsFXr/8Ay8aFMSnuiXiakidcRJtOIbUmyKQMpWyZZdNJuVBnUKBD8+eoF6uISiaRffNu7ja/I6oyTj8ZCWSp+ZnN6405XE0Cnx5fgez6udAxTy2+W+GwNWXsf02kCxV2lhJ/uS27kHVsRqEO7ECrAArYEMFGPCqEFcOWMkWoYCvl4pehk1iC3hppPDIKAHDKAhATpwwVvyvqTAHeIsVL4G16zVetEuXLMLwYYMVh5N8gfXtECTAawwO0yFXdNgVhbHKVAlayj2H5XDw2NEjIM9ZpRg4aCjIb/X+/XvC55dCDnj1DyMzlzSpmnncmFGYN3eWaE4QOXHixPDMnV2nYld/rIjL1+Di4qK1yVCaK08eL+zed0jckgPe5avWonTpsuI6gWVjeVUCvM2at8TY8ZNEXyWvW2kd+w6Ewd3DQ/wZF4CXDsw7FHpMAGeqZC5RrKDw95VCDeDNmSsXNm3ZKSrEqVJ2984dKFOuvNBRCrKU6NGtC8gH2lzQeAcPHxPNjD2T0hh9+w9E8uQpcOXyJTx98kRAarI7qVW7rrAAkSxF9K1JrMkzzR1bwPvhzXPgSzKkTPW1Qt+cHpbc//D+Cd5/vI8UaW3zH9SWrIXbOpYCDHgdK5/OtBsGvM6UbcfaKwNex8qnM+2GAa8zZZv3ygqwArZQgAGvSlVv3H4gYKLkc6uym04zawCv3OdUGpSqRZ88eSwsB0aNGGbwOrk5wEuHng0e+rsYzpT3q9yvNGf2zNo9mQO8rdu2x4iRY0R7Y4BXAqhywNumXQcMH2Hom2pMcznMswbwUjUxVRVLHssEMY8eP20WFtK6JK1NWSCULOWHVWs2iG3s2L4NgV00dgpTpoagfoNG4jMd3kf+vkohHZRG1bK0RgoCwwSIKbZs2oiePboq9iW7DLLcoDBmISF1VFPBK3kX035bNG0kDtmTh7dPXlAbCrLfGD92lPju/PXXM3GNfqw4d+ESfvjhB5CVAnkwP3hwX9wj24mJk4LgliOndkhzFdTUcO/+UHh4eoo+ShXjxp4f/evlyvtj8dIVAvKSR6/8mbcmz2rnV2pHOmd1a4KCJaZZM4zRvn/G7MH5493wzz9vbTI+D+q8CrBFg/Pm3t53zhYN9p5B510/WzQ4b+7tfeds0WDvGeT1swKsQHwrwIBXZQZOnrmAjBkzidZ5ZFJvJAAAIABJREFUvd1Vv/YvH94awEvjkNdpw0ZNhBevfpBX6YyQYB2vWnOAlyAqwVSKTh3aYs/unYpqhB07BVfX7Ab+w+YAb8tWbTBqzHgxpjHAK1UHywEvQWGCwxRkR/DunWnodPvWLe3hYpYAXoKeLi6ptXuWvGBpTgqqTiUPYQIU5MsrRdXK/rh/766OVjt274ePT15xzRhArV6jJmbOni/azJ87G2PHjBSfqcqZqp0penTvgq2bNynmQTpk7Vp0NCr6lxFtCNrSPij279sj/GqVQjrQTB9YKrVVA3jlthKKExq5KGkzfeZcUW1NsXD+XIweNdygh9yb2FzlvByeW2JjYmzt0jNP9+WHKlqTZ0t00m/LgNca9bhvfCrAgDc+1ee5rVGAAa816nHf+FSAAW98qs9zW6MAA15r1OO+rAArwAoADHhVPgXyw8hmzQzBpAnjVPb82kwCvKaqPJWAp3wiqiqkCkP/gIrw9S2AHDlziipIKagS8tq1aPGnOcBLsHjSlGDRduL4sZg9a7riniR7CHoVn6wKpLAV4G3QsDEmB2kqFUln0lttWAJ4papstWNL7fQPm6PrS5atFHmhkOdAPnb/gYPRNbCHuCQ/GE6+33lzZmHc2FEGS6Jq1sNhGm9euW0AeddSZS+FHPzqDyDtVe7fa2zf3wLwyg8r8ytZ1ACY09rohwxaNz3z5g43lHvqUkXxkSOhlqZVpz1Zl5CFCYXcNsOaPFuzIAa81qjHfeNTAQa88ak+z22NAgx4rVGP+8anAgx441N9ntsaBRjwWqMe92UFWAFWgAGv6megSdPmGD9ximhPr5qTD6+5w7sITBUuUhRnTp8S/dZt2IKixYqLz65ZMugc3iQtxBzg1V8wzUHg2Dd/AXErZFoQpk7ReLJKr+WTj2nuHJrX8+WR290d+w8eEZfI57Z1i6YGbciWgg5iI5BIr9CXKl5Y28ZWgFdelXr61Ek0rK+p9FQTlgBel9SpkThRYjHsgsXLxGFqc+fMxNLFi8Q1AuQEzwlAfv70STs9VYjqR59+A9C9h+aAMxpj/FhDi4ldew/Cy8tbtJFDYjm8pYPhKgVo/HjlQZ6x3br3Epf0K14lmwtj1bny8U1BYGk+NYCXrCx+SWP8gAIvLy9ttfLOHdswZfJE/PPlC2JiHohp5ICXDjKTruvvWwLTVKGew1VTQa8f8h8qbt28gfJlS6l5VEy2kVfs53LLorU/sSbP1iyKAa816nHf+FSAAW98qs9zW6MAA15r1OO+8akAA974VJ/ntkYBBrzWqMd9WQFWgBVgwGvRMyB/bZtgZ91a1UEHjykFeaPOmD0PHz9+QOECmlf3qSqVqjUplDxFAypWxrwFiwVMlVsWpHJxQb/+gxR9dmmsevUbIihYU31LcJcgL8XWHXvg65tffPbyyIG3b3WtDggOE0CjSkmqkMzn7S4sEeQxeuwEtGjZWlzavHEDevUM1N62FeClCeTVtS2bNUZY2GFFnYuXKIl06dNrbQ0sAbzyAa9E3wJZNEiw0d3dA/sOhomDw/L5aA4nMxXUlzx8SdMXz5+LHwBIUykyZcosgDvllu775tV4xUohaUl9yvgV16lopTHJYiFduvTCLoLWI/9xYc68hahStboYamD/PlizeqXO2AsWLQU9WxRqvGzVAF5zepg7ZC1kxhzUql1H85xu2Ywe3TobDCk/NO3hwxiUKFrQoA1pQ7pL9hrVqwTg0qVIk8uj7yb1M/ZM+QdU0voHkzVHHnc37XjW5tmcbsbuM+CNrXLcL74VYMAb3xng+WOrAAPe2CrH/eJbAQa88Z0Bnj+2CjDgja1y3I8VYAVYAY0CbNFgwZNAlZCHQo8JOERBlbwrVyzD4YMHEB5+Afny5UexEiVQslRprR8rHYImAV75q/hUVTugXy9ERkbCz680GjVpBk/PPNrVyAGvBLqoQnPVimXYsH4trl69IqpLS5b0w6SgYKRP/6voWzmgHKKirorP06bPRu06dcXnC+fPoXtgZ7x+/QoV/CuCKh0vX76Enr37olfvfqLNmzdvhJdtRPhFAX0JKnfo1EXco7l98uTChw8ftGu0JeCVa0WAYNPG9ZgeEizAJ+WhfHl/1KlbXxyqRaCOIDBFbAAvVfIS1KTDvjxyuYpxBg0Zhk6dAxEaegitmjdR9ZRs27kX+fL5irbhFy8I2Ep2GQShZ89ZAJqHgqwwyBJDHvI80KFxPbt1ETYDZMExcdJUFChYSDSn3FKO5SGv0CVAPHhgP2zdsglJkiZFt249tT7Lnz59AlWj6gflOlUqF+3lg6HHkDJlSuE7XNZPU3FO8eLFc/HMqwlzgDd/gYLYvHWn9rukb01B1dQr12xAqlSpxHRjRo/AgnlzDKaWV9SS5rVqVDG7PMn/l76ba9eswqmTJ8T3I8NvGdGlazfhcy19x5XmtSbPZhdnpAED3tgqx/3iWwEGvPGdAZ4/tgow4I2tctwvvhVgwBvfGeD5Y6sAA97YKsf9WAFWgBXQKMCA18InoWq16pgcFIJkyZKp6nnzxnVUKOenbStVR5rrrAR45X3oH80ShJKuHz50AK1bNtM2o6pRshnQb0cN5JBRsnKQOhIkpEpTecg9Y6XrtgS8NMfSFatRtmx5c1JZDXjpQDc62C0iIhw1q1US8+3Zf1gA90ED+mL1qhVm10ANCMRv37lPHMwmhX6eqBK1QtlSOqCc2hJk3X/oiDjMzljQjwK1a1TRAnx5u+BpM1GnXn2jfWkdQwcPED9I6If8UDtTG50eMhVBkyeq0sIc4KVBJIguDUg/Ijx//heSJEmqBbt0j0A3+erqB9mHUOU1aUf7K12qmKKXr34/+QFvpjZDP4CQlYZ+WJNnVeIpNGLAG1vluF98K8CAN74zwPPHVgEGvLFVjvvFtwIMeOM7Azx/bBVgwBtb5bgfK8AKsAIaBRjwxuJJoMrZoOAZqFK1moBL+kH/oL137y6WLFqAZUsX69wm39tVqzcgbbp0OteparNHYGfMmb9IwOO7d26LV/UpkiRJgvETgxBQsZIiWJYqe0cMH2qwFqpGHDNuosE6g4MmY1qwxlOYYsrUEGH1oA+DydahdcumOHf2jMHYZBtAlcPGbAyat2gl5qbo2L4N9u7ZZTBG1PU7BvuVNyJrAToIzsXla4WpdJ+qSalqc+KEsdr1Va9RU+v9qmRXoJTuJctXoVy5Cjr+xZIXsrdnTlHZrDbIRmH7rr3IkOE3nS70TJw/dxYN6tVS9F4WX8bvvgMd5kc+zfp5oGrTmtUqQ8n/V5qIqlkDu/U0gPMEhjt1aIvQwwcVtzF8xGhtla+pfcr9nc3pQRW4O/ccEM2WL1uCYUMGKnapXaceRo0ZD/L01Q+qOJ4yaQLmz5ut2FduHyKv4ja3NjoM7/fhI5HNNbvijx/k90vfD1OH+1mTZ3PrU7rPgDc2qnGfhKAAA96EkAVeQ2wUYMAbG9W4T0JQgAFvQsgCryE2CjDgjY1q3IcVYAVYga8KMOC18mmgKkJ6fd7Lywfv3r0V3rl0qJrcf1V/CoJ31KdIkWL4+/3f2Ldnt0lwJ+9Pfrx5ffIhl7u7AKtRV68IGwBz81E1qodnHuGxGxkRrugdTFW7tK7ixUvi2bOnOBIWij/+eGilQnHTnUA6VYV6++TFs6dPEBkRIQ59S6hBkL5M2XLI7e6Bs2dO4+SJ4yZzJN8HPR8EeYsVLwGqAA8LPWzgn2xq3/QjQvnyAeJ5PLB/n+pnKz61JM9jsm3IlSs3Yh7GCMuES5ERqjWLzdrpu0vPk5tbDmTNlg0xDx7g9OlT4scVtWFNntXOQe0Y8FqiFrdNSAow4E1I2eC1WKIAA15L1OK2CUkBBrwJKRu8FksUYMBriVrclhVgBVgBQwUY8PJTwQqwAqxAAleAAW8CTxAvz6gCDHj54bBXBRjw2mvmeN0MePkZsFcFGPDaa+Z43awAK5BQFGDAm1AywetgBVgBVsCIAgx4+dGwVwUY8Npr5njdDHj5GbBXBRjw2mvmeN0MePkZYAVYAVbAOgUY8FqnH/dmBVgBVsDmCjDgtbnEPIGNFGDAayNheVibK8CA1+YS8wQ2UoABr42E5WFtrgADXptLzBOwAqyAgyvAgNfBE8zbYwVYAftXgAGv/efQWXfAgNdZM2//+2bAa/85dNYdMOB11szb/74Z8Np/DnkHrAArEL8KMOCNX/15dlaAFWAFzCrAgNesRNwggSrAgDeBJoaXZVYBBrxmJeIGCVQBBrwJNDG8LLMKMOA1KxE3YAVYAVbApAIMePkBYQVYAVYggSvAgDeBJ4iXZ1QBBrz8cNirAgx47TVzvG4GvPwM2KsCDHjtNXO8blaAFUgoCjDgTSiZ4HWwAqwAK2BEAQa8/GjYqwIMeO01c7xuBrz8DNirAgx47TVzvG4GvPwMsAKsACtgnQIMeK3Tj3uzAqwAK2BzBRjw2lxinsBGCjDgtZGwPKzNFWDAa3OJeQIbKcCA10bC8rA2V4ABr80l5glYAVbAwRVgwOvgCebtsQKsgP0rwIDX/nPorDtgwOusmbf/fTPgtf8cOusOGPA6a+btf98MeO0/h7wDVoAViF8FGPDGr/48OyvACrACZhVgwGtWIm6QQBVgwJtAE8PLMqsAA16zEnGDBKoAA94EmhhellkFGPCalYgbsAKsACtgUgEGvPyAsAKsACuQwBVgwJvAE8TLM6oAA15+OOxVAQa89po5XjcDXn4G7FUBBrz2mjleNyvACiQUBRjwJpRM8DpYAVaAFTCiAANefjTsVQEGvPaaOV43A15+BuxVAQa89po5XjcDXn4GWAFWgBWwTgEGvNbpx71ZAVaAFbC5Agx4bS4xT2AjBRjw2khYHtbmCjDgtbnEPIGNFGDAayNheVibK8CA1+YS8wSsACvg4Aow4I2jBCdJkgQfPnyIo9F4GEdRwCV1arx88SJW27Gmb4oUKfDp0yd8/vw5VnNb0ym266bvUMqUqfD48aNYTW/NnjNk+A0vXjwXmlkatN///v0Xr1+/trSr6vYMeFVLxQ0TmAIMeBNYQng5qhVgwKtaKm6YwBRgwJvAEsLLUa0AA17VUnFDVoAVYAUUFWDAG8sHo1DhIujdpz9cs2dHmjRp8eOPP4qRPn78iJcvX2Db1s2YNSMEb968ieUM1nfLnDkLUv/yC969e4fbt25aP6CTjFC3XgMMGjwMmzdtwLixo8Su5y1YjAIFCqFNq2a4dCnSpBITJgWhfAV/pE2bDt999x2+fPmCR4/+xOJFC7Bk0QKTfZs1b4mOnbuCgCM9UwRHnj17iqNHwtCnV3eTfX188mJyUAiyZM2KpEmTirYEHa9fi0b7dq3w6uVLVRns028AWrdpj5iYB6gcUE5Vn9js2dMzDzp16QY/v9JI8fPP+OGHH8RctGd6ZjesW4PRo4bjv//+M7qG2Ow5UaJE6NylG6pVr4GMmTKDwDLliYJyde/uHfTp3QOREeGK8/oHVEKbtu3h7ZMXyZIlw/fffy/a0Tr/+usZJo4fi40b1qnSTW0jBrxqleJ2CU0BBrwJLSO8HrUKMOBVqxS3S2gKMOBNaBnh9ahVgAGvWqW4HSvACrACygow4LXwyfjpp58wY9ZcVKpc1WxP+oftrp3b0bVzB7NtbdHg+KlzIMj7999/wzN3dltM4ZBjrl2/GcWKl8DUKZMQMi1I7PHmnRhQ7klH0lMpCPRt27kXBB2NxdIlizB82GDF28N+H4l2HToZ7RsdFYVqVfzxzz//GLQh6Dh/4RItbNRv8PbtWwFrCdqaCqpGPXbiLKgaln6c8PbMabK9NXuOvnFXC6KNTfLy5UsUKZhXsbI2tnvu1r0X+vYfaPbZHTdmFObNnaXTjsD76XPK4Ffe8MTxY2jSqJ7ZOdQ2YMCrVilul9AUYMCb0DLC61GrAANetUpxu4SmAAPehJYRXo9aBRjwqlWK27ECrAAroKwAA14LngyCWRcjo+Di4qLtdS06GpcuReDatWi4u3vAy9sHbm45QFWCFE+ePEbhAsaBnwXTW9yUAa/FkokOV6JvCcBZomhBPHwYI/K672CYsFrI5+NhdNAZs+ahRs1a4j5VoG7ZvBER4RfhV7osqteoqYWvPbt3FffkUblKNcydv0hcokrQXTt3ICz0kKgSrVO3Pn7++Wdx78D+vWjXpqVOX6oipTVLlaSnTp7A3r27kfLnlKhdtx5cXTVw/69nz1DA18tg/fkLFESjxk2RI0dO+OTNp61GVwN4rdmzBHjfv3+Pc+fO4MrlS/jxhx9RqUpV8cOEVFWrBEut2bMc8N68cR2RkRG4dfMmipUogUKFimihM4Ep//J+uHnjhlYzOeB9+vQJzp87i6tXrgjtSpcpKyrmpRgxfKjZim21TygDXrVKcbuEpgAD3oSWEV6PWgUY8KpVitslNAUY8Ca0jPB61CrAgFetUtyOFWAFWAFlBRjwWvBkTJoSjIaNmogeZMXQrWsn7N+3x2AEetU8KHgGataqDYJADHgtEDmemxKgC4+MAkFHj1yuYjWDh/wubBMOHz6I1i2aGl3hjdsPBNin1/zLlS6BBw/ua9tWrVYds+cuFH/fuH4N/uVL64yza+9BeHl5i2v6AJig4tETZ0QFMY2dM3tmYWMgRf+Bg9E1sIf4c8f2bQjs8rVinCDpsZNnBTClqFGtkoH1wIhRY9G6TTuDfakBvNbseePm7Th08ADmzpmpsx9aCEHnzVt3CshLPsK0Z3lYs+dateugUeNmGDJ4gKJ1yc49B+Dt7SOmmz93NsaOGamdOpWLCzZu2oZxY0fj8KEDBpqRvUX3Hr3Fdfrxp6J/mTh5ohnwxomMPEg8KMCANx5E5ynjRAEGvHEiIw8SDwow4I0H0XnKOFGAAW+cyMiDsAKsgBMrwIBXZfJds7sh9MgJbVVhQIXSuH7tmsneVPlZrUZNTJk0QbQLqFgZRYoUBb0uPy14imLfDh27IH369Lhy5bJBlSd1yOebH61atYWrmxtSp06N53/9hfv37wvPXwk40Wv2gYE90KhJMyRPnly80r90sQYuSrF1yyZcvnxJ+zfBQ/IlJW/h7G5u+PvdO1GZSJWmR46EKq61SdPmolqZQOaypYtRvkIA6tarL6pA3719h6NHQrFk8ULhP0uRNZsrWrdui4KFiyBNmjR4GBODTRvXY83qlSZ1bNCwMcqULQcPD08kSpwY9+7eBVWpzpgebNAvY8ZMwh+VYvnypbh/767wdi1dphwKFiqEjx8+YtXK5cIrVSnatOuA4SNGIzz8ImpVryya7N0fCg9PTwzs38foWsm3d+q0GaL9ls2b0LN7F4PhCbRmyZJVXPfN64kXz5+LzylTpkTklevi2frjj4coXqSAQV/5jwtDBvXHyhXLtG0uhF9BmrRpBSR1zZLBAJaWLOWHVWs2iPaUyxZNG+mMT3mTNKMbRYsVF5qZA7zW7Nlkwv938+SZC6B8UhTI56WTM2v3bGr+cuX9sWSZ5pk8d/YM6tWpoWa52jb3Yh6LXFIVdx53N4v6GmvMgDdOZORB4kEBBrzxIDpPGScKMOCNExl5kHhQgAFvPIjOU8aJAgx440RGHoQVYAWcWAEGvCqTv3DxMpDnJwWB1NYtm6ns+bXZlm27RGUivYJPIE4ppNfW7969gzKlimmbEDCiiseChQobnffVq1fI65UbxUuUxJp1m0yub/as6eIwKAryjF25ZoMAjUqxd88udO7YzuCwq3MXLyFduvTCk/bGjevw9c1v0J3u+ZUogvYdO6Fjp65aQC5vSD7FXTppoKw8fv01A9as24jsbjkU10WWA00a19MB7VQ1PX3mXNF+2JCBwjKDALH0uj9d79GtM7Zu2axp8/tINPhfVTb9TQdu0eFmlCMCdBRk10D9aS///vuvuLZpwzrQK/hSzJm3EFWqVhd/tm/bSrGye+LkqcIKgaJ/315Yt3a1+Ez2DTNnzxeft23dgu6Bhj688pzqVxLff/hE9CWQXrSQr6JWdx88EhYO5mwmqHPEpWjQjwTmAK81e1ZcpN5FORAnL2D5gYVxvWf51HIgfvLEcTRuWFfNcrVtJK3N6WfJoAx4LVGL2yYkBRjwJqRs8FosUYABryVqcduEpAAD3oSUDV6LJQow4LVELW7LCrACrIChAgx4VT4VVL0rgcYiBfPh8eNHKnt+bWYN4JXDNKrIpcOyCHBmyZoVadOmE/COrrtlywhPzzxYvW4TUqVKpQWbdFiVPKZMGi+qQNOkSQsCtZJ/K7W7fi0aqVK5IFfu3NrrSj6oEuCVj0uv0795/Vp4kUpj0j/w5YCVIONPiRKBfFSlqFihjPAxloIqiqmqNWnSpOISwcvIiHABXgsULIT06X8V18kCo1B+zev0FHLAqz+v1EYOeOXg3pKE6kP+TVt2aOE75UDpILRadeoiZPpsMc30kKkImjxRfO7StTsGDBoiPg8dPAArli9VXIoENanyulplf9GG8nch4or4fPRIGJo3bajY9/zFy0ibLp2wFsmdQ1NFbCzUAl5r9mxOa6ogvnbznoDt0nMt9bHFnuXrGTNuIpq3aCUuUS4oJ2qDKuDphxiKO7dvoWzpEmq7mmzHgDdOZORB4kEBBrzxIDpPGScKMOCNExl5kHhQgAFvPIjOU8aJAgx440RGHoQVYAWcWAEGvCqTf/XabWF3YKr61txQ1gDem3dihAfr69evUaRgXnz48EE7HYHSkaPHoYJ/ReTzdtdeV3PIGlX6UnUoxfp1a9CvT09tf7ITID9SqbKXoKLc1kEOeAkMd+/aCUePhon+BOGoAlMCtPSPfKpY/X3oIHz69Em0CZ42E3Xq1RefqaKWwKsUITPmgLxSKaZOmYSQaUE68s5bsBiVKlcV14b/PkRrQSEHvHSPPGt379qJQwf34e6dO8jj5S18XwkMU5B2qVNrDsb6JU0abNuxR1Tuli5ZVFzr2buvgH3Hjx0VFg1SvHjxXFT0SiH/ASBrpvSKj0KZMuWwbOUacW/jhnXo06u7+CwHil06tRMHrCmF9Oo/HfxGB8BRyIHizh3b0LXzV/9d+RgnTp9Hpkwa795smTVw3FioBbzW7NnkAgCMGDkGrf9ntaFvk2CLPUvroech/FK09pDEUsUL63gpm1v3wcNHkTNXbtFswrgxmDNbY9thbTDgtVZB7h9fCjDgjS/leV5rFWDAa62C3D++FGDAG1/K87zWKsCA11oFuT8rwAo4uwIMeFU8AVR9SnCNQrJBUNHNoElsAS+BXQK8FKZew9ef0BzgJTsCqpKkIEArh8PSWOQbvGCRpqL0/LmzqFtbY0NAIQFe8hSmV+jlB3/R/Rmz5qFGzVqirf7BYXTt559/xuWom+J++MULqFWjivhMlb937v8pqn4jIsJRs5rGGkMepMn1W/dFW4KvTRtrQLEc8EZHRaFRwzp4pVe9bCx37Tt2xtBhI3R8V6UDtwh8EwA3FpInrKkfAPLm88X2nXvFEPI1L1qyXMB5CrIDIFsApbh196GoaCXI75Mnl2gi98Fdu2YVBvTTHPClH3Lw6J4zm84PBPpt1QJea/ZsVEgAxYqXEBYjlH96pir5l9Wp7rbFnqX1SH7L9Lf+825qzXRv0JBh6NQ5UDSjHwm8PHIYfCfMjWHsPgPe2CrH/eJbAQa88Z0Bnj+2CjDgja1y3C++FWDAG98Z4PljqwAD3tgqx/1YAVaAFdAowIBXxZMgB6xki1DA10tFL8MmsQW8NFJ4ZJSwPaCgisaJE8aK/zUV5gAvgbS16zVetEuXLMLwYYMVh5N8gfXtECTAawwO9+jZB7379hdjGqtMlaCl3HNYDkKPHT0C8pxVioGDhopKy/v37wmfXwo54NU/jMxc0qRq5nFjRmHe3FmiOUHkxIkTwzN3dp2KXf2xIi5fg4uLi4GdgLxdnjxe2L3vkLgkB7zLV61F6dJlxXU60MtYXpUAb7PmLTF2/CTR15SdwL4DYXD38BDt4grwWrNnY7nImSsXdu89JKrVKeggPemQQqmPLfZMY8ttUKg6myrl6ccLNdG4STNMmKSpMiegVb9uTcU8pndT9kg2N8f718/w//5LgwyZNNYccR1v39zEX09PIGUGzaF2HKxAXCnw7sUjeP3fGxRN/dWSJ67GpnGi337EuQ//Dz+ld43LYXksVgCvXjzEO7dU+Mczi03U+OHqfaS4+xYpXX6zyfg8qPMq8P7pI+RIUQCZUnraRITrz07gj3/vIHlq5fNEbDIpD+oUCnx6dgsVciSHWzrb/DfD/qvPcPN9CiRLlTZWej65HR6rftyJFWAFWIFvpQADXpVK37j9QMBEfT9Qld1FM2sAL1kwtGrdVmc6qhZ98uSxsBwYNWKY1vpAamQO8NKhZ4OH/i6am/J+PX0uHBky/Aby182ZPbN2DeYAL71iT6/aU/z/9u4DzIlq/eP4a7mKIgoWkCsKKL33DiJNUbogKkrvSLtYEFFARKQXAQWkiaKodJQqvSu9dxC8Igh2LHD1/7wn/xlns8lmkgyE7H7P8/jIbmbOOfOZyWzyy8k5wQJeK0B1BrzNW7aWXr37uqZ1BszRBLw6mlhHFVtzLGfOklVWrdkQdHSzs4OWdVJTIDgX75o3d4480943ncLgoSOkwWOPm3/r4n06v2+gYi3epfM/ax+1aDCsAbG5vmZ8Il06dwi4r3PBsmBTSFg7uh3BG80xB+pk1nvvk0VLltvTI+jifm1aNU+06aU45uEjRkvdR+ubtvQ6f/ihynLwwAFX12DdevVl+EjfBwJaXnzhWZn2/tSA+0Ya8GplZ47v1vTYVZ8i2ejm9PfI9TfeHMmu7INAkgIa8l7Kkjpternq6msuZRPUnQIF/v7rL/n1B990TpeqpE6XQa666upLVT31plCBv/53UfSD4UtZCHcvpW7Krft/F/+U3346e8kA9H6r991ICwFvpHLshwACl0uAgNel9Lpvhlc+AAAgAElEQVSNm+Wuu3yj2wrmz+X6a//O6qMJeLUenau14eNP2qMbnXXrXLNvjhiWYK7aUAGvhqgapmpp27qFLPhsfkCNFavXS9as9yaafzhUwNukaXN59bX+ps5gAa81OtgZ8DrnX9XpCH75JelRlIcPHbIXFwsn4NXQM126W+1jTpMmjfm3tqlFp0PQOYQ1tNWv3FvlkepV5fixowms5n22WAoUKGh+FyxArVmrtowaM85sM+7tMdLvtT7m3zrKWUc7a+ncqb3Mnjkj4HmwFlnbt3evPFi1otlG50nW49CyeNECadXCtziYf9m0ebtZmM4/pA+0rduAN5pj9m9XRzfPmvuZHe76L2Ln3N7rYx7z9nh5pEYt04Q+j+rVfkR27Nge0NH/lzo/c99+b9iLCPbu1VMmTRjval82QgABBBBAAAEEEEAAAQQQQAABBLwQIOB1qehcjGz0qBEy8I3XXe75z2ZWwJvUKM9AgaezIZ2XtFLlqlK12oNSuHBRyZY9u1x77bX2Jg9WqWjPVxoq4NWweODgYWbfAf37yZjRIwMekzU9hH5tXacqsMqlCngfa/iEDBoy3DSjzurttoQT8Fqjst3WbW3nv9ic/n7SlPfMedHiPAfOup/v3kM6PNPZ/Mq5MJzzeMe+NVpe7/dqoi7dly27LFvhm5t37ZrV8uTjvtGmOgexjuzV4gx+/SuwjtU5f2+w43Yb8EZzzM62dWTzlKkf2NexcwG6QH306pj1ufTxjDlmoTot58+fl1o1HnQ9ctcZzOtzWhfNm/HJR+FeTmyPAAIIIIAAAggggAACCCCAAAIIRCVAwOuS78lGT0v/AYPN1jpNg87DG2rxLg2QSpQsJRs3rDf7Tf94lpQqXcb8O+s9Gc2IWP8SKuD1317b0OC4cJGi5qERw4fI0MG+OVmtr+X//vvvkjNb5kRt5cyVSxYvXWl+r/PcNmvcKNE2Oi2FLsSmodpXXx2X8mVK2NtcqoDXOUJzw/p10rBBXZdnKbw5eNPdequkuj6VqXv8xCmSP38BefutUTJ54gTzOw3INTyvUK6U/PnHH3YfdKE7/9LtuRekU2ffAmdaR/9+iaeY+HThUsmXL7/ZxhkSO8NbXRjuoWq++Xid5dnnu0vHTl3Nr94Z97b0fbWX/bA1zUWw0bnO+pMKga0K3Qa80Ryz1ZbOXavPK72Ok7Lz94j2mFOnTi2fLlgiOi2EFl08UYN5nf7CTRk+cozUrfeo2VSfx82bPi3Lg8wV7aY+tkEAAQQQQAABBBBAAAEEEEAAAQQiFSDgDUPOmqpAd9Gw89E6NUUXHgtUdJ7QN8eMld9//01KFPV9dV9HpepoTS3PdesiH03/IMGu1R6sLmPHT/SNyjx6RCqWL20eT5sunTz3/IsB59nVx+s3aChDhvlG32q4qyGvltnzFkjhwkXMv/PlzpZowSgN1XRkpy5opSFVofy57OkJrI7p188bN2lmfpz5ycfStcszdp8vVcCrDThH1zZ56glZsWJZQOcyZctJ+gwZ7GkNwhnB66xw195DolM0lCtdXE6c+Epy5coti5aukO/PnZNCBXyLkyVVdF+dw1dNz509az4AcAb4mTLdbQJ3Pbf6eOGCCRe+sCx1n4oVyiSYAkLr1CkW0qfPYKaL0P44P1xwLg7W/flu8sG09xJ0dfyEyaLXVrDrzv+43Aa80R6zc4oQPS6dB/q9qVNCUZvHoznmu+++R+YvWCJp06Y1delz+eEHK7taUE0Df51KwpqOQ0f91q9bU3bv3uWq32yEAAIIIIAAAggggAACCCCAAAIIeC1AwBuGqI6E/Hz5anu0oY7k1UBq2dIlsnXrZilUqIiULltWypW/3w6AdBE0K+B1fhVfR9W+8FxX2b59u1SocL88/uRTkidPXrs3zoA3e44csnTZajN/6vtTp8jHH31oAiUNm8qVqyADhwwz86tqqV6tkuzZs9v82znKcPOXX0inZ9rJjz/+IFWqPiiHDh6QnTt3SJf/PCtd//Oc2f6nn34yc9lu27rFhL4aKrdu2948pm0XyJtDfvvtN7uPlzLgdVpp+KdffR85YpgJPvU8VK5cVeo92kBy58ljwl8NgbVEEvDqSF4NNTWsy53DtxL7iy+9LG3bPSPLl38uTZ9+0tVVMmf+QilUqLDZduuWzaJh6759e0VD6DFvjRdtR4tOhaFTYjiL8zzoonFdOraXlSuXmyk4BgwcKkWLFTeb67nVc+wszhG6GhD36P6czJ41Q2648Ubp2LGLPc/yH3/8ITnuS7wauJ7rtGnT2VUuXb5abrnlFjPv8AMVfCPOtZw7d9aMXneWSI/ZOR+x1jd71kzZvj34yrTatnNu4miO2ZqPWNvVaUeGDB5ggvNgRRcxtOZcHv3WOKlRs7a96cgRQ80ifMHK3j27Zf26ta6uHzZCAAEEEEAAAQQQQAABBBBAAAEEIhEg4A1T7ZEaNWXQkBGiX/F2Uw4e2C9VKlWwN7VGR4baN1DA69xHAynra+3W7/0XptJRozrNgP92ur0zZLSmcrDq0ZBQR5o6i3POWOv3lzLg1TYmT50mDzxQORRV1AFvsxatRBd227Ztq9Su8ZBpb8HiZSZwf/GFZ2Xa+1ND9kE30CB+7vxFZmE2q/ifp5MnT0iVB8onCMp1Ww1ZF3++0ixmF6zohwJ1az1sB/jO7YYNHyX16jcIum9SI2Sdi9oldaAaZg4ZNCDBJpEes07N8MZA30hzNyXQNCORHrPb56DVL+dxu70mrX31QxSdjoOCAAIIIIAAAggggAACCCCAAAIIXCoBAt4IZHXk7JBhb8rDj9QwwZx/0TDt2LGjMmnCeJkyeWKCh3Xe2/enfSx3pE+f4Pc6CrDzM+3krXETTHh89Mhh81V9LTfccIP0HzBEqj34UMBg2RrZ27tXz0R90YXUXnt9QKJ+DhsySIYP880prGXw0BFmqgf/MPjnn3+WZk0ayRebNiaq2xoJGWwag6cbNzVta2nTqrksXPBpojr27D+S6HidG+nUAroQXLp0/4wwtR7X0aQ6UnbAG/3s/jlHhgaariDQ6Z707vtSqVKVBPMXW3Mh58+T3Yxsdlt0GoW5ny6UjBn/nWAXvSa+/GKTPFa/TsC5l3VjtdfF/HSeZv/zoCPBa9eoLoHm/7Ua0jlxn+nYJVE4r+Fo29Ytgs4R65wqIanjdM7v7NwukmN2jtB2YxtsHulIjtlaNNBNu7rNsKGDZPhQ33PFubCcm/2dHxq42Z5tEEAAAQQQQAABBBBAAAEEEEAAgXAFCHjDFfPbXhch06/P58tXQH755Wczd64uqhZoATVrVw3vdJ+SJUvLr+d/lUULPksyuHM2qfPxFixQSHLkymXmh92ze5eZBiBUezoaNXeevGaO3e3btgacO1hH7Wq/ypQpJ2fOnJaVK5bL11+fjFLIm901SC9YqLDkL1BQzpz+VrZv22bmTr1Si4b0FR+oJDlz5ZZNGzfIurVrkjxHzuPQ60ND3tJlyoqOAF+xfJmr+WGtOvRDhMqVq5nrccniRa6vrWgtoznmaNuO1TFH22/2RwABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEIhKIHXq1PLrr79GVQc7IxAvAtddd51cvHhR/vrrr3jpMv30UOCWW24x5597noeoVJXsBHhdEN+n9IYbbpDffvstvg+C3iOAAAJxKEDAG4cnjS4jgAACV4LA0mWrJG3adKYrJ058JXVrP+KqWzlz5ZL+bwyWHDlzyU033SRXXXWV/P333/Lnn3/Kr7/8Ivv27ZVp778r8+fNNb/Xcv3118ua9V/IVXJVwDYerVdLjh87GrT9SPvq6oBSyEaNmzSTTp3/Yx9tjxefl8WLFgQ9en2DvnL1BvvxZcuWyvPPdg26vV4Hy1eulZtuSmO2OXbsqNSvVyvB9rPnfiaZMt3tSvzi/y5KqeKF7W379ntDqldPfI3+ecF33W3btlWGDx0sX399MmD9M2fPl3vuyRzwsTdHDpMpkycGfCx9+gzSt19/yZkrt2TIcKfceOONZrsLFy7Izz/9JGvXrpFBA/snef3q9inlGo7mHM+et0Ay3ZVJTp48IXVqPZzkdfL+Bx9Lzpy55Pvvz0nVyvfb2/pft9YDej39+MOPcu7cWfnk4+ky45OPXF2HGugPGDhUipUoIXfemVH0Zy2///67fPPfr2XNmtXy8kvd7Xudf6WBrtu/xXe/PP3tt7J40UIZ+/boRB8YBDuOYJ3ev3+fNHqigatjCmcjZ/+13zUfflBOnfomaBWt2rSTNm3a24+/8Hw3+XzpYvNzOH8Hqj9cQ/q+1j9BO9q+up//9bycOXNa1q5ZLRPeGWsskyqBrkm9HnS/c+fOycED+2XqlEmyY8f2JOtx9qlP754yb+4cV5TRPCdCNRDIKal9PvjgPRkyaEDQTSK9T4X7umDUmHFSqlTpUIcX8PEJ74yTt8a8GdG+keyUOUtWmTFzrr3r/PlzpfcrL4V9zQXbYd26tdLpmbYS7b0rnOeXf1+ebtxUHq3/mGTOnEXSpksnV199tbmnnT9/Xv779Unz9/G9qVOC3ue0vnBfY0RyLtgHAQQQSO4CBLzJ/QxzfAgggMAlEKhUuapMmvJegpqrVCovBw8cSLK1t8a+Iw8/UtNVj44fPyYVypY026ZJk0Z27T0UdL/aNavLtq1bAj4eaV9ddTIFbbR2w5cJwtWdO3dIjepVgwrom7ztO/fZj+ubvSKF8sq5s2cD7tOmbQfp0fMV+7Eff/xRCuTNkWBbvQb0WnBbMmfKYG/68Yw5UqJkqZC7zprxiXTp3CHRdjv3HJSbb7454P6TJ02QXi/3SPRY+w6dpNtzL8i1114bst2vvjou5cuUSPHXcDTnePe+w+ZDo59//lny5c6WpPmXW3bKHenTm6A9W9ZM9rb+122wSnQEbs1HHpTDhw4GbadM2XIy7p3JIa/Z78+dM+Hq7t27EtXl5rrVY3i2W2eZPXNG2Mdh7XDm9GkpViR/yOs03A38+790ySJp0axx0Gqsc2ht8ErPF+0PT8L5O9C6TXt56eVeIburI+nXr1sr7dq0EL3nBCpur0k1HDJ4gHwwLeHfRqtOZ5/eeP011yGj2/atdpz3vVAAbp2sevRDvVYtmnp6n4rkdcGyFWvkvmzZQx1ewMf1A5puXTtFtG8kOw0bPkrq1f/nwxP9kCFntsAfFlr1h3PO9QOGKpUqmGDV+Tc33HtXOM8vq+677sokU6ZOk+w5coak0fvUa317y+SJ7wTcNtzXGCEbZAMEEEAgBQoQ8KbAk84hI4AAAtEKBAod5s6ZLR07tAla9YBBQ+XxJxrZj//000+yc8d22bhhvWTNeq/kzJ1b7r77HjsM+fbbU1KiaEGzvY7u7Nylm+gAXg3NdKSJvjEfMXyIeXziO+NE6wtUIulrtD7JbX99E7du4+YEh6WBbe4cWYN+DTPQm81P58+V9m1bBeTZtnOfpEvnGxGuJamAV9vev++f8DhQhTrC7pGHqtgPOa+DrVs2yx9//CHXXHONpE2bVu7KdLc9slZ3mPruZOnZ44UE1T7x5FOS4c47pX6DhuY61aJBjo5GXLJoYaJw7r1pH0n5Cv+MDNXr+csvNsn2bdskY8aMkr9AQcmWPYdp3yrBgpmUdA1bwUYk59jrgFdDXL1HabkxdWq57bbbRJ8LVtGgpmypYvLdd2cSXYI1a9UWHWVoFR3JtnHjevli40b517/+JcVLlDQfOFgjevV4dcS6XiPOEui6TXXDDXLrrbeaD1x0pJwW3b9Zk6dk+bKl5mfn80/7eexo8G846PZ79+wO+MFGtPcy/2tX79uF8ucKGKY+9XQT6dd/YIImnQFvOH8HnMGljso/8dVX5u+GPt/SpLlZbrv9dvN3xSqnT39rPlAM9LVy65rUvm/auMGYax0333Kz+RaLjpx0Fmefnb+PNuCN5DkR6vw5+6Qfvp0+fTrJXaZPn2b+3gYqkdynIn1d0PvVflK6dNlE3fj3XXfZH8R9881/zah7/zJ50jtBQ/hQXpE8HiisbdOquSxc8GnQ6sK5D65ft0Z69+qZ4Dkfyb0rnOeXdlxHXS9cvNy+B+nzY/OXX5h75qlTp6RQ4cKSO3ce0RHM1n1q/rw50qFd60THHclrjEjOBfsggAACyV2AgDe5n2GODwEEEPBYQEcj7j903IxK1DfFt99+h3nxrm8o8uS8N2Br+sZ6z/4jZh99k9q2dYugb240SOvRs5f89tt5O+B1Vrptx15Jd+utJqDLcZ8vaAtWIumrx1zJoro3Bg4RPS9a9u3dK7ly5zb/HjSgv4x6c3jAYwwU8OobQB2VqyMsnaVO3Xoy4s23EvwuqYD3l19+kby57gvL1hk+FC6YJ9FIYg0MmjVvaerUME7D60Bl0rvvS6VKvuA42Kj1BypVkcnvvm+20etdvw48oH+/gPXpV9Jf6P6SCf0CBbwp7Rq2go1IzrHXAe8XmzYmmiZEg4gly1bZod7ggW+ITtHhX3bsPiA6366WXbt2ymOP1k407+6tt90mc+YtsKf+0CCyTMmiCapK6rrVYHH6J7Mlf/4CZh/9sKFksULm387nX6DjCOvJE8XGgUK/2bNmSueO7RLVao2qdj4QLCwN9XcgVJiqdm3adZC27Z4xwa8WHUV/f7lSiaa7CHVNaljf/cWeUqz4PyPw9fj0OJ0lVJ+CMYdqP4rTI5H2yb/NSO5TXr4usPrz+huDpNFTvhHiLZs3kSWLF0bDE/W+Oor/g+m+kfXOv51bNn+Z5LRWkZzzUM95t/cu7Wuo55dus3rdJvvepWF6wwb1Ak41lDHjv2XC5KmSN28+CRbwRvIaI+qTQwUIIIBAMhQg4E2GJ5VDQgABBC6lQJOmzeXV/5/bcPSoEVKyZGn7jW2Tp56QFSuWJWq+XPkKonNeWm9yHqxaMWQXc+XKbebj9S9u3nhY+0TS15AdS4EbWGGVhuqVK5Yz8yFr0blOdQRjoOJ8s6lvZosU9W330fQP5LluXRLsoqOD9c2nfsU59U03mdG0lzvg1Q45A6biRQqYDzD8S6iAV0dBbd+13w73kgrBrbp16oeer/QJOEdxSruGIwk2LMfLEfBqW3XqPSojRo4xzQYKT5/v3kM6PNM55HPE6rdz+o8XX3hWpr0/1b7sQn0woR+u7Tt4zP5WQ9Z7Mpp9Q4U9l+s2ZvVfP9zRaXf02xq6yJxOoeEcLVu5SjWZONl33GqqoamWSxXwWsevX/NfsOhzO+TdunWL1KlZPQGP22ty5Ki3pXadumbfQCOyIw1T3bYfyTmNtE/+bUVyn/LydYHVnyst4NXXPXqcWvQDwTnzFpoPh/T5oNM0BJv/OZJz7uY5H+reZTmGep3VrEUr6d3nNbO5fhiXP0/2kAuH6nPj6quvkVkzP0l0qUbyGiOS6519EEAAgeQuQMCb3M8wx4cAAgh4LGDNfadvYHU0Zpmy5WXseN8CUxvWr5OGDXxvcJ3F+UbuuzNnpGjhfBH3KtQbD2fFkfQ14o4l0x11VNqMWfPM0VnzZ274YqvoqBwtupCZjt7xL843m7q4ygOVKpsQV+fh09G3GhZrKV2mrHz4kW+kmy7CpiNpYxXw6gJB1lyCumigBtP+JVTAW7defRk+crTZTb/yrKOFoykp7RqOJNiwfC9XwJsnT15ZsNj3QZbOwVupYrkEp9g5ejfYh17OHZo2byl9XvWN8NYFK8uVLm4/HCrg1Q1XrPZNc6OlYoUycvTI4Ssy4NW5d6252/We8NKLz9vHuWLVOsl6732i8xHrnNZduz1nHrvUAa+2oR8mfrpwqT1Xtn5opR9eWSWca9J5f/AP/yMNU8NpP9x7TaR98m8nkvuUl68LrP5cSQGvfth38MgJ8+0M63XPm6PHSq3adUx3dT7a8WMTfnMlkmvO2sdNwBvq3mXVFep11uatu+T2O+4wm+vf7ekfTgv30rO3j/Q1RsQNsiMCCCCQjAUIeJPxyeXQEEAAAa8FdGoEfeGvxVrYQ/994LBvfkMdmZX93rsTjeS44YYbzCgzq3R/vlvEc+CFeuNhtRFpX702i/f6Jk+dJg88UNkcRq0aD8n2bVvFOUJR56HV8+lf/APeDevX2nOSTpr4jr2K+KIlK8yUD9aI3b0HjsYs4LWuLT0Wnf7DCqGdxxYq4H3t9QGiK4prcTN6N6nrIyVew9GEWZcr4G34+JMycLBvWgb9xoKGuM5y7MQpM7/rDz/8IAXzhV58yNxPj5ww8/H6Tw/iJuC1RsBrPToyVqdAcRP2XI57k3MEr44u3rR5u2TIcKcZuajToOjfjIKFCsvc+b6v0vd65SVJe0vayxrwarufzJxrjxr2v6eFc03qlEWbt/kWy9NRmtaIav050jA1nPbDPaeR9snZTqT3KS9fF1j9uZICXp3WSKce0DJpwngzT272HDlk6bLV5ndHjx6RiuVLBzxlkZxzN8/5UPcuqzOhXmcdPva1+UAkqam53F6Lkb7GcFs/2yGAAAIpSYCANyWdbY4VAQQQiFLgpZ69pHXb9qYW58iqCZPelSpVH0z0e2dzny363MzBZhUNIXZs3yabN38ha1avMl/L1TfEoUqoNx7W/tH0NVQfUtLjVvDknDJB5xbVaQg0xAo0lYL6+Ae8Olpv6/Y9ovOOanCaK3sWuS9bNvvNrrWqvJuAV+vXYCipoteSfthglVBBmfMrxjoiWUcmByqhAl5nUPREw0dl3do1EV8uKfEadi5IFO45vhwBr06JsGX7HntBQP/FkpyLBTk/BAt1ETinB8ly953mK/5aQl23ztFvupiafu3b//nn5vly7OgRqfxA+VDdDPtx/4D3sYZPyKAhvnm7335rlPTv11dmz1sghQsXMV/11tH9Xbo+e9kD3mef7y4dO3U1/fKfHzXcsM36wFPr0jmRdW5kLZGGqdE8J0KdMGef9Jr73//+l+Qun3w8XV547j8JtonmPuXV6wKrQ1dSwGt9eKl9K1oon70Yo3P0q/P3TlTnOddvggQrI0YMlckT30n0nA80dUyoe5ezjaReZzk/xNBpV3RxwmhKpK8xommTfRFAAIHkKkDAm1zPLMeFAAIIXAIBK4TQ8Oy+LHfZgWyhwkXMYkFaDh08EDAo0K/0f7ZwqQn4AhV9c3nmzGmZOeNjGTVyeKKFuKx93Aa80fT1EtDFZZXO+fo+/OD9BG/sQ01nECjgdYaoI0cMlRIlSkmp0mXMqEVdoE+vAbcBrxtQ56JlzqBMQ7mzZ7+Tm2++RbJkzSq1ateVQoV8ga72oVmTp2T5sqUBmwgV8FojFHVnDbGd84y66bNzm5R4DQdacT4pN+c59jrg1YD2xe7PmZFqGtzmL1BQHn+ikaRKlcp0aeuWzVKn1sMJulezVm17pPqyZUulWeNGrk67M+h6+MHKsnu3bxRoUgFvi1ZtzAJ91iJhU9+dLD17vGD2C7TIYVId0fmvixXJ76qv4WzkH/DqvtYUFhpIV6tSUVat2WCqHDZkkAwfNjgmAa/zb5gutla+zD8LpoUb8FrTFegxPf1kQ1m1aoU5Pi8CXjf2gRZrDLafs09u6l68aIG0auH7hoJVorlPefW6wOrLlRLw6rzqep3rh6D+IahzQU+djqTXyz0S0bu9Dzr3dz7nI7l3OTuR1OusR2rUlDFv+0Ll1UAJ4OgAACAASURBVKtWylNPPubm0gm4TTSvMSJulB0RQACBZCxAwJuMTy6HhgACCHgp4PxqYaDRIdabdg3IChXILT98/32i5nUEySu9+0rNmrXt+dsC9VHf+Dd+6nHZuGF9oofdBLxe9NVLu3itS+elzJfPF/r4z0vpnDc0UJAVKODVeqwQTufi1eBM3wCPGT1SBvT3zUHqJuDVDxg+ne+bFzhY0dGfXTr5RptrcQZlwfbR+T8bPdHADtcCbRcq4HVO86Bfz3YzKj1QOyn1GraCjUjOsdcBb7DrRO9xb415075mnds5v5a9cMGnoh8muCnzFyyR/PkLmE0fq1/Hvvc5r9uffvrJXE/61XYr1LXq/vrrk1KmZFG7KefzT6eK0CAmqaKB0Ijhvq+Te1kCBbzt2neU7j16mmb0K9666JQ1ql+PLxYjeO+5J7OsXrfJ9Ml/8chwA96Fi5dL7jy+ubedczBHG/BG8pwIdS6dfdJrYN++fUnusuCzeQnuvV7cp7x4XWB1+koJeJ0jwq1vp1h9dI6A1b85+nrJv1jXnN5rrA97Ap2YcW+PljmzZ5mH3Hyok9S9y1l/Uq+znPe4JYsXSsvmTUJdZkEfj+Y1RsSNsiMCCCCQjAUIeJPxyeXQEEAAAS8FRo0ZJzo6TcuwoYNkxXLfIkNWebHHy2Y0ppaxb42W1/u9mmTz+makfPkKUrJUGSlcpKhkz54jQWihb/x1ETf/r2m7CXi97quXjvFSl4ZIGrZqAKvB0tONGiboui4co9MRaNH5NJ3TIfi/2XQuqNTlP89K1//4FlCy9rXm4tSf3QS81le5w7F0E/DqYlm6aFZSJVTA6xyJWbtmddm2dUs43bS3TanXcLhhmhPXCnjdXB/WqEP9oCFb1kx2NW5Cki+/2CSP1q0Z8Lzqgl2LlvpGbO7atVMeeaiKq/PvnEfXOfI71HWrgY0+v15+qbs9rYP/8y/QB3KuOuXBRoECXr2n7Nl/xMy1bRVrjlL9ORYBr/PbBTt37pAa1avafQv3mnQuslehXCk5fuyoqSvagNfNdR3uKYu0T1Y7Xt+nIn1dYPXnSgl4N365Te68M6Ppln5g4z+f++R3p9nTvDhH7FvHEe415/+cD3YdJHXvcu6T1OssZ6gf7Btbbq7DaF9juGmDbRBAAIGUJkDAm9LOOMeLAAIIRChgBW9udo/k6776pr/DM52l23MviI7o0dK5U3uZPXNGgibdBLyXuq9uDOJ9G52PUkchuS2dO7aT2bNm2psHG8Gr51YX3LNGIL7/3rvSo/s/ge/lCHirV6sk586dM319Z9K79shJDbLLlipqAu1gJVTAO+LNt6RO3Xpm96RWSQ/lmlKv4UiCDcvSmuM50AcO/t479xwU/Rq1/yJBzutWg76WzRqbXfPkzScTJ081H3hosaYT8K9XH9dF1rScPv2tFC/iG5UbqmjgqSNZ/fvuDHh1Pufff/9N9BsOBw8ekG1bt8rmLzeZebD9i5sFl0L1yYvHAwW8Wm+Pl16RNu06mCb0QzydosUKwWIR8I55e7w8UqOW6Y+OiOz0TFv78MO5JvX+duT4f811ouG7juK35lOONEwNp/1wz1mkfbLaudT3KbevC6z+XAkBb+YsWe1pR9ycj0ULP5PWLZsl2DSScx7tvcvZgVCvs6yFJHUtBV3YMZIS7WuMSNpkHwQQQCC5CxDwJvczzPEhgAACHghUqlxVJk15L6yaqlQqLwcPHAhrH9145uz5UrRYcbOf86v7VkWh3nhczr6GfXBxtMPaDV9Kpkz/LFIWquv+o96CBbxaT99+b0jjJs3M1831zaGGbP6BQaDF2yJ502vVG2wu0+uuu07Wbdgsd6RPbzY9ceIrM/+mFcr4H3eogLd5y9bSq3dfs1s4Izid7aTkaziac2wtaqTnThcqS6ocOnpSdBS6/9fxkwpGn27cVF57fYBd7TPtW8u8uXMSNWOFXtoPvZb0mkqqOBdK+/bbU1KiaEF781CLrAWr90oPePV5p6G2noOZn3wsXbs8Yx/K5Q54tS9fbNkpadOmNX3wH1EZzjWp8yK/0sv37ZW9e/bIQ9UesI8r0jA1nPZD3af9H4+0T1rP5bxPhXpdYB3XlRDwDhs+SurVb+D6VDgXR7R2iuSce3HvstoP9TrL+oBMt6/5cDXZsWO76+O1Noz2NUbYDbIDAgggkAIECHhTwEnmEBFAAIFoBfSr+MVL+FZK7tKpg1k0JFBp+PiTZhEiLXPnzJaOHdqYf2tQeH2qVCG//q7bvjFwiOgcb1pef+1VGfv26ARNhXrjEW1fo7VKDvvrglL6lXEteq71nAcrH34004zG1TBLp1qwFhVLKuDV7e+vWElOffPfRG8ML8cI3sIF84hzZXL9Ku2qtRvtUcXr162Vxx/zjcL1L6ECXrXTN67WSE9dkEgXJgpVypQtJzpCU0tKvoYjCTYsWx1hW7lKNfOjc+5Tf3vnglr+0xeECkadAZJ+QFG7xkOJruGp70+XCvdXNM26mR5h+cq1cu99vlFw/iPak2vAq8eaN28+uSvT3bJ2zaoEH/Jc7oDXuWDkqVPfSMlihRJcMm6vSQ08naO827dtmWC+2kjDVLfth7rHBHo80j55cZ/y8nWBdWxXQsDrnGdep2cIVgYOGirZc+Q0D+tc3Tpnt1UiOede3Lus9kO9zpry3gdSsWIls7n//N/BjlcX2E1/R3rZt2+vWbQy2tcYkVzv7IMAAggkdwEC3uR+hjk+BBBAIEoBXQjr4JETZtoE/ep6/jzZg9Z4yy23yPZd+0245fzqs/VVPF2Mq2vnZwIuwKaV6lem127YbP6vpVTxwvLNN/9N0F5Sbzy86GuUXMli9wGDhtpBfe9ePUXnxwxWnKHa4IFvyJsjh5lNkwp4k0KKRcCr/SlStJgZPW4Fs855g539DRXw6rbOkOH8+fPStPGTARcM1G015NDR8Tly5pLMmTKYheeifb7F80UYSbBhHa9zhK2OzL2/XKlEc3jr+dVFsHLl9i1s5Lxm/a/bYOHsrDmfmutFi46+03Y0GLRKultvlS3bdttTzQSbzkG31xHB2m8teq3o/dU573hyDniDXaeXK+DVr9KPHPWWFCpU2HRFP6TSOZP9F7UKdU3qNaXnsFef18zzV0uguU4jDVNDtR/N8z3SPnlxn/LydYFlEOuAVz+o+2C6b1op/cDuiYaPBj099Rs0lCHDRprHt27ZLHVqPWxvG8k5DxXwauWh7l1WB0IFvPoabfO23aKj37VoON2uTcugi4rq9Fv/efZ5s12Hdq3Fi9cY0Vz37IsAAggkVwEC3uR6ZjkuBBBAwCOBps1bSp9X+5naPvl4unTr2inJmpetWCP3ZfOFwE0bN5Lly5aKc641HfW2evVK2fzFF+b/u3ftlCxZs0rtOvWkSdMWctNNNwV8w6MrT2vIvHT5atEgWeeqLFvKF7LoXJemPQ/66hFbXFdjLRKk50oXT/Nf6M55cM6vlzu/7n4pA15dGOvtt0YlaXzxwkUZPmywvY2boExHoA8c7AuotfR65SWZPPEd82+95q6/PpUJhEqXKWt+p6N8Dx86JD/88L25Hq2igY9+0KH7WGXpkkUyd84sWbVqpWS6K5OUr1BRSpQqJfff/4AdBGrAm9KvYSvYiOQcq/WGL7ZKxoz/Nuw6F3if3j1l1coVJngoXaac9OrT15565Pvvv5dC+XMluI7chCQabunoswwZfNNA6GjwUiUKJ1hIqXef16RZi1Z23foV5gnvjDWLU157zbVSuUpVaduugz1yVzfUhdLenTIpQX/cXLeBngjO49D74/QPpyX5fDl29Ki5v3tdgs3Bm1Q7SQW8bv4OaN3O4HL58s9l+edLJVWqGyTjv/8t6dOnl/wFCso992S2u6Hhbt9Xe8mE8WMTdc26JvU5/tqrveSqq6+W2267zSyipSMR9dstVtClO+s0Gw9UKJNgVLJ/n/TDgw0b1gVl0OtVPxjQfkX7nEjK2ukUqk9az+pVK82HVV7cp7x4XeB/bLEOeKd9+ImULVfedCupbxHo4/p3QqeK0fuJnu+c2TLbf0cuVcAb6t7l9vml/XdOR6Q/67RKusDumjWr5Kuvjku5cuXNIrpVqlaz78nz580xAa8XrzG8vldRHwIIIJAcBAh4k8NZ5BgQQACBSyjgDGwrVigjR48cTrI15xyEmzZukAaP1jaLpz3fvYfrXmogUa50cTswSZMmjXmTG6zUqvGQbN+2Vbzoq+tOJtMNnYHt1q1bpE7N6iGP1Hozqhtao64vZcAbskP/v4EGplZxG5T16fu6NG3Wwuym4Yq+SV+5crk45xz0b3/SxHek9ysvJfi1rjQ+cfJ7CUKkpPqtgWa2rJlS/DXsvJbcnGfnOdbtdWTtjFnz7NA8WB16bps3fVqWfb4kwSZuAl7dQYOQ1es2yY033mj237d3rzxY1Tctg1X69R8ojZ5qbI8KT6ovw4cOTvCBRLjXrX/dzuNw4xjJwphu6vUy4HX7d0D75QwuQ/VTg6nOHdubDyMDFbfXpF5Teq9o1rhRwJGM4fRJ+5HjvnvM30C37Vt9939OJHX84fZJp5vRaWe8+Fsb7euCQMcVy4BXA1v99oXOK62j8XXKolBFpziyPjDs17ePjBs7xuxyqQLepO5d4Ty/rON68aWXzXPNWhg31PFOnjRB5s2dbe7RWqJ5jRGqLR5HAAEEUqIAAW9KPOscMwIIIOBSQEclHTj8lQko3AYAus/+Q8fNC34rtNLmHqr+iDRr3tIsoKZvgAIVfVM0ZtRI+2v+1ja6urwuyBOs6CIfOq+bV311yZMsNxs7fqI5V1o6d2wns2fNDHmcw0eMlrqP1jfb6XQOOq2Djl7VUTpapr47WXr2eCFkPbqBNUXDDz/8IAXz+eYntEo0QYfzjXShArnl+3PngvZn+sezpFTpMuZxvYaLFckvq9ZsTDAi17mzdcyBKmzVpp107tJN9M1zoKKjP2fPmiFDhww0YU5Kv4ajOceWr47gnTB5qpnjNVA5eGC/CXd1lJl/cV631gdUwS6UAgUKypz5C+1wI9A3HDRwfnvcBEmfPkOioFcDQR313qxJo6ALUoZz3Tr76TwON088/VCteJECbjYNaxur//otgPuy3OVqX+fITr1v6P1Di5u/A9ZiT84PGv0b1dGSv/zyi5kTXoP1FSuWJdmvYNeknj+9P5w9+50s/OxTGTZ0kBnFGKwk1adA++i3J3TUsBfPCa/6pF+x79ihrWf3qWheFwQ6JueUJ82aPJXoAxxXF2CEG9WuU1dGjnrb7L1o4WfSumWzkDU5F6rT+1KVShXMPtY5//nnn81CpG5KtPeuV3q+GPJ1VqDF1PR+O37iFMmdO489RYmzv/oc2bVzhxmRrh+AePUaw40J2yCAAAIpTYCAN6WdcY4XAQQQuAIEdI5KfTOQPXsOue7662Xvnt1mBK6+maEgkBwF9EOSfPnymxGm+hXvE199JZs2rueav4QnWxfz0wXVihQpJtdcc43s2L5Ntm7dHDNzDYTLlqsgf174U9auXmU+lKIggIBPgNcF8X8l6DksWbK0ZM16r5mXfP++vbJnz+74PzCOAAEEEIgTAQLeODlRdBMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAXIODlmkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQSI4CzVq0kpat2gQ8tD//+EPO//abHD1yRMaPe0u2b9saFwSP1Kgpg4eONH39888/pWC+nHHRbzqJAAIIIIAAAgggEB8CBLzxcZ7oJQIIIIAAAgggkCIEhgwbKfUbNHR1rN+dOSONnmgg+/btdbV9rDZq0rS5vPpaf7v5zJkyxKortIsAAggggAACCCCQDAUIeJPhSeWQEEAAAQQQQACBeBUIJ+DVY9QRsQ8/VFkOHjhwxR4yAe8Ve2roGAIIIIAAAgggkCwECHiTxWnkIBBAAAEEEEAAgeQh4Ax49+zZLdWrVbIP7NbbbpNixUpI567dJF++/Pbvv/76pJQpWfSKBUiTJo0ULuzr32+//yZfbNp4xfaVjiGAAAIIIIAAAgjEnwABb/ydM3qMAAIIIIAAAggkW4GkAl7nQb837SMpX+F+86u///5bstx9Z1gmV199tfz1119h7ePc+Nprr5WLFy9GvL+bHaPto7MNL+ty03e2QQABBBBAAAEEELh8AgS8l8+alhBAAAEEEEAAAQRCCLgNeDNnySqr1mywa3usfh3ZuGF90Nrvvvseef2NQZIzVy657bbbRQNand7h7Nnv5POlS6RnjxdMUJxU0akWnm7cVO7JnEWuv/56s+n58+dl7ZpVcvzYMSlVpqz53eCBb8jyZUvtqnTk8dT3p5ufjx09Ih3atQ7aTMdOXaV2nbpyV6a75cYbbzQh9NnvvpMDB/bL8892lZMnTwTct2at2tK2fUfz2OxZM2T82LekS9dnRX9/9z2ZTX8vXLggp09/K71efkmWLF7ItYgAAggggAACCCCQTAQIeJPJieQwEEAAAQQQQACB5CDgNuDVgPbwsa/tQ27ZvEnQ0LJFqzbS8+XeoqNYg5VzZ8/K4w3ryf59+xJtcvPNN8vUaR9JoUKFXREPGzpIhg8dbG+rofLipSvNzz///LPky50tUT1p06WT6R/Nkly5cwdtQ0cMv/xSd5n2/tRE2/Tp+7o0bdbC/P7I4UNyU5o0kj598MXcxoweKQP693N1PGyEAAIIIIAAAgggcGULEPBe2eeH3iGAAAIIIIAAAilKwG3AW6x4CZkxa55tU7xIATM61b88372HdHims/3rX375RQ4e2C8//vSjZL4ns2S99z77sW+/PSUlihZMVMeK1esla9Z77d9bo2ov/u+ipEt3q6RKlSrBPpEEvFu37xEd6WsVDYK/PnlSbkl7i2TIcGeCcLpb107yyce+EcFWcQa8/gegI5U1EHcG3HoMRQrlle/PnUtR1xcHiwACCCCAAAIIJEcBAt7keFY5JgQQQAABBBBAIE4F3Aa8ny5cai+09uuvv0qenP8EsNaha2C6eesuO9ic+u5kMwLWORVD8RIl5YPpM+Rf//qX2e3VPq/IhPFjbT2dluHV1/rbP3++dLHoaGHn/L0lS5WWt8dOsAPacAPeZzp2kedeeNG0oX0bMmiAvDlymN1mxoz/ljnzF5igV4uGv/nzZE9wHP4Br9bz0fQPZPSokXL82FGzX+MmzcyxXHXVVeZn9dCpKSgIIIAAAggggAAC8S1AwBvf54/eI4AAAggggAACyUogVMCrc+kOGzFKNJi1yqAB/WXUm8MTOWhwW6ZsOfP7FSuWSZOnnghopXPVdu32nHlMR/dWqVTB3m7vgaNmLlwtq1etlKeefCxgHbPnfiaFixQ1j4Ub8B44/JU9p++HH7wvLzz3n0RtpE6dWnbsPmBG4moZPWqEDHzjdXs7Z8D73ZkzUrtm9YDz9c6a86kUKVrM7Ldp4wZp8GjtZHX9cDAIIIAAAggggEBKFCDgTYlnnWNGAAEEEEAAAQSuUAFnwKtzzn7zzX9NT1Ndn0pS33STHbZa3depCnTKgkBlz/4josGoloL5c8kP338fcDvdRrfV8uOPP0qBvDnMv9Pdeqts27HX/FtHxOr0DYGmgdDHIw14s+fIIUuXrTZt6KhgbVtH6AYqo8aMM4umadm1a6c88lAVezNnwLtq5Qp5ulHDgHXodBU6bYWWEye+knKli1+hVwLdQgABBBBAAAEEEHArQMDrVortEEAAAQQQQAABBC65gDPgTaqx8+fPS/OmT8n6dWsDbqbTEBw7ccp+7PjxY0n2PXPmLOZxDVmz3pPR/PuRGjVlzNvvmH/rXLWFCgRfAC3SgPexhk/IoCG+0cdnTp+WYkXyB+1nnXqPyoiRY8zjOkq3aOF89rZuA9669erL8JGjzX7B5hy+5CeZBhBAAAEEEEAAAQQ8FSDg9ZSTyhBAAAEEEEAAAQSiEfAPeJ1z3ToXCTt16hspXaJIgrlwne3mzZtPPlv0eURdyZwpg9nv5Vf6SMvWbc2//adu8K840oDXGczu27tXHqxaMWifncd04cIFyZY1k72t24C3UuWqMmnKe2Y/At6ILg92QgABBBBAAAEErjgBAt4r7pTQIQQQQAABBBBAIOUKJDUH7xsDh8gTTz5l42zdslnq1Ho4IFblKtVk4uSp9mMa0LopFy5elOrVKplNX3t9gDzduKn59949e+Shag8ErcI5t+2wIYNk+LDB9rY5c+WSxUtXmp91+oV8ubPZjw0fMVrqPlrf/Lx16xapU7N60DYyZ8kqq9ZsMI87RxrrzwS8bs4u2yCAAAIIIIAAAslTgIA3eZ5XjgoBBBBAAAEEEIhLgVCLrDmDVD3AYHPw+s+fm+XuO8P2aNq8pfR5tZ/ZT0cMlyxWKGgdkY7gbde+o3Tv0dPUe/LkCSlbyrcAWqDiHH3rHxQT8IZ9etkBAQQQQAABBBBINgIEvMnmVHIgCCCAAAIIIIBA/AuECnivvfZaWbdxs2TI8E9g+/prr8rYt33zyjrL4WNfi26vRUfl7tmzOyyg4iVKyicz55p9dMRsruxZ5I8//ghYR6QBb+kyZeXDj2aaOn///XfJmS1z0D7+59nnpXOXbubxo0ePSMXype1tCXjDOrVsjAACCCCAAAIIJCsBAt5kdTo5GAQQQAABBBBAIL4FQgW8enS3336HrN3wpaRKlco+2JbNm8iSxQsTHPwXW3ZI+vS++XSPHD4kD9xfNiTO9ddfb4e4N9xwg+w9cFR0wTYtE98ZJ316v5yojrvuyiSfLlgiOmpYy7Chg2T4UHdTNKROnVr27D9i1/n8s11l+ofTAvZz2469dhufL10szZs+bW9HwBvy1LIBAggggAACCCCQbAUIeJPtqeXAEEAAAQQQQACB+BNwE/DqURUoUFDmzF8o1sJrFy9elEceqiL79u21D7p+g4ai9Vll3tw50qVTe9Ft/Uv2HDlk2IjRcvPNN0uFsiXth9+ZOEWqVnvI/lmnhBg/9i05ceIrKV+hotSuU1eqP1zDDoHDDXh1+49nzJESJUuZNnTqhQerVJSvvz6ZoIsv9ewlrdu2N7/7+++/5f7ypeX4saP2NgS88Xet02MEEEAAAQQQQMArAQJerySpBwEEEEAAAQQQQCBqAbcBrzZUt159GT7yn6kZzp8/L2VLF5NzZ8/a/fh04VLJly+//bNus3zZUtmze7fcmPpGKV68pGTLll1uve02s40Gt+VKF7e3199v3rrLDpLdHGA4I3i1vjvvzCjrN22x27hw4YIZxauLyN122+1Su249yZs3n930ooWfSeuWzRJ0hYDXzZlhGwQQQAABBBBAIHkKEPAmz/PKUSGAAAIIIIAAAnEpEE7AqwfoHNmqP3/77SkpU7KoPUpXp3P4ZOYcyXrvfa48/ANe3UlHC3/w0Uy56aabAtahbeqoYJ2qQUu/vn1k3Ngx9rY5c+WSxUtXmp/9F0ezNmrWopX06t03wUjgQI3p3Ls1H65m6nEWAl5Xp5eNEEAAAQQQQACBZClAwJssTysHhQACCCCAAAIIxKfAwMHDpOHjT5rO79q100y7EKq8N+0jKV/hfnuz1atWylNPPpZgtycbPS09evaSNGnSBKxOR/auXrVCRo0cLjt2bE+0je7XsVNX0YXXsmTJKj/+9KMcPnRQVq5YLu9OmSRLl62S7Dlymv0aPdFA1qxeqFgrPQAAC0RJREFUZddxX7bssmzFGvPzjz/+KAXy5gjYB50m4oMPZ8gd6dMnelynZZg8aYL0fuWlgPu+/Eofadm6rXls2bKl0qxxo4DbVahQUaZOm24e++ab/0qp4oVD8fI4AggggAACCCCAwBUuQMB7hZ8guocAAggggAACCCDgncB1110nBQsVlkKFi8hVcpUcOnRQdmzfJt99dyaqRnbsPiC33HKLqSN/nuzy008/RVxf2nTp5P77K0q+fAVMILxq5fKAoXPEDbAjAggggAACCCCAQLISIOBNVqeTg0EAAQQQQAABBBC43AI1a9WWUWPGmWZ1/txsWX1TNVAQQAABBBBAAAEEELgcAgS8l0OZNhBAAAEEEEAAAQTiVmDF6vVy9rvvZPasGbJhwzo5dPCg6JQJujhaq9ZtpUWrNvbcuVPfnSw9e7wQt8dKxxFAAAEEEEAAAQTiT4CAN/7OGT1GAAEEEEAAAQQQuIwC+w8dl1SpUiVoUQPeq666KsHvdB7fvLnuk7/++usy9o6mEEAAAQQQQAABBFK6AAFvSr8COH4EEEAAAQQQQACBJAUCBbz+O+zbu1daNHtaTp48gSYCCCCAAAIIIIAAApdVgID3snLTGAIIIIAAAggggEC8CTxQqYo8VP1hKVCwkFlI7cYbU8vFCxfk1Len5Mjhw7Lgs/nmPwoCCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBP4PEDnN3qu3FrEAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/markdown": [
+       "AI-generated follow-up questions:\n",
+       "\n",
+       "* - What are the total sales for each customer in the Asia region?\n",
+       "* - How many orders does each customer in the Americas region have?\n",
+       "* - Who are the top 5 customers with the highest total sales?\n",
+       "* - What is the total revenue for each customer in the Europe region?\n",
+       "* - Can you provide a breakdown of the number of customers in each country?\n",
+       "* - Which customers in the United States have the highest total sales?\n",
+       "* - What are the total sales for each customer in the Asia region?\n",
+       "* - What are the top 10 customers with the highest returned parts gross value in Africa?\n",
+       "* - What are the top 3 customers with the highest total sales overall?\n",
+       "* - Can you provide a list of the first 10 customers in the database?\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Markdown object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vn.ask(\"Who are the top 2 biggest customers in each region?\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Run as a Web App\n",
+    "If you would like to use this functionality in a web app, you can deploy the Vanna Streamlit app and use your own secrets. See [this repo](https://github.com/vanna-ai/vanna-streamlit)."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.2"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/mkdocs.yml b/mkdocs.yml
deleted file mode 100644
index 6efd4f30..00000000
--- a/mkdocs.yml
+++ /dev/null
@@ -1,40 +0,0 @@
-site_name: Vanna.AI Documentation
-nav:
-  - Intro:
-    - What is Vanna.AI?: index.md
-  - Use in Notebooks:
-    - Training Vanna: notebooks/vn-train.md
-    - Asking Questions: notebooks/vn-ask.md
-  - Other Ways to Use Vanna:
-    - Use with Streamlit: streamlit.md
-  - Databases:
-    - Use with your Database: databases.md
-  - Advanced:
-    - Code Reference: reference.md
-  - Support: support.md
-repo_url: https://github.com/vanna-ai/vanna-py
-theme:
-  icon:
-    repo: fontawesome/brands/github
-  logo: https://ask.vanna.ai/static/img/vanna.svg
-  favicon: https://vanna.ai/favicon.ico
-  name: material
-  palette:
-    scheme: slate
-  features:
-    - navigation.sections
-extra_css:
-  - stylesheets/extra.css
-extra:
-  homepage: https://vanna.ai
-markdown_extensions:
-  - pymdownx.superfences:
-      custom_fences:
-        - name: mermaid
-          class: mermaid
-          format: !!python/name:pymdownx.superfences.fence_code_format
-plugins:
-  - search
-  - mkdocstrings
-copyright: >
-  Copyright &copy; 2023 Vanna.AI
\ No newline at end of file

From f07bf2c34939b2cd9e8a6e802cf81905016968c6 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:24:55 -0400
Subject: [PATCH 02/14] theme

---
 .github/workflows/ci.yml         |   6 +-
 docs/sidebar.py                  |  43 ++++++----
 nb-theme/conf.json               |  12 +++
 nb-theme/index.html.j2           | 134 +++++++++++++++++++++++++++++++
 nb-theme/static/custom_theme.css |   3 +
 5 files changed, 181 insertions(+), 17 deletions(-)
 create mode 100644 nb-theme/conf.json
 create mode 100644 nb-theme/index.html.j2
 create mode 100644 nb-theme/static/custom_theme.css

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index ac2e4136..17ef0683 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -21,7 +21,7 @@ jobs:
           path: .cache
           restore-keys: |
             vanna-docs-
-      - run: pip install mkdocs-material 
-      - run: pip install mkdocstrings[python]
+      - run: pip install PyYAML
+      - run: pip install nbconvert
       - run: pip install .
-      - run: mkdocs gh-deploy --force
+      - run: python docs/sidebar.py docs/sidebar.yaml docs
diff --git a/docs/sidebar.py b/docs/sidebar.py
index ed6782cc..7d844860 100644
--- a/docs/sidebar.py
+++ b/docs/sidebar.py
@@ -1,4 +1,14 @@
 import yaml
+import sys
+import nbformat
+from nbconvert import HTMLExporter
+
+# Get the yaml file path from the command line
+file_path = sys.argv[1]
+
+# Get the directory to search for the .ipynb files from the command line
+notebook_dir = sys.argv[2]
+
 
 def generate_html(sidebar_data, current_path: str):
     html = '<ul class="space-y-2">\n'
@@ -35,28 +45,33 @@ def read_yaml_file(file_path):
         yaml_data = file.read()
     return yaml_data
 
-file_path = 'sidebar.yaml'  # Replace this with the actual path to your YAML file
-
 yaml_data = read_yaml_file(file_path)
 
 # Parse YAML data
 sidebar_data = yaml.safe_load(yaml_data)
 
-# Generate HTML code
-html_code = generate_html(sidebar_data, 'vn-ask.html')
-print(html_code)
+# Get a list of all .ipynb files in the directory
+import os
+notebook_files = [file for file in os.listdir(notebook_dir) if file.endswith('.ipynb')]
 
-import nbformat
+for notebook_file in notebook_files:
+    # Get just the file name without the extension
+    notebook_name = os.path.splitext(notebook_file)[0]
 
-# Read notebook file
-current_notebook = nbformat.read('vn-ask.ipynb', as_version=4)
+    # Get the full path to the notebook
+    notebook_file_path = os.path.join(notebook_dir, notebook_file)
 
-from nbconvert import HTMLExporter
-html_exporter = HTMLExporter(template_name='blog')
+    # Generate HTML code
+    html_code = generate_html(sidebar_data, f'{notebook_name}.html')
+
+    # Read notebook file
+    current_notebook = nbformat.read(notebook_file_path, as_version=4)
+
+    html_exporter = HTMLExporter(template_name='nb-theme')
 
-(body, resources) = html_exporter.from_notebook_node(current_notebook)
+    (body, resources) = html_exporter.from_notebook_node(current_notebook)
 
-# Write body to file
-with open('vn-ask.html', 'w') as file:
-    file.write(body.replace('<!-- NAV HERE -->', html_code))
+    # Write body to file
+    with open(f'{notebook_name}.html', 'w') as file:
+        file.write(body.replace('<!-- NAV HERE -->', html_code))
 
diff --git a/nb-theme/conf.json b/nb-theme/conf.json
new file mode 100644
index 00000000..68fdf836
--- /dev/null
+++ b/nb-theme/conf.json
@@ -0,0 +1,12 @@
+{
+    "base_template": "lab",
+    "mimetypes": {
+        "text/html": true
+    },
+    "preprocessors": {
+        "100-pygments": {
+            "type": "nbconvert.preprocessors.CSSHTMLHeaderPreprocessor",
+            "enabled": true
+        }
+    }
+}
diff --git a/nb-theme/index.html.j2 b/nb-theme/index.html.j2
new file mode 100644
index 00000000..432cf76c
--- /dev/null
+++ b/nb-theme/index.html.j2
@@ -0,0 +1,134 @@
+{%- extends 'lab/base.html.j2' -%}
+{% from 'mathjax.html.j2' import mathjax %}
+{% from 'jupyter_widgets.html.j2' import jupyter_widgets %}
+
+{%- block header -%}
+<!DOCTYPE html>
+<html>
+<head>
+{%- block html_head -%}
+<meta charset="utf-8" />
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+<meta http-equiv="X-UA-Compatible" content="chrome=1" />
+<meta name="apple-mobile-web-app-capable" content="yes" />
+<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
+<meta name="theme-color" content="#000000" />
+<meta name="author" content="{{nb.metadata.get('author', '')}}">
+<meta
+  name="description"
+  content="{{nb.metadata.get('description', '')}}"
+/>
+{% if "google-analytics-id" in nb.metadata %}
+{% set ga_id = nb.metadata.get('google-analytics-id', '') %}
+<script async src="https://www.googletagmanager.com/gtag/js?id={{ga_id}}">
+</script>
+<script>
+  window.dataLayer = window.dataLayer || [];
+  function gtag(){dataLayer.push(arguments);}
+  gtag("js", new Date());
+
+  gtag("config", "{{ga_id}}");
+</script>
+{% endif %}
+{% set nb_title = nb.metadata.get('title', '') or resources['metadata']['name'] %}
+<title>{{nb_title}}</title>
+<script src="https://cdn.tailwindcss.com"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/flowbite/1.8.0/flowbite.min.js"></script>
+
+{%- block html_head_js -%}
+{%- block html_head_js_requirejs -%}
+<script src="{{ resources.require_js_url }}"></script>
+{%- endblock html_head_js_requirejs -%}
+{%- endblock html_head_js -%}
+
+{% block jupyter_widgets %}
+  {%- if "widgets" in nb.metadata -%}
+    {{ jupyter_widgets(resources.jupyter_widgets_base_url, resources.html_manager_semver_range) }}
+  {%- endif -%}
+{% endblock jupyter_widgets %}
+
+{% block extra_css %}
+{% endblock extra_css %}
+
+{% for css in resources.inlining.css -%}
+  <style type="text/css">
+    {{ css }}
+  </style>
+{% endfor %}
+
+{% block notebook_css %}
+{{ resources.include_css("static/index.css") }}
+{% if resources.theme == 'dark' %}
+    {{ resources.include_css("static/theme-dark.css") }}
+{% else %}
+    {{ resources.include_css("static/theme-light.css") }}
+{% endif %}
+<style type="text/css">
+a.anchor-link {
+   display: none;
+}
+.highlight  {
+    margin: 0.4em;
+}
+
+/* Input area styling */
+.jp-InputArea {
+    overflow: hidden;
+}
+
+.jp-InputArea-editor {
+    overflow: hidden;
+}
+
+@media print {
+  body {
+    margin: 0;
+  }
+}
+</style>
+
+{{ resources.include_css("static/custom_theme.css") }}
+{% endblock notebook_css %}
+
+{{ mathjax() }}
+
+{%- block html_head_css -%}
+{%- endblock html_head_css -%}
+
+{%- endblock html_head -%}
+</head>
+{%- endblock header -%}
+
+{%- block body_header -%}
+{% if resources.theme == 'dark' %}
+<body class="jp-Notebook" data-jp-theme-light="false" data-jp-theme-name="JupyterLab Dark">
+{% else %}
+<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light">
+{% endif %}
+<button data-drawer-target="default-sidebar" data-drawer-toggle="default-sidebar" aria-controls="default-sidebar" type="button" class="inline-flex items-center p-2 mt-2 ml-3 text-sm text-gray-500 rounded-lg sm:hidden hover:bg-gray-100 focus:outline-none focus:ring-2 focus:ring-gray-200 dark:text-gray-400 dark:hover:bg-gray-700 dark:focus:ring-gray-600">
+   <span class="sr-only">Open sidebar</span>
+   <svg class="w-6 h-6" aria-hidden="true" fill="currentColor" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg">
+      <path clip-rule="evenodd" fill-rule="evenodd" d="M2 4.75A.75.75 0 012.75 4h14.5a.75.75 0 010 1.5H2.75A.75.75 0 012 4.75zm0 10.5a.75.75 0 01.75-.75h7.5a.75.75 0 010 1.5h-7.5a.75.75 0 01-.75-.75zM2 10a.75.75 0 01.75-.75h14.5a.75.75 0 010 1.5H2.75A.75.75 0 012 10z"></path>
+   </svg>
+</button>
+
+<aside id="default-sidebar" class="fixed top-0 left-0 z-40 w-64 h-screen transition-transform -translate-x-full sm:translate-x-0" aria-label="Sidenav">
+  <div class="overflow-y-auto py-5 px-3 h-full bg-white border-r border-gray-200 dark:bg-gray-800 dark:border-gray-700">
+    <img src="https://img.vanna.ai/vanna-navbar.svg" class="h-6 mr-3 mb-3 sm:h-7" alt="Vanna AI Logo">
+    <!-- NAV HERE -->
+  </div>
+</aside>
+<div class="p-4 sm:ml-64 max-w-screen-xl">
+{%- endblock body_header -%}
+
+
+{% block body_footer %}
+</div>
+</body>
+{% endblock body_footer %}
+
+{% block footer %}
+{% block footer_js %}
+{% endblock footer_js %}
+</html>
+{% endblock footer %}
diff --git a/nb-theme/static/custom_theme.css b/nb-theme/static/custom_theme.css
new file mode 100644
index 00000000..73b192a6
--- /dev/null
+++ b/nb-theme/static/custom_theme.css
@@ -0,0 +1,3 @@
+.jp-InputPrompt {
+  font-size: 0.7rem;
+}

From ab8aef6e815e3dbbeeca4dcf23e5c5f9445dbf57 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:29:08 -0400
Subject: [PATCH 03/14] ghp-import

---
 .github/workflows/ci.yml | 2 ++
 docs/sidebar.py          | 2 +-
 2 files changed, 3 insertions(+), 1 deletion(-)

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 17ef0683..256b13d2 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -23,5 +23,7 @@ jobs:
             vanna-docs-
       - run: pip install PyYAML
       - run: pip install nbconvert
+      - run: pip install ghp-import
       - run: pip install .
       - run: python docs/sidebar.py docs/sidebar.yaml docs
+      - run: ghp-import -n -p -f docs
diff --git a/docs/sidebar.py b/docs/sidebar.py
index 7d844860..367d962e 100644
--- a/docs/sidebar.py
+++ b/docs/sidebar.py
@@ -72,6 +72,6 @@ def read_yaml_file(file_path):
     (body, resources) = html_exporter.from_notebook_node(current_notebook)
 
     # Write body to file
-    with open(f'{notebook_name}.html', 'w') as file:
+    with open(os.path.join(notebook_dir, f'{notebook_name}.html'), 'w') as file:
         file.write(body.replace('<!-- NAV HERE -->', html_code))
 

From 661245ded0602b44a7b39980eb853bf2f810ea3f Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:29:57 -0400
Subject: [PATCH 04/14] update-docs-3

---
 .github/workflows/ci.yml | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 256b13d2..a89faf94 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -3,7 +3,7 @@ on:
   push:
     branches:
       - main
-      - update-docs-2
+      - update-docs-3
 permissions:
   contents: write
 jobs:

From 2a7162458ef633d5f274e8109c85ee901caeb4d1 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:42:36 -0400
Subject: [PATCH 05/14] add pdoc

---
 .github/workflows/ci.yml | 2 ++
 pyproject.toml           | 2 +-
 2 files changed, 3 insertions(+), 1 deletion(-)

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index a89faf94..3e74dd75 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -24,6 +24,8 @@ jobs:
       - run: pip install PyYAML
       - run: pip install nbconvert
       - run: pip install ghp-import
+      - run: pip install pdoc
       - run: pip install .
+      - run: pdoc vanna --logo https://img.vanna.ai/vanna-ref.svg --logo-link https://docs.vanna.ai --no-show-source --mermaid --docformat google -n -o docs
       - run: python docs/sidebar.py docs/sidebar.yaml docs
       - run: ghp-import -n -p -f docs
diff --git a/pyproject.toml b/pyproject.toml
index 47c8c94e..ce5084e2 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -13,7 +13,7 @@ classifiers = [
     "Operating System :: OS Independent",
 ]
 dependencies = [
-    "requests", "tabulate", "plotly", "kaleido", "pandas"
+    "requests", "tabulate", "plotly", "pandas", "sqlparse", "kaleido"
 ]
 
 [project.urls]

From 0cf3e7cfb304833e96ff0273fe3305de3d8dee22 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:47:31 -0400
Subject: [PATCH 06/14] cleanup

---
 docs/chart.png    | Bin 157325 -> 0 bytes
 docs/index.html   |   7 -
 docs/search.js    |  46 ---
 docs/sidebar.yaml |   2 +-
 docs/slides.html  |  63 ----
 docs/vanna.html   | 786 ----------------------------------------------
 6 files changed, 1 insertion(+), 903 deletions(-)
 delete mode 100644 docs/chart.png
 delete mode 100644 docs/index.html
 delete mode 100644 docs/search.js
 delete mode 100644 docs/slides.html
 delete mode 100644 docs/vanna.html

diff --git a/docs/chart.png b/docs/chart.png
deleted file mode 100644
index 1ebe3f61c57c2f103b3e993df62bb2928c3fb7ec..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 157325
zcmeEuXIK;48ZJl&=_=BTA}UpoUImmUprG_79YP5mLK6_M(4<NiY0^UP1c*qJ-V%C|
zP6(Y)Lb>DF=bU}cao?Z!&wX~DC&^@H&CFWg`pWyg->kfQrlCYm%0P;PgF~*Otf+;9
zLjc9W!E+)e1om7QW`yG4T$Qy`P<W=IpuqOb)!Ew4!3qaQ`CWo8k)C$<jSNFA_9~n!
zTJp}p%H(XEZ*Iszs2$$imb=S-2miWc!`J!A_A4UpFBQx2%#}8I-jid^A3fHmBlBEV
zCtYhO^>c1^-a0$V6uK05+v<gR;S5T_uYcHo#*4G}I5hUSjICpB^daH;J+>=?gM@9b
z?<H|vuQa#F#^J$3&-FAi;(V;tO<yv&+`KG(oXQ`wha+ds-aoJAb3(<6gH!tR9cL&G
z)pFBvj(j;&8>u^|fZW^F9+yNK-ENmKn(gP~w>v7?op4_l_b;nf;0)GX^?5?gPiAj>
zAiv4+lk72$tsom_V1R#KA&sJ(xr$nW2Wew{_BrlQv@hb3I-e+rihK3T-6gZE7ipd8
zdx3e2fk|gl6R#;5^~NeW7k2l=+nQ#2dEdrcc)ayhq#t@fg_1ja)TKMF5TR9RwV<Nv
zJNk*ssx1xI|E=-y^t|%hNOp?r%a4@`jw7DFx=UnUCqLNzO<sfJJ0aBoow5SW3lT<6
zg5CS3w*Gl<`m}ae>u5qv>r1f})3*~<FFk5rXAgHid|yec&6X$c@bdQ4s4zV|a~nG+
z`J5ltmM$Wakk%(0ACfwq30#`wuHDEP?R+oDnYDW#Tj96f>Q^2)A+J$Iy3O6IaaDJP
z2(;jGeYdUNEQx?aXZUrLoP>nE8K2)H@LSidaiO5Q_a5c$KQg*`t(575cDqmcecx&M
z7`i*FylkFHH#om`{Ok?|Ke~Uo`_$!?!xuq~Cb4iv>Y@lD(<@(a81eB4W8f*cq;eEg
zHHQxmS|zPC@6KN#>AG@dKF6H!NzPq};!X<Adw3=l$!mA8QOp-zocC;(9x*RX(&h5L
z)G9yVppyy`V^s{6^5)l$pdp8-5k|A$It%yWE0((H%u>8}5ja3uHb;NM^2>_|ht^vP
zZmqF5<*(ieqg8l^siWSC#{PW1!$4fb-Txg%w6Z&svGZn7!&|vdW9{~I3LDSIvun$D
z2T2YUUe<RVKcK54A3bOd0n2`+NO19=CKg-R8l)tne4Qc9)}zzTJ3zX~g>LDa56{o4
z$gX?#><5)9Tl?1PM+OQ8mXP~<Mwg#ht%~VGPOK?0XPcSl3Ye3!$g>HW)M#{Pzd2X=
z{y23pu0YwM-Yvv?=7dG~*r8r|17TA;Hy}TWZ-K{*-W7XKRgLY98;qOpVo3?&mbYzN
z`KUBM5?5A`(eoTXrV<e2$k-PMEBa8xh_ko-Vejzpj>hhc+<{?>o7)9W>$Z1b;N`-$
z(RUXd3<Qo2T$8lve3MBbjMLBjv-|dARf;52;vL>B60a0?0fNL<ivG^)-d9Yih~?$*
z-{QVwyB-lfWYgxsha1=WP=GN$*tHD57#{>DETeZIYHXDm#EE(xH-EK`m@fo1Phli&
zJWsGju-$5d|45mbJnL52TYB?IF%Bp(?XHr1%-!28DvyUh@+iLPim~fr%3;zED}F4(
zF5G3ZMCD2&9$j^-Hik%9bdTZWjrmuJ!Vf8*Mb^Oa?<xkBA5t@iTW8S@nY;5f5F1D8
zWJ?Y~4sJuJVNsr6_y=XKn%RGnv5pdd^)w=~-ONt!&K<b5nUx-aPUP4t^&N53c8PM9
z&08AZ*TwL>g1N<*G{5;AEBX;OQ<;8n?nLe0IJ<v=v)$f8ZHsRad<!1l${umYlKKv{
zD#`UXC2vCBjDYz)sAs9)Df)lm9U|Lme_>AHa^HpBh1o@P7r#9H`0cn7$H%KGQMYBa
zuD(;de>))-5#t#f6$g!JP-gA2w-l=27LQMRa^s^~*YzdlC5t8QrTnFVYrOA;+rw!T
z7PRx8-O#RimU1`gu5tXp3&%p<vFH@#zO4Q{XddFZruMeh+}DBv{jWYn?FA%b)&(Ux
zQ`w#x=%7g@4`vS{kD60GkK|L1L&puSQRjk|tRY*GDmep&l9-yeItr4H8#S??A0fer
zdD|UfYx@`WqadRp?*f&fDukt76p{x~JUCtIqf)8#;fqyvJL0E(-(caWM9x^&SiU-v
zC5t&by%hG$Hyq=Gwvo8a%$QEa+}v-J-Y1do&NB3%fiqowb!c_4c2IMq(fwURO#{;m
z(~Rqkaf4$63?c#9f^<XT4(}gEZFp>0oQj+>olBj!pJET3*8&;L1>XoO3RuEp8rXHi
znnZ8fQ`xc!+!Y#k1kcRJv9}3)7eImwUWF`3-<s}%-|e@J9fD+!JdsxL2tTD*Cg){r
za9(q?7#)X;&3YH^S}*D>%Ft@Z3DA~zGsJ1%k<L5K3(6DE<9-^Q?3p^$ch>jDn!7hD
zRoZ6lfnJ1Ehy4?>Y~=K~)U=Uxb9YnUS!HO+<JiaV+MPc5CcaS1v&vg0?Xm7L;T9@-
zt}{|>U*cq_U7U=VKok`Z7_`)uSF4mK+l-j)_aa&oEestDLB7Z+YdSO0A?V~*iu6#1
zT_&id|DpnKV}2n9{cIiFP3>{ueoX@E=D_;o=8E*whs6-R@VExro`S9d#ClL=vs=8|
zJGYSio&}w@kuZMd0MBDlI?5!eBwjwRCu<RJZ$20NV)q@SOQf3t%0&r_rWk&mdRqIW
zR(C6E>&nsLmZ<a^OSaUC&qH6o!-KteZ-kGhuf9*N?@J#K0gvSJ-q2pRS^RCb?c`ad
zCfQT((`%=j`zJlfZc(IH_;%&Tnp*_7Y9suXY!*5Xr<RcG13Q{Wb8B<-W-P7bUn#tA
z+R}GXPBR?GTMhhpg|>uUbtQ?#XTAy<z`WA5$t3OwZVT=So|1Q$kCjJ+O;c7A_mP&6
zqsjM)QyDxt(x_PIn;$lXSbSS>u@{3;n^2G3GT<1yMazMFA`{{IHdawMQeNqCgn`V4
zQ<X>6-3E5T?_l%9&gl=;k?A*m#iDM~G3wGE-40MZt2(YEIe0@tB1tpLNyy2k(G+Ky
zbX(0{1M!q4)hO;vhEvQ+Uv+hDAv-_1`ICM8{ilvkZ{>34JF24?X$7s9KS9e`EYvz@
zZ`w#Y?bYosMs}=5%1S(PyW;ij!d)JsdKz`WKYi0lxRyU8?s>vckHx;uuE`GG3HR~L
z6<N3-eB^0MuT}Cu#aTt7jfV}9rLN@>@x-_4Z@S_O;*74ds~t;DJ?H_o?x}Rme$4^d
z+r!k$?+r+wlHH-J`oP?t`?LR@46UxlW`d$>jVkrJn4Luy-`Pj!go*BekJ5Md_zQVX
z1@8F_Uvy8#J&rTX7kjENux#gIyX&mIThLU{H`1Hmmw_>p0G;O1cSS_d_X+XZ^rue<
zb2}g~6QdLLm4W;&_w;r4JT-o#<<;MDv+46cP#fp3&Sl7r9ggy8-WTcZTqRqr<pmp-
zS;K1u113UUllI>4@ss(G@t;ZjM2@v!_<tCU){MLDo^pQY{K6@kNXRqO{M1)}w?e5$
ziMP}guJ^p=C;A5o_keDlu7loVV@|`ddI@`vMTR0_HH4pjDhva$dbYfEf3c9@<u-B`
zX{^s$*X$J19kxfFDMBhbJAJLDpm{Q{!Cc72ZD@tdFt#@BJo3b_Pba%%*|5cl))6($
z(gMrvD9W=A-;HXowk;{H@m(EHPx2zzwl8)ooT@Sm^g3ZFQ>s}#nLU7sVjgdSW(THC
zy;@J@#vYx*D<C-ms{YOjo(eV=_7>Qzw+emg&FVyylB~0y-_MknpTn|0L_d%2lSTwK
z9edA_?7qv0)8}Fp*0gPQvp*;R@w)Ij=HJrHl%$2MjOrsM7FW;unZ>u=E(Qr!Lc=~}
z(4h>a4Ja?RcCm1gftph_lOzUyUsET0)`@^k)z*YK-H_6Z`i^?fUC6;9hEYY-$uk1I
z*3{i{vZ*s$qFejHDX>`x#kb%zAzk8o{U~x<_wv<c=a$Ame>P<>Yn9AXZ|_y=?V%5y
z!=0uLD>7Nq1>W|Us+D9^<*k{lnWW5UpV>qCv!8C7>zR{*I<P8VpZU_(76V_UBTrat
z(?%d{CvqXx(RpT0<ft7p6PR?lwU4c!3}dYcv<#5K-di3S8Hj6+X)eC7zpP$2T&it6
zKRG`)hrTH~zTRr~SV#!h8%B;}a39CrTP8c|dB){6g6A3f*NM-#iluJdf6s;Ev2!U6
zCAye#$0@TRlL~m`-&c<FeHcgifbeVTlo_*F(Y^kJJ^44QuOo*{h4zG6Tkic3TBUTk
zoW4?DD0y6ePB+!*=TiI;#}CLT-dpLZSgWh!+y}Oaaqw{&a0q}cT;MH(%lPl@C%AWU
z@cyy?3Jy-V9S;6K+h_pazg{uG``0;teB;H2;Sd48Xn?o(=PUneO#uCj_pfa{C*T;)
zBW(p072sRj!qv*k$<5Z;U4{D#9k7E0tgP>bgL8xP*Be(w>-G+CeWcwBJ$F6zrxF&<
zj(o2yoz1QIydA;6u7e}xEdgvgTDiYs^LBJ_a+C0u=J-bo31IuzZhj87e>8CiNpt9_
zKVwsHcC}&?;S=B!;E*9@V`GzYwX~MdQhf5y(}7>o9JcQ6U<rPHFE1}XFCji>R~!BZ
z;^N}`0)qU4g1kTrUN;{n_gCJ$PHwmUxX8b*qiE%3;c5qVw{v!4`*qz{=FT4O(i|MW
zZuIZhAN{oQw)^u=PHz7k7BE2mUq|>K@Coq$``W;%Qor^}JhSt*a?n?_a|C1t+(Sl8
zR7~n0?SDJ+=N<p!OuawPeDF~C;eVd`ABX<;)R%5nt_seMz&+h%{+zFWp8TH&|9PSm
z|F5C{hbaD#^FQ_if|enb;{W%g$&k7ro&#Af4wIdt<_q8((6V1I+*;t{?jPU4Hm>UX
zDU5GA4vrj-isGXe-ng4HBx&l0jGenS9nJh%o4&r(G>(&0AHNXm-{<|}pCx}gP<}#{
zJwEo@J+&XPwx)OQ8|vS}Hb*^J49pNpN2U1=B-cOm+Nu}I+=r}Z_+s`iW{OTT=KKR(
z9uG)h-w3e3#<@bw_U{i%pP>5*-0v^mbsQ`Xs97Fu!G^><!qWC@3{#ce7Nd~|LsiLw
z?Z<J?wZ$CIktrTu0tM|!FE-J$m0U|g&#P=--80B}yBHf>`T$nrlC~t<JOnD#D)@4Z
z*Wi0yzVzPWK+9R@ty8ZfMn<EgEV`qKH2&d3zjDYq!Xv*{$)N6|OzG6oM1cB&-=+4{
zY%^cVeq${(YGu8>D?A$#P#V`sZR9&t#)OMcC5Q8`k1og+oz}$XUd_Ims(Q>!GM1w!
zLVHpLp-6gWBb0ys4HJ;BrF*I#?x(RkPRM7C2u|x`kmKTwE8&%qQ!pjLoytu9*wu2Q
zFDDGsQ6HNV4=@p9s9LBbOnTV9#Wr2E1ogi9(6_cUVQFdcdHv?`@upUtV(!;8$&xr4
zqkPWqkpJw<uU-wSwDLAZJ+XD1iIRR+omfxMfoM=}Ho*PlK~ak$=8C7VVXVbQy_nCZ
z46#QRzM9pszO)LOwFFBVpy>;c2TrwmumDuU$keS8&kqQnkp`%qVW9V=r#M7RqDA6I
zdTrSfuim#LOMGOr!wo*te@WpFd9YQIj<=y~!w`w3(%(JEK9rz2&g}`z5I)mT&a`I|
zX^xvm4(a?_L75(Wwb=6hzM??<pFe*J9++#SDQA*4!{;*RQ;$nCx0P9Ck0F(lSX!=F
zt4nAL=eoCi*es-Gvp#2@-initPex&YajTmc+LmB0`TO|g+Cb@o6;KcRB<Mn+1_Sg7
zh?JsZI(QZ=zYeY`|7MAWT_DW{0*dE-&>rc@pgN*C{%s)>wqq=<AHn6}KJ)q_k*Twe
zU+Kc(M?A^p@u3iEe#S4$k6c&!`F%*Q?K|3*Wa0*+ijURjGpPU6ga6uMC8ILJ*16O@
z{NLXFQ*qe1NvVu%+I3d{zQW&f0CeR4JAK$Gkjs8To~x1G!=zhlJESWZcyXmua5jfn
z>UjR#btTzGLaZY?&=65NH?P;h_`8*`A@Kd^jOh4`^i&h>pJXy2i}krlNJuW%Z<aT^
z`S~?1b$z^LPVxA|jf5Ww+$y=M*K?IWeya$)#64Nf<lS40mhE0>3%5v*Mn%WA;!#f9
z1VA_QFE6mHmK&pXn8(d20~ykdFAB8ue<bo+oXxycJvi@(WVGr_@u+y!MyR5y`hNWI
zVmr{kZ@c~+-?>>_L#M>R(e%62f5xgmq863gm1Z)ibKQc3-FO*1FxU@WjkKugTo7MP
z<0WSpO){!?CAcbcaZG!HDisboG7$<Ty&ii<ok8tnZ&{HQ=X-m5GW;-4J$1QpyE!RW
zEy)MXfY~#swpaadqc&wB4XFXiP>H*v^ssDS!ppvgzoiM9=7H#*EoiyC2ro7{x3O<5
z;|n1$=dFVp)<!*aglH>!JJ^hDw=H$Es+yaB@pozHr8UYYyG8Wq-x2Fyo{AOlLD<jF
z5ArX@icEQgK?nf|KOIRu2RSU@!pEh{6&oyQ^+P#{k1~hhF2B)nLT{RQPqX3pzR%v$
zM+)Z2(1Wl;iPxA07U@&<iKY|QQguN;pY2&`PSa+;pna%uqlQVK|BHEPp&`1rx$_Nb
zN&Q+`@+W13G&E7&joTXW3EaA&)&6yi)JEal?VkSu0{$sj&=q{-bEk4o^yH6rI@9=#
zmpRvsK;D@75Xw)|#oE#_<*vIwIro4$&8bed@ZXxQ&rynAjWC%PXYLt+WM>@?X0?q>
z^0XmZ4u&rk)xPS{!mBwKGLd>DP)5<_=TI0XMLSqcLnF~9W1amp#e^2_0a0;f`b`yg
zQeSTeql!wKhmY6&<1Ux3spZOV!H!tOv73bjv(5(aLyKr>2LwX>kgX=+5<90>VKcxo
z6+3D(RokM?*RUo(5UG(SMop6f(tmStZW@b6L;=}K`pE6N+Ry8c#dxO0&QHP@K8Ti6
z8KLmf=uG|KBRy#BXU3LujO3SPyJ0tuIt@+rsL=nyNxwuCK(k{EF7Zg7`C&Ef@1-QZ
z-%CRwiI$eK>6hvh^sjWDlTq?t9?n%u4I#E4up}1{br`>kLX-$y6elfqMu%@Y^L{m`
ze!tY~Q;}4TP(aAl=#>jCo$U|A6}~J=5ze_h+vm^5Z&h7v!j>4f1)P_{s}t#c_PRTn
zR!8Qa64_2QcoeyBj?dnF2rafa=WpRjIGRme(px!v(pPmmc<Lcw@F$ol=e{8N0kOra
zl|&m>Nyhgf7Yl8saq6ie$&GfYg}OUc=IyFV+uFQ~)JBk3M_V%$Ry~M$<G#;l-^lo5
zT$g_kZ0MAlwmd>WjX_r<j=VmfSHlkXU*xKC)}O58MJ;ZQmn&HJr7-K|tq$!IXd2vk
zOf*-dR~{@5Udxd7?Hh<fFndkSPMU(ElJ03wLb!d8w#ef(08FTZHs8-`?@yQPlhY=;
zUQM}_#A_%bel+bCAt*R@aX#%7GZ%nWsBxUSA(n@Xpy(|KvC%2eYOf2^>IivXRVrSB
z8mlSMEC0eI?yA^)Y#y}kkZ!uI#Of5!<CD17nr`3diI%W<{jGZCXlRlTNQdW70R{S~
zDVy%dVmkFGx^!+~tVlPtdNagVK)3LP%HC2pS}cJ=XANV_uL~`{cK2Cpd5KBwY&Oyz
zPOzFfS2Ta<w%Q-}_(OASwi0b`%dL&kf?KC-8nTyUH+UXyvwO3m{AZhdA_rV2T5+Nc
z7EM}O3^FgGWfOfVDj*VYk8<<&-hp(A;=)YF>e21UfWYa9V$dk^z}^P?AX(`*$ACZm
z%lS4M=kWP1eGF$}|ICLyML93UX<DxpqjGTjq>tPm%IBCvQNnLB#9U(OuM#+a#_g*d
z@O0xrWDGDE*qLpJ^nH3TLJV#8G+eHK+Vkec*Jtcy%}z5t@*6Mm5sRl=jgnnHtKtd^
z^g`CjxG5|TeKDKErE_FaH1rHSN1G>2)M3nIX-H6>Zt1Fgu=I>+hzt2%2p9Pc;Z4B1
zJT^-pEW;x_AZx0%&Ir697%~_~xOX!1_DRekeEp5f%|jy?k81osP7v}M&fa0b)T=XC
z_NR)Pt_+y688>=TkZjFhhO8Jm`ZLb!EvhMQ6oy#YAFqk5`!^rWVxjP#=SOoO!dXOs
zq}NvLtG2Kn;5Xf#KEm<gLnZ;U&nGyFcmsFTom{22tL!pwQeJJYq+r}D#C1&-@p|JI
zRZO15bJEVlBOtaz-aP9#Rnrs0-nP_?l}M%xC_X=YnLeuK%UWwcCOF1&aw;d+VzYq1
z<pi%L>;{~_>s38_;~v0uE|2Ld{eXwulg3u3pB@E1KM=CXlsN+zo*gf0VjizFITg)O
zW8)G0G)~R+?~FXg5-`TS+gi~qFs7b^NSUi&UlxU(=wH>h;~AVh=t~h6zM$BFCX@tf
zuG{pM)M5(okqlv|Qm&?eg{(l<2o~v%UAb=!D+f+CsJbSOe<x%APRmTLB#ZnbzDz?v
zLdbdkn-&ulb4%%7cO-6rD1UCvWV-T@t@eq|`Ej!bN=c`w8`t_=oUp{o1_pFCj0U4*
z{2`(Eb?~6FDK=N<rU#Ro<S4P{gN(Ja(+%AP2jd8I8#z?i0k#yo(V%8VN&(eI;j)ac
z&(V{sMl(x#8o;Z={Gz2XZ_`|!49&NNH6hJ*50OeebAgv=Jvydu_Va-UYtJi_iYyeS
zQUT}sNjjlg)YCprS3FI`(SR{*OlxY)C_mTS1Y%c~9qzSrXkThUo?dO^v}2imnHApf
zNjfwH*$875vMxroQDAG}NHfz_;nE8{qGkt-Ez;4T)`?Tt-stDJk?%tE&D|7><gkTk
znbR_hiCGvnf=K$DxhHsTv@|eeS70%0zFpA&^y<*;!h#0iOp+$DWv0<wPrZ?AE|-lK
z``{4J`Irh2P~T#{Yl2*{*gLQ(@e+`k^zX1D=3WShcX{_<L^JHVfgx*9fwpYycFW}u
z1caZMPiKU}Jw0TkA|ARzbk%L;1yGK{C8A`OxDE3?@<>znB?nx6Yq`UZ_~@l@R*l(G
zi{%z)r>62Cqrh{IsFw`QnDzZHYd+u7hlT34W*YNtRX&36Fu&P*&%KeM11{mzsq*r#
zi^DJlE`$aY5W*K&xYN*8qkUZ;vzby6g)c|e&ixuK^zEIiszPC-{RMA2W*TK}WGsn~
z{IEycbm(pe{?MPEj`^<SnDgqi4nt>k0lI{{&y6x58zfl!O20n0fkQ#Hb3N`VC0`gs
zSKql0d9vRUGa!??sCVORCC#lrQ6qhe!o;B&NkmC@!_V&E?WIhgFKj)p!?jOXw~?jO
zF)Lv8pfP{$5r~wl4uPxUi}4d#3i{*`F|Uh0nX9zfmYaytJ~0ZN>W8l`{e^I;cmVOD
zoMtlIc`3iZ?$OfFD29~G4^tY5WI4}W5~xz-+%Q7b7+|t&hd9`+2(OKo5P1nSA+g#d
z&>6yaBPhsv?xUzSQ%`-zdUVZ7l$B{feb?9RvjPkK9mZP0+Xk_Z+A6h^hq>!K8O@%T
zDxgR~{<}a>#fOyf88<wg^*@r%wtNDzn3%9WiJjl0)}gdTndE7t-)YE1Bp_zX;BhsL
z2xbIB4}=#!ax{0z2Du7S<$W{eMifX`a=uw=GPS;!pBZqctiU8Xz%#hV#MasJTxuf+
z7K2_LrP9Y!oq3W!3Pn!09*1Y>`kI4EF8~bnKCz)(Q!-)_G3S32@|>(5sA-}~iQF@T
z@Q709=&?0U`vt}!VP7D91|6M_klpr+AjsrQgR~VQxyG5!i0?ak`(3j?Hd%NIjU^aB
ztttnue}?VB?wl9fZm)^Et^B~CC5=Q!77x%<l7nOhc#G(%TE@&VBWuk-UqgK&;w=wm
z4KVt~AZoY9VS*#@qQ0Y8wv-aP85g#l8E~3hf0qXBAWOIZ8wz~=I#n)@3|ie$f!H9=
z*bK>D7cr<66}wrHbh1MVy%Z!|VwCi3nqYk1_6-mTM-E|C7-;g=p?e-MS856Ot>P=e
zi4udj)Zyg5V=ne3-7{GVlAVI&V-NAw93jUGeC)7<8CAX<&#T5sCh%&C24wxdf7FPb
zrVaV9@ZC`rRI;hpjIj0VVzilhU+Nr(flP-?iE(59-Q5R2n!D1Fvkj-<HW|C~xkn*{
zskrqRv#~vHiBB2+!>@IwW*TmkQh5%2DeVg<Bp_W9jb6O*-5zZX6G6j$N7N%D9$lnK
zha5H;<QoxP87;6INtLe|f@7+3!iC2Q+>)zoU5XA7e$28LXgO)uQq&ms<ZQpbgP$fq
zKmi2XI>%Dp3<;KD5i~1=akT`rR4G-?eh8TTmOKr8G$89VZTJO`XT$wu*`rTT4&FI3
zyEys5h|3Y==!VS+p|Y2DNUyRC3v0%7qqCy@Vg9pdNh?$5OeEZpOY@@jY;!yb)ikTt
z7IvsUx801D8B8@`m1{aS&x|pcF=#ZN`j#?G3autT(4~h5A`3zwYdNTgZ;?R^B`Rv&
zwv;~U97FvGAMeM%<BBGHL1VCS%f;b}83e<KV96bjnHp*CIxA?oSelcui~PCJroAx_
zAwX(MkIgiHc(9Y=>q97=ITklouE5}|!C8mUx?wQ<O~$TF#(wlBmc#9J>%71m%TIBU
z8kh?i7|luVkeVlv3e2Q#G>F_wxaw>@KU2C#C`}byf~T?}Je99sY2A}#%6FB=m9a@%
zmx5l<=;CCR)lIUNN~BKa*aK<I9mybkl}Xp;z-=VEb3X`Yy2p8Kkh;QW-`dTzR$`^J
zN${!X_Uv`Bn$yFzU59yCzg`H>M$^>chHJ?j%oA;p?(x(~+QkD8T`l9abyh}b;m$PZ
zz352}m!9xot&M#EF+p3E#--SOEuy3^R$=AQTb8d%Y(TuI)imHxR11A0Y3IBzx$Qtp
zL)wTgbu6TeuiApx$AxvC9>vOBD===X5kJoL_r*$Y>{SJWY9$U&<re!yJ0~f*0i@x1
zb*~WClIfEdUax+8a>B)R_TM4=Ps8H7lFV0!prJI_fXkE^)&JP!bTrkev?i}#j7kKc
zMXQg2#G`z02&&0vKLvKZFWuqtri6PP_5D2jPc`j!{TZrY;~EG3A(J6YcZpJ!VJpn<
zgmh@Ora;}GQ&eo)3pJEJ`M^D0cZWght)*CqkPOyAbU=%GQpgLy43;asns}VIia}(e
zb%@~`lZ5a%LlTnO9rwv9&4|;Ex#Y%h+HdwJ6wFTtW$f-nnZQoR>5^gAX!c_0D9gko
z$S9xA#Cvwg0%3HsLpG7;<nbN#6bGkuPZ%6lgARAc8ciTUrN;iBclHN9pg(A*do>c)
z&QF#Qo&X7UB-mSV{+QuD5vA)1oJhNuh{*{Hay-^9n1ON)&#u<aLO$41ZqA$Z1(BV2
zJqcv~ygG<8BeVX1LAYT^Dh!6K^k)RkUVzn;a<3a93$&-!thRY*Et$DXbk7f8U)ZzL
zpwkfb`q96oX~dQd^OL;eqmPKI-vs#=z9{(e-1BDupu4lApl{?*k9@#&ykS}e&=jFP
zS$OeNEBG&X=4xkVms!=Z(;CD-Mc191gosV#b#~*yZWK9No*vLgS;3vFxXLiZHJX!+
z`b6wf3HPK!Q0DFZ0z|W96fS6FHvBVTmjMKx0^9;7-!Pwnff&`&kba=!r)IvUl@FHJ
zLsu6`8=&J1!Ds~8G%0jUzUNU|zh&T8+WterOa;(eQ&*Mh`Sz%z$sRqT*wJ~Bl6%vj
z!4$MX<BW`5`aYeh)cUguOBJ89U8T*`o5Jaru|wH&S4mE59jEw0h+2M*V_wYKI%7bk
zB{o+HAwGrGrGRT0q+V)F@K!-LoeDf<eXp+#V7q|rLu{Z#T;lvt3PvK=OER<nu#ECI
zJY>lm^pwsB)VKb#J^k=qb!R@|6HI~q*nR7C5LPgK8-doZR8**gR~wcXNk=6z4b6Vc
zmq-VUzLQ0)tR*`?->}TDPx!D`q8kG$Ke}4OUpwGCwu?qOzuuf_L^j(M?yu7uq27^R
zzkgc-oP#*la2$TE6{4E{OL+D<hM8p8lLikmX8aevhD9YB3vbHSfkMF8gBsH!q@RH_
zbOs_x#ERM|Dt#zp8p&)W9$Y(7VO7+$_hWFroqfCQ!ASZvM4KqQp}}}3ga`eoI7E!_
zs4(+^Mc#w1Rb)d?U`C;C>7CkX*UF`yB>p8mOv?u?vXVn2-Xs(bs|(qFP%>{&s?c^Y
zl3X0_jc8t<=tn&8`M-Hr^bOnk1j#`GB?V?|4vefiDNAF45NY)z{-YAhy1i_Kc<JG*
zYK_eTjeG{9BlMJERc*dMDYO)=BV*P3sk{Pmn2DK@Um?4G|E3nLz9^}UnGzP>6bxcM
zQ}0pH(-zB>FLpe9iFO9iWSYO{Sj=lp<W$=*;4T23ivhku*3f9d@Nms)qS-&(V&X%`
zyidLBvMbL>1tS9?>Y4^|Dhs?iqo>5-U06;yCF{^w#s~mv`2bcz6dCRYGa(u#5@T>M
z@maq9Wm#wX4)a~DmJbE$3np#1qNOaW0_{4pHrbo1e-;)&<5QiT%wfW&9#n{V0i?`e
zuEiptZ_!)4hBb9gSu8M!G~M2eQLR(@1lA~!Hw%x0kZ9zT9=n!pS7F^}uvj_s4B9e#
z@*!NC96F=QVK;D;8EEnoGK2VL(MiJ;B4^MuQj}h@xcmNhbM__y4Ehx4f<SO#UKF;P
z@`rWFAk7s9sfm1mLhE95&bjJv(+P|g0qdKaubIVQ_H#r63*jC}D5WaE`7wp30V(s@
zDQdV?klb82rdo3Wv42>YUYx62g|D_VTIX_0sMW9i=1njbgAN*VT7J<H#msL|D9=Uy
zy}`rx$C|paKv{Huv0k}+N2Kpmd9fM%3cz~?0awFyZh?gwxetW~SxIEWK-I{v8tN(2
zw+}art@;fw!Q9<hsOhGMn?Me^j(`GOoX-$0bx8ijIS~UM$Cd~k;Cl0P!6jDCRcDd@
z24!Yhey8gW*e@?u+v;cM@oY=YJw{o+A##LQ0Ag#zK^v6Z9B^^Mlq|}B2&ZhTCv?2b
zkk+0Y3-Bv(Yz8lIU^(^~P7i(I)KsWBB2258*i}!a*2TyG!~x48yvNWPMtd`6WYQ>l
zuC`QW92~G+3>P1e+%{U&#bYk%>(ebMEwS?E={X>VR#!y@ly1h!JR8{#l$Q_ocL9ub
zroSK~BH_=N_OGqi>@n-XD4_wVk+0HcddiC%pF<63_1bzFo$5>&9@ep2GWwRS04yR~
zaaKu~%w%JgzL1SFl!%-~j(17%l5g-Cx0n=ib_g#0wc02Ip;439aye@`8{X{2?ej(Y
z{^d~%Zig_78@k$#a;?My0<(8s@!f`XdK|I_^8Dg%yZh4{BTNQf<~)gH(E6gNntbDM
zh-FO2*rHZI4@9GxEI4*`!~L}+`9yI3{QPMO2rAN}H9qy|$OUz;1ov~|@nAP7MxxfF
zl|dOK;F$SvlSy=oSI8Er#d$h^tMq|DzJCSLa)VSFl?W^tMM%D(c7BSS;_pnmT+5DT
zu5PYAYQ#iDMGxHBUzJo?0z;7jSBiAYCz}9HBPg7zA<}T$M|#dCv#*?$!*UkQa8Q{e
zyr>J%+7w~Og9^q*L~Bffmfp&*i@CszZ-)YY7HH?c3+Viou9_&N#^Sq4t#n)>oddMD
z!o>4E|MF(E@TK;BUFbE}E=t+7`?43uaib-Mojj%%bMtFM*-zN!ri@-RxZ70{27-5(
znJOBk^-_dvpuOpmvS8cV(=~uvdB`#xDMI*QhIL#+ZF|i|+1HO%EJka}K=;X)bUZFA
z!v8KU{sNObR9)`y>RB6uM+vE+gvADTzHgw{t{WL*36CbL5>Z7M5zKvdvpJ0rUh)kM
zkBXy>F@GR6)FHj$j(LHgdg&WL6h7Z@UVxa}8eMk+2>MD7q;|@~K?Dt>{Ui)K^5i7p
zOMX?0lLIC6FzY+5rW6D5)x$anMM*7yc<6^RkQkM=`Xmzu2fn=x_7d)D#fYt<1yqGq
zOET{1h^8#PSoHa)f@<t&0V_T3TDQrX6T1VrZ|#5-Djb8DJ%tlO&<tl=<K-h)j}F}&
z$sOp83OUnI)rR;<pNF<%0=58#&tjC7pZ=#!skoDD6adN@iVq7WN`Z94Pr%9%6v(UH
z0ZWT^%I@^rsyA8jYHyB4HpvtZHcY@d&6{d!`H^mR(e~#}KK?A#qE#0z*x8Np;1B>K
zq8ieLiF5l+1AL6@4-wW9jDqW4ioU&cyao@S#Tl|H!wwN|T5CSquC~IHf3FhYOW_Mz
zflFZ5G6S1!lnbs<;<>qi2c`h@S!%&++AQA@?Uh)wGYRM<2t6}VIEFUKcj2i;`g;~D
zFRQESA*FLRAKh>KR8%Fp`uR~vU&fq{=6V%|#Kf5rD*UN0a}E~Zx)X33VEt^JxK?5i
za~^QKz*R|9$2Y=qa)=7Y{HS$y&YY{VtGvo6@~!!<f-exKH4pc%P4Cb0KBS<SEMY8u
zzDQ#?(~xi|(x*#4P%ZV?z+-L(%H9{k$cQi7OETMuUWjt4eAV{E=Wy&JJk__E-?$-O
zpW}%yd*((C-go;Mm-K^2Ar!^7(u%}KdT_W$sz}LltXg5{CW{etZMTzEIAF#_r_0lX
zjF6IrW2(kcDBv-5vL{A@zvnN?ziMpSgh+^+RZn69z+#ZzTQ!@hJ1m5G=Bs1JhqQH&
z=^EgYtevip&TlW4WYgAPggilga$--{ouC1+`j5?)-Fgynwb84<-_-x+V8bD^E5QFw
z(fRhHaH41<4W=gd4f8iADj9_XeN#(KB>j(Oj<gyvxz=B894#oJfX7eND?@VC)Q|<7
z1LY<``xmM(SCH}H##oNy6aq07qsx3#)Ay}m9HI|_QUMJMJSS=#WoXBA^S&Xc2p%cw
ztoATD9D1bGMxuz$z2|-jI1!2HfR@Q>(4s*_+hhl1ETdzxCvYTB9l<exoCggKMAy_J
z&)3RjkIhuss4x;c)kp+wNeheAMBCE5hsm~ZmDA8qouMGgw)EyR*N?p^hXodHrJxFt
zVP7P+CU7?77ifJ?zYNZ(@^opMB(mdu#@6y&8w-uW<z<!}pM9DsquqSE0ovalQm(2*
zzv%r7b`tuFokTQ_4Js)#_3#y;8T{;=dq`+!U9KM3+^Z)*GTgSSD`YSCAKrP2r&7Y@
zcVF9{^QxAl#$5BcQRxX#Xb>Q}=UxOm!)^zD$`vTqx?8|3TkT;WsHo8REtE|1itvmQ
zbCp9Uohc8o57lSXhimsZC}pQPbC6Y-j<Ly3)4+3eWfkg@tn;nL?e(pd9K8LR0IcH^
zb#x)rv9L2m7*vxDt*kC>hLAITMO9hKmzwyyiwNZ27_=wfO%}3Ac4Qrgi_kKC+b9GF
zgLpZ!tU#M_hUw-d6U{&o0c*X|gi&qT?-yAyi^L3$Og_WI49I4JOg_{k3x~SF5H*M*
zLhP@c)lM69zA+Y<BD~;1)dtQ3CdX93Z?F66trsn#w{OdW=U<<+%CX+e6|N^=`+9WI
zD<pk|Qg>M5$quAMVdhIa?-S!AA>+Wv&z;B?3m~mxx>+W4d=qIJSn|+eoNcMGD&U;Z
z2aEQKD60>lXEDSQ5Fs0kSi5Z1cjs$Z9{dy@n!LcM1g2*Nay2AK455tcU2_+twE^PE
zYOc@kbzBB|Q%ubHKOUR;R}qpf=o1Ol7<wLm!;TyY)Os0&U%T}*crf-pn${w7nF$7w
zdu9Zj(pTcESY^vpBaBP{O!wgC;vJzX>0Gk+^Bo4Px*;?2p`;9W9q0F^YMrCICfo(u
z0VMwkcW<RHm3)NvmAEbcb4Rj6q(Kt^sU%BKBadhf#UPo0C5uAhorOd8!4!GO&mLjI
zOJn;WXAq32RK<59k>9j`v%CR>bP^Jv*m{Moc7B*d$8XYGx3y=jc?9s%H(?o~slufr
z*p#Y+Py{_tw@EwsfOpPgTR_6A|Is9_<_IW7b9F{B3lRlNT@NG&mDc@q?aUqb-Ivr!
z>qwohcS}Bk;xXAPmu7MT7So@@UJ+1J#aGt=@JoDsvG?Jf)iRk90y!F|=}6pLhub{0
zDg*jZBmH|OO?49{3}6tD!NEKtB5Z9?M!%Exa)=vUg7CuvkxD}#3-aD5*vg08tx>`W
zx=U>Pspt_3$S8k7Xa-k;5JDJDdAI~Smj&)`X&2k;)_WvWM!sMm-Dxem8FZ6s&{RR{
zWXU2!xA3s$7pLYX&HWdXivNXM4vb#V1fy}=%<;|T*s6mlt94)$U`PX}z4<(*Uh%gw
zs~p=30WnlMC1!pSFRY#T`|DPq>cai9@C8M^R>{H{!jM*x$lp@_cTS0FrxXWXtu%G*
zo|Ym2kcZ24h-m#V6B$ufO+YZaB$2xGqjZ~BNBwwMhS+1<ZraZf_x@6yru%yjaBu^E
zRm3Ze>+a)I9aCPBxNFfJ%LzPgq(Q+VrL1?($}@5OcTn;+3<vJ<a8#V@FQoU6?BR7j
z&_6Enzm(HIWcP(#4$MsM(f{uEWaAJ1X8s-^O_es%zv}X@eL=RwR7Oe)>281F9shvF
z-oU_ohs&<~-u*x9kc|N-whuj9P5T#;{;ew+K!c2j#s4zf-@5X*82%xezs2yk82+@8
zzqR3SZTMRo{*=Jq+VH0={`L)jYs25#@TUa+)`mZ2@wadITO0mgXhU+1++KNA?W+%K
z#NVxGhh(4rWxA)R{CZwOzKjXeLUOIwU#`C><*0@E4Q#~NtZgpb3dNFbObi{FNyPiB
zY%}c|Tb+y@JS`gkVO_?~WT>lt-#3|t`+Uo>pyoSuD;B>$Tu97D<pM0Hc}wdSJVFhe
z%v{~ItpH~BvFQJ+wq|GZEo=HVnK)N)TL5MPTk=>78a_XniT?KTf0mN{N}ZF{fss^J
z+uo^X4F&~@+=f@nPK6fz1&JV-3MBE?prNO(viQgg2W6mj4Vmum&s-B*iU57>MSMwK
z3Lu7_PsIFcO$Ys-Wl+CJiY^BrVNNc2EYyAe-5l&MrD6#e?X)~8T&%G2jdhqv<RR(Q
zP==<tXyv^SDR?21I$Dyf&@U_L+gn2e_vjU2ri=P51t<O<5A^b>ur8v0T#pPYdnx#+
zqsdn>ib>tKc;x=|%5IqB{*Tbr4wKjF;B=4Xkm-BBQxa6_K>uww+?+In^hlvC=l7nU
zl1tjos%1>OXmzf=G)AnwlHSd}6>E9$&B@b(PetQ~KJ1Q)PKh{6-Ri97N|IX9DsfYE
zD19(W&z2KP{X3uV)*raRxO3Z6AEI&^BUUvj_F9ig5aDR8$PZp-gO!g=m)1jpP_<Yt
z$aa$X<3+1Y?$FzO8kQr8x9KldUY)ev<%;D^?MmgRi=}D*X^}@x0=391sC)Js-yp}9
z2k=D}4JU%z?VUiSANOFypR!9lp|XeDpY+YcuD9jk%asHqd#>A8T%8i)huPk}<1o&g
z;!nL$iS;#D{kS5!OffM~N(Rj0q@WSq?~;nC$0vpg>H1oyG`>rihhXSP_BQI;ti@xn
zTfK}wWxa+T&`X@gR5kKOPrLMVzcy%dAg>0Q#wuh4as+k-1Q-L94Ki_|;dgc{sFza?
zoL)aEG%~GTjE__cP>avtXO91Iy`sCUnV`>=4fCW7V&t_Iqnk21a9!_kjIz_R^{s-|
z`8THFQc1W6P8j{~(g0NMDsC`HhOqhC+l2Ykt|8jtjf;2&<fN~GT421CP-^iRs?JtS
z+Cn3EU2>GTx=82YdxJ|!nAp;1zgn^9TMi$U4CWveTs76RrKJaT7*G$`_;=?Zw?e~K
z*KdSQw%fX+6AU6SJve{hvp%MffvGNBj*-z!-+bwKIE-L6L76_gA1_UB>&x<;i<=ng
zKTKsr_!lDX2BuKR2d{Gj-L3^L>1Zht<Ku5}QTE(a^^BRD7D#fpO;&PUeNV=tsY*kC
zJjpJeuPS0UE9MC?M3GY&5v6?mD@g<q17w#HRgywxvs^I&5|M7d9;0p;n+t}E-P3s}
zle1D?ZCu<;W7KKi<1+IXV{`!gN~eymRdP|}7~nlbsQ}O5{A!ExcU|8J2bewC$)F-)
znyyXw;iq>>ON$dqxfVrIuD&DV_vqxo%m<H_d4C`HYdJ+gxo&;?@#wNh&YBWB_X(_L
z-K!FVsa^f3(?<-wM6HIN|3z^LUoZ*q04w$bPu)a+c^*~Bzv#+8qs1RvY?Z($Y-(=w
z-9Dn_h97Rhx`+33LsrZpINw{v0hX2Pm+as=<TH^gcOf=__}uw_B`B!?rNaM1sWKhA
zUAJkmM&uuEL?xxr*(9Yht|Y21SBlrL*Li|>{-R(D^yQa`LPA6Xr~$QvTm}JuPVw{A
zMC10G&50x)B8rTd^u{=ao80kz)`*Jc1`Q22X1E72HQDc014y43U^$8Ie%g(b1I)(B
zT1ABeBzmX&hir7uPpfx(Bc<<x`tIv?-O-f&q-ou+W(MwfO)B*J`~q%O3{bmtmZtr8
zay&#x_#5A&%$Q`i=pP3Iv`d2vv@08F;y;)4ev;S)`m$7VdG5#r_z%oS1US+|$$r;?
zE~8(5zDQcAZ^klje$qZ(F?;cFTqV3O1A!0>2B`)ACDDwp0qAIEm07>imE;F?HQv>4
zlv`efTOQ3?LW~UWVvsr67_VNeI-8+Wi!n7a<hM|e{0s<ev?BJ_b-BGvMj)*1Hmc7s
zF2{Dk`<@;fpLGh4f@<hZxCfjx_qL3TVQ-yf0@+M$Kz7>Op17AzNm#}IrO|`#{<0bB
zOl@DX?*?FLtB&Ud&-hYD3lrP0d4lkih^tWUxoHmCw^kX3<IPJ-C#zH2Bv2vEI9IO!
z74Wga>-kA!Uz`U&Ut%z7n~qC$j-9BlgF!SWCQV;TW)M7C1nI6=)M5)vJIOZ-^6t(Q
z?ccOY7u8Jr-mYN-+Rq?{;sLAStcjtOMsaR!|9g4Gm%zXa&(fyV*nrD>8XqMe7CJk|
z8%k7rBtG}9>kQDZl<7u^EN6)L<oGO(7tlWiqbK5%0|?+AdCuleRR24HroTW$p?KX*
zH8!1Klm}y64yqE%nfg5HB(C=Tn}g2*i|95%3#Z_vUTUsT(vI%tbFN>iffAuld%*T8
z^`y2#I9J}`j?5>{I?SV6V3PmsuO&MW4tYk$%iW8BaL9kW^66^8d5jTQ!;^lzQjT~x
z%D8)Y_oKg7tu@8^u3muKImxZs0FUWcCk~IUz&+l6DhH&g&biS;49%X!H~LKv^i=_I
zs0n**PCEcLQMtm|)m2NOc3$N6Bl~EX3|B+rhTUX9wEmF+%G7X#kv1Y@+>IE@OWDZ{
z7-bv3vmj5MhRn|-!xf2Of}iQRF~Pd~EdM2;H=Eio|Mg!0K%L<LKzF|uqa`?9`867o
z#Jey;miV7G-+PX;LgiIMi)UhPQ%cvG-jDCQQ+mjMbBDc-;@O-2@3!D{Az#mRy=~I^
zuSWFubl6(1^~M=iw0Ek-?jD#AWVKb;Az6|uH@!}NMkiz)G2yBG>e)1}jqx*nLd6OM
zr_;GbmU7e=eN<k(;eQ9eps&9)H(}0aZ}Z8{Slx5HUrQ17o0fD}fAC=VfH^%U(ojbA
z`}QH~9~0R;Bs7fppk`OxrlirO&Ce8b7|7K<=HaGV%g5zw39OUc3yOlzH@KaHmJ`+Z
zAB1eY*y=T^MiQ4R^<lMEE^4Go)cvbvZiS%8Ql$BICtQy=E-LrhZ*y_}V9jij2d5{<
z;!jKdm%FDT0OtShXW#S+?_Kk~<ugsI#g3NT=W#boQmx)C140B@L}dCY=Jkr%*Qk|$
z+5P2{IUhV<>NKUn!+Su1Hhfm7^Y97y%!{M0=C+ZE1y5b`;$BbAh=*>n=oeTK(sAxy
zs^@khWHpof^y*@g2V-A2{qp;C_Q(5~e%`y2tEOF5nTd5c$8OZWurKE===*tzTk+yV
z|JBLYa%DhRDO0{Sr^Ep~VofmNW+}RT|G{qEZP1Wa^gWyYw4m8<BqW_uH9tPJmtQkt
zmE{w(JYYZBGxVzTtX=*n>C}yWeG7;IVsqc0fzw5GHBOca!uwuBb|=Y)eSdViE`8b^
z{q_kemjC{s`TT~seUr0@ZQX6gY*!P#nyLfa*-;)&^N68)>2qmpfsQjyPTNO;fLX#q
zIlTPwksm9UyZ*<lW&xi&D?;Cpr;bV-UeBO#wSM>0^&4@WPO%Z^b`!SwY36PL%HtZZ
zmg4C_fDT{Xyx%>ox|q#bm{Nf8Y3jk&zN|QS$IL8~x{a{g1DQAaA^oAx`=)VcGqZI6
zJ6>DUd;64Rk@FJ$QkS7)e3hmBJ0}2G=1t>l;Y@)Q>z1m}WN&<U@c^P{>id{aNfQJz
z%zoF`eV^N$_XvyPMEda>9xYveCpqCOHB%}c7K~!#lQ3-%1@Saevcx7Tm{MlloGp(`
zGtG-XNS9E!0oAjD4#WwCKZP9Qc4tZ^J>Ng2q!;t|1VE$_03thex<7$9>iTcm^aua9
z{m%o|=m}9=p6SvJSB4dpf~AjiO#`_pJ^iPLv>U7=Hw3Lmi(-4$(DYKw(vTOEHQTqj
zb)h1<6Co&Ip-}gAT_ojfyI<fX%&WVN(nDlbSd6RA)9S|_83{C<H3&*xDr9en6zB<(
z65hpIRb8C%M<U}AJ@^wsdvsOiqOI`}vg7j-b|#Hs&$TS0-I>Hi%BBZ|@R0#d>0Ks<
z9R$crnV}DxXz;<vjbksI@R8X}=Kq2;LE5xHx+h%fK6m=Q2i3JE8kX7#EC4NvV7`n3
z9?R8rYC-GN7kl!GTV7rAw1N@3ZtAJhzXu*m|8X?eo8&N2p`xV~8{xChdxB|X&8aCb
z2^;9{=88BS@3We!iQmJ+%o}J9e_2isdNvgxlsRyr_amOqiVv`(9!2W_Y`^71Ik&!Q
z;@hMzkAL2BizQ}Cn4f$%S!FHklk?nv!t40$w1{QS35WoDLnj(V{~<8pRplyyPBp9|
zYTBbOp<>MYlly9s#g(3ODIi-7K&9zdeZJO}WJtjzaevBln=()-(<%8m+{0-2)yF0L
z%=?z;9trA9rQ4~MOD`MVrzyuC({3%-3?E7{ZC2sOR-Y&T2jqDh44C7!L3IA+Txsp}
zbX9r%+6Kru9$30aq=VYy1eV$YD`<%l57*DrrV&la^Z;@<WCT_=7@MUdy808ilPs|F
z^N_73{-vSLMk35mvQYos`yX!j-OzgiX8!zk{HiciJ1a6vi#;@gNJX0^aIn~=1eR}_
zaZ+DA-PC^b(=Jne`DCaTOkRBdN#^B_#fkNpX;3Q5+=<h@qPfQFMa!WDBY6K9IC@4x
zcz~OqayB3mcq&lOb-9cBCb!(tV1*nJ1#5z-u4BCJo&Go&Q3P0|BM(3k0}@4v*JLZ7
zM37i*^%%EUhi%H%@&1HYKPWDbzvt$-(h&h~oT_tazHK9<`sOkCJu+P9Y4bJZsDbOd
zd*Iz~rH*Ig$6OJf;?xV<&8*w0pns(DJDGsE;-@S}QEf{<xHo<+dw)^7Zo>Dy;k&oR
z=XTS8i^;E<X~xr6Y(bLPBH-~)=dD=I0UBOTtxC)oMtv#SNwX{6(XhJ)4Ls~qbMN|3
zHq|2lUKhl4JOh__4Q&-R3}<B=d3o(`!G>Qgr3NuN8B{h5sbLBC{g00Fx&}Z<BE*SL
z*t|rQ$InQPLkmbv(hsZm;ZS$|FYFj(%f&ru)64HxC4qF*M%Y?M!Jj__1?yxkgM9^m
zCW<M2x)M&|l<0wy>3cnY8uQ}rh(K?Vd1VC6c%4rMQ*;mY?tFvUEREJzx%P+#-hSFJ
zIW4VVhl%>zdvIaOl5e(=cOAbee7FmDGr*?;1NP*p-Q8-%a1#VB9{HRU-fiftc_8Jx
z{NuXSX;t^iDQZKMBpz>f8m{+>0Qn*5>^>a>p18g7CQ+lz9Wpw9+HrIdzbs%7AG($(
zWny)BQ-#DV<nA=llV@vq#5@j0y>I{m5JJ)pyi2fGM*U<}1Tr<5Z;Eh^r^|bqgx7(0
z3-sev{D}`tTT=gUK!^U};u1e|@nL{JXB~xOa!_<t%p_gT*#HJ%jJ4dN<X#$xoLWk5
zWKhd661P14l3U?|a;mRWwX1J3xZa(?o69r!t-WaZ<aznfh{<*eAYOFkFb(j>E2EP@
zIPaQo(5ml<<#$%?mRNnc!)I_Mu$Uq972Kn};$DkPBm(AYlHVEysMu4mze7^|U9A}(
z*V)I$X4nkV$F3RFL#V+$unV;`9+9kZkmZAmK+f1@V9n;Yaeg)6uUnMrPk@EhY-BB;
zc*WiFu2vnRYh{&dZ6MuS(!TQ0&AbkBtNGW>D{_%^FH3LLJ_K<z6a#-hvA3EDTIzFg
zmQ)R2!!4daJ(^4E={Ig%N`dIU3mZpE&f2idk+wwx(Nj}qMj@<Okc|WGaWZTZI<09>
zMzLkcWf7jvoixUiHfjCbwARY7!X09s`P|JYM>)&;p68RM7d)xzg~l<)d=mWO*Z9^h
zN|*G=p&+B9lJ8dhx5Qm<$}&d|y6?=JsN9d&yf5O&k|m_LRYtJC^pUJ5G0_o==`mQO
zyK3OcRr!>`h*htl_ZYj<`*wCX?67A!*g9IxPh?f$_1lbthZIncVlGPM6JPi7oD)Gu
zIDb&~T7#EqQ|GZSyGe@7X(5wDtXUWWw%wu+EjDSNh9Vh9tcGI8g8a{<EC`Ux+-a;s
zJ=2w-)Fo~(ORhXeq2C74T$xkeQdhu>z2)ft!`4?vMHP1aij=f;2`GqkcPmIYNDbXF
zG}0-Eh;&GoGy+4-(2aEG(B0h~_wc^oU3cAe?|-f}bMVab?7g2~?6c2&OB6mnzS-7g
zsq^8Dd*&^2rSv~QEnIB0j!e_x%-h$<Rf5{}OEIWdinh7t1}LA^GClgp|N70(l>Id5
z-gE8HyoOen>ys>1;Q4!>2n_)Xf<vi8D>?LY-~Y@`uSSpcuXEJDZu6*rc8&w%uVqA?
z^!)C?CGo{1J5QT)j5k#pJaYSlf)T}Li85&W0#H!phRBB-n(HN>n0mKJa*A(QsWlco
zp#Z)4E^rYCJmf%_e16E^n=WL&OoP>6F?6fob#X{c60aI{JWZpYJ1#;o;7p|((MHS^
z@BSF|{g7{UlFw`+>Es(eFdCxocX6Iprr&8>Zq4BBbRvnlY;0`YM&2WvOkApc{E`2)
ztY`}F0%jMD>Y88`3jB$r?V?G_@qmYriHvQKY%`X;te@8NEDf^)4bt@Qvk61(R2B%;
zO0U`}?%v`a&63f`XL#>R>3bJ{UCN=&=9wSMvoi!W3o7dM)s31{4l}eAnPNBY5SYdj
zq(*KbjH&<URZDb{A#(*$|99fU1ZPXa-wp|om@R`;BJIO1(m=3SjnaA<fP7B7{6rAj
zV1~LMOd(;*f~IK?9z?*W)pA{W>Qbn1T6Fz14!$m(c0BDCQ`R<DZ8cjnfJo`$>8xvb
z>s@(1>R8X_#;Cec(=H2t-7e?0853qVT8mD+lMlLuqkc|cz0(&>7FBoN7@*asY#jFB
zOc>r@nJFJ-sl3T#*>t;Hu9xf=+L$Zbl>H-)oOcw))_X^#@SCdTPVID~pUK^Im$@^H
zFihK#qIR3z5`9zjExtj+$dw2r>O)%ek)Kk0(_NhTQ8Rw!u!sJYdu+*El9}*Ze$T2|
zn!8&jmtKAM^%#Kfyw?oclZV`Zst-9(tbcLY)2pdt{zeyQQD7hi;F&<lNSL~1Pdj1p
z*q7v64`PORzNm8!xt~7f!YaRhhpN3BO4yy<6|6hBB|8n{*j_bd^Iz7pZrroQoSOdY
z$C8tOVK`>G-u>-@BGrKP)^hIfVeIeScB`}4uyz}4ot|v8e<Cx2li&1nsPf)&Jh}i&
zwL%4co;ar@SH`8H3gbF-$HcEYoSD$s>9-P~$BoiS1?`#plbW8HeJqNOMJ`5bgGG@o
z)yBi-L=zvn-P9QW84k8jlDq`IJJX%@Og47Q+niT|8N`NX>Rb{h8dx{BT-eSJ-?5}D
z*&3YuyAq9l!XkN7d;5!!sb@f0tsVcaetEgxGRodrx}T`h3x=D2?)6F3!#~jKqd~(V
zkHriwizHqsCHxx(mdmsFS2j0_j+<KjzPGG}D$%+ss;`=&cQaqW<zFu%#c5L8Ww-#^
z*yE+}*k2tvW$!Z68*70!SQSsnGAPkTHTrSfqL0|W<f}cwxxH1$l!XB9L#M>vN{-o8
zo5UyG>oXSMyZVqK&&c!UmZJBR%CU0|5wT6E*h0M5My(HO*;WXiM^#j2=hBAAQ##)+
zQF030P!ls|zhU`uOE{)`nSLpCPMD}G`5Vusr2sUQnuz*L`A6AL*Q!5iH_H<F!o)9+
z#A0th`7|ah3m$X<EtOe7qRSTP?I`4MePms0DaJGF>>I57x`VQo=+Zqd8lYVBw)WDx
z!)(MHSI_b_6h~RY@t{MhH%lHs=5MVsGl0x1!0G@#yu09Hzl~UN?%Z%4=m$^a2HVbG
z*FYWMQuQJih40_Li6cuiAa&jm^L@%&A54Wa-#HC8=?`4A0TUqB42Pa3FblT)D^%=j
zAIWmym&~5k(o}(auSd^;2iPv0lJ9#}Z#=ED*Rqh{*pcyk9MfyF^%z)XsEU~^E(s6D
zEa;w-hF=ss_div^FRs~I5<(6AsVXC=h+pdo>C#GH+H#s&Y4xUag^(HyKVG`)oLym?
zmUp46J<L1Dvbp!wB41s3YiZia6g}kKDUjc1tq-TlTlhYtVx}C|on?voN;@7bvL{ac
zWsVa5niJ3Z+e`VYZ}iQ=Rk8VTbaJJovaN7o<q}65On+_N$6(F--e?PDth}u=cH!FI
zTd~2NDqb~bt2eE#zmfOkz&UUan%d=K<)p+=q_?5a3l@g*m*B7@kmIoU=~Ip4u$&K}
zLB{R<!C`ooM6rR$XGu5=H4bO2@2u>OuCxNdEj23Zkf>!r=jsYavu8IVuf#I~2!88^
zL|_KXz@1OMr)$TL7S^1lH*ATM5ZblHH`c5T&><e@>+-6QrE}{zNmO0E%ekYmdb_?C
z(!ly3-rp3A=PD$RZ91J(VUaH}rt;c-sKx&I*?zOY5Pu_23#T_Ghs+5bc;2tjl)YAo
zd$)Z%v+)VL^7gXbVLiR9*`-0qMJMqGytg!QDw;60rbl9p&dYwQfDj4(r_`wkSFPpT
z5o3)GLbnH>tGVr>$3IOgRgkIjn%t<U=98(6F{|Da(BySk0x!+ioB`J;svoSLa+*1M
z=eWD})&KkVex~NAoPbHQRj=H)+ppK*yEZV13EeiQsk}j0cyT|J+zWVy2~b?@Qrm;i
z`tFWIsOy~5-+b1jQqj&twF4LLr^0Gbrrj6Lyc8~)>1wM%!#95sT(?-U@{BudVnw9M
za99j7nOwvScZENOH`3Hz+83t47-hF0T|xb0lC+kP{m7#Rzb70@e#VyjN~Isz84TW6
zU5kkFf#9QR90T>$l6E>OkZnZ769l6f_0BsG+#ofTN>@ANWk<>6uHZ<qkuVk@xMCH!
zzgX4nL`%jDZY>#)HZJQ;HC^I;L}e(rKYtMKwIEQaPDHG5yT1tu?s|H^6@yct5Vy#7
z&PUvU40m_8rBfDujIQ&WyQFYlz~W0j<KwZHi2!481(t<iXGX6$P$p3M%f@4~xb(9`
z&=amM1A>m=I}X*^a1xp|p(R>Dqa39(f5UeVVi_B?JbQx?lWehcsodQC-=S}A>tWOI
zG9>unpn9VWg6Cs%zFN^&j$YGy3g3B;0H@_+)#U3PoXAh4rA;v2%lbi~0ZRB3XG;qn
zkY4nnqDrEvH{t8-FPRQLi5QL0ovtZ^2O=nUopZQbHq@#VWTa_wCk*PY7F^O#jIQyj
zwCu&jv!S+J%=zuW3R>RnHQ>;RS%~J!$jK$to%wM+rtX7h8a-<o1vdSPzEpf4c-+_W
zv|Ha&yBlM4*6If5+Rktd1OYr)dUjrb`aD2XAMhJy*@H2*;$*3W8S9+qs6c5xDo)fh
zNqmoy<;u4stB02~5l2l`9ihJDVng_PA=SUC50aeH^VBxDB(&<8M_=EimTAhBZ7sU%
z>@7(G8jGF!+F0M%O^lRU{Q&7A4hvD)Z(}yasNN8w=MNo98SL-dSNG54<n#Vo$~NEE
zZH%<#RGwb7nD4B*ay-eWVxmEmr%_&3sd!#QeSF`|d57aJ>-a!*JZ7rJGN+m=V@%5K
z_*22_N#ZQJ&Sfh>D+DK@-qj}cNOy5`u`n)KjjzUV$-r5@>O)tnzwFq_;ZWszqT!%j
z#?IyU`I+k90!t@{sOtrpiAiU`2pw#sy6bL9JSr+Shj20`8Uu23dwEAY&f};rNQF)Z
z|0-+%=C>#H5F*p8S7$cSbg)s<9z1|mb1=s?tdzn?9uB&=w3fLOTF-ViH_PMrX#;mU
zudSYwS+%drnpwlkJTRkQ)*ep9BnDVkEI2g!+ru1*c>`XaXaBpdvP`@;<c(a9pVqV#
zEoI=+U8y_}S998&%aiSx^l;SSlhaWsmHBsEo36gkjt903rPiWe6TTL`usbRe8vn=N
zYUnaGV<BWz{^z*_^wH9@PzqMv#{*w@?I`W(M4aLvVgx1E()Cf3LmKMEj!@v<$d4PN
z-8Hp=LTh_bXi}BJqW2XOFwiQ=2`6dkY*_R`(tzAp7+PEM>tt!CO9CV3vPntzafZh3
zh{R&3yHD&DL_*i5b=l2gZa1a0>&iRhg!J0wLTv1zZc}ROPa5Z1TxP^+q|iooSby(^
zRvJD%4fMEwW2|6neFX9LD_WbYRmZkO*eHIz4DH$y!ivJCL|8D>`pw}{a8;edvm4}q
zewN4^1x(fEo0NG-<ZZz2**4DXo!4oprRv#|=VGjl6muKd!qYiFU0tOWu<R?7e)s@1
z!FLjkdW~0ED)D&B?wP+Q4}u*mGz?=_mS!eFwCm*T!85Fmzi-aA;*ifQl3^tmhCg+y
zZ3(fm!wBVf2G7=_!ZsjE>4<Ycov5#TNH5K^ne00q%X;U0ywtV=*b24<!d(By*{JK_
z4FqpV)9}|$!EP6P|7@_R!LR*xawUxuAWQU1WQf^BoHiqd{wto}jJ(^k9VDOrwSSI!
zK4^OMXxd=o7vJveqcv;bzw`QedvcT&93k9`BIiaD)_!2SWS%=>()+%F)?3SZo;Vaf
zJ!W9yiR7X8@nEZS%kcAQEaR<G<KPYh9^=)a+!vgx8}oo4>{vMGsEV&Hgc|lvJ7K)s
zL&a)Tx0x(?-@>ZT79~P?TZd-5odbY$O90-0)TAPs453;Vh*y!kE&WqOv!rIT=LNX|
zs#~>o#l~I!nFaT;l@++o!ZR%9Mi(48o4vWAhPn;ckATcI^BL5A`@j&DiV=eI@I^G^
zR>BBT|LQPTdLSf@kB`y_bHr-`v(&q3L=DootLM_NDDt5{JGdY5?)twf2MXrF+r+6N
z8_2YcPs<iLZNQ`6P1INKM_wQV2du?<yRd}T+if;BoO1?CD{zQ>PeRT;-PE=beCxjh
zEZ!KMxR>r|(C2o-&)O7e`f47iAw%>u#PaG=$nY6_?EX4wwJw)1+ROo;(va1w-XFq%
zgUsbZ^OWd4eo7UDdKp&?X`H{Fso*+KdzjJNdE7s9zOQxpeEag|jQnXuNQqIiWSRfM
zGIKbtpy49=J<W@nd@YnKJ{0VF1HUKVI;hR~C}{r{^z>uTY?}#j;Kf7s?&w2UuF)YP
z=L!sCqcSB}zid(&qs1_d-ZvyynCH#^cvp^|sWl&ZW6istP17^wwwEVet+q~T<sZ}5
z2l0suLrACFwgCNe2*nu#Qp%D7hrGMeH&m`9&-0znU+6;2(PqHUh6B&U*mn9z9jrE_
z>c5+Fr;6@%@pFa@m>mI@B-U*8#qY75LonjT$272{*Hxq9uD)-^Kyr=3ZOgf=k!%0l
zuFTfmUO(%azlD8+sg+UPk|l5*%S12z!&o(-O8VS<*f|~He^zVPq88pOrcT5Mhb71#
ziK@Tc(}k5V;UpdSk8DRD%Nf;WK3`et0vCbHHDF(aw-HBF`@cP30S2efQ}gluWj#{T
zHVc<MlQi1;R0fSp>0;yYdoXVje(cfxw&9lv<ao6T#+uN4CrPw>$1R1kR)bbLQ-u42
zfen)@o0zTv1+T7X%Bio>gYJ>&`;9*0IENMkT9J&<h{YNt__s|iOK9XpZd4}smUN@A
zy6EGv+1+lvyQt5AkJV_&C$TEq?|{H?yYNnHLTGrtV3;e;Z1m;Px4Cr7utT8ysXX;o
zHON=sF|<IFuXf5#7q8jO&z2g@2697kvqur1s&>N6*ZZs1)z<EoPQH=nmYn#)t;1Bs
z_lHtZLnueO<$;!jd4Akx?!diQh?e;s@P=D-(wp7aGuH8hR?cS!&dWw}B)hIro)L?w
zFdG9Cq{W$yJ%?s4ziOWW@OY9grF@%f1LW@6udSOb)L1C8qYSy|5V`D6xma{fJG73I
zPT?CmnC>2ScwXZ;kYlOtCMTtoh?6>E9aK(|!6^R4*iP+<k#%o9)|h4A*U{PO3Qk<0
zEbIo#<*maG?bfqYKV<jjtW1_P)!LBmELOz$@E=(wSHE@h6PE!Z=+4<ZtanZ-LOtDL
zK#y8N+Q&xtSi~560{*Yid?C+8;_T0QId0X)+Kw2i8zpyE>CBqjNvx|B&VW0h+lm6*
z#rBVlltcZWvajrbQQTCVnM^PCpu413!)S8em%@Ewd{%Y5In6dO3!hqCh@iZ}BL8x>
zUu0*uRRBP5OYqnFBd;8(8;#2QD8(_Di<RTUbev-D&LHd`Gsfs%Q0oxOQLP@ONBOs#
zk=;vOLu}@&J4}Gl1=kDD%Yfz$r2T+_bnf0SP69ZL3aWtz^TubVI;uPL;WDUe##@(m
zck7XJCTo8PflCf_Ne*t8b0W+;>JOaV_g02}cQyD)p(P7yWzdv0amtI{F0U`|uhEH_
z2t(;vm&h_hGn6~KTCM;KV^DV^O^tK62?9h(-5Jjfcv9>e)_Ec?)u2D?Mj|gCPHbta
zx}Wv<b^_?sY<P3i%`|*W^{55LULN(FRS%2eF%6=Ddp$E2^)%p}*QK6KPHRhJg|cA^
z?*0YN5`cGCHkb5XKXbuB*qr!gy_EW$Na2#lUHL##>RW&Y%l-*;s&sfl6G$lRq*2TN
z->n@iIA=URP%KNFHPJ|&v~&d=*R4{T3S3C2V$)`-`u`wVis*GW-Cbh=zuifRt`=gr
z<>PsH*wwWhF0=s=br8VWUULVyLB#k|r%>*YIfEGK6sRU7>P_7JjWg;ah2uXDf0wgQ
zU2OSkeh98Q2aKFqhTyZ05+VMKnFHEyyi_v(!w{0L!X4{#NBflu6s4jVOI>wm3QZwx
zFeOl5Y2IkD-_{V~=3OjpSdWl{JBRmr6W<Ow>Di`_OWo4br~kyxBvViH3dP{%!DIZ%
z$ZB`XOL78+Si?mwaYhQLQ;BM~&#Dl>%w4@NiL5<LU5Ed}%z2-~F4_xj@OGFyPYe$~
zO1^lr>^o-TRkP|-<L6Lu&fY?Ah`Dh|FFKTu#QgnXJr}f~8kU}E0PJPyXy-Mp;+dxF
zhL-6_Ctdyb$Fa?CArA3#5r(TirW4S^Njnpxt;=*s9ClacL01b6XbF#8!~qS0IA}Ta
zb>All$~Eg4%yDf3$1W4nB0I`B^iAcq1xb8})PK7sHH1|{#eZsFWF78WK5;!D>}R+g
zG}QV-H1%EWrB0C9@&?dK^VY2-Qx4TUjngwwpxh+08PVjy?Q#49XgzCMPBrDczL0Qk
z6PPhK8Xgh96mp}L@0PxlT}Tng?KZtp#6QTp0D8wxX9AIcx_OfXn4|~J7s+mbCtGFx
zB=4ARdrv!Z9)s(=ZDo5e_blRF-m-dMdQ`pdAxzA~uRP7-sK2igSxQ_Af9kEsKb49q
zRxMkgc_MM;IBIr}hw*;^)<_~%wxftIyp6XsYqmM~QRp#3)ny|HNBOe8;q;fwMzAQ$
zMo$b<9jvq8d4JmJj<q?R4xoxDp;G*%IMl!ZChJ67u9rn}zc2oDwmd~x-rr_V9(0w_
zx$pDUFzEdKsgQIXeKR7yr#pwJ=z>V~6a?HQ|1Ac5C)16OO3BLOAz78vD1w83FHef!
zwU?Gq64hb6sOrT1o-yaLLaBcEOU|X|<9(g^)IjIysr>lhhTjwFb4l3M_y41FD>3&F
znI9xh1@bwKC*a#nQ|9bLY7%f(GO}bESuETzH!*Vrto)B>$y`@o?cUmj8!9qC9XNOv
zngXRK>BOi~Hf*-iYVl~SV6Io~Bg>pV?UmT9j2kIVxi0Vik#J$u5+KafI#K&rBf)V|
zHjk6lpSwMD&hX6EbwlzVCj~Y}@6^0NGrFJqBlzrEx=XxEFUm@HBG9Ci_XUvP2_b7d
zC_&%@#q^|g1H2Dqs@;$GV|lr1p{tdi!<09jB!wrAm<boa-ulROqC;GFoN~JD_|<vW
z=z_bZ(>J-zAMre0Pl;Fdi7xD3L7Gytz7}OW2dj=B+nSD4KUKLCIck_WP(2}x;kgmJ
z0q??~E}UK{onEM`2G>9iW=p~Dkn~q5uYi|@iCP|a8MFTJ*R%8)o{182F~Q~<K60)D
z0Q{M-X!9ozIbE4y^;4EjC-R!<8J(B{18#Bp#_*J1FW@J|8)Fd8zTbn0D0DM{!Kj^$
zdWwq^N4*$A_Qq>IEl4Z0-&kP;2#^iAiuXQDT2~W+HV?S_SAK+^^9Qq@l5+!iXNt*-
zD1YAJT21<7*buQyBffGh{jKV)mT-`f3`daaT6#<Zdz&b;8fHhoCK%RMPl3_P%lf3s
z7^4Wn3<IwyPp?o0wP`7kYd0s2Fkbs-k`?Gf`JJv=4OFu?IO9ty-qS8jGK0?d>hXr@
zo!FT6Q$(O6F=JgXr5S9e1Cvp&WeGv}%PGY99y@y4GDkQ2555Df5w)Hd!EPV_PB2s)
zjPy*W^Y$y7+})ndHmj<Gatz|sPP}ZusEqrc1Hc`DW?AgtL^GS;{u1qef=CAJEotbS
z=!s3fv_XK^P<=L8oqwAvZyJsjwhvX2GfjirkCO1Sz7VKNHo9TfRpdgdok|h+%jR@k
z$oi~`Y4?RV&iyH(n9aaCvpeb4MiNnkYK|kqzXvausO5|IWM%o~?_TPG^8o3#jb|wi
zIy;l9%;7q?l8g1&nS)gO*!l8)m5QzPf{kdI_|XFavc~7vaH*jZDQtH^%rbTFIeVOq
z9C4NxT$;!>QDxPZp$Ghc+X8vZuuuZd_lXi-+MtwoDdOVDNIy)3f<s1?`wHt)I=lSN
zX7QyN=mJ5&emm#&;pJw)%GK|~h=}PGeipL=N|WXW`!o!gEI2yjiOT}I?xE8#3Io2X
zT0II04c9SopKbKt3Q~r85504cVs{*r!#sdm&v{@sHZ>nWdt=E`FLA;atR+rL;c98%
z{{{<(Rnx&J`gfGzZ0Vbo<F8i<IJa0J;0I!TCWty-(*4M?Eclik<>2;K7R9D5mP@Tt
zGD6y1#tKtP3G1KkmDQJGs~@Tlu9Pz`_2`aM)NpH+K2buYrEn0=a?RPj{%PuS=Eo?K
zXZf8_&j)c*DPaA(#6nl%X61E1VS~JK9K^^%fXAqg@;g3KE+v1Tg@u$k-G%DnNj=^I
ztKVJrO~g~x{Xh+Iqc?Rbr8-nsJ86`d@KV?QGa7jdH9!9w2L{N_=-QRz>iWYqotk6R
z3piSssX|7gx!ji2lx<N=vbc=4PI6p9I@(Lbj^h-g$-I7LYh6#7_BeW|Rsc8{{fufM
z;RXCD<`3buDN-#jvt0dobrO3Hi?gc7+k<S$kMwS~w;}TXvpEmD_>mM}lnpQtAUwM}
zkvj|poxfNfpjjX|e(Jc%WVY#a(?x7`opXeE5@$;jbiAu#2vg$#in|PA%DFT<fFbwj
zQWH~m(5!5a;6I91U=Y~0#@o@Tl$uL^R()0Lh>l9EBw!ziDE@k#D*OegT(o`%ll4t)
ze!6@w-Ag?t9SSFhU$6jBD-YN5kMuv&F7yhO=Cc!B^dNR*J5*Hr`G|=RCVJe1M4m3H
zDBTW{0pJK)%r_cHkp3;F*6`}mT=sW^TP%{F<5}%@icV<W%RH>c(N*i!{=Mir)P_+D
zY8Jo0uxt2=MLx7Ax=m94!z2Z%b~A4zVDByZ-H2I_TJsrSF`A>Dwn~C+46VL`4chyt
zMgw2?YMkZ1iKSZE-Q*gufF&OxdOM?K%K8k|rJ<n}E1#A?5BGr;F|A!oP<=f`AZfo(
za^_3!ahg*AlUXCyJ?#|3h!}u>{v={CXgdA35oS9|&A%c`FwfNL+P=Ddu1sDm#$u2!
z({_%d(ewxeS;@oE^Jn+F)q83b<_yAmn<YhgOD^tw4!x<jBEe{3y3@66qTf7j_D$zm
zCE-A^+Ne+lhqZ|C%0<wmDs@JvH&%_UM5P*^v2-K*o7*1jAND7WIeq)X+6hB*EajK|
zhgH<}(&i;RT;s7qkYuZjL<u@o0i&I*E?*vCZRN4VZqBB5Txd|j;@6-LO3Z8=u{^Li
za9Nj0McKRkDoIjm#GT&ondqq6{{dvBQysrAcz}d1j0@B~U`G}ydsVr9VSnlhH>Yn?
zEm}`HEEuYAG?0#Gj#0lQRfQ_vclJklC>g)d=6`|mH;GO&g`2lWydo-$aFCUD(<Dfu
z7eB`|aYIemcE^P9UO50<CnNdGtRp)(J<qN+Wzp)FE0v@WyY{LiexJ9IMS{58YSE5m
zcgs_Au%vwCE+50~a~V1<2d0oC?&g>k>CJ;%N32@dpjH(t!q}9x)`hyGb}#kF6GDPt
z?aZ|xbn+@?Kkf||DfuHnu)tI`zaL766KGg$t*;2ftPi9;F%8DEH9SZ>*^8jSQKGgI
zyHgFUH`a{TM|{k*B`o7M<HF3Y;G^7>@zxI{>}BM_OTJxyE(%)Pf8`FQp>!4#1pbbo
zMXF6m-VY%USF;?T8-9D<F&>H$j2zqjyag$A&1dXtr<Hz>j490}FFkuY>MhJ&hQ>i$
znsGJq_?n-`A?K#OWQoT+VT1>PaL*{ZJCWj7dNrkAutjV%f)f2-=p{g=Qm75{F||jV
zXhczwvKL}CX59v5H|{;zJByHgUIvX=oMfh0NK!oqima(+#EA&mT8E|oz+6ejwClb4
z`_d1>5Ko~zWrvXTITYE5f??r*;WMb$2q-qc8P_`|dX@0jO$=(n5-7RY<&qU&>Yde>
zkG!RejEKwPMw|?xw?8-(fgi`17<92<8t~bF!Lv(adWT4RVQPLG?#u6Txl}7bs6)IA
zVwJ}Q{k%1mCC1j44<m{%mjyv(jPLD61E12)uO3si@4IntzN6a%wS+Y?_h}3wmi2_i
zY*0w~fLxmZ9tLTv4Sk4rta6=`>k$`X317XT?v7<&YB@uZ-=z8hr*l21#9N*%zf94r
z9?$+7EZmcj?gon9;*lR<2u96`<|ym^wsLyY4Gs9Sn9d6vd-0JX*q{-L$OrPZ&L+NX
zRb&1oSspM5D!5xmXt;f66lSXrdk9lfknG)+1kP2^y1y9i@~wZ(pQIH!?T-=5w{%IL
zoYc`B2jydVTp4Zm;rcdd)mN_{Jx>*cmamiksO|50aS`_kL+Au~C18O!j$0ArdNl`A
z2082a2$0_;L&Hsc2oTRZH^-vDLw)cnjW4O|PSQC$#{xZ(Tlb~L%H<Hbetp?Gora@g
z0N5Z+j_}O5>%2PF-L-qD|AZk_#pL3zK~E|jjs1dGa7@luw8rb1-x>h;fCnLjtrg5<
z2cu=b`a&i8mAt`Szq1?X2Qdp74?{37QZ1*7&lk;n<%O`S0;<zE#@Y|9JZ!*%C!YvD
zSmSbjdPq&!yvVGS=DEdi90U*B@UDy0SzoD4&%_}r<H=)sGAfc*Arhlm{LOm>lu8C7
zc;j%n6uk~FUyY-=6_o0rc@DaZiG5gS|KChIJ3UXCLO77F4n#dDu{F#UTatxwld2mp
z&AD<$*&;y9^KUcBfx|dck^aLqDUk|SEjH$_wt`{9lTj`*V`Gl^lKxjSoT+bhiSS3<
zDKv-y^moePIQWA1&e3amO20(R9rq7z49QfjDA{l3Uvx)eCd)sxW!ho|E{k*#S?CpB
zF=1e5wpMuWUgI&f!t}hSOcWM*BmNRd7QLLwLr6So`Ik(tjD@3VUHk&x=%_CQ|5$*%
zgp)PLukkt4z;*dT;DwzY(b@kj(@?<U#me+w;S8~-pNqcm<8-tMG9Kp87@Cy!Zn{^c
z>BJw{)dci`3;}&9Ndtzp!{V}B3ohm38m%g9^c?^z6|Kg;IdJco<vtf3g623FMzaI-
zyK4F;(#pd9eKWNm9M~URjW_<glORa<qN%A-W*=zRLs~X*IKwBPfzPm`zn^N+071su
z^xHYK>IcG*7j!&dyEko&8uiYPy}X-I*mM0|=9h0QFZKE*8PtSPi6A?@2z&1jpfkQ$
z@)lI_%7x2BK;Sv`O)`agqSDDkJp7Gn%h?m8<C)_38hpXMuPu*GxSCd0b7_JAf#u6o
z1K}Ds7;loj4h@)Xb^UCH8JQl@8u{?YXj!m1R?Hp!E7&rW8ks)fC;Br^8?|L-E;n^_
z&`wH`OW#NQOBalNf`%@&Qj(lkebwxDO?F0@tTq$W2G%@m_6&)cbCcb&xy}SG{Jn2i
z0z6VAovUou;o5w4Dsfem`dSKuMDo<^Q^W0s3b(Qa5=zKgrqFPO*AlXQ;}{dL&gdI`
z$&`EW^ZZUmqm93D(@lI%Q7LZ(#*8<{?12o_tuZuRw{rEEucRXeGNZ*{!GwgX9$8$R
zdSuM0nSe5o%DA?x5t>|cxd+eKUR0+P?>p9Lsn!6FF<{~(Pk`wjy2s-_;_dlFFzT9g
zFF1lMvHhp&AaIz!R$`fq$qf|=2BIbb`0DqZalQw%&mUmy!*{qjDc!qECVpyccX<F}
z*c>#>Qqg2CKz?;e>c5%0fCt@_?g1C675uxU2+F;NZz+kio}=wv53sfJl+n&vJMHfh
zEGUKf@|9c8nfv%0^#iZA!N8d+G}qyGFZqR;3_#!kk{W!=sHMaR4Vxg~1~|LoeeQY+
zSkxMKt<Z65>=s4eEO}+@5^b}O;qts;k|j=i+@sESy^-*)cmW5gzn=?z0q?bt<4|=5
zeN<c)jBosVSBug*cU3%v6rYGTI$EK@rB1_MUTR3vn!)jbmbsT)7r-^(4x1Se$V8=M
zw$OmxzwzXdTdNYMNz1UYD|Z3a?A>Q>(|8YpWe}t<(^M$y<50L-x3q&l19v!zNrUfs
zTjUxadp%fUCb&#kRNhE;>dy!Ykjm}0OTsUbIrCx#?;j)_A2#KMeYTYrC)PbBDPdEZ
z7BZPb*fR_$K&eCCPKsP4f7@nH^kF@{p~gooxcV7ecQhwaiV13taj~-lo^u9LnCnpN
zS2D(%Q*-gmMORp_Fx-JZghiK)jO=eMFA(*zyHjkyYyUuF*^>Mqp47y1NsQAmi^Y0o
zYuzZwE*k#(Rv5xVcg?TKmYw<BJ!OMg&_hGXGM$Fia}7>9^xbREb8&4nZs~x|Q5WTD
zr2g6#gK`M#SaJMj1_Ad|tXly>P<YCTgN|pr6bE0Mz2zqGm$bE;yhP}U6XUYi_x`5(
zz(+!s-2>drM&%bfP0Dfih*)<YaA<DsydsyoxRpwhTloKHlV)8(Z$0xq%f6n?`;AO%
z#vRmD%CX6e(bc(!dydeJ7h#jS2GiwsqeAbv5UNPdmnY`x`~r{fwXV(-O#~=I>h$dV
zo6^4D;@_B)>3w8uv{O^RvFKbQheQ)siy3(Obqy8sy~d-AIsS~kPY3`xTJNrjX<=CE
z1i#&Zv7N{3&EO_a8?9-Ot_|BY-bbUeB{+Sum=I@f#qU{Sd!gW<r@{_Ii2!hE{49RL
zPs@&3(VkcVST#!pJ_>Ka&~#W>;sl|b6oBO_FZKw#>EWArjTTL|pE%jsG5`F*ef6Qx
zTB;0(iOD5b!TO!2k+p@R`_-oc)_xw1&S%g<YZ6A(trQVQREWrc3-8;YbG#+cg<fwK
zwc<#N1`_$+PD+Nx*5zhgfQL=?EH3tIpP}fNv8Qv7^vC|BM;yG-7D~DJv2p)#F`(|2
z0(BQ-ZN3@Z3&-{?Ey(tY;zd2q!I)!qBgxT>cT3z5d0eKx4i6A4BDYaiftm-5D>rdh
z+jH-B{9DMY>4R{Ambq@B*FzVUC;vGWV8%|rG#P&;dv~=a0R9p2uzMy4bj7UE|3bBe
zwDgu&yi>~D(dJH!zfOYU=&r5n(Xq-Wu*~9K$>gxj&lsQ!hE_f&Icqfl?SUm;X?>+w
zRW?+MD7VRA87ttK5+#_E5;d}Yu~;u{dWY^kJwqnzdqpK}yg%@9$7g;yzVHh#@4xSt
z;>ei*JT-FiJAM9n<kJ<J44AgM7{d#~qhJ)Os`$3OhqF6bmHu(Q7YALCHh5V@1FOZQ
zL#SM*%i76a)Ha_k#R@f0s$lT4$wJLn6x$dqh|@$wr&rD>#lC>>;*jtUe8lrvO`H!#
z2moa!O_<FmOv>rk)?>$pCYTY}7-9cpU+RSsQE5ynkprP^Gv%Q25@I@?ExB)5PvYf(
zgNZIl9~>E~50yb+0wV(OFCOL+Vt$H7I8P0n%4xS)$&V}^57t}3_M?ml4=o+)T90v0
zbI%8rcU3u+cVuJ&*^z2(85(5nwfM>s9^=4V{Zh2l7<gknrXh*T&Oy9`aGVYRGLj2j
zv>aZ4fdp)?xD0=P1T`|49nihI2vgpkaYGX;3IqcLi#by9Z@iIH8BLGs%Fs>7s}Ebb
zO8}aAXrO1vSQC3DpcgkxxJfnCBo}{EO&ygz6Lx&1JId|7>7~wL3BnaTQhE(61b0!v
zf2{Rg&Uctwl(>|vr4b<bTI<n!M(Cu*-%E+hOzt-RnJ#@0&Eb>+D#IRot-c+!L<g_C
zOtgI;tGjl{IoQSc&`7$dbT2-_<II4VDEn*M8*TOpG||U4$2UchENd_ITu!@mjSZ$R
zFQ>{YD!#V>vl8ix?~hcFYL&D*_3FlQob&GK)!via%6hwiT8&=!&j|&@x*;zwHr3QR
zUwHnH1klm`rBw5E&<|dqW%^%JY<oMk<1P{l=-vql)490l8N`+TolJg=h=YiA)@Y;x
z4749cCDe%qW6+DvFF&R_TJ-B8M#tHd_CI4`8Ek#wej9%2*c12ZSLi_3kMZ_A(+-`n
zCFDVvoG5^Xi#yyvZ<;tIK>^Wjv&_PQT-}G=E#uinMCX)auW9@EW$^8^J<)aH8EgLm
zwtG~>-3iW=$k$zhbdT4}Er)Ul5dZXpPG!vs<cXJ%VZC3i?P6$p@VAZ&64+Td>6qP_
zsS+b?qj(1(kQHH_n-Jdk<16uRjSS^RYO97mP~yi`0IuK@FHh92fRx|3QyJFU&qWL)
z>^{)sdjfcdC*h}vo7ERe5zv?55IFHyl9tH5dC?p?PIaF(qnAVxs3!(Q9fA{*RW_Y%
zCPwZV&~FV&ML@*kYkrVKH|@<aSkuTnwz{}LcPtehjNOYwu2q_j9m_`UEVm3J;;pU-
zBQl0so!q#*74^PZJ6x!#^}5jkwxL!FPz5@BH$H}GYREig&$!;kZ9Q0`W4+z+--@ug
zAbut;64HFqYn$fK%rmU0F__ngQrOA^yyMO#0HV5L3G4~-UuiT=eL5i<*F?A3@^qr}
zJ4(DaDC+97)-kbevm>iKhzlvJhno?s1jPS2t?NLZ^6Tw@`odm*>2d9I+m2PZSV{eZ
z^$@KA>c;+|n}^}+e4>$U1`MMik#e((u?a}TF+#kn0vU`#WW5Iep9y$em1f~#1vAuI
zZh|+O;^L+w?q6)jx;TPLRP)l3^D*usqv<XqM?6GeFhoK(>Q>j)K&w`svtkqS&>5<7
zpl55fjEN7gMZ1j#s4SffDRdYK_0@4?b5Vw2R|bA#o;91lM~j>!4~$R>3(AD3J@sn}
zRbMty6nAh3hkjDFJCH;d!Ub05EeuT5mW6<2B;Wdr(D1a};G@BBEyzwII2o0QeCu!}
z2o-0kh*9DDW)X7jl=iB>5U;f!`bPg&+e}rI<KcbIlU?Q0whd6V$OU~-gsx)~&3!6L
zu?+K?H4z|_1v<_P04O@q9ZPX0uKf!6VM5R#3a;j6=i>_o)SYv`*9t2VFX@fX_7XG8
z{U&$b)18Jr6+B#t02)HI=OieY!|@AOu54;;2dQqWu;hv{(Xc>a{WHVtzYsgM#!wrJ
z?AvlT%(3jmokbY*=4mabZGv9Z((x%RboAt_ukkWfv$n!a@^Ja`&7Rkti(DxQ|GN;5
zDL!igi}A0LWQAO_h+#u%*$);cWi`xI5^{Uf9zXpMIJP+ksQwspkW9^y!HRbSs$+SK
zuRZ`<fX?BlD1W-$;KsFC%ilJ{NMzG=b{W%H)`U1oD*6#Pf-k+dE+ol>z&?4Mp^1kE
z<?_~{m_?>>Y|Z({ZwK~f+Z8CU_+#-rVI<Xhr#%V7e;a`!ypaO6(ZNQ%n@n_9=?|2Y
z2GmGjX2UToPiIRr2UIoVlTte6g^q7_LHP6~ssVfJxMnMXO7uF^1xTd@f8S3P0r38S
z6uMaN`&wMQW3>2=(Zln$ANAqGGf4?n_=GX6>xLPKN;^j`;S}i)?*!DxjoBxEYusf)
z<2;v*p#V7^^gl8uZ^|pG;!jiAhrtf$SY3~l^9>j1T5N?(Xf==c7>=b5SXo9hjn`+Z
zZ>%lN3sw<V9#@0hS{Yi>*>jE^->v)lZ}hOFEqWs4L!&o18}q(Wkn@-JQ}I8*B@cMy
zL;=~MclW2adI|Cb5(F{Ggx$&hHFp+hsc-<_dp|3_Pz8iqX3!Ygb=-^4lQe|Hv^gCp
ziddZg$}zq63z?(7`>l_)d@{J|N1-k>`m6CdyiD8ulG;tbA^G|<I{7=`jEfGe<23H=
zsg6a3`IXfeMiYqs3lwb}Ap1yVV3n5dp}JqCDu3ndRL0{gCjt~wrVbMwsvB<tJ1m|*
zBwde5HOK6<+lmM%Rq}~_w4NIN`F3qP<8!jam7kl)JO<s2_+k3Ff3M*HC%SzC(CXeb
zi{%>%%#i&EBfH-MkDt(YbYKuZVA$;EP|ciW1>M$%-Uc=G52~2+Hj^0NSd@N*NXu2&
z>9lt(XR#w8eP1Q<T-I+q{>-I!0-S3bc#28;-&0^=GDl}3^(C#TaD&-TkxGOkjT!<B
z)`mt#Bu%`53`?JWuBQ*Xtqa#a5gm#6z}9~I042rP^;X^XOqr_1=*UnD6X)l6pPPO~
z8mbNBOTA**()AWC;D}Fk%bdVY@8WMeC_)wdO_F<{5XV7y*`yz0wHY4Yl*(Lv5l9oK
zlJDjuTzjvL&XL`u()KJDYrk;<_rU^ET47zkwCtr;AJ=4RJwJCWPLa%1C1t7FaZS&W
zf`3>=IV?)b1Mg}Z>$!sl5qLb;sqF0_@Zh$IK&5fLi@bJnw->x2=IWxSv|*W?poBF0
zI_Cxa2d$hrIM}Zgob{q@=lG|Lp6@XkIkrJUV>yo&Ab$yP6|~Lah~kZmK#Mo%0pj-M
zci#<%T_smL{fgRnf=ln(VX@oCM5W2mI#Zsap@56|8&s#X#<Kq3gApgDx@|wINuDH@
zZBC&gv*36?YTysNo+ARr2CJTypttJQ43DiMi?u&1KOJtyrGWdxe6!meM3aX~%45Q0
zzv$5`GO;8rCEKf0C)LzfSM@aJ9pdG81=K(MC?%aYb87|N9Y0r->_Pt6sk~`hC~rhL
zh%_}f^-}#d=1KFP>>oaKW?(q7B<9P8RT^<XbV!A4xgdt4!N_q@D7)PB-$wB%I2^kC
z()gXbM_x--1CX*mmP4K~JadM~9n$jemayP@$irrUyg@ScSCZ&unTHg8jSj$&QYqu~
zN1VQb8@(?nDSFpH>T+LL!aED{+xk1ml{~$yQ()bUiv7l2hofo=`<em`;JN?ANbDr;
zRlYVxA+8?NR8p^pDFD&z6(p8Z^nbTclXRr=exx{UwunJYy1FPqly(9%>*_c(Anz`j
zxqqVV>>u{h9m?FxnMb__D1L!f)T|XeA8#nb`@1#Ql~elE)FwZ4N#nHq5e(NT0l9$Y
zmb!|lZ_ocCMqM>;Pn*|O>+b-;bcRmI8c*1t;I>AVEWI#Slj#&!{VG%N;WZ_}xG<ne
z3PL2my21j$-BW}k{wjzd=&z4CUR<s?#|Pn_^Osc9FETRk9oLU3tl^TgUwP@JUI!s4
z0^-((92^Pba+q9{-V7P(_7_d{haa@;Hn#E%!ZJ-Mr?q(!(%h2ja`VLEPLVTr-_p|w
zX~9(iEVQ<!<+=f2L@%l9EbR<RcHS{sD4@OKDoPJ2en<9HX`!)esMb&078$(F!SB-;
zpldRi<xa*B6LaM+2C$~QZlSgt^TLR<jd0@;%43pK0F_ae+v+TLZkE31T@RQ4jj${2
z_Onk3wd#DS?Pi}(z?kd1;&*-ArA}s~;B+vIbSTAr(EQgF{-fomO;f(>$Ge!)<LgbA
z^HM?3RM|g(x&JQwRZG{Y`*CnNB^dkW{Dw)?OKLnZmE@PN`FGo7#pnp(@<{@se<NXl
zt+~i}!)f07>yYB6>!^^!O2ju)P;}(EaF$zYVHL0$N?l(~qK1PiiQ5PeFWl*Y&0xGd
z&?g>3DksVPN>P=*_eM0ALmRL8=TG_x2jQ^2Vx1iJ50PMGhog`DFx`I_40X@>6Zy_@
zFzQ9}gf{a3o&_MxFtl+=k?43lVrK`CV32x`5`ZaDF>QWomiDi8hDB{Fo|LW;fx#GW
z1bNB)3<F31-U!=WwRfhg2IAELP6<!w;b+O^dgZ5EM|)k_Uk(es=AnnA&FOi7$(erl
zL%xB1R*-e#l1*<OnU+309{4Zfww1oTgvcj2wceXoU?dFgDkQc)ZBqscmoq55)@{8v
zy<D2LAj0uIs^Az~?bJLSTKd>aHVFXwO^q>Bc*)jv+guW#Ihz>0QmOos;P!M*!o=*H
zIjMo@-D}J5&c)BrTwtY&g6RAzy|a=Ma6^!CW(t23Tjr?D_)K$p<4h?{`BKqq)<v&J
z*ePHn=x!Z$ri9L|$1#=z`VI0gYJ1rmA{Fx5$e-bD6;-&?6=DRKdfi&5TT0*T513VR
z15QOSFh!mvB@J}*!EjoAy=!30086Y@JEoa_-iIVy@vGAcR=Ap39Ex65sws!kmc8gV
zbvPx{sX@zDKJYV2HOiDY!bvCfei_eY_1fCeok8Xr03WXhBM7)*5qrSI^T|6fZ1_v;
zEM(Ri6mrDwG5x`=VN4mgmXI^MvuGe${hfOL7a8TOUu}PVJh`ZGIz^Ncr=<Gqvg!gm
z1q>?B`6DSCp8ZM97^=ya5bsM!klR7A4CO_-UP2$`dqpzx{Y5do%@~$e*ua;16vA(N
zk5I?9#$Cgv`|lb0TDuu5bEILGKI`kX+7Ej}BbNYj;0eC}OuJmq^{GecJc>n5fOnlZ
zuXI|em<vC*<<6B+X*t8`Czy*nuXZbH=jgFDqqt5qPZPM|-=P=~ouivL9CkZ}cH@sz
zhh&%uJx))CS{1g7@BGw|;ehcI7T5CCzNDU8>+U8p7`4v#5J8whPjAa<NbPO~s{r>?
zLq*>NW90r#l}y~V*KOPAAJk^4J#q9tOD!cpPVE~NpAY@Tob|zxLe5~)R}XRdpx9g8
zM3yus#}v!n!UhSY`T_%SnyV}KJFTbbGn*SM?ra2yso&e6aB`a~dDAfv{M@Vlw?^W3
zy&9tI_n0D2=u1Ee5ADxEfWJF$>+EY+s9#>`zaklIEGtqh1){`20HyHih*GKLsui}!
zR&I8Kw%(ILWGY<~ZKBO(RqCniaW;i<wB-M(2#|OxlnWH*!p?{%s<PezIp}W!Gm)&y
zp$m><&`Wx-`$_Sz8Ig#@^Tujrb^b;=Nv;fmCw@8W%HwR4zBxtvVPZ}Lqn1@m6vtwC
z@9m7q$0b*f`=0cwu)QQAtB))1wF{%&hU)bR0Um6z%Eb5*4%;K@;QyubM)7rfQKyg2
zcF5Ea;b@e2XZh#wQh_M%6{o>4h?Y89Ev3SXdf@FQaNE)B4$daj7pKGnfrR9@a(3yU
zr%!17u79#Ys%fSPBcpJ-S4t7C7z^`A=+A`{BO6$hc&n?R2Da1n;rCb`_ahWR4W-$y
z@#>GBZnd86SP_(|5OP|_gU#GK?<_H?&@F%mXy%CrsgcxWQ;k_D*?D|Sn_|m+7;V~T
zXXtWGW9`&L1|~jmuXe@TBJg|z!>zx0oHNS>j<A+8t5k8)n&qyCyCfj5tzNu3w{nn`
zB^x}MWg%<830}EPm+3vv3rjZn3znnpf7<}KMdlx3c>WQufp}HSv4As@l>`wkb#B=7
z=x^lJLPT%)KJhE=S#w6!3BS^kN9^@`^f%AAlR)d2`E0o#nkOnuA-w`ek{;W+IAO!=
zA+b!j<65@C>_E=`_3~}^M8%)!>L%|=$($dwuotO=fD$^N0RWG#_>Se}QPnYOf}lj9
zYW?<5)2rNi`4GlJgR1g#M@#yloA9FgPPAu^0M`A21ks^S3X+zVKl$78I*pRogJzz7
zk%Nf`Ox%`qQrg-sG2d`U)PZ6*BAR{t-)0p&$Ax?ejdL;;LlCsk&=t?5dG}4Ml%nJ3
zrY_n%%ZB@5e1$i87#QWY`cwqWX@m|2o?};^ZdkGEKKc0q3DSr{<~S(c%2UFRi=lP(
z@nj5p?Co%r-}aobz&+MKHU~-L;M*wMmkwnwpw@+vk{FjN&j`7@R0EJ+S!r~s!z84p
zb1M-rP}}9+H;IbBlvv(43>vI*Uu*vcc4E`;(GLK3%D=Z)2_;g&sJ%RW`~{J?Z)^Ok
zHCQEi3+)2A#Ew&-gk!Y=Z6daY#yCQA(|px;Q90~x7Fpc(|B>f3Mc&~8{$U^ak*vO4
zGl^6v8LOxw|C~o7K0Q<-VDDe>Xuw`d)0TWt@$bH{lLhkeI|*B>th?a_4!0S<Nl!xz
zK%cpb=}5^kMx=;0Gqics_95t2UQA@|`OPI#?_T;Y`1kdBFIBhFd`GAJu1we8r++W?
z_H@_oh5^Gq<i<tlElV&iATxsNuz+eglde?+3Lq+&?W0=NmH%SKox+z))7dbIiMI?g
zMMIP({04TrTJV~Z3Q?Mb;^4_<UQJ_@qm<|v3)u_eXPv+G_`?8rr_9F7g?NsoM;c9@
z2RgRd{w3>7(WLV5%Y<|Iezl-7un~uipANh_Rleg@Rl>VRgKEl+HW3g}R1D&P9s2<6
zSgRT0OL$4Gl6}OjqP*;u>UvtG{fzAXth4Ihs;3IcAqr`|7~Uq9!zI56<EAN_yJv_D
zs1vuIS9Glx!&Rk8H+<Fqk4$%?Is1Rhbg`uiM86)o+ee@ff!nVMh6SVrPypJ?sjs&*
zPywP&jjNvHAf!A$`dt;OK(<xJw1?%uo!8V4Q+{uCkr(O!iGo=g%D8OEv3VNTsg^V>
zRRE|(`0wSOE{?`ug4TC()3s}5{k>c}${CX1(K&3FvpXwIZwK7UD`4v=<*(n-{IJhI
z{@ASNje*XgQlTcAmS0;~u$>9&%dsSXZT@+PP^v=ZvS7ZZua&0?A<T6#!6d!v%KxGL
z#Z)$Oh|~Eo#e)SV`3%7%gTT=es=diW3YT7{8dIk4;Y!XG#lQP?_D?EkwHAVQi(CXc
zmH9F6O)0OKLq7cozZ~0J9uHyT_glxVA8D7GZ+EkV7V;s!YulBXW&z4{766r`xc^*T
zyfaOa2bw9;ckb?cy|oLVA2WQCp$E)FykViG3BZbj;^iLi2$ltJ>=-TX{f!V{0ef7D
z)aA#@FX23|^sb^2w<YL0PPR5*e|3a@Zb%>kZ9o<x|3Sq9Ro*(FGba)31?L@nIR@OO
zM*f`xTaJcw8tszZ6QQfK^cJ0GM@2>b6!KT~Lkq#M-Z)paF3rx@&D)%m4?8`)@jw$>
zt_??d?RJT+@K?!OIt_wHF$4%9>xgo*$g`Hi@9QP>%bfgYA$`XQ3!vse05u1Hs=uoX
z&z#}V6$zn4Xx+Goi2e7m`i>XCi)N?~N#*-MrBd$**ka;Nr$4V4{&M#Qdf6TxBv!FC
z%z-?wvlXz4@tUb$ob@40!L@D67NP}Tcx+)2@#ca`+sm^)r<Wih|1h3dj_|mhmiR9-
z_6%J`gxh|>4mnQ}h9l4Hz>Ev$8&BWlpxSd!<W2JeO>>FByLegZ6>UP$FXY>1r_hNA
zMEjEPDyz!em=R1JKfYQNb?T16vUK#>s{{JGtbqP5bV8~5gi4kyBFBTrcObceo>&gn
z42v+m8CL^_cYipxg&29Q*OER>6{@jbN?=yqH`A<#Hqme!DBI=zr2%$V;ZI3&MQ#{I
zV0-(hiQkwBT!Sr%YE74?Ev5mde0!V0Py88}0D|0pG-<zd!*RrtswpL09scGqlF4sD
z1-R#$CJ|bj{n<Q}zQjR9FxW*qI;1HSO*f4_7Vi=%4s}TP^q;8LJ*AQl#yh+x+rE83
zJAq&XP0dwfew2|x@-&3}NK6!r-S5kMzXFIy_|?Nli%hK-M-a#RVLCt&nA66KK9sG1
zgsHuH?c$=|=<$dUwnZuaF%21G)2ZKt{EqaeudRp01{9D%z%j3Dr@~9*fc79zVu-|I
zIC~BpdCs@Wznk#QjK4b9XC6SGz>?>=Iy#|OZWSz|4RA9*FX4ZgIo}xT)yqZ&lnb`R
zkMjX!&+9p8D`c$n`cODru~xhKJ42-fXG|=Qs6Pd5az<y%V&wofL#e3<%fm~P5z{0w
z@eULAk{TWxtw{vCJTNV=up?0cdx8Xr-e1q8j!$s{`o|{kzyH_9j}rn5mL!jaf+sxG
z{ml^$@fo_y?!)R*mELp8kuCrbVaoV2+>PFlHEKl(vGm)wKiiY;ETW#bq}v+yKuL7A
z(=6K!ZuI1&j$I`cg53n2Ri<%Q@ch+cqQ3|Zk(Qn74U%ZbB_R0G8lYm0yS6In`rd{R
zSaT8i5qN`xK69GC%#^i*L&OS1aV1&^ao<Wc%+shPZ{4?_h^j;AwCjs5Kwv!y!1GY<
zKCOWe7fZ^q7XLWQu}op$1QnZUMb9t*k}*v|N6qw9nAqn8t7{v9{Ca4q`~!d=CM4<d
zv&}B3)lmCQPwp3)8f)*!M9)1JquvlRGYBiBC=}&=j{q8-#N}?8Tjl6|55Yi_hmWXl
z%&y!M;Oon2$;@X`vpgeM5`v&mm!K?!$y*fjjA>KUywAa7^+@4ti=R!e*I$?^SOyZh
z*q*RthCQ195&``BL@7jw1PwKZPrp(#R|W`Zq8X`H6DX?b|K)motkF%y1%xW@m$Dg^
zaB!3TWCl7QXxOhbM$*gvFSgz~s;cjc9#v2}1W75SJEcpyMLMM=q@}yNl#)goq`SKW
zLAoy8;HA5H`+ofX#(3lRo_{zTdgY$8&)#dTIoF))==5kAW|8Z)+=Xtl2r2D^z8>ff
zcl(qlV;sPktdgZUwkIt^_E`%VJ?dRQ^Y2x$^+{z|F<(_*-}TT+kt;bfHg9*j#bDFX
z313!GITnPl&R0Yp%h6YhL{$}z5iABqpVkdB9;#{rCym$FR6M2wW%IAAVq6x7Wgk|p
zG+Rm-_8Ug2cBdVya;+^jGCQNKzrR)Z$%6uN2Yc8?B=W411Y6mhN_^JnyZW;Bw^#3+
zh!Wq0jbq>-@^iKbBd$Cw*7L~Q4;!~p9}F4Tb?Hyif=$fcBI;cN0_h9Fs=VGZ{K{z4
z0%zThv$BZ)bXu>z_nxJfvA+4`U@&EW$EHaV{Tb}K7b<U&Q7KJfb?0!kZX;pXZ4AZg
z78bgPj<Lyzk-uc^uz@YjBlhXm$C?elbmpiQMUG7D7*HVn1U&w7${8f=_R(l5Yh9*&
z1wR_30sD0hAh<1ELd7O4$;JYoGpc08;;%=KeWe(OxcGl*#wKrWSC|;J-G@48KXCyD
z3AzS^GYDtpF%=ckZ><C(4s*3F`%iY3%Y_64@9mRfoj(1Tk%QE5(W)~d_DXWTT+udV
zJNJdkCo3Dy|LGimDW6<J^qA(6>y^^#6Z7t;DqS8QDv87P1rZ9>SGWZF&5*_*I)avi
z31d#ZmaD>6Nf@g`6C(<KGXP}`^xL{lmPnlPZ0kMtgKqZi-XCY}639521>J$$LYI+l
z3|S*C=3#5peBNvm5Jyl9zk_(GwAv^UFL;rpTC6HF!H`i=bdF9=zX`slCp4_?`OOKC
z|1_yE?!7loTe+BoPnYfSHj_4JAa8ospdN^}Mm-5u-rurz?n>$aC~=oQKQe%cN>_CG
zhbmHO#(?(RN1tk=Q4P(4CP07&t6U!OJN?d5Ewzv`n%MVfnF#9<(;dmm3jVrs6mAs4
z(Y#yPe~@ykmvFZIsdg>Bl-@<=XvCUMKNI8h^=d#4<;ZPfbdy9$5GtRH-c8p!Us>-Y
zd|CRus%YlJd2Z5{wa#Of*9(UH>q<84G*Y0Z%GjYY;^5-yt7}JiBPQvg+k8W8EM+~T
zS8xWJXl_BXaN>*Zy{i)Q-C9TlEZS+ZvLK8+Whi>4TP<FK2paOFCd*~Tnr%m+7g_2y
zdm*0Bja(usp3~zk^E`Lc{`}6FlIqa$^IJql-K1AQ?LCk)?yn~JAv+TOPo}4@h4F)I
zhRkDt7C3rQ3)V*bj-<EuPnz~ew|4l8Ia&l-R^tosg^NT%zm`Fjz+Pvt&KJPpNh$Cc
z@X;GgvqXb!mO5Rivo3gFBR#zN`|BMGtpAiR_bI@Wm;E(nZ+l(UTPbOC9@6&f(AyEg
z7b5z)lR)&nl>mh_BJep~c|TeF9}ma^5nbr}#P+W@e7bhFr$ofOPv5=X%EITY-RGjr
zq>vInTWy&%L;*Ot<f0n%&&asrF|k#(&SkW23YQ0MvL26AvRhq%H_AJD@+TU#c0VO9
zr8eB4Yh#*yrF2*0uM)WEWKoGK!?{6HT?*94vx_Kvn?=_km3ZHo?!^$O8R#&6q8{Tc
ze5N~Nsf(RM%_Do%D6vQgxiv#oDJYXq_&d*)(Z5x@P3x&yqdFo{d7xpngUV5j!{f9^
zYN|Mw)A}B!pQef7gYEYIB=cM(OcB3P6l64INsY3uxys`UatlNE-omKaTJel!@`Lm(
z#w2tfy)=s6wl=pLQpvYrUNNEk?=74Fv6mm(K&GY%6UEc=Amo@mTZ@~~INP_%`zanF
zd?E@s*7_6#UBsZEoZh=!551G>!W@t#4AV=PhDJvkssF0cKAU(3H+_rnY<)!Vab=^n
zKN!f?i(w^T<CpyY8_w2UF~*87Q!;x?9_fIWOr((FE766ZGhUpR&X=>r8c`I3R{Su7
zTA3B;Q1U)GCk8<SY0O!RrPeyojhKIEZvbRv=@J}Fctvt<2@tB<PrQyvLTfB6tRQN1
zQ;Vkwed{Sy##ZAWNQLs%EKyiE3g0aJlB>5Y*u04;+i?Ip+YQan()$^u?fgE@@4FYh
zT+_f)!kNfwrwXV8))r)KKD7=N_x8i(eZ~C%oNQt|xtTNn<?jYOuWl9#g32DcUv&pK
zYdbl=7vL&$UegC11y0+$w>W<-DVYSkkCA&2G4&go-PYf1@*EvwY#{a(A={DkzrIm}
zfvb7`j1uuJUBX<Nqf6wD^Or96kK@JzsgUg)mJ+LyuNg*$+rKh#r*zccMZ;+snwU`j
zr+8YdzPwQ^p9R;B%MjJTMg{XM+zj<1G3w$nCbP>)zAVXLiLuQ$;rBUg1))|){y!bI
za>SX$>Q=XbRkoaY3ghWRpv>NGz@UD$dsmmdOF5e9xEXGdXI?n9XXsWxhwtL2ami=T
zij9BMHrxJF|Ic${K8bMo9p3JPRJQCH7J|75E|hFZNF?6m58Cd;+#8RJn!@)L3?3Jb
z<52%rA<d+(E(c3Z132C=N$J<hN-T_fLD_H(5|Vq|c^BP2<dd43Yzbt16bh9b_cy!#
z9A*!_XUVrU`2SIGd*Vzhkjb~tqg5K7P`IPFWPf05r87OBDc8^2o~w09!g<x<bcMGt
zE;l>y<3hhVL>5^)hPW-@xdY~4hJF#?Lrw=-7dceA7Uj=kHu<Eb*rHCien$#ivy*?+
z*4cH+Y9voHT4DL<i6bQg){#>kG;Wa_Y!+J3f}<?_p4@mWS3St@2bh@HA6{bi<I6TI
zG>utVH*e*>55Oi68$F%qXE9$^#^;lrDDMFnvV}e<d~B^JSjdxNYWA>!Xuqz(eU<J3
zaurkaqexiV*V4<fhgXBJfs2#7H=jS^E0s$=4<@z`Cq4Ts6+Y&UAo!UzvfK(%@Ia|U
z8%UgB=M8dts&QtI{)6=ioB84-+{by%pWPk8uHV6(1#@t7O0369tl|^<SI1<Wz~GZB
zkOVAp)MJiA3dG;~MW}4ZwC>M3wOpQbL&DNmzfv(pe|*6I?VK)lP2M<KYe8l5J4rib
z1HMz?yS?ScOZplZCBT}WPd!^vhgoG3J*6rnx`d5;p3uU13C0~bwQ3;QG0jxTZo(yT
zO=&G1mj+qm+D;phY7#tE0QJ5x^0gAvO3I>JMB*l^xjDt|n_2vc(`~ZV$uPv&%kzcj
zBze7qhGJYYFLG>Jjm#Hna0re}jpyq>MvmanOM`3*JyiK=eoVYG*NlOpB8|0W-9HH0
zim@~4@Ig^LQW07c)Q1mkGCpHFBSM!)W49Pa@+IB}Bp^c0&*>O0A6LdQVeGX9=b<`Y
zTVSN8ze7#l!fr5qqSIco$n}EJ<X2F24C|-8%MhH&OlUhFC?@M`0C>=BYs{=Ej%Cs#
zq-WDNw!7_<E77!jW^=|r0`gNZ<9VsVrxoo}N}!p{S}&abmBLTKSi<yn7>wlNKZIUC
zM^q>IE*dT#EcN+z(hk7mSE|^Tg*^YY?YkwEb|4)q<<g(bN_hCGFVR7RY5`Ae#1lL{
z?ako~Qp-LUxYM5pg2t$NEfM!W1|`{IhTu_ex)X&aYlxbI+wOX)?LO<~(Mmf1WKpOA
z3Rf#(?|@9zEKX45;^#}&itdcIg+HrcqP5pp=rX81{QmmR>j*Chr!iRi=0kBExEjOW
zaJ+$N!ijlbs{L`6jQ9%ct6xm6ifk3<a=-CDDOHLJrSaYSJ_t@8D(|`3je4}WIpFB~
zu(v3`Y%n#d)SQVf1(WdVki&jq*Rd(?&DZPEyp^~2g42CWqTCbA(r9lopKOT7GpJ4m
zCKv<71Yb+%?Uy_EZIbEP<6<p26~e{e(>v6(L#JbW7Q<re*vqZ(L`^mt5`SfIq`&o+
z&a8EHJuG!BJ9`Atuw9ff-|a@;nO2*eW>9@F1TLtWoMOL&m2Hg8*YbOYAwAV<x{Mp9
z_?JFct0FLT|MBe*>U@SXWH$djvat5oi|aFqcAW&ky%sBT*-x}XU`~p5i2CE^2>!}V
zdre)HH?TalkS?ZZNEY<r9tXy<T%^}V9p*xIn9)anC}Uaix}!rebjL47$kqbcgTAaR
zak!vqRjACD!NmD-`532Nb@la$@A6@it2I|WDr>yWC~TlcP_VLM>{!za36Wa;v&fBv
zjI4MChYQp|B<-4L@7YJ7^lB&_3mw_G&FrzUCwfg+H~@k5<7;;)0|a*Cqr!+N^4krS
zU*?U;tURdCD+<CpIGb-dbr3t=C`#@JR7lX_v3L24N>p|UFehu23H@4V*g~r-;V<}C
z&iZ7EqM7o${6vxZE-RhhC)vakd-6JP4BFK<jlHcX)KSCc<F%aIZg*xm@)9ZZhn+L^
zmzXt^W+q&JD4%ul+U9+|>urzV+|ZAjFi@hVkgs{G8a}P{x4gOYuRj<&y0}NlWYNcZ
zg-79LqNAgvD-iCNE?key$b@Fgp&Y;pb~1fleRc1ibM)0wFXp<-!8X57bqZMMAA&mS
z61Tyd$5-c4XQ@nxGyjuN9gpm9C)LQ}Pt+*1R_)9;@p<0SeH;0e@K1$#zuq-F{yow6
z$$1Y4_gOAjkE+4P7{Hmt<#V7u@9GlEl~Z(kzZ0-R6z*|zlklDE!D-x7X^9qmKq}4~
zp6CbrCLhn;CDY!Io~X~X<f_tl^lHUg1oy#jMVru^k1?}JZBM#%AGa+)8=I!nUKWZ2
zXl`6OH6cvuKQ=T^Er%IlRA!coDq#cj$6^9J(sX&B3FFb~H6*xM+Zs&cR0skus%gL_
zBAMsI3TkZ-;+POpI#5~KqT4eweicV8MAzl`aDRDhN6b&e-1#?<ltYpE<shSVn6kv?
z{NT%`_sHPzoYLP(f9d=C{M6X9n40Iy<x@No!CoN2hb<dV@9C%RH7sj_9A9XxV8iuJ
zsq;H}9frLm!qgi3eZPoV_p_!tTgRDT^ADAFEg2Aq9||7`z08t&Ck-iYJFx;nY+~Ki
zHHx)gh#_!M9$GS3r1E$~J$oKxbUGa|TdjDh{dMH$5MW>uihldpYk-rCudaSD@?u51
z5puW3{}KQ?)asr{s^2^xG{0I^C?+U}e|qTbMzl2_`@3t5NoTLWR!wUg2+V`2)I;zd
zdyZz4CHnFyAi2R`fJGBJvJq6ytEb`FM=cN#r1C9w`>Ei9FSnwtV%E%>O($=lDo(lI
z7y8xcqiuS%#zg53NSon_QVVIyFgD=+LFFw%4CaO}=jl&Vy=l7AC|VIkv^#j?7sR4x
zqUC2$qo6*gp>yqcA9{d|#$eQo1ghcxO}#MThji}BTNn%42(+}V#JN2AVy1wIP^M*g
zT%Imf>R+$Fhj%=*yI1i^+a+l<1hU^>ZhYPraUz2|3j(HYyx6T2`6pS_7T4o%M#*JU
z80JegZ-dc3=a%*hHo8G^b^EPi=1X<}AZ!r;uZr&fE9}wPPxHe1Bi?EH@nlKq@HZBH
z(-tqN#2X6#b;7(B)Bm=n$VR$WtLYnJ0XtM6zEJ!h$azmn(f?OJ>8!oz6)-ftC*7ao
z0p!a-j`s0*<A-t?I$gd?Bp_y@p{qy2?Sf`Dn`4x;Ux!T2^0_E_dLMS9UqN?eO$L+w
zEGNp-7QF~T5ix43yw?bpG(mD9DfT~lOJEmrb`kfZMnRUs@k^C>UX^J@eL@I)SazE3
z<wI1@Lylp?WhgtJax(WALeNRxhbo)}Sh<)C{|dAhi+^_4Q!?q<|Bq&|$Yy4k?(Duq
z{fEJR2Mv6M;Q2)F|9C!iLow^oo$2w%c)LgkvPDmIVxYZ@hlCvS?)NIg3z1{RfBkIw
z53f1YnfIC9G@Sm{VUunc=F!naNBSjep@cgS`xOHP=-Hf4r;&bhO%a+i3B!chem~)7
z4LP9Q*7#|cRRU(N6S<9rWLcaxdYTE;HpP!x?j<FTTN>^0ocA;VGJ;g3z1r=K+_)M$
z{-3eK`<eldw$s1*+`2%1R(apm`|(3I&aO}JZacpl_5DCKOm5((W&XqSc~u864p;OJ
ztgP4xcy0LIx-5O2h~*PnCUghdQ*^D(N5xd|yr)Sdd9%0UFOYt;Z~|Ta8h?>`k-gRs
zgdgEi&m&xh`Scs73$=;!uTbXov~O=b_&~A5F^9=bkoPAk#s&U<wWuek3vR#+#+Yl^
z=CGN2J|U>l6CA;)<N9J?{fquo17Uq(6RGC2iQfTpVsJ2R6^stYLvPs9iPPf;E#x77
zM}b}ZyRL7*BW&yW9br?cP5S*wTb<Mga~=T!ugcHM&q1jd_ffUXj`<2;t-R*%C5r#5
zU`MDjJjuL9&^*7b<8E1mN=7hy#Niw-&e)j#*q~b$P*b(c?JMQiz>^AihIDpw{gbhC
zviy03D}#p@8!PD*_(u`HC$$Gk<BsUD|0!73mWyILrhe{#MEEpWH8E{0{E5?YC%RI(
zp-k=%iQTL4a>W<wEd0?b{Rh3=;+6XVj4~>W#qy37N)XcZ@yhj?+t{GQ;q)P)NBM4t
zurxTV<Gv?uf=|rViGr~!wOJ7!SrUf`uAZm7H|iwAF3M4@m}$rhQSW3s7AWH|tXTNi
zaH)#%K?pRhB(sGzEv;$F?*8k{33)RU%gqG+aK`08gBqusL@f9a2UT*wEB)7pFp1lM
zdY``o$nW`shMm{Lv5Ne%OVYpM>Lq@@$0>d2!%c#bw!Ron=Wm!2e3)Ub)l$I`Sn~j&
z*^wumNl|Xm#9-7OMb?Y|S`_8?0y}|Wv;U0l50EiUTN~Ard@fTvfuVd7^oHncYgI(d
zr7iyTqRo*^<RDbDICrU-ML+0_eh-JT)-cEk?zwNISNZaJJqJ$zQanYubP;m3TUJ0J
z>W<j}bjRt%3Q)(*#6B47_=?EL_}mbIammVO_@pywTQ|4>M0$8wS_!klZQ(T$OE6}X
zep4!$P)4J&;b7k)Nt(6HYyOS>>?&kOxHfy_Iq-WcMsVSd<tdUdA7`(AW0bN*11^-X
z$^fn+W|?xZ(SMRi)l0?<Fdv<tiTx&Cyn6q0lRk}v$d*MEiI@7V{EXf_OGoWA&Hzl`
zTa~OVAD;&6gg#ta;7BT9if^IyY4Xls&;jlB_E5E(2CXwGnpiE0DFNr}-Hz1M4SZD?
zy;BDCYpTCShxxDmP)-7iYNxO`37IK~g1V#C#lhW4Z5@Fh*rSmd9{cubY{K+&{bAf9
zIqsV$jgCtAyAd+C!0~u&Y}G(!eADHAbHyXBq@3s;WqN|IRBCpqZD*lFsF=|v)$RxV
zbT4ZS7zzzQ9A8i8&iqOD2`rkppuYFl=TQcb_$p|}#b<8t0ARMRZt~Tw3qp-@fqp>G
zni#^tJi78TKgjJq79vfwha4=mr(2x2-!cAYKP6O{0RPf@`jufkzdFHLEnUbPbDn$b
z4<8C{o$2o<8-wXj`!Sb0!zHAY>O}P%ceRM-zT_rkoUD83JKE_Mx*5TIEQxX(<E02q
zm*oZf2JNSrg7=-yO3zhhS+|_h$EUH2l(o7uoR=*IQ#CSRR)yK@VAzO+7UgTX?Y_Ui
zEBQCoBbP$cBQU<ePwVOUworZPyzfPHq~&`z4|*#9p9f@WU##PFD@tbMn>HsuS`dee
zvaR@Zu+_A})%yX~61CegX_ypt|H1h)k(+}@JuC{WIADF9K4|i259trOJeUID@e*GZ
zzKoNCWy#Brt{Agu=~f#!?z5ZLE5&jQMf5Zn6VF4Hbf^f1-8DY!t^4Dget}-dY1Xf%
zUHAhPh}_cb5QpV_^l#1PhmtzQe<Hix0Lwb*<JQezWBi&mS38$_7jk{TW}3R_w=x;7
zCTJ+Dhhi_tz)3;)qrvNzGm%9QqrN^f59C$OX@J+U8WPX+7a8pDZQ1T)c6Y(Xe7b3z
z3ItcD8@~h9Qg7v+R4IPPb-ljJx%d{jE4SRXZcM4Ta8Zi4@^Zh=AkVORoPez^&#}$)
zTIQ~H)BhhB8D{9|>LzYtmHB*jw-aKK<FYc)esK4?HAS!!DkMgfWwRcu4DAzEH2(eS
z+;a=i(uza21@jLdqf6Y_Wom)8d;KPipS7M{%6gk#I*u)2vd!@3y;ZJH3aBvpum@Z~
zs=BtKGnJKu;lyewZ=lOqH${{^N|_p#kNQd#$F@hiRI4Cs94OV(A^aL4)2pp(M)8uW
z-jhy6o;Y78;nNI#D=Z>W0+uPpq)6f>+wRnmm21qpS3c40F+k?+$_;Sv&~CiAeH!AX
zAER&o#3iHc7V}_b`wj`HGMtAM^^G)`p&~kg#<!ZTU-?~@JK_ZF_?!x<Ysq+>HBMR>
z6=WK#%p%TPjNTxmL71{jbN(K;fiyg$4`0?!!%HC?;0~Gz{pGj;YJ}{wS<;nzv_P_h
zf-~eFNw{xllzpn(;C#-TFAs^*a?k~k?Ml9g96&atFZb2t#?<gPiVG4q_4osX=TQYd
zWkBwcr(x~5r~Xor_Il0tz~`^9pW^{v7Vcke<{)dL5o19=S%u{0TvXZbzbUA!h^KAS
z^R>o6kI&8RRXt;b;kphv>uVe)OGU-1%d^?tKZT1GfzKKd9jAj5*3C5ZKo)JJo;xw^
zgFsOYL@FR3j!%w)RWkH+f&MRzH#QFz#FCWcV;Ar~0MtA3aHoc&ZjIhMfgfh}?fv&Y
zf@lTC(cI`pJa@|ad+%u&cu(Z~|D#@Lm}&ph-V86Dj@4+hq1kAJbRqVNM*7$Y_t(^h
zsO@?I`I+JV?}_hYSYoNKts%LabVoVjf`abliAK6a8A{2e;Ac01=Q>Zp`?+td)9%+2
z(zJSVoN<#r7h*uNHAKxnN9B3$L)}LKc6JoQn$iW(+1~#15MdE_c~^CNyF_-kGlw8f
zI7VKjguTAvb%<%Ou7*;EF8EX3XFELjT)6ve*?LF0x7O>TF(hWm<%O})xx=9XP`P<5
zH`(p#lEe&5I2**Mv8SSuOc5&}+3E4zBB{{E_~rA|m-{cl6Lr8mZVFrGDL^j<T5$!3
z6@BK5ZR~mi_r5~=-;Y7-<86n|c-uqCGfDblIiOQ^*UYc!m?SBq)fFNuu`bQE^XtTE
zei&aRN}8}t9(t2!cYS9^8w;;!)7tU-))r0iXT`LEu}_1RP^U(9u2=bWxvjo0^bxYQ
zwoNqv_ZfaBCFJDdp1u=`Z<~$vf*@eDg5ZYSG_a;9>Kk7I*2#vv-vY1C8vc{vsJmPM
zEQALt=#$ieo<;)bD6JgnZw#sp3OR_Ydfev`I1Ztkh<2CBO)cdh=V;#2C!ESv7IT=%
zKGzAiFO-?=iM@P|7$P_Ds@|$O6j&7-8(`gDpQk9#tG~FpAjMcNF+a-fyF8t_;iCQ6
z_w;1}k4%U51h8%NVY~M)Bk4i~aVhT$_)dXgzSK5*)*-<cx<=(-_@=ksOy;r=Z80)+
z#u3?BWsH2P&Z|2wHwyY75VTM9I3~1Rh#Xxg^@d{YbaEO)brhzPAoxUUdY!iUk<Lfv
z?Tt$|E8B>pq0!a1CT$cHnp*G67bXK42r*>iMpF2z_NCPr>Am6<60S%nf$A$MQ_5`A
z1-a#8O&`xbHy-vJ0R2i2Bjrudb2QC&r7Mt*oI7;|ARyh87a>(oy}9%a8NrXdwPeX|
zd+_%8HLC*j;4?xta=Lb<yS6&*jP7+MC@<YhE4~~|a}3;SGr{bE)3n!*r?db#xiCPO
z2cJlqn+LX>a(~9k5`ExiOGZ4<M0xX}*cr=$92C;Cr`*qH_GGB;Y1r>0`u>7gefRta
zw%xEzTIX(Lvhn&{o6BV<jqK3gR~ia}2GgM4dfRzV(iS>L0*2(O+`jyeV!1~m{9O7S
z5L}u(=e$QS2}JKr;>gO*CLJq>+#3te^w<hg(46BgZ+p$6^T1Cw(Sp0*1e_?=zrOh;
zgmu@ifoTtbXedLDf#ycU`E@;k<kpG&uzfAC*c#`ZB`O6hTptX3tm)=q!<E|f+l*#6
z-r+DM!F9Xq(9oUrC!~Jku@gY6?t_em5PpKbxIB2)5N(NN0APHfQsEQL9!N$p*V?|>
zB3YUGrfim5ax4-?%)1Yo1b1ShyZT6;0sgCUs}iJb4*eeb!q>SdRxnd)?@}KM1;28z
zy~0=Hzh$}t^>24h?ltZV;B)~IORGXl6WJam?0t@9YRl6XqXM&W^aSy`+r^)4Is!-^
z?|H1ehF@q75P4X{RH>!HF6y58Ny+24z^JgtKz$BT81(Tt#^zOO7qQoExx&#vb}!5e
z{qSZWCq7rWx2e^2HSF^lewOG4q@aM{f?@h{3^qW^>W#zH_{&*^uw>4>FX#SA?DNmF
z;(O*QR~hNHgYp#zU<Q!CCL_rh#V%-pbe)#>U5+vNl*4E?&~5I~NZyu9ATf7)r=r#i
zoIh8e=mC{-GqM}b*vQefFfQNR9s99U57kfK-~KW)M3cu3_pZelzhW&@!3|ib7!+UH
zOVL-rlw61-<vY9!`c>wQvH3}?Z>iigDXmuOyzX8A)c{0oh_xifsVe|?ngMhcLg`8c
zh)D#+Z@O!*yKpOfZZ>~FUuz~O?{eF3Z<7i4o_U2da{UwN{=YOX{2r%t`DIEW7XX$p
z@6E-n*OD154!pFyDlEOa8-~&!7bggU73?|Z^>Fvk^+9?X9v0`kdXYZ!zk;;*U2djp
z1Rznw*XcchoopSy@MFPeS{*hPcC+_PL6Kj8m9O@<;#zA+%wBdCj_DdI)hF+3f#W0W
zst6yY0KhM!X9k}npOMWyODM({MfoBbR?a%&fk$f6J*d*)!4XX%=ZQ~O2ooX^^wqFd
zUfhUoFsFzuS^NkR*^@)GHSi>I>ZzR(@P9J%N-i{~qQeC?h9pH$FL^CL>8*gF>;1Ig
ztAIYl*L<%u*%#H-*g&w`((gGB#|;LyBxTpH2psq)>8eEIh0H1O^wBR)8k|or{7Unv
zl(my4#zg&zL2Qsm5dU9!krns>g*kZ~B6D1PPF&Ur(Y)RvX--NQ-6w0ZBb$#|mNpMH
zx&i1=7X`f`f8^&`GYQnK(sWU4Z+3vilu9V>1ejja8-UcWlyG1zSuwp%>U?Pi@NGEv
z%h3UVp*v3rvODTvvVzz>_@wR$w`haC%jR725G3=M`g06qf{ih~sQ*y==Uq^ApfTyO
zCRr=U+`_?&9(Q)*liDoVd8`Nh3N7rRQQCpkIbB2iJWn_OCdBgzHM*@%Mx(lVA9D7U
zkvvPRIbMOpxn2&zOEBPyZ&Gj8pb~9ge(a_E?gs3~5KyIw24U6bS)mr<>T(q0F~q~g
zN#zDM5{^Z<4g#|&D3p1cYAOR&R3cm@>B?a)m$)UT&mBdggsxZKBHwYL05auO*LFsW
zv>x-mezBjpQ}uP^a3vC(w;DL&lLtTvjlRIU7GZB~UXlWVEg2I+8M0Q6OFL&0ceCK$
zUP*4m!mpQ>KsV*#fk-VBCMpG6I@VWq_g9sOD7b_4A3Ivg`xO_$nq8*8DJ+eGp)-I%
zSYEEPvp0+Xv0+2rSNnASzK^YpQ?c339zUK|;wFM%=2hHIG<~@JF!ljV9!PrT;<Z=7
zq+BJm7;q<K26nNK_QS6@P=Dw|^;RyO8`VxWxbA50>A0!#`<`2S)WA`nEsavDNIkm^
zksftFslzISl(f9HF=}?ZGJ90}zYKE-WgNL2lFf;Unl*fyRThbn)JcG0a;^(rJ#Y1)
zV6$<4A&c|gkI>i(r&w%(2pCW5rQ6+WJJvMYPwpa@EV+);Rjc1}^uC$tM2d(MkK>J~
zy$4%G;f=6TSbyzZpWnx74>`6!kjSumUt{ygSM#t%<V0^MQ?pH}Nj0jm<d`g0k#Ay6
zVUGc+KD~MBxRdi>0+8}E<R^SUp0}E<o?c`=o{NKkX%&b=XS5!C@36|2KQdb&duR!^
zj`pK8pyH4<LAZSuc?xX`?5|z8c$r@>62&KxH{vG9&)5w>8APNMqADISjr)R_IQqxC
zK{N24B4Ob{i}jbGEJ7l#c9*4{AIKrdIF6tl%pwUCftr<#WD5hSP5S+~Re_OrJG0u&
z%u{3jdM`;*Ml{kdYeBZpeh;5&(9vQ8XnB%!IgBm-A}-5iP1Vn;2y(&Y-AkKNHTOCP
zED{%YT6Wh*3X#@=a{oFM2_?}D+`ZcGtXKGITiNOutKsEZc#Q48nrNiPOD1s*BDetq
zn!&vTC!E7~#2iO96?vzqVaZZWwlf>h8WuDjwJ0Tj&Q>R3EUuz%u`S^v8-{-_#goVq
z)#hX=J3x?*Upnaw^S=OJMDL3B18ch!SfDUyA!Zq8P6YmMzvKx>$Kasu=PwSok*j4o
zt76B@Qvm6Mt?dPrr3JE|qOMQ*y54BG@2-9QY8RRLZfWLnN!F<rHqT41=&gm-3XJ{O
zb-7v(VX*__{17h}SH$e-vp{(cH?0JNd1Ukc1{>V>i>=51<35ht;8fS_tv{#0^*<z2
zQmxL{TrhG?2;YC%*?YFX?0)Y&e0@EE$!2}`UP0|2UO>V99i2yXBOS$vBki)?8|FTr
z*}$c6(&F{7A$a4g`A4zv2*$#{gWq-$gFaQD-Cb)ZQ1&4Q^NGBxn|};{HEnP`;_Ksw
z8fm)_E+c&0&7`?cxBD|M=bVlW1{SGj)30UV*gmZVe9TG7QeBr`6?Ede5`p5<WR@Y$
zUcBr&-_{Of8aolMa%qOK?>vxK<mmi1d>V&3mmvsM=|7%x5Deu&ltlX~z}WsQ#GofJ
zU7696>!)NE9KoW0%K@#<wimYxT7l5Ne(QhYY)d(ZGy9V0=Q@gmq&@!?6Vm}=(~d9`
z@7D^Xmg|+MJfHO5X2rIuW0<U;&)x}09h`Abn@D(D=>ASKQ}?!+F3oV5l65qm#$acv
zz5&+k_qw4CE7}ec^IQp|IUY<&Nj>iRnZl0*6Q+AqF{QI3h$;5}9H}aWc3g})bLqCZ
z+OC?Evt5%@3?r4s^HkzJVYc+ZZDaDE+eTC(=|Rx(@?l@T_;J(hcn4H|L*^+6peS~a
zk~5loCWWjyUCu7!a0yu-RT>`4{iGH6wf`Jc;#Ow1LGfpEBh%B${)@2lpC`x$2FX#+
zuSwhDH}fmZXH~oe+skHOkZR>%+Fi;2s0oc~Gp)5G;_Tk;Zgdzl;ETF4=pW`mrB$zh
z-Y=UZnk5Wo5sm>0{mKo|4&J$4H|k7_&g55%m!_a$ah)Q3&0>c850x+xh%*&zeujxt
zPb=Lt+-HQDp+YoS4%huH5ki7?Ts)z`POItuaAaPi^2crr3zdHFta~o`F+>nMP8>^>
zp6?f{jyj7gPb*Li{^|4OWI$7N%)6Rl#Ha)I;L^%Kznt)n^QN%$Z>b$;=>><ZR;$eW
z-8jy_BB{!(4Nvwtf9(Hwnb=}G{16eJbll`!4dd;$HV3|Qzf>>%+KuY1ddG=STA;jx
z1RH1RmbZs29Z4{)svSCdrus8ppRe`HW^%p^U)8dU3dhTMrZ}CO=8jj2X)Q5x4i8&>
zbhRKJl}CylplMeAq>-n~$op2g`oWH^hSvV}!je(no!G`!SneeZiGBnAAzitf@`Hqi
zhx(+4{<AaCH=odL&jz5~>;pVcqw2Rc9T#W4+{b6*ZeWV!74!##kjG7qwZljDy63-}
zv&1bBVLUkDBud#_oU7M~SPYlk3t}8<p9)(hRQ2<BVeA+@4nVOKJ>w-6dI=Zg2)-57
z@Uu;LHyL-gzq2B{tC!Vp-WJazyv@If?*{%#7+4dfPULHBesgucO>ksu-twJy&#kHN
z1I{V7@<SAF<)CSB5(`<^>f)`R)&^Lbe!K`e?`gCvfnbM+N(Zwz^$tyfcPf-9Rn`=h
zDLn^yj|i_ws`RJ1N|AsB&!!ws&<ickGo0u}k6%t;UMl7k%2s#h{AI=J9aWiP5pFp@
z_tEMgXAi;s1_>Pf(-}|?8TJol#OlUrkaS(o^BL6ocnjy=T!{4j=Kk7IM>J%fYLU0r
zXeeSoGUp*yPMCVUmi}FNbL#-$<3Gf-@&lKNOb3J9-co?3fbR<rlSC2E{$SY1UF<j3
zUL!N^V^L4mhA8uB;o)<2^LQc(Q)1V#G0B_$G6*5BiE7ck7NGsWipp+UGvhu}%~1Z)
zE1E9O*?5{5|63ZHkjhVhM1}ozA4`5E4fsC1boutMFY!gvYkfDf_?hk{8H9i_`n(uF
zbF_G!{hsFQA27?q?rK3iFi7%;{csV)8#e6gYdUCZhA4M!26&X^C=~o0uVy{G$=FX^
znea$Aj(q?US2YZ={#xH{DdC2<$;HcgFgexc39Gc=_8~HBv{~oPcoq@C_FEkf!&5zU
zRx2463zv@}+3-gXQ&QHMvB2b~Ud6Yzgk$Nq{8ZO6k_eA9Kx!mA*9XYje<dsi`qmO!
zS+5zrAI2R77I>0&u3anZ54G>~aDIP72P0HnH;zfSNd@y7X0nd;bF+bX#;p=E$rRA`
zp0lH)=5$95@*ccmhggeU+JEBS)V4d0y9twF4}K(?Q1IKED5f$&&!{oEsZ}R12TomY
zH*ojYng-OzH=VmVV8f5!DBdRZwNFCXMMm3(=gHXwC+(fQtL`b>Cvu)f18=Fp-ojg=
zKcEbj*3%425DT#}?$`hRk|-aHVkm1@L_pw}uPJ^eRe&O$&d22=V`75SMH?R)6-D(Y
z{T?4kS+0SUWpzhtgzNQSC^2K?Mx%D@ew`|euWA3k_!=M(ZlSD&;`h(ey*F5GOCuV|
z>WS!F@SQ&MSaz|apnGUkF(&E2UP<A2si8#FVEX3AEA=#_MAypxj+^mnaS2J|zdIxi
z@`fF2iGNxxb5zP9S655;Bq_r&^QACpYjB>-cPeyhTOy2*E?$G=aX9(g4i*v6W@Pyu
zujIfP5p{pF?7~xZT$3*Yv;O0<d}|P)(gyORl%R)(FAUhziIRms*bjHf#y<K&$tod-
z_E8{-M&GAfb``z17_e;GJ{yMoiM_5~k6Hb5bb%^rIU@`cL~4IRH82{X{!b9O29RQp
zS{O^8)0zgo4-C#);^;?0d&*TWKq>E|n>k)1;Ysetj8MV}8beW3XVL9g4bvX<(l?4u
zTVPs>_Oke6|B_mVM6KuQi0Cs3E1YKd)9XDrR9svUwiillSTCEKMJk(L!Z(9oI`XQr
z5?+rS-Sa`m%vqS{dJh~ACNzJBmOR=%&E0PexpYBag*9+dWq)2Td#X!L>l<6`?yT(_
zlKW{`HsN#7n60_kpv5;N{E<Z|%**T5OG#lW`%;&n>}<|8zQ|BZ9r7}*BKagtf<;ZA
zuC0@6L;{E<@6z)?TXWVZC{~=Vfk`|8P4q&KZ&?KHW%)FQjBYV*vcAv9*oKF5p~R6F
zn1VlW*Z4@AgdjSxJ+<S4bPBPZ>`wH$9w+j=1TpTE_Dud-S(-MHj`cKzKUfMEKcTdJ
zz`<Z>3WXZT_GyOPw6jEWQH?f+p_2;u1SE>#c?*{e)=`!j2j@xFl3z(fTtYDPW9BrC
z@nRdI2`i?GoBS+@xGlC`R#yfyQrh1ycNk$c+#~XK<p0Fgm&Tq!xFb{yvve*Xe(Xeh
z>{`8&ThqRV8%44oW^Qo``D|ySCE<g)_xAaSg;*db!{b*B-QRsex`;Yvlwp?XH1RRo
z)MayvCc_yRDtONCP-Hub803X0?PJB$DonlhIL8ueDh`*uvN)9Pb12Ku#oihiYUm0(
z5kbvtIILb^x>MPcV7`m5Ke`os9R^)KJe?H)ACq9g9ZEwMVoJ5QhN5DUW^J?UkG&?X
zg)PiLtiyiV5<0RB^U6V-hJn(|a%h9mr~NAoY0C`aR_gNJT}w<?vfEDS{V8L>vr=8n
zx^J*kGtL!}sW?br&jgPh+m$2x#0G;7MXq7Mp?fldDebQQ=Thl4ZOhQ!#dFy;J{wQ1
z8cpZP8m92>5Zjfju~1JW`|6u=9SPZ>o+w-1huZMfqbz7jr#^T?MPFN#2l`w4qC&;G
z;_4ewY`?gE+pY@*GpCPtl^)ACg;vHv3TM2Aos8Df2%fjwsLYGWhy;092UKN5+B9X!
z!kV#qE+c&A?@rz=)9igpopYd*Is8i%vJP=-cNCP-Wmufg_3&~eULQn+B;-&=Zg<78
zRz-JxI?V}oz<t)@srb0OdR|@cdVj~HC*(am-*gx}s5Ui25oURANM0@tPdbWXe}A*j
z-EevDE5M6wsM?NGd9qh9^4RgX$(<_~_kx;|Ejy1q%o2-<8yaq|-S+kn?dA&k;$=ZN
z!f_#0m?c#bdPzi%<-|`<-`x~49uL&!_qv;}LSHs<Zs=Pzd0d|q?!Eei(p6@J#oCoR
z$3?`7Sq=x65b?7@3VTNO!`|O`U$c5X&mV`r2|R9pqsM8L6`jHxpfd$ReToZ_B+bl{
zuatb$uxH368M~Nmmm+oRuU5M?)(iwJW!CsIp56r1Q-ndu95n^lzxOyz8sy8_28T}v
zeW-E8s3?Rod?z)0JdksJWTyNp^Xk>No?0aJOE~eF|1%3fM7D!JfxMVPE+`alMQMhs
zhIfEcR9-%A?a%P`k&YAE!w4FU&7F5!3M3Yk_LaAbp9u(QI+I)RSGCNN3@Uba$-#g=
z38jR6xl2PUoll}Og?o=C?UZGYxtE&`mecUsZ^|-TuY&6`4!`lLkPnfPou{gsyw=R_
zTcV)N(h)Rn;FBO`3Af6bZUQ^nL^(Odz%&()Rn9bWQ|kTEW46Sdh0Gd+HBlZ4sr-yg
z>SjGFx|gRCu*2(y{zuP;7Nf8Mw*EZx+?PRYUZGxBJDl20!>X@5XE>ZyRlrLQiS*k%
z#d4_Qjt*L#+g4=Pw4YUf=p0Jos^#?e7s|G|KVCDyDOD|!AL|=NXbxRya8=@OzXcHi
z?!#X$Zf*$%Zp(Q3bRzl3#8xs&a*G$v&mtr=pCkJ8bR(8mSpRn0Td;rgH%L_gYz``(
z{QN%iLp_qEms|`8bCzAzih>(M2~X)%QhWyx!0Z>4iF~W>oRD(di_ZsNduk0G3Hmw%
z87NBDEx|(xwUX^>F+4p%@+3o9&Vz(!;2lyrGs);ic+;!p@K9U5>iMK^70caK@00h&
zNnNNpI7gF;;lbt6VTXo*N{*h=cDa6wHn`DscS!A?Hq273n}X$iDe0BZ>#}MynZR9R
zBPr+N=QJS3J`Y>=AptiC*`||^9IMq*V_mc~&Y?s=*NQ)1J*{VRIv0B8If`L1U?T~3
zTyF2~Z2RRi{3Q!B;S8U!C@Z!KeRyW%HBPtUHh%lHz$2aYunloLrjOnPsCXo!F-5Jg
zW0IBmrmR?nyx`%islol6O`yqKY(8VL7ChiRr_##xbfs`|sF4nwaA3Aq>YT1NZJooU
z0S#C|6bF1~@v;Rx9z~fefoA4$BAl8*xJ--E^8v^iys9Bz{pr?T@8BoMn^sDD62i_S
zK8n)sw{F-L_qZh5e?r+(5-rj$siSU-^mKMw&vL$qBwT=imDh2X{~KhG9rOA(3S-&&
z6wFW8lB%P4q)Qhh91I?0SOl7`ahN6ePmcq`u#LdW2WVCK$SCbg?dB9+D5b5xaqGsP
z7JUEuG7oWW30|9`OodX>H?cA@qwRi$!FlhtC!NbFp74vQ9L^=iodkpI8l=KlCFO(3
zFim*J)y-6eh`>%lkJH{e6Xn<Hjf~%z)xJ~+mtAJI^|cn1pWVz<>PUQ4k8Qv^HlNF8
z*ZoMpy4Y;+)_j8rErs>|B&s#6@QKyu$QOOU&m86M?6dl}mgZ>ZC&`I2_6%I)6-y5%
zg}~?8Xl#5{dpQtF>{`5Zl_DwOG!2{T>TLzLAD7$EMc=(+O-l5F)X;q$VCM|S8SdjQ
zPGXv<w;i*hUuqc(7RPBemC@y35s!}q!-pGfxtG|iDp)WM+JBPi)>q;y=e_?k&msdo
zTbT2ZmL;0o9NZRD4(~JDa6+t~1Fh&r@8}c;SY+V%WW$d`pO!$g=H!qO9&)Kq4_>Bz
zHDrNWOg?9K3Q=jOkG?ih&n@z)p%1ehyO(d~vwe_XJu$e<?$=E#8cqb8W1$JmA@cIj
z(G~V0BB8&)LM-ZywLd`D4fp^_t5TSk7Z!5cw!<m60w=yz>cImfs>j8UFG2b%PfM|8
zgrWX;QL$O}UhA3Z5A)kHYudYCB(+%%7ZRa(E@|yJ55Q^(uBgJqyY=r>R}F~=mb^*5
zdN^fSt-tDmegXLUOlPPv(K+-X$m3G4qx7EGkd@4WY$S!0^xN2i6JLgMEZ#?Zs}CrQ
zSrilv#6*hYPQ?#O;E0Ixt)*Zo#gMjRA?BFpWlIZkRNGlpBv(6ky9^)GGEPk~ffEsP
zMyPBwm2%MHfH}|>Nm{A*mUWa~u4nV;Ta+8+fn@u{Q8JD_cDHZi&nA$+yH+Q2iTNCV
zB1_71+egmUn55L{IG=5A)JTQ6HM~!aYwF6j`Cfhyj)u3zV}FNtbE#KGq<ju530#$P
zrGwF%5s%&<vJsgF+(eoi{7`Gs)r-8a>6Aivc_2l{TYv{{S|Z-@)r^QAnNs_pojq$f
z-h9s&s49GOeR_Xy^<_?lvROU&jP5JP!XTTt`8A3GpDEex5+reYV;#74F0>xR8!LTo
zm8(O39TDuAY_j!isxWB7QMN9{AHg3IYmmvnKy;r9)-_0(`#4$J`SuVf49{8>f1A?A
z^S*rS8aKTl7w{wz{I<Fd!3nC;T-)OCan!DmZ~P(a0S?|X>Q5&oztV(o%a%Oyi6f;1
z!SU#{5}jM0uP^P3vr{kUOnE$jGTvPL3`yY(KiT@0!_8)1SZ;&FA&uYo&RcFFhnA_{
zx%&M6b2&Kv;?h#O5v`TB`@(j(-BKkH_kqIZbYKTw59_FkLb<qH9|WHKiSp{{G}pGm
zNc|n_R`(^DG%Bwt7(9oy)ulN+^xgYR2?cPR<b*X##4%iNYkHs>WZ=D3d52(bQnB{f
zvcDusmkxJXpA-n!g|poB0e>=_uS5$>KdTdyqg912EJ}r(jy&UJ2sK{fSojdHN5<&3
z{!0Wa6EX0)>NLm%NWVs2%uId87i-6Q-{5|X)g<m-{z60D3>;~4X1uv^<MZL8%iHQ(
z<}9<tRrhqL>h5smMi)-fm}GCd9OjDp&k*k_%Chsa&}#5x*M}0mWHp@mPKQFtWd0C*
z_r6&KWrFsZD~hr4)%n><`jU=|;rz8+wx6H+?gB5{&oFp0!oB9F{Wgni26=7F;2x52
z29uE|Zr;K_A6>s2mfAVUi(;W%``A+k4&IpJx168&EP{a&au{C%fHT+VCVtw$eOjJA
zu$7BI#?3GGSgp2F)Uddu#TI&TnzYj@p{v>pOJplMp_X{|_r9@*_vUl5Senr3%)2oQ
zpB_E1gXXo^CGlqlh2`I!N`Jh3wc7JZY(K3IEKR6SQ1~^Qr=yDJ!`*XdPAP{X0@JLB
z2Gaq8eJiPmxWdiR3bX;SskH$<okn?;$l^*dux9k>?vsA-*4nIYU#ArckOJ`JMT2X~
zwJJ+_RHYYYD=c^&DU(?r&1%5=o>as%rK!-t)xEpJ2dHI<!Rj{#9=@s@ESmcE-Jrjl
z)Al*`i+PiIbT!Svj1^n@4$q6c?`c%u+OI8@n}OJd>1Ogj^dOybXbc9ejl+XK$=UWT
zYJ)B7W%1}@?>bo$&XQ|w%`bV!p5m)n{1IN@_<WvwHaeO|c~Jf6i$!GiT$RD&6cNE@
z0XiJ)fnQh?sRlZfj<;}x3iZr7rP9CZ$pOJJ!GKw30XZ>Q`SfYN<?XHm0sDuI=M=@6
zx9#20>G)&eNM(n=H3lX1MhwYCcQ|trU}>0+#GXXlJ=h5vgO9kb1^eMYc)#TK-}N5c
z#rF>FHdjn@n+|-pnwv1}+pE*Py#ar<v)`!tf1VemOe_Ka1=_QSidK()vVEEA8zQeh
z<6f6mn(=%N3eWE=Lq*LuVUd%1wRMOye9KLnj4gfE<1s~zu<uU4z_C8u(0%%p5^=QR
zLesFqG#y(2nF4yJCz<P!c~fC|#H}~F?QeSVGRW<-HSC;9O6fkH?vn}Rt8i4(ZQ=M?
zCXNTD{z<7pw@f4n8-A-c3qFJ#z_wYQ+~)IEv8RwY?{z}06kAQBD+E+3!2;*YH!#?C
zM`QL#j%gm$;Qg>h1aWN(iEN1O#_yVmVf~$f-1wKbZ#BE!wCFvj_2|kWwk~Op^|a`!
z4C9cBQL>cIl17B|{;x1161m5q=&901Qs+|(hyQbZ)CtMRTNqYPIaG`p7oFkc>N8%T
zuPMPc3TyQz3ij~qVg>ogz)lwZwk)-IE!UF`^du|kP1)y$@?njdhT>-B-oNeFgX?lX
zfxz<aPGx|w7q?~t)Fs%(o5fA!#`&tAEBCiA()jF&zB3DUF^mg(-}Al57gx=f%fz0m
z%9F?&eEuzgbWV~hV$_WNO$=$PI`hwQQh<K^DqU!Um=~c(PpOIQeX-vj<VVRS7CH#*
z5>^XP3pO#YDa}n;;)tZX`}kok4NW&5o3xPgVlm->T~Di4s)chO!nv0I2fbxQ@ry`P
zRT8$d>7SHD?qrNFa$U(-3yjzv2ke-n-+Yc2yw2=0%Tu%e!s6T!IL(#Z7p3sc%!cCa
zYL%HsAxr?Jay~hqpAK~D1_LsMIliO1xt=25ncDQPDh#SPB3lH+CD_)iW+h;!9SM?B
zH%Hq_(y6+EL!?f{c#>Tss>_ip6mlQ%?2JW*ha0QBGY)Hpyk-BVTChrTJJt(gf5|vg
zqyWwc?JSLtI!l+Wk<#^$DMO8HTD_LXC)-6vU$_mia5+H&A!qeI&65U&Sa%#1hv+Sr
znhYEzYGf>RCrNlm>f295LY_#t)EfiVode-6;$JK(VY`os0Skwtpt&=Xd}jgjS*lpK
zC1Msp>C&^86mReu?L+cDU4^0M1yzN7OQ8rZ>ots`G@DrTqbzgEctMstT?;Z~#V_bA
zPMyVAb3b;PpaTon*3SwU*n*EpTduHtqF8m~_mHS~x`c8u+v0?)i9688&8*jc_XHI(
zX+%>Dx9i~RMz3;D4)4L-eN4f9X3ePq_DOaQMVVI5IecvR^;lI@>`9rv+n!XxJ)4J&
z?jzgG<1tNQ&pBDhJ3U`K!5>s>+7S=;bC!vq)a4~AhTE|vBX#R0FSuWBogrfU;v%*+
zxvHckLMEIwHFTY}V)|{?0n*e(S%k$b<cT(tSA6a;sS7UH(2+ftt2^~lgcARyx9)63
zLY)W5-qv>y&?&jKn|AjP&8M*E?3_@Fn$;*Lp=tVFp@6<84&MroqIg+(a#NC=Y5FGP
zg`;hbp4vwW5D#C)fR_s@Z8%x07HU3`c@$JTZFSO|#V6)<ga?3V8>?YCrnnK*NK|}$
zjW0HlDiT9wgkv$ZtLpe^>M7>a3eY1mNKwgMikg@~SRo~`AI{!|Y7jDG^mT)<h#rs<
z2&dX56huh;HczGDx!k4%u=O6Dl?neLX^33GgrKT}dlGT|RB-n0jCAysJqf`X=CsvA
z=<k{K*M{Uj8q|z<rr9LfjoDtU|Hl8YR<?8aaX1G=?=i!T>dXQ}Y%2Ls%&e@WItMZz
z$D$8-uxbU>f~@V~1(KvXM=7*pG=`NMeMZ2T0bP4PWWAoE=0)$+)D-MkV}k0FXg7FN
zF>}nhN4dqdIEtcUkUy*qVE(aNnzk6gp|nvDpWg!v|9M%Q)KF=5Yl~XiFcIx=IcQ}#
zwc}TJN~zo$pYtf&9V+f0f5%*VbUs|~#|Km}DN4EAhoo6;@)JnN-L4IFm3|Jz^zL6$
zBqk1LzhJzSx;{o`WN#M9sj4W`BM|Y+;;Fbq;VKzRj86kq-5!-a(+$OY?MF|EHN`i-
z$h4{7C*Dp)Ogfi_XH4)L7_1-j)ScHn>|#^PhWep4cjha(F(c=b{TRFs&|vMbVD#s7
zgaG*Q4J+Ph*H6>^om|g(+_wIhvGi+yF>&-9oPn1He`z^jw223%50ER7*>68+5KzhZ
zvQx$Vh)50dpN-D*ct}bHIjwAFAc$7V*NJAN>+p=1F@MKW(ngATn@m8o{8QVvX4Q}1
z!8(%W+o#i5x(6zmeC%GTJ`$o8B{wp^Z7NhHXNhUL6<5;8q^)+f+o5?j_Smr!GwXcD
zj*;G6s;e3Vs~bhw*kvPE#a_KJmUI9w;>84da~$+FST2-(XE{S3y+HZ2+OyY?oGu_9
z;W!sOn&W4`GFw1F@R+;4*7;UOR|?Z8T9@!^TJ}M?zT1%SwuEhIsS=2PuAlOrHBZQp
z4nAr<fp8_0!?t52_&$X+N-XE+C8F6qVLXJ3rCSEABFl}Wg_}k>w$&)}Lq={)nr`c4
zPeS%=TFQdRK>YwGd-6(c`zaIFOk_=)+a;>J0(M7H2Ah!g4PyWMkk!?=@?Y_9-uzU1
zA5PVV6`1&Ej&Pi+N1#0ZDtcrRz4!zmkYGa#r6S@qhWN3#2`g0N?V#UD4WDQ-JIJfG
zu%)1)*KU*Nolx$|)iby5h@u(|PzJDW(aBeI{!VwfIMIrj&>%xXNTu<39TZkMir-jy
zc!rLa*-Z82`)4Rvz$^<$12N=V9Vf%nr=50oCwTu>j~wWu@kQF(E?VMtb-A6Q+x1Pr
zwlW&gu7$?GI}oU`sEoJP?uq&JdGllNC5W%P$?<dw2FX<DWmtxUnGv8&<!BmPPNgi%
zxm5HdO8|wQ9jLSnOO~H7zf|TIbMSm1c!U4twIc~lk!^Z=NN<kU`PeMe4S&|=6B?m9
zlc85bWOd5As(GNWEXE;l)B1bis~!ra8EMM~f=_{P_v83@RynLU=<L=aNOgy|xh`)h
zY8evPx~_j4YOY>lWsyCKn1wgh)xQ5(uLJ{<V-)d%AGLF(O(UU-8TQFvcS>tH0Zzp#
z4_1@w$f-oPRt@T`tBwJrLGaXre@Gk{rE%@c6vFaGa3DNaE`b=lizOI&Hw*AftL&6l
zui#K4Vx_-l1%CM;AvmpuVtDif(OY69tifuFT}?s*|MEL1k;V$%JEFB1hx~1cv(<fj
zhW)RYAWxdI#FJ=$itb7?Ut_-YR_kr38Mw&^U%XuL78SDwd-k=i#@n4Sr*GyjVnCUx
z?w=gH;mcT^+gtlPCO+V}5VnVrhB6y)!GC)1KsJvZ)jZX`k9s+lA6ekd>fy(z>A8eR
zwu@t3>iCBeohqZ{aBUNz|Gg8==^1Ka1-LF;e{vR?dl)C`wXtCqnfz+#yhMjvftn}r
zefSUW-~SI?Zyi<T+I@klD2SARG>CL}x6&YubV?&7(hW+dba!`mcXxMpcf)=5Ip_P0
zJMI|wU&ofc-}i~N)|_+A^`eg!fjLJ%kaY-oUCq|5ZJ?7Nq338FIn+i~`Lh=|IXKWH
znSQYRye|BhP+Upq;Agbhn(IJ`#G}+a?vTs{s}my1^)su;nO^P&y0^S%K1oQ$Pu|$|
zT)Qm;ukSe2*I&`s#I_R+01ZhCSgZ9{?7#mIv62%Vkv>g;kf;;OZprUoW9~i>mCIl<
z^f7_YO^exA1oDowIY*5H5EFl#47t01VxLMT$L=VH;0m7s1tp9ViRNG^Ga@pP&m#Q4
z&!Yq1Jo&8(gyjl$C#0mrif~iehVU3Q@K*0~qFlr_hT@T_&~bsQ^XYv?5coq6@t3CV
zS40{oYo{jco5tDr14@J#Te$J=(bAgfvPZtIiC;P$Ga1IJku>?-;JR_mtQYfKBRVcE
zJi7;|-<0X~2JTzKKjV<_hYQt1UT~w?F`0xG=6}G2Ec(huEj|1-;@ap;zCpI2T)MB(
z0Zd49ntU@-Pc#)ngHPrNybSnp{GFovn~C$k64!&zfs5**Q>JW2l4pj~WWFYi#C$16
ztDvn3$bVD?^AZJwn9FH`$mpO(oL8JJ|Ee0x#px`12K)P(g2Yih^LPZsvaosQ`41=@
zpOHQXuc3oe%t^{%tbUd0yAK>kb*}~%*`;NxPirB6k4<53BZjA#XF!xzZ#GOox#}k6
z-(85_YQ3+FH>gf^K9tfDlB4C4@xOmB(9CAPL$v7NiXE!7T7*se0s*a6Uo(GAl2EpF
zz&^%Z<3@&=!W+jqxLxV5EY2sj$nmZDSe1s6#~#r+>k>VZekJpW3rU9Xe0BzscK>vK
zRa%)T4R6bfrP+N`srOOeN~-@pmi(^i(PyMk1Yb-WE@@0kfU4s%HsCuZBf;BRE8^e7
zZ~I7}EWVFU9Xd93mt!pdo#Q6hl3+$fVW3sU^0!grOZ)ML=wjy+QIU=7dWaTZ8?_VZ
zM&35Lb$;dQcp26^{h^L<hKkt6w@6yeephlX>hWnZ=wBC{w?d@gqJ&KHv%Y}cXB0sh
z0kvN5-7L%%q~Vc&odgT*qBhr7m4Fug&UnEh*i`~$+EIy|QkA#}l9tw%Io!fb$!8yT
z^zWE}#n8+vJp%e&ZzTK(4qBbY7JOE)aqyv6koX$G+R(pnJK2S-O|qHlfa<{z8%-1)
zx4ZrYUlZhj^|1cXe2G^#y_NXV0_ef-j7C2tL6X<k5g@9x82tL=%2fUR=<nv+OnJ6O
zgSz%21r~KK8#p|w%S}`j#%`%~)z(&?2NtHLc6d{b3X$5JcL0aM6G>sV{MC`-;d1js
zN>X)YuM(#riQQ5sfxQl+H%zF9ekbW{rxev_IyIn(0-t5$W#Rkjm&eVi4%sJf=Vc$|
zQj}9W1hrpDEIW2T`5LJTYqD7w1rA`LuG04gl!%&TQI6J!Q&2{;jKMQ9uBm!bdX+Lf
zI64C0s<6J~@PTBs<#WFEQ3B>9u{yq8$uTr;y-l}!<Q)Va(+Q*h{>n6VA$DKEEfbZO
zsw%lHcwNbUzE;ur+btD-a>@3DO<+Q`0-wr%Z=9$I=F-kR$cEt2rR4gl5V$6p{9<1^
zV38ZlqR*RCUft}!o+;fYbg^|vtDY7I;Xpj&Y@@2>Z!5xR<vpSJ2nI3cx4dsJ7V9Rw
zId)Ua2F?y_fa#b&$ycQBhnx&2{4qIg-jG~W&YLxV=J=wqo(>+TBV1EVy&LtD+Zrn<
zOHri)$mGFKf7L5JC(}`>KgArgUJkV_y^Qw1Y(!orIIYrdt7V4y!J3DtM2pw8Q~z^8
z-^Mm-(vnMXu~rj-yc8V$SzKiKJ;hwzl#J$d8xr^eWO0})^L6A&;5+-d)_?LMA8}_I
zbuf<e)Yiy|ylA<`Pe&-=)Au&dhGMBjZ~GH^S2EcVE~1YLkZLRXegL7h=+7!K3sKH8
zjO%&^GtT}*-)oE_=ho5jWEFYxH|L~Xo~?7Cu-`H0{7hc*&pd13eq_mCgFED(363R(
zXKd4%ej!aSH*Q-|O~17{hAC98-};o#M&D-<K%X@Q-brN7H}WVPqQ%2VsOKwBms@|w
z#cYBI6!txE;n*a}@c!_tIa;3nIGK;W#nvk2@DkQH1HL(X(TPrX_KYZoE1xDX5Cx8{
zZt3^~$@Lt?MQ$SjC=~eP*{+1oHo5@(%<)EaU=nAdSP5mZ&Rb-5hl@x-Y8+!}$t7B3
zPu31_X5!AEA1Bb5Y4OEf<?*N)1Ffcg3bX%2ID;;w{e6wjh`U0K)jZ#r?_EBmR3QSc
zdlkRRg>xAlw8f9#bajdS^>w+<Xod=$c$;O^;De<3eSXSnruLD40xs8D5M`S3%@&(F
zh%s(|!WAAqgw?RZ2dnIT*f|<URKV>=9>yei{?QZnh``=-2oKE}wCRQfKbuo3jWTWN
z*|!Nt#*W3)+7A<eF5<kyXLa@|r0VHx6V5bmUUs8jZKE#|D*i$7-0<ow$^T72RM)6N
zkG^X(OogDjkLv@BF2xt3a0EYf!hKDA&L=F_dA`-$XC>tfX<z@$Abb99w`(OrX?YtB
zknM3N{+LT?T_&mF_MI>AYD@8Q5T`yj>c9VioQua{nXbFrJW^W6GTm;@OY{5UJ-Unv
zz|g#3QY6fyq;s;k&o<YeaOPuJ@TPPVYjL~WN=<j-<0xZ@)DqT~>~F9f@LEb@%A2gu
zPt&U}ipJB4$vuyKop@(yCUuv!KW+aj&2jlDACtk6N4br+evV{iRTI?@g`@*xu0mUu
zGjPK7OK2?CSoX$f^?-*4x%l;2WOwsKv}J7#h_)76!xnzA<BRN7G^#@_;bh2XGF;Wy
z+wo`w1j&{UH#7&cc35Iz#KPsIn=M<VjA5E|0JulSP%wsM_u7huhrt&Y_qZr$utC`N
z1kB&CV%|GU71SR7Wz!-J3xxF$X!N@vQRL#Vhj2-~zIQXQgB;)SMp0d8{%-u9s~`N`
z+<fEk=}yJX_8X*POD5T)5)g|kH<0#`h#hy|EWQ<XJI3d+_cMvcUw`kydUL`{d?)mc
z6J(9;E#E3>{JE-=)>j*&y%E;Lib0+WGZxVV#e7jB;1TBVm&JlKCMI@7_=@js%JAJ&
zi00~1CXDiK<IC0yHZ2oy0a?1o=w}7aRO%9G<)((ih2$9o{g^CRUFQkDE>_w1No^-8
z<4WeWd_fw)Y&O1Sw!@}PULDF;u@0#tIE$BDPSB>!-3W5sUz5wxGmK@zhTKgDbpyjh
z0QpqqD`H9MKM8;S`4(F;jsSj&`iGaMjhVypH6!8T4<#QBzcl+VWTFY#!aMkIa5)78
ze)~Hw#lGtV$|=sC?w(^LG@rh0#ZM<=O4E|mfRxIoIV$Po5Hvozm^a0e3IBVEed)mo
z_Hmooq4Wpi<-9{vZnuvuy#pLf^Mq<s73_9TyxdMEBFg~yebr&K*oRF!NVT?_K5aBh
zx#q$riOng#H~&XU-Q|yf0G(IWrRV9O>{)R_jrA>Zovj)%0KFhNop#yS@o}0yAdn6h
z4bFY<d(hFuNJ*&=sH8@+yo!{SV{~`>Xq^R2?jrD%tFJuGMK41jnbXGMI7+AZ#tM|_
zpEFium4j!sF!*=&7!s}Dghk_7-!STn2N8CborYr##F+i8Fyi!jRq#Ke-uugKJmCS?
zb;Tc&(8*D>Dr1+29!dL<*%w&>1rTuni7JWsc9$ns;VF{Pn5_{nf}J_<G)}2r;Vf|X
z+K<LRiQ~oa9=(1+gCVAFg4OtJdkB;+7EkNtL1H3T2e|?byf$;x199c<(`*(eLPH6&
z4ijHH`&f3N1UjTx#~Y<W3Ew=hns&9c60NOJZlE-eLxD`fE!*vB!U}@#Hv}oXyr?d2
z=Th0Ic&`81Xf;*ZvxpEYpS`C0|BLyoW((A$`n!SDu5;yK?Q1wdj<l~4Sw?zFnPZ51
zc1m$PTL&)mZFl+Yme`yp91r+@D)5<WWWI++`nfV!6O@>}b3dsGA+P_cnV2x!75Rz?
zs@Dq>76qUWdiO3Bt>R!yk^+!kAt~)#7|~*Yr4)zL?@accZlpE%%GYVRR&OfIw1Py`
z=4XXp_tR6^f^gFG<$+6Vvaj9KPr#dnUw^Ef&*lu#%+c6zTpU7qiY60~fRo+Ib$w9h
zIZ8C;2Mw*NzkBU^lSAsfu0tdybZhUk{h3}nFAoqIRIB8w+%OHk4SI6!1)g3mt@m~W
zqVYq4)mn}A!}_{mv6#DNn4`0?tR=--E^THNC*a}}kC-|-LW)WW4;`1>3tWF)HT0u3
z&OD)Js&Y2#&3wxfe|!wJ`}f1Mbmh_&cXQ=`b`_6c^T8_siis38{=6c`tCslP(()M|
zhXLK|9s1||sKMJkHj5>10V2akCK3|<orPVZ1|IE^pQbZ82nZ^V2tDsWsy2iHz(gT+
z%-e(Q-Bud}zQ0{h6^ZvPA2lc=gi@)aZumuhYq`CBO_U!yWuv_#5)(fbn&#G@GU>|h
zs)i#5q(p@RG!LP8aD(A2P(sQ+tF7m6b6<>7x>kUsV{K+?&^rUaZ+y2n`{yxkQ)p57
zNz%$IbeloF*LxHA#rs<!k~q-<^{fh~3BdtuR<V?UxwRnBBI8lzQ^)L$`=dq-(T>{-
z@|0`G`8e4k5XZ(?<b3B6PY^7u@^mTBx~Qv_D#i)9^|xfPg_H@IU#sUz?8rMS^X5Y@
z1UABgh@sGFcRT9$rmzE6RzmJp9k1Nd)j~MAv4?wQapKVr)&Roj^H(XZI>&R$Y?miN
zYLuOef-PHc-&YYZbVf(2SV;Iy{8au^6a0|fhSHx{dAOoY``AI4(~Y3zGfrl1MT8{H
z#ccG=TaW)O7%fN7AnDI~#3JMK>thMASu(G8s@NlJTqq*sf4dBEqsP?e!5y2*IpNMg
z3vHA+%hM?<d&5u)9ZgRnjgU_Jy5?I;PV#|j)U(I;3?oo|5eBQ=u;swxtEJvK#lIRW
zJQ3|+941^_o3@Zex8@9ac_sBmM~!8k?+>CARfVnd)F}66pWR(06f0I=0*nF`NH3@?
zNB_TYS5gI8*yt@x$cRa-MaD-PC6M8-$&(wBN*vF_e-V_KvkAb1jrF%4nVV7SpdG7f
zvj573-3_kXQaY_*LPH-8%e69W<Oph5II6%BgO19gg5{ssprlwCWd4xLWMRuy;;Bg{
zEjzL49?8k{&jZ1ZUKKvtGqPss1Lr(BDPg93tnmez6n7GmZSKHZxT}3KbczJDaI)Gn
z@`g>SVC|&`mpg`kq3Cv4Q9?Stun*r3vD3Z2Oe-poziNJWe6C>wUv6+P77~Iz{(<`J
zs&}2uXcf1<8RHHh;t-VMw$NyNEORpibwsM-`=p2OKy-%3oFEYn2IMgeQ3!O&>VKis
zeNQZX3;RTjNqu$bJwQw{QG19xR^!^y{cEeLrJ(bOd(O4-*ivFzv;q`EZ;VC@Y|v_K
z@?K^sSXdNtcWPD1xdtXoyi%g$Z98eAg1}6>N!i|TX20}%jDW5%;Ax}KjT~tp`~3zI
zjjpzghQ^>HE12A}ntTXFZV~D-HMLjQ!rp)l(&<p9SoI#^W`!QpSTSYGr{5$eNw}p>
ziDY)PrpowFUMEY9FgYg2#54WgtlXdcOl;PGysy2cBIg_85L(|(ud%T1VZ%=>)aru`
zRAoKZuWLpc<a{A@y!MZztO>jp_6(6%5DC(jq3`~l{yUw|`*StFuCchg3g7>$;2>nD
zMqZx^a;Y)D<QijMY`DaY2{vQFp^}ndWDMU;C>!sfzGDRwU32AP&xCefQ|xLEuZ7yJ
z<?We)5a1`tD_+HB<%ko^fTQoYy*;$p9e{B>(w511yj*w4%^N<osg>c=UlFR}@HNyi
z2wQs0!uCW8?HR&AOBoXucLgHxt?tg6F$|$@6%c3o7O?E|Tsn3g#N3<^nEZU0p&8?%
z3t~OY`$ZADE@GkcneWh46?|<6AI$E|kk*2qh3Zg3RXFouNC3E$sZrdz5^NtV+G6GH
zM(3^kUQ%7!Kt7z|VyMO*`fWt0Pj)mt{j5WRj8k@X<s14uYof>W&Rf{hCIRd;$3mSN
zmvb!68sQDW_ex4i5bE-y#@&>Fi+@hDlvpK?x}pD{2^~gRF6m&I_w$<N^C@7^Gl=i@
zft<{O>hsK$Ap~D}ZZ){wPF_i#*)dy-oTfpNZg^c(GLeVJYb|SdHqRz%^X^=ELoY+o
zP;QPWy2Rni;{7?cuE%>MPs`a6Zy0c;N+p2YkcW15JX6SDudC*111lQVZ%I|{pRDJO
zuEPeC#5(VYS4>?7!f;cy<{DmO0HsbLrgm@LoOKKw+!#L|YYjmdsbpI9cfF~L*!q>~
z(~2f(H~`M!2<KYwa_`Kx2b1YAnG#%;Nd~hX8dwFHSPC{mz^obKPaH9W^LKJ**BR>T
z7v#vJU%ueW`h_tvI=n#la@ZXch@gm9O1QDeC+QWWH?uATd>&P(YEvB!qrtoAH}=oG
zud_vI*Ty=1?1e@rinU<cA~a!k$Fc>hOm}5+#lPqcMnzc|F)q$464PAlq_Um>tligz
z$-lyGUq*uthA{Y*fH0d7NjyI=27c9rsFsg!K2h+B)4H@1$I*;^Hfa1h{~w|k&ydZe
z!nRlnRvBtErwbEcOdP-TTez2t)Cr5sJAEIZ!Lrm)rU?jiu+;DPUy2h+mnJA5mLs=b
zG~sIjAo%%x+3opuXAlmuO5^j0eoywJ7?SAP9U0zrKsKO83}CAB<UICOirIe=YKBfj
zE{$pA>E)gN9o^?@pxvV(Mbj~e3k(@jw|bFpm+aRjr?Cjiut1n__}#HwQn_&Ww*eWh
zCo3f0LFysd!);nf)E=k-ZA0N?L`REG9=c@at5A3>ld7Q|HW$7M<jKh<N`{1t{R7lk
zWVti&Res14f}{amnso>Ci1@*OD*{}FE(5_4_VZ$SltRK?%jxDQ>!kND<F(x&jiSE(
z49)44N)=e4PH%z#W(s%8#&`_?^x`pL#A1POGW5;G<X)8095iZojIgjf%WxgP1kW=%
zD2@Y0bl7bssy#@x8@3s6a-0VxSLMhz6EBE8Cp``(Gg>mS7V+dJbGwRveNdoe+gz#(
z&`iYGyPt#*cD_<gzoTMGnYrCs3&iG23{>ntvLsF(pndF-%q~e9$%@Dq5JZF$Q{U&-
zTanf6sPy3Sjn)9Er&mdwd|Np#M;Q@0{oCr}g-5Sp;^?QvkAFKZkFV?xlE8ssxHrCj
zA^o(<vT<$*uThS?eZ&{&5C#q8(KNp^h>ALwW~#3en><#nDnr?oQKn0~S$I_et;L&$
zUGD@au<v|m)DdsM6k?ICz}y;FnsE16iMvXXkcAOxZCwQ1uczb-0x(6b$zf#>WijWE
z4oWqQS6`=k-kR#_5_u62<<IWx5QQd~DB+6$!q6)yjtiVgLBoh>xW2!NJX8m-(Z04N
zaMzZ)qEazmFdgKFti?wSWLeiXU>+|1R#;_nMP)6V7M5cZQ@85z#Q*xh{XLci;ke#q
z9ZPD|I6mXT$wH(2?O29n>pjNsQUHn7)gDAPcKl9XXuZRRv!A&Kpu4}&dJ)GzkiJEP
zZ@rYS{<(Uh;GCsbph^SK0^JSM0;+U3Eor@;ze$WWWE=VAc*AX-gdK|@hKvwAmj1X@
zP2jbn4KDsnd(8#H#s2c@CcYa8NZkiac)+B9``0<EaM66hEd&7Ee~;icfjmvUcDGv2
zwx&(3surT&HrF_Ja}PocNeXqDKZ%;2NT<`a+E8Udq@oT|zzDD7LDo#J2PlVFUX0Pz
z2?ExNu=|Ie3itv<a&#{<bMxOHtk>2a>)(e#y$f6vL{kHg2a7n)_>sE~wlAD{<eG&1
zgb4aV-JgmWC!Gp7^K=h*;hi4rs#T22$SFd8Q=t8TL>QlyqV*Q?6>=kTr4k+a=?^p6
zcR+E0{3JWUEUF$qmaB4YNh3R6`z{QVL~$XkXq{%0Gj`U3!M2b+XMbz}$kNu|=hc>H
zr>W15`J*+H6;+#S1{}<mfts&7$80;NBpPq;+MT#)(k~Rq^SgvZ)V191aNkffoxxJy
zIr<($C%C;&GUnb=m@tGSrKk{93o@JSVwV4((*lV4H$`H;MyhblIYnuClilhn2?(e|
zfS|f0U;dREd1(6dMq#M%gceX?PGDk<Mn@~s<fj;gnsV<^k{~MqFk)lW9&lUs4>t(5
zM|Hl9_eFw@zWySRJ>LGxU@Su{7%AfC<v5a{0+?>*twfBKUJ3G=c3%dB^XLp?m*XS2
zcIeX-K&#3AF^c6t=tFi$B-0Wua&lgulgG`tzHw^`HJGs@Au%%oCCKL8^)f<k6%e4c
zj}S94w7nM}Qp*ulOd59=`}_vRrLFYOG`;H#=bNWDy|jkra0@ken4pYgYXFGsapR01
zQnFY8U+8IZJ!cT|^p^2p$=#GGro1bh#`l}@Pw0wGqsOlNeICfQ^snYC?UkJE^Am$4
z0Ea1j!Z$HrQ!7W9@zW)>q=f!pt`SK(iC5shs<5W(+lKFcmlPr<cL|+am8zgRAK@!C
zbTfy~DARi#An-D*xA~gfef8cWB1@C<Biu1nL-2d%!TYsyM-zB8pVkZ6y8$zx8{$Gl
zy#mD<!NW^PETdnBkT&XG-=qX7+sPJw1z#D9g2T2g3o|*NB{ZIP2(4D5KG;fZX@IYb
z;|BxCKfV($a80=j{E<t@VKqe_?MGo6N~nzIt=IJ5nfNRTqQ9sFq28PXoAbjBmU$7=
z>4Sqi5H@ZeuD{D~Q&|=F!%F50m|bc?aVvmeKhqfGF<9dUl`nnM4@PZ}|AYM6iFF&q
zw(Vt}BWtYGxQ-zr@7FpRd9}3^!x||pyV0W6?{xuS$WZ5-d}rtpehQI=`0dp>o&RN(
z|KUsmo1;O6q;qTEXJ~cJv6Xx#ER}CM)1-%=b*1V)#^RqonL^qVHyuWIcJKtpOfw?;
zub2@}qy?9&0S0Km3FztHN1FXu9nT*AaQPS8=jvGI{qz9^ofdoR@;Bk&B=^YtsgD0J
zJ^&ckb3f`116hB}BU)^Y!Bnn<B>mDXEXP>(X1Kskqsd7eLQP8Pzwh3#QZy*`F~0rz
z(y0bPiyE=39KuAuEbI#_zcl#_i}maw85FwqsZz0cr_YaOdWy-bG!t$yG?uWE)ton=
zSH22X_lG&;VWrBmHb<)@6@Xu=)bXO5ADQ%0iufkK=`!%wSrmCSx6%{ELL<GDtM+~G
z0#CUZIZ@tr5HQ#T7*9DsrV=2eUTw}nB+NKxVP$dmq{F|g#Xp+kfx+uG6+Bf6Vb4@d
zChI<mCi9X^vzhDhAxliN*D;!CI&EZjnBj{m_N6YpeoAEFbgB#l*OcFDpzRKyVhBh%
z`rLf~#9%5|ii+I`!=arwjqXVIn4>O}3HbfskC>!b?S!VF_-;&2!<&@puu0P4pg;D+
z=x)%cO{#HOZF-tQ8H2443c+X%469)4T}B?p_e^ff9WTRn9R9U!TMk3p>F?)y$MK^G
zgdoI`?-mcyL-^aHl7GAdI~<!&cCvub32(H~a$NBOpPd@9h@bY9>z^*1-NPBaXmDX&
zO<s3YntRL7Hm@3JAp1Q9HSyXXk_yXSu#AgNLF!d>nLCzgpvfOCKAcw+K+P^Y$<}q3
zj1ORB*b<bvEzFe1_=cG~*kh(KDx|>_HeR@Bs!_d%4@yCPJ$@0PYSX=T*dL_GO!mIT
zNey{2ynNnBR%<vIwwGO}bevv=WjZIHL^3j8OC4;EG_~Un3NC=N*ul$aIVg+?yO=d8
z!A&3*lOrC-Oi|KSO%;P!cHJ>}F~@-unY(uf`HrwiYjX^m{Q<7|>LjoE>dy6NG%AeG
zGuy>LSsdk>=H<l^RkYV9Z6J|chPOYJ03`m9w2y>Seyd7=fRm?{_{)N5`5nO{O-K<$
z?M)RHS|=t)c(iP$C&G3t9Rg|Ic*R;JG+Jw?5i`2Yt+*5x)p#w+hs*aNG$Oj!Z)Sqp
zpDaWZ)$Z~$0ltpCzRhKyFOW-5{fTd@bR$ydase!rHx;K~)ehG*RHeFUiS>c%08Sl0
z-$td)TX97ie>k6_6qBIVJJ)|WLYN)BAydD^`8GSsgt)r3y~%y&$sON)tL%_Z#&SeA
zW;1~ve?&T36?#Zqvq6Uc$km8<zYS>)$d4c;J*mk5l89WVxOuj<CJgkjXhFN`#$kef
zGK_|{O|ae2b{cj5r}0&8hS@_|kZ{$1Ttf*iKh2|sUUbAOxAoofYNI1g4a|pnJ=#G0
z@xbfLoyrf}M0iAYHo2ZrG?eRu^Pj+g53!i+EkKP3S%Wb)flnVSpQC<Sn{Ln`%9+ef
zOpy!zde!b--1%~>NsmN@k?5vq&wHacsCMge#uCS&c@6^B36e8f7LHdx@Q+6G)X{WB
z_RDUUU@}(_6zpbn<%ZjhR8KQn%A!?6BG`C^gV28%+axXxd>Q$G#y!mWU|(LO_d8ty
zZ?4obo7A5V6duX{io*Zj>hThrb*z6#xPSAh5cs1;ToEL%a|~z+g-J-*#YL3tOO>bN
z+I(>-fnE8Mt2&{*LJ03Km4)!5T?75x4DOVn*Jo24_0Rf=AkBSg%(Z|u=)|=)M?qLb
z1p?r(F`i7ZBm%Co8?Hc{<cPHSSR*fIuw^IC^9y!8yMN1zeRh5kvPTA!D`$zsj~{bC
zpjm2Ul%OfnYPBRgoQ#AjSMwS?_OjPW)Jot&0+!`Q54$EvP0|G542C=@XxhanEs1Rl
zp{C8XH|}UknV#A~t3@!*i-tP3Hmx^h->-Z3F<G>5#DH*=Mn|jpNNZ;*lQkr%P~I(p
zcP>iBLHg&HQ=QpcPah<$RQ-6Bh9OsKhzK_$)b0^lNXrKCIWP_Xn<aqj3E2~QjMjfw
z6vpEEl9@?4Yt2=s`#yAS{#<EcfyXIT<U1J6CB?-Pw-Q5+K4#^<0M1}w9bXHIs51ra
z6F|8zM4{L)h+(38a5!!_9xPg^B%D~}XPGfv>{^7deMs%z;IEJazmae<Q_XCKD{4!1
z@~|l&WiW~d51saM1$A#Om;i4h<gWM9D7`#B8&6aIw-gzS*$N=-c$^z_mUG}aQN2ym
z^9(u(+CDiU&A3>zOZTaj|7PFfX-5$Hy3yj=XF>n#Z!x`eArNo`^bn^K55yxOLOVI{
zJ|k)pJ>(?44IH4A<z#bvb`$DV9UtF)r)V7?*C6GFgFTHMz*Y=(8-wl&*_pY@o%|=W
zJipiH>X+Uo%(;BA_)FQyp|}{+8_qg}SBBf)RX84U89$9xHCUJ)I5CBjmqX~c&;CmH
zxM(n<f&!|^`S#U3Ct}3=&gGOYo3o9qnMPgIfdRP_!y>s#R{b+qJP{>==v$3{s+6;f
z5S|clkla*avO8Xn6+f}%(&Ov76x=jB4dbWZmu@Zy6>!>8a-vRxh{9=}67#RhL}z&y
z2a{I`0FRJrvbsk*IP&=;Mzf%7R8nK~m|?huk+_~d*BFn%ulLD(KBKwC#P*U}isqx1
zXTZF%-81-a86%)D3Y2aBPboc-9u#o2xVOS%JjMF+Vol3{P;G~>h|QeyPcJXB>K5&X
z!r8h=mWSN{3;At|(CnNlh?Ef<NEuPeCkr@H3V32sj!C4#d~uGJ9FW($Ourc=UmdC8
zS5*eA^M=FzN+h7oTZ51uKUJ$sQ{`DBYd^>w?xlM|K)98;xwz}wB5r>bCfnU^ksveg
zvdwc#u~_uMiqrak*MBTm1dsi%AZ9p>@#43Rk>4mk84pbqO{ow`5Dwnr-Fr*+r|M46
zsUyv+5J6tamdu`8M6ula_Qtq%qTSi)V#eRR$1am0wN=Ib=!bb{tV9K5@M=DZ@x!YY
z{#E$&c?@zfB<-m@O7<I-u3>$UW}sIcJ-dOkOeY>>c1i8et6w)L6A%J{m6>r8Ti+sj
z@h&kbRqQXlma_iwzrIpy)X60ut)Pw9Ga`wLIGmp!MI!sq7+ikb&_YIBlp3A>GF>jk
zF>#4LL-J+$G27nMgf~}hCdBzm><0BCha>JGm+j-RG_BIjA!Jin*f|s=$$&Jjo`N!H
zKgKX`o*&!`f50|Lzta6(Oi=Mf17(*n!go%Tgh+EeK3(t>_b&gtUZpuyK<}S|Gahft
z^vG-m%vs}Q860H0x_H2e456-u0BNRja}`;4Jc(Yy=eka6|0eOx-#H5THN0!CBidTH
z9F78f4h$sQ1LD2dNFVFGQ`-p%OD~}*3n0gQ(`hX(C<_!1D(7<q3V9m~?8G;y=(IB-
zi(GUbjf!#1R3Tt0&guF(mz{dbwHLx#8l^c%fnH}@&vIi596uJ=+iG~8Tkrjj%;*v;
z=_)3Rex+j;Rbs<#yo}H12#5F~ci!8VhLq&j!;U2U4o<2^pXsD3<hmGdDyK<Ep!(!4
z<}&$_3Vy0U{x{ioy~O2yU+ZIed|QO4F1Wc8Q{i6jN*VC+w23M!NoHdetovOa7rkeN
zwiJq9H#2T}-{$6G&0m;S&Q<%}iRzSTF4d~`cRL8GMmrEu)aCm<Dy*`M&V%&zOTkK4
zcS_TC9fRghWgds{rh1*mG0f6BHhyx7a+fK^8;RZo$T#8nkOyHi#DtHRsxY#%zedZS
zXvvmN*43po`?duE%i;gJ(E%A7!+KfSSEr<(qYirsF+nVPkm9eP06mwXP@2heEcCP*
z|M%&c*(Y<}i|!?Pwv)9(m{E2)kpG7!oN6e1?Wjb?!@4~ECG_+V>sfCvr6r|SH@G1-
zPpLrd-WAkGXpt1y;Ih6Ye}P{S#~W?54pnf}1>l8q!46%xF)EA6GI7CfyUJ{7vFC<P
zW*3V`N0QN?v?Jx+NkfjIgj-&i-%H;VAR4=$n1n^KZ-_{`rG5(gHUIKQC9I6;aCd1u
z)$XW*w3i8G#1MCE9X{?{NXXG5{fzM4NlB3bYLfS)Sz;VjK<Y0TTjtQ|_gtka$G9wl
zRB8DRASr~N3KXlF&)<XWvzbEwJ`F=%KnJ+g6EK;Hm!W*PL8ifx-g?az(2-O>@TZxT
zc8nC#fd6j_t16f+a6M-<(eO$Nzd5MsBb-<35!Au=Z5e;Ju6zYWi58_yVPtsh@z=##
zt}DL?+62+qz=E)_4>jV-<Oy4Tl*PNC#SF3FYd`Sl2QuoIoan-qgC#kXYc7m-Hg=%t
z=7DIsb*ZsA=hEGllekZHzJ0~#az$C>xgYcKTgj2oYwiQ-v5Czq09)9sopBWb-YzW~
zZgaqM*Ci6Ua$t`M54G`r0}b7RBN#RM7#0;Ip)~?VMt(I@8th-&lv15tV^BgZw-$JC
zISYa|zSixB3<3xN!70}uC@mq7HOr{KXY=9q9+S}&;gw&@NF*^a34@b?+5!N}*Sk!J
z7>Md^A;<;1TcCf<lnNSc7y=YD*C&^|pS|=Nd|bv1DaYbqo|p1;rXQfgslJyL{qXV-
zz&?B1e=OoNN)ezdVy@HcKh$$lyhKy}9oYeH>!|%K)2AspZLSKerqN7ShqngQUvgP~
z=al7b<0Z9Q-Sa60ZK39C3Etnx5$LgUr@r?sNU8MF`gvM<+Qa(nuEcAvgIzy+L3T^Z
zw_<r*7az7ZGXJ<j4Od@R`pjC2se`?4EmZ2^FU>^(mUlBWk2eXCi4J95{oD8{YB-0l
znZRX$wEC<85{>2;XBlEa<gGzG#=_{rN!+!67bZT0By)F8noO7KZhus7#C~pKe|p81
z=O_lDoj`v`K5F!`r2+_bji#ZbB;IxfJ|9TC=p_warxW{qHzh_<Htm8DAE_`uR*}*v
z2agzw0gpig6d=dMu8=-|NA5w<_OhR=1@@<FJV#3|sUr=+u2pp+5UL6l6`)wGEG)vc
z?{2lD2(f52oPFmrtcp7!07(v7Mc;4U$Ai#N!XH?nw^18Jq)uk7qoN(eI3^<{%)?ec
zjh+>X%q;9#Y#^kFUw{;?Ajhi$4F`DFrtVTbGrOlaUsJ260iKJC5h;Gqqbeedr2YD`
zj_2{#U=nsNCXUsWscci!r->+`#+!wxaMl=J@o3!8-7sW1<z~6oK7(f;XUUKRQ8=_F
zIw&7vU0~+>(6k>4;LY>Otz-(zwT>K(eCQ-z7w__ILdK{cPhGBS(En()?h$}i>k%iR
zU@ZG@hs{6>aq9Y7X2GwNKn1A}!^v-A$Fs+z9i_YdU<Ma_6)*dGHv%1tebEY0reSyC
zzKVst?MdK3U_@4F4Wloc=GPt(S*X7b+sAEAe@jyc<a#*5MG~>x_F~Ak*GG-?|Jpmy
z{O%$C!YC`Kk13?Y>xNE%_DQuf8HD_Gq$oZ|G5}~FFer(S>`M5t&w9V1qK<Rzj<Skj
z?+d9`(X)jLds|+l8KWn_Z>fEZW~yxUJH&X?2WYQEFR|C&&O5qMz~mT$9v$*;%v88>
z5%PifJU<cs@KlDzNZXx;ZRD~;|IZ7cX3Bx^A#_(wdWIWQ`uH|Ix!uT;9-<_C^m#ED
z&V|tzP4@@j7jnc^tif9uU!$X*TFlzhMM7lzhfa|kr0}Gvz?ok;c~k%ZzEjA<a|Maz
z<GQk;cr*$gj^dYD!rH$#%XA#eJ71;v`_`)e6`F5$V?07JHMt<PPX;Z04x4Dcn5`66
z-|k8Jc!ZaCuIF4wS1QY~gJ---qx$PT4qI|ipJ3%9M9Lu#VJ+e9(mmWn<IG`c<-VC&
zlMwYnOPtwuwzTG3ZU?(rXXRmo`2C%o)25UpXx>g4<10TUR$?D4!lS7@1KKs%-3C9i
zhRyq*vz#PnJh`eX&+GBV6G5)%h_u-g`LcIcu=A2Cq*g-oVrmW>h}6F~I3oUXH+yWp
zVEmHI=hmtxUR7^(&cW-^NUB<^B$7pKeDa%>)y|YNp#8oGTT`O55gfZ#3eZn(fQt*2
zWvtQNCWIT9rqEf63uY>HM7^nB-DIG82dFX7T7#tBmLV97Kih3nVt2UoRg3cO(Ifxn
zH2VRq!zRrWHZ&%<q#Q-KE`PbnCE%<rFfeduklp!4nyfOS!zP0MaTG+(XW8rLQL^Zc
z%i(%Hl`&$>!%=q;)qO|@%n&Mah$>-G;XD1*^i`S*S)~KoCfCQV=9V%#CIErH`nnRs
zZfXB5>WKEAtW}<<Y-s;(@&TY0B%Jw5HUf9n25(_+1HGk|7{bCNmN|h7#m(osYy@1g
zF~d@~i2t*)Am1wz8Lo3q(K_B_cUY_X$I3!{WU|@~N&>SQnXAfVpE;Abi0CDjkj-&x
zsyeB=(31JwPi)={7hHT0ED_R`vz&Pwh*ff&u;<*FoylY&i}YieUhKWFO!=@A(ypL}
zGc|arvX5A6b;9F)m?b4tn%u4k+1!U6Zxj~7Ixdmi!@<xU)1{qzC?@!LQsOd2rK-aj
zFU>}ny|_FV)2Rtqvjz1~0vAr#gPpsec;z}%G*+`E^h1_%r$nA{7{IKq-&(m@AI*I&
zN#0|6$vPG3u-rFk!tiUt{=51#Js1iZ8xC_zOL%{xuTW88z7xVNzIGQ<!_!3u0Omki
z|7t*ZJspqCJtX1-`R^|th|u~m7i}$0?9ai%TypprHNp5+;dY6^qSzfyK?I`qhE1Ys
z=V(kYqG8Ybq!P0YBff)0H=*4Z|CkrNCN-I=P;MAWw5u}VgQ;#NqNh}(Zh?9uB}m9j
zL%!xXi-OcN%3yXURiNhfUq1wu$81$TUtmzs$;m2J#jn^R=9?nJ1AD^=LKUnl&DD(+
z1lv1)DiBK;h%$lTIZEQV&Mt(cMntt*l@^?<G^G?71Bt}xB)kd_!|XRTqJH-2RMfKR
z*YIrcSqMd35iv@T|Lh%__d_jW9a9U|WKjbkPTPJbA^?~dKXcPCK|}$a@CwE<h=68a
zNgsrBS~)#5lvU2lS3{ZRa~CO6=P2p5xI`N8ot>ENM8Kfc44yqfQU#_Qu#r@eZ1!(_
zLU8}oi-eF9W%?lCxqBmC-Y$%c$V5=%Ny+V_2S}(lJ6(U=q*9nhfDJjEui}p$!gELl
zvViFxVPZfXa)vQI4d+4X{1%mqN(I`l+^)zkp4pDq4Mw#Z{3G5W<Ea-(Xa-`B#-Pg5
z(ipZpcXEw>@}I)>uNw@Xe`PqdBv9Pc4_e^0AT96`aV#_;Rc3i-M*EyL-S7TTx4B*q
zd3<nxG4l<FHV^@8;k^PSMn~?r-AMNFyYCYJmd{|2Hk4+#hJ)dvsxGobuN_hJ%RhL?
z;<7hOsBHW7v9worl8t}4YZ=Tmaoc`7++XNI8r3-sJTXCsS7F`XpJtl|=^;%^B~Kr+
zq=I>G$hRh+6THBE-lSDoiZM0{Z7teE#y*LKu`U)L8?X?{=0@tAf{PJ+;flPNYq(kd
zSPSV2b<s+*HkXJQ#imBq_1PN#xoyxP?5QG-s@EU;v6y1J6ZEjZ7tTJaP={px+5eJx
zRdkC!rDoZku5I`gKz)wH&L`k~p<Jo6iZnoPdUrc+D5Yqz(16w*oXeG$>0HYg!({TV
z85x~{$88mOLfHEVBjBW1=Z0ORf~1~ux@CJ<+^m7$>z($czmQ{LW{j`N6>+fCpyhfO
zjn}%Z`7&tXh_we+F=$7jc+ZXizj<z^djoE<XB|+uB0C{n$NdC;3)SX)B2L#1Yue0(
za~~WQ^L_A^WCS(ayTa2-zfJ!IYs6h=UE~FQ<z`j5SM|XXuU4-=3NZlP6Xxa2B#ub(
zD(|k({xp@JxrWL5<^E^pvA0hEvu^LEDvF2*dUV5h5ASn_>iH!q!mR(w^<hE}qCG1;
zO0vyS1HVke1wJJB+>3z)k|Z;6a<0|=$V~0&AvASSC4@>W(cT=4|NPO#Me9%4D+rb_
zEPj0W50iVSCZQxKqf{XGS8C3=(=VOv5|xHr<vgr%@m4H;H@r&cac})!T@Bzf509Qi
zBRM(9vg1dx-Vl}8=>I1;!wPB3T;I7o*_FqfqUG~PgG1c$R(J+iGIH9pxcaf0)rWTV
zh7KWxIe=e^d&u_d2Vt>%xZIoCik9!4i{jmAnAF1F=d*hvOyYLPJ04ev5$s8Y;`-aS
zkPtp6k<7{3ae2gZ4|*oF78xHHB;zL7E8KjV0PE|h)YE4Nsio}@Z~1;e?%$Fi@{rH_
zj+?T~76ut&vA6~wRJzaLoHG+%9lsJdnMn?-z-|8Bm~H-l#F>1$D)Pm?e6q*_tI>v#
z+aFyFjrOz(m5QrIC%Tm@yj2R`KXs5E`P2W&Ki9kIC-RttF|EyHv1l}?&YLEix&iEG
z{&<rUDk)QBs(B}I4NY6b@Ks`m?5Pz}R&Cqu%feh5jsNcbTw%;2k2xR`8p*WnX`)ic
zocKFinuvFpi<KHGY9zE*l({0Ad_dj`sQVbwQDZ?-V7K!voHe^|Zxds>n8$Bdz9MoS
z>^@HBcKrCN98Vw|v#+qxh(~Vw#HCPr-b3GHtWa1$PC{@04fPwS7RHJ3CadRlz9*^T
zfJX@JjqQGArDU_3DET9#oob9dL_KQU4;!xkTWG!Korgv=ecCc*s`MZPSla<y0x8;9
z?c57Xdh|l2i`e7EeWcQohjUU8GtMz{?%u`l+IXGm8%MLkcRn#vW9aNa3&Z2Q^?|;;
zDNUa=nMyZa_Z~%=rjFy%6^6S@yF_-2%p<0rEe;`z<6`Ryh%Uaso|ju!{TXWdun)-x
zo|`@pTbg0sOG!=rETI_k`_Yb$-1t&ZXBem@fJarp|FLV;j@?nN+_9G0+T;cUb3r`!
zwBgpis~g=8=X!!Zwv#dq%C=1-zlC5*tZ%>n4_lV6v;G)}w-{k}wNv|H`+1T>Qk?O#
ziA%ke*jv^f!Xob=WuJB6^EH~vyvdN;XEPdt*X;EYs`8XX5fr#rL1Ls?F5P>$^VkX^
zZ)NRV?&i}0;K{q%vx<Ys{pl3|)8|q?w+=Xu=ShAIJwZ?Yq5)Jf-GM#?YjJ~pVz3Ls
zL1yU4E|O$4j<#BXK$zbNIMRQF2_vymlE8$cov2Wy!)7ClM#Pa?8B5A^DxVdlRq*Go
zIFFCq&RqS+=)Xql(?63a5(`y7f?9^~KTVm(XYnFa3mS7(`u?)WGu@30bciE|cQ|~E
zeiU<01P6=yoT89-;1(b)ccho@wy99u-hFu*VT6XBoCM+Y4>_L@9vp^^hB~em07uqm
zQcuk|gfW@cVj^KRd6g^J4Ho;`6umCOD9g9Kzvj~i?E#>0IH~?cKL49g=3HcB1H0~4
z0g=lhZf9*Wxojz~$)^3$nO=`$Ob}y_KdSg`fMpf=)%C0b>1}9<pN$gc^6__e7gAbw
zI*Y5wUv8_@bCvp$RDbHrXV4!5ojWLT2`8aZiL`%}I9~maSQjM~xTd5@4?E&&vGz$(
zzJYe#h>LE`a5Ih|MwXBW`-KvYyjXX3bBa@8#3L|0(E+iQi9sP2b*G8Hd*39Cd!62G
zPDs9kN~tg~%wTwz4Im7DEb$)0oSLdQ50MZ}9Bera5RQdJ2}Km>H0|BPtUs<mJDlsc
zRm7TCFogOxlg^mvJvUL+{Cs+ur$7e}7~I`P!k1O%95BVF@!&oKSzP7YV3JT-`K)?N
zY8#@h+_vW`rrVevuSdxn;a{(E#WX*?B)QPne_o=(WU!XhW15_TFj?byE-cJsu_+;`
z$+F#GR?kRU5Q6$HA5~L-i1yWlulxWJ8LP<byW3OGrE`r$(tv=x3P58Z$I!a$r}CPq
zsyFk?Nf-46iF~wl`{nt2<|=Lxx>I~B0xa~<2`I%795zF)#n$dHzG%l%5dGR762nI!
zYI=|Dm=~TsG=lN&wB3`So^R67AnFy&wHZwKowk?puj^elObe)2@R}&$Z@&wc*E)#b
zt({|59^g92b;kJaQz;d#UdFRUVCE2F`YopE-&hK3@DBhBi4?<QkC+3VtLXRBvtZ2R
zlJvL4FUQBaP13FrPgKCBpOS0#*@;J{Z3`2HcqkA!bv%`kA-;3;DW;GNO)qMvb3&{=
z32|~qp7y|?1CS#;AMY)U0k`u{1h2j8&uxNYuG&+_Y%DCSZRp9g2{qhShXl}r3+^&w
zWxARCr3;v&qaX44d{U*RDIWSwRu`f$$BJmj;>fbEl~WdTNI)Ow=5g~$vb`{#Wg?AJ
zYjO<UJ;h54%@$^%m*TG92(QAQQuKxH80R7{g2&%8Aj^L*L#e+~Z`0$X9eRsE6X|nZ
z{Yh*sgkJJ#|LLQTmkZ&csM`kJj4EnTX_4I9KhT_D<PD+LMaim3YtKPu0MB0!6o=h+
ze_Wn^yC^rU`4)Y>3<<1pz0<=G3etbfoW5JTCDI#G#>*mItyOg04S($JjF!{O%+&wU
zB>wsHd*c|_RdyzwyW8^@2Mew*Y1GuHlDvdgrmJy${)*OZzaxsYQEzU1Ydo&@FgEPm
z3NGdT?2MkM+Ni!GO$UxQg=HhqLO7eBshui>!F2B>!93>XE2ic2`)L{WY8(_&-=}+L
zYK@2f0Wg;*V04M*=8lI4edQt6sUc~C9oCuc`pemeu7*L^VUZEzfOQe`HjfRRg&j|5
zBGwT6S`QDN=*P1CfPOD5OPAXrXT8DGe7^HrB8N0?(d05wbxqfV;>`ntpsAzD(<tVB
zoXPi_tux`9DdTA8&h_5?J>PJ%+*|?ffTVdSOc*}=!TvOW@0`aWu%R{c@=4C5Gv>F<
zfvS>7OaApty((8WiCb4Pcym!}tkh*2H>tZw$#>6xABVBYfX$f_({hS3V_WK<`_#`*
z&TZy))@;jlL0p&)g<D~47Ul)&RWG`_R^2XUqUUJT?6gltWc@P&(}m%^U0k?mk>%2(
zcw9uULeK!G!HD>g^<5Jc#yE0!F}YM3F*X0sg_zZneBA(4GHKn$Wzs<WuOj%nx9gm1
zswmSxT;Fs(&4KjFNvo6XD+rRligfbtp;V{4=8+;Y^0OIV={hb0<0vLn@1dnYC_{_0
z-d<60?ZFyEQ7Qc2wz$pyrEt~%p5^@=kKRxop1$#D)qH*xZG)&lDOQrz&}nMe<*$A8
zZmVrjxLlT0ph<@t(xkKUfpFJ{w{brlKAuCmsq-R$?AEk>RJ6C2Q7)_sI-)0>#F)!|
zhx6fa8B0?l6IAkwufl1ZIO%thY|{vT-JWeysn!p*pmHj->IqQFm$B;3t>}^XW<WVQ
z(RK#yOA|@Ux<I<G1Pv%8M~Vb&zPI;P*;+m&THjB_NXs(7#;%7h;dcP92pwdgY7B1i
z6dJUcWBU8NRNmp-{k9(h5@$$CM8!m!iE5-ZU+VX517D`xsk~C8k319J5`mB^T4d7s
z4Gn{?G1(G_$rx*a3aL5ou;!}Ag7w~3uYiA^-N}?Ra06LF^M8k=2&_sAYi{fpKsyin
zt7`Syu^1*R@d8l2jsNhdF_`WnEb>9v4XLxOytu~1#pOqyM7;A10)vyg&N5eLd&nH6
zTib+IxvDid?F1!2S80u{^$#gGqw7!l;!J^<9EkbO)2kDwQ1mP;U-DV;LTSzBw1n07
zPkay4V=X^LNmPd+PnX)vSd@j!5j6LXQaWQ(pb`Ea%k)DqR*QZS4z;^_NQEeu|3_D!
zIro<BD!JD0yA|txHxKrF%J)eWVhWTO(O*`Nx9`40Dq452gn5c!J>~UFoUpt`M<-!H
zwS3HfNU5^P{N_9N{?=uhD3c%lo)eJgQrhUWVQ9i)sOv*!ZW32>{z&-zp0EyQdL2}A
z4UQsnF{;#Zl*9%TX=63P4q0_H8Q*+Sk|`(O>8`vbd%V8rL2sw%yPHYHQEteJ*PKoW
zD%UP~Q+}=8nf51iP(dSFjzHW#>c*js(FB_pjLc?ANJGfUs9-Su|EdbfOd@Ndz?d(<
zl=z7~S#(Zf**o83-OYq_M3)rbmEL>{l_Rk9+<IzM3+2_|Y{Cw&tZ_Vqeup+NoXJnC
zS@+v;IO&{$)FqTn+Wg6<&1-|6R<mIsJ$!wK(e;*bcPz7$IoYqI>>Xdy`Q0VXx2oJX
zq{zQER%oR-@9&#GrOj%%(G;pDu1@rLkZGEZj9|64wmOzM<qf}{QC9K}uKCDZf)vNj
zu{Kr6g~@Ku?yN*ZaQ{AnQtge+k7*G6mh#JVdY}LTxe@ss0;J9X?9=(`A9xb-*Lj2%
zK=Zzbg#^qexlti?3vT<D;Zet<AvF^eP}O&6E6-azaToFV$4U@OS#fI=GAUpE0Pd5R
zGOuf#8pghkz`ocy0LNB-AGo_Vao?X#Zn0=L{!dGH`l93cCmc8zvkn5n%)&F<beNKU
z%Iorwk2AxCX}TPHAoj#iL_TE%A?;4#XQHyy>3q>ez>e&UpT_@bw5)Iw?)f(g)CrMB
z`a@CZK)^^^Hdhk3nvZc2+jPbLJq_RmcD@J*#_Hv8_+=BQtU-NNuB8gSM>TGjp--;Z
zjx(uWd{p0N1(`&(oZ>w$HD^CtkbmB#Ni3_k-@r~<LfEFb4F3jE4dcFOM|qdTh387W
zemMW)TfRy(^CqwEW87v>G#wJ&U_!9NImWr6&g<hR9<@+bGwcLj7j&9M&aPIphbNM)
zfjEAVkang*Mm!VYF=<>rN=1w|-^VnPKFj%IKNI0V{F(Zo=e5H{yZ4iMimhFeYNKu|
z^dJxJtAAb=21Ubjrxqlc27VqZY@>;U7A@)7WYn{M``5|o;=Rr}8cXjw&%I3A5EDvY
ziqI~MN^3GUu#~B0bhVaO)9YQ4x-|c1-e~U*6*I&zU;NXA4d)uaVFHIEjM>xWvAK4M
z;OorIlgrzsQ8!W&5Q8jL)|#@1m-Y_-%O$&{^hZ-&Y<NeS*45uZ``*auT=HEFy<W=7
zdt483LY|gzWYY6pLm1WbA1EIH67{g!0nY(sMx~w)vU*9G9)B6VBpQXf+)@Y5Z?sI7
zhitESwh^W7d6OEiE!=pE%db^Uinps>n|T}Wk^qBvzoJ-hLYyc|XEOdguGaOCS@n)1
z^Gbx<<u2^>y0`^Pzv_j$nw3~0=kFgAj#0Kp>=Jy(oTi6?tCWCt{r1g_q{85G2vfMn
z47w(m2dB}l)b-`MS><KgJfgcvH3|0f<qLI~Ysy+j0;}ck#WK8?UvV0F0$t;t!W<dS
zulKLUN}kTeEC|-!xKq1$;_koCHE)wYUiB|F6WxS_+6R*r73LDl&Of_2Y*}5tHztf@
zHA0kBdOqh<Oo|gi-h1BG<!rjuA-Z(Ce2l3Rs)SOXe=ibzFl%%>=FlZ^jDRD=#QQkF
zj?Y+wKWSe|S*TX+F;{V{r#R*$OqakmUqh>ymT<Sb^rn26f-IJiM?$MG_&2t0m#d)D
z^`X*=qm0ZgGBWa>+Vaoz<2En2F4T!l$|fUq5t!*Z%S(T+2o@9cbggIE+#hC~wg>Dj
zmAh}Hbbh^9;UqO&SVsJb7jtSd86aDZJq%;}F#hXdL&Y)kTCW^frSVUkMxJ%qOpk(|
z;Uxis<PB7J6BACc32A60x?|%9b^E(On~UCoV^D0<9Ti=*2F}e-jhzm6R-0UpxVOUn
zw(&ECszD6YzwE1?M7QuW-mm&IQK>djW!5AcfNm|@92{_>0qtBQ_u{<qdjQlN2`gAa
zc?bSOUB0LEE$9-=5sQz7_qHK6pa152eXYlO=Dyfxif)p3Zx@4Uu{o*e%cCLUY*2{2
zNSeMI(GqVePO7_HZdSD*OYh$08Me!%<46-ITw&@rep7>(BvdQ@W|!?!XmfS>*i{A3
zIm1c~%n}%q;v?VfqAR%Qds$R?t7NY3?I>k#VTvS2tKediUAM>Ggf?jeT=v)QPM&ll
zNChaxV_Dy1ibwakFTR+58RfOG;v3Dh_n7Q9hke;$lic(tF#7Et+H|qfyuHeLXFzn0
z=qV#Qs;%jK&eHEhPiS~-ajUJqM<hXnoMMf}tfaQGr$Es^`Uo+XtIvY9`k~M23;iFb
z@1lCLisiPY4uk5Y6Sy;<bQA{JyA=t%5pIakVO|vJGIVchyqIo<DpIG$Z=B5GCXrw6
zxyN@r-fu#U8u98^8r&k@+bs}l)XdaEd=?YPE@qt1Oa`wOHSb&Lr^_AH_L+|v{E;nM
z{5Fo|agJJ@<6WrJJ`??pK=3R@Ay3Stxez1DlZN#Fu=nQSP=EdZxLuMhMF>$SLWN{c
zw(PQoL6LQ`?>k8-OC@9(+t_84b;wo;+4l)CvNM(}V;P3;8K3*UKlk_h`@P@4@8^Es
z*Y&&q=(=2&>&$EBb)M&Op69urb6gy;1IT_kwp_L?#fCX~No%pQK|<p7;uWvfE5LSs
z(ilD={MlI6k*7diJ#6ZNqMVA7Jb9~@qa0?|UOJK!A@K1$*dE(6$l(&4{l`zF%)R0k
z_{Z#LRvbEa@AmsYMAv$znj^&9eeT&-a9IiyBS_(edZm{u{ma!JL^!ZW1Y9XGuL*0>
zek@-z6rYGg@8FQG)4YqqLI<C!`nY!KLNHA(=|MuwG@Pi;-P73y19UVYD{Q%q&28zM
zTsZX=`y<r1P35@;*?e&4Jf-%#{84lOdKF$_*PS;>3h4(oM$wdY_2zB$n~Fu_OW2t0
zY*+M+Sjrz|`clf~#kU@2<7!M(@Ngr#%zU+3z7XiZ>)^mCaCwQ*qJPxn#@XUR(>U3d
z&mxcRYNG?$u$)JNrk<HG=%WX$Wte=;7QMEP#M10l8T9qBT-bu6RDZ6zy24QWOh({g
zIG3<-*(1@Q<rDmd74KcgCuezE(kHIlHyXK=G@kfgwI^kTUZ!Hq??uw_vg(mST4%0}
z2GSBi_S1e%@HKfZC+BOuN;@f?7_M~?m`=+fb@u(d=dyRlDmk)hZotHmq3`ym7gi3z
z7^BocJHn7e^73lR(K+!;at|yVL|c|QB@PVyigbYB8(?T;qzuKh*;p?OweZ9U-d<`H
zZFgq4m(O}XQ2GN8yTk@_{dSKWCyp=As#R2Ptid{_opW+@%Jh4Q`j%Z)(Hm~=@?5jg
za5?1gsAwI>%}3Wu%quS{7e?uCQ!{ysrProQ?y=!Ko?)3;uTNagB%K^(z4Q7~l>Nw3
z`qHO@W)IyJd#O8kw>ufoxA@NTIM&;GjnSJ~M>*G>29E-ECo6-dYUN=&?3-W7n<~Zp
z1I3(`=+u&AbBXgU5E4H&&fo`oB+pHbdMAPNz>RY)rt%t_(suTgTkA3zCP$N|#(OAA
z6LZ8Tp5s0jc}~+U1n<YD!uF_b@=p$>>zam{<%odugBp;#rg;C`YyKs{F+VFTOo<?=
zeXM*dDvGZsT5;885e2?KKT1jOD)VS3M;qeBQW560Y6&+)H^dm5D(%A^`C`FEiTHO|
z!*fa*!nUmMJ^CPiTYcwSUQj`Y?F+W)rIpMiJu^Xc{G63+sz@9K4Y=tg$s>Cw)x74h
zERQxvrEu)ww{Iim^QT^}?7!%4z&GmDQ<S#w@0)+BOn;|3{cP*IRn0>EPxxKA4+uJN
zr6|P#!wXU()Q7jz8$uz_B+Bz08$^hbxeBOW)RycpC2e{ple0#dSCIgoas8}%ZE<7L
zk4%1HTCsg%gr)$A_IWY{dPyh2VK~6BehYW2(n*TvfgtWH3~IQO2SO5hLrXz>jp&(G
zW@aK36FQ9ofn}@^KlAc=q)*fR)~!NxfAk{eDs-a}oc;3rNve|FTDsLB0z19}KWM!x
zO^K|^)6ITl&iczq0qi8g=)>D}u*IpSb0H}1jsoE#H8vEh39XTZ-8+*#Mo^xS>W3{+
z@hjc*gzo4b$+~y?Um}R9fj<AU!3Xw(1Bt?@bISRHdP9e;@5o`Qjc=~!S(V_dTbd@i
z+c+jAuYFBOr8qYh=D5EuzBFu8WZm?n)c+o9rI?~d>r(ER{o7HK_A8WtaSAttlX7GS
zr1}N1Yx|NCDQv<PTbzBFU%<h4_eCTFr>+ilbJ%+kLsAXDdrh5lG0Sx$-<*AF)f%YC
zD3@;YHggBuvthPRd*od0X<E)yV!t`(*x=-vf%_Vd%YDJ4en!0N<~lRdZHRSg-OB>Y
z3{O4mBAzcXt<3atG-35OWfn3V?U!?FrU&Bp{K`bVk<8xEU_UcH`_5jOsNal^RZkvC
zc((Z|mcUae&!tDqb}f{9g>54CHEP*f(&vegu@S05>?AHL{ST%;Tn&L1tIoF1<xj{!
z*|hbB^t690F$?23u^6VTn<f0L+M|P5e{SZ<QFN}|JS_<d_chg-pT4m1ZSMn<qxylP
z%ephyS&Jrz!>Nr1UmQG3HM<DdLO46)77fHgZ$$j@wUoTzQA0=KGnGB-Mo_Q5j}DlZ
z4^+-#Ma@yGVllyd;0P`5@AR)6iBQA$&7BQGSsQepH0<GQS<lcY=IV^e3mT7n@%il6
zZOdjq6=9JgE^fCgUFo3Lx0|39|IDh(>l+{Vr3b5+pi-B?A#=AymdRPt>JtKn+`=><
zE4O_R@RXtsFJb*HCG>`^rgrH~VTB{#TY|(8Q~aP2$m8T`6jJvq*r%UbJ~OzH=2x@Y
z>#7-ZR9bo;sogX&e37p*^GS~)erjs8lFh;Y{Us3DoR%66s(C@NeelEk${{0=Kle^n
z()5<e*|6>#WZYX5@+;Q0kgQlMxL)uWKVOI%tiJrgZ>KAE&1)d_?Aq!E5m17Cu>!3j
z(E9Jrjpka51G(^@YjIiHw&VC=H>98a!=d)GqzB*2tl7jICnPh?925$f)AQ+C<8<ZZ
z@To<p0&S4we8VsH$&(nuhy2QQmIz7v?WWNWGMAO-=M+rHnkt8?&MY}@s55(s5q(V-
zNh+{HC421tx?-i1+`qT5vRZjp&hw+y{KKX1*3W!JfXq>vj0$VQemQw3;AU~yhi8ss
zbh_26<(+|ufn0U@3=OE2w3+W@h#z;O^`PNnziUmN50)F4@<XBcX3t!=u)AN{RrS!B
z8p+w|71HbT#!G#UOzg5}uxq4fTuZcb-gZs5*8WgW$5`F^hf?DMaE-cHwxOfIy|APg
z1BqRY_jbBP1Yxk+hJwSf7310<Jg<R}cyGT^9wcaKptRw`*QXOg%~XU%mrKi!PFYf4
z48$2RcJbYp8ZxlN(#8+5;n*zh4;Q&GKW;pdzjRhthjCJ}=|*b^#->C-XPU`6TJW~H
zZevAc&`fuH6mPeaw#s1RPU=w1sH{d~oonZt#I2`(jl@l!9<76whf?UujyF5)_&}W-
zk!6{hf;h2kBmY5>eWwE9%cl#Y#oiA`1cm$@;u~Yzf3QzM3>4`5wSjw+lF-D?rEhue
zbHhxBHy4;`4NFX3ZM|*O&d4%YvbRQ0bRAA#%D|K;0J~Bp_Ixh?5JoLAWpb1V!T4k9
z<w+t)#G_OJClaKWQZ$z!$)sd&)tp1dbW4odTXw%OqWZ5%6vMb)x}P_r4tjk)cZ;8x
z9GzEusZALQEeUFye5PNqVAXPGi_uUe_E0nG%a_Y4vC(tsRrTm(1vc?ROChGo(F*R#
z=E6x6VMRG(al2m~`pbLLEwx+0O{+g#BX1&(l<)!4PudMGKX|gDomXOD@%Wusi^NZ$
z8=z`u`OoI0*JEA=O*N>6%iGwpVihN(E8~2TIPZ{&o+{gFZTs?3-6rn<=@PM7T~p12
zcMY8Z<uK1wV)Qxt46rm6&FxK6xJ?uC2OQ|8aYH0Ot-B#dS>MV>*@UfwJ}i$53jt*#
zi?fiJjl$5%IOufYl<XUE{n?K3O*<*)EKCk=y+lA7w1(8TMUr+K{8XV_l{+$kX}^s#
zMub8I>t>r;1`E_3H`ja`zAgkVt5jv&?Z^+Fh2D_;7|{D%ZAb_lmQ|Ad4R2$L%Q1(X
zlv0U^UxSaS>P5X-xa=a>FVCj5m~^8%RV1wH@wgVAlHxEUJ0`bTn;hJ*#tkkOt#K(J
zLC(1t+t7qyCTr>@>aL0fEc#-T?n95dQmgF;zn`tRv*NrI>=9JVn&9`dvBGEZX3C8f
z(<7n2`3Typxtq+|^x=H!w_voSC|rKibnDHFc<z=5ttRzJE4MM}iNNYkd+y+V1G!yN
zgz%F`vn_p-Ml;@T@IvPYsV2o&QT5dlBLWwd0v&GGKd=`kg&e$J3>J0TI@z8sa}m3&
z*Seb!{%p8GkR(XX=XETnoTj!MES`I?)MKmf2v$?EIwo^3p6ZAorgYMeY_jNvnCWqE
zuX&vfyzU=n-PFwDcx7igdEsr)mC{k=HgAGOc;dk0BoZ-_dD(NpJPc8^W2hgT72MRp
z^rApm5Y4`CGI;Zb^+7`gkUFQvQB${FN^)&GU(0`5u+%SjBwLH%F!^3@FBd4|O$yr|
ztDUcRPS)BdL)xe<ueZ9h`75rCl*bivw_nNu76;X$(}FuGBw`gduttXT@_Uknp#(vi
zkKpcz0cr>5jweec8{!Cb_PBp+zc_FJYwY&TTcyJeI6^RQMT*v^MD$G@>EdO^!dkqz
zRL)e~N7_+4en-kp@}kwN;cHRs*K~Bg<i2QK+(8@luKX$pOk-3_VQZ?~o(p}XTA*Id
z+Csgz)v>#kWieSDh>>3^&dd$cMG+jq2PWfw!`bZy87G%@1WES;<@Yw^vdx=Wb~kro
z*tYdD(lf~GwJk4#FY=2tEZjBb`1Zi#0M~KUXM>#$4>B@f!4^M1MW-y2wfk+x+3p!G
zV~q&8Ey1w6c*do~qE-TGZ)8P0HY9wdwmQ{m)g2}jsFrfG@nWtTERFVHjm}}jC9OtB
z+SSp7!DmXxg&j%nT}cEvdLfOS7_w?9$Qb1~YRoKGR8;J3V_4ITntzcTw*u<8Qny#f
zOSjKHo?n#74r86mR0iDpkQma@8Ln`)Ni3q{29$`<PzQ~qfsG|#7K!*Sf6x#Oy5lZc
zYTj$u=(X&BmQVHdTX4d_JM*-lA<3vP1Q8-EVo0gpPOs5rV8{B+1j=tK(z;?P!(wD6
zV2kT{K>c~^?zHqn{r&V(lMk@rQupC710q!Dh^>Kzj+U;rAx601346X)8axR)5y(}_
zLF&TZSy*s0KLlFh_3JIFz%Hs_C3B1UrOJ@M=I5b?ISDt}M~Cg;1o4c1Wh_(xP3*Gb
z&fS(z`U&ekOWl`P>P2RJ>fTr7+=az{^2_Roh{ZR!+^%k{zun>+;jWzwvU=4AU|J%x
zJp78;#o``kr|TnCJ(n8qP|_YaC9697H9CB~)Bai_K6l*P6}x0m1Sz3~Nn(>qsWNCm
z_`<~IJ`w7M`%fKmm#&{>ovg<VUC@}VsFNf@ZQS^&Pv*j2KIW(XGVP?vc&(?@q;=YL
z^lTd7$Vp=!?esS|TKl_uCm)Gah4eLM)_AP51|E&evflKOZ@PI}yTCQB2w%FhCZpU~
z$ma%g`O)AW?}fjad>L4#vsAews*@(c#@D?Z1p0+7PkFsF+Z3T$eu!5hZ}PmBe`xQ1
z4!L^0klnyuH*qf7{0`^#TPLBbD`AE9?Q^fTGI6hO;9S?2d6ta5Pppjk>~usgSml_3
z#r5)TcbbIVVzxw!IM{w+k<YAVMC;>MtG%|m<rel)_?mQydE4&J;=mgb6)&t?PP6im
z<CwQje4e0!PKfDhHCU!QQlXPrVno>fRJdUXR5<5+0Jw|pQ{cK9xZ%&}H7x`<kePhu
z4#dc9-O=Gn5@1=K@XF=P9%$V18Y6aLch43c7Pyl;G<<Eu%_e88dbRhJLcU#Jnr0$j
zNuc-s_D7UIT59o@kEIx_5y5ewv9OZ@`KaMrO6F92sjFCjQMVu1R_Ds*g5RgLc%@sa
zrGa}$+c!OgrcHvQJg3^OVAEeT^R_i)ZGS?*;1XuH-23WOHmI6BPb_XNjfAs`J$~?G
zB-d2fq{bn}nyEfxFp+b(uv$EVZH1aiC`&dFKCzkx0_7$R9vrz^?3F0}T>eVS9}dko
zu7C<+A{Rk^TD?;QzieKM2qD8<Q}Y1$xF@yKi6H(rysY|&P!nC|rROI{Kkku2{Kfr4
zplddzMzk)DU5#$jHwN9^{7GevdIp=9Pf^psorRU^pZd@B`ichrI$!HMo!FNlVsSI2
z!u1x9f%a0cgg-k??0KsRzCE%@$)_H3T`*OkV<He{AGNgQjJO|Apl@>5PIr!!>raJ0
zPrPoxZ<NXKg@VlyPjM<scuuflYx+(Dn64WlB*?^M>InW2C~cDUFcG1V1R6s5vqQwl
z#3ZVGpx3mjt%tzZ5-9Uo35{9MsIu9ZYh%*S*EATdo;7kXDEl~)TzZ!S=Q2(&>ArM+
z$S)^(WL2tgtcumsr%{3(k3A}I4fSfU=>uAxtGV2Fz(nm8_mdzwkGH@^<-GPK4jrt1
zMKAB#=>B$a(p;CtBNljY?dE1IXLQvbbz-j+K0Cdo>eT0OI}m`fZXpHwmYEjFj`Knt
z?}!NvA<%$mbrgdq!i-u<M5r{Ujv}Cz1?aTIjvK|~0OlOON90Smhfv9297+A#J+bo5
zpUZT8X%@V_$?>*@hE;dV$GvqwJiM|bwxWsK{H5x5MO(n4d_g+|Lq9cwo0e2dmzIFt
z@_pW(SZb5}>BxQwxU9Y9N@~V9tP+S`E#{Z7MQ`({8|n0z<D=aVex4^#YeTRO{uOF3
zX+9gQnA!D!yM9s;u+vb%PW1=JCgj`PQ!JXHKn@d)9lfpcJR_4LCskthJ_>h}brsFC
zeI9UwouN>w_DGqG<&Ql`U%$uRhP8WQrA29GGz+IF!nQL_bB%`6aeGgT|BbLZT!mIl
zh?0&)zFaO9gZZ4V06e}#mNVdjV8|_fVu(BPYB>d=fh05}1WRd~D(f_Eodu0r!D6PS
z%6HPYhKLA_QYN6`cmr*{^2)Fo;*zv$a>|T;T{&w>&Rj?MQnpzrR63!gntoCCgP?U!
z>d-lK1H^f>($#q~hs2Z!p>Sfho{O}=ud=-b21S+RSFK2~&9f>)FPFrbRy*DMX=%N%
zG*sMDdBpi8f+o8t0lr-?WKl?gUvJGg9KYoqLSSWue~p!C)4vT0!Y><zF5Aq*q`VhK
zXQ6MdD&2suv|v-uFeOHQW{gO+%A-9<lVw>>qqHMNbS+E;zvj1A8$|}ugh!~5mvVV#
zD@F~<oq9NT>AH*~OvD!4A@IxHYB`2Yyr5U)9y<1|_*63kh@f>uQvtOhbiRlPApuD=
zCM7f=piz^SXhb<_V$PfP96T9MG@za|G2}>dIBpnGPfE^d0NYe~<(W7<qD*<^kba=8
z@o-I4b5$zUu={{FkBfVZ7@-iIYd&r=xCTq7cpoeKbs})T@K9YdTb%8^i8Ie@E(Jfh
z^C~lS!BJCzpaKa6T)u*U*)&+>|HAT*m14wOw&bfbX9g&3>eNQt-<1mtJZQ?;+E2e&
z;fyKuutWDD`511IOyVq_zFv!}8!TNLBPfmO@E2giRn{Ig(*TGrQozK3F9dAjxRQ)P
z+HK3$O!2IH1Y?ieitB$jrwO)oA+W98Ow8FspuWj2{Gj1sYA6^2HTHEWA|^D<K?6Lw
zLiidkLo#l*TZxe`I=5}EWU=?>#m=F7-9lhJuDJD2_=11f0o8J1h}0E9f1riNF!=*E
zq)0Cl%k4!F#_Un&>joZj^WbvdDHq4MIIT4D$<e67k$jfPQCVTwO%Qt<I2~qAn9>)K
zT(`-ZJVSWW?Sa{*F-S}eqW$li^=ODt>CeZ??uS5Mu!ABi<Thkx?g=3VChZMkDK%|^
z)D+07?>`HvL!jDUW4?~g5;awtX^l$JHC5IJN!s5Gf%4^AmjV^)kM|gTOoY->@06`4
zLT&plHYXDyU~f}oQiu^N>wQt>L=dU#V*8>Xr!${BU<3R@6U$zK&%_~6hU;XJ!0>+G
zEJ7eAO7cM#A!p!IL_9gF=W5DC?c(_1i#v$3rN8(Ax%N+5%lZ?Dy-7)X0&}Vm`QiRY
zAQ7rMRQ>0PkyR*dzAg%vm7I#@ArQYV&Cp7vnH;r`8p#JC9{|iP01TsExeACA$jC~%
zGJ!$l*<{#+K=<oBMl}e7IOV5w3+PGiXG9Fg#N+{DMD9^uJp<hE)7oM{QSv)=SP~-y
zy?j<lCP&?0r2?F8mi+ob)l@mpU40dVTP-8<ffp!qR-6f%1X#sO!hTH}0E1i183Dk&
zNvt;kz+eaL39~DBeSZtg?tCtzEda*SVcQO%-m1da4dwvM?f{tGj3lj8D#9S-OHTmy
zP->>X0G#Tk(><bq7~Z9ja1gw|KUGLUm?uZ$t4)<(X?x7TBOy0;fK%StbSYrVKxPuj
zNg<}ozXr*huz}A%`aWXhH_pB#cpv#R@v50?hJNPb0>CU0OOVeKlrFIMhid8UlO}GG
zRK+xtk`M6-vQkZzTTf4GaW;8=_QgC+CPu(s>VCEZ7r~#ifL#No6Qi!$EnrAd&6jL}
zhihC}IjZsfBHGNg5mHa+0vEEPMc)TIpQNM9Hz;n*?lwcy%F>ruvJ*r(&A%kdfsjX@
zA%>vC25Q`9b9kude|%wgr5n;V-B}(IUJX6R)eac!p6gpnqW@;;E&xHQq0a`{<Y@c{
zwigu0ZKrL&S%T36V)h?Lj!m9=H(>P4(YXZDjf~MCoG0p3t=kRY1Ge2i!cLw_m;{U9
z=@}Bh29$nN34nb{FR>%FLNK?r>juG$<yMqH!Ro~QtP}u`c!Ipag7B{YHOkUdi8@`4
z06e%9kp#SuHLjHk`vIK{^YOKxv6BkIX0;mVfRC}mrRclWP5_z{CE3T&fVK87Xt}>Z
z<1P^+i8yux(vB_vKXn7T7OUQw5TVL8CiO{OK%)*cfP<h*2D}B)B_sjNWLJ_ualbk`
zp6W3)iRF)#IRG!MJxq^=(AXd}I-aV7CrJYZ)BMNA5!JtBZUD1M2$)SbrP!I6l&#g0
za-@AZ@*l@N%Kg>+^Mm0z2?uF{uKf@zpDzu1nYGRaCcqzii~nEbR>o*mJFut<TEyj0
za@=KIGrnkAk;N(Q9JAwd>djBU1<~iTi$UmlHPRbFjHr+I+)5yUsCYM<q5wO!j|Eo}
zp$?sV)_^JPpS*8)3iy4W{efjU(eWer>+vHDc$8O%_Niy_v_s?4Z9ckAQ`Gn8kgtrC
zucfbkncQC^YQo}sF1#fP!8}0tz=0TJlb|%^0p62Q-2f1Auy^oMAe3q^PSgTMHk>#t
zCP!|2e=(gW5FmwfAV$EYreM$zXlmI+oxNc0U51C9UJJh%Ov)Zfh{XkT*`*$SyNa`)
z7lN-9KGD`4K$&Mrd9UiM)W$5J(6rxkhz49Fi2y5j9YBd8t!RPj7!cGj&0e>lYw|p(
zcbmQ&0u|3=Z4?6!d-$qjf%Jlwxt0P`z$xyBB#?|H-&&kO7IuB}TMV2C;docfp#9C(
zmmTyukrkY;xL5#B|E&x$_mgM&?}y}Rz~nEg#EA=NW=Mvn`)}Jzx^A3F5VYue+#2Oh
zF!z$r{*{F=HtA9IIIg$ddNU^356g1<1(UEyxBt$PGL1!%%2?G}Ca<PxN<x30rUF}|
zsTIVi$RstEUCL?uXEO`IB<lRvOd?<`L4dL3=;pW6&3WZswxZ|({(4R|MIT`gzg_eD
zPad0dntn?or#<$!9m_|z1=*sLZp9wCoDLLyST+*NXiHE-A|S2$&q2HYnUzuX%^pt%
z4j%9u_hu{9{21HvPBor4*D<vb4i37qDyFZuj+6zx3u0(`>j~MJ{*t7=Sh=)mz}}tj
zfMYQCIqT$P$`|WovExQAXmr^7dJ<OG=fV?{DFcqimEg(jr$P!s!xuEblUxwc<;~C6
z-iu84UuBtIT(ab8ADHb(ib>AbJd8Za9Ms~&GL2kkT$o&oD0ECkEq?e>6MgtiPd4kG
zmF#;}^1PowXr**4`U77n&^f5aUbLw)wZE<!M2*m?7EWw5E-O`v(~TfVvFktE@`?!M
zq#+grB|*k!Xgi%JcUfuCpKjzmepm$_-sDLE`<q0ASMysQt0y8d)9Z08^V&>p+U0UE
zOKCIq`axh)7r0eQexH`Cy-tgy02=A^U*fift#`?K3!f-ObdnJD3-jatoynL%ggoi~
z&dt(5K1N=xELTpAEwiZsc>;Hx0+#f@U~vD9yOPto6IU3D49X?X2HcQimkoF`Ck)Z>
z-(I#VioM|_1+p{M@a;~@e>M@}z(nNWgh^62RqDm>?|^vhQGJ9~Ixus-E#jqCh)_q}
za(rk2^32v@y;le(cr8oM78qDpYTT^V@8Px<?N@5C9!rB3AG(Vyy1y4%N%8CM8as>>
zDWpwX!A`+;z7mIE_AUL>ltB4NMO!5)5yFhkF^!rO89TsjL`Q`5@~rzHL^~;I=np|t
zxvbzKtsobgJfnw^4IurEWoWIv9fG;P;_3-fE1K(v@7JMf3H)aT&CAjzR>$RrjT!m0
zG~^t|Z$EtaP}J*(is<^Z{fAhUe~-}D)Y@;VJbJ-mmFl;jNVC;Ms%pRYd}y#lCFA?E
zZ0$^7%#kSEd;J$z#u_=q=(0tka@=_beRHJU6>N}grY8S28iK6|(L$TDhhY3SJ2c_M
zi19ab^(Ew!xQPR|F}r_MVF6hz9t&i#RnfXBBap=bZqt{KW$_U~7XO!^roG;`y<*Zw
z&GRDFd%kNE`2pKHRBW^eR$QmoQT%(whlG+Rwd5P&BR`y*=y8@4cQ#r1x?Kn{L#@AJ
zEU;$}xZ7ywAM9nESYIs|>&|Gro!f4hg+Y}b75ln~G=d=>q_^gCH+cp?+~&`PK)vT!
zGYkOPtvoxi#7HmaD%X-zlafLaKgQ`?R#pS7Oxc?}AFm=m(oK$z@3mA)hG3BA-JIn>
zP;_K_Wgv{-@UqIc*D|-kT?bjee*N<4@xTlV;%0*zb?3p_YkLJ>Z=fTcB}h^}>R_IK
zC|*<F{Zf!eLes3lfYB%Hj(!fZ5?Vf+AhD2IgE9EuVqYuc2gC@+_8|P|&>Pu6Nt4YX
zaZ#VP$aA(b-mB8-?_>Me=RF8o;^bdh$3RP9+m+sksoR*8d5~k5hkEjiugB;U%q8A`
zEtd3mb4daw<Y@9d@~+l=cSimTX5kT0fxK5s1PTA>ukf)Xahg`*RhFS*)A*B2S8vz2
z%cxz^%gF><ybqimyVxOSF_2!r&zQ-dH{$`M`M}C93P|WiBPTYn<o{57vjg!x{Ak*o
zxykbfM~x>){+h<eplgW`)AR9cD#Vbnv?X<#C7n1Y*k$|voa@~O_&m-+aI}NZ4JqY_
z8IbSk=sfY4roqFnZ8AuI`fJg8%6fZ(z}B5)eh{6S^@(XUw@S|^B09;cswl62!I&Vq
z+rQ*ffYjyF9a&%iCe=6tyH1v`ZV!yF>j$<7e3n{oF40u!y-7*%GYDSBKSHZxZ}6L6
zU-aitS#^!ja!4x<*aoP5^jgURZiY?+-=R9#>zltc#INV$gS_t4F}yM;T9)8Tr}gjA
z%&2!J8p$HIH*7FNwnTy^bypWUL0~hp)KEA}zfhM2pHMUmikV_5*<UEv9NRw>e+g1I
zKa_TAG+!aAWbC%%sP}WvVMvWz|Lbt~=<9#0>%2O=zVK!quw<P^#s86{{2$sopB6Qe
zIc}zB59@v1uBZ$ygpD=kH%BoJ^jixQwvGkjKf0_E5!Tc*vcKel+`<zy1JDpH8jQS}
zxvtZE&5}@``{!2lwe9%S-bC7TrK_*evNK?OJlfrXOf}~<VfafX#mv^6CiIHZ^AnOl
z<|LHpz!2v3tka$K{+{q>!b2iB)9RJG=o0j~>H8jSV7UQ<;;#sC$M^v&Wg7U#tQuQ6
zA($-b9he$~v(LBQj*L9v_ff^R$PA+d$K$XV{Tv_T{)}5`gxFAL-CvO>z+%J(4FUUG
zfe>W3mG<9057VdL-vDb+r-gFyXT*`hLx)s)bl=}{A8V)o?^9fV?AtoR2M9R{UTs!w
z`+>YD&tc#J^$yyL*v~Aie~4AchY*;><}V3gs!5NyRak*xjKk6*=1mLrxj>$+#0!+P
zhg!~_OY*I;>^ox91EI&3AkAM{X9_MRVT-ku(B3|HYoQk2$P&ioJkh%N=@g4yYqy!l
z`c&@y*6aa^;|2YfRF#5@-{?$Sfy+<Zg&#GW`gM=?=xv$=wY&*z_vEjz9s833ka~GL
zR|cZ())XiI$_nMWMdQN$#9rtlIUp+YKZd9kQgDCGM2`F#E#1Rs1*T5u1|>obEEI)^
zkfwC1lLM23=0r~yopfPOQdnJ~{9}8l5!gd`mez_ppmre5H5dfv_C;bH!$H|&&Gf1)
z$Odg-LoxJDG)SH@B{rPv=5UCYXqy*die&$z&~W;ZIV)foaZO=Ru-X}&_X^%JkX&x7
zkWMN-!3oyhTHKne0XZ_ZgKKA-6!H-i`WsRlW3vjd@oxA~0^Eq3-apWkE-Q!8Rwi6c
zo*LcAM)qTDssJ|Mf4F*sh~<erTobm&eZJ7=+Xh!>h-um?L0*v&{{;_Mk}Mx2G_G}7
zR}*}=Gk<O6vQA2p4M4nrN7i}!KZYpWbkuZ#&j;?U9d!O;_>BaGx5U-A#tCsis{e#I
zAVdouTYQ`f1b*WG&q2~l?2sclA|j%rqme6kv%jAhwG5*=&>X@YaavgyT+WrKb{jtx
z#eL?6^5v(|Tr~Xrr%$S$q)Ilpdn3tL?S>6Pv}ZiSt$6IxNgBl?{MDntRf&23?uq$j
z$F=fdciH_0C$xJv*zkj`%P3uwn6F2f3mElH@f`7<zmUli8n69Bd!RKbtNpC@(BnrV
zGHD%9r|h+DrVH%}e7ERT4m0D0rBj6*`lXSwE^`%B2k+e}13y}`;bEAZim|+*$zMJC
zxMv)1q_i6<QnK7!$YMDpG&qGgRNs`^xxnt*c6-i<^P3-><oB`(zrFwI+rY(NvyDmp
zrIZbP?e3O-Gy{eB9fo%Gh{gW?>b!xIo}|1kzna7=ps16QDXo5Jx?gR9GZ*mF2ha51
zH;oW)KheuqpZubok>BWMy!KT-cuv5DBH>o)!`d$jcp|C;<UBiWO<QVlE#zorAWKGn
zbxP=sl+gqc{8Qlom&?{#<3hbKFXOD7Ak4-dHQN(l3kzU@xvJGvjAhHakR7h=8*E{+
zGM*fD?#w&uFYOdRp(eA{N^Sb|qp{bBFHl2elUeJd<2f2Pc}PSkOJI&V(Uhc_<<G$g
zByB`_Z2fHr=52yY3z;iBt*x1VC~{a#<Wn5=l%!9K<PMQ*iM!VmcD82E_W_==QsC&Q
z5vria^r%lF!<CegP&1J*S9?vODU+Tp@RsDHYs%!V>=f2A`yt3-5#fh1C#NK@_T#Xm
zt|b;)pU*Qid%mr}E>TaJlm<MNV2#9Fv&W#An=6APsGy4UsE4nV<+4u@-lG)>mDxPq
zQg8wBCG(vvCq2q<j_2JyK)sSlW6%WzwnO#p#V1JG_$u>2c?c#U?wSgzD?6_v9`^(}
zEX?;X<^-YJ1(h?z;5`FWt|hkSpU;7Fv(CN2E|UUU>z<17M`GUJ#h~bpJ9j5^-alL{
z90{%8V3@N5-R6{7SkR+zvzOj65V~c>M{)xwY$dr6*iQ9xaL{>JS$g2{nBNn|%w&(p
z0pvjEv7mE}Q9mrXYl)HU=kqkjW5$3nH>N!m<0f<q=e$P-2BE>%T$%1mWu*@~*BLIS
zJ09~eVa(hm7IMd(cM>{RH7#ubUvF1=3lAlXIfyXkr1<yBV8WQ}w=O;>0`FOTdJK3p
z0Q^+D-!}2_m|4M?@8@7Kl*gS*fX)HnLjZ8|y%X-D$73!9W5&Ck9*!h*8xy3+K$tk#
zG2qbzz~zm5WI^Yh>h}p_eo+yG2V+i(zor5@=XI<n04~7!FqVQaW*lM6V4hjQJm1gh
zi@Qt$-jm084ES{b__fQJ5z6B+LkVMkHC)Ph-1!`#^PCbR0Jz`m#m>IlgfTY~#@wNL
zpD@oaL~#sC1Sa#i^P9<jGudw@`%jT%)C+tdT|D?+UIsUp>bzJ2TRRci=6`}7H8Day
za(YVgZmnMi8#t-vfJ{O%5_4g3DcA|Dc=t1dC%6z{+|U+ZE<{(G9zFailJ-dv%luR1
z&5PRdG2n-n%WxUYQzl2}?L|IYe$~pyLJfOY$B(ioVp5<Y2#r%@Q<98><NHsMUbdGi
zDVi$>J8N6XU01sAy3s^Jzm0gt(oBse$8G6GLKj)II5?X<-EQ`)UqIyAewUDqgxbo!
zR_8+S*zVkFWqOM2j+YXj?MgC=+4}XfabckkuBrl)3l3^ez}#QY2<A{T5soGy2(NrJ
zWwR%)Gp8a1nfUtK)^rF`D<e6Fi5~U3EZO`jJ!*0NwILX+iLzcC<&>nSVZXy2h<b;e
z-}-Gxeyh5!V<c2{<kYpqn<b{YNv6(OB0ZOtgOBjyfd}96x2B>cDjqF9KVM(v>@PA@
zV){Z2Uw&!!TYPHJ?oX8zv3(vt*SWOwo~^MQT9t^BEb|PR9c$Ku-FS(mU(|f*KHT*+
zfnhud_rk*th@r&8`uFAl(H9<mKv@5yYYkzhNX(XxYB7zgpdh@kmDCj`DG((FaIg`p
ze0u?*H+|^?Q*&kWyF3oYX3wQ}IYUp8iHUtgQ_0ty&I}cp3;s;DKv#sX*5*f~TnYS4
zwP)YmX|G>4^OXv-`hA_rbE#h}@2Ux8ZET0ypx9hI??;eZt0SzyzuL;tI86aE_UM;L
z3Q@DCXw0(TDOZ@;UTiGWlw^wXw#+kRcSG731Nh3NvQ55bPp>%`9DFwMLjhvzyei=q
ziCONFYxdlplg(`_HmHA|4ii-#!mkB4!mso+-re6`fisDV<+djvGQ%i?;l<EFxIzSN
z-{-yZf*Bs>VwS#+#Kt@B7ACiSH)pa`C}lO6(}L3_RZ1uD_Fvl#UNykKiZy<(vzEfm
z#P@K|Zig8NF!$BWr<J7NfsE<@5=jR%OTSw7rFDhL)WpV}nUYMu>m?I`>_!Brs8GAI
zYhK*v0EAj}uS9Yo98ZtzFiuJCyK%5z|EHm9NsV&F(dF>QuoZa?mDa~@FYigX(FO(1
zkFE8iEP~<Y0%kZ1QTu~|t)?)#fo*nY<)yRy`Y)>-&5INFA~QVMg%L)LRf(&ZKED1$
z&NMHRd!xwJgf=KWis6h8y$Z1AXzwz~gd@ANAGL;`bY-W!)B&isHU13$9FB~A@+zE;
z3sHV;@ks6w0ZSPImgyJ45GD?eA=Z0-kQ@bHTyij2`1SLPeuL%I>>XW+K9D?K41f-c
z^^79)8dY<m1QC1K@@{^u;DdEagLnEey4`fR?N!y4(W>mVlFG6bv8oUHcTaIk?;Qc_
zrhLbUcuLaWoz4|jUo+nZ`WHU}hZm*#$DRitZytY4px}r54B_Ko0%3t_ugb64xOTSw
zVu0I^Qj6$0Fk5^xUkVfVtShwMzxzQDfgatXO}G+xWnFT_d)!?P>=lsEoyTH}3+(#1
zMZG6T9EQqRZrVn_{1oN`Y>#!tvUv$G*cnM#-AIfN_XrmB{c(exUGR8r`~e#VN>pEb
zhOAP3gw_TWbohES)1&%C%P?T}yk@0V?6hTTt~uWS_<Cc$r*zb5qzvY_!+u+CZ9H|O
zMoW5K(a&nkuN@{O-t|@@>DehZ27BlW44v$5WYB1Ngu^iM*?mjz1)q;a?tMx;cHchN
zY=Ox(R)4t#&sU+PQG{5yXsx%s)%A6mOfnO-_PA06Ss&Cdf@|F+;~yNoQ?rq-zPACR
zzaK|Qy9~dWe<tU2Oe*;>rB<3OF%xPZ9T@lgjD!fj#lB*9sUxmni$><McY1(*#hsxG
zRNtp?PpE}y%GgFf&inJ<-?h+R?mQW~9TuOjGFfcaaoJ)*uHZq|<U|}D=V5#h?xz&L
zr~UjEMZ{?6=?AX(E>vlMvMr3$P7ZzKEe`WHG~>TN`Q2O~)azM%zQ*KqPk!H`?HRf)
z5wtu;1Z@$Vew#UM?82;TmgO(9`w-4uydJ-s$@`2wuQgm`yLo`XY<GhAZf3878hF}x
z^!1EnqhfEyUIYA&uTYkV)|I4wq|TM|Bo>Frl#MgD6vLk!cJ5$<3uZpG|0D}H*X3@S
z!i{~-&|BYB%h5+8wuZ#fBXp$r<YK$^*TIydq*|+LnUB7`u-}d@Y$i#eGq*|+w>W?8
zmuuw}_!t#$G@FuGk&)iYk~s2J!`^n|E8Z&P91RPlH11YcDxQR0!tJS0bs~?1+ty_o
zwi}VGX2I-^V}}%kBC+)IxO2^(PdPZ68AFh<e6MAC02lM2)?eL$v@(7}%mcnnSX;2;
zLcr}Gp{)q)Qv+6gr6%`&5LkQ`-EhEJv3ak|;=s=Y(CP457F3+<2ECZm;BCjUHa<z8
zU*ZnE1;(AvV%FL95gz24FlqVv&azZns0wG_RIP7^SH&zAweUtyE3cJ;4lc1dHxOHb
zDSYsWWUx@(h~Eph7z*y<zMi|WJHxm$u(fV|ZCdi|eXik8x?EhJhu;ZYJ)3QO=g#?9
zLBth{zT5s?fAeTNk+g5zaD1)0T#F*{{Uqw)cfaLS-+HefDeiRI<Y6H_mGKr6Y2wNC
z7ELwq3T~eG#n#Z=JN>qaLxRuGO2JxUf}Xd(k?`{G)|OkzVy!%lmi6u)vF$745iYb=
zzVBwCSI&Xoo6kBIv_4fE+&JOk-Z8f|Vr!w(NE~K2k+!Jz(x^x`9^rhSb4v0VNBX}7
z+g8C*TfUeq2Lo_I0<^b4Vr2rK@z$Lgh)~1EvZp>V%kbgXoLx>1>KVc7Yi}hFE}28h
z&sj9ugqzSl>Kdid&-c<ase2?LGq`py5_5j**Bxo%V|lSjkX3H%oL7!jfFDo+f1tM3
zfZE!gm6o)O#MrTpV9yc6OyG}f8O*z>t<fT$r2u%VMvg6?9H)f$M4hkw*Rs845yalY
zX79xckCFDfzFT2Fu3gr}hF5dkdt~@@OM<@SZDCR9+Ypt=N%<Q<lznS!3ud1(35tzZ
zI^hb7*6^wW#IXBno#AQr<mMmQWc_C`_g`egE(4*bs9!cM23WJLeEzbr&e2|L#@6OU
z{q^|=A3C2T$K8Xs4$NE;E@-`4k|dO(KA#bs?k8)rtmrpabEN8swHypS9fj#;AJgmM
z7}qaZ3*LR@FjQkM)1u3DZ}QhQE&$Tg`(;x~k(hUP-9KO8LNHo>OJN4w&O0PQ0<=-+
zrDF3CWOtEAD;ZFfVHb<jZ$oSiYTZE#MyfhoN8}0<E8J$fEIf8Er>#(Q>)Sn1|8DiA
zO9X=^hHdkVK~2$Xzln`G+O3}|89M1dYV1Gol&C{|Lj3}PcCg=#?2BdRJB_Mim@$>Q
zsq2IZh)++xW7R4L?<RI#i98+71PENlivbe;pSHw5>py~W+Br|q6mx(n{oU7CB}&EX
z`%N~cbK<phJ$*}-0{4UNaZ4E?AWM~Ta(i!_97fD#f`T>_i}VXEXX*%6+z6Ii*o1Bv
zF?M@=btTta?GmCUQ{m&V$2T74zV|=j3r(S6MMBM$pF@sr(T5<tLN3;wm@@Hs!u~l7
zG~&sX=uyTmXD)Hwf$$N>^9TdAteVaEl*$!Gq?TAm<_hD9(mKuC?0Nc{@vj@ro=lfU
zv?KY_US_2GZMfFXEfu{1X9T|0D+#c!G-<?@HXiDhmd{iroro$txAO@947IrGBr{Ze
zF@yCE7BiGbP*5h7i|33)w(Z9yD;E}DDGb@fS$A-box4$`?9-zq>nf+oY4METNLs8;
zt1n&vL{W?sEd_2vUTBs;AJC%^k%~qkNG6zh>*NIl`+B7CQzTQyR1Ps9Ug=^3@Y4gH
zvy%eTy!m1+{gjD^U!1cGkil@OY2`kG%uv=e={+Q+jCH1@fYAV_{t*ag{N>0IQ!kw`
z`)8>6+60~xNY$E<$hrt3*A<xAOF`gj<P`7JfXGd^_DgselJ+&?aQ+!`SWZPghMwSR
z*rYK}jYdn8UsnS@N<oS%h(3vIoEf}K@KK77fRBRhd3E#Rj3$dkx)f}}$DL0G_g%-a
zB_S#l@bi;e{|tK6YIM#pa0^n5caRql<1DHOVpl<lkKG^SAyS*K%ul)s%6$1Y9fs8E
zR`#Q6uG~5$)k^8Q(y8KhrMYrunY*e9M7=1V4WpvC5P?5MYJnE%Tig`$iG*70MmwK!
zbqqKuLkUL10*ib`kK*oMxN;&As{LJ2^a(g{R=G$1HpE}qHb5Z~I;|H;bVDB4gZ~ES
zi1`D#GI-OqiUzGyt}E0TeKA~!7_E%bPYRIz&$a<pgx(e;h$5jq3yPwE170a>6A1at
zo6P`jp%wL`C7Bu(k(_3`17XX!L-vviNU`M1)d>*vlDb$Z27ED_VHu%FsJHTK=xvC4
zH^Lo66}tm+l7Q3H<Fc`P0TEyR%AACNT=)7hj1T~$#K%a%Yv4_xSy)fYV|bhZJRZ0J
z8jh(^X4z>r1wwB<!~{h6vbl~4ISB}1yvY!A0bIV)=T1+LO7CMq(@%}=p5YGB0E@Ak
z%yUPUi!f^?VAjOSS6$^HA4Oh6K%~&k3uXlt=-kEnGgBsh&*H(X!O~*3P7~ZpuUI;Q
zk2wQ;%x@z~k3&J^jP_JXDdRCb9snNrz&!L9J*wds3;G<PH$Pe;0wN4FTm(Y&2!y<k
zvLgeB&BmmMg&?=1yLZ9tw&c?jKY9Y34&H)~J5&Uh)&aP*g~^^EB0CCuHNy)0&2r3n
zw&qF^&c$4MRKG}?v}`11=5bCEfU)PjdjJ8(O9U9Zg)FI~!J8h~1;PLY%(8F-JTO^{
zun6RKc+YMNp|@UlA_5{&b|;Prc>)M|s;PJp+`4DKb)Kxb($=Fz9Qft3;U_LI0=r&B
ze!O0rFl)MmS?hY|4<RuBB@|%(G_(2d7Z9+$yTakf#PpvtVAl9-FV>S0kb?o{2QbzE
z7~Q-WOdo(Zkt$#?z}g1zj055pw)R-1n=6F_TEw3bdP^rIAflxRm>Ljr1`xvcn447|
z^5QOh{=x->3|yoE%<lRXMWW;jK#x!@tp?s9%$f<9H3ysV=_iE9Kn;it%q&Z`QV`af
zA6RQ!r}*ONrX(fU7I_HBEuZHk!1xWo_`3YXcan=luI%SbEcl)g;8_6hDChT}CXd%-
z16Y&mSGLZBSgWlEH|re&A^8MC9y0a;Nv_B$LkW})3v3<CZj3e;NgEkZJ{mgSYm9_h
z8w9haD}vzwp;xJk-vIOT*rFtE5&{wZAP|vjd&?Kh+P9Ir!l3}Uhx35>0gOTb#x%2L
zrgPv;O}#itK!I?8G65dRzy=CB!kSzstV!*xc_IQLjD0}b0z$|EAylc6%EyvI0!WIU
zg=ps!1R=t3n->V0-y-X`$oeg^ev7Q%BI~!6_1nt&ZDswovVL1x|C6lQZ^!VrWBA)K
z{OuV2j%EFhW&Mt2{f=e*j%EE0zyA)u{|>+Z4!{2nzyHn{{@-Q{heWH&tkv|QPBZt`
zda~Icg_5Sk_WRx^B=2q*oOFd<*+^bvo|4>@Xd65M(r!xTaX}yv-KM~+OiW03;kLlG
z25q6w98}Go-<z?EbW<i7kVlr62uW6i3dl(N&2SYfU*G(CMgOp@j8HH%`e9n|qE!Sa
z?|1ySl=o{t1*t_ca*p%1ARpVxQXronhP-*%xYf7dxcQLKy!x=!6$zRQd7=4FkT<W{
zx7xRXCRI*oe&})2mC$6!dq{YC^&u}^wcRUjQOjLM{STJD?eTnccpN6kq&nzg4696f
z(7}5C`7BTra(a9mdz0UI<1}u6t#NTWPA)6IRU^}TB2Z3c{Jlj}H0FI&{xGQdbx6B3
z`~;c!c4*M@2~sO2e$eEPvT*-Z4vdlkDY<`SHf>xJ8Y<4LYhVJvZuoN}Sqc#a9V<J%
zrc&srH$x?QFO*}>-2vxtJ+Et_i{+3hT5>|K+jL?c%7Hx^sXh*Pc}RYXs-<8gG|E_0
zkT()DcuTc}{EyPh|CJXVC*+#{UeD~ngeppSvGBva+i=SFYrB#CdjG74aZTA^t~;gV
zdNZT_GE!A^aiq{;kWdIR@uT4txPwv?-2DSLr`y*1ykE%2ng4{Gn*POVM=4Sg&Hzf%
z&II>&b0Olh87zog1!cdgf*K92=ez<ZLA54#7gZQ&Me;yF<#2b3{`?70=t}weoi8Zj
zgzCbs>HKr4&s^BS<oJri_Euua*kYAbtrCUD#<%c7a506b)!dIZsM*@`ot+<^A5A!N
zyvCKc@N{xTWv6+Ba;#s>gR)}^+B|T2XhCc8F5SN+$&KLsuzqR@=KNR}o_xboGA6(;
zZMto^uJ+AyX1RFTqban9Rr&CBPguJpKg9v48-LKmp$(F!3~3=Y^eB?o3*bOLXx!ve
z(J&;_>$`LhLFGUQZviOM$b6K?a<bVorHRZS0?G77gD&g%Q4V<YQgMl+rK$@Gb_9Q}
za7GJzn0?8sIBE*bQ3%@a(tHDo$Nii(L@QaWJidMk!|4sMu?-yJ_ZN#CD&a5g1fFtb
z=U;sz1*$<<5|Gd7QB%4pZnx=CSKz0O8Kz7gndqGan|OFMECoQe`|kxe&4!@hCUx`;
z3HTLNe484`?G6-K=-@emUYb<bs?sd)po8<}!y@`#=L(#r9W*z*)aQ0#`v!Le9cLc6
zmWJo?+U!^A?knkr<)n?v*;nA|_hz5x=MB*&gz@NP4KuYT>_DKJTZ|-_g~`ysEz}kA
zLd9vDP;4k;zIMo0?4dUr&aKp~(df!5*nr!($RDUc*AC;GS1z|tqcDiONNfsfS%2oX
zuD_GeuJrEN(SQG|vEY01SvRJsglL9c2h@%Bq#Zi``<IbB(_bQvax#K;W7W(?C9GVt
zr_(@DXz(Vs*kjIke*UU-Y-zv|dfa2x*t76KXnEYUu`7Qgne1TzD=bKPeNt`{?@MCl
z;zZi`MQI-#$MqE(ik8de&L`hbcHTk66)b<P)?J18#!WA{^2`0dSDVh;BJKRsr~>w;
z9oqFK>Cc|TiJ(zOS+6MtIOqGOJ%UcWM;=!Fn%6(5J8ch}D|T*BFK$4!*F0wu-m6Bn
z*yS^aGJMI%#4MqrPA%nUZ0nTD;_X^vtGP?h3h75yIT{zIql0X{N9(LjbD}v#orj-N
z&@AVJ0&j$_Msfz9d9!Ehu<h>RX-Cov*Pw^qSy329ZDFR{WVdoTNg4w!1EZ+qAsP3I
ziZUK%I}(uv?LMLo=R#=n``jaf(;dADrp7(O&S%Jl^CGkbPcJjiz7Jw_n>|^aKe@kW
zjc(0~#OR$&Iw^Z@>m^fYePh7+6r}9Wrvv@0sZ|N&`1K=vZxZ;5$n$pOeZhqu*}$XC
zZk=Y&&>zfp``Qw)P%50QcJN`PxTtGjd)5Qt=-hY(IZqz^*imkiHa#jRh^6<YCrN^U
znf#Y$r?SDWj5txSE8#q=<l`K_?$S~V_s6_mt=-=JY|g9EgVU5TY+{*N+R{bl0;Y%j
zl73ru8Z{`s#plpcd?x#e5TZZ$yX`^-%2;nz8N1FAs`?LyH@JK^X6~)a{s^WA2X|=5
z9R8|jU$XsM_5O8fN$<znGX5U$iz=}?H66vxZ}xmiTvsAEMxXpq4<Q_c&3A2Keelc1
z8<u{)t1r~dgLnJ*20@`Af4aA~Q&yetX20IW*51tlo95>4`QCI6=xrO^N;P_+z1X4U
z%}=U7p#8YVr}9Klux(BvEU+_8Hn}}XSf%da^w|Vx!K=sP70<L}Yu=lnQ&2UrvU6R@
zTDii4O6b5HnIQz~R_%#6c_OmgfAn|Z3{bOK4`{)CUR~0~l80|)-1!p(OnGf6D(j=B
zIfD=6&k7jCiGBms==Gb!Hew3?bMJh&ntSuPt$m0{F8uM|Lqg%w3y%=|cQ*bYuoq<z
zySl&F${DO%pCG80V$=2Z&ea^b{R3);(YhEv{J~}qJfUN*xV6LRT{h+ZmQh?r@~spE
z!Z7@>s;Z^FR#|4WdW{(?c}V)FeVzt=#(Uikq**{km{dMyl8`FZ?otUQA?GfwbQ(*Z
z@IMM`+XMxJ_hOcY1~*A5X>}2hnt}(Ptgy_&##(e(e^Fg#x<AAUV0b|T!1b`7_Puao
zFDa*QWcOvmt9eNl!Q<NFYZxWxx*Cx=&!8LNx-E5ci;^5Mx%uQ_^`w%V20FT#{9Awe
z;){eTs3$T=E$XxUck4b)kq^6FAf=?qN-{TJ_-+i!dxthIsKjyPg3BfP88Cdb^hCse
z_}6v`)b?of(-o{G3u|R<Bqii(nbr2kvOALxQfpEF8G@fc;Tr8TsB+I}y{S==Q8m-}
z2-X~jOLZ2JWb&Z>vtKR(?6s24ErtEj0y+MiObyij>D1kl_%mJ)xm^pu7~pw^`xE{G
zk3tF4eMVU8PwBewQV4+I5tSwT=UrwJYRA65i2rl?|F*}ufbP$rxIljyba{JyYUa=B
z{|(uH<MXGGT`vmx^7pd<{u}uJF?_eH7;f#Pl@~r9>95#G7#d-coFe}}7f~PC(qK*E
zA%4vaY`Ra%o>p|ZkVy?HmCbI1x&rNTPCFzQI~DG}@RU(2b4jcep0TqkCd*6qk~Ned
z-j|d0?3Xr$r?QnC+H|N1Qa74UC%ZYEp1H-AftaA3ZZDCsLX480(XnYX9@b_Qnd|Xk
zpA}G%T$oHgt^u?=K_WplSZb77WT6*xc)0JJBIQh6fAlFrLg44wS7eXv1E-?+igs~w
zH{LQ`g>c_6Bs;4PNXjNJFKiBH?nR*k)Uj+o&Y2STC^B9Sw7*iDt6(a5bl`5kzb$UR
z^*zdCYvEqs^@~U=vTo_kQw|f$6t%nA!M%JL0m=h;Jvm^D8?kmGy^qJ_7mxUaqtLKt
zz3Rfkov#ZRco{G2WD*S_48lO^_}i+-BU<37B%-%hxn4?nI~BPZ@L<8ky@ziIrRrcO
zmr9~y+%-pgn1GQGIs9{i(LhG<RG=JNkjSrO;c{cJ4ex63meAANKktOwZNHlb_A2dS
z;}Jd<Y<7}|4m(8#vBZTlL?#Yf1XZRA)lCMNR2`gM8ut!)f0sc^I@Hd--nOS_@V%?M
zq|4-k05NH1waE`E`}fN8G%d5oK00%XIrYEZ<)f`38?A6s4fNl+ka%v}b*7C0gAbCy
z`Ytd8ysFGPf%hFY{<>IcaP;vOjjy0+AJu0|SFxG(P(soB-9<XN!@JcUweenShuSk@
z(l1pevtOw7R$PfE><N1{xobH~N+%n==EuP8#;K?dO)vP2K3ZKJjvsdRF>~sT)L>|`
zZRkAW24#`5l;=W;NZf5T;Ww;>a*y^Kh3#A3NerKgRxenji7DZ^xKX^2SAQ-3S=>3n
z3%XC~wJ(^MY`#mCTCGi*@b?$^(Bw3jqZHsN&8$e&Z=!QU=IMqDnle(Z4KT-Ah21wd
zez&E<X7BM|SJMFgPfaS8CV#%Ovm^-xVSwV?P#+t7TFvGVj46iAOeN{C_zml!aN~iR
zpz~^`xi}X`bRS#j4tgYS6*0L(B732<-c_{lY)=L3VELA(?X3S=@ZI3Ubv}av7nb!k
zqMq7WYtn1`{W;Njvcq@6Pxj~0lonAl9k3h~3w!H*eV)YF*xlOYDEU)sY|xd}NW{d1
zj_pu15IbZf`tZl)l)vpQZTT8ToUcWcv8QW$_K_xG`|i{aWBHJ;vjo4CVEV?G&~RU$
z|6ucwrp#t~+(+Rec9hMzP6_7xk*)fr%8BHo3+5(hFI(}mgSBEEixt^QiyO~}7EUCd
zx+d30#T`<iMa1*MT-V#+s;_F)^Ci^HOmxt`rjo_ajg74->Yk#;P3sPe1SQ2XfkBC3
zcEbauJfpS43d`A|yT1-t)diVYg7H}9aZhc!V`KX~-6MwkjW*<GuecS}`t%_j1<szI
zseE_7Ri)f_+Cg&mO?;tQgwR&^$F*Xx>Yw-Cz~DnHEI?>sd;lN1YvUsn(j>yDGB7k$
z)cZ85r_Tp-6!42(94v=tLX8JEaC`Ih9-3V^5^kjv>;H?UxA1GSegB80L_|P9Kw4VK
zn{E)LTRKPQ=<ZZ$5RsOU?hb{~B@!bCjP7QPh7r%j^ZR`Ng1vTa*LfcAJTTV^&(Fwg
z2!o-)GZ`ffC`l8|9@&xg%#}ZH(65Gz<#-;68Vp&p|3Y;*GRH%L0(Z_;40lFbkA?^p
z_A?D%LWkG&eGHqNisz4nm<8RndU0h5<(VsmBggZz3q%^h6Mu^b#($Jf#zo_XtHgB@
zhtvL|%rL69HfDlH)&nTpL-Ulf)MfR<**%I@zXR98Zn@n=LsZz_PR;aSXH{z-PI2b)
zAk|=ttV=_}dG_m`Yg>Q@h=nnmAom&HwKgkah>>J0zPmNoT+jmdQ3)mEPTQqA>cERR
zGPf`}MnZI`3Wbt(xlU2jp>tshM@H!-CTDEQ40}_}Rv>2jIDx^!)Q_k5JDKXLx)ti#
zMQS}VO8LYG|M}dvwmS~NKf7gIHqEu{^8d?`l=M6ZU}-~csYdYr`pbtNRnSP?^R<y}
z_iR#4(|`VWf=<YisMAJ5{N%Z7r5w$F&%<%10AeMZMp%mj&oyv8lSo#hzMr4ZX;@Pc
zBzd}U%GVEv;6}`09+X!@#3IEf;qfINyTRj-Ij*q;$$M#juwa8pznT=LkL>22Zpzpo
z3t5qx<lWDVM%(hd_03S9ekLd+P6D4+q5>vna=w?blZu>GM`ueNX%?^$OYqV0g#3Uv
z`QjZewkCkmBx3gTl_HL<+hQsUrGdhDGuwvOUSeqN<y*1leI<7s&6A_e%TZi9^~a=K
zX&)c12ENz}1XYT}*#cCa@ZKs`J<fuwA<N!UC7Vk23Hl>}^;H7-mfy+aU{o|^1_3#x
z8Oh-OLgVWpKMd?!%O71Dmz>&0v!5@r(h#=m;93As<boaD!OUkw(JJ%~myDw@2!m#b
zFstnoo5|lTT)2?s%N5)NX9q*I0N1co?A3JGxLkGirN)3EoG7>nfqcKbLoY@u4ZOc+
z^31)BG`^j0Uodw%+dCi5mQ*z~w{8mfp$@%?WhZ|bgZJ)M?#e1OQ>z**1`KibS7mqs
z7<}L-ms$W$J*^meOyG|iALSj2F7YwEjpgA$7t43Mo=Bbci@31<S#PaeIP@?1mvj3a
z7e}MC6&*MQpNp)wgNyw?eHV)hD}%JgisAaBQK9u0;CGQ0!IOtlFyMCT7ZYCyqBu>m
zF+)1AQ*9CN%;i&h9?gOd!Q)r`DL5EwF?wJfE=_RG18TXoL}AiGNrAB<mMo4@y-Z6X
zL(=&vQp1JX`LN79GGzv0^n#0x-+V(aL*!6~!J;?!K`!K>>2&!@<UI4Gb30A&@z=P3
z=IO96N+k~r;p;KT1yl4H!3s4s{6OVJnL%&Oe%k5kQdwePMI(x0%Gt#tfIFK~IfRA5
zSf`48Btx7_?$zyF(EL_oFD0+;pB7cix!+VI$gpwD<8-xzGa$c|h#lMQf*y{2UR)$7
zP$cdjRAk^uS=z`!{DsdRSn{dcED(5cO*Ylwn<=e*oY9YY<;5+b(_RPn{L$=n^j`d^
zH6rNFQ_|SD%_)9<&{!?xx$Mig!TS1OmG$kZ7efGFrhaOzGIg{D8TuV~e3&0YI$VTX
zLEe(~#aT1)GKtHwqQ=_1zGO|DAUl&MuE{w#NyOW}+VZK~?bKiHv)cyplQ3vqq@H3&
zts@4|D!^i`AL;YLCfoO`r%k`PcD2>M;Z6^MWPEkl_E+K+Jc?`ln7tVgSyV3wH`PSG
zDb}cfhvv0Rr`;~ueeBg#QbKvuJ25G&2zGSUKilW=%k}r9R6;J_SasWUbXFq!6FXn*
zi$1A#9VMPPMl2B~bAJht3X|+W7GOv`KCY?%J+7DNkScBy-%YNZaj-rTZWBN`sKAmX
zO&fgjZgHwEusiZfC;t#eVaF~&p+_lv07N=JpC9K1VIJ_0`oJ9cm89#xd5K(M9Hq?Y
z8iJ|FbcQg+fc$3h-do<Z_dQR~?XGGpn&a=01GHMZWf{VpT92{$HT|nw|4*BH@Tv~U
zr|W;=zjOgMSzOfaMWu0b;t?>ty~YQo5XL14UZ!B5>G(a4b4x#X+C<}o{=CrRKCCaX
z(Cn(4(Ij`{^7Cl(V)7X$YjzeCyna$g=vaxj=#utv#ia1Q^rGD7Av|FUYfzeDn_o4C
zlp`+%Z|y{hvpo`&A!@uBWigWgI)w+}NuD!z`Z~ZGYHwZ)B#~&$SvEfAm{*7DZD&$V
zKIJoW(4(E$+^0{nOs2UeX^5y5(9u}NzE9LtD+Gw$-hdf*%3)DwN1YtxKVuM6(Oz!o
zU4^*nMQNb3`SW9GC3Fbdw&(f&*dz03wJ*M$k~;Vl><k<6*Z1tGCactMrPJ4jR0)T=
zSq+sG8efYV-bynBYz+mR0Pr>kBewGi`mLGA3GaI3!?(Es-4qWRaNx5>o8=R-pT6!O
zby@>pfXd3VF@if@ZGWz1D3y&XpN^k`@bcr|;ml5CNd90nSZCMAyj_j30U<*-&Axw{
zKzX+7^?}Kj#?O}uyfs`f|Hl)Ha+uUc(;Q4nnyG_9#)^G0Ii>dk$IH*CZisi5s|61i
zuH*lKS@So!TKy}zN|4ylrP+2XYNWw7P@@;a)$fjnbG%5LaE2(iR+{fwZ!LrCQ6dBH
z&IR`hw^`H*fF|v-4m`o;-2zUddC$X~fPubwXD9mh675<IPn6Z|R9fes?QDxhh0_Xy
zfdv|7HJu$(4(v;Sw1#t)=4fV9s_AOCYj9vCiRvCjHf(KT>IKPG``%3q;ab4gqOvg$
zTHof&4UlDvctFGlWOjE%inINmJ1+ee*+OSh+V8{NemPXh)d5!-yy%XSAfT~{e_|3s
zb3OI4F&HOdZS2=azP()}Utqt(jMU+53uy3YVv|*7PvXK>avxou_<YIaJflTVk^X~h
z2R6h8ucP>sNd2OVtf;u{Kg~rBn~s#7;<kR_4ycLYwx6=90;a<0jFYXKxH$I}A-`g_
z-rpqkuL(jI)JrrX5~p*FJf}c81@FRmxfJGA_*>|Y;Z&|11E?D`TU=|@U_aWKay8r;
zZ_f?2xYxrTEVX)$cfEp_DdN?_I}l++N+;Otpt{a1rbNu5qT`9A4aD(DhIvU(7AY67
zRacZqG@QKnxs!h5MSVM!+F2A=UB+*J{ZV<H(opyxm{jYQiDk|#CnlBn1{hktYxnGD
zyj<bRye&-X_<eRH`o_vP%l3-QSSu`r{b#1dQ@OkrAC6PZgP8b^y9>%V>W7N+`<&Dk
zk9L{C*d2YL0RO9Un8up`spuKtmb$#dvC(S3ywEwP0g_<X3oUUW&ICc8oAjPGRNH>b
zTpe%GMh@FiNB(8T)vm+u4q{T=w>i{#J+ABNmG<9h7MJ^7WX#-p7x<0r?`*gETfo<&
zK$uU@_CHn{2ry*-<k?Ms=ONSg9Hya$H{~6oC18pIC`kLFE$wOh@?|<hgVU2wGlG8<
zIGBFv_P&l&d1GL7cQRBBGj3ohyNmf9u%v{$Gd}PYu1$Qu@cW2_zbootw7zpA9TtH0
zW2R*rH(QUDl}^ABv>^_@LMP@z^itY4LrT-n?<&!e1%;qCl&Dk9P!3j;gF*g9{pvZw
zH|rFroVF*Xe7XkQP^pmipyV4-sJAk6CVv7nV3aBx$c^D={5R?>7W#h#8i_9IALYYp
z3!=TXbduw6ijpEYeRWgHr-(X6b*VEv6?68Hvy-`KyOdO?(sQWvcNDID;q0eL=`c}r
z?HplZH?m6dRy_n(1uAnA+}xD8QsNqV3A~;whW*yipA_V_tS2HG!beh@in?P{gTR)9
zuH_Pq<P6tBpE8Ef!kDdb$$Qsd6d5MIBOP+LC_Z<Xn4kHMrpVVAZW+Q^`#`kKIo<QB
zRw>5@d$P&~*ng7C2IcLQOms`Wmx1RzCcW9$Yp>Q?tAO3_N7#5Y6o39s7kMiA{YGHK
z4@H)Ky-Fa(BpuC>VdDCe)*qWC4;8zFP-uP`8k#(_gO))3M+}?t)g-Rjd0-Q%DRoCp
zqRge&eYSRvx@-DI3(U#-nO>B)FLItNYY(1q-v?%-Vr<|-*=yEPLnCQ7u@O$X6LlKN
z;L4a}_Y&zS-05uWZ!l!RncryeK(o_YA=Rl~Cg)|YN@jBznim3=eDu3AsU>7FPdnnX
z_w;Ncq{$v9%Tvd-ap}(3*jY2_$D2w=5x<8G94oO}cE5aM8rQ}$-BPBNwbTcNS1NNn
zg?6ymcY7#FH4r#>=rF2ml^+jh_F>dS|D59d;QZVAGh{lHP%ZZh5P)6l8)SM}Q=Oa2
z7OWj#UVLk1y|;nfdrn>bMZ5fn``uu3#0i-`h&C>PHt6<KpbN)2^!py3<50?>$9&cz
z;|d`q#`3-R`5&CUnCDzLyt{J`ILi1L&JP=l>kn3o8cnB%-qX`_mi3O;&+os>xKDFz
zmzx+WU7qhSq+}L!>Qw5<2Mk@w(FW%gyb88Er>}N~{31k(G>Z`<mT1~`8)sk&-Hbe>
z{{0-myBn>HSIaeIzJXiheYOW_guQMtHVa6O0y%D6x&7sIV7S!v)@OoCrwf{{#ijW$
zZ_Og1y}g8OkS7mI0r!0!rL()mle@(^MQ%%1UsLQ$L(*h@fK4|j^!10k<y0880Eb1t
z0DuuZ97pyZN&LsQfZiX-r*UHXbcqe|rI9QK#5)VM;^znBDvr5Bl)JLD7mMG|DFx!#
zNnRN{Nm{!G?u?o3dv7qTA)ck#IVO#xitjEnQ@_-(yqja#Qoz1#4t-cW?Rc=ncJB3W
zYE<Bbjylcdky{(EU=*(IL-<}j_^a@h#@d+YXhVdwf1lXTB%Z$T&$fdO0MrAOzUovX
z9joP!&Jx0pC7?z4)I(xdgX!w`wA$nTeU%C;>E{N-<0<Thgy|l(4<jr8u7=6N*=txH
zGtPZcg)eKI5!>@YL>#A`!DFNxX_eM6+2Fa=xoK}h-37zt1$z3L^ucIdP@zQN(~WN{
z8a@h9;erzZhto{<>5*5SIQsUd2AdG_;=p6}z1G%C<rXR3Lj(R2Xt?-P1pSgHRm2kJ
zRn@b0+eW)dotAP#f-?PeibgZJvXhn@{^_YL&eT+{VryHs2F>C&c?Q||X;GJ0Rl?T-
zmf!x-RvX^#+T={$`tn9zipa}=PM7iT-}`5Kj<0Jd>CJmDFHDt*13$CS8MA2&IH+U$
z@@^;Geek>6-~>rZ?^W9KpIRZX3PajCNa?MWRq18;B{3AT)<F_*oFxF+#)5Ws{}K$v
z_VXxKrJf%T2@RhfzTO$f4|e;Hzr<w5p!k+z-}$5Q+A?u_md^~QlAGaBFH+|DJ!L|V
z5qh)tuJolBLh=8Brg+ES4ssS;4C9xpp{$n?_hQmOBh+^bH4GH})8_Dorrq6#B*AIO
z#`l;V9<W8<6%)<XQ6@)qN72TQNg9&!3Z}0<Ca)y^n>2X%DVOk#B@>AfRAXHqv>G3{
zs%4lO24{O{?d7DFwAT2{<ys~s`?P_x8(g-HFJ*F`Ch#+xn*5AjmQR-?_J9;RZk$p@
z)OgP0CmY@i#zO;EnMu|}jFxsr-lMA}P$_!uPvzlJ3K}*iEav=&4(j+JdA2c_Bxh{A
zSza-Yz5HRAHejhv;CfBcLumL-C#{$cr%4Hn*QC`6!?U%S4B5{C6?a#b2(mk*3SL=}
z+7DM&;Ll9S-&@$^gtxD&@S^v=rN%kt$QjS$ruKDwSX{yP$<n(2?=v1bwJTWnbyhHG
zO6fnap_AKt$PxFl-(Moexm2n{^ns9_N@~g|uJ^;~f;lvlV#<W8!1izq9S}<Fer2;$
z#H&5&zQK}|_BIH5lCjM2Sh9nhMjC0NLke)Wn*nG+PsZR=a_j6j0Q21Q4nw4^K>aRi
zeTM{E?naL;G;jIRo-A_=5`PjJXhTU5=})Gl`tHpaM;IKvlYo%(ZcltOW1#1nU!#~1
z3G0o-23J~9sj(S+<}6p|U-j|5o6pk`=EA*3vg9yVSS%M}+hx5>fN{b7NsfE-yr^4B
zM2oHv5+(%)7RIq#R-f|-MqP6vXu4weY~MbWY_j<m43Hl7VdN3r{?y0W*teoxWUQm&
zmkwo?hx%4(ra+N|FQa+DR!r`*GqhgMTpw3AVw~et?Io=q2|dtpi<Q`9yv?vowWICK
zYR*OFrct$Q<<ka$@*MB;ad?Z?-WNPtVYe5<=3Fw@emG*^lVVsACwSO6<g1BYrMcFP
zI|Yx_t}YG7ef4!~-f<Rq_)E#Rb#7L+>-&c08_o0ApQ^Y*JvR8O6CSb}(YEJdJRgLH
z8OCa)0x2X8W@DA^!~8b>j{p5Sd`ko6@hkSEyE&Uw&1cnSE#>0bhdCGcw@8|TYF^i}
zp|$sv$;MeUN1bMQ2GF&de>v$@8aU<#Ux@hyJcCtvW7)mO^5<2dVGSl*v0A+Xn6EGL
zpbtBMv!;-zkW1Tp^>`nU+_W6G`V*QRLHV4fW-8z!v(Zlg)3oP&`%hPgg^Ev2uhgKh
z4&D(WXs+UMT%mH`8WQ)Kczk@n@d|MxCgNX87BuWVeq!8sk)?Utys~&Hk?UL`T6^XH
z#H4ox*T{2Eu*-V?#qe?XC8s~Ca%8VHsGihu+U?CF!4XU&BHg&h7p*L|itwtpQP$3E
zVm8qE>+%9lK)YsudSw=3Mzk{TPr+ZICdk(&Y_0zdnEV+*G-1oX_h21#yH&@)l-l6+
zrb_;QswIK@&JNpqbk98_VAm>5rsu%o@u4|H$MdW!^FJr}aoNoZ>VFK{jyb@gbgF<(
z`{J+o)v><hO#k{l2)<WG{o%J@xYt>)_-bu?%%o@}|B;r~c2Odz_8jXx@`k9@tcQ86
z0|6nd4?K2IUiuc*v68|OoP5IrPF*d&#*F^y$LeVG5dA%++53>Do@%x-OH@4pb@Yjt
z@}H5;+^uQ-+pvkk2N`3;Z|zFsAxbA%T6S*Qy~)Y%nlhEaGX;!T)h74dXZqYpL@kSf
z*o$^q;fS&_{nlS1SZZFY;?6aUMtq-6X)g~Kli-bx$rg9+?Ip<f(4(`B<Kif?2oVIt
zy*4#;YghHcI42@-`!K8YBT8WJh+?Vaw7MgHEIbgkJ)8MeaAOmC12NLNMETj#aDTNS
zUa@*Z8?YkbS$xKjAR&baKK^Aa4Pkr{+_B!V=()#V<Y)+EUP%4BRFkx?UFGLkAWnm+
z2FQp${X1PR(QjqFH0vp+A||fNH*dQvN6M9^nUw-iw9cbM;%xKyiOx)*RzLlC>cK;|
z+o`1Y(`Ct}p5>Vpjk}}22qbPJeXP$fVGe^k;WKR;ja5R3N41+XTCB;&YQ&^Qx-yac
zT_=Vk&T$9OnaAg+@J;J!rZNZ$DDa&1utAG1!VXms>$Xgm3(oOYrb+Ofia{20(u^+X
zQy09#8$A%&_aNiMue{$|LdA;K{&%c+=1!|<xX}J9BQ%3r68Yz|1#r><&_v1Gqb*gy
zaVaBz6zIDmTy~xO3lDKkZQSC<Zv#Gi6=?ZmT=EaISwf0z^n6W-9?poP73U)C_cvzr
z%kgnXJ@x#=FemXAx!rv_OzdNR%+L$gnU~vjOFoDY4q6IEEcTMU{cfD*gE*|*%j@6N
zrOHgqS;zE|VnYv5dgw$WDD6N6Tn@t<_W^}S0jFb9hF}5oa63H>-nq{X)FuoLGJ?3o
z!y)83sC>I!)a-6+&~1sYuh4y9ssAD#QpVoV0z@Y2=Uh&ed>p2O`AFp6h)=P(VdHU~
z*8xRTe_yK!(MbZ})u1gW7`&)GKv@YgZUYTVW3`^ZRKQaRSz&M;I&;~qR@eiME47%#
zndy^It);&{ZR@%^>{`5BLHE8~{C{e-yCtn}=~A3&-Qb-)PZ;%ids!kRWM>TP5Aq4x
zsegErf*_W@XG6X9E>{BMmU%IP&h|dW;{P*~SSlNejVC?9Ev|=(#5g%DWjrc72H~-(
zGeGZNvBa>s<50tY))j6KL2aelG1f4HB8(|xp4}IWAke8Y1pm;meEvm*xNvk4G%ag%
zS6$E&UCcdRaH!E4qp5Yf&=|hxmU+i_lC;cl)fOhGuiT(>2NWGnE4Mz^1rh%#<ePX+
z&_Lf=7nK^kj+=r_a9?CSbwaHf;4}B$djNKBk8uPrV-ZYi4gWmWx;*}zlbVx{B)!aj
zee(luIu6Q|_!PsfM$jyQ(k^y`6$ReTN!+jSR|W%hfK`=ul7uuS*wFJgohUryBKP&_
zb^`g!?PSFF4d~q<J_vOWNMogOb1e%&3Exec8v1S8EvL@>#FG&>;|yDPz)>fm+*mo+
zjKp64GU9D<O2aJfFaF9Tb~}S`Wn`KR!l$`N&EInqe}CXUNhI=fXH!b}Gpp{54q4NB
z&s>cc)1xrrXA;TPbGq`_HZ(wLBk=jXh_mHwM1qahNh;NSuD?mb5{#lLlOgfss4f62
zWu~Jdb>+EZ0X>baRIdBL#Z<kVU}MT0&={sC8C-mk5+E|r^6ww5C8g0ayY=AfW+`X*
z6)V!Q4<K7!xuX&dMSs|QePR;%TGa3N-p>bdRPsy!eL(1-GUw!BvW*U;aov-N(-)R(
z;_G-x0F2#Zmn_h15X3b8hEmdcf$_ZW6m35+M9^$2e*hzJT2^eF@HlpU5E`$U>4w}g
z8prNHKx-t(4&dh`{Oz??9)vVtdDDr{#k(2h<r-&2evfnofgx}0)d$%^)|oOWX6cJ8
z1kBHALT_#G#mrP}+mmcX|0$f*C&6CZ{3XKB(x7$={lSTo^zH0oZVQ(F7r*Dly~_%*
z@`6*%Sy!TTFb|+Ryf!2GEIED||57+qAarcFjuJlRiu+Aj#G~z7QO_YiIsr-GS3HbH
zP>B?($y<p`S1W(TLai*ae14czVesc~3-RT_XG*trK5r4@n`(`z`;_@<#OKAQlIM)3
z)h44u;SjOl#Pv76&^iFRm#L(6Jgmy?c_A>)RwHQT;Kx}80aEU%jn`g}++g*()G=U%
z2)Bu);bVSzCkw0UaeOx@+wQni_=l@ZkQYDh!KLj2F4A(`eYy+Jn4Z?Y^5^(9QoTBs
z`Y7i{O7_+@l=-PFrg4>VLH$1ke!IKu@cxukRB05xGDo@IFD3&y(msptt-||6mydY`
z3r^9ySk(q`)wg&4c<V}6(1<q?k`w56sZLo5|9H+?&8FM(frFrXJG7z6ZtrgL9)0p~
z31pun?%%-hRZ?nZx;p=;VRZzSN04pyaFLlgg%TZNOVJBBX8sA;z)Y=wwjKi$I%Dee
z_4D2)1+R7Gc*ty0aAO=!pMv&$lne((X7VVHzd#9lXm#ra5iQ$6@ET-r((Ana)mjP6
z1O4xSr6&oPMR^NDkxzf}f_zjt7<^{L#cfYh9QT&}p{Ukz4r+MG<sHDwGyROq(!efx
z^&AZ}8L)Ifwlk?F$+8r{akCOU1kB-O(j;7zQ#)Ttg^#jL)6a){$IrU3X~&mg5C2l$
z#X$qcU-AbXY_>{7SX6^Y$yneG`xQ&efEma(aG6pH!bgSh?DeNv9Rnx@@>3KdSdXj-
zT*Rl>Zp!Vyb!tzn>eQ(eQDOKXV(bPS$WY$<(awpC)R#SkG=LT5STCPt<k|6X3`cc!
z5#T#69q|(J+@;|CaQ|j<<~ya0p3>)AKuzAer~!DPa)RpH&EnKXayg}a0e2AXxWpB~
z94}P0uy#GC)}&ia1!s1DT3picsW`uz^6*<<{j`}1{t;gt)jq|UlDTtkk_r~~^6T*9
zWD>Tq!)8w{usPCk05WQI)^ChFJT@XgzxbL7Db*<E^wu}AEs{AZkhj_5Uk?4$9v~bL
zI?hn}E-s8q;zYzNKo<*P^WW9@eXsW<Km{K1S6<&enGj(*Bd_iyWB2XJlHS*Vm4HSv
ztaueUPJ4&M`)C~vnziaruRPlW)0Sy{fQ<qRckS2~NA1zhG24CsF_`rzaCk5ICcwRR
zh<M-Lw|4I9FyAPf>Q?Ce5_{BSrmJ-gD-(yR)%?wv@o2f>Rbe?4#I}L%xQ+e0Wx6vZ
zqHK8)aKtM1w1zW#QG5M`kgwkvra`S+a+x`FVw(lh`xl4hXYT!7{aDK%$Kuc69Jw6I
z1YWg})ChCJKL9{mE0kCxxS#*ee@p9JKU<Ov*2F0*U2P0rHtx!yyb`D7tz5_1yIz2L
z--+pD3+hpxo@6!LUVnQy%<-5|U>y@&@`({y_7ddO+fBbn`&3)(3m)iCQ}H-_F1R!n
z+2Xyg*rzHPcX5dN0tkzQzLMLwl1_&a>cw6o@=JfH9|Cs(QgaVq3?+6&jt~4TT!iw;
zRB&p1e1iT-pQCwHcn%#iDv6wO=bF$0jko&opHA`XZt3{_PMO-jeCrrKR%W{oPj$Fk
zr()^BC1?82<-N&T9ECwsJJS~F8-MkSiv0)_fd+Vau6kbb4@XXq1YozrXgQ2`npIeO
zns=?Xq@Q7<cTzC~$nkML7TVduj$9Z&q9IKk!)v&)TZ5|qiM5Y7uN4gLg|h_XY^wN7
zB+dX6u&pCZ5F2d3Vp@Kxbit7g36{F8uwM#D6<pm^p}1~3&Xb85BY-*PF=W$_{RxlW
z?6bfCuDgtft93QM{mSO3Wd@g8jqQpDXNQ1ap*BVj=QAeuDr<mkC+^ir-%ge@M787g
zq@4ehr@7^ASAFRf%p4`K3cz&P;-7AH_C3TDH2$}PRQ_hts*%`m!kX0EYrqXR&4}S2
za$&5=UVOC@qY-dya|1a1v=V&7`wc}s-;mBj_=d~NXC}s2<USa^6S;XP?%v$o?IX+9
z4leiYX_Uqe#t*Q%M(5}Ll8U)%_2z)#=7=?5tG+Z1ISKU+3^I9r)0+=F(a@g4Du2++
z^gZoUY2IWWev?F<Z;5snf8GwocFr3@JOoI$(xAd#bpYmA!RDiXkxQtM;E2bD?>5vD
zcJK0~tL0Z9OJV&xUpMaA@pRJwEoH83FC`Z;RU0%JUkwrG*}?JKA8Fpb+21D)F5R4)
z3n;9#KKx1{6Y|T4Zme}C5LR^(w{z1k$n*pMLIZtJU}?p(2AhB)7uK73d4j%XCF8QA
z6!HZNTHxK1ENSdJVq$q?Sl@7EPHHmMZN`blb>er^V3R!7D;vADk@es-Q>`mE(t^55
zQe(i_PM_Te8Xp&=`b->7HU^0a^#B@3oAOeIVkNW|vq(RQqzY1(2bXpqT}Yi?J}QIp
zm~2*@J6$85(6ayM=sTF;8})1nx=~ftJbt~M1?Ir5i+U73^`6d&xn%ne@E%_s36ahQ
z)J97#R~t8n9wFv*@9-Cb5yn&P#^7_&|14*pHPZMA@Fo$7F5C4bkv_$z_`uZ$`Oi#m
z^IuBs1#3n{5W!PP?w{6BUxn%VREp3B)kqZ-8PeDU^$JU*Q@B1`cL){Rz)Y{4E@I4q
z`0X)n<k_q&x_`t58p;q{wWjT@vYEdS+|dEcisQFEZXZb|h-LnWd9)uywg@X^02+d&
zN7^?O$ROkKf!gsAeHt+{{Tp2MK-Xy4=6jwWY}Jb=1_c2HH&&A%=uwvUa&Z&P4SgKj
zBvjI4NBvC6r-B<T1s32hq*PvBHXZ#Znnv=#W79LhUraDHgv{5`so}LRADVwZlSznQ
zz+V^s$?u!60%ZP=jScA28Q33*ftKR&?M@5cXUDN~Hq5a)N@6kzY3{>A&mhNZ?C?6P
z))w)A?yJO<G0yxAug$U<S=|APk2uF)has=tEK}=um}wfI;BHFlNg1KE)I`p+a~&qm
z=i)1XDI`DU7;rya5QRb@n)#Fl%xxc=hANxK?k<-q@0WBtE?VRp0usZ&2r{!ue|vrY
zWcfT!amJO}VO<t)YS{O_+2pc?vc$U@HT~UW8Vn-i^{teSdRSDMJ4%_~0ld=URqLID
zw}7|!Vt}9$k6yiEc6aKazyEA9TfD*HnoW3v#CiBrvnmG(VYQWGwIdmIo;WU`x=9pd
z&U-|2c3Z^Z)HKjYIMigwXjl3fuZ`#~!~+=;EhV{G6Q_fl?QDO1jtt46maJQ*HMZtQ
zj!|i!hzykbl%j*qFmGIR5S;Bg0R9Cub&g4^ATw4me{S$Ev-;$mTQ!BBn+f<GD)oFM
z6%AN2vbk5{ou+v@XgxF6b=n{BXalH(d&JI_qz;*wbSN%HonL(`p5mbgRD!9@ka-&k
z5Jid8A-K{J7J1ZkU&Z3*ywZU^FHrrc$&P7jgU5kt(=&XE{Fs+QtDkREzKvGG3gaNQ
z;w$I&*GJFq9Xh?IjNLu8Gj49r{%VAdd+Jsi6$qGb58{eNp+%5m`nU~ZZ3DLvP*hBX
z0ct<9YB>%&wR^a~(<%;1Dj@Qk-{RN$?P3Nd_)%p~TR_FqjcY)(()cfv-?74NfH>KQ
zcX|h7`8?n5uiwE%I`rOuw7$Hf@u+DqNss_ARtsZew(n=BhGsb~Ci2f3;J=8F07l63
zK`dFKmuUA-PAeLT`Iaf{X(0k;mnd4Tdi#T!E0*OO<A%Sb9v>$&iKB7+-QyAMsBHTg
zFxBF#1b!w{C2;$p_v~@8T?>CEYjXIEND$D8-e~z^$Vo!afUC*+=tLQUM_D=l74b(h
zS@W0b*JpqW4^$r8@ptt9@rlEp(oq|p`TNzHVd0406;U3IKR{0=AuFaVung(cjWfW|
zMMRF?cLYqW1{7p3N(?J0RxTg=i4;pOz5v*9-0i9?Cp>RTI4^7)yB%Y|Zc?JzJy%Q&
zeK%lh{S(q}YkeSIow5lTyMNWQgviV0R~oV_Exq#c$tFjKFm`?nq){iM^ufIK4Xka{
zIR~s?GDmrkUxVjopBr~m0*|*cAcNMoT_{r{-Hv#JfuQj<D`cNf6*=1dLO)`Xz36(y
z6AX0o$J6*6ul_aI0Mupp^w2b7;L(<-;$#cp>?ut(3DsNjuvC&xMv@VtEK8yP-zEaX
zY}^SKTss^?UZf$;uBvEN<VP)<p#itlLD%0?r(~2s=m#p`gzxcLh+(u47VZ-)e2_#m
zm+ksk1mHiF_|qwmPT$##b^>pLpv_ltc~5pICTpF9ZW5a~Zu6IGivM3Q0+6OAsErXS
zjpTb)ks-Qvjs%xImtN9Ngz+h`za1*_%Q@o{e$eck(#O8>ppoY{JL_sCGUfR1@Wc!N
zN*`B(<-x&Xq`gjXUvXEu<dsP1qj^piEa=m2+SeT_IHt56nL2Yzmuf<JvGKM$1Gf8Z
z*l5ucoH9w?7cKL2MH|#%&q3Hf^ui2gg;@wAn7A9B0SL_f_=<s@|3g~6{SRB-4#vfx
z);zbkG#;_>gwDUkUrXjYeCNoPq~n&cA5#+)Z=G}DMT?aU{+Gd1r%v9>Qr=6h4&=Y_
zC<Vri7yUM#{RMp}NoiDm37zQq#T5!HDyS0B*?`)K3GV_sk?k2&Xt<s0{-Ne(2V}^S
z)hT&S4VuKzLM0~;;pc_M6+tIo@Y*{=`A02kY*D>Swg|TUWkIfOUqJVrDsaVU1R;T`
zQau6trbx^yU`CBRS%*aPdU(KF6`rI%`@q+5&sjqoEkSdHdeUgO_+2)RMlGor^3wS8
z068<DNv~q&qD+A^nGM2BUj1q6*Ch2`G|H}+q%kGLM<Fn6lblp+l0G?H@&z*fBw*;R
z^+MqX_Il4-MKI0XqXOBSE?_(LQ-?ECjU~&2h||DQpz_^04Ob<lfKwIcdmvWQfAcak
zb%O9Ed-b957G0%gceM;tw(Crj%Ftgu$Uks)mTSA`5I5~N7~xM@F`q{S+*&}&rC)`K
zNg!hEyLhujI)(TJ;`Uy8O&E}ZKQROxavGnx>`#n^A=rS+kc7BDE{|fm+{}a+BPiz}
zP{D_kW0~J>nNWKK?&Chz8Bywk<eiofXhY#g9(YawRQD9B3pI^3niIUFq*=lAv8Y2R
zvx2GG?we<;5OnDtShO+q#TnzJ<@w8PXr@$QMU;YAeGue4SmJ8=D6Kf6Tmk!kK7;uG
z%*Vx@FL3S2-)5(ayI+V=SaCcI1Y=(XT6E7QmQf=dzl~xR%VYbzq(Hj|b+|6Fc^t1e
zYn3XF$ag??Paa(e!ONSR)kMCFyJ+qEqT}PO?9<SIO)fU2q#Wwv_Q_L}c(CMaVf&vg
zr+L~#)-aoP?CI?g`|15nJ$prG^b<L3R}RSmed<*d!a<XlvE0a*Wh+4~CNpEA6D@GJ
zFWudCrzWu~_DW|0V7Q73_?_YIfV^rnpZj6!nO2!rVv&TPRG=QYsFOx~Bkpy$LQ+58
z^Z_ahCKCsk6?+5p8|6mVGHi~HTT&pL^wtLRmS=bA$_A&AIXPm9SKj%kz&5Q>&8V=M
zhOKio;D`NHC`XMNdj7z9?3lMXl&XoLqzjUR4u>?r7@BuuyO$zknEK~Z3Tm9`Q~^DX
zeFWGup{X=-?0~Z7fKS-u1SYCpmSm!#17=E&hKtI#zJq=CThj}^xD_hD-3^B@rx;S;
zvy+S%QD<X?Z3Sv|c#Q}1f3KHM#TRKK*)O$jCN$1&e<&mt%IKM&WQp7cw;Pu4syNoX
zD~|~HJlET9i=5jwQJ>s$G;eX5X(Bm4T-3zb1!y&D&Hkb1Dw!ftoNT(XZKEBO5%|<P
zL;sMtw@Y30j|$`g`9xI8=^CDnZ@%_YWb!4uo5->8a#Z}i)#D+Kz<G2S2H&oKAbI^T
zzx{A(tOLXvbr6KNS+o(L$NTFawyZl9&T+peu1U5`wKM#K_mZc{aJsJmXSE6J{Kx|Q
z%H*aR2)}wS#m$9;&v0iu-hC47F|ghM&gM^t%?O_)r`Egdw8lDf)mRpTmn#cx7kflZ
znd{Dkmac=m?|d#A0*@U(czYwrlY%+dxw>wd`>_ieyL0b?K>@4!WiGzH=Q5Moz|ji7
z_lBZJcf__(e}g%FK4Y&osTM%O3qIyhDezj4GWly7(>Ru$P)ry=7m9dUQM^x<UHf>z
zJH!b@2zF=$NA-2snIAa)i9fIPQbD5N<~yU`--vW?vA#;OFdCqQvTAdkjxi4c{DG54
zNf9D+_vbJC_l2#mrrN!6*Dpyl|H(GXA-`kCjpA&#=d~4<!hwNFq={A^uiR;ZB}@me
z6Ns29=HMMfTwKS1E${|Ap0JFGN*}}wH%&$!R~TjoxB*F796^VTba)`mfmEs?*`I6g
zP@Cn`ZS185f{1%e2eUse;~IN{E4688^ZRp`fj+q{FMa=JeChxux?Ux0WGLc>`*&=R
zdGJ&DZQkY0R1;Zakq60(Ds-{3d~i-s!&&%;U#}{q3@WgqNxZ!yR=&SKe$z$g6N2fD
z!-+%JwYd1s!1kTzuUEFXubMA%ysr><UV^Q3t@`P${#(A^+juUQcoB2y;+Mnemko)C
zxXAW?>GRI69!F+Je!lmhH)5hyZSSKNF!!HnRj9|)_s9LXm0scG<4CjWd4bB8OV~(A
z@j7Z=u2QJtb<}@N@AT>0H=D8*5pxFFkBWC{#~IG^b*i$ewm77UuecOXw@1EpKcZ6)
z#C_nuEVkl}_dQ*m_{KO%#0KM3GY1W@m!BSZ)v^<Ca10D^<)+*GFV}HyucI*BCi2Xa
z;U0H4aX#CP7(Twj4Z#r`@|LP#Jd*VQbMoUxaK}FS{5}MhcPTVs5Ha?R@^ug58H<)(
z?FMn*l<ys|_(8qONO<EC^O{o~_!9JtW_`1@&JR))loFqcslJh1<<vbB>e>3(OMURU
zTsJtsabM8j4(}7`6IwEd{sx@Sh!BqFoy2mNQOP=}cO81n@f(3P`-v_|F-XEOqIdA<
zGMN+YGe<@nx$j<_OJCl{AJC59G_q}eo(hrbIgi>=JKZdl!ua?sCk0CiZ-q;4)jLqh
zBevDKdc<ZS<)&!k;P-_}8_J`cKjURci2ixyyqCt!nX~3JE6JuZihy29?$D3x_ovz)
zn0$mru~AP_Li(k-68*3`sIOjV7F=;P;_WDtwf}xg`Q^oW$$BbB`Gy>ueo<YvFU?Sd
zbL3~SpOKSkH_goaZ^Qn3s%NNSuTT5Qhn&~y8&zt`w$HN9vow+FN|`Oarf2x<@ePgA
zeR?SD3nzwSldTaGWwM1SUp&=eMRTH<;B8MIh*J+uCUl<y@evQ5i(5#QP$iBrHuC4B
z;=1g)-NtbjpNG%u!=?I!i>QLb$c7g?V@ykmqK6dseE8_sCtHcPu)j8@|2|bWKG7n~
zjWsQk!y`nX`0kA5)G12Vjw8_j$<5xH1fKJ6j-2Aq@sL@$?8v8MgfE{nQGt*NjuO@C
z`6IG5>u_eifNtAo4R(uRI(=0sV%9i=@r+_C9MTs)lkx`%?%R34wTCuNR^qe##}e}g
zh+FV-c%K0=Tisl{uyQT7whvDysuukljjz*rtQ188Op9YjX?Q$-6cBgfNH4B2MaEpd
zc><?pbX7=UC;t+c^`6aQ4N~m7@I96O+qY8+r6|oJWjY2V$d94Q^cm*25NzU?ad(E3
zx~Uy0JZkBDs>)ir6Pq)(AI~r#tJ=?MMz*#0e#CVld>-1{HlqKmG7Rjg?g185jV~uw
zOuD;ezZ)COdPvKRN+HS<PAw;Sx(QXUrha8<vq~X8#u$E1_L1+k<uIlDZO9T$>h<Po
z_|I!fw2I%a#cC4df2XTLhLQ@fGT4cnIE_gwu^E4T8S~v%J+zt_IZ3vsXdRbeY^!u#
zeudt2tvr6*?&xLYpQ9RBC&M7qf839^KaS`yVL67=vo%zrKaV;v*H7dhXpp5d&q#*D
z0<V5kJTon#dis}zcDpDONW<ci;;c{6N9nw8)tM43h$#5_&Zwb6yQ|CJxXQ@Rpx%oC
zkCM>35ua8I7fo6kn$54zI5*71LLNjs^->%dG3`Ek6z4wKBV3T7sLOq^N=DjvmZ4|Y
zsQ~}9!?TY~J637fY^$XwL@ngAQJ8Az4(hSPi=Ub?QBx&hoiX=|OwHSwd;UGC!NmDr
z<|Xm9KW!V24)a9ak23dx_s@@((u<yzRb%0%e&1?%+Ob)xS?q}|AX?3lsOjIKCjVbD
zm*Ll?muy9xpxf{Cn6w-vv=t;x*A>6a7c3%k38)v;5{fWscZ){mEyKS@nTGF%@nAN*
zEW#p8I}C3b|8r{cx96FTkgr3|Yf+jcj?A$$za<?EG{zBXZigDG%S3s{>fE4o0gI}J
zL*nl*yA;zp(eVmO^WDz=s;5srQ9!-t?Ur%Ge2+6x<mvABaCa$vc4n2)VfyZl$w3la
z=nZw60=bZ7RyFZddaoXElSdgJ^PYarD)RI(q{bwoxKt^$%!IzeL(E$bG+ypbu^1L0
zVR^_XSI|5<&Rk*Q4_qqSl@IHA0ze`HR`~1V(;cemjE3BhUAVY(LU)(za4!SATSsRX
zXT7Jy`n;?`jP+|b12edJO-+WdQ$tdE3~~Vne?MVS$q=-9#SgMZ4{vGrxJG1WWxjRa
zQa*dkEf<z~4(D;da^#7z3hSI2T-7RclSyLW5|F~-vpEX$8Q>rQj*w==EJwZ@lG<Ft
zU#VbfUJjj~al#LaPMcXq>92)b<a;s_%6es0Td|;9d6BZ!hN@5XzY4IqjX?{%mQN0s
z+Ms7{OFA#m7-946p446Bj{5KM#-$jcO)2x8byZDJft;_Oxh0UT9Ri$+vRc(In+!H?
znf$)<Pm-DzQt#05SPjeDK#g;e#KpZR&`;4o>539m>T?paf#i2yWljw5>HPXWkjsEs
z8FXamcX@109Y`v&F)t67gO>}53Qa1S$oc7i9OEMo=6KWRcP0v}9gIf@NZvm|vyYQr
zvm9Cu+$akf2}WH|^S&!q!`cqiziBYVDQB}m241a0B}+dP8d%RD<Ncm7dM!k3IGmOi
zOWG**#)ED01}{%uqwnj;DUFu3dLuOUrb?;ZKo-ojuh3U|SwUsyVhl4DaqHNIGEaVb
zagWFB?oJj@e8P&*9HE#lpo>O4p-TJvEJ0d4>YV`$Y0ZH?OtlpCCuRRP85-m>)j~(s
zM3KVBtk#R~qq5Tf@F~XRPIL`rr}dJK@)K@t?=q5kG*A<%se>K*l;G*Bw6JHkY;TW=
zM9io3fb^A#-NG#4XIrW>6f`>7-wu;B!)g!GFCkhP8V1L@^Xh@WzNQxm+%oDe_-H~H
zSgvCJ`HWgx)a!^Fj7h|`>L2RbGi6t)9d=6LLEpG1u(ceB_ew@`do)|oN-_0^Fl)=@
zj?z0!HP>YcaZGAytlhCEHom7iXlIMwl8^>0htsxK^qZ^)@b=IpUl!a@8q4#HbNr!*
zWWRy<gT(U6f7%tR$AMQLF6naTfYfHKIlVb6FrG(zeX+-;yCC%(vxv``-1fAYwgUrD
zaSQ1ChGI$%$^NL$+8s*VF>Na7@qdvwz+_TM<5QUp=umHM;$Y%<xinXsM_-~zAmV=U
z^ZqqQ2F;J$+^75;@H=H<zKrZ`$Htd6-U~LFY8-dMniO6}qQolgsRJ*^N<MVz$E4~p
z8rQO%P>}bNar|V+_tB|deBUD%i_|l`>WcbkdfG3Pu1@&1EXDRytK0hykh!ov?w=U>
z7sopDtdT3|T;`?U`<VLV!~40a>a}wc{Atj3Sly01{u}^yt_y2)x?k3#RCAj{gW=c&
z!=w5~A@=CN*EYwZ-TFJenxgGv!j0MK8nM9^+49ctSBw6S5m2HFZep5z(Q}rwq31hN
z7YA_mU8z~SJD!Fqq3X6y%*z8g|4ZtzFByDh?Ap~j`pgC&x|t@!aO@au8@3u?d!gnl
z!rQ!KE9w`gx9RzA6KlLu*H&fK-d}imou=Ko%WxRix}(cK_djX6{-Ny}7DlIdvf3l3
z)gXP1x!-nBKx)_FHf{f$lK0+f`Wg~JI3`p^Xgpt|pu}relR?B*^Q{>(X|8dfzgF?#
zsSPZNMGffMA(_DWrwZnMoxFrrIZ$r{m1zi&;bm3FtY9~3c`rL>?&jB-Yt~@3k3W|Z
zhIKj_U3h9GEgnSho*;T~U!pC%)G?FPt&yn&T{t0eqAaz0PV}gLq_|y`I{6#*Og#O-
z%)2ikTOsh4K$ejV5(Tgfra;h`a@Gu@?XqeiqBd-8J2ftvjO{~TG$}0K^BV+5;pgv?
zgw8oA!4R32w5|c$e;SQUR_+XB<1Yxaib;gZ&7P6HGm>}NXv%-}PU9tgW7%|xv*%o?
z7j<x1=#wiIjQK{GFIc6p`!g0Z=YMEsgPu+XYV$`k#VnzIxnEpDPBlK^k$6h}Vv~k3
z?Abe9N%KlYe8Dd$y2snpFokq7Yw@Xqi?9`*F*S|?&-QA(?d<MSQX}i;-ntv;poj)c
z;PiIc?=LM4?58VaS6Us$O1=Q6rTD;nztj^noMJT^KEoqtR`Jp5C_^b1#h%e}&5qL8
z;mN(L>)MfGGqYYbl?RxP)}yGmRr&YZy`ymYAJ<78@^m}+D1n5Ji8_|{k5}~ib(SgP
znO6UFc`Li;qv><+j%Y=LG$zpWqobyE*z!pg3~81V6uar{L~6g>xCE_cJqbQ&Xp&Z6
z42<3WE9s`He&66QNtd0Qi<KcD{DCIoR3tZ$OyvBU{7-e|SQma?9pDS{EDcu26abUI
zpQ*az+($}!61rGEzGTLM%-TF&Ml2*!?I0XXjVMfUmiVK5+TfdX`)ND&tO>BW?#}2w
zhz_H#!hsR6|7+iUAtTI;T#)XH1uyKK^ZZFA!ZW7>ML(gM(WBSNRUh<u%F5a9vC3#h
zj{%u}Ta-8_e-cs{W+2t;rCw|bVy;5VyRumn;kR2zBjh31o!&biE|_Mn4I++ed6|Wa
zKjgm61uWG2B|v;cN09`a2VErx@%=K+9Ay;a7qmB4`JVfNp9%quP3a(b7eyPCcmLt?
z%5f}OmLFrAU(NtrQu3f*YA%fKy!kcG@Gnmp#h|woT{vT${BR2AqM^rnze)z5C-bRJ
zc{N;GDe|xAnaP-_9%a3&Q;c3577J6!`aj%z4Iy^**)1i$VMU$ZvPgIOH5x3O>4rD2
z9J`4I%!bxQ2XB~h|E~)m<fJD-@)HALRyh-R;4=$V?pygCoDA-Y?v*?V^e@jzzad=4
zba(5x9Q>3@d9D7*&o@^jQ_bea+AcQb>yrpoAs0=H8_C)KA#CHpjLVG;mvjM*Wy!W5
zq|=N-^?$3Q2`{CxYw9B|<;P|va`C#<o|Gj5_l(AG`K_Tu*uQen^Ry|~<=2&#?}%fb
zh*lBDyqeLZL1VPNg$94$jncWjtxMd3z&_`&gUrb|4Vb;Tl?=;ewME>w#46`&qOwvb
z<ey$o`HWP4YPF45VaK3kBJ%sesU7CD04Zfz?W|j?`P9S60y@}hj9TmAd&Vw7$NVCl
zA;L>R!e4r(f{2fHrIk~=F70Q-#QXmOqxy!x*NXfOBGrxHD@{ktn%jE4#O?+MnHT9A
zUAA0J8E0zQfd5Ho)qhOdCC#KgKt@!hYf(hOX}GG3?uL6wof0i}e!5JDS$fgT^M}sM
zsJ38)jsoFV3m0Y6x!+A|))O1#k7@Htkzk6~XdGeqL+!vdXx7N&qJFSc`{`aHP1d$<
z#D;|PBegV$ctdd9!B?`wp~3Esm0WmEQ5rCaC22=CQS$nwDK7-v_P(>Hol<EcRIPlz
zITS5j8F3z|{E>fY;ETAMOX>^R*WC6$pYa*kki<QL#*$6kf^dqdL;!)D`Q?&-Se^D1
zVf;Gxo?e^L906}@R&H=$y^6IXF0qU<*Q&6TvBQ4z2JH{m%^9VGL0mIl?0b#=Kn%f5
zndUIyN2(0zj);xw1c0fPTh-dy!2VI2e;r|wQsm3P@VC?)H{EHKmZkid$0uQhp)RWI
zdcU<MWLKzuQeJU}Y}fgeDo%um)1{;qE2nG7u4l@E>@U~U*6Biq$0OT^e+nn1AG=sP
zEw;y`a3rJ<6O{<6RaAv=`=4ysJ>MDYtB^pvrbUy6Ar>2Ds%p^UFoh0lqtQR54y8&z
zB3-2j*}i{2#h0$&@ylT&l;)eCAF;pP@NXQ<j3?||S)$<QB!o#+R~#j8Je)Z`2;MJV
zMgDu1tL8ipk&PB|Id*{qF;H#S#9sIH7Hyt)EO`i!EVbo1bAY-q&}mU6C0`U>u%O**
zUygR?HxxNkw^^PkqXzUl5#J;vUYL|ONqJlx_-?|x(dQ!G58$H#t}L=r6#V>lcgCdJ
zpiL^`!jXypRlom6*VywVY$?31A1)O1{nrODrpT6PNoB>$1M!dxS|P?ST!v3ynI-LR
zluo{y{Z(ENg<kn==@ggbo#W4^bp<%|o$Eni$5&GdUPh=NEp4r}X8B(=!f!lFoFC{K
zRD`NJeMy_`(|;EBB~aTkDGOJ(QQ{%&sHvtJ!P><h&K)wSOWFxy=iD#iVXf)_lA6<V
z(OSM;C%9R;yWALxz7X#mT>XgsJviy>_YZG8W^MIz9!e9Qqy!1r>m}3$pZ$tWF|K1*
zWSsFeXBPVHD0#<63v7`M|Ch|6;(JQQE1HmXxfB@T<zUF=JDij;^=@h8I%I&b^JF<~
zhsiu|&7XqL@^iYFJS-A3Hf@EKov6jG0nIwuXJG7ENHGmpjf!CdZ%nsbKK|h{o!!U&
z*vz+f(k~X(NkPD^l5N2x177_h=6#P_{+Ioyq|z3*lm~Mj-=EhQp`RTj8lH4)Ua81=
zoI3-|i)A%)l9o$KC8ape4+?=2rJo_=MC9v7J@0V#o?+5!SLw`bDbB6SUHl~>d#3fi
z6P?Tg!0H6IDdFXQ+6M+VYimr#$2%l3Zy$<%HzkD1xP7sz{FIebtM!uZTRfGr=UJHr
z>Z5T+b4R;?IuM*YKj7^TO>ILUe^)o%FECMyRxN(vlN_MKTyc;+JMcxChrMn2tOyL_
zn9yn4Xp#oBakh1jV*Zp@M~mL-#dv1ho*&+pc{;6Kabu2}PoiV<Q>E2!52r>D$`Ep1
z#V48)V#SxD(G!6$j{@Cj9~ySpzzS_=ijZHg&^a<tF^mCpZbTo5Up(E*ZbRWDdZn<j
z0PIv=M%WFDNhlfQ9L^7C5gK3J2|4{9bMq|r)hkIE2{vg@nJ|83G3G*BrC8$38s2x%
zHE>e=lb;%{<tdu8vq)>=<oE^OrJr`+S?!VEN%&k(Jmj3ZW_}Zf_QC`79I*_Z2yuO@
z88UcfRhtJS7qIGg_p3X8eGS`B13rVXf9qqO=W*J4D?0Yfb}>|=wR03np$p)>3=v_Y
z*$3>mzim2vwy#4Bo-tZ4VB@{i(QQM@Dk?naHiI++zf{_R8xVvgbV&TakBIlOQDf}M
zwbhV4^IQ6j0U2c?uLm?=s-&q(L;fT!Q=yPcUv;$fssg;->8wt08@+up1a|NhlFx`9
z<-5G@YN9ax$M~(6Q7g4uP_FnhTgmsot?#~$;D}Tsd%TU*KdeOHEA@0m6e3qv{Ukdc
zTtN~451@3JaRRdp2i`|Z82}^lj8o(l{W5%|j`rp{dTXjXfg-wbGaTz=n;7DayW2Ym
z-E`y8PkeY66C#U&A?H3^#(!2GSyramD)Rqv^_F2(Zc)21rG(NV(%mH~-3`)>fRwZ}
zNQ-oLcS(06-QC?vgVMNY&Rl!%_dVzP{<$u7!4q?id)zUm*SY;?x{C}xpSX@q#(w*9
z`82jndQE!8h<n`>d%P|Fb^^YJio6S4W|c4v-({-%Vp=#J$4@kNi+T6=7cAsC6<gz0
z-0$96z#<M5K9i$eHhMks%D3KLIbN<T`|J4gm-va4dspLs2q?YOM&|$6NbaTzrZozL
z2^-n8gOG~cFou$Zp(yqSc3B-elSJ6-?|m<JPfyzEXi;oej4upTu;Z|_Z2b6fIVDtF
zX3`POccVqTkkMl3W<JUA@&u%f=OQCu@f}lOJi7@yjYLEtwbOVy?TPyICK8oE;p%Wc
zHd2oJZF5mXCw;XMv+cSfQkMint}(6IIN@xzK9S7R^Pwchh+O2j?*|csaeKxs^uM20
z8c+5I>LMn|9*W&&`pY~}G5Uo5{PU#jO<P3x!IOeD@%G<BA{1;=b(pbq{gQHVdpYFi
z{*79-u->ID%Yf^)%uXaNM4-<7{=f|(Tdp-du~bRS0PcBlD#vHx9#O<W+}C!CoEFPE
z%y{pmf6>MDE6>p<P@dTL`WGXs?>M56W>fvzfA^8rX01Ui3F-Oxx4{%PK5lBp78i6f
z$^%hk^M%mcz{_A<y&$BFF@j&){!(EYe|G$Xyv5d)uzZ);3z3$SR9dWM?DeHkyf0L!
z!e(-Mq>3FE^lt^+#NH#Ud-D+yE&h0~SeE>1&l$`Ipmnknx^d7gDZ3da;?$i`Su(yL
zlR1g)b3_i&R<2^?ce*xj@qP&0ZZu#dOtZ5#t|zvZVz#9CSUDE-6=4xx%LWmJb^ptG
zd<q*}W3i9e6y$DXt6*5eG?cbpUGZ<^U3PG=UbEV?Fj*&=r77e46kgSeUIw~Yr-@8f
zZOLtlMp$aDrXuiW?jYWxZ|6*-^h1=t9T$4HEuT-)ooa>cTkiAa)c8zj3`dg*a9Ux0
zl;n(^<n$bOL|VLSAJ}T&b1LYLTe2_z_FC(CDUx{z_eZDSD?UmNukwsU$B%a8D0bw+
zIScFOf=)%KFolhnT6;fot)=$B*8Uku8cnJ_Yy7<NJv6~;U`ucw|MhAcyYulI+B|#N
z_=++qbE~}@RRM%Z;^p@i)2%XDD9cfMuO;a<G|IGzsPbqHJIT9mhZAf~&&PTYU4~B(
z2s6?etP3F$`OW}l?o>C&gqin`HXm{(Qn87_G$YTKha@V;vws@P(-&xwrTN}Aeze-`
zIQ=rF^@1p-45yT9I28G<oVQag;zcAD(nr&m`toRm{G!_aGniA5zr2+jp6vD6NWr8^
z5}P`c;vd5|0UZ{(=xIKc4eM28`ohPn2HwfAicG1~C&JtVJfY2^F+>lT)kYHU<o8?{
z4@5q}z23K%bj~MJNoXWI-(9w}d7H_n*X>DsndDxN&ACP8Kxh;*50zVL5i+tR=>{=M
z!(gaW0t3+M@IHJ+HZRK*&Wz0)P*4J`Mrnjh3LDi}x}fso@x`HRDF&U}WDG=r7?Pk?
zpzCimP_O%OH;DTijK0ySU!dtPEjVta)3t`rOY-Z(i5K`I-K9w5#v@dDk^EVeXN+)3
z%<1vtrJ@qUTFzV)2l%men*n>JBL=F*PxFAO<AqaB(^3fDUu9nNaLh$x_n%!`YBYOc
zIvOpa(v{BR!JL`>g>J2iOR~Mp$hxz)Zw-uMpgCv6w19sUD;I`{1qDs@zt^o7yDxqV
z_r)!P&x8J1-3k4j^NoY)_6U-`4%SwyegkE!;A;h|*52%oziKTm8d&raa^6x3QsEO~
zqKgyzRdlgj|EZ?ruO7ELH6X{+1q|1=95bP&Udz>Y;{nCnSAmi?WfWXl^Ye|<-wPfe
z+-2_2xw-_-JgPoFQ2)Zwz!yFAq3+vd(0VK6jM3T<+&+Ln7286F+Yb=noGrH;Ezx9T
z<Xv(;@uHAF%Ij-21+Dw51tt^{p_C1H)bqCKru{BeJvpUEEr#zdo2@rt7PsL%pXQ>Q
zPKYoAqFmt-_~%Mi7U?5`mn2&A5a1%)Pei_eN1>FX8}Jc4il4hdR5-Azdz|{RqCpV~
zhfFu_5|}UpOoXqIsTQxfU7158wCN)fOh@v@^i?ne;^aO&_4Tn7YYxJ28NHgT<*dH-
zM^OFvV?OqzLcz<&O5H?lEK@IyDq+%f<3ZS&fFt3ms<p~~>o%6+<YHoCQlZP#7O&ps
zD$r9&8$sScM}N0<z0Ei;9}y;EayXeg^h4Elft*}|4fhM`fxo@Hl`+}%F6D>Q+5zf1
z#yvE$Xlj8|O+ZmF`>?je;HF|D=#e#WH75asHrN|^ci8ZaO711xWW6NzY>5p<hJeTV
zp{b1yXCdr^$A}{=QOo2|T;Y{F=(4dHm>zTf@VU$sRUtLpIGN0DNDtp--j*99XGDNL
zAtQozV`2yCG%S3COyd{qX2CNdCM*_C^VM&g>2(^G^F@-_<dP$%IRO$*TzqupIVNSs
zl^vPs3PeJr>_Jg)ILE1JyuQohStLofCo*cYo#QIkCoy}OmIc<-g-CW1?>Xn%4&$Ku
z!tk-a%%M&~9^%Rx$yPt?x4xh&K#O|Ov(-MJzR3mKEs0w2{OSk;4vk);*v2`5$$#n`
zNAG4=7eojHR<^ego6%ssHynu?*1wnmStC!wEBifi+u%nHmy>q*%hEya(Y{3_(qC{R
zFd~S`#g;^AQ;sVLrh|witrJUI5#^uR55(M^3;!A&uzYy|@7Izlp_!~f$Z8!ezvy<n
z`pk0ayWaub`d>B#EC+pxl`kz$wo_=Bh7)~v7++Gb^8jb>aPwC2gL~HT6nVo<t7>Ip
zxl!5#7UstKp8dwVOZ0IgB}vk$63#;@)Mt~z8Qd+J)azx+KVtHuX2#D7?J+kY0$YdU
zYq7Ok%WJ_G7o!+3G*{apTSf7Ma1kW=K#ZUM6r+YZg!A-xSD~#pLS)6lruPFu`Q4f8
zL;w3O58aV-taZ(oz6v6+uii{bI$%-M;LCM%)5y=~m9k?0u!U%(6rJ>srG0xU3vn{i
z<q`{Pd0t7zCgZ3~0&5Z=wd+c$F51iS1sRt`Ped+B;%MX^I&lerjKnG2Nrsm?Bi|4N
z%!GvGr3clU%(X{mS}RH6Wbh#6Je6HG&E{R!ODdF(UQ4z?-=eSMrK$Q(9u}v1=)7(l
zcY0@CH=cx5du;`=*r?U4d02B3nX=)2@l`qBDI6{capdTp@}N^h$F~DQKPX|(f1q}3
z4*>(!J*;=pb3V0ytDRFV+?kPetDWv@>k&SvNY{>}G@{o-tl6O;B+gbRKx)V@r26LC
zOHpQyj^-6#MS^O`2@-;_$wb9_He`ZWS~7yVL^V|9#4Q>HiqqFLYVrmqRZg^Kk-w*h
z=0r_m%$C3UM_=6Y$ZM&U>d5diZ<@PbjLov;yrzT~qO0l3YlR&1)wvm`%h!B4`fFo3
z+hp1*ZpBmMBMuC^`7aDU<nJ=U?>OHp>LILq(S*sDAsfG*x*UpaD>3^P1mEH}h>w=Z
zcdCB!N{uvy-7GeqRl3e)d;jbU>JPiWi!VyvxO^Dsk*tRwe*<}+vC#44oxuhOfF|4C
zYq~n?KH0g{(eq?dr4D@?e83g(gW=;F@$_>94!=+kt7K6^IAT5wX;eEI-QSN?#;cb#
z+<-8tsVKEV|ECu`6C|#Z8)j(}7w%4KK<guv7{6Yin%}LRQz3@fkmWtvd-OkmF=$HH
zi!n9I(xdCl*^d0T135YHMJYZMsXTnKyQ6y9f-r*2hDJ7m-WwNZEVATj6Ol*aaD8*>
zQNsJtkF%{7#=Jg1$?Gi^lzG!dUa&G-`^ygp(R^NM54-(K61&;+-oPYNz(ewPodO0k
zl>&L_>)KK~tp(dfdEVTa@9)L(qynLeX8}Bc%;J4oeZddNv2sHhiIV)Kk!%KU{e33s
z!F<VLy}K@S@<d-4PR<QE=F02=3pvYGTx$*?TypT~NMgdLi4>MRYSNDphw1>E`E)~I
zur&>h`&H$C;~z{$>a<5=MEKTx`Xd?RN%g@Sy=o)3SqK$x_FdObK+%8%DndHvaT;&s
z6q}1qY0id!ey2E2>|4VCiIuMkPPd~xJU=J%Jj^T?8Vb_WdwX$y`^p*UH@GpV(mbcH
zo>`_=lg+Tx0C!oDuAW-<O~Vb=v$zF~nt|QgXK+z>4bjSXO>J9(>(Bawq7oZmsjD%o
zzGYLsDyv#;^a%4*6h6*l&}>)#aVE%|(Z)rhp?z_e8RcW4Kke!Ap#y<b@DDFSwAvpc
zOt+ANwM0w}{2j#1N48tUa%R4Ay+Q`F4L9pWJLpi_04e$JJIbt|8d;QEX~!}I)E$z^
z+$&_STBf@)fSMf|q9ae@wM}!h(ed=P{qE5N&lEis&ogK^vGTR8%lhwKXc5Gn$RgdZ
z)EYwhbiUbVVz|vHgZ>TsVwWYcwSI9vw(%o@*F&0ZN8ZbW8Mzi;pU0b^!`X{Mz|7(m
zHq(ZGt?l=+)A1ul*uZnqVJNf1o{~+X7rEG#kBe6VMJ73&3<^feBf?_&clIYhm8l)F
zih9B6j^Uz{)>U*FS$iwE;wf9YRAOg+p&ig?hQ@1jp$#82-~}jDuhAHLl2Y@ZowFK-
ze)L!!SIv$)@mw2Ic{H>|j#bO3W(R}HX;B-H>k;D@ur41~L<6IK5c)#d0Hoz#R1CvK
zIwOci^Ui?83~yhnvVVb!=2h)ESV!E^nVf5wZo?$XYt*e)>hw0aDpI#Te6y_mc7?M<
zzt(r$<7JR5q=INCKWN^Fn{@@zIS#M5-uS+l8ZOyHc$SKAK|(IRk$$^s(sy>YBZnV%
z+BG`Uu2T5XlOx;5b~x!>lmdfak(b?1Lv1qLD@?oorU?bBt1IjGqBhRGK#MNc^KcyC
zJfuja=lVqVvjFGPaIUw>2Wn?&G}@EkmwsvAiRYDNBPdqHn;C6=(dXA|hDO=9%l<56
zz)O`Qy!Ow26S@ZsPig8qt6aXSDa-AeH{5n_5b5wX8KPf7Z^+B+kLbaJkyhwm$D=%b
zg)c)T;-6+(>r5<O0R?P~o)OGJ$hS9^9CS1^rhx*DHezzycNMx+c`PZ!;z4~F1k#f;
z6iqLDlUhacUTc_opR~DJTm))0d)}YM7=xoO6l>i#M=vf$B=;tK44r@Vl(C)A26XPx
zpbh^1xk<5*2&03-ZGZnphUDA+$ZbUG5i*}Ly63)~KGf{vVAON2v#yEjn;&@>TqOup
z^!rD<{Q4I62I?imZ(&gXHF;JaHoZz~s{+JWXCZzM16h|ry`196%DHX>EfTnbSjWv&
z?!ar)KUH6luhU@)DlOi|qGHKdp_k8>)pzR<s^Tp{otGuTix1hjJ)v^U{lcAiTqGSQ
zcw!63v9Ux8$D*lO*yz5Zz)*f(5W`ke;?!JX!cdGwnEqDh)L31M(t!P8>Tr?lYa}7x
zc*vWroYKFr5fGFtU!s=jkhm;eoHwn(VY?HFQ}vqy0aM+5*GT5+uGxQ!)C;S}o|7Fu
z#zi^Gp+x&1F15mDDWSodh2QmsdQ;Q-3Fhx7R1eojJ(GO{8*%iC2c=WpwtQ2<bYlFy
zLm%pwW2qpCWOV{TC(`$+Y(3w{K5C@6#*6&>E||_*B#~NQEImtFP<II&1Kk{J$7@hI
zB9<Hy@u6lVV@f<&RIm!Hq)!W_FeaNSqk}6o)~I=j{0rXlHIx@Z>Ac->U1`u%)$)(s
zJr{?GxeP9ny41VUK`m!Sma65bV4yrYx1I0*%48bDgejeHh|243-Y7pEXcE>V>94I3
zbNBt~kjvciwX@9?oS-=p0=U=ysUOHq`cQVvfi3EMT|n&l<nh{FnV{5`r04xLG7i1U
zvL%tAIX^<v34x;7cx<wbpc$D(>s|7)gY^ZTqK`~M^1wqrx%ukR(k^?&v08jO(E`0?
z--t<xMm-jojvo5>05K4a$BAXKeCC9%%T=D}gfXC)9?Rdi%rm2Cm&&ZokyPc>6fWI4
z(Dw%E>v#@;$MMI18qJ>`#h}`uo*m=O1|2nJjmZ!rHiMDOHSnliUMxSad6~uEU_fmp
z-rH8stE2a*h6sB)!)Y@eef~oKQ0VDC>@}l~>^s}XoEKWPlAK+JLORDQzjy~^#Fwta
z?m*8R4dm=ng9!plifE;cJ$nP2H7fNM`4l#lyud5kAHks=o;N5=+OJI|A*_O)9CIbw
z?-kVU-dV{R=shkUQZ%CI#FTy0H<^satOF`ssq=NVJAm<pnF^~^%A#A~%|4#~W|rB*
zm1Sn9xl@dM<<)SbHWh2N{V{EVv*}!Ki=s2~=sNinlZGssSDju5uPyn$#+38N7BIfe
zGzH7lnVrD8wVDhWz2Y%z$@k-Sxa4;Jz1maO-r!d@n~hAT)D-U$EQBK|yhY1}gNb~z
z*_$k2*3N&gv0PW@u_q~d{@QL~uJ}Yzy1`7_<@1K{TTlF(#@I-Vk&D*K*Klt?#)Qj^
zAfX++wRb+7PU5hew3B)8HHN>v%H=9IuuE4==g$D%XWyPrR1-AK65S1^$mcm}dYyd4
zQlzY2Sp!~Cr9)J3q<9nAuw)1{2^yI~KFr=HkQrbzM8=$@J(?F+g^J&{?$9!<uuWgZ
zXe^1IcY9??lZ@DNj=v5egtNYIL-WANOi#84yCe?BjwjyYuA|_0$rfWHXgQIbHveU6
zn#OXbWj~e=y;u3hgRWJ+ohAEJ@$XJ(pwjAe=>D7G6m~?;BF!KSkuamw_-a7N;PaY%
zb<)ohybiZrYcJp65evMmvxU6Iv)5}7b$;NsEee5Q6LH1yaXnct7`%}aC$E1RE?T-g
z*hqw<ATu~>AS#$4cRfyj)#e#<uisg{mSYV0f_x{;5JNqd7T=*H!yf6#se7`blH)_d
z(<Dbd!Dn}h1Po5WRlhq#Z)$3MdP3%YObC1ZvYhs>R%_ESMaCyT|G6qEDp}59sg)!d
zfs}CNad}usv<tjCRfQ)PO_fDhM6X_qhb1V7nLI^k*9UsH-4e_d>*<}(ZY8=N-!mO#
z+7ZSj5G+*2V#n^EfTl5p%0TjAuz99fZRppm&!$rC9545PgaE?guBsx<aqM6w^p?6>
z^a)HDrcDTNm)^eefZoy)%PH1oaFbuYYag~pShWAc?c!+)hx9cHzjZb^mr1iaP@g>|
zxEr67O-)ky=O!p}bZ?8&Jg1%!4TAASls1Dig^Cte%c!q#h~z*O&weClV>b?b3C1+3
zq_Wv0dJC;9Vf)U|pkpPX0uIm*O3vff$ZS35V08K#-Vg634r0>>w-IUa$K{RY&Z{WH
z@vMH~qY~Q>tAi4k_e+jopba88A4FJEhvHXi*fP?`Zn(hT#{zf7W+#s=Rkj@&k*~$a
z<CPP+&4)ENa=dg8=kiLOtb3ZDtpVLE=@1$1GE&6XK_yRpg_PIhZ|gt553I+XVAP%E
z;S^@EQ7;NZ>)<89+xUjhcO*=&B6Cjs_Fk2KhZ2q9XTignd>$oE3R`aAs0qJO!?UXd
zTUzOGWYoh2Ow8q|Vw03%_xuJ5hcnI!sjoJI3&v&V*uRM&OS`JtX@7_Mxw5>zxarz}
zpSI$;et`-WxrdWQd?GM5(x$Q{rzfiuz2=QZBNCJaifbs17vLey2eaF!m7Omakx>p`
zF&=%Tu>kyjJjI>VSp^Ril$+zcIpHQz0>-=PuIOg3JG2CPU8+nww{uT<D3doXEk37N
z_CfbN%SgreFdj*OZQ)XMGHAAJZIBUV<C5RD)UWftnH@<EF2)X1<_qIUyv$aSWrFOv
z-Irby9bz1cMoeuyK^MvbIY{CT6~7@4IwmJN_cFw7RZ}(VuWUhi_)VR#z5C}HOE?H@
zL~rVxvb#SgHCg3{8x6r+;Lkgxe0;lPp;N^RuW;NW6`4Z3Yx4~AW16B!L6Z!n)BxD+
zR`W@5g#v8^apB8O{}BDT17tv%8lSjv+5}ovQ;8}D;A&JqZl`IHEBz-$I4sSV%q*VQ
zt+E(Yyo8c%yp?;vt~z5jI(2k&W18pf<*xGgHwlV+bccCQfB9J==23#17!Lxo9=D7g
z?<;zhe)@Vu^3s?uFC@{i96A5mmN&wpMMkf$6>C+KU;aK|=e0k7)zxKjfHcLjiCO?$
zKtj>M&T3js>Pw<Qmxa6U2}bsBK@N6*cF*k6U3z=DS=D2h)ZEnj=BgyPU0)ioh4T{^
zfy+pg1t)hmP<hD(JMr^ICX<8dEA#B}bOGE-HuAD}Wf3{(LZg!C#Qf25iLNJWaaVQ~
z?~isJI5k3_p7h?(?2A>A2LW9M6pQxA4|Ik=&uzH*P>i>*k@nwv6*~=ixCe__yOAX>
z!lpfmtatB!SsX?3uSrTaH%g*%_bYXl3h=j(#03PW{cbdRmYc^iT_!BsolymbT#X^|
z^!d~)`{NJf2kR=$A3T@N%|nyl&gpOpetL_Ly)aijg6t$DA*U8Sbvd63bNCgjFKqat
zPfp#09>$6k@AM7C3!Z*Vh8%*7{Jqnq+*JPs<#N47XHbjT!Y9#KE+xNNo5|UKzie@r
zJ-IubkvZy4;rXm^BY3{T!w$Yhs}Mby5|Ph<3KDs>BVkmtwHy{-tfLAzpajB%O|}ZH
zf`++4-N7<t#1H>5K$c@4-3WzY>d>Xj0*a2FN9al;2Gp<2mMKS2i-#vFjCYgsrsb6Y
za;nvMvk`HRE|%Tp&!dsia1D-~({CI!MoN9XR+DG%)A`qGP)-OiV2|&ftEI+?2dduA
zp25ch+6tf5lCZB_-|T8!i@Me7?z#3vhnsGT(*Z;2)pd3?23WLOw+`Ry_>X~2Y-=sd
zMsVw3R2$22!}WD+{||J4RcBJBsDNX0inFNdUh6T)l#)&*KUfOUke+LwT!C;+uCo1>
zeh!1bUkIR&1B-PoS~y^N!KfK9miYqwmPq__^TS*sc;{V+CnNc3((OY4biQKJNq#++
z#bohymqkldwQ!<gnO6J*#X0^)3~<2dmiHh=1i?VO{`pOUE)Ny{z^_Q-XLn{-aA_(>
zyx|ItE`zK#znHCgk7y>4d9oz}iogZwH41;~fY-D5O)^aI5#uzJKk=@eJoNPI8&Gv&
zoJhPW`6|4$Ze(nD3CH4SBJ)(pF$vNqpsqVG2Xbb+nBAGCfR3p5f7qI+3;|;{;I#(l
z+@vVh_K|>oNEoiYIxk4oy-VW$q~mG&ABM>P7}GTDTgsx>k4BYL4%_L7w0FfC8PwAv
z7E5eQhqqy2Nk!UWF#j@7z@|ifsckn$-f~{q@p<Z30fYHLjrr}~Q(R5G)r!jbtk`{3
zHMX_GEC~>vrk|^o>qk{Qy1eh2uaQnfaza7L?)=Ji*-t>XQ-Wd_9i*6CR#~>$ZX1#e
z`Q2f?DkX;ts4qJceviNMkq3juAGM={&wlR(9Zcm(sr@hc1@@z&SMNeEYuYEa+6fYV
z?n+gU?S1OR@gQ9B45jOh_|<B?8boV-(X31+_y{!1yKCIesa@lgC%^`qkW<?&3A&xD
z@v_<pakBzAE4j%eS*-fwc|a5qU1LmDv7YeWmv{^@F+?TyCrJ)R7s|1eAHwrHK8NK0
z!v?)N9na{XQ!ja!508xqt@)fdBOSII?Gy*(T(;qP3;G@rz<lvO0>3dl$(ljxZ<P7N
za)Q&(u&~)y)9jXrPeYV&C+%?()bsw>@G;YXv7)D;v%^v-Ld*De@O$Z^=GgztP_5Qo
zy;<O$1LjyVkLKsJ$CVljPScTFSRlG5Rp{NVUB0qq2!^3%C{-_~9B?bk{Q{-VYKU`>
z|Aog41<%!ALcE^gBqPKC;gJUWZ<m6|vsfNSYM$z;0$p2Phs!UmGzQ!rzn{Ga%-xn@
z-ZCtJxii5YJ2KV)Q*X4n+YihD$bmR~DClP+=<K{@IRw54Foc%xPaik|2q`D)%5ovY
z;LR5Tv9RQEgC=PkFz-7?Jv-nHE|)0vPS03_&4z^69eNC;T)7P;0-b~j`>ZP`1Xr7z
zUKzu!9zZ+UG_Htkv37?YUAOe7;t&|ZMCsNL>6Hf9jQz_LN0mx}7FTNVrEVEiMCx|j
zr1n<Ej96gHrE>;zFg@6~Jju&L^-AA;{&}yh)~bam8>}K)IZ8k*1v4()VXeJ0j8qma
zEb@d#v}*9zQ2s+e1fC*mwbgbrncuBS*e(lJ{m;9}0$mok69E)jqXv`#PU;R6Zw(#d
zE%2nj(&~t7bQ<b)7_##q2iSW6^LU9;dzsTmzeC{P)ot-OA%=K4t6Mah0NpUSJsfad
zRfj01W6Kd7^o$=SoPAkgjp1{v3GNyjbcx$L+n~V%{Z@7N)HW{?>?vSL&hN?}>gF<-
zK4m|j1HG8GhfLhsIskv|`9H@rY0y9?NrOgHVd@Km#n1-k1Ii_olT%o|S9JY@CBD{6
z5=!>~Pi}Qa9=5YXn;mrxxJNqIiuCC-H{hZ`IV5D9fI9nV^-2)N(%9cSBt3W9H=?G+
z`U7~NT&IKe*mz991jSvce3zGDRSr7<_GFU>;AcUyj5(nL>}>3(=W%$ZBbs5jA+|1#
z>&kGxVS9=gmzrfJ&)D5CVjAB%B<3S^h5)0=%q5<qNrt<#6(*Kz4jSQ#(Bmb0;-_e!
zExUO;Y55=TCn8>F#Uh0Rk$ckgU-V*3O>sR8jLGzlIIBNgvr5z|8HiR_A!8reen(Pl
z3F4Ph{qEr^5(8rv`G%tf+wzm)%9S$QA6fe0)i!e(LGM9Vil6jiR~q_`?pWHdz=L;`
zV0Ks_*hX+i?H89XAs&PbYy+QFV-y90i53Kl|K`8Dy^axJ`_}MfD3q;c{5&$aGaUny
zn&OnpdR5d<%s?rCv;|+`&+b_2KAQE1AAlRj2Ye16Gn22Hok3VUpYtI{y_M~8Q()7i
zz4fR{xA-%1i_$r3;f2bLXeQs8Qjdj5hiNe@d_p{sPdHF+TDE^wLx;6nqF5%5Jj$gS
z*2S^Y+84Gw+)&DValjYs@_Ut{k==Au82&a$X-9U)SqG21hFT$&cmmn-s^4>R3(35c
zf}C1@t~gshKr~-(wZs&m@Y(fnX;^!ueWv5aJBi^hD}ergu{}X^>-~TEuI*MBuQy<S
z2T0C~s9Cl<|I&*XqE~<eSxvGLglv`_ssdc1&R&tkKnLw{D;A<E1$~JY+DmRI8~EJ&
z$cLXS^mS@DLaF6bKV5zPUyf=%w$>1t^;%hk6Bh9`)ZgPCWRtdlq<=x9mjA`Aw1s`=
zhv=_%S@omATb&nODSN=#JD&B_eb^hM5hXMywt0b#NGlQgDmLmv-d%OP1Mud=3L+@{
z!%NBBDWPK%+?;!pAD9Reb@y>2k%}lrZ8AIUq}dijsjp`~|50Bucuv=YtcSA&h1vqg
zcc1Lud>X*p67)X#*$M{WXK`be8ge{|DmC1^{Qj0E^e7x!7O-)C?dtwp7Tm%6fI`<Z
zmdkAnysi^tvKPJs)mzJm@#(YF?Fn4v@?~c3S^vXE<u(8|%D>>}JW4v@^-n+JmMZDa
zUNlQ9+G4NK)JM*7K09^4##x;%^m&lUFuA0<jub)c>eE8fnrZ8IMrn!CamHV<#vr#9
zy5Vljhm|hM93wbIjw1j1=wT3kG|{*1r@=AK=lR@aUzSF}yCQ?_4gs9fbW>~U#ME@m
z$}<H0rlULlV*<ILNLj1*5bFyt>Fund_PfvVUH?oT1(xoNz=~%isYR<5KyR7j>2%fg
z(931V-1Xpr2ipc8yaY@8z=~~QTnM&Qn2D8r=|W1q+7`b!TZN8u+P+-(7=1_v(aJnF
zTf{_0WAvxdR5Q0!2#zGoQhu1HM)0s^nc;3{iB=BbSTdK0?D~Ik5K9IQkZ6y}QpzDu
z_ne@Y4kfOegQym``vJ=V(}7^Loy}tK+ft^t<(iEms<lN{rMRae1sIDRW(;08a|^Te
z9=7bwRiV#IEvkOyx|av?qDE^|Rp*_pl9jB3I0O_}yoGbNT!_9cUC2(sd*X<?Ltz+`
z$z8&S*n2eGq$AXHHyWlX8tyb{ap-z&%q9Y;+9!Lu`DY0VnTWkPRy>I{V1xvxkgB$L
zr<86!_o+|G?Z+uP9LYV3!28njGd_U&S^ojc8#q3PRIO2|xCN6KQ{}S5X(_Ny?OD;_
zHj8zttzn7yyko!dwn?WKANY7)o0q89rlwb&+Ri7ox7^py1=`@$k!wF|8_Xu7FyH!K
zu5olK!iiZm2eFzjqUQcBC6{A!Mzpnkngc)7AtScj_(TdE44Pw-HEJ4|!pv}#%S7y-
z$t5bo6GAxaL;3nlOcEJWOpWv>VFcVSrTGec$a}7bjPFcqB+DAAHKaf(lO=<RJcsva
z3>^w7R8x@GF)DZ!bthXqSkS$Q5BgU}y5F*^={AB?vzx4B)=-*?|2tNr0ATqVMaozG
zz;aihVvI%wrP>Dmje*cT$<OrpSW7aVfiAC=12CR%Hs8WZhv-MTkw$q=@r;@3P;4Kq
z!?;s3<^AB))@-#Sdg&w?1E;?Ci&xC1SNtSuxUdmhFVTj>@upQlz_3WNTryVh(^{(e
za0<nbS(|_OB0CM;MAp0@<p=kA>}|2e)<B3rkg(C+<5%ytqW4F*`~%oDiiLf08ok)O
zQOT!3&QBzzacB*@{yKp1c22-Q7}Qb0v815X;9v`Jr6+Lw@vnE;sD?5>k2466J5a%S
zUNrv?Ge%0oO>ongI|BTKnY&&Am{4cbH|(w1V)i<_GqzMg=Wo*A-;mR=g2q_O9xe3K
zGW4Edh_f_@+X%8Kn~<l)ECS`zfE<=niBok=%o^+;`TR6t!(3T$usbWw2w*k+K+rJW
zcr_HaJCUY<ir<)Twcwo;Awn);H*Z-WRry%wx&hm~GTT9hO2j72TiNmSC<Rw|P`=Vw
zUlK3E%?J6jPEJuVqES>qvWLovsa0c#w$^lmctygkhKqrDk%hxd>m1%|9g$iWi%syQ
zYpuyU!AZd|*Vy`+QU?#a&>$${KdR{5Teso(E#Cm2CD}*YjjaD-BwTPUfW87ppa%Fs
z!)D49q81bD@UwZELiP9~)5&CC+h5Xut^SE^vGP~%oG|x0`tLQ#VwHkeFCU3ndVE|~
znaq(4J{k!Y1Mwoqr$_k1$!b1r>LY{#dC&r=Jc?5Bbok;eAO5LBx2DjPn#H(eS<ZI`
z?uuC&N-YH~e$VS@%Y}=i*|+@1rG*{&(k3TO;AW~!YMkga+|15|{GhC9JOOZ#d93M?
z2Vikx<AkhEuB_o@!zF97&PXfW!RynrI*Xafbv<2igtZN|YFV2btQUJ1Tp~Bo<Ps>Q
zBab48Y(DERWeCnM4^(y9T;L@n2Eg&RJVhPBqoc`W@Jw1w@!#dsc6tW!^A7wF|ANDu
z?kzw_b-Btu?3MfESHam5Q`Lh`TGfiwrCx+jzoDojW2WdHgr20CFDffN#YFzBKs~?v
zXIlemHS(rsH@$C2uZ!X%FCWlE2in}75+cX=Tpzzf{ZR|YZEA|Aq^>Vf;v>g2Z2a~C
zP!|j>u}^KY@M1I_yA_;!CG!rP*j18`sQrUC)WPIwkbX|JrExuX&Ypo*wg07qb!Q2|
z{?kqE-fW{HI{k;Dui<r)y_~r9n4R0?)OfBZOW>eaNK!Ys6m0)rO?@{i;yG-<e;v&b
z9{^0Vv|Ed4SbtPAR@mVEfi8mrDo|-!_O?MjrA@SbDZS(X;C=e}NURoE?HOA6o@K=P
zvaiDiSNwt^r-5o@KGHuI&t{5pyPI|bT!p{c3>SR;q>zUAH_PBqrJ?>1Kw(V}86q#-
zyudA%C>0**X{`i3@Rolq{eYC3Cgq;xY&P?=IxDI;r?#i{AD2gS8%03bRdLwAzr7-G
z`0+2V6icJ{d7fTr)aehgXiyX(JKs2;CHbcGMiA_)e+es%R>?Deb$;o1foK4*PgZIJ
zhy^{xH!C9btD~!ypT82`6pV<_m7|afk_&PPytJLUB6vpyIh&=!RLk+yKG@{2A>0>x
ztC3vM$tp0hVo8QEUCKv>Vg{0`dTs6zyQ8V(%|j#t?u@y|8`-kzhm!`4pNBTwi6L{-
zdMX9>(5MSbaZ#xwD4~b@-D|Pj)6gxUG4aC%KOl1aN|len;#cPAbFc)3L`UqK&=y%X
zmF1W7?U3;N=K_PEt43%%pq7Pb=vb~bP%r`WG%v@)GsF^T#6r14P=L<kFS<nhx&gVR
zs}=t(QaQ6vNeB!UCuz^6Rb?AJ(G<RbG|<YCWbk54&Kk1)EY?bzlcUWmRS`&0Dgn_H
zJHs20O)T8qZ~sjY0gaitU!-%Y-Jn69?r^nOpsV;MEO;@4pgCG0liwyiur_~MB*MQ;
zdK3{KBZAlj04x8;jm9U8>e$?j@KI)snp_3gZ@Ah2KN1Zn)`=mWcp6)z7}#ye=bq=)
zuihYYilCoc)|mKH{&?5R9chxm{{4OS;7!=hFuvNh{Ra2#dubKG3knGVmA!ioX%7I8
zZ;2mh^75cB;le?$p6fhTO$}J-y>sqpE1s4Ieg!gbpdCzjlw#I1fkEP*`3ltfI%fY;
z5Gav;FRtnr^y4_lr3b(KzLv@AA0{9WGW2{iSEjEnxr#%lufHcC5z95{ll^t3!A&kQ
zAHwzExB=mcpl%ni6E*UjNaw-!vOmKD9?NWlRxpmq{bbE``;q@=Q@WsWq<7@IR(Rjx
z1cu4FA<P<9sO@W3agkNP8^TO}0C+;H6LZc+IHc32la&qlh8s`Kr&WlTCIDJD6~|K!
zsw<H;f*X&_Z*s1FH*tMS<R{(IwV1(5f0d2scDk7ZL{uqeq7JXS$ZhtuR#t^{Il83i
zM(ee8c&u{@y%6D(%rzu_7ogH7<@;#^sy2`2Onzqc*LNX@iuj<DKY~Ds`+;tSljTp@
zn&p|UdvYh;5*#Aax>|<mInU#0g4=<NUL<}n>|R$N`sZWHZ>enYv)tG{d>&+dklnid
z8I*;fr>5$b=U^%~RfZQwMKoG>;7IGxWpqc<sYx3K6LmLS($Dk_z~0x%37$w0FRHm;
zTsi-5htv(%2CZwr<Y2(Br%9>4Qe(<juGJ2uuw*y9Ap$lan9a@Nljq`_VKEcP9g~07
z;Us-(kOU|s(32DZ>zx-SeWexqC;g}wH0t(0JCV#+WGA~2rZ~C`bgM;q4qvYZh2k(V
z776Q2CK>2agGQVxLl^{t`e<nMIBt_*v6VNOK;tI_@ycVEfxW43-;k5nA#471jjU>Z
za?EtOn^s(G8F9;D`<G*wD)tY#n*qpq?Sq>BYBDDbUh$Wlnpo!q3xV(9&Mt|M(sug6
zY>uicy<Q1-1U{xL0J}r}qjowQKU||euiwYjnBIMjwz~k<S9L3tku4a|KJvh%CVj|_
z0Gzg4i0B{l=PRBrUv~o30f^?x!lj2$y+6M&PCKE(IJ1zz1Uz?c=vlm0ZQlr8`qUOV
zwajPL_mQcbB~$*vQ@ncqfUIsa!t_dIiOLV_tZ`uOm&k^SCPs^-UGMLBp1JIoyc5@z
zOk_2Fj^|uF<>#5oQYpV4*qcV^T-jr~7}101s<O;sQRK2l9owjH1s)eF^2q}L*0m->
z^3aIb1M${ZN%U{xWnF80awQmqTSgxcqCeU~A|tx#ys~5y%5$Ik^Ca+{I|1-u$e0JO
zC}nPS%oEH22<(y-=ZCMjCjxl5@qqRZT)c=lL0Iu@&oQ$q2R{Q8l)yw+A^@a+Tpn1J
z8xGW0TJZb+{kCPD6<j6uEpXn3Z?b@e<*1$=xp3!i`H@MkAd@z(0<~i1hxT4-#YcRy
z^VcjLU;svEjNcDh5LdV8EwZn3A9JsjBt5TC?rFIMMVtOZet4!`d4%*hH?U@`<(Rr)
zp1gVP+aGZ_Gx*c*U@yxjXSW<q;@22o%kNc)Gi|F&kH$t2ym44|!0o0V<N%D9&F8&(
zaDEw`+^97*QDh@b147X0-s$hc13FuIX2hMGk)a_|)HmFtqxPuo(ZEzb_?#>WmYPY~
zVRuvkaJZ8Tn(aCLkL5e8k7oRUV*R&gDz_(@0Hkq>bg3)LKWK%Iss?&b91CCbUoZk7
z?Z+oH#{-JMG7q<VpB}J!i01g+^@Zj3pf62{{n(Fqw~iqf@|6GbVB<T~Vj+`OWBTw_
zLz3ycM)%SK02p7My>4F&mcv!R$}QAI8Yr;%&kdiQ<*&+KYWI;y&><X*zAe^F;ql51
zZ+~&Tq$t!+&@cK?WLq9?K^vU2IF?)9d_o`>1=_&U6BhlqL7^z_q~S-vPb8JsLrzQW
z65%P&cJ`x6mC_zz;S89yA_Y?`FW$o4{k4waAj`sGFr!9JpRwA?HOY5A->#ei3{SD>
zjt*}n4<QNEy_itqd>JBNOK=)_4iz+7LqE`GmqX>pr0$B|F`$l#q7q|wLoHSl#`N|p
ze&FU1%-)mYk^=08`_-~ex508L-rea$bjEBvM+E*>34}QJ4{aAlQ>W-?g~fICa>H;t
zC||lOW(mfP_@}HazNGH?vwcJPj!BzC^E}>on%toaD-|f;+I-PX1wI}69Oi>aC?I^Y
zjM$I^k`7a`1<IeUz6^XpB2ArEJe|w6)vQp<M8RbusKi`_Y>E8BLByJY{H%K{vm@i7
zChdMbK1w~dJh?NX*$M}5V1v-~zR@}~j(>;8!Bbqif3ZwLn4h~p5VbHQ?)!*L7&y4>
zZKWH(f4Ccv1dR{J@Kk6%LCFC;=~6dz@J7sr@#V|PLoc2v)$WNMY@tHC_u>oCi(lBZ
zEc&64`Zlpdvy?IK6FA}z2OsBk=0}8#ew&wONv2K}Ir!t<Dm~AgEdXs8g1{{oMZ_l~
zlHrFf{>gNfd^jn|Z44V>2!^IUcxg0+{lKe3`t1C2vkN|L+Hs>1IpU|n;tIs@`rFEz
z0_%XoQ5$RSh$qF5&=BKi=T~6jwN=dt7+ax7ul@b}iC$~zaJm`Z`D8if(`dRJNK9)N
zcLjxig8?%9RQ$zGo$G240@(Bn&@-DTRy;F>^)k$sSHO#|D&;DZ&^r+Y2uGvAg;L=E
zt(cqi8z@NT<w-A5tDxQCcDkl@K3--JNvVpjGPA=y=<JkZ!QCRyraBOQ0cE!fMl{}6
zu~v4V>0j8?c}xi6^YSxxwRo!7AUxh}JjtRNb5|+{Mj+*ZL15Ih9FPZupRBVo9(Rue
z&5lzg335fQS-w!Ggjjt-0H+kp)I~Kz(&6|K+fK>Q*+y&P%{msQbH+{vqguJ7*9CT~
z88>w8rVpo6R{>w&il>6#`qn#O^4+38ErR*`7ux%lFc%7f?XIwU=-mYd9GK#RaY`>Z
ze<|_lxHW*oc)k^(Pae?C+E|SU3>Pv5m~S~hm7RUiMVV-66z^@i`_97lbbo<ff3g?>
z@Kwe~KdmR^ZsVf3RS0SUb0Lb=Ex8}^eri1d)qbltI7rx3bk|?Qlv`c6Jw*;sZW9Hk
z^j?m@%B~S57XbED@X^Qd_-?p#&=d|JBR2D!{?DRci55P?>C_K&p84adbC<}6wXv{$
zUpQ}I#prbCnzj8N`R-s6+DpD5q9urVvscfmGoqqH9t|}2{Yu@&Q8d1Da$^_xbyfs8
zt=kaRCm@M@I(OK3=htK9T6X2-VPMkwnvliz&5Eaf#U?`P0G9#W=5;5X74&uqW`CIy
z2Vh5RqCv-^9JFO-FPH>BBS5JE1STHk{>{%BCJq92y4}7|^}J}~YtAJ&F!N9`h0C;6
zel`$3B&2noWgE2s^9x|)=)kOm;oGh|m2r?kLedFF<#0Qc*Zb`9@j&Uz-1Ed+g)ClQ
z*+g2&CroVIC=#I@5Ij)I@)mQVq3#&`k}y1muiE|r5C7dKgf=?rGNouw*U){)O2f(Y
zk^RO(&S^<R@1>V_%o%+`8Yj@8*||L}gKPw|R2sF7vDtzCVD>yk^UptXeCkSBLk>V8
zUwTHTseuGg4MYA*&9EA48A_-Zfw!c>^Mc8ABvqZ4ZL^aY=d}nx2M6R;7dk=R3|!Ij
ztY8MoLEZhqo`L_?IqS~gBPJQ%9%SQ*HqLsz%~i1>fk;a~$Ds}Ltq~fuZ&oe*4%G&|
zf4D?A><!a3+nj9p2*dv2n*l{~<o2FCuV<H&AmbZcQP7~&SNlf*Ip{!9q?1b=t?^3Z
zvd#1L3p%pdX|ELfi9_)Bp9@3*7x?Y}dx3wTjUKz-ID-oi|4=x2XOaG~f1rts;<`Z*
zwTBk$vAbtmOT9TTpyFw-Rmm{8gXYB3X)n_E)oNSq>hV-*mUcIj>fY6Fo(qe_>n$UB
z1hnH71*iq%o5$b0wmW@F^%3CSkgjWpXETvzp?F)WQCavdl1Pj9Rp3T4j~BT*twEyE
z*8DV>bx|Xr#mnzH&VlFqaDU@SuUAo$kJc^Y9mCo>eD%Cjq|I@~oo9Wad_(Q8V>%<$
z0h_`pp`c&3QI!(-lBmF-$IBq7`;-8z&j0=kC^KR|;|KuM&R;go`vdi0Tx6c00N+KP
zoRp4{Ep)rZjK9HGBnR89V(v-5nXL|q97qL449Ay#>bHGS$eF&-q5lv8EU*hi%c<t6
z7raLIuXGxW3S5$fQ2m87`AJmE?3BRVgjimu-xYFb$E8eZ8e!6_Y8>27ls2n%>Ow)N
zW4_M+k;zLu>wx;(n;<MeL?>1WnNAq>*T<_51`JdZW8P<F8IKs5tVbKmsTKjfmdk{t
z`c~tY2+vXXp$8`x0FBe!R6d>A37XqP?PFy7pIHDP1qYxHyX9ijvxn=MiCZ3PJLnp%
z;)}fW`XjLml*3|;wSK3Qb+4X=jihJbl3nWo_B=TxW^#o#s1tnc>;Rkw5fj-2{L|)3
zP3<1>LpNvv-xkD7xAR4B*~H&MP&M@7fW=YA3a5Je6ezTHdXF4$;K1bhY>=xS3U(78
z&ubmEDCdlEt|T)YRkXt=;cJ!py8*`5TuM@I*Ui)al-ON!t%YV|vWb2v`jJ(c{3N7T
z$$x9e`Rq%%vOXA0k~-*RAl99nB?D$G0N4Qp4=|>HRh^{(kPe;0a=H7~7a*wyZ;%-e
z#SQQbk53Zd_rK<Ks(S|h3zWL%HQ4(MHkm)4dj&3A^MYLD1dr~Y$xS+TIa`icMEIgB
zydOd0M-Lf`a)yI@kN++kv*-ELU!orpZ0%jhyyZgU8DUT%$o=o{6zt5=##0WsVwE-#
z=x7RpceW}4vi14g4e9eF!TA|JPY>_NENE~~gkgrX<PsPa{+la??W9wix6J2MQUC3(
zJ<#9Q8|=nu?oy@T&C^@E0Nq%N)Cly?&<0a)?M`K6$^H+;a;A`N;C8JZP(z4AdOaKV
zMKDsr%p<t|@J=7F?|C8+oqYaus8+lW28F~v|NbeXzmAJ}m|6gkby6lKpO}=R!dywe
z23yHXgOS8Bw^x4*<A_aw0(_Zcz(o(-fAZUVMCFh_8XOn4;y`A`h&>CGl5dbfkKKz~
zeML|kZe+ADX&zIQ1iq!yYlH7{Uz!2n4+PGWCa@o#Oy=d4Z`yAtZ-@I30b|30p^8qY
zmk{0lS-qq%s4$X~vDhZP=cf`cKFxr(K(4a&JXBrbD4tGrI_F{KK#1I4w`)R{?`N^+
z3w4aiYvw1+slSsQoC-(l0zZ^Nw%($vyMV)VnNeNbj3+j@bJN$W7$o)%!X-Bv`YrUT
zK6>j^I|=Hwdj<egqU<m18wYia&SdZHO$FIZ{$|3vEPgl3gc<kuzfpz(w>W3J_@San
zNy0mk!UD-|LlNIwvOU#Ckiv@Ppr&>#$?0W;J0dY8qNF*0WDJO*tQ_Y=z^bb4!RTQG
zOh(Q|N^D9*jF@G>jp{`~{u@ldvu^k;<oR0~1cC#t$9jimEI_8(eFP(?n$4XRM4Ra|
z67BRISYN|I6T0(EX+y!c%@?mz?Xk@UqcdGj7Nwy!j|VVqX`09FVwc1n{%E1}JqZ2}
zQ+gMSs7EB_t5yyY$dbdf{ly5;5P?*gZFuW6vni;+S#*m+2Du)=E{I~j(Pz#1j4%<{
z?l-DrX1Ffrb}H*fu4hP*C}$z1Y8BF|G(jVYghKYAye=qQcb}o+CrJ3_I_@zmjc^gY
zoHlx`Dz>@iTBDRSP6UX-aOey$G-BS|jMyxogKnO-5P=MnLP5x9rGLz*A%RoTIG`%z
zFQ-#Gi9#ut!mhII2*B>EFfqobLCsicUtI=_6Imkifrzyq^)1eFa}%=;oburIaw?H^
zN)BnHTY0my^~;%@YyxjWHu|7gW!qo;j1IdPojR2Gy_+n1jQxM7C(P8)yD&wdc>JvD
zK7%qS+sMWevEwFew||cqHYO`O^b4Yd#^0Z`-9?5ES~Jlajb{qjx)ZEx5W=3O{#kBU
zp7u4*U2pS9N^P`M6uLjn<3|vq0TYa5<96RSKg~>ZOfDE0<e;znWI5~%ljWVpG&#;c
z(VWa4_hcPXL?^ck*$D@y&x%?R3%H9Lc-qS-*n!@<@?K#T#3zO|OX#R8h>JEpCMrq6
zuvEU-9g8<^alyb=EMG>D5!eE@Cse$XJ20H>&M9^AH5C-ivs9bomlA_TGM!Xg@cth(
zzf@Fe4|uHENqD)RJkXtq=Xb`fiA^Am8ioOqnbSBSiE`*Gx@|DcG%}yZ5qE#$2>8&!
zffnX}YhIwl^vP*X<`1!7y0;p>M40~mo`P22MLIO;q~l3hUc6NVkKH7?+pmz&b4O<=
zo{oa-hy&{^C2_;2Ljfqm_9_ahN-t{!{w2B+h=sgGlLFXz4b~O6U16~`Cl87zCI%Bp
zMa`Duk?0L7!nH^2*1*6@lXJmZ?AAPfxWAVV!0CnZ5LNhYUD{&40-HvtuwqTjNvd#3
zW?dQIx9vw`u=LSO2dvwPjz_GHyQP9w=_;Ml&&FPTI1sObx&3I6@!&y7)BIpE0hszM
z%_6`$Szn}d{Z!=xfCRjAC#79nS&)NxT@w-jpBvCwOs#B}>QceEU3&Be)zlBpN3W@{
zr{-SlP2>W8UM__xV}V<1yH-@~12;Rf-fd_kp#U|J!7x|!v)T}t*h(@osmf^ImWwGT
zNn*^|^5s-1<3f)krV{-&l(t8Ahh?A5D&iEY3o=hpZ3O0Y0m*DHu(@Z3=Lb<()o(H?
zBpov~lYqe;$E}hS*%zTW!$acX1Cd!^9kC3$|NBF}Qh03uE=avpCFXPR$>`%l(Dq5d
z7~(0iDJJdpQ|l!FmAUN?LDD>OiHwqtpA=%^m4GYvJ?9a}bjCtar<Z}Y^D+~_%PwNO
zoVeU<P;(3CAq}__Qb~UsdSlv8_6E4J+PF)#z@o#c?`CTz02u5CfjzFk2~dTdf8I+R
z;u9ME^~al`mZrf$({a>KQ{N>LBY*4BZ*t4wqff8bP?B=5<6=Qrx7*59I?5L)u{j+O
z$6>NhtJ7gvyZ-!C-FB^2QqtH6C$Qi`2kbq8l3(xIbLNsLf5s$z9NjmBYV7QxxOVdc
z;!KIN2J`6)GVZhnWiO#Vh&+_W7u{R!D`c97zTjg4S|du2*G9P=!_`|bCrkzL#TFU#
z1t;6gIMbs1CAPhN^TI$WZJx;-40q$;@-%AIt-atSrVJEPDlxGKIV-9Mmp`u1nE<zY
zH$rNK?LMt8)&Kqjm_jG%%H!?5qy&X5LAfq+I^){cu;0k{W3^Wn-E5u*E&R6IfZ(ey
zuVE<hUmZ@VE5WvrKgKFI*A&qD<iwsG_lzHXiT=_D3`VV@5ony>2E2kkUWA7Ii*Z+x
zj_=UK%&uR6J+2j{8CF3OR59R3)N2d_Y9Pw?gxTLFU{_Ji^7b2xwBY;QIv@S^(af$<
zVHTJ?YXd)Y*vHXpRG7NRuNdyt2l}50#l)LUjF0&%&KSvJ8@s1xEPOYA<CAvRe&)Py
z{vtZw3`DGk3@X>)OX-HyiwqNv12PuyW!KMu-O+V_Dn<hk!$_9v_NV}r=158Dc6t5Z
zQcKp@c?0EyZjxK>BRLV?o%Nm>Q?mRCc!5g?G?jR^oiKl0klgxyz`m=MAmXS`foWWi
ze{}#zk+S(Mze94E%x?I*2ARD+fVoJq%T34AWl+L{b;Z|p7`~4m*<;3;17Qw28}JvB
zd<sWoiAFKy%|46Q4b{#QN0xjI3ZllqxWNA6S=^b<$HUfk4+t|3i#nY?kzlqU+$v;l
zA%=l!6-e%;gVFlbMhJxhgfq1JGob(WF22B*;TFN`?fU|#9y9(79yudoNJc<D>j_9X
zuwL!HEN(sl#(}MM;Pl!$jHGfU0vmt}Q3Laj3$8A`yW<}x`yp?hD6m*1$1@ZLNyB5K
zFWe8e?VuB+m~^YBP0!CF^nyBr4gHD$|M@B84d1h8O2Ei*o&yHqN{{J2*TI1qKbkI(
zQ-TnCm1pkx9a5b3HE%hIi7!}%yx9PA9-z)7sF5FA8=0q4lQB&Z7?Tr*wB~H-<jg~W
ziBeA7(~Kk}9;(^vHlE~rKZu$3U`AkrfW>x=cgltPXp!M8R~7c!57!M>;fvfvfbt}U
z>uTxvk5`bBlhgq!9eHIb<p?-`*u*4t5Lp^|H9TgI54}qK_=*n9;G2nb0TyhQ3<1~7
zmS+%FkNtdP<6`&v;d3p~ajV*}F9R4zQ0}VjVw`WAC4D})jzP6OHD&c*-Bq8P0|b-P
z^m_RMMY4^9U_v893c!5gsm;llI>W8kdVisVQ+2s2z5^#K%|7U)H&MmN0JKv&bSSCP
zk_kW_xI;gl0eQAFELQK!7?Sc3y)%`)dewkmY0ao$)vP|RcR>GTZ@`n#q)rMxqBN?Y
zZ?#v(^RCjr1XibjG?Guk&{iI!U}xxpwXfoXEI9H$jssJf!I+NU$btW0$&CmdtA|9I
zn*2~PgIn58NznV=-}~W;e$Hl+L;uGj^sg(qznZ&?&w;3-uu9MMJ1a5Zx3iw-a?wxg
z`pL<+3Tcx}K;txV{_SuJg7{02sey7TBa^*)u}OL#%oWdnn2z(N6E<^Hdt)G^gDg4H
zkk<xP75?sb;BS*uXDkYWLY1JeuG`hwH$^JVxvjHKLsdI%U<U~aK7)v$e={|vg~o8{
z)ys|Rm4CN3poHb1f6H?p>F1tq8U@J<DUZLz!3)$b`U8Hw3}|4>`KLqPuI%)`0`i*V
zM3zue$QuwHAv)3j-5QA)qDcsd8HU+?C5kVru1H*!O~4}th8FikY_^}gbqef=wh`<p
zjV9PMf^L&WUo*TsW^hvgUYrisz9<vyo^{hJ{{)X$U{y~}!toOBd;h3gOnj{b!_kL%
zuv&wWRV{!syQePZS$*W!gRqxatPTHiM?{r1V7*~3gOp;FW)S)tbYN!&{^MFoF0YuI
zJ6lR4YjGAw{VZPR)a81g7)YnK!>Jd)A7Jb<yYvDI&zma0z2>KY|L0>up~Hrz1om+f
zSeFpvaYZn=8K_c`|EImTjEeee+lCbbQ7I`A0i_!O=~g-w6r`07Vdx%0Md|LA6e;OW
zMY>D68DSV|7zT!V_IO?Q_4i%Rdw+h{de`NLS^jhw_TIDi8OM2?$1ZVJBsrnu1Ca#O
zVd)OD@mLh!xt!+3$7nbyr$-X9-n)*MbhaX6kE)+D^2RSDUBz1mhOm1iZ9#XNem4Lg
z5fW=<p}FM|6?9iHc>0>_x=g66agn17C?QXT+nB95EL0tR^>+L72sc}4-ti253B|#7
zp?qB1e+))&Sb6=9`*~q$vr=~qb3VwOe-!fD_PAqJlf}}Xt-3VcI`(@*gk_|DxFHH^
z(k4ImMdk$w{v>aNv|>3hy87u#hC|t(2lwU$Xn^So%jdIDe5;HOf<`&S-}k0P(*vf!
z36J(hP&Kywh0Us)zZ^h5_w>UYwYN|Hg>2?xi9r$k3&Tg)TCFs7H4vb#cfq5(%gbVK
zNF(AMdmW#~ZoSJGR`m{~stT06Ir&q3%-H58JnphZ{xewyliO5$>EYCp1q*3Lrp_#l
z=2sMT=-TBqK|`G>-2lia6YS3SaEk+VWx++;qchzDHq<vur&;!O9u{1L8sBzbi_`uM
zKse`PID{o<P^#W%C2wA9`$UA)up;W0Lk7U(<krmbK_ky?f{f{Zv1(76$w6+Pp@y&m
zXXY?-&A^4^52x0^6E?v>4WbKX>ZkehZ#qVfUw~BW-RS1_oEMfX%?eo8`;_*t-H2wZ
z!MQAwj7gis0yZpK2YksOSsg<ISx+pDAy&l2y2$|Cj+{00CL0BSm*LNkPUS$dY6&~U
z|B&Qn|0;XOgo;2Vwv@|P6*N?C5+7|f3N!*xj%c=+#ASQTkmib@N4e?6!{2wW#b{@@
z(_zB}pq5p;1Alhc=R4r28kycMb*#7!9Le=h>Ii^Ud(5KKOL6~=;<O87(0}ph<OjT1
zEQ&E-M>Zf09Qr`pFsqvt?XQndfX+jT;6<hY;P_(eKNo>4Di=TTEr(hqcyZ8E6&6??
z2nIRWa$sQ%6q_0f>4{gy7Y>}T5jT+m^kB$N_&JZ)fOj(E`LlVTs(O!>SngP|pB*ju
zhs`P9V|&U61v^_Z;JDAlG_>loFt=LjX)0(HiW;td<uIJ@_UKs9iiHX}1DX7yg!1(K
z4s=P;+jIHGjO@Q*?%#!Ow6YjbQOMq%@d~(|bB0TxxI`SrXXYr>1ek)eJCwYBt~>Mj
zf}tnP1OaaZ?^B~er+s7&f94ft<HyShpqM~!-7m~5ifzYnBREfQz6B2QgdZ#&MBK1%
z=z|#QKd4vb`qA-MY%$^G<A<w9r#~)JnrQ=|yPhreMIIx-3@aTBZs)2bMf)5r$$vE%
zTsU~Fnl2PRkk-%|uFUr$v|_aE=_S<Ga6mYXxHPCNtl&vx8gaKf8k45Vi-VTdJm-Qt
zse#Y0{CJ%KRMm5u8U#jxa+YQ{Z`_I^mQSEa`~Ei^G{ZhNpOtAMNS*9WkQ)hnz9K}N
z9UfdJkQL9JgL8}w`m$-SOV%)<;(oUdfb$w9`ocE~AA!>1XZg8oIy988_I6E7tOG4K
zugUk1PIPkLt<HRLD*Dlq9NxC<pg!3NHSyI0pndguG#emXD9R4iPBNQe5w2QKi|({f
zSaFk2X3^UR7<l(aU%~eg*5_HyjD_ePq@tZJW9nV|*ALroMrrATYCb6IJp<9CWo72o
zz#s$Q9iI1+Kl8`Q=utSmS4E}sr`1C0-vt*DpfIQF94u+&Pwry55bufJVzQFiCu6Z|
zlq>%sKrG~KpC9^_>qy6HBel9HaN*<o6W6X(+`>t_%q9Atue6q+?}0R6vosm(Y8fbb
z;RIf9z6LsK*tvtU0Ae9?3ExL}#{0VV>pMSS4w86_d%2;0SlA`l8((Uy1&BW>5<dgT
zT#ClS`toOOIJ~@s#GYUVm-|`8|J6y*YMo8w(&E)A*X?m))piHVAp|57;aqNShp6P5
z+m%y(nw{ugGK%6E*Bm~J!KtE7=FoskSzMYq3ew|JNQOIQy6pZ4UCoTh*O<Nh4A7?W
zbK>hR&lT*TFUPGjM1euyiM-x~kA}Wy8^AOEm!yaHE#Q-j8X1BIR($SUUhRd_U^AHw
z_DEKf>tD5sZ*uC<6ib$whgm!S9wG+p_H?n2fi^Nr&WQOGpzM@2$v0=Yz7Y8FBSGZw
zM4ydSaOm`my;v~-da<p7H*fYND3SFJ1I6}LpBgUdv6rU?4Tqvwc|da$HJTZ2k8dFf
zMPGa&Z?)D*lpgpgU_d|CNZAUri%0T}c}(p%eD&OGr%4$IxWx>Qb$l?S6?4x7zw%YN
zC094cYM+_i&5)6quIEDr42D>S2N$!}0E6-&+nX#LvzG^VunP3T<hSpO>6cp6`^%(t
z66{1Rgn<^El=NlW0OCalqd&Y+K=8T!ZMg>4Tw421p9P=-TvxUC^nhwHc;ujoIN`dU
z2-!hm!+TXDe{oU4=j(k*mh-0_BSFJ}Mt1LUW(1`X3JCP!O_|e5cq@>xjhAmG-UeFt
zB5t>HfCvOB4bPP72+}0_om5;8nblW?a#!@W0l2iBN8Ix?vD!{oHL!Ms#VGQFLxa8H
zyX)plS!UR}NnwPT8z!(Q2K1*E!j3a_Z#-~19sb^s`;1x?9XViQTad_VgxaI`VgXGL
z&d2*?)~gFW*7QK3D=$^JJjS;|z<Hy$7rTq9i0;x#Bm;qBrnIrZyicPdfYbei&VXSQ
z+X`;ga!rVQsQFeJ=2WFo&TqzUZqu@2A;dlI$WH@MVX&bj7dDjqq@RQfLJm1HJBkm0
zM*6g5><XwADpA{!ee8tRwD%JtpJRh1rVedz0ZE=ZHFsKgzFJxy77pn7RPCRJZC}v{
zeo-(Vsh<~Ee-6y}Ra+@Po#>xHLvIum&R5GFFV<~^DN|CMVWFLG=kLn<OqDCa_)}kQ
zjJ8m7TQ?hJq>q)@Dj(M#--;g^+o<TL2@8BHWA5v6Y-7E(Fuiqu=S#>XErr*)KR`9+
zsnN|(d|5Ui<l|)GxwjE?NTe7RXiXYQNPTq@1w^e6<e;gd6vg2NT*8rU0ezrH{k5Yt
zxaHcBu|E#doJ)9CPJD;U*!U*N3*BKR#!Mtl6Q)DYfdos8TI<hN_qLwg%b&(B50-NW
zz}6BO?K3Z@1#Khwl4uY-YCkMIhl1q+kFk-RQ0=T<wE5M<mFeOIe?QmaFAxR7V-=yY
z>8s8oX%op0%z9(9boiKv<Eg}b&-H~K5sdy+o%s!wW*!20tRhJnw9{^L6!Og#&-dOX
z|BG{UOQqYSITkr%<z!;lt-=pxKAx^+0jS(3F&|WoO{FKw6SFpHR3LpO@&Y9A$7x^a
zzQ~j;)Kc!~N@Q~3gi!Q-&XT>Qd>JcRw8&RdDq756fO`O!1r>tG2K0_(rm9}`@Njl#
zflQF`Sf%1qVWtCw<Ok5QlWWkPab4=t^9i1J1XoQ&dSb0A&P$t4{8|cpt_YpS-gwS}
zpL1$;#ut+o)fA^>w!`TaBVG~E^W|;1&*8jjX=H4dQ30vaL)i<Yw+jSa!`&h}P=|Ih
zEcM+MM+)zBieIeM!6b~59v`nLMCGf+DNPgwKQdC<eE0qnK`)RD>r0>xqZ*It<dtBP
zOc%BA2_mt2I{!=858hlnx`JM;g&{@DYzbQ}7OD&I6kg9FuYH(`$6ZPvjJLv5c&3lO
z(%vWC{>qQJ<VvFVS$FMuXcvFo^vBxyhI6bgu1b>7yjUDO8HRD1!>Eo_8(7rYku@i!
z(nof&=~}TzI&aYMNH>7@dm4JBD<%vea?DYa{iDa}$g0GtuP(S#bv6;Ow}zrpttg~4
z{>zq1$141wd!E2InGX5QM+-SDD}*>xL2(w4taA$NyFaUOrmrhxwA-&eu9g<6+BrKR
zkxOcG%TDiOwR!dvgP+n%D0zC<g?Pu7qt#{MXE&adC795qsk~2%6_C*%S6Mi=k8!Tr
ze*bPiXz@MgDhor&$>n$JkKV9LEs6LQEHs-HTZ%@0mzPMmKUI-T->KC&k&mnld|58T
z<8d&2+wt^BdxFHBxEylfe@U+Ivp3`7y%(BZB$8&R!g1Hj4rHZ#y6UgAs?y5`64brY
zjrgIEDrlg^$ql29pFXGTyF*V2gAYZUj(WNGCo_DL=GVbbRLL**a%+=QFEV@Vn>qq#
zacsGHo6kPqm)>mWoG9^V{uS%1M;WMtQ#E8h4Sn@;6<6<>zFNVHvQ#Vltd{y$H9pxg
z9EN!ziT9bnjNjlP9cpKh$9Ko18&)cIGEI+#UThzG-`@N-=P(HS_Tl)Ee#wc%4^!<M
zKOTT7UnlkL8+meI5@8m5vaQOBOW?x<Za<97l7$?84J&p>L<s$|u)q5Ff{Z=3YPy-j
zjc|zEXir2a%JGHKEz9i?KuhyF+^%SLuid6e<SSXODm8iS+eR`}h6nCLves>^y>2{a
zxy)vW%dH!}rF^;Mq<PGFqPZ64q}A+A&6xo;3K6mJoka>WYo7<kdP(?x5i!ZoN2f(G
zXE~Q#3b2ucskK0DCMrK~7$nz7l_|(0ISgCSZKRYZ+x=}*&LEtlNwD!fCAPAcOB-Ch
ze;J`C>iFX|()lblB2T`j^iV2A7^+mHZfGM3x7G4BVY0aSyI*;yra>`jgmHDXKyzOX
z<+)8V98UzA$U{)wHq>99ha`&xGRN>;E4S!ndw=~fK6IkgjO~Sws#?Z*#)%A=3Oqpv
z^MfDZH>)4+)#kF`z>2hL1?wF<`dk#O_ZR2m$FIP8_iWUrf%UG9J?3}~);rr&{>BgN
z7BkG6F?xgPBw^Gpxu2Jhpy+Ig)h-+luI3wDu966w$+j?3G_S%9eDz3=#`{q*sr%;-
zr-w5;!__7qo31%W_LpTZ@C0mxQ26p(Dc^W)lOAKSr|UFZDNDuo%Hn0Asth2^_Ki*%
zG@uV>KTHx3)n1%GzEfsj{kuPuJR^bAh*jJR6+!ATwv6)g-|5<_L&~1az%Ql22F@55
zi=~B<QkjR=i`PfKNmGwzpKnd=<SHU39G8D|D=;tXG@kDll8j_Nzjb^JL-KmAJ{zU^
zTE!pUHeE$UXZxM%<d*$hjc@oV<wLah`B)XY`FLwaRPsDD9DJ*r)4mI{$SFzr^WaE$
zbBpN|HxAFOXSLx|jBQRQhuaTJUleob#(puVDLci$b6=r1bQ+r-*Mff!hTdURVgRN7
zn03yXpY_zYwpb&XT&#6kTnoBClXFnWa)j|e0}EH;ytFK<xjQCs=Xu6hs0%a4x42d|
z8=`^Rlq0>3*N8_7(SEN?z}A5)VXn!4eSuCwfh>n1qfhTHyqe=%zF+kRN<r7!-%?*)
zHu<9lBcQ}Kndu!iXN?zc&f1wkn&^0bdW}`LG4;5eZz4?RwJ6xf)yj%eSC-ScGiR$s
z?q)#sa_JY_><20A9cS)GdP&UW&@KAg&k+g<<H|^}=$|Zc`=6U`EjA<e(F?xHZS9Or
zp2qbiClea^t}e*f^pBM$FgvT+oH+fOoA*=(?)*M;)%HM)C#bg7H=wRUy<^CQE!0vt
zFk>IpFtK)2@StAMncPvs+H1>{X)7U-yq|8hr&<3t&OLjSyFemUOxkh1%Y0(o=I6<@
zfaUDTo?Y+FLy}iz&dtADzxL}^qBfC*O{Je&_@3QiR(q?q4k&?<$u9SJi1N=gs30=>
z=oQABQ)IQUTT^46F2>%6O~yC7<G^Egr6*Kl7U`i%=E&|iM_3o@_=JEc(;o4O!K~+?
zmLn|D#s_1t+EKnuFP6ZbUuiS?BprH4Ir?O|Yj`l%BgED5y!~2*S`R5}jz;dj<L;1!
z<7yXd8{xjh;qT#;-_55k$(UAuP&qAA#M`z2b-QCVTvYa=djF*L3OYnWN78sqD2e}s
z1l>*6m7(qYcz@hxq8D75GKch7x_|ks`*rq57c=02_O(*Nw_8z@6re)LD;`lL)Z{$X
zfA|oSQ>+%Dccq5B5|a%1RhyKRtJm+reYi7a9Xxb=i_FdU&2bk!VTcb;0TjMd$6S|s
zvcYUM`8mbvR*pqt7bdIX9lw2H^(|0jh(W3)2ZmjmJlj1BiDV@~doQIxi6u_J>-KTG
zAlh?%78w9JuiO3v*%n4F;ytT9eBVS)N3eY{CMI4CE#%fk(DuZ0G7{#gQXwoc9}ECV
zBCFrxqtmsI1l!DHJqbLBHxd~4dNGK2KnnK`GS5X}tipP<B&0~EL1Odmyy%O}qYznD
z2ogS7+WTq3FLgS<`9(K{>aD;p`8gf%0fU8bkrXrm`KubwAhFZkr;b~{9CR9dvSYb)
z^wYh0l`Hv1T4+0h6Wn~QC~dEq3#oxHU`1oS!mkd7q|Bvv`(d#VWrb860ygc#aG59w
z1Ih}N?HBdYBr09NqL^L2Ia#AZj=YZ1d_FlEQ!h6;fROb{^i-2PJE%}elTZevId%-G
z;g5GZd5JoRei5-Z2)wm#lb8st!FVpr>S-Q6yKF|et18BAWt6(XbgN;f*Wyz|;&R^n
zE`U#23l22+C#_F6r2M}e8wvU5i5<(V8n5kfw?q>%`LM8Sl|-?{v3IqeH?5YooJZdu
zBy(P*Bq>*ZV7+~dypNey<?f2zaSj}`E{xx<#H5eotb-FLcxA`h!3*f7@>+J;PnH~w
zzQK9!G>G+;DzAaBWF#7DOF>S#+3$N3d5)br4Z^Ox__Rf5y<G=$QdssTG9R1$^KY*H
zt(-TX)i%q1OVpagae-^~uU1Xk^cFzW8nju>#BH_vH(iP(@iPP^pBy427Y*~c_34Ld
z;6pF9iVZ2OC?Tm27w^4R4;caG*%dd9u0wpJ;HjR+54LBBUsW^Kc)Z*iClQraw2@)(
z_})4vNyV}|YjZPu?K(Is3)HMh7sy)F+IP4kVw&G=SCwiqLCnK3g&9&s-IoMuapE4O
zXmEQ=de(q^d)OGYj{GT%Bl2x?EJ7ku;_P}#dnNlm;6(<Vd;i+JVdA4&X1Z~6k`8Hs
zNQNlE)NK3tjY`i{21pj`cYu-OH3t5xV511SH|6%nO{2Y=$z2A{f!9_m@up^-1YWyb
z@~WM>Upop>Cp&F@5?|#AbYhaFQD2*N#WnUsMuKS|&d;h1GVC5Tl{mpT-&Uhu^(lY4
z@xr$v*?DKWO{UQHjabN}L)trdkhd*K7UD@_Ds$%hT~58zpx-fW76aZ?#qQKIlxsb4
z-@UDJTUuFk8};87@+_?5kStKypcn@&t}h`bvek2zUGzV51M=&+33O^0u-1`Ree~hw
zed##*Xhc$ilx&B%QDzRp?Y_jxVXtB)9WdC>Mh?XY(B6lA$`7)Z>uGP8h5JjL;*gfC
z2nM@_eJYZuR;H8SxdJ)c>*NnAbx#BCCW+UhQ7nqFf<wPj#<Ovbd*0;RJLom%#j1K2
z>%>b<tcESm5o8<l#o3k_dI$(e&|nBJM;Y>bsi^h<)7f83h7_ev>s?Gcdc_O}LEhAj
z&v6}09rOHr-t2X673?33s(Zd{oIstRHXd@nEU-*(<<{J0v`80vP6gb|(g}sXSMzRv
zQ@U`**>1li*4TLc+sx>rzl&a^Hi=&a4u*wr{`Bd3+}AkOVLJK4w|O-v|0|zz<PaYv
zg8k;MYCdSbc-jDB0WEl>z`pmkzWJ^I0#X#vtC~`CjqhzZ;>u;n`NM2q$(!U|7S}gV
zW;P%4c=WuW6!uId3?JZn$GX@rX?lQnB8R`3Ja{gSW=Oa-@w$n-MPsfK@22_IebFVb
z-XwOv$HeUiVPk#AOm-3{%?{4XhG5GWPk58?fgR-FylGgwEz0logPIL2H#D*P==>p{
z#kzbnKin65(d_#JyTiN|+c>l|X$IHy9+X@>?TwU3E7C3N5=-&`j$)+JgG#gYrfc8*
z1wov>v!~_@+r{SJ0PH*e)kU69DjyQwXZVhjXhG6c_puE_fAPfzH%H}y%b?*IJ^m`y
z){(GJ`_<ZQ=DxvhJ#d;=w;07-B~I`Joi}N~D6QA;&<LWv!Q(y+7^Se+k8NkHp-Yse
zj?LEyaNIZV$MBHTE@M80R^uJ5O)5L?uNLTuu@%lpOW|4^nGU@0u=r&;Rcoaj`mh7#
zYq{1F&s+RZ40kWYfw`|TxAmxue)S-UkJr5`@a{?ooR(KMgftqPoppq?{HW#RLvUuk
z-w(adBLjk)$m69>r{Q;D7(z;f%g()69%#Kh1N5VFxy|If<qXgFbL{5Mp!b#Q63>uy
zK{P?Y<{pS>$zDkxTxdU>1AFAKKdgm*rG5wU<}jiafsM2})I$0^kYe1o=;LdBN78`C
z+Elq!+^j<<H8!K!SE@>`(Qgc2v+t{p@>{P9d}-O}u=26tC}$~*5)~fHVmKzoKet~@
zQ1h~}df4iY(rp|OOKbmAkJTXN@~)h2+J?z5&zeJTQ+roXoK;d*KnmRv^OW3g*)!jB
zlT~5jX@xyiuof}g3HdQD3*p0M)XYJ~-s0NZVS^5Lf1`(ur&Lv?a8}Z}AM{m=-2m}a
z9^(UPhd~M=^BI~CAfC$mx#RCJhZg0*m1>27?UNn3-k+i;M?l3<pfP6=@4PdmO)ksf
zQko0>3IfVE^PS*G<=cG1r+z(wG;ftdUv?*c?BB3muYCP*hjFbpPQXabl6#sWIM%h(
z2|cF>u7$Z_Ap*x!LTKLC-t%0kUyBw%Trt;!Tz~6K`+-85<cmRJeI;Z@<6y^MZOU;y
z;-F(}*X_E}6wpC0uMM80|3nx)lB<-68c03XVrx36-;Hfr`iAhO@%$}4oL}giDVru>
zJI&UwSLM{10t7>n1TB((OFDvjNcoGecf9s66<0+2Ts^~fz4xb^_zZt3VN>%F;@#IE
z>JqB6CFrtP5Gc5z^Z;bC0dwTIYw3gJRyUN0^wICz2c(I2gFvc8_*08BMQQXWs{cNx
z5TfR~daBSdy|BY_PNy#2JZWifEZ0N&kNDAZ4QMQ@EEimczTe##5OoM5_Zz>}-wPBO
zFtKXPns^Rx&sNC;K?U3E!^lux>%IDbm$SiEezKhUM)e0NrhSQRm7iD)%irnOq%WG6
z=ePE4Xfntj7BSU6&7h7q=?w3EP{^n-_O3z@1kke-9FddLhw61Z&0e{iHvCxzPqzw)
z(x0z+oC_!MS~XfWL?|b4b(hSYFc|M?j81fF{+L-tMLlhpodnDn!6fNd;^^--CpSQ5
zq0aS=7!U2;_N=Cp2V@rXgl)m^yqaHk<6Zy<eoYd$E!Yq4^KDg_3#XYl)BY?Xo1Br3
zyiZ`q6Giy|Nx>1WDb&2|(jdT@YdDv@UeM1BE(YUn5g~@1zq+gMPsprF1l`|UEr0;~
zAGUm7hzGoxuJBSd(03|4s#0N6!*p%hoEKtKu{Lq(aGFA?|M8re1*m(EBit5$90gC_
zl1O^k9nBcW_HrTCIYNvhzgd_XUZz8&fBCG)Zl+ugh=Z_VdT*QsgjL@Nwhb<IKU<B_
zF<oj*(x~y#L<W#ep8aA#@MOT7#rKIqS-@BSu^t-UZLuIxcf*+h%u;t&q7xi)@F>Rs
zzWUDtJjA<cmjd9v9NML!MAR}ihqK2cr58k{AH+i@^VKiZ4ZX6fS)W;l1oBUuSIR0h
zzvK3-;?}yE?njUct{95i2gRbETe8YtFHOUB8@B;cb`pdEx?&3B3GBU*pXtpu4|Li@
zdBX3PN`atVWr_EBmdwaE2jyeu&Jy>UVKU&td*e%^)eJn75&FIf&JUVB@l!nh{DxLP
zA4sqAOSWWg3bq%X<AqY-z1pRQarY+t!Z072&rj|5vV`{&$C>qf-w=;J2sfnmi^HK?
z#1w(N;zkXEpj|uzp>gM%-_aIs=(H>Da{8bvE1snkScKRaE!>rQNTD;)ZJZiLsU-|;
zHE8-uCMOn7XLnbQ#LlCzVI#=<4C5lahf*A7E^@ildHMav?mitSh?Q^AefP`S#JnZV
z9XztR9dJgiL7TJor_7u$7@JP)MroEOjkp#4DeMk~!>#nzr=Dg4Q9)koAFoGyviEyS
z7c`zte>e1+g6BXZxb<rvfC8xC*&t{}XPdSQ?4HM=n&6DV9nFigo=6B6d5~R$&CY9%
zF>uZO-`N|C4$D9CI-b3k<7}KGgI`kw`!#aW))9aOZ=(Yrd}y<fyzyH=m;voApePgB
zzL?Ifuqz<MF$tw&@FyZt$OK3H*0WpvA>@6$2;f*&kP`w%^RTt1z3jeLgA!YU`==__
zW7dnFy%_@JLm7u~^;56IP3~LdKj-L}Hmxj;X3?Dy*n0=-C^jhWf+R4`b_PN)vToRV
zYX+|pGO4sVS!{-h6@*M3#;@3nd`Y*=cyX51!*Au4_}t`Y!~A}J*fl`fHxKTgD)twG
zRN*$Amzxh1MXY_s9jzbSO)&BygF5Qrx|)^OT$+S>!8$XB0sNtEaI%v!*nH-+T6zPd
z7YRjthrQw%eEX{rEOpx_Pvf9;M6ZCGjdv@{3NQnqQjJ0FMC`_B4Qg{Nc5AAldy^k-
z`uxX8t9f+xTy<;xxbo`KCtBV!TL>6uxdb~t)mRh~HrR`+wX_e=3Wz9;!0psla7|3E
zaX@*w)u@)09e$;UXbd@53coE2dfuzFFHu<ja9h+~wBb$4gB!m!6EL|?(@#5A_t$!B
z$fSXMca9@SO^<e;C+(h_9)o*>>}(|8lD+~C${$rdI$R5@&=kO-y_Ip+nliH%2rvys
zKmmB~)x20cv-AbH<;ZKsQV-q$2gNCgQ2n~lZhbi$XeAm_P}BNyWS^Re8z?LLeK=#h
zeK=8)K?p8qeP%sjwfa&>gxBF`D5c6arTZ{DuU^S2X6g$$XO;T~;-GI-y*mOn&^;)b
zfp#UCsQBy$x5%cKYhsVdS3$8oIRmu89@71O!HaAKL|me{_HsRBu<<G#8vr>!zg;ld
zovMM@ol;W*OoqG~eO?EvaPv8(q@INOZk9u?;?QHyj|H^~Puh5)``Xv4k!BOY(t{dX
zLlX?8MgJZo<wmK1DWe`9DYz+;DU^y;&~7%;n6by}WvDZLUxB(M=&+yEf<1jSf9v;+
z6<oBhb#tZl<mbX7-6pR2u&Un<_6x4?4a_Z#+E+>LlNQ%bZr;8(G$Y1YZ1kk@Rn|Lg
ze`~!j?cAiXKUEj9s3WzF5A}n9@k8GE@&y>b*vhl;?|>~VjQ2tYoO`9|^iGhArhDMY
zya15&=RO{y-BPUa^R}7%%9SQs&9l?U`FcZh8dI?gLz1B&@xK}tt^u*v2f(e-12{no
zG<V+F*%PVsQr;XdX3g$Y`KJ5c`|b{==(Q2n14K4@IQ3@up0k?uG?`wX3T4+td@5-g
z38%eKGW4nP)GsXWTgMUUGXC*yYCR;RLpfd<=ohSnxi5JaGM|&^^d;y67>)GL$ARtg
zuMq4{L^dy(@z;Uy+DY+}0Ow<27{oI*k51%UTflY^_qOOyq?@WR<L~$lHhnL+)mtoH
z&gXcYs#Gz;j#{-akax`}yfM-(oMeb*JlWTlqQVUBYBhbjo^Y2ZEs&tA)@9ThSqTN#
zN14G&#CeK;iha7lpql(b0P>0zJsYE6Nu*Pt#9wzX11Xb}+&e4N_$DQxQ)?M?;ND<V
z1TSl)#F@@$G(-Mm`t@&HX@V~X#A3@Gr*MveW(Z>ne<poQ#WfHci~8b)rF%7hxGCc1
zC2=y)Z}5a3md^e8-N1ahmxKk3`{A(DoO&S53>}d-INCJAL(Ls2f<=+0-O)+yKLCTm
zY_l?n#%9(#=^<1^r~ZgUF;%E+3^csB?o3hGQkx5@XTI#s8>w`Fk{p4=Hb$^;G6q~h
zB_kTucI89?G%l~gOVt%~6TZso4cvy|t@cH!=BcNdHrLjAqP{-1-jCm!p@l|vfOhWg
zZ=bKMPFLAzd{Nk#p&1(Vc=DNgkJ%}&$2Y@cI(4-km6D^{Fp%dG3DbdJY7C+1Cu=%a
z&)|{2j!(H=mpDm42GZf7AIA^gf^^vL_oBfr79qHER|KR9SDlXl$|Ef1k9Q*j?t`=Y
zi`4%CHq4H`L~ZXd4bWZH<T3Lg@<$XLfsr~+>x#)^1-Wu4>nwFWcuXCYpluX+@wEKZ
z6-XM#P_C0`!OInVr<>E)&1b5qdAsjbB90P_l(u1xJu~9<U7%;oG*~ycxcZL8pwG_g
zD5EQ(KX0yb*HGJ8-|J$G3}T61-fa3{Dl4E58`QYk>L$n2)hmLu$E>ZrgGLWI(v71V
zo6hUdxZ0OAm->;Qw%)sgE$MXWaUFnIV_6L}rfY0jF*)Q-{b{Kii6*dm+6rZ%zO{7j
z`{nmfg!iW+=9tD30JOPD8Gd$J3k#WJ0z~~e!cQDd;h$LmqW!UGbCEh*9zTvEge>UI
zM!ybmNJ5gpWsyu;O-nq>mKD66@W--W69=}IJB)I4LaH5qSA6H;G*5qjZ6pucD&|qF
zKK}FZMgryg>x2nYPO#3(L=OUrFGe--l@&L~Fde2Uqp;5A$e$CVM?7bD=<`rXu>0VA
z4Rptq(t|j7GHYO(HUnw_fWTqLL71{C3=!fb0bA?SCU%-b$1$8pKd=YqYvtPjsPZ*}
zM7=wMJHi7;FQffr{lJP+$WlnQS7`Rho2c^-ubfKNO~p`SB<rz0l^9x^3;5+L3qccd
z4@d`+oQ|}m^x9sOyfSor#VHfb)TGCyU(2Ffxiwu}qhIU3w?O7W=7_T~Do)35)5rx{
zB?N4xD>?h7DkQrOk}AvwX0JVTYfc?%0jb+X)s0SV01=u@K+^fJNj=Ezv1z^UpR^t%
z^@8ZsI=*Wx`l5UgnXpSZHy-%?-!C7Efa!}=<z)W&fB)Z~_X}zIwO8>W<;MPBfBb=;
zR2M+92&TpyjsKT7`2BYXU}gTh3fTSk-&OekZWYu>Y5_rdjez|(T+mL4(|K9;(&ei}
zQh#1r^MPrD_H+;Y`x*O>wfz3T_bFCs7b?YbTttl(Xm(S(%|4{yGK?LJ@Oem*@6FKQ
zifF2$E*JRAv^>Ptg0Dt*vHoLhgw!8Ip`1~_c)sUaMm=%3E@}JoEv1;LOe*}yW(l}f
z2H$frY@}>8-5AzF@ZE>_Ut_|KA&?1t+C4nJzlOD2+B)aP9OYsYuLPKrv$!I@=kM;H
zEZ6FT+ltfAc1HI>@ueZ5%5vOLz;1fkhxQ9ap|+d?#yO&^W+5$Z#H{e@=C}K}|C#xv
z%b)H0jd1>FA;2%i;dtb1FIfO!DB(@~!VH%LyC&1A{g+W$EE=_up_KeD006~;q7sOx
z<ah?Dwl$;&z>)lt$g{=2KDCuoYH3=v?bcr(d&-@u{-_jykO$@GAP&N!7^_EnrN(0R
zBRPs|AiBuvur*SvUjS?YCCtHw>EQgCBj(`3c=l}GAVqc(br=L^P>fc%Tv(;BzuIjE
zpHN>LfwXkgF4UUmsh;?eazv^NK<3Roq4EaW5zoJ_hU^0^|1JRDHqvzMcQaQgOjum7
zH@NP^@mVy7)z1hmz)5x~`6SptA5Nr^Zxbo3o<ru(UckQWhJh?`L8zSKuL(5XIkF$Q
z+MOa;qk{(ZmYg>$@rJhf>~mfarKx(Ws#z;k=e+M?=GfO!q3P<CpVkXo6n&?`aYiwk
z3#qQ9P8VlZrhQ$Xqxmdc(PB^skX09wb!#D4(ZJ!#-kJy^VUCvxx>GkfO4nfH={9?^
zKaZ=a4_TYC$cWlAk?*=fIJ=Xc&+P+%u7gcJDXk)X607EB4?1OY9Z=gzGRik3@z`yv
z9Ld&WMt-QVF{92YH~3Uy?$?7Y-FmIacdta4J(l$~kT<ypz-X0p-tj8M9LaI3-Bt;W
zYL#vUSQbpQd)mD37hco^I<&wX@o^tWw<;#6*)p2-#F~q9x+kz+IOf>8zyFV)T%-kI
z>A8bh>0gfT2g^4Xq_rCa9&N_fJ5{mJS!<}mM_V4;0H5UI3kmn}Q8Dyta;+R^Qoql9
zj9lYEvbUVprwTcYG)~ZM*Yhi{wpChX+pZ+<g`rkmj)P0P0EVSsVSI`_3!<$LX%3^B
zh^f)#ccF+enSOoTGd@zL8KDr8?t@WGl60$2LLZlLuO{VZ1Xs?Y<U$rW^=c9bnL>Fw
zoF}~pC8-3Vy<+$XVQ#Zv(sBmllHVk=WvY5LP&U=%Dp&5qP(|F1BAqjo0<6k$T-R!$
zEX50I_|G9e0!5mti?>sJf1UN=s{{y8i#+o}ZNBVIt5K+2bLdx4Skm>fwt?8DIX~zE
zw+!@vf;)rLy2?m}mxYIf8&`orP0+aJi61tCs{797jQ%|_Tm)cyGD?Yk1ElUn#oJ@0
zQQoIB792*rg9fv6&CvYNlwE%-VvWL|RQuC~7ZPc+c?J|Z6|PNQwCS?OlYM~B*aJc%
z#(<a3+v635zaPY>k7DEf2#NGJx+w=6<Ne}(YY9eakqKX$H|oBscteUvIT8o^MzvUq
zXIun0b;`}4T1=s|8|V9rVVkJcitqA$o;)1~-y>kA>qT|@qw12qQS=!hG$DBZu^O!x
zz+Rp~`iTEBOpkD;znTD8dcEq<lIwZ>2xm7#j{RH<MBU>!H>DFk=^NOWE-E=vR;6&-
zNjpi`?<DR)trr1j3|a5-JxA6~F&XdiZeUAM2qWkk<1kKz+VndHqqgO3pE)p3+hZPZ
zQ+1LE!W>Ryuuw5nvICT@xIo!uIKf;gjV<o&RAmoof3^?au6{`>FJgrd%t09L7Xvz5
zcsaERXeHQ6wM%U#P@#$zTh*91leR;B94nIl>|B4cOnd5Aknn%PK%$?ZQ<pS)4@BKK
z^5HZw)({y8ikL$E$<0aCdsfO3DYCDi?X{l$*SF~$-*$!;+NX7S(wz+XQ-j{-bByx-
zD!2Ld=+OF7P=sulaTzNbRXE&{wA9+;xYIcSpK&<_fUP1BGR)eZCe0YlQMC0mu;_O{
zZde;wt?o)|)Q|O}#$Od@tMTQl^IUnc`8wp9VQpQBg^H(|$1Tzjt-gqQ+Ijl_1hhx;
zV0-%NPqF_$wr3@0=W>8kpSP{o^SoK*;fWxJ7mKJ%mu|Ny%1FPkkpnZSM<l-tnR`#V
zso4XvjSzxL_w)9EyM%DI`<(|rTn^vrm`#MTnm1elRC9crN8c0k><mPJOx$>1*02dv
z7jBHi<5KaEAHaqZAvCF7L~0=ovo4bcd7MFowOe%qyoIVk1QTCIE2fb36rAA3HVZ&+
zV6}AH+^_a(hJ^sBrR2+WklEUYpb{V$B4#pO=2Y|8a;)8n#PFY~U47=)?sBP2nDnoy
zeInd`jNo)0l7?oXwemiYmY{@WZ&E}L(|=NkW{C2Vhc5;KifSzAJCMD}T+;3W=+`;6
z@RWeL#OV*UuB%gArr&?|kAOOid6Y$zP<1=XziFn=FEm|Uw&AeQcQfG<#>`JGJpeu@
zDxd_sO}{tfd}VqfC9!de7XFV-V9*C6Ysa6u^4G`=Z*5K0DMm9Yo2OqNNUPc9tjbcb
zT+)3HbSn#-H^wFoA`dyXtur>N5e;(pq<FyCD)R7i0ba1)2;+Xm0YPumW=jK(uIcLw
zL-Qny3~Na6j~cz&`7+zI9F?Sz`$zx~hVgJs_SsC9VC&lbdJtnr+s=%CcJevc$p|B(
z!|?wYYCkCk|21V;uL&hBKhk_4nf=Oj{E$kq5<xIS?&c$nugzNY)0;rCKj!p!Kk+!u
z$j3k}Rfy7-dNLGTe5?$vJDU~%QdQ~{4!c=TuB;yb7aNphrd9PAENTGSIt6+y1zw_q
z6x1^{@%1itKS6m=hSK6po%vrQH+(~BQ5jlwH$z<8-`&fjVHw55G+BQd^q<i!8e!cC
z%53MKDcq2`^9A(lU@@+~6Xc-e+OfB+?5&?=svy*0rr<s|CdaZ`rfR$jJ)nnMXpM4}
zHOrL#L;)QvU1z;hyVliqOGgELUuyVe?fKrUut%B9waLwOb%c1a_!k$<N`%dX2We25
zRHJnVT{ozW>XaIOHwRTgL*#S{-5!Fxq%(s0p=?O=>+n&a4y@B?TIWH%;M*9)+6?`6
z{~seLhz%N7x(xp^g1fq{6^SRnbgsr}+jIqlP|(|!%35<ikvx_m_dua^u|-1jV+&l@
zt~9rKtKc7?ql?(qWhq&=%92hs<*|Je*<ia17UTf^6}&cw%-d@v6gy$Gi~&Zq$2l&A
z6VzsBA63nxU}gGO?$%ciOHLMr{^5mI0HVvsMn3OKm@%u)zAUA<abQxu!+N(-pFs{f
zPr<t(0FJ$iBk}o8;)-FNqwGyG*0q<)<PhUv=XZ_L|HM5hAns`yE;sor?lC6sO6M%>
zOXlfl+T9#4EcfoPo&qAKtXuIc&sBQjxmdB)u8Co35_YWub3=%3%M%*+MIR*QH>@*9
zGogmD>7`i7OC-L>=VzDE5~u)+rRi~r6+pGfRljH}cj~mOunV|pmg~Ea9?kNc4rv&&
zbT2|Jy(tS-uqOTVV{g;NLAV4G;kJ*(ZyW1I`|2?nK;5Y)v5aID-J4MCJ|D{zwwdJ5
z;-XV3am8%@R2DO$GEW)=sj)A{eP-k`u~AN@9#M1B4cK+7m@q1HsZKTOX@%;dL8T~)
z-gyn4xvj{He~$E#0kESBLBjvpoxs8lU#sjYQoja|8Fx_Cec-dwU%$-^Hp?HZG{}Jj
zvC-&-miQAFZnNnx`1;<{sq+3zNjg&XxukFuqzp^RjG($xesf8DZl~(P1tka}@0;T*
zrucX4AyDy{JdCx(s&iltkOD&#3XdA>i(!qAmr3f-^C|Bi*AtY$5FP_DOuiiS@)3L?
zO+npNwC8`tssOyTxxkdW{r#Ph4P|WtK5s8T=yWSBDq%UCTmo;W>8M3fyQ#K@gfze8
z*<Nx`Se@r8C*<fwH0QYlZfi1YFX<Y=&lk3bWx?h3%pfA2(AnPjh$1bQz@N)scn!kV
zC<etlNyhkxiR{|p3doj|?V?yVy$<oxXKkmvKv@t?vRra)`n%WfZ^K#dpUI`s0IZ%v
zk9V+dVuE2hi(zxsa~X4b{0GJU5@L2fyI~$FZ?Fq^HpB7E<+@*QQ_iaQ=yGa^g^br{
z{Uraa9z{sA?bAM+l9)yPf$|^o-~$Si2nsFN;D5fQ)?z$R1I4+vpEN(N+vS4ab$7<F
z(!%BQljF5?kS(NDodX_FN40h3F`;;(mZAG+KUAfg#_@8<%Kp?+c9f@?{G1f7Hiv#~
z<g8g0iLk?d&epf-P|GsW%^Y=Mipqh9iqSvHy#{@Rp%~xi+IZ7m&}0$qf%_94=MP2Q
zwuzz9X@3Pr&A=`oQmE*j{^wl%lhI-S)~*5k#;d%v7`gxD4O@WVI^A6NkoT{z^e-bL
z^?(DQTA$3Og{}UVH?;nD2w-LYy9!ue_1{(a?<)L{nfU+7UfA``S8Kj3?f53~68NJi
Mt0q(O<n_D%0|WOn?f?J)

diff --git a/docs/index.html b/docs/index.html
deleted file mode 100644
index 61bf32c2..00000000
--- a/docs/index.html
+++ /dev/null
@@ -1,7 +0,0 @@
-<!doctype html>
-<html>
-<head>
-    <meta charset="utf-8">
-    <meta http-equiv="refresh" content="0; url=./vanna.html"/>
-</head>
-</html>
diff --git a/docs/search.js b/docs/search.js
deleted file mode 100644
index 408d1094..00000000
--- a/docs/search.js
+++ /dev/null
@@ -1,46 +0,0 @@
-window.pdocSearch = (function(){
-/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u<s.length;u++){var a=s[u];r[a]=this.pipeline.run(t.tokenizer(e[a]))}var l={};for(var c in o){var d=r[c]||r.any;if(d){var f=this.fieldSearch(d,c,o),h=o[c].boost;for(var p in f)f[p]=f[p]*h;for(var p in f)p in l?l[p]+=f[p]:l[p]=f[p]}}var v,g=[];for(var p in l)v={ref:p,score:l[p]},this.documentStore.hasDoc(p)&&(v.doc=this.documentStore.getDoc(p)),g.push(v);return g.sort(function(e,t){return t.score-e.score}),g},t.Index.prototype.fieldSearch=function(e,t,n){var i=n[t].bool,o=n[t].expand,r=n[t].boost,s=null,u={};return 0!==r?(e.forEach(function(e){var n=[e];1==o&&(n=this.index[t].expandToken(e));var r={};n.forEach(function(n){var o=this.index[t].getDocs(n),a=this.idf(n,t);if(s&&"AND"==i){var l={};for(var c in s)c in o&&(l[c]=o[c]);o=l}n==e&&this.fieldSearchStats(u,n,o);for(var c in o){var d=this.index[t].getTermFrequency(n,c),f=this.documentStore.getFieldLength(c,t),h=1;0!=f&&(h=1/Math.sqrt(f));var p=1;n!=e&&(p=.15*(1-(n.length-e.length)/n.length));var v=d*a*h*p;c in r?r[c]+=v:r[c]=v}},this),s=this.mergeScores(s,r,i)},this),s=this.coordNorm(s,u,e.length)):void 0},t.Index.prototype.mergeScores=function(e,t,n){if(!e)return t;if("AND"==n){var i={};for(var o in t)o in e&&(i[o]=e[o]+t[o]);return i}for(var o in t)o in e?e[o]+=t[o]:e[o]=t[o];return e},t.Index.prototype.fieldSearchStats=function(e,t,n){for(var i in n)i in e?e[i].push(t):e[i]=[t]},t.Index.prototype.coordNorm=function(e,t,n){for(var i in e)if(i in t){var o=t[i].length;e[i]=e[i]*o/n}return e},t.Index.prototype.toJSON=function(){var e={};return this._fields.forEach(function(t){e[t]=this.index[t].toJSON()},this),{version:t.version,fields:this._fields,ref:this._ref,documentStore:this.documentStore.toJSON(),index:e,pipeline:this.pipeline.toJSON()}},t.Index.prototype.use=function(e){var t=Array.prototype.slice.call(arguments,1);t.unshift(this),e.apply(this,t)},t.DocumentStore=function(e){this._save=null===e||void 0===e?!0:e,this.docs={},this.docInfo={},this.length=0},t.DocumentStore.load=function(e){var t=new this;return t.length=e.length,t.docs=e.docs,t.docInfo=e.docInfo,t._save=e.save,t},t.DocumentStore.prototype.isDocStored=function(){return this._save},t.DocumentStore.prototype.addDoc=function(t,n){this.hasDoc(t)||this.length++,this.docs[t]=this._save===!0?e(n):null},t.DocumentStore.prototype.getDoc=function(e){return this.hasDoc(e)===!1?null:this.docs[e]},t.DocumentStore.prototype.hasDoc=function(e){return e in this.docs},t.DocumentStore.prototype.removeDoc=function(e){this.hasDoc(e)&&(delete this.docs[e],delete this.docInfo[e],this.length--)},t.DocumentStore.prototype.addFieldLength=function(e,t,n){null!==e&&void 0!==e&&0!=this.hasDoc(e)&&(this.docInfo[e]||(this.docInfo[e]={}),this.docInfo[e][t]=n)},t.DocumentStore.prototype.updateFieldLength=function(e,t,n){null!==e&&void 0!==e&&0!=this.hasDoc(e)&&this.addFieldLength(e,t,n)},t.DocumentStore.prototype.getFieldLength=function(e,t){return null===e||void 0===e?0:e in this.docs&&t in this.docInfo[e]?this.docInfo[e][t]:0},t.DocumentStore.prototype.toJSON=function(){return{docs:this.docs,docInfo:this.docInfo,length:this.length,save:this._save}},t.stemmer=function(){var e={ational:"ate",tional:"tion",enci:"ence",anci:"ance",izer:"ize",bli:"ble",alli:"al",entli:"ent",eli:"e",ousli:"ous",ization:"ize",ation:"ate",ator:"ate",alism:"al",iveness:"ive",fulness:"ful",ousness:"ous",aliti:"al",iviti:"ive",biliti:"ble",logi:"log"},t={icate:"ic",ative:"",alize:"al",iciti:"ic",ical:"ic",ful:"",ness:""},n="[^aeiou]",i="[aeiouy]",o=n+"[^aeiouy]*",r=i+"[aeiou]*",s="^("+o+")?"+r+o,u="^("+o+")?"+r+o+"("+r+")?$",a="^("+o+")?"+r+o+r+o,l="^("+o+")?"+i,c=new RegExp(s),d=new RegExp(a),f=new RegExp(u),h=new RegExp(l),p=/^(.+?)(ss|i)es$/,v=/^(.+?)([^s])s$/,g=/^(.+?)eed$/,m=/^(.+?)(ed|ing)$/,y=/.$/,S=/(at|bl|iz)$/,x=new RegExp("([^aeiouylsz])\\1$"),w=new RegExp("^"+o+i+"[^aeiouwxy]$"),I=/^(.+?[^aeiou])y$/,b=/^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/,E=/^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/,D=/^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/,F=/^(.+?)(s|t)(ion)$/,_=/^(.+?)e$/,P=/ll$/,k=new RegExp("^"+o+i+"[^aeiouwxy]$"),z=function(n){var i,o,r,s,u,a,l;if(n.length<3)return n;if(r=n.substr(0,1),"y"==r&&(n=r.toUpperCase()+n.substr(1)),s=p,u=v,s.test(n)?n=n.replace(s,"$1$2"):u.test(n)&&(n=n.replace(u,"$1$2")),s=g,u=m,s.test(n)){var z=s.exec(n);s=c,s.test(z[1])&&(s=y,n=n.replace(s,""))}else if(u.test(n)){var z=u.exec(n);i=z[1],u=h,u.test(i)&&(n=i,u=S,a=x,l=w,u.test(n)?n+="e":a.test(n)?(s=y,n=n.replace(s,"")):l.test(n)&&(n+="e"))}if(s=I,s.test(n)){var z=s.exec(n);i=z[1],n=i+"i"}if(s=b,s.test(n)){var z=s.exec(n);i=z[1],o=z[2],s=c,s.test(i)&&(n=i+e[o])}if(s=E,s.test(n)){var z=s.exec(n);i=z[1],o=z[2],s=c,s.test(i)&&(n=i+t[o])}if(s=D,u=F,s.test(n)){var z=s.exec(n);i=z[1],s=d,s.test(i)&&(n=i)}else if(u.test(n)){var z=u.exec(n);i=z[1]+z[2],u=d,u.test(i)&&(n=i)}if(s=_,s.test(n)){var z=s.exec(n);i=z[1],s=d,u=f,a=k,(s.test(i)||u.test(i)&&!a.test(i))&&(n=i)}return s=P,u=d,s.test(n)&&u.test(n)&&(s=y,n=n.replace(s,"")),"y"==r&&(n=r.toLowerCase()+n.substr(1)),n};return z}(),t.Pipeline.registerFunction(t.stemmer,"stemmer"),t.stopWordFilter=function(e){return e&&t.stopWordFilter.stopWords[e]!==!0?e:void 0},t.clearStopWords=function(){t.stopWordFilter.stopWords={}},t.addStopWords=function(e){null!=e&&Array.isArray(e)!==!1&&e.forEach(function(e){t.stopWordFilter.stopWords[e]=!0},this)},t.resetStopWords=function(){t.stopWordFilter.stopWords=t.defaultStopWords},t.defaultStopWords={"":!0,a:!0,able:!0,about:!0,across:!0,after:!0,all:!0,almost:!0,also:!0,am:!0,among:!0,an:!0,and:!0,any:!0,are:!0,as:!0,at:!0,be:!0,because:!0,been:!0,but:!0,by:!0,can:!0,cannot:!0,could:!0,dear:!0,did:!0,"do":!0,does:!0,either:!0,"else":!0,ever:!0,every:!0,"for":!0,from:!0,get:!0,got:!0,had:!0,has:!0,have:!0,he:!0,her:!0,hers:!0,him:!0,his:!0,how:!0,however:!0,i:!0,"if":!0,"in":!0,into:!0,is:!0,it:!0,its:!0,just:!0,least:!0,let:!0,like:!0,likely:!0,may:!0,me:!0,might:!0,most:!0,must:!0,my:!0,neither:!0,no:!0,nor:!0,not:!0,of:!0,off:!0,often:!0,on:!0,only:!0,or:!0,other:!0,our:!0,own:!0,rather:!0,said:!0,say:!0,says:!0,she:!0,should:!0,since:!0,so:!0,some:!0,than:!0,that:!0,the:!0,their:!0,them:!0,then:!0,there:!0,these:!0,they:!0,"this":!0,tis:!0,to:!0,too:!0,twas:!0,us:!0,wants:!0,was:!0,we:!0,were:!0,what:!0,when:!0,where:!0,which:!0,"while":!0,who:!0,whom:!0,why:!0,will:!0,"with":!0,would:!0,yet:!0,you:!0,your:!0},t.stopWordFilter.stopWords=t.defaultStopWords,t.Pipeline.registerFunction(t.stopWordFilter,"stopWordFilter"),t.trimmer=function(e){if(null===e||void 0===e)throw new Error("token should not be undefined");return e.replace(/^\W+/,"").replace(/\W+$/,"")},t.Pipeline.registerFunction(t.trimmer,"trimmer"),t.InvertedIndex=function(){this.root={docs:{},df:0}},t.InvertedIndex.load=function(e){var t=new this;return t.root=e.root,t},t.InvertedIndex.prototype.addToken=function(e,t,n){for(var n=n||this.root,i=0;i<=e.length-1;){var o=e[i];o in n||(n[o]={docs:{},df:0}),i+=1,n=n[o]}var r=t.ref;n.docs[r]?n.docs[r]={tf:t.tf}:(n.docs[r]={tf:t.tf},n.df+=1)},t.InvertedIndex.prototype.hasToken=function(e){if(!e)return!1;for(var t=this.root,n=0;n<e.length;n++){if(!t[e[n]])return!1;t=t[e[n]]}return!0},t.InvertedIndex.prototype.getNode=function(e){if(!e)return null;for(var t=this.root,n=0;n<e.length;n++){if(!t[e[n]])return null;t=t[e[n]]}return t},t.InvertedIndex.prototype.getDocs=function(e){var t=this.getNode(e);return null==t?{}:t.docs},t.InvertedIndex.prototype.getTermFrequency=function(e,t){var n=this.getNode(e);return null==n?0:t in n.docs?n.docs[t].tf:0},t.InvertedIndex.prototype.getDocFreq=function(e){var t=this.getNode(e);return null==t?0:t.df},t.InvertedIndex.prototype.removeToken=function(e,t){if(e){var n=this.getNode(e);null!=n&&t in n.docs&&(delete n.docs[t],n.df-=1)}},t.InvertedIndex.prototype.expandToken=function(e,t,n){if(null==e||""==e)return[];var t=t||[];if(void 0==n&&(n=this.getNode(e),null==n))return t;n.df>0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e<arguments.length;e++)t=arguments[e],~this.indexOf(t)||this.elements.splice(this.locationFor(t),0,t);this.length=this.elements.length},lunr.SortedSet.prototype.toArray=function(){return this.elements.slice()},lunr.SortedSet.prototype.map=function(e,t){return this.elements.map(e,t)},lunr.SortedSet.prototype.forEach=function(e,t){return this.elements.forEach(e,t)},lunr.SortedSet.prototype.indexOf=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]<u[i]?n++:s[n]>u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o<r.length;o++)i.add(r[o]);return i},lunr.SortedSet.prototype.toJSON=function(){return this.toArray()},function(e,t){"function"==typeof define&&define.amd?define(t):"object"==typeof exports?module.exports=t():e.elasticlunr=t()}(this,function(){return t})}();
-    /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"vanna": {"fullname": "vanna", "modulename": "vanna", "kind": "module", "doc": "<h1 id=\"what-is-vannaai\">What is Vanna.AI?</h1>\n\n<p>Vanna.AI is a platform that allows you to ask questions about your data in plain English. It is an AI-powered data analyst that can answer questions about your data, generate SQL, and create visualizations.</p>\n\n<h1 id=\"how-do-i-use-vannaai\">How do I use Vanna.AI?</h1>\n\n<ul>\n<li>Import the Vanna.AI library</li>\n<li>Set your API key</li>\n<li>Set your organization name</li>\n<li>Train Vanna.AI on your data</li>\n<li>Ask questions about your data</li>\n</ul>\n\n<h1 id=\"how-does-vannaai-work\">How does Vanna.AI work?</h1>\n\n<pre class=\"mermaid-pre\"><div class=\"mermaid\">flowchart TD\n    DB[(Known Correct Question-SQL)]\n    Try[Try to Use DDL/Documentation]\n    SQL(SQL)\n    Check{Is the SQL correct?}\n    Generate[fa:fa-circle-question Use Examples to Generate]\n    DB --&gt; Find\n    Question[fa:fa-circle-question Question] --&gt; Find{fa:fa-magnifying-glass Do we have similar questions?}\n    Find -- Yes --&gt; Generate\n    Find -- No --&gt; Try\n    Generate --&gt; SQL\n    Try --&gt; SQL\n    SQL --&gt; Check\n    Check -- Yes --&gt; DB\n    Check -- No --&gt; Analyst[fa:fa-glasses Analyst Writes the SQL]\n    Analyst -- Adds --&gt; DB\n</div></pre>\n\n<h1 id=\"getting-started\">Getting Started</h1>\n\n<h2 id=\"how-do-i-import-the-vannaai-library\">How do I import the Vanna.AI library?</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"kn\">import</span> <span class=\"nn\">vanna</span> <span class=\"k\">as</span> <span class=\"nn\">vn</span>\n</code></pre>\n</div>\n\n<h2 id=\"how-do-i-set-my-api-key\">How do I set my API key?</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">api_key</span> <span class=\"o\">=</span> <span class=\"s1\">&#39;vanna-key-...&#39;</span>\n</code></pre>\n</div>\n\n<h2 id=\"how-do-i-set-my-organization-name\">How do I set my organization name?</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">set_org</span><span class=\"p\">(</span><span class=\"s1\">&#39;my_org&#39;</span><span class=\"p\">)</span>\n</code></pre>\n</div>\n\n<h2 id=\"how-do-i-train-vannaai-on-my-data\">How do I train Vanna.AI on my data?</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">store_sql</span><span class=\"p\">(</span>\n    <span class=\"n\">question</span><span class=\"o\">=</span><span class=\"s2\">&quot;Who are the top 10 customers by Sales?&quot;</span><span class=\"p\">,</span> \n    <span class=\"n\">sql</span><span class=\"o\">=</span><span class=\"s2\">&quot;SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10&quot;</span>\n<span class=\"p\">)</span>\n</code></pre>\n</div>\n\n<h2 id=\"how-do-i-ask-questions-about-my-data\">How do I ask questions about my data?</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">my_question</span> <span class=\"o\">=</span> <span class=\"s1\">&#39;What are the top 10 ABC by XYZ?&#39;</span>\n\n<span class=\"n\">sql</span> <span class=\"o\">=</span> <span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">generate_sql</span><span class=\"p\">(</span><span class=\"n\">question</span><span class=\"o\">=</span><span class=\"n\">my_question</span><span class=\"p\">,</span> <span class=\"n\">error_msg</span><span class=\"o\">=</span><span class=\"kc\">None</span><span class=\"p\">)</span>\n<span class=\"c1\"># SELECT * FROM table_name WHERE column_name = &#39;value&#39;</span>\n</code></pre>\n</div>\n\n<h2 id=\"full-example\">Full Example</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"kn\">import</span> <span class=\"nn\">vanna</span> <span class=\"k\">as</span> <span class=\"nn\">vn</span>\n\n<span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">api_key</span> <span class=\"o\">=</span> <span class=\"s1\">&#39;vanna-key-...&#39;</span> <span class=\"c1\"># Set your API key</span>\n<span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">set_org</span><span class=\"p\">(</span><span class=\"s1\">&#39;&#39;</span><span class=\"p\">)</span> <span class=\"c1\"># Set your organization name</span>\n\n<span class=\"c1\"># Train Vanna.AI on your data</span>\n<span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">store_sql</span><span class=\"p\">(</span>\n    <span class=\"n\">question</span><span class=\"o\">=</span><span class=\"s2\">&quot;Who are the top 10 customers by Sales?&quot;</span><span class=\"p\">,</span> \n    <span class=\"n\">sql</span><span class=\"o\">=</span><span class=\"s2\">&quot;SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10&quot;</span>\n<span class=\"p\">)</span>\n\n<span class=\"c1\"># Ask questions about your data</span>\n<span class=\"n\">my_question</span> <span class=\"o\">=</span> <span class=\"s1\">&#39;What are the top 10 ABC by XYZ?&#39;</span>\n\n<span class=\"c1\"># Generate SQL</span>\n<span class=\"n\">sql</span> <span class=\"o\">=</span> <span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">generate_sql</span><span class=\"p\">(</span><span class=\"n\">question</span><span class=\"o\">=</span><span class=\"n\">my_question</span><span class=\"p\">,</span> <span class=\"n\">error_msg</span><span class=\"o\">=</span><span class=\"kc\">None</span><span class=\"p\">)</span> \n\n<span class=\"c1\"># Connect to your database</span>\n<span class=\"n\">conn</span> <span class=\"o\">=</span> <span class=\"n\">snowflake</span><span class=\"o\">.</span><span class=\"n\">connector</span><span class=\"o\">.</span><span class=\"n\">connect</span><span class=\"p\">(</span>\n        <span class=\"n\">user</span><span class=\"o\">=</span><span class=\"s1\">&#39;my_user&#39;</span><span class=\"p\">,</span>\n        <span class=\"n\">password</span><span class=\"o\">=</span><span class=\"s1\">&#39;my_password&#39;</span><span class=\"p\">,</span>\n        <span class=\"n\">account</span><span class=\"o\">=</span><span class=\"s1\">&#39;my_account&#39;</span><span class=\"p\">,</span>\n        <span class=\"n\">database</span><span class=\"o\">=</span><span class=\"s1\">&#39;my_database&#39;</span><span class=\"p\">,</span>\n    <span class=\"p\">)</span>\n\n<span class=\"n\">cs</span> <span class=\"o\">=</span> <span class=\"n\">conn</span><span class=\"o\">.</span><span class=\"n\">cursor</span><span class=\"p\">()</span>\n\n<span class=\"c1\"># Get results</span>\n<span class=\"n\">df</span> <span class=\"o\">=</span> <span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">get_results</span><span class=\"p\">(</span>\n    <span class=\"n\">cs</span><span class=\"o\">=</span><span class=\"n\">cs</span><span class=\"p\">,</span> \n    <span class=\"n\">default_db</span><span class=\"o\">=</span><span class=\"n\">my_default_db</span><span class=\"p\">,</span> \n    <span class=\"n\">sql</span><span class=\"o\">=</span><span class=\"n\">sql</span>\n    <span class=\"p\">)</span>\n\n<span class=\"c1\"># Generate Plotly code</span>\n<span class=\"n\">plotly_code</span> <span class=\"o\">=</span> <span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">generate_plotly_code</span><span class=\"p\">(</span>\n    <span class=\"n\">question</span><span class=\"o\">=</span><span class=\"n\">my_question</span><span class=\"p\">,</span> \n    <span class=\"n\">sql</span><span class=\"o\">=</span><span class=\"n\">sql</span><span class=\"p\">,</span> \n    <span class=\"n\">df</span><span class=\"o\">=</span><span class=\"n\">df</span>\n    <span class=\"p\">)</span>\n\n<span class=\"c1\"># Get Plotly figure</span>\n<span class=\"n\">fig</span> <span class=\"o\">=</span> <span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">get_plotly_figure</span><span class=\"p\">(</span>\n    <span class=\"n\">plotly_code</span><span class=\"o\">=</span><span class=\"n\">plotly_code</span><span class=\"p\">,</span> \n    <span class=\"n\">df</span><span class=\"o\">=</span><span class=\"n\">df</span>\n    <span class=\"p\">)</span>\n</code></pre>\n</div>\n\n<h1 id=\"api-reference\">API Reference</h1>\n"}, "vanna.api_key": {"fullname": "vanna.api_key", "modulename": "vanna", "qualname": "api_key", "kind": "variable", "doc": "<p></p>\n", "annotation": ": Optional[str]", "default_value": "None"}, "vanna.set_org": {"fullname": "vanna.set_org", "modulename": "vanna", "qualname": "set_org", "kind": "function", "doc": "<p>Set the organization name for the Vanna.AI API.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>org (str):</strong>  The organization name.</li>\n</ul>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">org</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"kc\">None</span>:</span></span>", "funcdef": "def"}, "vanna.store_sql": {"fullname": "vanna.store_sql", "modulename": "vanna", "qualname": "store_sql", "kind": "function", "doc": "<p>Store a question and its corresponding SQL query in the Vanna.AI database.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>question (str):</strong>  The question to store.</li>\n<li><strong>sql (str):</strong>  The SQL query to store.</li>\n</ul>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">bool</span>:</span></span>", "funcdef": "def"}, "vanna.flag_sql_for_review": {"fullname": "vanna.flag_sql_for_review", "modulename": "vanna", "qualname": "flag_sql_for_review", "kind": "function", "doc": "<p>Flag a question and its corresponding SQL query for review by the Vanna.AI team.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>question (str):</strong>  The question to flag.</li>\n<li><strong>sql (str):</strong>  The SQL query to flag.</li>\n<li><strong>error_msg (str):</strong>  The error message to flag.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>bool: True if the question and SQL query were flagged successfully, False otherwise.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"n\">Optional</span><span class=\"p\">[</span><span class=\"nb\">str</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">error_msg</span><span class=\"p\">:</span> <span class=\"n\">Optional</span><span class=\"p\">[</span><span class=\"nb\">str</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"kc\">None</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">bool</span>:</span></span>", "funcdef": "def"}, "vanna.remove_sql": {"fullname": "vanna.remove_sql", "modulename": "vanna", "qualname": "remove_sql", "kind": "function", "doc": "<p>Remove a question and its corresponding SQL query from the Vanna.AI database.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>question (str):</strong>  The question to remove.</li>\n</ul>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">bool</span>:</span></span>", "funcdef": "def"}, "vanna.generate_sql": {"fullname": "vanna.generate_sql", "modulename": "vanna", "qualname": "generate_sql", "kind": "function", "doc": "<p>Generate an SQL query using the Vanna.AI API.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>question (str):</strong>  The question to generate an SQL query for.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>str or None: The SQL query, or None if an error occurred.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">str</span>:</span></span>", "funcdef": "def"}, "vanna.generate_plotly_code": {"fullname": "vanna.generate_plotly_code", "modulename": "vanna", "qualname": "generate_plotly_code", "kind": "function", "doc": "<p>Generate Plotly code using the Vanna.AI API.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>question (str):</strong>  The question to generate Plotly code for.</li>\n<li><strong>sql (str):</strong>  The SQL query to generate Plotly code for.</li>\n<li><strong>df (pd.DataFrame):</strong>  The dataframe to generate Plotly code for.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>str or None: The Plotly code, or None if an error occurred.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"n\">Optional</span><span class=\"p\">[</span><span class=\"nb\">str</span><span class=\"p\">]</span>,</span><span class=\"param\">\t<span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"n\">Optional</span><span class=\"p\">[</span><span class=\"nb\">str</span><span class=\"p\">]</span>,</span><span class=\"param\">\t<span class=\"n\">df</span><span class=\"p\">:</span> <span class=\"n\">pandas</span><span class=\"o\">.</span><span class=\"n\">core</span><span class=\"o\">.</span><span class=\"n\">frame</span><span class=\"o\">.</span><span class=\"n\">DataFrame</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">str</span>:</span></span>", "funcdef": "def"}, "vanna.get_plotly_figure": {"fullname": "vanna.get_plotly_figure", "modulename": "vanna", "qualname": "get_plotly_figure", "kind": "function", "doc": "<p>Get a Plotly figure from a dataframe and Plotly code.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>df (pd.DataFrame):</strong>  The dataframe to use.</li>\n<li><strong>plotly_code (str):</strong>  The Plotly code to use.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>plotly.graph_objs.Figure: The Plotly figure.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">plotly_code</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">df</span><span class=\"p\">:</span> <span class=\"n\">pandas</span><span class=\"o\">.</span><span class=\"n\">core</span><span class=\"o\">.</span><span class=\"n\">frame</span><span class=\"o\">.</span><span class=\"n\">DataFrame</span>,</span><span class=\"param\">\t<span class=\"n\">dark_mode</span><span class=\"p\">:</span> <span class=\"nb\">bool</span> <span class=\"o\">=</span> <span class=\"kc\">True</span></span><span class=\"return-annotation\">) -> <span class=\"n\">plotly</span><span class=\"o\">.</span><span class=\"n\">graph_objs</span><span class=\"o\">.</span><span class=\"n\">_figure</span><span class=\"o\">.</span><span class=\"n\">Figure</span>:</span></span>", "funcdef": "def"}, "vanna.get_results": {"fullname": "vanna.get_results", "modulename": "vanna", "qualname": "get_results", "kind": "function", "doc": "<p>Run the SQL query and return the results as a pandas dataframe.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>cs:</strong>  Snowflake connection cursor.</li>\n<li><strong>default_database (str):</strong>  The default database to use.</li>\n<li><strong>sql (str):</strong>  The SQL query to execute.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>pd.DataFrame: The results of the SQL query.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">cs</span>, </span><span class=\"param\"><span class=\"n\">default_database</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"n\">pandas</span><span class=\"o\">.</span><span class=\"n\">core</span><span class=\"o\">.</span><span class=\"n\">frame</span><span class=\"o\">.</span><span class=\"n\">DataFrame</span>:</span></span>", "funcdef": "def"}, "vanna.generate_explanation": {"fullname": "vanna.generate_explanation", "modulename": "vanna", "qualname": "generate_explanation", "kind": "function", "doc": "<h2 id=\"example\">Example</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">generate_explanation</span><span class=\"p\">(</span><span class=\"n\">sql</span><span class=\"o\">=</span><span class=\"s2\">&quot;SELECT * FROM students WHERE name = &#39;John Doe&#39;&quot;</span><span class=\"p\">)</span>\n<span class=\"c1\"># &#39;AI Response&#39;</span>\n</code></pre>\n</div>\n\n<p>Generate an explanation of an SQL query using the Vanna.AI API.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>sql (str):</strong>  The SQL query to generate an explanation for.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>str or None: The explanation, or None if an error occurred.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">str</span>:</span></span>", "funcdef": "def"}, "vanna.generate_question": {"fullname": "vanna.generate_question", "modulename": "vanna", "qualname": "generate_question", "kind": "function", "doc": "<h2 id=\"example\">Example</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">generate_question</span><span class=\"p\">(</span><span class=\"n\">sql</span><span class=\"o\">=</span><span class=\"s2\">&quot;SELECT * FROM students WHERE name = &#39;John Doe&#39;&quot;</span><span class=\"p\">)</span>\n<span class=\"c1\"># &#39;AI Response&#39;</span>\n</code></pre>\n</div>\n\n<p>Generate a question from an SQL query using the Vanna.AI API.</p>\n\n<h6 id=\"arguments\">Arguments:</h6>\n\n<ul>\n<li><strong>sql (str):</strong>  The SQL query to generate a question for.</li>\n</ul>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>str or None: The question, or None if an error occurred.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span><span class=\"return-annotation\">) -> <span class=\"nb\">str</span>:</span></span>", "funcdef": "def"}, "vanna.get_flagged_questions": {"fullname": "vanna.get_flagged_questions", "modulename": "vanna", "qualname": "get_flagged_questions", "kind": "function", "doc": "<h2 id=\"example\">Example</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">get_flagged_questions</span><span class=\"p\">()</span>\n<span class=\"c1\"># [FullQuestionDocument(...), ...]</span>\n</code></pre>\n</div>\n\n<p>Get a list of flagged questions from the Vanna.AI API.</p>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>List[FullQuestionDocument] or None: The list of flagged questions, or None if an error occurred.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"return-annotation\">) -> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">QuestionList</span>:</span></span>", "funcdef": "def"}, "vanna.get_accuracy_stats": {"fullname": "vanna.get_accuracy_stats", "modulename": "vanna", "qualname": "get_accuracy_stats", "kind": "function", "doc": "<h2 id=\"example\">Example</h2>\n\n<div class=\"pdoc-code codehilite\">\n<pre><span></span><code><span class=\"n\">vn</span><span class=\"o\">.</span><span class=\"n\">get_accuracy_stats</span><span class=\"p\">()</span>\n<span class=\"c1\"># {&#39;accuracy&#39;: 0.0, &#39;total&#39;: 0, &#39;correct&#39;: 0}</span>\n</code></pre>\n</div>\n\n<p>Get the accuracy statistics from the Vanna.AI API.</p>\n\n<h6 id=\"returns\">Returns:</h6>\n\n<blockquote>\n  <p>dict or None: The accuracy statistics, or None if an error occurred.</p>\n</blockquote>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"return-annotation\">) -> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">AccuracyStats</span>:</span></span>", "funcdef": "def"}, "vanna.types": {"fullname": "vanna.types", "modulename": "vanna.types", "kind": "module", "doc": "<p></p>\n"}, "vanna.types.Status": {"fullname": "vanna.types.Status", "modulename": "vanna.types", "qualname": "Status", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.Status.__init__": {"fullname": "vanna.types.Status.__init__", "modulename": "vanna.types", "qualname": "Status.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">success</span><span class=\"p\">:</span> <span class=\"nb\">bool</span>, </span><span class=\"param\"><span class=\"n\">message</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.Status.success": {"fullname": "vanna.types.Status.success", "modulename": "vanna.types", "qualname": "Status.success", "kind": "variable", "doc": "<p></p>\n", "annotation": ": bool"}, "vanna.types.Status.message": {"fullname": "vanna.types.Status.message", "modulename": "vanna.types", "qualname": "Status.message", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.QuestionList": {"fullname": "vanna.types.QuestionList", "modulename": "vanna.types", "qualname": "QuestionList", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.QuestionList.__init__": {"fullname": "vanna.types.QuestionList.__init__", "modulename": "vanna.types", "qualname": "QuestionList.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">questions</span><span class=\"p\">:</span> <span class=\"n\">List</span><span class=\"p\">[</span><span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">FullQuestionDocument</span><span class=\"p\">]</span></span>)</span>"}, "vanna.types.QuestionList.questions": {"fullname": "vanna.types.QuestionList.questions", "modulename": "vanna.types", "qualname": "QuestionList.questions", "kind": "variable", "doc": "<p></p>\n", "annotation": ": List[vanna.types.FullQuestionDocument]"}, "vanna.types.FullQuestionDocument": {"fullname": "vanna.types.FullQuestionDocument", "modulename": "vanna.types", "qualname": "FullQuestionDocument", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.FullQuestionDocument.__init__": {"fullname": "vanna.types.FullQuestionDocument.__init__", "modulename": "vanna.types", "qualname": "FullQuestionDocument.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"nb\">id</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">QuestionId</span>,</span><span class=\"param\">\t<span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">Question</span>,</span><span class=\"param\">\t<span class=\"n\">answer</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">SQLAnswer</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">data</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">DataResult</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">plotly</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">PlotlyResult</span> <span class=\"o\">|</span> <span class=\"kc\">None</span></span>)</span>"}, "vanna.types.FullQuestionDocument.id": {"fullname": "vanna.types.FullQuestionDocument.id", "modulename": "vanna.types", "qualname": "FullQuestionDocument.id", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.QuestionId"}, "vanna.types.FullQuestionDocument.question": {"fullname": "vanna.types.FullQuestionDocument.question", "modulename": "vanna.types", "qualname": "FullQuestionDocument.question", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.Question"}, "vanna.types.FullQuestionDocument.answer": {"fullname": "vanna.types.FullQuestionDocument.answer", "modulename": "vanna.types", "qualname": "FullQuestionDocument.answer", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.SQLAnswer | None"}, "vanna.types.FullQuestionDocument.data": {"fullname": "vanna.types.FullQuestionDocument.data", "modulename": "vanna.types", "qualname": "FullQuestionDocument.data", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.DataResult | None"}, "vanna.types.FullQuestionDocument.plotly": {"fullname": "vanna.types.FullQuestionDocument.plotly", "modulename": "vanna.types", "qualname": "FullQuestionDocument.plotly", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.PlotlyResult | None"}, "vanna.types.QuestionSQLPair": {"fullname": "vanna.types.QuestionSQLPair", "modulename": "vanna.types", "qualname": "QuestionSQLPair", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.QuestionSQLPair.__init__": {"fullname": "vanna.types.QuestionSQLPair.__init__", "modulename": "vanna.types", "qualname": "QuestionSQLPair.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.QuestionSQLPair.question": {"fullname": "vanna.types.QuestionSQLPair.question", "modulename": "vanna.types", "qualname": "QuestionSQLPair.question", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.QuestionSQLPair.sql": {"fullname": "vanna.types.QuestionSQLPair.sql", "modulename": "vanna.types", "qualname": "QuestionSQLPair.sql", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.Organization": {"fullname": "vanna.types.Organization", "modulename": "vanna.types", "qualname": "Organization", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.Organization.__init__": {"fullname": "vanna.types.Organization.__init__", "modulename": "vanna.types", "qualname": "Organization.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">name</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">user</span><span class=\"p\">:</span> <span class=\"nb\">str</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">connection</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">Connection</span> <span class=\"o\">|</span> <span class=\"kc\">None</span></span>)</span>"}, "vanna.types.Organization.name": {"fullname": "vanna.types.Organization.name", "modulename": "vanna.types", "qualname": "Organization.name", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.Organization.user": {"fullname": "vanna.types.Organization.user", "modulename": "vanna.types", "qualname": "Organization.user", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str | None"}, "vanna.types.Organization.connection": {"fullname": "vanna.types.Organization.connection", "modulename": "vanna.types", "qualname": "Organization.connection", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.Connection | None"}, "vanna.types.QuestionId": {"fullname": "vanna.types.QuestionId", "modulename": "vanna.types", "qualname": "QuestionId", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.QuestionId.__init__": {"fullname": "vanna.types.QuestionId.__init__", "modulename": "vanna.types", "qualname": "QuestionId.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"nb\">id</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.QuestionId.id": {"fullname": "vanna.types.QuestionId.id", "modulename": "vanna.types", "qualname": "QuestionId.id", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.Question": {"fullname": "vanna.types.Question", "modulename": "vanna.types", "qualname": "Question", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.Question.__init__": {"fullname": "vanna.types.Question.__init__", "modulename": "vanna.types", "qualname": "Question.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.Question.question": {"fullname": "vanna.types.Question.question", "modulename": "vanna.types", "qualname": "Question.question", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.QuestionCategory": {"fullname": "vanna.types.QuestionCategory", "modulename": "vanna.types", "qualname": "QuestionCategory", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.QuestionCategory.__init__": {"fullname": "vanna.types.QuestionCategory.__init__", "modulename": "vanna.types", "qualname": "QuestionCategory.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">category</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.QuestionCategory.question": {"fullname": "vanna.types.QuestionCategory.question", "modulename": "vanna.types", "qualname": "QuestionCategory.question", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.QuestionCategory.category": {"fullname": "vanna.types.QuestionCategory.category", "modulename": "vanna.types", "qualname": "QuestionCategory.category", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"fullname": "vanna.types.QuestionCategory.NO_SQL_GENERATED", "modulename": "vanna.types", "qualname": "QuestionCategory.NO_SQL_GENERATED", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;No SQL Generated&#x27;"}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"fullname": "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN", "modulename": "vanna.types", "qualname": "QuestionCategory.SQL_UNABLE_TO_RUN", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;SQL Unable to Run&#x27;"}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"fullname": "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY", "modulename": "vanna.types", "qualname": "QuestionCategory.BOOTSTRAP_TRAINING_QUERY", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;Bootstrap Training Query&#x27;"}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"fullname": "vanna.types.QuestionCategory.ASSUMED_CORRECT", "modulename": "vanna.types", "qualname": "QuestionCategory.ASSUMED_CORRECT", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;Assumed Correct&#x27;"}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"fullname": "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW", "modulename": "vanna.types", "qualname": "QuestionCategory.FLAGGED_FOR_REVIEW", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;Flagged for Review&#x27;"}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_APPROVED", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;Reviewed and Approved&#x27;"}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_REJECTED", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;Reviewed and Rejected&#x27;"}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_UPDATED", "kind": "variable", "doc": "<p></p>\n", "default_value": "&#x27;Reviewed and Updated&#x27;"}, "vanna.types.AccuracyStats": {"fullname": "vanna.types.AccuracyStats", "modulename": "vanna.types", "qualname": "AccuracyStats", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.AccuracyStats.__init__": {"fullname": "vanna.types.AccuracyStats.__init__", "modulename": "vanna.types", "qualname": "AccuracyStats.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">num_questions</span><span class=\"p\">:</span> <span class=\"nb\">int</span>, </span><span class=\"param\"><span class=\"n\">data</span><span class=\"p\">:</span> <span class=\"n\">Dict</span><span class=\"p\">[</span><span class=\"nb\">str</span><span class=\"p\">,</span> <span class=\"nb\">int</span><span class=\"p\">]</span></span>)</span>"}, "vanna.types.AccuracyStats.num_questions": {"fullname": "vanna.types.AccuracyStats.num_questions", "modulename": "vanna.types", "qualname": "AccuracyStats.num_questions", "kind": "variable", "doc": "<p></p>\n", "annotation": ": int"}, "vanna.types.AccuracyStats.data": {"fullname": "vanna.types.AccuracyStats.data", "modulename": "vanna.types", "qualname": "AccuracyStats.data", "kind": "variable", "doc": "<p></p>\n", "annotation": ": Dict[str, int]"}, "vanna.types.Followup": {"fullname": "vanna.types.Followup", "modulename": "vanna.types", "qualname": "Followup", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.Followup.__init__": {"fullname": "vanna.types.Followup.__init__", "modulename": "vanna.types", "qualname": "Followup.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">followup</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.Followup.followup": {"fullname": "vanna.types.Followup.followup", "modulename": "vanna.types", "qualname": "Followup.followup", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.QuestionEmbedding": {"fullname": "vanna.types.QuestionEmbedding", "modulename": "vanna.types", "qualname": "QuestionEmbedding", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.QuestionEmbedding.__init__": {"fullname": "vanna.types.QuestionEmbedding.__init__", "modulename": "vanna.types", "qualname": "QuestionEmbedding.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">Question</span>, </span><span class=\"param\"><span class=\"n\">embedding</span><span class=\"p\">:</span> <span class=\"n\">List</span><span class=\"p\">[</span><span class=\"nb\">float</span><span class=\"p\">]</span></span>)</span>"}, "vanna.types.QuestionEmbedding.question": {"fullname": "vanna.types.QuestionEmbedding.question", "modulename": "vanna.types", "qualname": "QuestionEmbedding.question", "kind": "variable", "doc": "<p></p>\n", "annotation": ": vanna.types.Question"}, "vanna.types.QuestionEmbedding.embedding": {"fullname": "vanna.types.QuestionEmbedding.embedding", "modulename": "vanna.types", "qualname": "QuestionEmbedding.embedding", "kind": "variable", "doc": "<p></p>\n", "annotation": ": List[float]"}, "vanna.types.Connection": {"fullname": "vanna.types.Connection", "modulename": "vanna.types", "qualname": "Connection", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.SQLAnswer": {"fullname": "vanna.types.SQLAnswer", "modulename": "vanna.types", "qualname": "SQLAnswer", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.SQLAnswer.__init__": {"fullname": "vanna.types.SQLAnswer.__init__", "modulename": "vanna.types", "qualname": "SQLAnswer.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">raw_answer</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">prefix</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">postfix</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.SQLAnswer.raw_answer": {"fullname": "vanna.types.SQLAnswer.raw_answer", "modulename": "vanna.types", "qualname": "SQLAnswer.raw_answer", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.SQLAnswer.prefix": {"fullname": "vanna.types.SQLAnswer.prefix", "modulename": "vanna.types", "qualname": "SQLAnswer.prefix", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.SQLAnswer.postfix": {"fullname": "vanna.types.SQLAnswer.postfix", "modulename": "vanna.types", "qualname": "SQLAnswer.postfix", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.SQLAnswer.sql": {"fullname": "vanna.types.SQLAnswer.sql", "modulename": "vanna.types", "qualname": "SQLAnswer.sql", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.Explanation": {"fullname": "vanna.types.Explanation", "modulename": "vanna.types", "qualname": "Explanation", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.Explanation.__init__": {"fullname": "vanna.types.Explanation.__init__", "modulename": "vanna.types", "qualname": "Explanation.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">explanation</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.Explanation.explanation": {"fullname": "vanna.types.Explanation.explanation", "modulename": "vanna.types", "qualname": "Explanation.explanation", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.DataResult": {"fullname": "vanna.types.DataResult", "modulename": "vanna.types", "qualname": "DataResult", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.DataResult.__init__": {"fullname": "vanna.types.DataResult.__init__", "modulename": "vanna.types", "qualname": "DataResult.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">question</span><span class=\"p\">:</span> <span class=\"nb\">str</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">sql</span><span class=\"p\">:</span> <span class=\"nb\">str</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">table_markdown</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">error</span><span class=\"p\">:</span> <span class=\"nb\">str</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">correction_attempts</span><span class=\"p\">:</span> <span class=\"nb\">int</span></span>)</span>"}, "vanna.types.DataResult.question": {"fullname": "vanna.types.DataResult.question", "modulename": "vanna.types", "qualname": "DataResult.question", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str | None"}, "vanna.types.DataResult.sql": {"fullname": "vanna.types.DataResult.sql", "modulename": "vanna.types", "qualname": "DataResult.sql", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str | None"}, "vanna.types.DataResult.table_markdown": {"fullname": "vanna.types.DataResult.table_markdown", "modulename": "vanna.types", "qualname": "DataResult.table_markdown", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.DataResult.error": {"fullname": "vanna.types.DataResult.error", "modulename": "vanna.types", "qualname": "DataResult.error", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str | None"}, "vanna.types.DataResult.correction_attempts": {"fullname": "vanna.types.DataResult.correction_attempts", "modulename": "vanna.types", "qualname": "DataResult.correction_attempts", "kind": "variable", "doc": "<p></p>\n", "annotation": ": int"}, "vanna.types.PlotlyResult": {"fullname": "vanna.types.PlotlyResult", "modulename": "vanna.types", "qualname": "PlotlyResult", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.PlotlyResult.__init__": {"fullname": "vanna.types.PlotlyResult.__init__", "modulename": "vanna.types", "qualname": "PlotlyResult.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">plotly_code</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.PlotlyResult.plotly_code": {"fullname": "vanna.types.PlotlyResult.plotly_code", "modulename": "vanna.types", "qualname": "PlotlyResult.plotly_code", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.WarehouseDefinition": {"fullname": "vanna.types.WarehouseDefinition", "modulename": "vanna.types", "qualname": "WarehouseDefinition", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.WarehouseDefinition.__init__": {"fullname": "vanna.types.WarehouseDefinition.__init__", "modulename": "vanna.types", "qualname": "WarehouseDefinition.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">name</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">tables</span><span class=\"p\">:</span> <span class=\"n\">List</span><span class=\"p\">[</span><span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">TableDefinition</span><span class=\"p\">]</span></span>)</span>"}, "vanna.types.WarehouseDefinition.name": {"fullname": "vanna.types.WarehouseDefinition.name", "modulename": "vanna.types", "qualname": "WarehouseDefinition.name", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.WarehouseDefinition.tables": {"fullname": "vanna.types.WarehouseDefinition.tables", "modulename": "vanna.types", "qualname": "WarehouseDefinition.tables", "kind": "variable", "doc": "<p></p>\n", "annotation": ": List[vanna.types.TableDefinition]"}, "vanna.types.TableDefinition": {"fullname": "vanna.types.TableDefinition", "modulename": "vanna.types", "qualname": "TableDefinition", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.TableDefinition.__init__": {"fullname": "vanna.types.TableDefinition.__init__", "modulename": "vanna.types", "qualname": "TableDefinition.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">schema_name</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">table_name</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">ddl</span><span class=\"p\">:</span> <span class=\"nb\">str</span> <span class=\"o\">|</span> <span class=\"kc\">None</span>,</span><span class=\"param\">\t<span class=\"n\">columns</span><span class=\"p\">:</span> <span class=\"n\">List</span><span class=\"p\">[</span><span class=\"n\">vanna</span><span class=\"o\">.</span><span class=\"n\">types</span><span class=\"o\">.</span><span class=\"n\">ColumnDefinition</span><span class=\"p\">]</span></span>)</span>"}, "vanna.types.TableDefinition.schema_name": {"fullname": "vanna.types.TableDefinition.schema_name", "modulename": "vanna.types", "qualname": "TableDefinition.schema_name", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.TableDefinition.table_name": {"fullname": "vanna.types.TableDefinition.table_name", "modulename": "vanna.types", "qualname": "TableDefinition.table_name", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.TableDefinition.ddl": {"fullname": "vanna.types.TableDefinition.ddl", "modulename": "vanna.types", "qualname": "TableDefinition.ddl", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str | None"}, "vanna.types.TableDefinition.columns": {"fullname": "vanna.types.TableDefinition.columns", "modulename": "vanna.types", "qualname": "TableDefinition.columns", "kind": "variable", "doc": "<p></p>\n", "annotation": ": List[vanna.types.ColumnDefinition]"}, "vanna.types.ColumnDefinition": {"fullname": "vanna.types.ColumnDefinition", "modulename": "vanna.types", "qualname": "ColumnDefinition", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.ColumnDefinition.__init__": {"fullname": "vanna.types.ColumnDefinition.__init__", "modulename": "vanna.types", "qualname": "ColumnDefinition.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code multiline\">(<span class=\"param\">\t<span class=\"n\">name</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"nb\">type</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">is_primary_key</span><span class=\"p\">:</span> <span class=\"nb\">bool</span>,</span><span class=\"param\">\t<span class=\"n\">is_foreign_key</span><span class=\"p\">:</span> <span class=\"nb\">bool</span>,</span><span class=\"param\">\t<span class=\"n\">foreign_key_table</span><span class=\"p\">:</span> <span class=\"nb\">str</span>,</span><span class=\"param\">\t<span class=\"n\">foreign_key_column</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.ColumnDefinition.name": {"fullname": "vanna.types.ColumnDefinition.name", "modulename": "vanna.types", "qualname": "ColumnDefinition.name", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.type": {"fullname": "vanna.types.ColumnDefinition.type", "modulename": "vanna.types", "qualname": "ColumnDefinition.type", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.is_primary_key": {"fullname": "vanna.types.ColumnDefinition.is_primary_key", "modulename": "vanna.types", "qualname": "ColumnDefinition.is_primary_key", "kind": "variable", "doc": "<p></p>\n", "annotation": ": bool"}, "vanna.types.ColumnDefinition.is_foreign_key": {"fullname": "vanna.types.ColumnDefinition.is_foreign_key", "modulename": "vanna.types", "qualname": "ColumnDefinition.is_foreign_key", "kind": "variable", "doc": "<p></p>\n", "annotation": ": bool"}, "vanna.types.ColumnDefinition.foreign_key_table": {"fullname": "vanna.types.ColumnDefinition.foreign_key_table", "modulename": "vanna.types", "qualname": "ColumnDefinition.foreign_key_table", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.foreign_key_column": {"fullname": "vanna.types.ColumnDefinition.foreign_key_column", "modulename": "vanna.types", "qualname": "ColumnDefinition.foreign_key_column", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.Diagram": {"fullname": "vanna.types.Diagram", "modulename": "vanna.types", "qualname": "Diagram", "kind": "class", "doc": "<p></p>\n"}, "vanna.types.Diagram.__init__": {"fullname": "vanna.types.Diagram.__init__", "modulename": "vanna.types", "qualname": "Diagram.__init__", "kind": "function", "doc": "<p></p>\n", "signature": "<span class=\"signature pdoc-code condensed\">(<span class=\"param\"><span class=\"n\">raw</span><span class=\"p\">:</span> <span class=\"nb\">str</span>, </span><span class=\"param\"><span class=\"n\">mermaid_code</span><span class=\"p\">:</span> <span class=\"nb\">str</span></span>)</span>"}, "vanna.types.Diagram.raw": {"fullname": "vanna.types.Diagram.raw", "modulename": "vanna.types", "qualname": "Diagram.raw", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}, "vanna.types.Diagram.mermaid_code": {"fullname": "vanna.types.Diagram.mermaid_code", "modulename": "vanna.types", "qualname": "Diagram.mermaid_code", "kind": "variable", "doc": "<p></p>\n", "annotation": ": str"}}, "docInfo": {"vanna": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1004}, "vanna.api_key": {"qualname": 2, "fullname": 3, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "vanna.set_org": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 30}, "vanna.store_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 48}, "vanna.flag_sql_for_review": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 87}, "vanna.remove_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 35}, "vanna.generate_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 57}, "vanna.generate_plotly_code": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 87}, "vanna.get_plotly_figure": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 64}, "vanna.get_results": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 76}, "vanna.generate_explanation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 116}, "vanna.generate_question": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 116}, "vanna.get_flagged_questions": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 70}, "vanna.get_accuracy_stats": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 81}, "vanna.types": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.Status.success": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status.message": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionList": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionList.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "vanna.types.QuestionList.questions": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 127, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.id": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.answer": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.data": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.plotly": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.sql": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "vanna.types.Organization.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.user": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.connection": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionId": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionId.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.QuestionId.id": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Question": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Question.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Question.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.category": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.num_questions": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.data": {"qualname": 2, "fullname": 4, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Followup": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Followup.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Followup.followup": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.embedding": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Connection": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.raw_answer": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.prefix": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.postfix": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.sql": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Explanation": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Explanation.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Explanation.explanation": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 79, "bases": 0, "doc": 3}, "vanna.types.DataResult.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.sql": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.table_markdown": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.error": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.correction_attempts": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult.plotly_code": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.tables": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.schema_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.table_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.ddl": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.columns": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.type": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.is_primary_key": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.is_foreign_key": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.foreign_key_table": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.foreign_key_column": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "vanna.types.Diagram.raw": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram.mermaid_code": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 109, "save": true}, "index": {"qualname": {"root": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.store_sql": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}}, "df": 4}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}}, "df": 6}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.success": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.schema_name": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remove_sql": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 3}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.prefix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.postfix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}, "vanna.types.Connection": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.category": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.DataResult.error": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}}, "df": 9, "s": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 3, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}}, "df": 4}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 12}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19}}}, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 2}, "s": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Status.message": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 7}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Organization.name": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}}, "df": 5}}}, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Organization.user": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.ColumnDefinition.type": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "fullname": {"root": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}, "vanna.api_key": {"tf": 1}, "vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}, "vanna.types": {"tf": 1}, "vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}, "vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.Connection": {"tf": 1}, "vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 109}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.store_sql": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}}, "df": 4}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}}, "df": 6}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.success": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.schema_name": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remove_sql": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 3}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.prefix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.postfix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}, "vanna.types.Connection": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.category": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.DataResult.error": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}}, "df": 9, "s": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 3, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}}, "df": 4}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 12}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.ColumnDefinition.type": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types": {"tf": 1}, "vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}, "vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.Connection": {"tf": 1}, "vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 95}}}}, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 19}}}, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 2}, "s": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Status.message": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 7}}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Organization.name": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}}, "df": 5}}}, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Organization.user": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "annotation": {"root": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.data": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1.4142135623730951}, "vanna.types.Organization.connection": {"tf": 1.4142135623730951}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1.4142135623730951}, "vanna.types.DataResult.sql": {"tf": 1.4142135623730951}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1.4142135623730951}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1.4142135623730951}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 48, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.Status.success": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Status.message": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 30}}, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 10}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}}, "df": 7}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 9}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 3}}}}}, "default_value": {"root": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.4142135623730951}}, "df": 8, "n": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.api_key": {"tf": 1}}, "df": 1}}}}, "x": {"2": {"7": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.4142135623730951}}, "df": 8}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}, "signature": {"root": {"docs": {"vanna.set_org": {"tf": 4}, "vanna.store_sql": {"tf": 4.898979485566356}, "vanna.flag_sql_for_review": {"tf": 7.54983443527075}, "vanna.remove_sql": {"tf": 4}, "vanna.generate_sql": {"tf": 4}, "vanna.generate_plotly_code": {"tf": 7.54983443527075}, "vanna.get_plotly_figure": {"tf": 8.12403840463596}, "vanna.get_results": {"tf": 6.324555320336759}, "vanna.generate_explanation": {"tf": 4}, "vanna.generate_question": {"tf": 4}, "vanna.get_flagged_questions": {"tf": 4.123105625617661}, "vanna.get_accuracy_stats": {"tf": 4.123105625617661}, "vanna.types.Status.__init__": {"tf": 4.47213595499958}, "vanna.types.QuestionList.__init__": {"tf": 5}, "vanna.types.FullQuestionDocument.__init__": {"tf": 10.198039027185569}, "vanna.types.QuestionSQLPair.__init__": {"tf": 4.47213595499958}, "vanna.types.Organization.__init__": {"tf": 7}, "vanna.types.QuestionId.__init__": {"tf": 3.4641016151377544}, "vanna.types.Question.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionCategory.__init__": {"tf": 4.47213595499958}, "vanna.types.AccuracyStats.__init__": {"tf": 5.477225575051661}, "vanna.types.Followup.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionEmbedding.__init__": {"tf": 5.744562646538029}, "vanna.types.SQLAnswer.__init__": {"tf": 6}, "vanna.types.Explanation.__init__": {"tf": 3.4641016151377544}, "vanna.types.DataResult.__init__": {"tf": 8}, "vanna.types.PlotlyResult.__init__": {"tf": 3.4641016151377544}, "vanna.types.WarehouseDefinition.__init__": {"tf": 5.744562646538029}, "vanna.types.TableDefinition.__init__": {"tf": 7.615773105863909}, "vanna.types.ColumnDefinition.__init__": {"tf": 7.615773105863909}, "vanna.types.Diagram.__init__": {"tf": 4.47213595499958}}, "df": 31, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.set_org": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1.4142135623730951}, "vanna.types.Organization.__init__": {"tf": 1.4142135623730951}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1.4142135623730951}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 2}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 2}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.__init__": {"tf": 2}, "vanna.types.Diagram.__init__": {"tf": 1.4142135623730951}}, "df": 26}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1.4142135623730951}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Explanation.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.Status.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.__init__": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionEmbedding.__init__": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 2.23606797749979}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 2.23606797749979}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.Organization.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 2}}, "df": 1}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"vanna.get_accuracy_stats": {"tf": 2}}, "df": 1}, "1": {"0": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"vanna": {"tf": 4.69041575982343}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 2}, "vanna.get_accuracy_stats": {"tf": 2.449489742783178}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"vanna": {"tf": 23.811761799581316}, "vanna.api_key": {"tf": 1.7320508075688772}, "vanna.set_org": {"tf": 3.872983346207417}, "vanna.store_sql": {"tf": 4.58257569495584}, "vanna.flag_sql_for_review": {"tf": 6}, "vanna.remove_sql": {"tf": 3.872983346207417}, "vanna.generate_sql": {"tf": 4.898979485566356}, "vanna.generate_plotly_code": {"tf": 6}, "vanna.get_plotly_figure": {"tf": 5.477225575051661}, "vanna.get_results": {"tf": 5.916079783099616}, "vanna.generate_explanation": {"tf": 7.810249675906654}, "vanna.generate_question": {"tf": 7.810249675906654}, "vanna.get_flagged_questions": {"tf": 6.164414002968976}, "vanna.get_accuracy_stats": {"tf": 6.4031242374328485}, "vanna.types": {"tf": 1.7320508075688772}, "vanna.types.Status": {"tf": 1.7320508075688772}, "vanna.types.Status.__init__": {"tf": 1.7320508075688772}, "vanna.types.Status.success": {"tf": 1.7320508075688772}, "vanna.types.Status.message": {"tf": 1.7320508075688772}, "vanna.types.QuestionList": {"tf": 1.7320508075688772}, "vanna.types.QuestionList.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionList.questions": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.id": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.question": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.answer": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.data": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.sql": {"tf": 1.7320508075688772}, "vanna.types.Organization": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.name": {"tf": 1.7320508075688772}, "vanna.types.Organization.user": {"tf": 1.7320508075688772}, "vanna.types.Organization.connection": {"tf": 1.7320508075688772}, "vanna.types.QuestionId": {"tf": 1.7320508075688772}, "vanna.types.QuestionId.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionId.id": {"tf": 1.7320508075688772}, "vanna.types.Question": {"tf": 1.7320508075688772}, "vanna.types.Question.__init__": {"tf": 1.7320508075688772}, "vanna.types.Question.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.category": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.ASSUMED_CORRECT": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.__init__": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.num_questions": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.data": {"tf": 1.7320508075688772}, "vanna.types.Followup": {"tf": 1.7320508075688772}, "vanna.types.Followup.__init__": {"tf": 1.7320508075688772}, "vanna.types.Followup.followup": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1.7320508075688772}, "vanna.types.Connection": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.__init__": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.prefix": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.postfix": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.sql": {"tf": 1.7320508075688772}, "vanna.types.Explanation": {"tf": 1.7320508075688772}, "vanna.types.Explanation.__init__": {"tf": 1.7320508075688772}, "vanna.types.Explanation.explanation": {"tf": 1.7320508075688772}, "vanna.types.DataResult": {"tf": 1.7320508075688772}, "vanna.types.DataResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.DataResult.question": {"tf": 1.7320508075688772}, "vanna.types.DataResult.sql": {"tf": 1.7320508075688772}, "vanna.types.DataResult.table_markdown": {"tf": 1.7320508075688772}, "vanna.types.DataResult.error": {"tf": 1.7320508075688772}, "vanna.types.DataResult.correction_attempts": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.name": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.tables": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.schema_name": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.table_name": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.ddl": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.columns": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.name": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.type": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1.7320508075688772}, "vanna.types.Diagram": {"tf": 1.7320508075688772}, "vanna.types.Diagram.__init__": {"tf": 1.7320508075688772}, "vanna.types.Diagram.raw": {"tf": 1.7320508075688772}, "vanna.types.Diagram.mermaid_code": {"tf": 1.7320508075688772}}, "df": 109, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"vanna": {"tf": 1}, "vanna.store_sql": {"tf": 1}}, "df": 2}, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2}}, "df": 1}}}}}, "f": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 7}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 11}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "n": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 5}}, "a": {"docs": {"vanna": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}}, "df": 8, "i": {"docs": {"vanna": {"tf": 3.1622776601683795}, "vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 11}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}}, "df": 2, "k": {"docs": {"vanna": {"tf": 2}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"vanna": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"vanna": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 6}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.set_org": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 8}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2}}, "df": 1}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 10}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_accuracy_stats": {"tf": 2}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 2.449489742783178}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.set_org": {"tf": 1.7320508075688772}, "vanna.store_sql": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2.23606797749979}, "vanna.remove_sql": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 2.449489742783178}, "vanna.generate_explanation": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 1.7320508075688772}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.7320508075688772}}, "df": 13}}, "o": {"docs": {"vanna": {"tf": 2}, "vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 10, "p": {"docs": {"vanna": {"tf": 2}}, "df": 1}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"vanna": {"tf": 1}}, "df": 1, "r": {"docs": {"vanna": {"tf": 3.3166247903554}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 3.7416573867739413}, "vanna.store_sql": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2}, "vanna.remove_sql": {"tf": 1.7320508075688772}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 2}}, "df": 7, "s": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.get_flagged_questions": {"tf": 1.7320508075688772}}, "df": 2}, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 3}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.store_sql": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 4}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "o": {"docs": {"vanna": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "b": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "f": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 5, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 2}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 8}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.store_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}}, "df": 3}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"vanna": {"tf": 2}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 3}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.generate_explanation": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 1.7320508075688772}}, "df": 5, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {"vanna": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"vanna": {"tf": 3.1622776601683795}}, "df": 1}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 4.69041575982343}, "vanna.store_sql": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 2}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 2}}, "df": 9}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.set_org": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.store_sql": {"tf": 1.7320508075688772}}, "df": 2}}}, "r": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.store_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}}, "df": 10}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"vanna": {"tf": 2.6457513110645907}}, "df": 1}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}}, "df": 3, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1.4142135623730951}}, "df": 1, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 6, "g": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.set_org": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.set_org": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 6}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_plotly_figure": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}}, "df": 3}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.set_org": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 4}}}, "o": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1.4142135623730951}, "vanna.get_accuracy_stats": {"tf": 1.4142135623730951}}, "df": 7}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 2}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_flagged_questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.set_org": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"vanna": {"tf": 3.872983346207417}}, "df": 1}, "s": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "z": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_flagged_questions": {"tf": 1}, "vanna.get_accuracy_stats": {"tf": 1}}, "df": 9}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remove_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}}, "df": 2}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
-
-    // mirrored in build-search-index.js (part 1)
-    // Also split on html tags. this is a cheap heuristic, but good enough.
-    elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/);
-
-    let searchIndex;
-    if (docs._isPrebuiltIndex) {
-        console.info("using precompiled search index");
-        searchIndex = elasticlunr.Index.load(docs);
-    } else {
-        console.time("building search index");
-        // mirrored in build-search-index.js (part 2)
-        searchIndex = elasticlunr(function () {
-            this.pipeline.remove(elasticlunr.stemmer);
-            this.pipeline.remove(elasticlunr.stopWordFilter);
-            this.addField("qualname");
-            this.addField("fullname");
-            this.addField("annotation");
-            this.addField("default_value");
-            this.addField("signature");
-            this.addField("bases");
-            this.addField("doc");
-            this.setRef("fullname");
-        });
-        for (let doc of docs) {
-            searchIndex.addDoc(doc);
-        }
-        console.timeEnd("building search index");
-    }
-
-    return (term) => searchIndex.search(term, {
-        fields: {
-            qualname: {boost: 4},
-            fullname: {boost: 2},
-            annotation: {boost: 2},
-            default_value: {boost: 2},
-            signature: {boost: 2},
-            bases: {boost: 2},
-            doc: {boost: 1},
-        },
-        expand: true
-    });
-})();
\ No newline at end of file
diff --git a/docs/sidebar.yaml b/docs/sidebar.yaml
index 9cbbcf84..97b9b256 100644
--- a/docs/sidebar.yaml
+++ b/docs/sidebar.yaml
@@ -60,7 +60,7 @@
     </svg>
 
 - title: API Reference
-  link: reference.html
+  link: vanna.html
   svg_text: |-
     <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 20 16">
     <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M5 4 1 8l4 4m10-8 4 4-4 4M11 1 9 15"/>
diff --git a/docs/slides.html b/docs/slides.html
deleted file mode 100644
index ee93ea1d..00000000
--- a/docs/slides.html
+++ /dev/null
@@ -1,63 +0,0 @@
-<!DOCTYPE html><html lang="en-US"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,height=device-height,initial-scale=1.0"><meta name="apple-mobile-web-app-capable" content="yes"><meta http-equiv="X-UA-Compatible" content="ie=edge"><meta property="og:type" content="website"><meta name="twitter:card" content="summary"><style>@media screen{body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button{-webkit-tap-highlight-color:transparent;-webkit-appearance:none;appearance:none;background-color:transparent;border:0;color:inherit;cursor:pointer;font-size:inherit;opacity:.8;outline:none;padding:0;transition:opacity .2s linear}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button:disabled,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button:disabled,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button:disabled,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button:disabled{cursor:not-allowed;opacity:.15!important}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button:hover,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button:hover,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button:hover,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button:hover{opacity:1}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button:hover:active,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button:hover:active,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button:hover:active,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button:hover:active{opacity:.6}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button:hover:not(:disabled),body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button:hover:not(:disabled),body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button:hover:not(:disabled),body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button:hover:not(:disabled){transition:none}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=prev],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=prev],body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button.bespoke-marp-presenter-info-page-prev{background:transparent url("") no-repeat 50%;background-size:contain;overflow:hidden;text-indent:100%;white-space:nowrap}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=next],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=next],body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button.bespoke-marp-presenter-info-page-next{background:transparent url("") no-repeat 50%;background-size:contain;overflow:hidden;text-indent:100%;white-space:nowrap}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=fullscreen],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=fullscreen]{background:transparent url("") no-repeat 50%;background-size:contain;overflow:hidden;text-indent:100%;white-space:nowrap}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button.exit[data-bespoke-marp-osc=fullscreen],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button.exit[data-bespoke-marp-osc=fullscreen]{background-image:url("")}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=presenter],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=presenter]{background:transparent url("") no-repeat 50%;background-size:contain;overflow:hidden;text-indent:100%;white-space:nowrap}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button.bespoke-marp-presenter-note-bigger{background:transparent url("") no-repeat 50%;background-size:contain;overflow:hidden;text-indent:100%;white-space:nowrap}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button.bespoke-marp-presenter-note-smaller{background:transparent url("") no-repeat 50%;background-size:contain;overflow:hidden;text-indent:100%;white-space:nowrap}}@keyframes __bespoke_marp_transition_reduced_outgoing__{0%{opacity:1}to{opacity:0}}@keyframes __bespoke_marp_transition_reduced_incoming__{0%{mix-blend-mode:plus-lighter;opacity:0}to{mix-blend-mode:plus-lighter;opacity:1}}.bespoke-marp-note,.bespoke-marp-osc,.bespoke-progress-parent{display:none;transition:none}@media screen{::view-transition-group(*){animation-duration:var(--marp-bespoke-transition-animation-duration,.5s);animation-timing-function:ease}::view-transition-new(*),::view-transition-old(*){animation-delay:0s;animation-direction:var(--marp-bespoke-transition-animation-direction,normal);animation-duration:var(--marp-bespoke-transition-animation-duration,.5s);animation-fill-mode:both;animation-name:var(--marp-bespoke-transition-animation-name,var(--marp-bespoke-transition-animation-name-fallback,__bespoke_marp_transition_no_animation__));mix-blend-mode:normal}::view-transition-old(*){--marp-bespoke-transition-animation-name-fallback:__bespoke_marp_transition_reduced_outgoing__;animation-timing-function:ease}::view-transition-new(*){--marp-bespoke-transition-animation-name-fallback:__bespoke_marp_transition_reduced_incoming__;animation-timing-function:ease}::view-transition-new(root),::view-transition-old(root){animation-timing-function:linear}::view-transition-new(__bespoke_marp_transition_osc__),::view-transition-old(__bespoke_marp_transition_osc__){animation-duration:0s!important;animation-name:__bespoke_marp_transition_osc__!important}::view-transition-new(__bespoke_marp_transition_osc__){opacity:0!important}.bespoke-marp-transition-warming-up::view-transition-group(*),.bespoke-marp-transition-warming-up::view-transition-new(*),.bespoke-marp-transition-warming-up::view-transition-old(*){animation-play-state:paused!important}body,html{height:100%;margin:0}body{background:#000;overflow:hidden}svg.bespoke-marp-slide{content-visibility:hidden;opacity:0;pointer-events:none;z-index:-1}svg.bespoke-marp-slide:not(.bespoke-marp-active) *{view-transition-name:none!important}svg.bespoke-marp-slide.bespoke-marp-active{content-visibility:visible;opacity:1;pointer-events:auto;z-index:0}svg.bespoke-marp-slide.bespoke-marp-active.bespoke-marp-active-ready *{animation-name:__bespoke_marp__!important}@supports not (content-visibility:hidden){svg.bespoke-marp-slide[data-bespoke-marp-load=hideable]{display:none}svg.bespoke-marp-slide[data-bespoke-marp-load=hideable].bespoke-marp-active{display:block}}}@media screen and (prefers-reduced-motion:reduce){svg.bespoke-marp-slide *{view-transition-name:none!important}}@media screen{[data-bespoke-marp-fragment=inactive]{visibility:hidden}body[data-bespoke-view=""] .bespoke-marp-parent,body[data-bespoke-view=next] .bespoke-marp-parent{inset:0;position:absolute}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc{view-transition-name:__bespoke_marp_transition_osc__;background:rgba(0,0,0,.65);border-radius:7px;bottom:50px;color:#fff;contain:paint;display:block;font-family:Helvetica,Arial,sans-serif;font-size:16px;left:50%;line-height:0;opacity:1;padding:12px;position:absolute;touch-action:manipulation;transform:translateX(-50%);transition:opacity .2s linear;-webkit-user-select:none;user-select:none;white-space:nowrap;will-change:transform;z-index:1}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>*,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>*{margin-left:6px}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>:first-child,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>:first-child{margin-left:0}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>span,body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>span{opacity:.8}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>span[data-bespoke-marp-osc=page],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>span[data-bespoke-marp-osc=page]{display:inline-block;min-width:140px;text-align:center}body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=fullscreen],body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=next],body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=presenter],body[data-bespoke-view=""] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=prev],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=fullscreen],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=next],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=presenter],body[data-bespoke-view=next] .bespoke-marp-parent>.bespoke-marp-osc>button[data-bespoke-marp-osc=prev]{height:32px;line-height:32px;width:32px}body[data-bespoke-view=""] .bespoke-marp-parent.bespoke-marp-inactive,body[data-bespoke-view=next] .bespoke-marp-parent.bespoke-marp-inactive{cursor:none}body[data-bespoke-view=""] .bespoke-marp-parent.bespoke-marp-inactive>.bespoke-marp-osc,body[data-bespoke-view=next] .bespoke-marp-parent.bespoke-marp-inactive>.bespoke-marp-osc{opacity:0;pointer-events:none}body[data-bespoke-view=""] svg.bespoke-marp-slide,body[data-bespoke-view=next] svg.bespoke-marp-slide{height:100%;left:0;position:absolute;top:0;width:100%}body[data-bespoke-view=""] .bespoke-progress-parent{background:#222;display:flex;height:5px;width:100%}body[data-bespoke-view=""] .bespoke-progress-parent+.bespoke-marp-parent{top:5px}body[data-bespoke-view=""] .bespoke-progress-parent .bespoke-progress-bar{background:#0288d1;flex:0 0 0;transition:flex-basis .2s cubic-bezier(0,1,1,1)}body[data-bespoke-view=next]{background:transparent}body[data-bespoke-view=presenter]{background:#161616}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container{display:grid;font-family:Helvetica,Arial,sans-serif;grid-template:"current dragbar next" minmax(140px,1fr) "current dragbar note" 2fr "info    dragbar note" 3em;grid-template-columns:minmax(3px,var(--bespoke-marp-presenter-split-ratio,66%)) 0 minmax(3px,1fr);height:100%;left:0;position:absolute;top:0;width:100%}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-parent{grid-area:current;overflow:hidden;position:relative}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-parent svg.bespoke-marp-slide{height:calc(100% - 40px);left:20px;pointer-events:none;position:absolute;top:20px;-webkit-user-select:none;user-select:none;width:calc(100% - 40px)}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-parent svg.bespoke-marp-slide.bespoke-marp-active{filter:drop-shadow(0 3px 10px rgba(0,0,0,.5))}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-dragbar-container{background:#0288d1;cursor:col-resize;grid-area:dragbar;margin-left:-3px;opacity:0;position:relative;transition:opacity .4s linear .1s;width:6px;z-index:10}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-dragbar-container:hover{opacity:1}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-dragbar-container.active{opacity:1;transition-delay:0s}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-next-container{background:#222;cursor:pointer;display:none;grid-area:next;overflow:hidden;position:relative}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-next-container.active{display:block}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-next-container iframe.bespoke-marp-presenter-next{background:transparent;border:0;display:block;filter:drop-shadow(0 3px 10px rgba(0,0,0,.5));height:calc(100% - 40px);left:20px;pointer-events:none;position:absolute;top:20px;-webkit-user-select:none;user-select:none;width:calc(100% - 40px)}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container{background:#222;color:#eee;grid-area:note;position:relative;z-index:1}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container button{height:1.5em;line-height:1.5em;width:1.5em}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-presenter-note-wrapper{display:block;inset:0;position:absolute}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-presenter-note-buttons{background:rgba(0,0,0,.65);border-radius:4px;bottom:0;display:flex;gap:4px;margin:12px;opacity:0;padding:6px;pointer-events:none;position:absolute;right:0;transition:opacity .2s linear}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-presenter-note-buttons:focus-within,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-presenter-note-wrapper:focus-within+.bespoke-marp-presenter-note-buttons,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container:hover .bespoke-marp-presenter-note-buttons{opacity:1;pointer-events:auto}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note{word-wrap:break-word;box-sizing:border-box;font-size:calc(1.1em*var(--bespoke-marp-note-font-scale, 1));height:calc(100% - 40px);margin:20px;overflow:auto;padding-right:3px;scrollbar-color:hsla(0,0%,93%,.5) transparent;scrollbar-width:thin;white-space:pre-wrap;width:calc(100% - 40px)}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note::-webkit-scrollbar{width:6px}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note::-webkit-scrollbar-track{background:transparent}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note::-webkit-scrollbar-thumb{background:hsla(0,0%,93%,.5);border-radius:6px}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note:empty{pointer-events:none}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note.active{display:block}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note p:first-child{margin-top:0}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-note-container .bespoke-marp-note p:last-child{margin-bottom:0}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container{align-items:center;box-sizing:border-box;color:#eee;display:flex;flex-wrap:nowrap;grid-area:info;justify-content:center;overflow:hidden;padding:0 10px}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-page,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-time,body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-timer{box-sizing:border-box;display:block;padding:0 10px;white-space:nowrap;width:100%}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container button{height:1.5em;line-height:1.5em;width:1.5em}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-page{order:2;text-align:center}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-page .bespoke-marp-presenter-info-page-text{display:inline-block;min-width:120px;text-align:center}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-time{color:#999;order:1;text-align:left}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-timer{color:#999;order:3;text-align:right}body[data-bespoke-view=presenter] .bespoke-marp-presenter-container .bespoke-marp-presenter-info-container .bespoke-marp-presenter-info-timer:hover{cursor:pointer}}@media print{.bespoke-marp-presenter-info-container,.bespoke-marp-presenter-next-container,.bespoke-marp-presenter-note-container{display:none}}</style><style>@charset "UTF-8";@import "https://fonts.bunny.net/css?family=Lato:400,900|Roboto+Mono:400,700&display=swap";div#\:\$p>svg>foreignObject>section{width:1280px;height:720px;box-sizing:border-box;overflow:hidden;position:relative;scroll-snap-align:center center}div#\:\$p>svg>foreignObject>section:after{bottom:0;content:attr(data-marpit-pagination);padding:inherit;pointer-events:none;position:absolute;right:0}div#\:\$p>svg>foreignObject>section:not([data-marpit-pagination]):after{display:none}/* Normalization */div#\:\$p>svg>foreignObject>section :is(h1,marp-h1){font-size:2em;margin:0.67em 0}div#\:\$p>svg>foreignObject>section video::-webkit-media-controls{will-change:transform}@page{size:1280px 720px;margin:0}@media print{body,html{background-color:#fff;margin:0;page-break-inside:avoid;break-inside:avoid-page}div#\:\$p>svg>foreignObject>section{page-break-before:always;break-before:page}div#\:\$p>svg>foreignObject>section,div#\:\$p>svg>foreignObject>section *{-webkit-print-color-adjust:exact!important;animation-delay:0s!important;animation-duration:0s!important;color-adjust:exact!important;transition:none!important}div#\:\$p>svg[data-marpit-svg]{display:block;height:100vh;width:100vw}}div#\:\$p>svg>foreignObject>section img[data-marp-twemoji]{background:transparent;height:1em;margin:0 .05em 0 .1em;vertical-align:-.1em;width:1em}
-/*!
- * Marp / Marpit Gaia theme.
- *
- * @theme gaia
- * @author Yuki Hattori
- *
- * @auto-scaling true
- * @size 16:9 1280px 720px
- * @size 4:3 960px 720px
- */div#\:\$p>svg>foreignObject>section :is(pre,marp-pre) code.hljs{display:block;overflow-x:auto;padding:1em}div#\:\$p>svg>foreignObject>section code.hljs{padding:3px 5px}div#\:\$p>svg>foreignObject>section .hljs{background:#000;color:#f8f8f8}div#\:\$p>svg>foreignObject>section .hljs-comment,div#\:\$p>svg>foreignObject>section .hljs-quote{color:#aeaeae;font-style:italic}div#\:\$p>svg>foreignObject>section .hljs-keyword,div#\:\$p>svg>foreignObject>section .hljs-selector-tag,div#\:\$p>svg>foreignObject>section .hljs-type{color:#e28964}div#\:\$p>svg>foreignObject>section .hljs-string{color:#65b042}div#\:\$p>svg>foreignObject>section .hljs-subst{color:#daefa3}div#\:\$p>svg>foreignObject>section .hljs-link,div#\:\$p>svg>foreignObject>section .hljs-regexp{color:#e9c062}div#\:\$p>svg>foreignObject>section .hljs-name,div#\:\$p>svg>foreignObject>section .hljs-section,div#\:\$p>svg>foreignObject>section .hljs-tag,div#\:\$p>svg>foreignObject>section .hljs-title{color:#89bdff}div#\:\$p>svg>foreignObject>section .hljs-class .hljs-title,div#\:\$p>svg>foreignObject>section .hljs-doctag,div#\:\$p>svg>foreignObject>section .hljs-title.class_{text-decoration:underline}div#\:\$p>svg>foreignObject>section .hljs-bullet,div#\:\$p>svg>foreignObject>section .hljs-number,div#\:\$p>svg>foreignObject>section .hljs-symbol{color:#3387cc}div#\:\$p>svg>foreignObject>section .hljs-params,div#\:\$p>svg>foreignObject>section .hljs-template-variable,div#\:\$p>svg>foreignObject>section .hljs-variable{color:#3e87e3}div#\:\$p>svg>foreignObject>section .hljs-attribute{color:#cda869}div#\:\$p>svg>foreignObject>section .hljs-meta{color:#8996a8}div#\:\$p>svg>foreignObject>section .hljs-formula{background-color:#0e2231;color:#f8f8f8;font-style:italic}div#\:\$p>svg>foreignObject>section .hljs-addition{background-color:#253b22;color:#f8f8f8}div#\:\$p>svg>foreignObject>section .hljs-deletion{background-color:#420e09;color:#f8f8f8}div#\:\$p>svg>foreignObject>section .hljs-selector-class{color:#9b703f}div#\:\$p>svg>foreignObject>section .hljs-selector-id{color:#8b98ab}div#\:\$p>svg>foreignObject>section .hljs-emphasis{font-style:italic}div#\:\$p>svg>foreignObject>section .hljs-strong{font-weight:700}div#\:\$p>svg>foreignObject>section :is(h1,marp-h1),div#\:\$p>svg>foreignObject>section :is(h2,marp-h2),div#\:\$p>svg>foreignObject>section :is(h3,marp-h3),div#\:\$p>svg>foreignObject>section :is(h4,marp-h4),div#\:\$p>svg>foreignObject>section :is(h5,marp-h5),div#\:\$p>svg>foreignObject>section :is(h6,marp-h6){margin:.5em 0 0}div#\:\$p>svg>foreignObject>section :is(h1,marp-h1) strong,div#\:\$p>svg>foreignObject>section :is(h2,marp-h2) strong,div#\:\$p>svg>foreignObject>section :is(h3,marp-h3) strong,div#\:\$p>svg>foreignObject>section :is(h4,marp-h4) strong,div#\:\$p>svg>foreignObject>section :is(h5,marp-h5) strong,div#\:\$p>svg>foreignObject>section :is(h6,marp-h6) strong{font-weight:inherit}div#\:\$p>svg>foreignObject>section :is(h1,marp-h1)::part(auto-scaling),div#\:\$p>svg>foreignObject>section :is(h2,marp-h2)::part(auto-scaling),div#\:\$p>svg>foreignObject>section :is(h3,marp-h3)::part(auto-scaling),div#\:\$p>svg>foreignObject>section :is(h4,marp-h4)::part(auto-scaling),div#\:\$p>svg>foreignObject>section :is(h5,marp-h5)::part(auto-scaling),div#\:\$p>svg>foreignObject>section :is(h6,marp-h6)::part(auto-scaling){max-height:580px}div#\:\$p>svg>foreignObject>section :is(h1,marp-h1){font-size:1.8em}div#\:\$p>svg>foreignObject>section :is(h2,marp-h2){font-size:1.5em}div#\:\$p>svg>foreignObject>section :is(h3,marp-h3){font-size:1.3em}div#\:\$p>svg>foreignObject>section :is(h4,marp-h4){font-size:1.1em}div#\:\$p>svg>foreignObject>section :is(h5,marp-h5){font-size:1em}div#\:\$p>svg>foreignObject>section :is(h6,marp-h6){font-size:.9em}div#\:\$p>svg>foreignObject>section blockquote,div#\:\$p>svg>foreignObject>section p{margin:1em 0 0}div#\:\$p>svg>foreignObject>section ol>li,div#\:\$p>svg>foreignObject>section ul>li{margin:.3em 0 0}div#\:\$p>svg>foreignObject>section ol>li>p,div#\:\$p>svg>foreignObject>section ul>li>p{margin:.6em 0 0}div#\:\$p>svg>foreignObject>section code{display:inline-block;font-family:Roboto Mono,monospace;font-size:.8em;letter-spacing:0;margin:-.1em .15em;padding:.1em .2em;vertical-align:baseline}div#\:\$p>svg>foreignObject>section :is(pre,marp-pre){display:block;margin:1em 0 0;overflow:visible}div#\:\$p>svg>foreignObject>section :is(pre,marp-pre) code{box-sizing:border-box;font-size:.7em;margin:0;min-width:100%;padding:.5em}div#\:\$p>svg>foreignObject>section :is(pre,marp-pre)::part(auto-scaling){max-height:calc(580px - 1em)}div#\:\$p>svg>foreignObject>section blockquote{margin:1em 0 0;padding:0 1em;position:relative}div#\:\$p>svg>foreignObject>section blockquote:after,div#\:\$p>svg>foreignObject>section blockquote:before{content:"“";display:block;font-family:Times New Roman,serif;font-weight:700;position:absolute}div#\:\$p>svg>foreignObject>section blockquote:before{left:0;top:0}div#\:\$p>svg>foreignObject>section blockquote:after{bottom:0;right:0;transform:rotate(180deg)}div#\:\$p>svg>foreignObject>section blockquote>:first-child{margin-top:0}div#\:\$p>svg>foreignObject>section mark{background:transparent}div#\:\$p>svg>foreignObject>section table{border-collapse:collapse;border-spacing:0;margin:1em 0 0}div#\:\$p>svg>foreignObject>section table td,div#\:\$p>svg>foreignObject>section table th{border-style:solid;border-width:1px;padding:.2em .4em}div#\:\$p>svg>foreignObject>section footer,div#\:\$p>svg>foreignObject>section header,div#\:\$p>svg>foreignObject>section:after{box-sizing:border-box;font-size:66%;height:70px;line-height:50px;overflow:hidden;padding:10px 25px;position:absolute}div#\:\$p>svg>foreignObject>section:after{--marpit-root-font-size:66%}div#\:\$p>svg>foreignObject>section header{top:0}div#\:\$p>svg>foreignObject>section footer,div#\:\$p>svg>foreignObject>section header{left:0;right:0}div#\:\$p>svg>foreignObject>section footer{bottom:0}div#\:\$p>svg>foreignObject>section{word-wrap:break-word;--color-background:#fff8e1;--color-background-stripe:rgba(69,90,100,.1);--color-foreground:#455a64;--color-dimmed:#6a7a7d;--color-highlight:#0288d1;background-color:var(--color-background);background-image:linear-gradient(135deg,hsla(0,0%,53%,0),hsla(0,0%,53%,.02) 50%,hsla(0,0%,100%,0) 0,hsla(0,0%,100%,.05));color:var(--color-foreground);font-family:Lato,Avenir Next,Avenir,Trebuchet MS,Segoe UI,sans-serif;font-size:35px;height:720px;letter-spacing:1.25px;line-height:1.35;padding:70px;width:1280px}div#\:\$p>svg>foreignObject>section{--marpit-root-font-size:35px}div#\:\$p>svg>foreignObject>section:after{bottom:0;font-size:80%;right:0}div#\:\$p>svg>foreignObject>section:after{--marpit-root-font-size:80%}div#\:\$p>svg>foreignObject>section a,div#\:\$p>svg>foreignObject>section mark{color:var(--color-highlight)}div#\:\$p>svg>foreignObject>section code{background:var(--color-dimmed);color:var(--color-background)}div#\:\$p>svg>foreignObject>section :is(h1,marp-h1) strong,div#\:\$p>svg>foreignObject>section :is(h2,marp-h2) strong,div#\:\$p>svg>foreignObject>section :is(h3,marp-h3) strong,div#\:\$p>svg>foreignObject>section :is(h4,marp-h4) strong,div#\:\$p>svg>foreignObject>section :is(h5,marp-h5) strong,div#\:\$p>svg>foreignObject>section :is(h6,marp-h6) strong{color:var(--color-highlight)}div#\:\$p>svg>foreignObject>section :is(pre,marp-pre){background:var(--color-foreground)}div#\:\$p>svg>foreignObject>section :is(pre,marp-pre)>code{background:transparent}div#\:\$p>svg>foreignObject>section blockquote:after,div#\:\$p>svg>foreignObject>section blockquote:before,div#\:\$p>svg>foreignObject>section footer,div#\:\$p>svg>foreignObject>section header,div#\:\$p>svg>foreignObject>section section:after{color:var(--color-dimmed)}div#\:\$p>svg>foreignObject>section table td,div#\:\$p>svg>foreignObject>section table th{border-color:var(--color-foreground)}div#\:\$p>svg>foreignObject>section table thead th{background:var(--color-foreground);color:var(--color-background)}div#\:\$p>svg>foreignObject>section table tbody>tr:nth-child(odd) td,div#\:\$p>svg>foreignObject>section table tbody>tr:nth-child(odd) th{background:var(--color-background-stripe,transparent)}div#\:\$p>svg>foreignObject>section>:first-child,div#\:\$p>svg>foreignObject>section>header:first-child+*{margin-top:0}div#\:\$p>svg>foreignObject>section:where(.invert){--color-background:#455a64;--color-background-stripe:rgba(255,248,225,.1);--color-foreground:#fff8e1;--color-dimmed:#dad8c8;--color-highlight:#81d4fa}div#\:\$p>svg>foreignObject>section:where(.gaia){--color-background:#0288d1;--color-background-stripe:rgba(255,248,225,.1);--color-foreground:#fff8e1;--color-dimmed:#cce2de;--color-highlight:#81d4fa}div#\:\$p>svg>foreignObject>section:where(.lead){display:flex;flex-flow:column nowrap;justify-content:center}div#\:\$p>svg>foreignObject>section:where(.lead) :is(h1,marp-h1),div#\:\$p>svg>foreignObject>section:where(.lead) :is(h2,marp-h2),div#\:\$p>svg>foreignObject>section:where(.lead) :is(h3,marp-h3),div#\:\$p>svg>foreignObject>section:where(.lead) :is(h4,marp-h4),div#\:\$p>svg>foreignObject>section:where(.lead) :is(h5,marp-h5),div#\:\$p>svg>foreignObject>section:where(.lead) :is(h6,marp-h6){text-align:center}div#\:\$p>svg>foreignObject>section:where(.lead) p{text-align:center}div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>:is(h1,marp-h1),div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>:is(h2,marp-h2),div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>:is(h3,marp-h3),div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>:is(h4,marp-h4),div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>:is(h5,marp-h5),div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>:is(h6,marp-h6),div#\:\$p>svg>foreignObject>section:where(.lead) blockquote>p{text-align:left}div#\:\$p>svg>foreignObject>section:where(.lead) ol>li>p,div#\:\$p>svg>foreignObject>section:where(.lead) ul>li>p{text-align:left}div#\:\$p>svg>foreignObject>section:where(.lead) table{margin-left:auto;margin-right:auto}div#\:\$p>svg>foreignObject>section strong{font-family:'Roboto Slab';color:transparent!important;background:linear-gradient(15deg,#009efd,#2af598);background-clip:text;-webkit-background-clip:text}div#\:\$p>svg>foreignObject>section marp-pre{font-family:'Fira Code Light';font-size:0.75em;background:#000;border-radius:30px}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]{columns:initial!important;display:block!important;padding:0!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]:after,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]:before,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content]:after,div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content]:before{display:none!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container]{all:initial;display:flex;flex-direction:row;height:100%;overflow:hidden;width:100%}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container][data-marpit-advanced-background-direction=vertical]{flex-direction:column}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background][data-marpit-advanced-background-split]>div[data-marpit-advanced-background-container]{width:var(--marpit-advanced-background-split,50%)}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background][data-marpit-advanced-background-split=right]>div[data-marpit-advanced-background-container]{margin-left:calc(100% - var(--marpit-advanced-background-split, 50%))}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=background]>div[data-marpit-advanced-background-container]>figure{all:initial;background-position:center;background-repeat:no-repeat;background-size:cover;flex:auto;margin:0}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=content],div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=pseudo]{background:transparent!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background=pseudo],div#\:\$p>svg[data-marpit-svg]>foreignObject[data-marpit-advanced-background=pseudo]{pointer-events:none!important}div#\:\$p>svg>foreignObject>section[data-marpit-advanced-background-split]{width:100%;height:100%}</style></head><body><div class="bespoke-marp-osc"><button data-bespoke-marp-osc="prev" tabindex="-1" title="Previous slide">Previous slide</button><span data-bespoke-marp-osc="page"></span><button data-bespoke-marp-osc="next" tabindex="-1" title="Next slide">Next slide</button><button data-bespoke-marp-osc="fullscreen" tabindex="-1" title="Toggle fullscreen (f)">Toggle fullscreen</button><button data-bespoke-marp-osc="presenter" tabindex="-1" title="Open presenter view (p)">Open presenter view</button></div><div id=":$p"><svg data-marpit-svg="" viewBox="0 0 1280 720"><foreignObject width="1280" height="720"><section data-paginate="true" data-background-color="#111827" data-color="#fff" data-header="Updated: 2023-05-22" data-class="lead" data-theme="gaia" class="lead" data-marpit-pagination="1" data-marpit-pagination-total="4" style="--paginate:true;--background-color:#111827;--color:#fff;--header:Updated: 2023-05-22;--class:lead;--theme:gaia;color:#fff;background-color:#111827;background-image:none;--marpit-advanced-background-split:40%;" data-marpit-advanced-background="background" data-marpit-advanced-background-split="left"><div data-marpit-advanced-background-container="true" data-marpit-advanced-background-direction="horizontal"><figure style="background-image:url(&quot;https://ask.vanna.ai/static/img/vanna.svg&quot;);background-size:80%;"></figure></div></section></foreignObject><foreignObject width="60%" height="720" x="40%"><section id="1" data-paginate="true" data-background-color="#111827" data-color="#fff" data-header="Updated: 2023-05-22" data-class="lead" data-theme="gaia" class="lead" data-marpit-pagination="1" data-marpit-pagination-total="4" style="--paginate:true;--background-color:#111827;--color:#fff;--header:Updated: 2023-05-22;--class:lead;--theme:gaia;color:#fff;background-color:#111827;background-image:none;--marpit-advanced-background-split:40%;" data-marpit-advanced-background="content" data-marpit-advanced-background-split="left">
-<header>Updated: 2023-05-22</header>
-
-<h1 id="vannaai"><strong>Vanna.AI</strong></h1>
-<h2 id="python-package">Python Package</h2>
-<p>For Natural Language to SQL<br />
-(and associated functionality)</p>
-<p><a href="mailto:support@vanna.ai">support@vanna.ai</a></p>
-</section>
-</foreignObject><foreignObject width="1280" height="720" data-marpit-advanced-background="pseudo"><section data-paginate="true" data-background-color="#111827" data-color="#fff" data-header="Updated: 2023-05-22" data-class="lead" data-theme="gaia" class="lead" data-marpit-pagination="1" data-marpit-pagination-total="4" style="color:#fff;" data-marpit-advanced-background="pseudo" data-marpit-advanced-background-split="left"></section></foreignObject></svg><svg data-marpit-svg="" viewBox="0 0 1280 720"><foreignObject width="1280" height="720"><section id="2" data-paginate="true" data-background-color="#111827" data-color="#fff" data-header="Updated: 2023-05-22" data-theme="gaia" data-marpit-pagination="2" data-marpit-pagination-total="4" style="--paginate:true;--background-color:#111827;--color:#fff;--header:Updated: 2023-05-22;--theme:gaia;color:#fff;background-color:#111827;background-image:none;">
-<header>Updated: 2023-05-22</header>
-<h1 id="what-can-you-do-with-vannaai">What can you do with <strong>Vanna.AI</strong>?</h1>
-<p><strong>Vanna.AI</strong> has a Python package that allows you to convert natural language to SQL.</p>
-<pre is="marp-pre" data-auto-scaling="downscale-only"><code class="language-python"><span class="hljs-keyword">import</span> vanna <span class="hljs-keyword">as</span> vn
-
-vn.api_key = <span class="hljs-string">&#x27;vanna-key-...&#x27;</span> <span class="hljs-comment"># Set your API key</span>
-vn.set_org(<span class="hljs-string">&#x27;&#x27;</span>) <span class="hljs-comment"># Set your organization name</span>
-
-my_question = <span class="hljs-string">&#x27;What are the top 10 ABC by XYZ?&#x27;</span>
-
-sql = vn.generate_sql(question=my_question, error_msg=<span class="hljs-literal">None</span>) 
-<span class="hljs-comment"># SELECT * FROM table_name WHERE column_name = &#x27;value&#x27;</span>
-
-(my_df, error_msg) = vn.run_sql(cs: snowflake.Cursor, sql=sql)
-
-vn.generate_plotly_code(question=my_question, df=my_df)
-<span class="hljs-comment"># fig = px.bar(df, x=&#x27;column_name&#x27;, y=&#x27;column_name&#x27;)</span>
-
-vn.run_plotly_code(plotly_code=fig, df=my_df)
-
-</code></pre>
-</section>
-</foreignObject></svg><svg data-marpit-svg="" viewBox="0 0 1280 720"><foreignObject width="1280" height="720"><section id="3" data-paginate="true" data-background-color="#111827" data-color="#fff" data-header="Updated: 2023-05-22" data-theme="gaia" data-marpit-pagination="3" data-marpit-pagination-total="4" style="--paginate:true;--background-color:#111827;--color:#fff;--header:Updated: 2023-05-22;--theme:gaia;color:#fff;background-color:#111827;background-image:none;">
-<header>Updated: 2023-05-22</header>
-<h1 id="installation">Installation</h1>
-<h2 id="global-installation">Global Installation</h2>
-<pre is="marp-pre" data-auto-scaling="downscale-only"><code class="language-bash">pip install vanna
-</code></pre>
-<p>or</p>
-<pre is="marp-pre" data-auto-scaling="downscale-only"><code class="language-bash">pip3 install vanna
-</code></pre>
-<h2 id="use-a-virtual-environment">Use a Virtual Environment</h2>
-<pre is="marp-pre" data-auto-scaling="downscale-only"><code class="language-bash">python3 -m venv venv
-<span class="hljs-built_in">source</span> venv/bin/activate
-pip install vanna
-</code></pre>
-</section>
-</foreignObject></svg><svg data-marpit-svg="" viewBox="0 0 1280 720"><foreignObject width="1280" height="720"><section id="4" data-paginate="true" data-background-color="#111827" data-color="#fff" data-header="Updated: 2023-05-22" data-theme="gaia" data-marpit-pagination="4" data-marpit-pagination-total="4" style="--paginate:true;--background-color:#111827;--color:#fff;--header:Updated: 2023-05-22;--theme:gaia;color:#fff;background-color:#111827;background-image:none;">
-<header>Updated: 2023-05-22</header>
-</section>
-<script>!function(){"use strict";const t={h1:{proto:()=>HTMLHeadingElement,attrs:{role:"heading","aria-level":"1"},style:"display: block; font-size: 2em; margin-block-start: 0.67em; margin-block-end: 0.67em; margin-inline-start: 0px; margin-inline-end: 0px; font-weight: bold;"},h2:{proto:()=>HTMLHeadingElement,attrs:{role:"heading","aria-level":"2"},style:"display: block; font-size: 1.5em; margin-block-start: 0.83em; margin-block-end: 0.83em; margin-inline-start: 0px; margin-inline-end: 0px; font-weight: bold;"},h3:{proto:()=>HTMLHeadingElement,attrs:{role:"heading","aria-level":"3"},style:"display: block; font-size: 1.17em; margin-block-start: 1em; margin-block-end: 1em; margin-inline-start: 0px; margin-inline-end: 0px; font-weight: bold;"},h4:{proto:()=>HTMLHeadingElement,attrs:{role:"heading","aria-level":"4"},style:"display: block; margin-block-start: 1.33em; margin-block-end: 1.33em; margin-inline-start: 0px; margin-inline-end: 0px; font-weight: bold;"},h5:{proto:()=>HTMLHeadingElement,attrs:{role:"heading","aria-level":"5"},style:"display: block; font-size: 0.83em; margin-block-start: 1.67em; margin-block-end: 1.67em; margin-inline-start: 0px; margin-inline-end: 0px; font-weight: bold;"},h6:{proto:()=>HTMLHeadingElement,attrs:{role:"heading","aria-level":"6"},style:"display: block; font-size: 0.67em; margin-block-start: 2.33em; margin-block-end: 2.33em; margin-inline-start: 0px; margin-inline-end: 0px; font-weight: bold;"},span:{proto:()=>HTMLSpanElement},pre:{proto:()=>HTMLElement,style:"display: block; font-family: monospace; white-space: pre; margin: 1em 0; --marp-auto-scaling-white-space: pre;"}},e="data-marp-auto-scaling-wrapper",i="data-marp-auto-scaling-svg",n="data-marp-auto-scaling-container";class s extends HTMLElement{constructor(){super(),this.svgPreserveAspectRatio="xMinYMid meet";const t=t=>([e])=>{const{width:i,height:n}=e.contentRect;this[t]={width:i,height:n},this.updateSVGRect()};this.attachShadow({mode:"open"}),this.containerObserver=new ResizeObserver(t("containerSize")),this.wrapperObserver=new ResizeObserver(((...e)=>{t("wrapperSize")(...e),this.flushSvgDisplay()}))}static get observedAttributes(){return["data-downscale-only"]}connectedCallback(){var t,s,o,r,a;this.shadowRoot.innerHTML=`\n<style>\n  svg[${i}] { display: block; width: 100%; height: auto; vertical-align: top; }\n  span[${n}] { display: table; white-space: var(--marp-auto-scaling-white-space, nowrap); width: max-content; }\n</style>\n<div ${e}>\n  <svg part="svg" ${i}>\n    <foreignObject><span ${n}><slot></slot></span></foreignObject>\n  </svg>\n</div>\n    `.split(/\n\s*/).join(""),this.wrapper=null!==(t=this.shadowRoot.querySelector(`div[${e}]`))&&void 0!==t?t:void 0;const l=this.svg;this.svg=null!==(o=null===(s=this.wrapper)||void 0===s?void 0:s.querySelector(`svg[${i}]`))&&void 0!==o?o:void 0,this.svg!==l&&(this.svgComputedStyle=this.svg?window.getComputedStyle(this.svg):void 0),this.container=null!==(a=null===(r=this.svg)||void 0===r?void 0:r.querySelector(`span[${n}]`))&&void 0!==a?a:void 0,this.observe()}disconnectedCallback(){this.svg=void 0,this.svgComputedStyle=void 0,this.wrapper=void 0,this.container=void 0,this.observe()}attributeChangedCallback(){this.observe()}flushSvgDisplay(){const{svg:t}=this;t&&(t.style.display="inline",requestAnimationFrame((()=>{t.style.display=""})))}observe(){this.containerObserver.disconnect(),this.wrapperObserver.disconnect(),this.wrapper&&this.wrapperObserver.observe(this.wrapper),this.container&&this.containerObserver.observe(this.container),this.svgComputedStyle&&this.observeSVGStyle(this.svgComputedStyle)}observeSVGStyle(t){const e=()=>{const i=(()=>{const e=t.getPropertyValue("--preserve-aspect-ratio");if(e)return e.trim();return`x${(({textAlign:t,direction:e})=>{if(t.endsWith("left"))return"Min";if(t.endsWith("right"))return"Max";if("start"===t||"end"===t){let i="rtl"===e;return"end"===t&&(i=!i),i?"Max":"Min"}return"Mid"})(t)}YMid meet`})();i!==this.svgPreserveAspectRatio&&(this.svgPreserveAspectRatio=i,this.updateSVGRect()),t===this.svgComputedStyle&&requestAnimationFrame(e)};e()}updateSVGRect(){var t,e,i,n,s,o,r;let a=Math.ceil(null!==(e=null===(t=this.containerSize)||void 0===t?void 0:t.width)&&void 0!==e?e:0);const l=Math.ceil(null!==(n=null===(i=this.containerSize)||void 0===i?void 0:i.height)&&void 0!==n?n:0);void 0!==this.dataset.downscaleOnly&&(a=Math.max(a,null!==(o=null===(s=this.wrapperSize)||void 0===s?void 0:s.width)&&void 0!==o?o:0));const c=null===(r=this.svg)||void 0===r?void 0:r.querySelector(":scope > foreignObject");if(null==c||c.setAttribute("width",`${a}`),null==c||c.setAttribute("height",`${l}`),this.svg&&(this.svg.setAttribute("viewBox",`0 0 ${a} ${l}`),this.svg.setAttribute("preserveAspectRatio",this.svgPreserveAspectRatio),this.svg.style.height=a<=0||l<=0?"0":""),this.container){const t=this.svgPreserveAspectRatio.toLowerCase();this.container.style.marginLeft=t.startsWith("xmid")||t.startsWith("xmax")?"auto":"0",this.container.style.marginRight=t.startsWith("xmi")?"auto":"0"}}}const o=(t,{attrs:e={},style:i})=>class extends t{constructor(...t){super(...t);for(const[t,i]of Object.entries(e))this.hasAttribute(t)||this.setAttribute(t,i);this.attachShadow({mode:"open"})}static get observedAttributes(){return["data-auto-scaling"]}connectedCallback(){this._update()}attributeChangedCallback(){this._update()}_update(){const t=i?`<style>:host { ${i} }</style>`:"";let e="<slot></slot>";const{autoScaling:n}=this.dataset;if(void 0!==n){e=`<marp-auto-scaling exportparts="svg:auto-scaling" ${"downscale-only"===n?"data-downscale-only":""}>${e}</marp-auto-scaling>`}this.shadowRoot.innerHTML=t+e}};let r;const a=Symbol();let l;const c="marpitSVGPolyfill:setZoomFactor,",d=Symbol(),g=Symbol();const h=()=>{const t="Apple Computer, Inc."===navigator.vendor,e=t?[u]:[],i={then:e=>(t?(async()=>{if(void 0===l){const t=document.createElement("canvas");t.width=10,t.height=10;const e=t.getContext("2d"),i=new Image(10,10),n=new Promise((t=>{i.addEventListener("load",(()=>t()))}));i.crossOrigin="anonymous",i.src="data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20width%3D%2210%22%20height%3D%2210%22%20viewBox%3D%220%200%201%201%22%3E%3CforeignObject%20width%3D%221%22%20height%3D%221%22%20requiredExtensions%3D%22http%3A%2F%2Fwww.w3.org%2F1999%2Fxhtml%22%3E%3Cdiv%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1999%2Fxhtml%22%20style%3D%22width%3A%201px%3B%20height%3A%201px%3B%20background%3A%20red%3B%20position%3A%20relative%22%3E%3C%2Fdiv%3E%3C%2FforeignObject%3E%3C%2Fsvg%3E",await n,e.drawImage(i,0,0),l=e.getImageData(5,5,1,1).data[3]<128}return l})().then((t=>{null==e||e(t?[u]:[])})):null==e||e([]),i)};return Object.assign(e,i)};let p,m;function u(t){const e="object"==typeof t&&t.target||document,i="object"==typeof t?t.zoom:t;window[g]||(Object.defineProperty(window,g,{configurable:!0,value:!0}),document.body.style.zoom=1.0001,document.body.offsetHeight,document.body.style.zoom=1,window.addEventListener("message",(({data:t,origin:e})=>{if(e===window.origin)try{if(t&&"string"==typeof t&&t.startsWith(c)){const[,e]=t.split(","),i=Number.parseFloat(e);Number.isNaN(i)||(m=i)}}catch(t){console.error(t)}})));let n=!1;Array.from(e.querySelectorAll("svg[data-marpit-svg]"),(t=>{var e,s,o,r;t.style.transform||(t.style.transform="translateZ(0)");const a=i||m||t.currentScale||1;p!==a&&(p=a,n=a);const l=t.getBoundingClientRect(),{length:c}=t.children;for(let i=0;i<c;i+=1){const n=t.children[i];if(n.getScreenCTM){const t=n.getScreenCTM();if(t){const i=null!==(s=null===(e=n.x)||void 0===e?void 0:e.baseVal.value)&&void 0!==s?s:0,c=null!==(r=null===(o=n.y)||void 0===o?void 0:o.baseVal.value)&&void 0!==r?r:0,d=n.children.length;for(let e=0;e<d;e+=1){const s=n.children[e];if("SECTION"===s.tagName){const{style:e}=s;e.transformOrigin||(e.transformOrigin=`${-i}px ${-c}px`),e.transform=`scale(${a}) matrix(${t.a}, ${t.b}, ${t.c}, ${t.d}, ${t.e-l.left}, ${t.f-l.top}) translateZ(0.0001px)`;break}}}}}})),!1!==n&&Array.from(e.querySelectorAll("iframe"),(({contentWindow:t})=>{null==t||t.postMessage(`${c}${n}`,"null"===window.origin?"*":window.origin)}))}function v({once:t=!1,target:e=document}={}){const i=function(t=document){if(t[d])return t[d];let e=!0;const i=()=>{e=!1,delete t[d]};Object.defineProperty(t,d,{configurable:!0,value:i});let n=[],s=!1;(async()=>{try{n=await h()}finally{s=!0}})();const o=()=>{for(const e of n)e({target:t});s&&0===n.length||e&&window.requestAnimationFrame(o)};return o(),i}(e);return t?(i(),()=>{}):i}p=1,m=void 0;const b=Symbol(),w=(e=document)=>{if("undefined"==typeof window)throw new Error("Marp Core's browser script is valid only in browser context.");if(((e=document)=>{const i=window[a];i||customElements.define("marp-auto-scaling",s);for(const n of Object.keys(t)){const s=`marp-${n}`,a=t[n].proto();null!=r||(r=!!document.createElement("div",{is:"marp-auto-scaling"}).outerHTML.startsWith("<div is")),r&&a!==HTMLElement?i||customElements.define(s,o(a,{style:t[n].style}),{extends:n}):(i||customElements.define(s,o(HTMLElement,t[n])),e.querySelectorAll(`${n}[is="${s}"]`).forEach((t=>{t.outerHTML=t.outerHTML.replace(new RegExp(`^<${n}`,"i"),`<${s}`).replace(new RegExp(`</${n}>$`,"i"),`</${s}>`)})))}window[a]=!0})(e),e[b])return e[b];const i=v({target:e}),n=()=>{i(),delete e[b]},l=Object.assign(n,{cleanup:n,update:()=>w(e)});return Object.defineProperty(e,b,{configurable:!0,value:l}),l},y=document.currentScript;w(y?y.getRootNode():document)}();
-</script></foreignObject></svg></div><script>/*!! License: https://unpkg.com/@marp-team/marp-cli@2.5.0/lib/bespoke.js.LICENSE.txt */
-!function(){"use strict";function e(e){return e&&e.__esModule&&Object.prototype.hasOwnProperty.call(e,"default")?e.default:e}var t={from:function(e,t){var n,r=1===(e.parent||e).nodeType?e.parent||e:document.querySelector(e.parent||e),o=[].filter.call("string"==typeof e.slides?r.querySelectorAll(e.slides):e.slides||r.children,(function(e){return"SCRIPT"!==e.nodeName})),i={},a=function(e,t){return(t=t||{}).index=o.indexOf(e),t.slide=e,t},s=function(e,t){i[e]=(i[e]||[]).filter((function(e){return e!==t}))},l=function(e,t){return(i[e]||[]).reduce((function(e,n){return e&&!1!==n(t)}),!0)},c=function(e,t){o[e]&&(n&&l("deactivate",a(n,t)),n=o[e],l("activate",a(n,t)))},d=function(e,t){var r=o.indexOf(n)+e;l(e>0?"next":"prev",a(n,t))&&c(r,t)},u={off:s,on:function(e,t){return(i[e]||(i[e]=[])).push(t),s.bind(null,e,t)},fire:l,slide:function(e,t){if(!arguments.length)return o.indexOf(n);l("slide",a(o[e],t))&&c(e,t)},next:d.bind(null,1),prev:d.bind(null,-1),parent:r,slides:o,destroy:function(e){l("destroy",a(n,e)),i={}}};return(t||[]).forEach((function(e){e(u)})),n||c(0),u}},n=e(t);const r=document.body,o=(...e)=>history.replaceState(...e),i="presenter",a="next",s=["",i,a],l="bespoke-marp-",c=`data-${l}`,d=(e,{protocol:t,host:n,pathname:r,hash:o}=location)=>{const i=e.toString();return`${t}//${n}${r}${i?"?":""}${i}${o}`},u=()=>r.dataset.bespokeView,f=e=>new URLSearchParams(location.search).get(e),m=(e,t={})=>{var n;const r={location,setter:o,...t},i=new URLSearchParams(r.location.search);for(const t of Object.keys(e)){const n=e[t];"string"==typeof n?i.set(t,n):i.delete(t)}try{r.setter({...null!==(n=window.history.state)&&void 0!==n?n:{}},"",d(i,r.location))}catch(e){console.error(e)}},g=(()=>{const e="bespoke-marp";try{return localStorage.setItem(e,e),localStorage.removeItem(e),!0}catch(e){return!1}})(),p=e=>{try{return localStorage.getItem(e)}catch(e){return null}},v=(e,t)=>{try{return localStorage.setItem(e,t),!0}catch(e){return!1}},h=e=>{try{return localStorage.removeItem(e),!0}catch(e){return!1}},y=(e,t)=>{const n="aria-hidden";t?e.setAttribute(n,"true"):e.removeAttribute(n)},b=e=>{e.parent.classList.add(`${l}parent`),e.slides.forEach((e=>e.classList.add(`${l}slide`))),e.on("activate",(t=>{const n=`${l}active`,r=t.slide,o=r.classList,i=!o.contains(n);if(e.slides.forEach((e=>{e.classList.remove(n),y(e,!0)})),o.add(n),y(r,!1),i){const e=`${n}-ready`;o.add(e),document.body.clientHeight,o.remove(e)}}))},w=e=>{let t=0,n=0;Object.defineProperty(e,"fragments",{enumerable:!0,value:e.slides.map((e=>[null,...e.querySelectorAll("[data-marpit-fragment]")]))});const r=r=>void 0!==e.fragments[t][n+r],o=(r,o)=>{t=r,n=o,e.fragments.forEach(((e,t)=>{e.forEach(((e,n)=>{if(null==e)return;const i=t<r||t===r&&n<=o;e.setAttribute(`${c}fragment`,(i?"":"in")+"active");const a=`${c}current-fragment`;t===r&&n===o?e.setAttribute(a,"current"):e.removeAttribute(a)}))})),e.fragmentIndex=o;const i={slide:e.slides[r],index:r,fragments:e.fragments[r],fragmentIndex:o};e.fire("fragment",i)};e.on("next",(({fragment:i=!0})=>{if(i){if(r(1))return o(t,n+1),!1;const i=t+1;e.fragments[i]&&o(i,0)}else{const r=e.fragments[t].length;if(n+1<r)return o(t,r-1),!1;const i=e.fragments[t+1];i&&o(t+1,i.length-1)}})),e.on("prev",(({fragment:i=!0})=>{if(r(-1)&&i)return o(t,n-1),!1;const a=t-1;e.fragments[a]&&o(a,e.fragments[a].length-1)})),e.on("slide",(({index:t,fragment:n})=>{let r=0;if(void 0!==n){const o=e.fragments[t];if(o){const{length:e}=o;r=-1===n?e-1:Math.min(Math.max(n,0),e-1)}}o(t,r)})),o(0,0)},x=document,k=()=>!(!x.fullscreenEnabled&&!x.webkitFullscreenEnabled),$=()=>!(!x.fullscreenElement&&!x.webkitFullscreenElement),E=e=>{e.fullscreen=()=>{k()&&(async()=>{return $()?null===(e=x.exitFullscreen||x.webkitExitFullscreen)||void 0===e?void 0:e.call(x):((e=x.body)=>{var t;return null===(t=e.requestFullscreen||e.webkitRequestFullscreen)||void 0===t?void 0:t.call(e)})();var e})()},document.addEventListener("keydown",(t=>{"f"!==t.key&&"F11"!==t.key||t.altKey||t.ctrlKey||t.metaKey||!k()||(e.fullscreen(),t.preventDefault())}))},L=`${l}inactive`,S=(e=2e3)=>({parent:t,fire:n})=>{const r=t.classList,o=e=>n(`marp-${e?"":"in"}active`);let i;const a=()=>{i&&clearTimeout(i),i=setTimeout((()=>{r.add(L),o()}),e),r.contains(L)&&(r.remove(L),o(!0))};for(const e of["mousedown","mousemove","touchend"])document.addEventListener(e,a);setTimeout(a,0)},P=["AUDIO","BUTTON","INPUT","SELECT","TEXTAREA","VIDEO"],_=e=>{e.parent.addEventListener("keydown",(e=>{if(!e.target)return;const t=e.target;(P.includes(t.nodeName)||"true"===t.contentEditable)&&e.stopPropagation()}))},T=e=>{window.addEventListener("load",(()=>{for(const t of e.slides){const e=t.querySelector("marp-auto-scaling, [data-auto-scaling], [data-marp-fitting]");t.setAttribute(`${c}load`,e?"":"hideable")}}))},I=({interval:e=250}={})=>t=>{document.addEventListener("keydown",(e=>{if(" "===e.key&&e.shiftKey)t.prev();else if("ArrowLeft"===e.key||"ArrowUp"===e.key||"PageUp"===e.key)t.prev({fragment:!e.shiftKey});else if(" "!==e.key||e.shiftKey)if("ArrowRight"===e.key||"ArrowDown"===e.key||"PageDown"===e.key)t.next({fragment:!e.shiftKey});else if("End"===e.key)t.slide(t.slides.length-1,{fragment:-1});else{if("Home"!==e.key)return;t.slide(0)}else t.next();e.preventDefault()}));let n,r,o=0;t.parent.addEventListener("wheel",(i=>{let a=!1;const s=(e,t)=>{e&&(a=a||((e,t)=>((e,t)=>{const n="X"===t?"Width":"Height";return e[`client${n}`]<e[`scroll${n}`]})(e,t)&&((e,t)=>{const{overflow:n}=e,r=e[`overflow${t}`];return"auto"===n||"scroll"===n||"auto"===r||"scroll"===r})(getComputedStyle(e),t))(e,t)),(null==e?void 0:e.parentElement)&&s(e.parentElement,t)};if(0!==i.deltaX&&s(i.target,"X"),0!==i.deltaY&&s(i.target,"Y"),a)return;i.preventDefault();const l=Math.sqrt(i.deltaX**2+i.deltaY**2);if(void 0!==i.wheelDelta){if(void 0===i.webkitForce&&Math.abs(i.wheelDelta)<40)return;if(i.deltaMode===i.DOM_DELTA_PIXEL&&l<4)return}else if(i.deltaMode===i.DOM_DELTA_PIXEL&&l<12)return;r&&clearTimeout(r),r=setTimeout((()=>{n=0}),e);const c=Date.now()-o<e,d=l<=n;if(n=l,c||d)return;let u;(i.deltaX>0||i.deltaY>0)&&(u="next"),(i.deltaX<0||i.deltaY<0)&&(u="prev"),u&&(t[u](),o=Date.now())}))},M=(e=`.${l}osc`)=>{const t=document.querySelector(e);if(!t)return()=>{};const n=(e,n)=>{t.querySelectorAll(`[${c}osc=${JSON.stringify(e)}]`).forEach(n)};return k()||n("fullscreen",(e=>e.style.display="none")),g||n("presenter",(e=>{e.disabled=!0,e.title="Presenter view is disabled due to restricted localStorage."})),e=>{t.addEventListener("click",(t=>{if(t.target instanceof HTMLElement){const{bespokeMarpOsc:n}=t.target.dataset;n&&t.target.blur();const r={fragment:!t.shiftKey};"next"===n?e.next(r):"prev"===n?e.prev(r):"fullscreen"===n?null==e||e.fullscreen():"presenter"===n&&e.openPresenterView()}})),e.parent.appendChild(t),e.on("activate",(({index:t})=>{n("page",(n=>n.textContent=`Page ${t+1} of ${e.slides.length}`))})),e.on("fragment",(({index:t,fragments:r,fragmentIndex:o})=>{n("prev",(e=>e.disabled=0===t&&0===o)),n("next",(n=>n.disabled=t===e.slides.length-1&&o===r.length-1))})),e.on("marp-active",(()=>y(t,!1))),e.on("marp-inactive",(()=>y(t,!0))),k()&&(e=>{for(const t of["","webkit"])x.addEventListener(t+"fullscreenchange",e)})((()=>n("fullscreen",(e=>e.classList.toggle("exit",k()&&$())))))}},O=e=>{window.addEventListener("message",(t=>{if(t.origin!==window.origin)return;const[n,r]=t.data.split(":");if("navigate"===n){const[t,n]=r.split(",");let o=Number.parseInt(t,10),i=Number.parseInt(n,10)+1;i>=e.fragments[o].length&&(o+=1,i=0),e.slide(o,{fragment:i})}}))};var A=["area","base","br","col","command","embed","hr","img","input","keygen","link","meta","param","source","track","wbr"];let C=e=>String(e).replace(/[&<>"']/g,(e=>`&${D[e]};`)),D={"&":"amp","<":"lt",">":"gt",'"':"quot","'":"apos"},N="dangerouslySetInnerHTML",B={className:"class",htmlFor:"for"},q={};function K(e,t){let n=[],r="";t=t||{};for(let e=arguments.length;e-- >2;)n.push(arguments[e]);if("function"==typeof e)return t.children=n.reverse(),e(t);if(e){if(r+="<"+e,t)for(let e in t)!1!==t[e]&&null!=t[e]&&e!==N&&(r+=` ${B[e]?B[e]:C(e)}="${C(t[e])}"`);r+=">"}if(-1===A.indexOf(e)){if(t[N])r+=t[N].__html;else for(;n.length;){let e=n.pop();if(e)if(e.pop)for(let t=e.length;t--;)n.push(e[t]);else r+=!0===q[e]?e:C(e)}r+=e?`</${e}>`:""}return q[r]=!0,r}const j=({children:e})=>K(null,null,...e),F=`${l}presenter-`,V={container:`${F}container`,dragbar:`${F}dragbar-container`,next:`${F}next`,nextContainer:`${F}next-container`,noteContainer:`${F}note-container`,noteWrapper:`${F}note-wrapper`,noteButtons:`${F}note-buttons`,infoContainer:`${F}info-container`,infoPage:`${F}info-page`,infoPageText:`${F}info-page-text`,infoPagePrev:`${F}info-page-prev`,infoPageNext:`${F}info-page-next`,noteButtonsBigger:`${F}note-bigger`,noteButtonsSmaller:`${F}note-smaller`,infoTime:`${F}info-time`,infoTimer:`${F}info-timer`},U=e=>{const{title:t}=document;document.title="[Presenter view]"+(t?` - ${t}`:"");const n={},r=e=>(n[e]=n[e]||document.querySelector(`.${e}`),n[e]);document.body.appendChild((e=>{const t=document.createElement("div");return t.className=V.container,t.appendChild(e),t.insertAdjacentHTML("beforeend",K(j,null,K("div",{class:V.nextContainer},K("iframe",{class:V.next,src:"?view=next"})),K("div",{class:V.dragbar}),K("div",{class:V.noteContainer},K("div",{class:V.noteWrapper}),K("div",{class:V.noteButtons},K("button",{class:V.noteButtonsSmaller,tabindex:"-1",title:"Smaller notes font size"},"Smaller notes font size"),K("button",{class:V.noteButtonsBigger,tabindex:"-1",title:"Bigger notes font size"},"Bigger notes font size"))),K("div",{class:V.infoContainer},K("div",{class:V.infoPage},K("button",{class:V.infoPagePrev,tabindex:"-1",title:"Previous"},"Previous"),K("span",{class:V.infoPageText}),K("button",{class:V.infoPageNext,tabindex:"-1",title:"Next"},"Next")),K("time",{class:V.infoTime,title:"Current time"}),K("time",{class:V.infoTimer,title:"Timer"})))),t})(e.parent)),(e=>{let t=!1;r(V.dragbar).addEventListener("mousedown",(()=>{t=!0,r(V.dragbar).classList.add("active")})),window.addEventListener("mouseup",(()=>{t=!1,r(V.dragbar).classList.remove("active")})),window.addEventListener("mousemove",(e=>{if(!t)return;const n=e.clientX/document.documentElement.clientWidth*100;r(V.container).style.setProperty("--bespoke-marp-presenter-split-ratio",`${Math.max(0,Math.min(100,n))}%`)})),r(V.nextContainer).addEventListener("click",(()=>e.next()));const n=r(V.next),o=(i=n,(e,t)=>{var n;return null===(n=i.contentWindow)||void 0===n?void 0:n.postMessage(`navigate:${e},${t}`,"null"===window.origin?"*":window.origin)});var i;n.addEventListener("load",(()=>{r(V.nextContainer).classList.add("active"),o(e.slide(),e.fragmentIndex),e.on("fragment",(({index:e,fragmentIndex:t})=>o(e,t)))}));const a=document.querySelectorAll(".bespoke-marp-note");a.forEach((e=>{e.addEventListener("keydown",(e=>e.stopPropagation())),r(V.noteWrapper).appendChild(e)})),e.on("activate",(()=>a.forEach((t=>t.classList.toggle("active",t.dataset.index==e.slide())))));let s=0;const l=e=>{s=Math.max(-5,s+e),r(V.noteContainer).style.setProperty("--bespoke-marp-note-font-scale",(1.2**s).toFixed(4))},c=()=>l(1),d=()=>l(-1),u=r(V.noteButtonsBigger),f=r(V.noteButtonsSmaller);u.addEventListener("click",(()=>{u.blur(),c()})),f.addEventListener("click",(()=>{f.blur(),d()})),document.addEventListener("keydown",(e=>{"+"===e.key&&c(),"-"===e.key&&d()}),!0),e.on("activate",(({index:t})=>{r(V.infoPageText).textContent=`${t+1} / ${e.slides.length}`}));const m=r(V.infoPagePrev),g=r(V.infoPageNext);m.addEventListener("click",(t=>{m.blur(),e.prev({fragment:!t.shiftKey})})),g.addEventListener("click",(t=>{g.blur(),e.next({fragment:!t.shiftKey})})),e.on("fragment",(({index:t,fragments:n,fragmentIndex:r})=>{m.disabled=0===t&&0===r,g.disabled=t===e.slides.length-1&&r===n.length-1}));let p=new Date;const v=()=>{const e=new Date,t=e=>`${Math.floor(e)}`.padStart(2,"0"),n=e.getTime()-p.getTime(),o=t(n/1e3%60),i=t(n/1e3/60%60),a=t(n/36e5%24);r(V.infoTime).textContent=e.toLocaleTimeString(),r(V.infoTimer).textContent=`${a}:${i}:${o}`};v(),setInterval(v,250),r(V.infoTimer).addEventListener("click",(()=>{p=new Date}))})(e)},X=e=>{if(!(e=>e.syncKey&&"string"==typeof e.syncKey)(e))throw new Error("The current instance of Bespoke.js is invalid for Marp bespoke presenter plugin.");Object.defineProperties(e,{openPresenterView:{enumerable:!0,value:H},presenterUrl:{enumerable:!0,get:R}}),g&&document.addEventListener("keydown",(t=>{"p"!==t.key||t.altKey||t.ctrlKey||t.metaKey||(t.preventDefault(),e.openPresenterView())}))};function H(){const{max:e,floor:t}=Math,n=e(t(.85*window.innerWidth),640),r=e(t(.85*window.innerHeight),360);return window.open(this.presenterUrl,F+this.syncKey,`width=${n},height=${r},menubar=no,toolbar=no`)}function R(){const e=new URLSearchParams(location.search);return e.set("view","presenter"),e.set("sync",this.syncKey),d(e)}const W=e=>{const t=u();return t===a&&e.appendChild(document.createElement("span")),{"":X,[i]:U,[a]:O}[t]},J=e=>{e.on("activate",(t=>{document.querySelectorAll(".bespoke-progress-parent > .bespoke-progress-bar").forEach((n=>{n.style.flexBasis=100*t.index/(e.slides.length-1)+"%"}))}))},Y=e=>{const t=Number.parseInt(e,10);return Number.isNaN(t)?null:t},z=(e={})=>{const t={history:!0,...e};return e=>{let n=!0;const r=e=>{const t=n;try{return n=!0,e()}finally{n=t}},o=(t={fragment:!0})=>{let n=t.fragment?Y(f("f")||""):null;((t,n)=>{const{min:r,max:o}=Math,{fragments:i,slides:a}=e,s=o(0,r(t,a.length-1)),l=o(0,r(n||0,i[s].length-1));s===e.slide()&&l===e.fragmentIndex||e.slide(s,{fragment:l})})((()=>{var t,r;if(location.hash){const[o]=location.hash.slice(1).split(":~:");if(/^\d+$/.test(o))return(null!==(t=Y(o))&&void 0!==t?t:1)-1;const i=document.getElementById(o)||document.querySelector(`a[name="${CSS.escape(o)}"]`);if(i){const{length:t}=e.slides;for(let o=0;o<t;o+=1)if(e.slides[o].contains(i)){const t=null===(r=e.fragments)||void 0===r?void 0:r[o],a=i.closest("[data-marpit-fragment]");if(t&&a){const e=t.indexOf(a);e>=0&&(n=e)}return o}}}return 0})(),n)};e.on("fragment",(({index:e,fragmentIndex:r})=>{n||m({f:0===r||r.toString()},{location:{...location,hash:`#${e+1}`},setter:(...e)=>t.history?history.pushState(...e):history.replaceState(...e)})})),setTimeout((()=>{o(),window.addEventListener("hashchange",(()=>r((()=>{o({fragment:!1}),m({f:void 0})})))),window.addEventListener("popstate",(()=>{n||r((()=>o()))})),n=!1}),0)}},G=(e={})=>{var t;const n=e.key||(null===(t=window.history.state)||void 0===t?void 0:t.marpBespokeSyncKey)||Math.random().toString(36).slice(2),r=`bespoke-marp-sync-${n}`;var i;i={marpBespokeSyncKey:n},m({},{setter:(e,...t)=>o({...e,...i},...t)});const a=()=>{const e=p(r);return e?JSON.parse(e):Object.create(null)},s=e=>{const t=a(),n={...t,...e(t)};return v(r,JSON.stringify(n)),n},l=()=>{window.removeEventListener("pageshow",l),s((e=>({reference:(e.reference||0)+1})))};return e=>{l(),Object.defineProperty(e,"syncKey",{value:n,enumerable:!0});let t=!0;setTimeout((()=>{e.on("fragment",(e=>{t&&s((()=>({index:e.index,fragmentIndex:e.fragmentIndex})))}))}),0),window.addEventListener("storage",(n=>{if(n.key===r&&n.oldValue&&n.newValue){const r=JSON.parse(n.oldValue),o=JSON.parse(n.newValue);if(r.index!==o.index||r.fragmentIndex!==o.fragmentIndex)try{t=!1,e.slide(o.index,{fragment:o.fragmentIndex,forSync:!0})}finally{t=!0}}}));const o=()=>{const{reference:e}=a();void 0===e||e<=1?h(r):s((()=>({reference:e-1})))};window.addEventListener("pagehide",(e=>{e.persisted&&window.addEventListener("pageshow",l),o()})),e.on("destroy",o)}},{PI:Q,abs:Z,sqrt:ee,atan2:te}=Math,ne={passive:!0},re=({slope:e=-.7,swipeThreshold:t=30}={})=>n=>{let r;const o=n.parent,i=e=>{const t=o.getBoundingClientRect();return{x:e.pageX-(t.left+t.right)/2,y:e.pageY-(t.top+t.bottom)/2}};o.addEventListener("touchstart",(({touches:e})=>{r=1===e.length?i(e[0]):void 0}),ne),o.addEventListener("touchmove",(e=>{if(r)if(1===e.touches.length){e.preventDefault();const t=i(e.touches[0]),n=t.x-r.x,o=t.y-r.y;r.delta=ee(Z(n)**2+Z(o)**2),r.radian=te(n,o)}else r=void 0})),o.addEventListener("touchend",(o=>{if(r){if(r.delta&&r.delta>=t&&r.radian){const t=(r.radian-e+Q)%(2*Q)-Q;n[t<0?"next":"prev"](),o.stopPropagation()}r=void 0}}),ne)},oe=new Map;oe.clear(),oe.set("none",{backward:{both:void 0,incoming:void 0,outgoing:void 0},forward:{both:void 0,incoming:void 0,outgoing:void 0}});const ie={both:"",outgoing:"outgoing-",incoming:"incoming-"},ae={forward:"",backward:"-backward"},se=e=>`--marp-bespoke-transition-animation-${e}`,le=e=>`--marp-transition-${e}`,ce=se("name"),de=se("duration"),ue=e=>new Promise((t=>{const n={},r=document.createElement("div"),o=e=>{r.remove(),t(e)};r.addEventListener("animationstart",(()=>o(n))),Object.assign(r.style,{animationName:e,animationDuration:"1s",animationFillMode:"both",animationPlayState:"paused",position:"absolute",pointerEvents:"none"}),document.body.appendChild(r);const i=getComputedStyle(r).getPropertyValue(le("duration"));i&&(n.defaultDuration=i),((e,t)=>{requestAnimationFrame((()=>{e.style.animationPlayState="running",requestAnimationFrame((()=>t(void 0)))}))})(r,o)})),fe=async e=>oe.has(e)?oe.get(e):(e=>{const t={},n=[];for(const[r,o]of Object.entries(ie))for(const[i,a]of Object.entries(ae)){const s=`marp-${o}transition${a}-${e}`;n.push(ue(s).then((e=>{t[i]=t[i]||{},t[i][r]=e?{...e,name:s}:void 0})))}return Promise.all(n).then((()=>t))})(e).then((t=>(oe.set(e,t),t))),me=e=>Object.values(e).flatMap(Object.values).every((e=>!e)),ge=(e,{type:t,backward:n})=>{const r=e[n?"backward":"forward"],o=(()=>{const e=r[t],n=e=>({[ce]:e.name});if(e)return n(e);if(r.both){const e=n(r.both);return"incoming"===t&&(e[se("direction")]="reverse"),e}})();return!o&&n?ge(e,{type:t,backward:!1}):o||{[ce]:"__bespoke_marp_transition_no_animation__"}},pe=e=>{if(e)try{const t=JSON.parse(e);if((e=>{if("object"!=typeof e)return!1;const t=e;return"string"==typeof t.name&&(void 0===t.duration||"string"==typeof t.duration)})(t))return t}catch(e){}},ve="_tSId",he="_tA",ye="bespoke-marp-transition-warming-up",be=window.matchMedia("(prefers-reduced-motion: reduce)"),we="__bespoke_marp_transition_reduced_outgoing__",xe="__bespoke_marp_transition_reduced_incoming__",ke={forward:{both:void 0,incoming:{name:xe},outgoing:{name:we}},backward:{both:void 0,incoming:{name:xe},outgoing:{name:we}}},$e=e=>{if(!document.startViewTransition)return;const t=t=>(void 0!==t&&(e._tD=t),e._tD);let n;t(!1),((...e)=>{const t=[...new Set(e).values()];return Promise.all(t.map((e=>fe(e)))).then()})(...Array.from(document.querySelectorAll("section[data-transition], section[data-transition-back]")).flatMap((e=>[e.dataset.transition,e.dataset.transitionBack].flatMap((e=>{const t=pe(e);return[null==t?void 0:t.name,(null==t?void 0:t.builtinFallback)?`__builtin__${t.name}`:void 0]})).filter((e=>!!e))))).then((()=>{document.querySelectorAll("style").forEach((e=>{e.innerHTML=e.innerHTML.replace(/--marp-transition-duration:[^;}]*[;}]/g,(e=>e.slice(0,-1)+"!important"+e.slice(-1)))}))}));const r=(n,{back:r,cond:o})=>i=>{var a;const s=t();if(s)return!!i[he]||!("object"!=typeof s||(s.skipTransition(),!i.forSync));if(!o(i))return!0;const l=e.slides[e.slide()],c=()=>{var e;return null!==(e=i.back)&&void 0!==e?e:r},d="data-transition"+(c()?"-back":""),u=l.querySelector(`section[${d}]`);if(!u)return!0;const f=pe(null!==(a=u.getAttribute(d))&&void 0!==a?a:void 0);return!f||((async(e,{builtinFallback:t=!0}={})=>{let n=await fe(e);if(me(n)){if(!t)return;return n=await fe(`__builtin__${e}`),me(n)?void 0:n}return n})(f.name,{builtinFallback:f.builtinFallback}).then((e=>{if(!e){t(!0);try{n(i)}finally{t(!1)}return}let r=e;be.matches&&(console.warn("Use a constant animation to transition because preferring reduced motion by viewer has detected."),r=ke);const o=document.getElementById(ve);o&&o.remove();const a=document.createElement("style");a.id=ve,document.head.appendChild(a),((e,t)=>{const n=[`:root{${le("direction")}:${t.backward?-1:1};}`,":root:has(.bespoke-marp-inactive){cursor:none;}"],r=t=>{var n,o,i;const a=(null===(n=e[t].both)||void 0===n?void 0:n.defaultDuration)||(null===(o=e[t].outgoing)||void 0===o?void 0:o.defaultDuration)||(null===(i=e[t].incoming)||void 0===i?void 0:i.defaultDuration);return"forward"===t?a:a||r("forward")},o=t.duration||r(t.backward?"backward":"forward");void 0!==o&&n.push(`::view-transition-group(*){${de}:${o};}`);const i=e=>Object.entries(e).map((([e,t])=>`${e}:${t};`)).join("");return n.push(`::view-transition-old(root){${i(ge(e,{...t,type:"outgoing"}))}}`,`::view-transition-new(root){${i(ge(e,{...t,type:"incoming"}))}}`),n})(r,{backward:c(),duration:f.duration}).forEach((e=>{var t;return null===(t=a.sheet)||void 0===t?void 0:t.insertRule(e)}));const s=document.documentElement.classList;s.add(ye);let l=!1;const d=()=>{l||(n(i),l=!0,s.remove(ye))},u=()=>{t(!1),a.remove(),s.remove(ye)};try{t(!0);const e=document.startViewTransition(d);t(e),e.finished.finally(u)}catch(e){console.error(e),d(),u()}})),!1)};e.on("prev",r((t=>e.prev({...t,[he]:!0})),{back:!0,cond:e=>{var t;return e.index>0&&!((null===(t=e.fragment)||void 0===t||t)&&n.fragmentIndex>0)}})),e.on("next",r((t=>e.next({...t,[he]:!0})),{cond:t=>t.index+1<e.slides.length&&!(n.fragmentIndex+1<n.fragments.length)})),setTimeout((()=>{e.on("slide",r((t=>e.slide(t.index,{...t,[he]:!0})),{cond:t=>{const n=e.slide();return t.index!==n&&(t.back=t.index<n,!0)}}))}),0),e.on("fragment",(e=>{n=e}))};let Ee;const Le=()=>(void 0===Ee&&(Ee="wakeLock"in navigator&&navigator.wakeLock),Ee),Se=async()=>{const e=Le();if(e)try{return await e.request("screen")}catch(e){console.warn(e)}return null},Pe=async()=>{if(!Le())return;let e;const t=()=>{e&&"visible"===document.visibilityState&&Se()};for(const e of["visibilitychange","fullscreenchange"])document.addEventListener(e,t);return e=await Se(),e};((e=document.getElementById(":$p"))=>{(()=>{const e=f("view");r.dataset.bespokeView=e===a||e===i?e:""})();const t=(e=>{const t=f(e);return m({[e]:void 0}),t})("sync")||void 0;n.from(e,((...e)=>{const t=s.findIndex((e=>u()===e));return e.map((([e,n])=>e[t]&&n)).filter((e=>e))})([[1,1,0],G({key:t})],[[1,1,1],W(e)],[[1,1,0],_],[[1,1,1],b],[[1,0,0],S()],[[1,1,1],T],[[1,1,1],z({history:!1})],[[1,1,0],I()],[[1,1,0],E],[[1,0,0],J],[[1,1,0],re()],[[1,0,0],M()],[[1,0,0],$e],[[1,1,1],w],[[1,1,0],Pe]))})()}();</script></body></html>
\ No newline at end of file
diff --git a/docs/vanna.html b/docs/vanna.html
deleted file mode 100644
index d5d7534b..00000000
--- a/docs/vanna.html
+++ /dev/null
@@ -1,786 +0,0 @@
-<!doctype html>
-<html lang="en">
-<head>
-    <meta charset="utf-8">
-    <meta name="viewport" content="width=device-width, initial-scale=1">
-    <meta name="generator" content="pdoc 14.0.0"/>
-    <title>vanna API documentation</title>
-
-    <style>/*! * Bootstrap Reboot v5.0.0 (https://getbootstrap.com/) * Copyright 2011-2021 The Bootstrap Authors * Copyright 2011-2021 Twitter, Inc. * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) * Forked from Normalize.css, licensed MIT (https://github.com/necolas/normalize.css/blob/master/LICENSE.md) */*,::after,::before{box-sizing:border-box}@media (prefers-reduced-motion:no-preference){:root{scroll-behavior:smooth}}body{margin:0;font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-size:1rem;font-weight:400;line-height:1.5;color:#212529;background-color:#fff;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:transparent}hr{margin:1rem 0;color:inherit;background-color:currentColor;border:0;opacity:.25}hr:not([size]){height:1px}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}h1{font-size:calc(1.375rem + 1.5vw)}@media (min-width:1200px){h1{font-size:2.5rem}}h2{font-size:calc(1.325rem + .9vw)}@media (min-width:1200px){h2{font-size:2rem}}h3{font-size:calc(1.3rem + .6vw)}@media (min-width:1200px){h3{font-size:1.75rem}}h4{font-size:calc(1.275rem + .3vw)}@media (min-width:1200px){h4{font-size:1.5rem}}h5{font-size:1.25rem}h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[data-bs-original-title],abbr[title]{-webkit-text-decoration:underline dotted;text-decoration:underline dotted;cursor:help;-webkit-text-decoration-skip-ink:none;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}dl,ol,ul{margin-top:0;margin-bottom:1rem}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:.875em}mark{padding:.2em;background-color:#fcf8e3}sub,sup{position:relative;font-size:.75em;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#0d6efd;text-decoration:underline}a:hover{color:#0a58ca}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em;direction:ltr;unicode-bidi:bidi-override}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:.875em}pre code{font-size:inherit;color:inherit;word-break:normal}code{font-size:.875em;color:#d63384;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:.875em;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:1em;font-weight:700}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:#6c757d;text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}tbody,td,tfoot,th,thead,tr{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]::-webkit-calendar-picker-indicator{display:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + .3vw);line-height:inherit}@media (min-width:1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-text,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:textfield}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none!important}</style>
-    <style>/*! syntax-highlighting.css */pre{line-height:125%;}span.linenos{color:inherit; background-color:transparent; padding-left:5px; padding-right:20px;}.pdoc-code .hll{background-color:#ffffcc}.pdoc-code{background:#f8f8f8;}.pdoc-code .c{color:#3D7B7B; font-style:italic}.pdoc-code .err{border:1px solid #FF0000}.pdoc-code .k{color:#008000; font-weight:bold}.pdoc-code .o{color:#666666}.pdoc-code .ch{color:#3D7B7B; font-style:italic}.pdoc-code .cm{color:#3D7B7B; font-style:italic}.pdoc-code .cp{color:#9C6500}.pdoc-code .cpf{color:#3D7B7B; font-style:italic}.pdoc-code .c1{color:#3D7B7B; font-style:italic}.pdoc-code .cs{color:#3D7B7B; font-style:italic}.pdoc-code .gd{color:#A00000}.pdoc-code .ge{font-style:italic}.pdoc-code .gr{color:#E40000}.pdoc-code .gh{color:#000080; font-weight:bold}.pdoc-code .gi{color:#008400}.pdoc-code .go{color:#717171}.pdoc-code .gp{color:#000080; font-weight:bold}.pdoc-code .gs{font-weight:bold}.pdoc-code .gu{color:#800080; font-weight:bold}.pdoc-code .gt{color:#0044DD}.pdoc-code .kc{color:#008000; font-weight:bold}.pdoc-code .kd{color:#008000; font-weight:bold}.pdoc-code .kn{color:#008000; font-weight:bold}.pdoc-code .kp{color:#008000}.pdoc-code .kr{color:#008000; font-weight:bold}.pdoc-code .kt{color:#B00040}.pdoc-code .m{color:#666666}.pdoc-code .s{color:#BA2121}.pdoc-code .na{color:#687822}.pdoc-code .nb{color:#008000}.pdoc-code .nc{color:#0000FF; font-weight:bold}.pdoc-code .no{color:#880000}.pdoc-code .nd{color:#AA22FF}.pdoc-code .ni{color:#717171; font-weight:bold}.pdoc-code .ne{color:#CB3F38; font-weight:bold}.pdoc-code .nf{color:#0000FF}.pdoc-code .nl{color:#767600}.pdoc-code .nn{color:#0000FF; font-weight:bold}.pdoc-code .nt{color:#008000; font-weight:bold}.pdoc-code .nv{color:#19177C}.pdoc-code .ow{color:#AA22FF; font-weight:bold}.pdoc-code .w{color:#bbbbbb}.pdoc-code .mb{color:#666666}.pdoc-code .mf{color:#666666}.pdoc-code .mh{color:#666666}.pdoc-code .mi{color:#666666}.pdoc-code .mo{color:#666666}.pdoc-code .sa{color:#BA2121}.pdoc-code .sb{color:#BA2121}.pdoc-code .sc{color:#BA2121}.pdoc-code .dl{color:#BA2121}.pdoc-code .sd{color:#BA2121; font-style:italic}.pdoc-code .s2{color:#BA2121}.pdoc-code .se{color:#AA5D1F; font-weight:bold}.pdoc-code .sh{color:#BA2121}.pdoc-code .si{color:#A45A77; font-weight:bold}.pdoc-code .sx{color:#008000}.pdoc-code .sr{color:#A45A77}.pdoc-code .s1{color:#BA2121}.pdoc-code .ss{color:#19177C}.pdoc-code .bp{color:#008000}.pdoc-code .fm{color:#0000FF}.pdoc-code .vc{color:#19177C}.pdoc-code .vg{color:#19177C}.pdoc-code .vi{color:#19177C}.pdoc-code .vm{color:#19177C}.pdoc-code .il{color:#666666}</style>
-    <style>/*! theme.css */:root{--pdoc-background:#fff;}.pdoc{--text:#212529;--muted:#6c757d;--link:#3660a5;--link-hover:#1659c5;--code:#f8f8f8;--active:#fff598;--accent:#eee;--accent2:#c1c1c1;--nav-hover:rgba(255, 255, 255, 0.5);--name:#0066BB;--def:#008800;--annotation:#007020;}</style>
-    <style>/*! layout.css */html, body{width:100%;height:100%;}html, main{scroll-behavior:smooth;}body{background-color:var(--pdoc-background);}@media (max-width:769px){#navtoggle{cursor:pointer;position:absolute;width:50px;height:40px;top:1rem;right:1rem;border-color:var(--text);color:var(--text);display:flex;opacity:0.8;z-index:999;}#navtoggle:hover{opacity:1;}#togglestate + div{display:none;}#togglestate:checked + div{display:inherit;}main, header{padding:2rem 3vw;}header + main{margin-top:-3rem;}.git-button{display:none !important;}nav input[type="search"]{max-width:77%;}nav input[type="search"]:first-child{margin-top:-6px;}nav input[type="search"]:valid ~ *{display:none !important;}}@media (min-width:770px){:root{--sidebar-width:clamp(12.5rem, 28vw, 22rem);}nav{position:fixed;overflow:auto;height:100vh;width:var(--sidebar-width);}main, header{padding:3rem 2rem 3rem calc(var(--sidebar-width) + 3rem);width:calc(54rem + var(--sidebar-width));max-width:100%;}header + main{margin-top:-4rem;}#navtoggle{display:none;}}#togglestate{position:absolute;height:0;opacity:0;}nav.pdoc{--pad:clamp(0.5rem, 2vw, 1.75rem);--indent:1.5rem;background-color:var(--accent);border-right:1px solid var(--accent2);box-shadow:0 0 20px rgba(50, 50, 50, .2) inset;padding:0 0 0 var(--pad);overflow-wrap:anywhere;scrollbar-width:thin; scrollbar-color:var(--accent2) transparent }nav.pdoc::-webkit-scrollbar{width:.4rem; }nav.pdoc::-webkit-scrollbar-thumb{background-color:var(--accent2); }nav.pdoc > div{padding:var(--pad) 0;}nav.pdoc .module-list-button{display:inline-flex;align-items:center;color:var(--text);border-color:var(--muted);margin-bottom:1rem;}nav.pdoc .module-list-button:hover{border-color:var(--text);}nav.pdoc input[type=search]{display:block;outline-offset:0;width:calc(100% - var(--pad));}nav.pdoc .logo{max-width:calc(100% - var(--pad));max-height:35vh;display:block;margin:0 auto 1rem;transform:translate(calc(-.5 * var(--pad)), 0);}nav.pdoc ul{list-style:none;padding-left:0;}nav.pdoc > div > ul{margin-left:calc(0px - var(--pad));}nav.pdoc li a{padding:.2rem 0 .2rem calc(var(--pad) + var(--indent));}nav.pdoc > div > ul > li > a{padding-left:var(--pad);}nav.pdoc li{transition:all 100ms;}nav.pdoc li:hover{background-color:var(--nav-hover);}nav.pdoc a, nav.pdoc a:hover{color:var(--text);}nav.pdoc a{display:block;}nav.pdoc > h2:first-of-type{margin-top:1.5rem;}nav.pdoc .class:before{content:"class ";color:var(--muted);}nav.pdoc .function:after{content:"()";color:var(--muted);}nav.pdoc footer:before{content:"";display:block;width:calc(100% - var(--pad));border-top:solid var(--accent2) 1px;margin-top:1.5rem;padding-top:.5rem;}nav.pdoc footer{font-size:small;}</style>
-    <style>/*! content.css */.pdoc{color:var(--text);box-sizing:border-box;line-height:1.5;background:none;}.pdoc .pdoc-button{cursor:pointer;display:inline-block;border:solid black 1px;border-radius:2px;font-size:.75rem;padding:calc(0.5em - 1px) 1em;transition:100ms all;}.pdoc .pdoc-alert{padding:1rem 1rem 1rem calc(1.5rem + 24px);border:1px solid transparent;border-radius:.25rem;background-repeat:no-repeat;background-position:1rem center;margin-bottom:1rem;}.pdoc .pdoc-alert > *:last-child{margin-bottom:0;}.pdoc .pdoc-alert-note {color:#084298;background-color:#cfe2ff;border-color:#b6d4fe;background-image:url("data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2224%22%20height%3D%2224%22%20fill%3D%22%23084298%22%20viewBox%3D%220%200%2016%2016%22%3E%3Cpath%20d%3D%22M8%2016A8%208%200%201%200%208%200a8%208%200%200%200%200%2016zm.93-9.412-1%204.705c-.07.34.029.533.304.533.194%200%20.487-.07.686-.246l-.088.416c-.287.346-.92.598-1.465.598-.703%200-1.002-.422-.808-1.319l.738-3.468c.064-.293.006-.399-.287-.47l-.451-.081.082-.381%202.29-.287zM8%205.5a1%201%200%201%201%200-2%201%201%200%200%201%200%202z%22/%3E%3C/svg%3E");}.pdoc .pdoc-alert-warning{color:#664d03;background-color:#fff3cd;border-color:#ffecb5;background-image:url("data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2224%22%20height%3D%2224%22%20fill%3D%22%23664d03%22%20viewBox%3D%220%200%2016%2016%22%3E%3Cpath%20d%3D%22M8.982%201.566a1.13%201.13%200%200%200-1.96%200L.165%2013.233c-.457.778.091%201.767.98%201.767h13.713c.889%200%201.438-.99.98-1.767L8.982%201.566zM8%205c.535%200%20.954.462.9.995l-.35%203.507a.552.552%200%200%201-1.1%200L7.1%205.995A.905.905%200%200%201%208%205zm.002%206a1%201%200%201%201%200%202%201%201%200%200%201%200-2z%22/%3E%3C/svg%3E");}.pdoc .pdoc-alert-danger{color:#842029;background-color:#f8d7da;border-color:#f5c2c7;background-image:url("data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%2224%22%20height%3D%2224%22%20fill%3D%22%23842029%22%20viewBox%3D%220%200%2016%2016%22%3E%3Cpath%20d%3D%22M5.52.359A.5.5%200%200%201%206%200h4a.5.5%200%200%201%20.474.658L8.694%206H12.5a.5.5%200%200%201%20.395.807l-7%209a.5.5%200%200%201-.873-.454L6.823%209.5H3.5a.5.5%200%200%201-.48-.641l2.5-8.5z%22/%3E%3C/svg%3E");}.pdoc .visually-hidden{position:absolute !important;width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important;}.pdoc h1, .pdoc h2, .pdoc h3{font-weight:300;margin:.3em 0;padding:.2em 0;}.pdoc > section:not(.module-info) h1{font-size:1.5rem;font-weight:500;}.pdoc > section:not(.module-info) h2{font-size:1.4rem;font-weight:500;}.pdoc > section:not(.module-info) h3{font-size:1.3rem;font-weight:500;}.pdoc > section:not(.module-info) h4{font-size:1.2rem;}.pdoc > section:not(.module-info) h5{font-size:1.1rem;}.pdoc a{text-decoration:none;color:var(--link);}.pdoc a:hover{color:var(--link-hover);}.pdoc blockquote{margin-left:2rem;}.pdoc pre{border-top:1px solid var(--accent2);border-bottom:1px solid var(--accent2);margin-top:0;margin-bottom:1em;padding:.5rem 0 .5rem .5rem;overflow-x:auto;background-color:var(--code);}.pdoc code{color:var(--text);padding:.2em .4em;margin:0;font-size:85%;background-color:var(--code);border-radius:6px;}.pdoc a > code{color:inherit;}.pdoc pre > code{display:inline-block;font-size:inherit;background:none;border:none;padding:0;}.pdoc > section:not(.module-info){margin-bottom:1.5rem;}.pdoc .modulename{margin-top:0;font-weight:bold;}.pdoc .modulename a{color:var(--link);transition:100ms all;}.pdoc .git-button{float:right;border:solid var(--link) 1px;}.pdoc .git-button:hover{background-color:var(--link);color:var(--pdoc-background);}.view-source-toggle-state,.view-source-toggle-state ~ .pdoc-code{display:none;}.view-source-toggle-state:checked ~ .pdoc-code{display:block;}.view-source-button{display:inline-block;float:right;font-size:.75rem;line-height:1.5rem;color:var(--muted);padding:0 .4rem 0 1.3rem;cursor:pointer;text-indent:-2px;}.view-source-button > span{visibility:hidden;}.module-info .view-source-button{float:none;display:flex;justify-content:flex-end;margin:-1.2rem .4rem -.2rem 0;}.view-source-button::before{position:absolute;content:"View Source";display:list-item;list-style-type:disclosure-closed;}.view-source-toggle-state:checked ~ .attr .view-source-button::before,.view-source-toggle-state:checked ~ .view-source-button::before{list-style-type:disclosure-open;}.pdoc .docstring{margin-bottom:1.5rem;}.pdoc section:not(.module-info) .docstring{margin-left:clamp(0rem, 5vw - 2rem, 1rem);}.pdoc .docstring .pdoc-code{margin-left:1em;margin-right:1em;}.pdoc h1:target,.pdoc h2:target,.pdoc h3:target,.pdoc h4:target,.pdoc h5:target,.pdoc h6:target,.pdoc .pdoc-code > pre > span:target{background-color:var(--active);box-shadow:-1rem 0 0 0 var(--active);}.pdoc .pdoc-code > pre > span:target{display:block;}.pdoc div:target > .attr,.pdoc section:target > .attr,.pdoc dd:target > a{background-color:var(--active);}.pdoc *{scroll-margin:2rem;}.pdoc .pdoc-code .linenos{user-select:none;}.pdoc .attr:hover{filter:contrast(0.95);}.pdoc section, .pdoc .classattr{position:relative;}.pdoc .headerlink{--width:clamp(1rem, 3vw, 2rem);position:absolute;top:0;left:calc(0rem - var(--width));transition:all 100ms ease-in-out;opacity:0;}.pdoc .headerlink::before{content:"#";display:block;text-align:center;width:var(--width);height:2.3rem;line-height:2.3rem;font-size:1.5rem;}.pdoc .attr:hover ~ .headerlink,.pdoc *:target > .headerlink,.pdoc .headerlink:hover{opacity:1;}.pdoc .attr{display:block;margin:.5rem 0 .5rem;padding:.4rem .4rem .4rem 1rem;background-color:var(--accent);overflow-x:auto;}.pdoc .classattr{margin-left:2rem;}.pdoc .name{color:var(--name);font-weight:bold;}.pdoc .def{color:var(--def);font-weight:bold;}.pdoc .signature{background-color:transparent;}.pdoc .param, .pdoc .return-annotation{white-space:pre;}.pdoc .signature.multiline .param{display:block;}.pdoc .signature.condensed .param{display:inline-block;}.pdoc .annotation{color:var(--annotation);}.pdoc .view-value-toggle-state,.pdoc .view-value-toggle-state ~ .default_value{display:none;}.pdoc .view-value-toggle-state:checked ~ .default_value{display:inherit;}.pdoc .view-value-button{font-size:.5rem;vertical-align:middle;border-style:dashed;margin-top:-0.1rem;}.pdoc .view-value-button:hover{background:white;}.pdoc .view-value-button::before{content:"show";text-align:center;width:2.2em;display:inline-block;}.pdoc .view-value-toggle-state:checked ~ .view-value-button::before{content:"hide";}.pdoc .inherited{margin-left:2rem;}.pdoc .inherited dt{font-weight:700;}.pdoc .inherited dt, .pdoc .inherited dd{display:inline;margin-left:0;margin-bottom:.5rem;}.pdoc .inherited dd:not(:last-child):after{content:", ";}.pdoc .inherited .class:before{content:"class ";}.pdoc .inherited .function a:after{content:"()";}.pdoc .search-result .docstring{overflow:auto;max-height:25vh;}.pdoc .search-result.focused > .attr{background-color:var(--active);}.pdoc .attribution{margin-top:2rem;display:block;opacity:0.5;transition:all 200ms;filter:grayscale(100%);}.pdoc .attribution:hover{opacity:1;filter:grayscale(0%);}.pdoc .attribution img{margin-left:5px;height:35px;vertical-align:middle;width:70px;transition:all 200ms;}.pdoc table{display:block;width:max-content;max-width:100%;overflow:auto;margin-bottom:1rem;}.pdoc table th{font-weight:600;}.pdoc table th, .pdoc table td{padding:6px 13px;border:1px solid var(--accent2);}</style>
-    <style>/*! custom.css */</style><style>
-    .pdoc .mermaid-pre {
-        border: none;
-        background: none;
-    }
-</style>
-<script type="module" defer>
-    import mermaid from "https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs";
-
-    /* Re-invoke Mermaid when DOM content changes, for example during search. */
-    document.addEventListener("DOMContentLoaded", () => {
-        new MutationObserver(() => mermaid.run()).observe(
-            document.querySelector("main.pdoc").parentNode,
-            {childList: true}
-        );
-    })
-</script></head>
-<body>
-    <nav class="pdoc">
-        <label id="navtoggle" for="togglestate" class="pdoc-button"><svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'><path stroke-linecap='round' stroke="currentColor" stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/></svg></label>
-        <input id="togglestate" type="checkbox" aria-hidden="true" tabindex="-1">
-        <div>
-<a href="https://vanna.ai">            <img src="https://ask.vanna.ai/static/img/vanna_with_text_transparent.png" class="logo" alt="project logo"/>
-</a>
-            <input type="search" placeholder="Search..." role="searchbox" aria-label="search"
-                   pattern=".+" required>
-
-            <h2>Contents</h2>
-            <ul>
-  <li><a href="#what-is-vannaai">What is Vanna.AI?</a></li>
-  <li><a href="#how-do-i-use-vannaai">How do I use Vanna.AI?</a></li>
-  <li><a href="#how-does-vannaai-work">How does Vanna.AI work?</a></li>
-  <li><a href="#getting-started">Getting Started</a>
-  <ul>
-    <li><a href="#how-do-i-import-the-vannaai-library">How do I import the Vanna.AI library?</a></li>
-    <li><a href="#how-do-i-set-my-api-key">How do I set my API key?</a></li>
-    <li><a href="#how-do-i-set-my-organization-name">How do I set my organization name?</a></li>
-    <li><a href="#how-do-i-train-vannaai-on-my-data">How do I train Vanna.AI on my data?</a></li>
-    <li><a href="#how-do-i-ask-questions-about-my-data">How do I ask questions about my data?</a></li>
-    <li><a href="#full-example">Full Example</a></li>
-  </ul></li>
-  <li><a href="#api-reference">API Reference</a></li>
-</ul>
-
-
-            <h2>Submodules</h2>
-            <ul>
-                    <li><a href="vanna/types.html">types</a></li>
-            </ul>
-
-            <h2>API Documentation</h2>
-                <ul class="memberlist">
-            <li>
-                    <a class="variable" href="#api_key">api_key</a>
-            </li>
-            <li>
-                    <a class="function" href="#set_org">set_org</a>
-            </li>
-            <li>
-                    <a class="function" href="#store_sql">store_sql</a>
-            </li>
-            <li>
-                    <a class="function" href="#flag_sql_for_review">flag_sql_for_review</a>
-            </li>
-            <li>
-                    <a class="function" href="#remove_sql">remove_sql</a>
-            </li>
-            <li>
-                    <a class="function" href="#generate_sql">generate_sql</a>
-            </li>
-            <li>
-                    <a class="function" href="#generate_plotly_code">generate_plotly_code</a>
-            </li>
-            <li>
-                    <a class="function" href="#get_plotly_figure">get_plotly_figure</a>
-            </li>
-            <li>
-                    <a class="function" href="#get_results">get_results</a>
-            </li>
-            <li>
-                    <a class="function" href="#generate_explanation">generate_explanation</a>
-            </li>
-            <li>
-                    <a class="function" href="#generate_question">generate_question</a>
-            </li>
-            <li>
-                    <a class="function" href="#get_flagged_questions">get_flagged_questions</a>
-            </li>
-            <li>
-                    <a class="function" href="#get_accuracy_stats">get_accuracy_stats</a>
-            </li>
-    </ul>
-
-
-
-        <a class="attribution" title="pdoc: Python API documentation generator" href="https://pdoc.dev" target="_blank">
-            built with <span class="visually-hidden">pdoc</span><img
-                alt="pdoc logo"
-                src="data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20role%3D%22img%22%20aria-label%3D%22pdoc%20logo%22%20width%3D%22300%22%20height%3D%22150%22%20viewBox%3D%22-1%200%2060%2030%22%3E%3Ctitle%3Epdoc%3C/title%3E%3Cpath%20d%3D%22M29.621%2021.293c-.011-.273-.214-.475-.511-.481a.5.5%200%200%200-.489.503l-.044%201.393c-.097.551-.695%201.215-1.566%201.704-.577.428-1.306.486-2.193.182-1.426-.617-2.467-1.654-3.304-2.487l-.173-.172a3.43%203.43%200%200%200-.365-.306.49.49%200%200%200-.286-.196c-1.718-1.06-4.931-1.47-7.353.191l-.219.15c-1.707%201.187-3.413%202.131-4.328%201.03-.02-.027-.49-.685-.141-1.763.233-.721.546-2.408.772-4.076.042-.09.067-.187.046-.288.166-1.347.277-2.625.241-3.351%201.378-1.008%202.271-2.586%202.271-4.362%200-.976-.272-1.935-.788-2.774-.057-.094-.122-.18-.184-.268.033-.167.052-.339.052-.516%200-1.477-1.202-2.679-2.679-2.679-.791%200-1.496.352-1.987.9a6.3%206.3%200%200%200-1.001.029c-.492-.564-1.207-.929-2.012-.929-1.477%200-2.679%201.202-2.679%202.679A2.65%202.65%200%200%200%20.97%206.554c-.383.747-.595%201.572-.595%202.41%200%202.311%201.507%204.29%203.635%205.107-.037.699-.147%202.27-.423%203.294l-.137.461c-.622%202.042-2.515%208.257%201.727%2010.643%201.614.908%203.06%201.248%204.317%201.248%202.665%200%204.492-1.524%205.322-2.401%201.476-1.559%202.886-1.854%206.491.82%201.877%201.393%203.514%201.753%204.861%201.068%202.223-1.713%202.811-3.867%203.399-6.374.077-.846.056-1.469.054-1.537zm-4.835%204.313c-.054.305-.156.586-.242.629-.034-.007-.131-.022-.307-.157-.145-.111-.314-.478-.456-.908.221.121.432.25.675.355.115.039.219.051.33.081zm-2.251-1.238c-.05.33-.158.648-.252.694-.022.001-.125-.018-.307-.157-.217-.166-.488-.906-.639-1.573.358.344.754.693%201.198%201.036zm-3.887-2.337c-.006-.116-.018-.231-.041-.342.635.145%201.189.368%201.599.625.097.231.166.481.174.642-.03.049-.055.101-.067.158-.046.013-.128.026-.298.004-.278-.037-.901-.57-1.367-1.087zm-1.127-.497c.116.306.176.625.12.71-.019.014-.117.045-.345.016-.206-.027-.604-.332-.986-.695.41-.051.816-.056%201.211-.031zm-4.535%201.535c.209.22.379.47.358.598-.006.041-.088.138-.351.234-.144.055-.539-.063-.979-.259a11.66%2011.66%200%200%200%20.972-.573zm.983-.664c.359-.237.738-.418%201.126-.554.25.237.479.548.457.694-.006.042-.087.138-.351.235-.174.064-.694-.105-1.232-.375zm-3.381%201.794c-.022.145-.061.29-.149.401-.133.166-.358.248-.69.251h-.002c-.133%200-.306-.26-.45-.621.417.091.854.07%201.291-.031zm-2.066-8.077a4.78%204.78%200%200%201-.775-.584c.172-.115.505-.254.88-.378l-.105.962zm-.331%202.302a10.32%2010.32%200%200%201-.828-.502c.202-.143.576-.328.984-.49l-.156.992zm-.45%202.157l-.701-.403c.214-.115.536-.249.891-.376a11.57%2011.57%200%200%201-.19.779zm-.181%201.716c.064.398.194.702.298.893-.194-.051-.435-.162-.736-.398.061-.119.224-.3.438-.495zM8.87%204.141c0%20.152-.123.276-.276.276s-.275-.124-.275-.276.123-.276.276-.276.275.124.275.276zm-.735-.389a1.15%201.15%200%200%200-.314.783%201.16%201.16%200%200%200%201.162%201.162c.457%200%20.842-.27%201.032-.653.026.117.042.238.042.362a1.68%201.68%200%200%201-1.679%201.679%201.68%201.68%200%200%201-1.679-1.679c0-.843.626-1.535%201.436-1.654zM5.059%205.406A1.68%201.68%200%200%201%203.38%207.085a1.68%201.68%200%200%201-1.679-1.679c0-.037.009-.072.011-.109.21.3.541.508.935.508a1.16%201.16%200%200%200%201.162-1.162%201.14%201.14%200%200%200-.474-.912c.015%200%20.03-.005.045-.005.926.001%201.679.754%201.679%201.68zM3.198%204.141c0%20.152-.123.276-.276.276s-.275-.124-.275-.276.123-.276.276-.276.275.124.275.276zM1.375%208.964c0-.52.103-1.035.288-1.52.466.394%201.06.64%201.717.64%201.144%200%202.116-.725%202.499-1.738.383%201.012%201.355%201.738%202.499%201.738.867%200%201.631-.421%202.121-1.062.307.605.478%201.267.478%201.942%200%202.486-2.153%204.51-4.801%204.51s-4.801-2.023-4.801-4.51zm24.342%2019.349c-.985.498-2.267.168-3.813-.979-3.073-2.281-5.453-3.199-7.813-.705-1.315%201.391-4.163%203.365-8.423.97-3.174-1.786-2.239-6.266-1.261-9.479l.146-.492c.276-1.02.395-2.457.444-3.268a6.11%206.11%200%200%200%201.18.115%206.01%206.01%200%200%200%202.536-.562l-.006.175c-.802.215-1.848.612-2.021%201.25-.079.295.021.601.274.837.219.203.415.364.598.501-.667.304-1.243.698-1.311%201.179-.02.144-.022.507.393.787.213.144.395.26.564.365-1.285.521-1.361.96-1.381%201.126-.018.142-.011.496.427.746l.854.489c-.473.389-.971.914-.999%201.429-.018.278.095.532.316.713.675.556%201.231.721%201.653.721.059%200%20.104-.014.158-.02.207.707.641%201.64%201.513%201.64h.013c.8-.008%201.236-.345%201.462-.626.173-.216.268-.457.325-.692.424.195.93.374%201.372.374.151%200%20.294-.021.423-.068.732-.27.944-.704.993-1.021.009-.061.003-.119.002-.179.266.086.538.147.789.147.15%200%20.294-.021.423-.069.542-.2.797-.489.914-.754.237.147.478.258.704.288.106.014.205.021.296.021.356%200%20.595-.101.767-.229.438.435%201.094.992%201.656%201.067.106.014.205.021.296.021a1.56%201.56%200%200%200%20.323-.035c.17.575.453%201.289.866%201.605.358.273.665.362.914.362a.99.99%200%200%200%20.421-.093%201.03%201.03%200%200%200%20.245-.164c.168.428.39.846.68%201.068.358.273.665.362.913.362a.99.99%200%200%200%20.421-.093c.317-.148.512-.448.639-.762.251.157.495.257.726.257.127%200%20.25-.024.37-.071.427-.17.706-.617.841-1.314.022-.015.047-.022.068-.038.067-.051.133-.104.196-.159-.443%201.486-1.107%202.761-2.086%203.257zM8.66%209.925a.5.5%200%201%200-1%200c0%20.653-.818%201.205-1.787%201.205s-1.787-.552-1.787-1.205a.5.5%200%201%200-1%200c0%201.216%201.25%202.205%202.787%202.205s2.787-.989%202.787-2.205zm4.4%2015.965l-.208.097c-2.661%201.258-4.708%201.436-6.086.527-1.542-1.017-1.88-3.19-1.844-4.198a.4.4%200%200%200-.385-.414c-.242-.029-.406.164-.414.385-.046%201.249.367%203.686%202.202%204.896.708.467%201.547.7%202.51.7%201.248%200%202.706-.392%204.362-1.174l.185-.086a.4.4%200%200%200%20.205-.527c-.089-.204-.326-.291-.527-.206zM9.547%202.292c.093.077.205.114.317.114a.5.5%200%200%200%20.318-.886L8.817.397a.5.5%200%200%200-.703.068.5.5%200%200%200%20.069.703l1.364%201.124zm-7.661-.065c.086%200%20.173-.022.253-.068l1.523-.893a.5.5%200%200%200-.506-.863l-1.523.892a.5.5%200%200%200-.179.685c.094.158.261.247.432.247z%22%20transform%3D%22matrix%28-1%200%200%201%2058%200%29%22%20fill%3D%22%233bb300%22/%3E%3Cpath%20d%3D%22M.3%2021.86V10.18q0-.46.02-.68.04-.22.18-.5.28-.54%201.34-.54%201.06%200%201.42.28.38.26.44.78.76-1.04%202.38-1.04%201.64%200%203.1%201.54%201.46%201.54%201.46%203.58%200%202.04-1.46%203.58-1.44%201.54-3.08%201.54-1.64%200-2.38-.92v4.04q0%20.46-.04.68-.02.22-.18.5-.14.3-.5.42-.36.12-.98.12-.62%200-1-.12-.36-.12-.52-.4-.14-.28-.18-.5-.02-.22-.02-.68zm3.96-9.42q-.46.54-.46%201.18%200%20.64.46%201.18.48.52%201.2.52.74%200%201.24-.52.52-.52.52-1.18%200-.66-.48-1.18-.48-.54-1.26-.54-.76%200-1.22.54zm14.741-8.36q.16-.3.54-.42.38-.12%201-.12.64%200%201.02.12.38.12.52.42.16.3.18.54.04.22.04.68v11.94q0%20.46-.04.7-.02.22-.18.5-.3.54-1.7.54-1.38%200-1.54-.98-.84.96-2.34.96-1.8%200-3.28-1.56-1.48-1.58-1.48-3.66%200-2.1%201.48-3.68%201.5-1.58%203.28-1.58%201.48%200%202.3%201v-4.2q0-.46.02-.68.04-.24.18-.52zm-3.24%2010.86q.52.54%201.26.54.74%200%201.22-.54.5-.54.5-1.18%200-.66-.48-1.22-.46-.56-1.26-.56-.8%200-1.28.56-.48.54-.48%201.2%200%20.66.52%201.2zm7.833-1.2q0-2.4%201.68-3.96%201.68-1.56%203.84-1.56%202.16%200%203.82%201.56%201.66%201.54%201.66%203.94%200%201.66-.86%202.96-.86%201.28-2.1%201.9-1.22.6-2.54.6-1.32%200-2.56-.64-1.24-.66-2.1-1.92-.84-1.28-.84-2.88zm4.18%201.44q.64.48%201.3.48.66%200%201.32-.5.66-.5.66-1.48%200-.98-.62-1.46-.62-.48-1.34-.48-.72%200-1.34.5-.62.5-.62%201.48%200%20.96.64%201.46zm11.412-1.44q0%20.84.56%201.32.56.46%201.18.46.64%200%201.18-.36.56-.38.9-.38.6%200%201.46%201.06.46.58.46%201.04%200%20.76-1.1%201.42-1.14.8-2.8.8-1.86%200-3.58-1.34-.82-.64-1.34-1.7-.52-1.08-.52-2.36%200-1.3.52-2.34.52-1.06%201.34-1.7%201.66-1.32%203.54-1.32.76%200%201.48.22.72.2%201.06.4l.32.2q.36.24.56.38.52.4.52.92%200%20.5-.42%201.14-.72%201.1-1.38%201.1-.38%200-1.08-.44-.36-.34-1.04-.34-.66%200-1.24.48-.58.48-.58%201.34z%22%20fill%3D%22green%22/%3E%3C/svg%3E"/>
-        </a>
-</div>
-    </nav>
-    <main class="pdoc">
-            <section class="module-info">
-                    <h1 class="modulename">
-vanna    </h1>
-
-                        <div class="docstring"><h1 id="what-is-vannaai">What is Vanna.AI?</h1>
-
-<p>Vanna.AI is a platform that allows you to ask questions about your data in plain English. It is an AI-powered data analyst that can answer questions about your data, generate SQL, and create visualizations.</p>
-
-<h1 id="how-do-i-use-vannaai">How do I use Vanna.AI?</h1>
-
-<ul>
-<li>Import the Vanna.AI library</li>
-<li>Set your API key</li>
-<li>Set your organization name</li>
-<li>Train Vanna.AI on your data</li>
-<li>Ask questions about your data</li>
-</ul>
-
-<h1 id="how-does-vannaai-work">How does Vanna.AI work?</h1>
-
-<pre class="mermaid-pre"><div class="mermaid">flowchart TD
-    DB[(Known Correct Question-SQL)]
-    Try[Try to Use DDL/Documentation]
-    SQL(SQL)
-    Check{Is the SQL correct?}
-    Generate[fa:fa-circle-question Use Examples to Generate]
-    DB --&gt; Find
-    Question[fa:fa-circle-question Question] --&gt; Find{fa:fa-magnifying-glass Do we have similar questions?}
-    Find -- Yes --&gt; Generate
-    Find -- No --&gt; Try
-    Generate --&gt; SQL
-    Try --&gt; SQL
-    SQL --&gt; Check
-    Check -- Yes --&gt; DB
-    Check -- No --&gt; Analyst[fa:fa-glasses Analyst Writes the SQL]
-    Analyst -- Adds --&gt; DB
-</div></pre>
-
-<h1 id="getting-started">Getting Started</h1>
-
-<h2 id="how-do-i-import-the-vannaai-library">How do I import the Vanna.AI library?</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="kn">import</span> <span class="nn">vanna</span> <span class="k">as</span> <span class="nn">vn</span>
-</code></pre>
-</div>
-
-<h2 id="how-do-i-set-my-api-key">How do I set my API key?</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">api_key</span> <span class="o">=</span> <span class="s1">&#39;vanna-key-...&#39;</span>
-</code></pre>
-</div>
-
-<h2 id="how-do-i-set-my-organization-name">How do I set my organization name?</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">set_org</span><span class="p">(</span><span class="s1">&#39;my_org&#39;</span><span class="p">)</span>
-</code></pre>
-</div>
-
-<h2 id="how-do-i-train-vannaai-on-my-data">How do I train Vanna.AI on my data?</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">store_sql</span><span class="p">(</span>
-    <span class="n">question</span><span class="o">=</span><span class="s2">&quot;Who are the top 10 customers by Sales?&quot;</span><span class="p">,</span> 
-    <span class="n">sql</span><span class="o">=</span><span class="s2">&quot;SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10&quot;</span>
-<span class="p">)</span>
-</code></pre>
-</div>
-
-<h2 id="how-do-i-ask-questions-about-my-data">How do I ask questions about my data?</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">my_question</span> <span class="o">=</span> <span class="s1">&#39;What are the top 10 ABC by XYZ?&#39;</span>
-
-<span class="n">sql</span> <span class="o">=</span> <span class="n">vn</span><span class="o">.</span><span class="n">generate_sql</span><span class="p">(</span><span class="n">question</span><span class="o">=</span><span class="n">my_question</span><span class="p">,</span> <span class="n">error_msg</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
-<span class="c1"># SELECT * FROM table_name WHERE column_name = &#39;value&#39;</span>
-</code></pre>
-</div>
-
-<h2 id="full-example">Full Example</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="kn">import</span> <span class="nn">vanna</span> <span class="k">as</span> <span class="nn">vn</span>
-
-<span class="n">vn</span><span class="o">.</span><span class="n">api_key</span> <span class="o">=</span> <span class="s1">&#39;vanna-key-...&#39;</span> <span class="c1"># Set your API key</span>
-<span class="n">vn</span><span class="o">.</span><span class="n">set_org</span><span class="p">(</span><span class="s1">&#39;&#39;</span><span class="p">)</span> <span class="c1"># Set your organization name</span>
-
-<span class="c1"># Train Vanna.AI on your data</span>
-<span class="n">vn</span><span class="o">.</span><span class="n">store_sql</span><span class="p">(</span>
-    <span class="n">question</span><span class="o">=</span><span class="s2">&quot;Who are the top 10 customers by Sales?&quot;</span><span class="p">,</span> 
-    <span class="n">sql</span><span class="o">=</span><span class="s2">&quot;SELECT customer_name, sales FROM customers ORDER BY sales DESC LIMIT 10&quot;</span>
-<span class="p">)</span>
-
-<span class="c1"># Ask questions about your data</span>
-<span class="n">my_question</span> <span class="o">=</span> <span class="s1">&#39;What are the top 10 ABC by XYZ?&#39;</span>
-
-<span class="c1"># Generate SQL</span>
-<span class="n">sql</span> <span class="o">=</span> <span class="n">vn</span><span class="o">.</span><span class="n">generate_sql</span><span class="p">(</span><span class="n">question</span><span class="o">=</span><span class="n">my_question</span><span class="p">,</span> <span class="n">error_msg</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span> 
-
-<span class="c1"># Connect to your database</span>
-<span class="n">conn</span> <span class="o">=</span> <span class="n">snowflake</span><span class="o">.</span><span class="n">connector</span><span class="o">.</span><span class="n">connect</span><span class="p">(</span>
-        <span class="n">user</span><span class="o">=</span><span class="s1">&#39;my_user&#39;</span><span class="p">,</span>
-        <span class="n">password</span><span class="o">=</span><span class="s1">&#39;my_password&#39;</span><span class="p">,</span>
-        <span class="n">account</span><span class="o">=</span><span class="s1">&#39;my_account&#39;</span><span class="p">,</span>
-        <span class="n">database</span><span class="o">=</span><span class="s1">&#39;my_database&#39;</span><span class="p">,</span>
-    <span class="p">)</span>
-
-<span class="n">cs</span> <span class="o">=</span> <span class="n">conn</span><span class="o">.</span><span class="n">cursor</span><span class="p">()</span>
-
-<span class="c1"># Get results</span>
-<span class="n">df</span> <span class="o">=</span> <span class="n">vn</span><span class="o">.</span><span class="n">get_results</span><span class="p">(</span>
-    <span class="n">cs</span><span class="o">=</span><span class="n">cs</span><span class="p">,</span> 
-    <span class="n">default_db</span><span class="o">=</span><span class="n">my_default_db</span><span class="p">,</span> 
-    <span class="n">sql</span><span class="o">=</span><span class="n">sql</span>
-    <span class="p">)</span>
-
-<span class="c1"># Generate Plotly code</span>
-<span class="n">plotly_code</span> <span class="o">=</span> <span class="n">vn</span><span class="o">.</span><span class="n">generate_plotly_code</span><span class="p">(</span>
-    <span class="n">question</span><span class="o">=</span><span class="n">my_question</span><span class="p">,</span> 
-    <span class="n">sql</span><span class="o">=</span><span class="n">sql</span><span class="p">,</span> 
-    <span class="n">df</span><span class="o">=</span><span class="n">df</span>
-    <span class="p">)</span>
-
-<span class="c1"># Get Plotly figure</span>
-<span class="n">fig</span> <span class="o">=</span> <span class="n">vn</span><span class="o">.</span><span class="n">get_plotly_figure</span><span class="p">(</span>
-    <span class="n">plotly_code</span><span class="o">=</span><span class="n">plotly_code</span><span class="p">,</span> 
-    <span class="n">df</span><span class="o">=</span><span class="n">df</span>
-    <span class="p">)</span>
-</code></pre>
-</div>
-
-<h1 id="api-reference">API Reference</h1>
-</div>
-
-                
-                
-                
-            </section>
-                <section id="api_key">
-                    <div class="attr variable">
-            <span class="name">api_key</span><span class="annotation">: Optional[str]</span>        =
-<span class="default_value">None</span>
-
-        
-    </div>
-    <a class="headerlink" href="#api_key"></a>
-    
-    
-
-                </section>
-                <section id="set_org">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">set_org</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">org</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="kc">None</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#set_org"></a>
-    
-            <div class="docstring"><p>Set the organization name for the Vanna.AI API.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>org (str):</strong>  The organization name.</li>
-</ul>
-</div>
-
-
-                </section>
-                <section id="store_sql">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">store_sql</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">question</span><span class="p">:</span> <span class="nb">str</span>, </span><span class="param"><span class="n">sql</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="nb">bool</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#store_sql"></a>
-    
-            <div class="docstring"><p>Store a question and its corresponding SQL query in the Vanna.AI database.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>question (str):</strong>  The question to store.</li>
-<li><strong>sql (str):</strong>  The SQL query to store.</li>
-</ul>
-</div>
-
-
-                </section>
-                <section id="flag_sql_for_review">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">flag_sql_for_review</span><span class="signature pdoc-code multiline">(<span class="param">	<span class="n">question</span><span class="p">:</span> <span class="nb">str</span>,</span><span class="param">	<span class="n">sql</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>,</span><span class="param">	<span class="n">error_msg</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span></span><span class="return-annotation">) -> <span class="nb">bool</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#flag_sql_for_review"></a>
-    
-            <div class="docstring"><p>Flag a question and its corresponding SQL query for review by the Vanna.AI team.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>question (str):</strong>  The question to flag.</li>
-<li><strong>sql (str):</strong>  The SQL query to flag.</li>
-<li><strong>error_msg (str):</strong>  The error message to flag.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>bool: True if the question and SQL query were flagged successfully, False otherwise.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="remove_sql">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">remove_sql</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">question</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="nb">bool</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#remove_sql"></a>
-    
-            <div class="docstring"><p>Remove a question and its corresponding SQL query from the Vanna.AI database.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>question (str):</strong>  The question to remove.</li>
-</ul>
-</div>
-
-
-                </section>
-                <section id="generate_sql">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">generate_sql</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">question</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="nb">str</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#generate_sql"></a>
-    
-            <div class="docstring"><p>Generate an SQL query using the Vanna.AI API.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>question (str):</strong>  The question to generate an SQL query for.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>str or None: The SQL query, or None if an error occurred.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="generate_plotly_code">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">generate_plotly_code</span><span class="signature pdoc-code multiline">(<span class="param">	<span class="n">question</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span>,</span><span class="param">	<span class="n">sql</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span>,</span><span class="param">	<span class="n">df</span><span class="p">:</span> <span class="n">pandas</span><span class="o">.</span><span class="n">core</span><span class="o">.</span><span class="n">frame</span><span class="o">.</span><span class="n">DataFrame</span></span><span class="return-annotation">) -> <span class="nb">str</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#generate_plotly_code"></a>
-    
-            <div class="docstring"><p>Generate Plotly code using the Vanna.AI API.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>question (str):</strong>  The question to generate Plotly code for.</li>
-<li><strong>sql (str):</strong>  The SQL query to generate Plotly code for.</li>
-<li><strong>df (pd.DataFrame):</strong>  The dataframe to generate Plotly code for.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>str or None: The Plotly code, or None if an error occurred.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="get_plotly_figure">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">get_plotly_figure</span><span class="signature pdoc-code multiline">(<span class="param">	<span class="n">plotly_code</span><span class="p">:</span> <span class="nb">str</span>,</span><span class="param">	<span class="n">df</span><span class="p">:</span> <span class="n">pandas</span><span class="o">.</span><span class="n">core</span><span class="o">.</span><span class="n">frame</span><span class="o">.</span><span class="n">DataFrame</span>,</span><span class="param">	<span class="n">dark_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></span><span class="return-annotation">) -> <span class="n">plotly</span><span class="o">.</span><span class="n">graph_objs</span><span class="o">.</span><span class="n">_figure</span><span class="o">.</span><span class="n">Figure</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#get_plotly_figure"></a>
-    
-            <div class="docstring"><p>Get a Plotly figure from a dataframe and Plotly code.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>df (pd.DataFrame):</strong>  The dataframe to use.</li>
-<li><strong>plotly_code (str):</strong>  The Plotly code to use.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>plotly.graph_objs.Figure: The Plotly figure.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="get_results">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">get_results</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">cs</span>, </span><span class="param"><span class="n">default_database</span><span class="p">:</span> <span class="nb">str</span>, </span><span class="param"><span class="n">sql</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="n">pandas</span><span class="o">.</span><span class="n">core</span><span class="o">.</span><span class="n">frame</span><span class="o">.</span><span class="n">DataFrame</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#get_results"></a>
-    
-            <div class="docstring"><p>Run the SQL query and return the results as a pandas dataframe.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>cs:</strong>  Snowflake connection cursor.</li>
-<li><strong>default_database (str):</strong>  The default database to use.</li>
-<li><strong>sql (str):</strong>  The SQL query to execute.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>pd.DataFrame: The results of the SQL query.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="generate_explanation">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">generate_explanation</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">sql</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="nb">str</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#generate_explanation"></a>
-    
-            <div class="docstring"><h2 id="example">Example</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">generate_explanation</span><span class="p">(</span><span class="n">sql</span><span class="o">=</span><span class="s2">&quot;SELECT * FROM students WHERE name = &#39;John Doe&#39;&quot;</span><span class="p">)</span>
-<span class="c1"># &#39;AI Response&#39;</span>
-</code></pre>
-</div>
-
-<p>Generate an explanation of an SQL query using the Vanna.AI API.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>sql (str):</strong>  The SQL query to generate an explanation for.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>str or None: The explanation, or None if an error occurred.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="generate_question">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">generate_question</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">sql</span><span class="p">:</span> <span class="nb">str</span></span><span class="return-annotation">) -> <span class="nb">str</span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#generate_question"></a>
-    
-            <div class="docstring"><h2 id="example">Example</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">generate_question</span><span class="p">(</span><span class="n">sql</span><span class="o">=</span><span class="s2">&quot;SELECT * FROM students WHERE name = &#39;John Doe&#39;&quot;</span><span class="p">)</span>
-<span class="c1"># &#39;AI Response&#39;</span>
-</code></pre>
-</div>
-
-<p>Generate a question from an SQL query using the Vanna.AI API.</p>
-
-<h6 id="arguments">Arguments:</h6>
-
-<ul>
-<li><strong>sql (str):</strong>  The SQL query to generate a question for.</li>
-</ul>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>str or None: The question, or None if an error occurred.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="get_flagged_questions">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">get_flagged_questions</span><span class="signature pdoc-code condensed">(<span class="return-annotation">) -> <span class="n"><a href="vanna/types.html#QuestionList">vanna.types.QuestionList</a></span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#get_flagged_questions"></a>
-    
-            <div class="docstring"><h2 id="example">Example</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">get_flagged_questions</span><span class="p">()</span>
-<span class="c1"># [FullQuestionDocument(...), ...]</span>
-</code></pre>
-</div>
-
-<p>Get a list of flagged questions from the Vanna.AI API.</p>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>List[FullQuestionDocument] or None: The list of flagged questions, or None if an error occurred.</p>
-</blockquote>
-</div>
-
-
-                </section>
-                <section id="get_accuracy_stats">
-                    <div class="attr function">
-            
-        <span class="def">def</span>
-        <span class="name">get_accuracy_stats</span><span class="signature pdoc-code condensed">(<span class="return-annotation">) -> <span class="n"><a href="vanna/types.html#AccuracyStats">vanna.types.AccuracyStats</a></span>:</span></span>
-
-        
-    </div>
-    <a class="headerlink" href="#get_accuracy_stats"></a>
-    
-            <div class="docstring"><h2 id="example">Example</h2>
-
-<div class="pdoc-code codehilite">
-<pre><span></span><code><span class="n">vn</span><span class="o">.</span><span class="n">get_accuracy_stats</span><span class="p">()</span>
-<span class="c1"># {&#39;accuracy&#39;: 0.0, &#39;total&#39;: 0, &#39;correct&#39;: 0}</span>
-</code></pre>
-</div>
-
-<p>Get the accuracy statistics from the Vanna.AI API.</p>
-
-<h6 id="returns">Returns:</h6>
-
-<blockquote>
-  <p>dict or None: The accuracy statistics, or None if an error occurred.</p>
-</blockquote>
-</div>
-
-
-                </section>
-    </main>
-<script>
-    function escapeHTML(html) {
-        return document.createElement('div').appendChild(document.createTextNode(html)).parentNode.innerHTML;
-    }
-
-    const originalContent = document.querySelector("main.pdoc");
-    let currentContent = originalContent;
-
-    function setContent(innerHTML) {
-        let elem;
-        if (innerHTML) {
-            elem = document.createElement("main");
-            elem.classList.add("pdoc");
-            elem.innerHTML = innerHTML;
-        } else {
-            elem = originalContent;
-        }
-        if (currentContent !== elem) {
-            currentContent.replaceWith(elem);
-            currentContent = elem;
-        }
-    }
-
-    function getSearchTerm() {
-        return (new URL(window.location)).searchParams.get("search");
-    }
-
-    const searchBox = document.querySelector(".pdoc input[type=search]");
-    searchBox.addEventListener("input", function () {
-        let url = new URL(window.location);
-        if (searchBox.value.trim()) {
-            url.hash = "";
-            url.searchParams.set("search", searchBox.value);
-        } else {
-            url.searchParams.delete("search");
-        }
-        history.replaceState("", "", url.toString());
-        onInput();
-    });
-    window.addEventListener("popstate", onInput);
-
-
-    let search, searchErr;
-
-    async function initialize() {
-        try {
-            search = await new Promise((resolve, reject) => {
-                const script = document.createElement("script");
-                script.type = "text/javascript";
-                script.async = true;
-                script.onload = () => resolve(window.pdocSearch);
-                script.onerror = (e) => reject(e);
-                script.src = "search.js";
-                document.getElementsByTagName("head")[0].appendChild(script);
-            });
-        } catch (e) {
-            console.error("Cannot fetch pdoc search index");
-            searchErr = "Cannot fetch search index.";
-        }
-        onInput();
-
-        document.querySelector("nav.pdoc").addEventListener("click", e => {
-            if (e.target.hash) {
-                searchBox.value = "";
-                searchBox.dispatchEvent(new Event("input"));
-            }
-        });
-    }
-
-    function onInput() {
-        setContent((() => {
-            const term = getSearchTerm();
-            if (!term) {
-                return null
-            }
-            if (searchErr) {
-                return `<h3>Error: ${searchErr}</h3>`
-            }
-            if (!search) {
-                return "<h3>Searching...</h3>"
-            }
-
-            window.scrollTo({top: 0, left: 0, behavior: 'auto'});
-
-            const results = search(term);
-
-            let html;
-            if (results.length === 0) {
-                html = `No search results for '${escapeHTML(term)}'.`
-            } else {
-                html = `<h4>${results.length} search result${results.length > 1 ? "s" : ""} for '${escapeHTML(term)}'.</h4>`;
-            }
-            for (let result of results.slice(0, 10)) {
-                let doc = result.doc;
-                let url = `${doc.modulename.replaceAll(".", "/")}.html`;
-                if (doc.qualname) {
-                    url += `#${doc.qualname}`;
-                }
-
-                let heading;
-                switch (result.doc.kind) {
-                    case "function":
-                        if (doc.fullname.endsWith(".__init__")) {
-                            heading = `<span class="name">${doc.fullname.replace(/\.__init__$/, "")}</span>${doc.signature}`;
-                        } else {
-                            heading = `<span class="def">${doc.funcdef}</span> <span class="name">${doc.fullname}</span>${doc.signature}`;
-                        }
-                        break;
-                    case "class":
-                        heading = `<span class="def">class</span> <span class="name">${doc.fullname}</span>`;
-                        if (doc.bases)
-                            heading += `<wbr>(<span class="base">${doc.bases}</span>)`;
-                        heading += `:`;
-                        break;
-                    case "variable":
-                        heading = `<span class="name">${doc.fullname}</span>`;
-                        if (doc.annotation)
-                            heading += `<span class="annotation">${doc.annotation}</span>`;
-                        if (doc.default_value)
-                            heading += `<span class="default_value"> = ${doc.default_value}</span>`;
-                        break;
-                    default:
-                        heading = `<span class="name">${doc.fullname}</span>`;
-                        break;
-                }
-                html += `
-                        <section class="search-result">
-                        <a href="${url}" class="attr ${doc.kind}">${heading}</a>
-                        <div class="docstring">${doc.doc}</div>
-                        </section>
-                    `;
-
-            }
-            return html;
-        })());
-    }
-
-    if (getSearchTerm()) {
-        initialize();
-        searchBox.value = getSearchTerm();
-        onInput();
-    } else {
-        searchBox.addEventListener("focus", initialize, {once: true});
-    }
-
-    searchBox.addEventListener("keydown", e => {
-        if (["ArrowDown", "ArrowUp", "Enter"].includes(e.key)) {
-            let focused = currentContent.querySelector(".search-result.focused");
-            if (!focused) {
-                currentContent.querySelector(".search-result").classList.add("focused");
-            } else if (
-                e.key === "ArrowDown"
-                && focused.nextElementSibling
-                && focused.nextElementSibling.classList.contains("search-result")
-            ) {
-                focused.classList.remove("focused");
-                focused.nextElementSibling.classList.add("focused");
-                focused.nextElementSibling.scrollIntoView({
-                    behavior: "smooth",
-                    block: "nearest",
-                    inline: "nearest"
-                });
-            } else if (
-                e.key === "ArrowUp"
-                && focused.previousElementSibling
-                && focused.previousElementSibling.classList.contains("search-result")
-            ) {
-                focused.classList.remove("focused");
-                focused.previousElementSibling.classList.add("focused");
-                focused.previousElementSibling.scrollIntoView({
-                    behavior: "smooth",
-                    block: "nearest",
-                    inline: "nearest"
-                });
-            } else if (
-                e.key === "Enter"
-            ) {
-                focused.querySelector("a").click();
-            }
-        }
-    });
-</script></body>
-</html>
\ No newline at end of file

From 529a0f746e911bc2ed88dbfb52b9db38599c497e Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:52:09 -0400
Subject: [PATCH 07/14] version

---
 .github/workflows/tests.yml | 1 -
 pyproject.toml              | 2 +-
 2 files changed, 1 insertion(+), 2 deletions(-)

diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml
index 47d58488..a1483f25 100644
--- a/.github/workflows/tests.yml
+++ b/.github/workflows/tests.yml
@@ -4,7 +4,6 @@
 name: Python tests
 
 on:
-  push: {}
   pull_request: {}
 
 permissions:
diff --git a/pyproject.toml b/pyproject.toml
index ce5084e2..62f07d01 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
 [project]
 name = "vanna"
-version = "0.0.17"
+version = "0.0.18"
 authors = [
   { name="Zain Hoda", email="zain@vanna.ai" },
 ]

From ab54ff693a525fae9d2225ce8813211aecf7b877 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:54:53 -0400
Subject: [PATCH 08/14] rename workflow

---
 .github/workflows/tests.yml | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml
index a1483f25..e2638a50 100644
--- a/.github/workflows/tests.yml
+++ b/.github/workflows/tests.yml
@@ -1,7 +1,7 @@
 # This workflow will install Python dependencies, run tests and lint with a single version of Python
 # For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
 
-name: Python tests
+name: Integration Test using Debug Server
 
 on:
   pull_request: {}

From c36cdaa7244310801f0e2dd6d42688201c7ab4a0 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 09:59:03 -0400
Subject: [PATCH 09/14] add index

---
 .gitignore        |  1 +
 docs/index.ipynb  | 65 +++++++++++++++++++++++++++++++++++++++++++++++
 docs/sidebar.yaml |  2 +-
 3 files changed, 67 insertions(+), 1 deletion(-)
 create mode 100644 docs/index.ipynb

diff --git a/.gitignore b/.gitignore
index 70908fc9..e3accafd 100644
--- a/.gitignore
+++ b/.gitignore
@@ -6,3 +6,4 @@ notebooks/.ipynb_checkpoints
 tests/__pycache__
 __pycache__/
 .idea
+docs/*.html
diff --git a/docs/index.ipynb b/docs/index.ipynb
new file mode 100644
index 00000000..a101027f
--- /dev/null
+++ b/docs/index.ipynb
@@ -0,0 +1,65 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Vanna.AI - Personalized AI SQL Agent"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<video loop autoplay muted controls>\n",
+    "    <source src=\"https://github.com/vanna-ai/vanna-py/assets/7146154/61f5f0bf-ce03-47e2-ab95-0750b8df7b6f\">\n",
+    "</video>"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## How Vanna works\n",
+    "Vanna works in two easy steps - train a model on your data, and then ask questions.\n",
+    "\n",
+    "1. **Train a model on your data**. \n",
+    "2. **Ask questions**.\n",
+    "\n",
+    "When you ask a question, we utilize a custom model for your dataset to generate SQL, as seen below. Your model performance and accuracy depends on the quality and quantity of training data you use to train your model. \n",
+    "<img width=\"1725\" alt=\"how-vanna-works\" src=\"https://github.com/vanna-ai/vanna-py/assets/7146154/5e2e2179-ed7a-4df4-92a2-1c017923a675\">"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "base",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.9"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/docs/sidebar.yaml b/docs/sidebar.yaml
index 97b9b256..cc172714 100644
--- a/docs/sidebar.yaml
+++ b/docs/sidebar.yaml
@@ -1,5 +1,5 @@
 - title: How It Works
-  link: /how
+  link: index.html
   svg_text: |-
     <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" width="14" height="20" fill="none" viewBox="0 0 14 20">
     <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 7a3 3 0 0 1 3-3M5 19h4m0-3c0-4.1 4-4.9 4-9A6 6 0 1 0 1 7c0 4 4 5 4 9h4Z"/>

From 7c2812596c3b4e87528244ddd9b2c54a83f1d3a4 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 10:12:56 -0400
Subject: [PATCH 10/14] move directories

---
 .github/workflows/ci.yml        |   2 +-
 docs/sidebar.py                 |   4 +-
 docs/vn-ask.ipynb               | 572 --------------------------------
 {docs => notebooks}/index.ipynb |   0
 notebooks/streamlit.ipynb       |  30 ++
 5 files changed, 34 insertions(+), 574 deletions(-)
 delete mode 100644 docs/vn-ask.ipynb
 rename {docs => notebooks}/index.ipynb (100%)
 create mode 100644 notebooks/streamlit.ipynb

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 3e74dd75..2f17c92c 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -27,5 +27,5 @@ jobs:
       - run: pip install pdoc
       - run: pip install .
       - run: pdoc vanna --logo https://img.vanna.ai/vanna-ref.svg --logo-link https://docs.vanna.ai --no-show-source --mermaid --docformat google -n -o docs
-      - run: python docs/sidebar.py docs/sidebar.yaml docs
+      - run: python docs/sidebar.py docs/sidebar.yaml notebooks docs
       - run: ghp-import -n -p -f docs
diff --git a/docs/sidebar.py b/docs/sidebar.py
index 367d962e..0f6d4301 100644
--- a/docs/sidebar.py
+++ b/docs/sidebar.py
@@ -9,6 +9,8 @@
 # Get the directory to search for the .ipynb files from the command line
 notebook_dir = sys.argv[2]
 
+# Get the output directory from the command line
+output_dir = sys.argv[3]
 
 def generate_html(sidebar_data, current_path: str):
     html = '<ul class="space-y-2">\n'
@@ -72,6 +74,6 @@ def read_yaml_file(file_path):
     (body, resources) = html_exporter.from_notebook_node(current_notebook)
 
     # Write body to file
-    with open(os.path.join(notebook_dir, f'{notebook_name}.html'), 'w') as file:
+    with open(os.path.join(output_dir, f'{notebook_name}.html'), 'w') as file:
         file.write(body.replace('<!-- NAV HERE -->', html_code))
 
diff --git a/docs/vn-ask.ipynb b/docs/vn-ask.ipynb
deleted file mode 100644
index 618aa3b6..00000000
--- a/docs/vn-ask.ipynb
+++ /dev/null
@@ -1,572 +0,0 @@
-{
- "cells": [
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "![Vanna AI](https://img.vanna.ai/vanna-ask.svg)\n",
-    "\n",
-    "The following notebook goes through the process of asking questions from your data using Vanna AI. Here we use a demo model that is pre-trained on the [TPC-H dataset](https://docs.snowflake.com/en/user-guide/sample-data-tpch.html) that is available in Snowflake.\n",
-    "\n",
-    "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)\n",
-    "\n",
-    "[![Open in GitHub](https://img.vanna.ai/github.svg)](https://github.com/vanna-ai/vanna-py/blob/main/notebooks/vn-ask.ipynb)\n",
-    "\n",
-    "# Install Vanna\n",
-    "First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.\n",
-    "Here, we'll also install the Snowflake connector. If you're using a different database, you'll need to install the appropriate connector."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "%pip install vanna\n",
-    "%pip install snowflake-connector-python"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import vanna as vn\n",
-    "import snowflake.connector"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Login\n",
-    "Creating a login and getting an API key is as easy as entering your email (after you run this cell) and entering the code we send to you. Check your Spam folder if you don't see the code."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "api_key = vn.get_api_key('my-email@example.com')\n",
-    "vn.set_api_key(api_key)"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Set your Model\n",
-    "You need to choose a globally unique model name. Try using your company name or another unique string. All data from models are isolated - there's no leakage."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "vn.set_model('tpc') # Enter your model name here. This is a globally unique identifier for your model."
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Set Database Connection\n",
-    "These details are only referenced within your notebook. These database credentials are never sent to Vanna's severs."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database')"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Get Results\n",
-    "This gets the SQL, gets the dataframe, and prints them both. Note that we use your connection string to execute the SQL on your warehouse from your local instance. Your connection nor your data gets sent to Vanna's servers. For more info on how Vanna works, [see this post](https://medium.com/vanna-ai/how-vanna-works-how-to-train-it-data-security-8d8f2008042)."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "SELECT c.c_name as customer_name,\n",
-      "       sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales\n",
-      "FROM   snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o\n",
-      "        ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c\n",
-      "        ON o.o_custkey = c.c_custkey\n",
-      "GROUP BY customer_name\n",
-      "ORDER BY total_sales desc limit 10;\n"
-     ]
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CUSTOMER_NAME</th>\n",
-       "      <th>TOTAL_SALES</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>Customer#000143500</td>\n",
-       "      <td>6757566.0218</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>Customer#000095257</td>\n",
-       "      <td>6294115.3340</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>Customer#000087115</td>\n",
-       "      <td>6184649.5176</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>Customer#000131113</td>\n",
-       "      <td>6080943.8305</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>Customer#000134380</td>\n",
-       "      <td>6075141.9635</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>Customer#000103834</td>\n",
-       "      <td>6059770.3232</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>Customer#000069682</td>\n",
-       "      <td>6057779.0348</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>Customer#000102022</td>\n",
-       "      <td>6039653.6335</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>8</th>\n",
-       "      <td>Customer#000098587</td>\n",
-       "      <td>6027021.5855</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>9</th>\n",
-       "      <td>Customer#000064660</td>\n",
-       "      <td>5905659.6159</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "        CUSTOMER_NAME   TOTAL_SALES\n",
-       "0  Customer#000143500  6757566.0218\n",
-       "1  Customer#000095257  6294115.3340\n",
-       "2  Customer#000087115  6184649.5176\n",
-       "3  Customer#000131113  6080943.8305\n",
-       "4  Customer#000134380  6075141.9635\n",
-       "5  Customer#000103834  6059770.3232\n",
-       "6  Customer#000069682  6057779.0348\n",
-       "7  Customer#000102022  6039653.6335\n",
-       "8  Customer#000098587  6027021.5855\n",
-       "9  Customer#000064660  5905659.6159"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdCbhdZXU38PeGhCkBjFQwhEEkYDDMkwIODIKzMn1O/epsxaEtKKKCUkBwaPtZAcU64QBUxRapiopigCLzDEUjg4wqSqGEECQkJN9zjuVK4ObeG961cve++5fn6fPQe/f5n3f/1sblWj09GZg6deqS4g8BAgQIECBAgAABAgQIECBAgAABAgQItE5gwIK3dTVzYAIECBAgQIAAAQIECBAgQIAAAQIECPQFLHg9CAQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwjk2AQIECBAgQIAAAQIECBAgQIAAAQIELHg9AwQIECBAgAABAgQIECBAgAABAgQIEGipgAVvSwvn2AQIECBAgAABAgQIECBAgAABAgQIELDg9QwQIECAAAECBAgQIECAAAECBAgQIECgpQIWvC0tnGMTIECAAAECBAgQIECAAAECBAgQIEDAgtczQIAAAQIECBAgQIAAAQIECBAgQIAAgZYKWPC2tHCOTYAAAQIECBAgQIAAAQIECBAgQIAAAQtezwABAgQIECBAgAABAgQIECBAgAABAgRaKmDB29LCOTYBAgQIECBAgAABAgQIECBAgAABAgQseD0DBAgQIECAAAECBAgQIECAAAECBAgQaKmABW9LC+fYBAgQIECAAAECBAgQIECAAAECBAgQsOD1DBAgQIAAAQIECBAgQIAAAQIECBAgQKClAha8LS2cYxMgQIAAAQIECBAgQIAAAQIECBAgQMCC1zNAgAABAgQIECBAgAABAgQIECBAgACBlgpY8La0cI5NgAABAgQIECBAgAABAgQIECBAgAABC17PAAECBAgQIECAAAECBAgQIECAAAECBFoqYMHb0sI5NgECBAgQIECAAAECBAgQIECAAAECBCx4PQMECBAgQIAAAQIECBAgQIAAAQIECBBoqYAFb0sL59gECBAgQIAAAQIECBAgQIAAAQIECBCw4PUMECBAgAABAgQIECBAgAABAgQIECBAoKUCFrwtLZxjEyBAgAABAgQIECBAgAABAgQIECBAwILXM0CAAAECBAgQIECAAAECBAgQIECAAIGWCljwtrRwjk2AAAECBAgQIECAAAECBAgQIECAAAELXs8AAQIECBAgQIAAAQIECBAgQIAAAQIEWipgwdvSwj3ZY//wrJ+VdZ62zqhffsLx/1y+/rWT+tdPnjy5nHf+xYOvnT377HLoIQcvM2tgYKCcc94FZcqUNfrX3HrrLeWA/V416vd2IQECBAgQIECAAAECBAgQIECAAAECwwtY8HbsCfnVTbeVVVddddR3/bWvfqX8/UcP61//lKlTyzXXzRl87ZIlS8p228wq995zz5B57zzwPeWwjxwx+Lu5c+eWrWZtNur3diEBAgQIECBAgAABAgQIECBAgAABAha8noHHCHz166eUdZ8+bViTNdZYo2y44Ub9a4Zb8PZ+f+YPvlfefeA7hsy7+ro5ZerUqRa8nkACBAgQIECAAAECBAgQIECAAAECSQI+wZsE2+bYb3/nu+W5O+/Sv4V3vuOt5cc/OrP/z4//BG/vZ4sXL+5/KnfevHlL3fI+++5Xjjvh80v9zCd42/xUODsBAgQIECBAgAABAgQIECBAgEATBSx4m1iVMTzTrFlblN739Pb+3HHH7eV5O+84eJrHLnivvOLyst32O/R/d9q3v1k+8P6Dljr1hZdcUaZPX7/c/Yc/lMlTppTVV1+9WPCOYWG9NQECBAgQIECAAAECBAgQIECAwLgUsOAdl2V98jd19uz/LJtu9qx+wGsO2KdccvFFQy54Tzn562X3PfbsL3EXLlxYZs3cpCxYsKB/7c677Fq+ddrp/X/u/SVsRx59rAXvky+JVxIgQIAAAQIECBAgQIAAAQIECBBYpoAFr4djUGCPPfcqve/o7f355S9+UV6y9+5L6Tz2E7y9Be/FF11QPnviF/vXfPWkL5cjjzi8/89n/fTcMnPzzQc/sfvLG26x4PWcESBAgAABAgQIECBAgAABAgQIEEgQsOBNQG1r5GVXXlvWWWfd/vFf/KLdypw5vxx2wXv4hw8tV13zi/LUtdfuf3p35qbPKJvMmFHOnn1+/3Wf/Pgx5fMnnlAseNv6RDg3AQIECBAgQIAAAQIECBAgQIBA0wUseJteoRV0vje+6S3lY8d+sv9ul15ycfk/+7/6Ce/8+E/w9ha8b3rzW8vRx3yif+3xx3267LTTc/t/QduDDz5Ynv2sZ5YlS5YMu+Cdut6MFXSH3oYAAQIECBAgQIAAAQIECBAYK4H/+e1NY/XW3pfAuBew4B33JR75BgcGBsr1c24ukydP7i9kd33uDuU3v7lzVAve3kW9106ZMqX/XbwTJ04svbwTP3d8+dQnju1nDPcJ3nU32XbkA7qCAAECBAgQIECAAAECBAgQaLXA72++qtXnd3gCTRaw4G1ydVbQ2T58+EfLge96b//dfnLWj8o73vbmId95qE/w9i486H2HlIPf94HB1zz88MNl8802LosWLRpxwbvyalNW0F16GwIECBAgQIAAAQIECBAgQGCsBB7+4wNj9dbel8C4F7DgHfclHv4Ge5/avea/flUmTZpUFi9eXLbZcmb/L0cb6s+yFrwTJkwoc268tayyyir9l516yjfKYR/688LXd/B2/CFz+wQIECBAgAABAgQIECBAgAABAmkCFrxptO0IPuFzXyivevU+/cN++1v/Wg495OBlHnxZC97eC3rf39v7Ht/ekniLzWeU+fPnD+ZY8LbjWXBKAgQIECBAgAABAgQIECBAgACB9glY8LavZmEnnjZtvXLRpVf2vzO397UKvcXsggULntSCt/fp3Rfutke563e/Lddee81SGRa8YSUTRIAAAQIECBAgQIAAAQIECBAgQGApAQveDj8Q3/7Od8tzd96lL/DYvxRtWSTDfYJ3OEYL3g4/ZG6dAAECBAgQIECAAAECBAgQIEAgVcCCN5W3ueGzZm1RfnjWz/oH7H2dwqyZm5QlS5YMe2AL3ubW08kIECBAgAABAgQIECBAgAABAgS6KWDB2826l5+dc36Zselm/bs/+qgjyle+9IURJSx4RyRyAQECBAgQIECAAAECBAgQIECAAIEVKmDBu0K5m/FmO+70nPJvp3+vf5j/uffess1Wm4/qYGuttVa59vob+tee/I2vlY8c9sFRve7Rr2i47777ytZbPGtUr3ERAQIECBAgQIAAAQIECBAgQIAAAQIjC1jwjmzkCgIECBAgQIAAAQIECBAgQIAAAQIECDRSwIK3kWVxKAIECBAgQIAAAQIECBAgQIAAAQIECIwsYME7spErCBAgQIAAAQIECBAgQIAAAQIECBAg0EgBC95GlsWhCBAgQIAAAQIECBAgQIAAAQIECBAgMLKABe/IRq4gQIAAAQIECBAgQIAAAQIECBAgQIBAIwUseBtZFociQIAAAQIECBAgQIAAAQIECBAgQIDAyAIWvCMbuYIAAQIECBAgQIAAAQIECBAgQIAAAQKNFLDgbWRZHIoAAQIECBAgQIAAAQIECBAgQIAAAQIjC1jwjmzkCgIECBAgQIAAAQIECBAgQIAAAQIECDRSwIK3kWVxKAIECBAgQIAAAQIECBAgQIAAAQIECIwsYME7spErCBAgQIAAAQIECBAgQIAAAQIECBAg0EgBC95GlsWhCBAgQIAAAQIECBAgQIAAAQIECBAgMLKABe/IRq5oiMCSJUsacpL2HmNgYKC9h3dyAgQIECBAgAABAgQIECBAgACBJwhY8HooWiEwecozyjrTXtCKszb1kPMfuKPcc/fl5ZFF85p6ROciQIAAAQIECBAgQIAAAQIECBBYTgEL3uUEc/mKF+h9cnfq2tuUPV7+kxX/5uPoHe+45Yxy5cXvL48semAc3ZVbIUCAAAECBAgQIECAAAECBAh0W8CCt9v1b8XdW/DGlMmCN8ZRCgECBAgQIECAAAECBAgQIECgSQIWvE2qhrMMKWDBG/NgWPDGOEohQIAAAQIECBAgQIAAAQIECDRJwIK3SdVwFgvexGfAgjcRVzQBAgQIECBAgAABAgQIECBAYIwELHjHCN7bjl7AJ3hHbzXclRa8MY5SCBAgQIAAAQIECBAgQIAAAQJNErDgbVI1nGVIAQvemAfDgjfGUQoBAgQIECBAgAABAgQIECBAoEkCFrxNqoazWPAmPgMWvIm4ogkQIECAAAECBAgQIECAAAECYyRgwTtG8N529AI+wTt6q+GutOCNcZRCgAABAgQIECBAgAABAgQIEGiSgAVvk6rhLEMKWPDGPBgWvDGOUggQIECAAAECBAgQIECAAAECTRKw4G1SNZzFgjfxGbDgTcQVTYAAAQIECBAgQIAAAQIECBAYIwEL3jGC97ajF/AJ3tFbDXelBW+MoxQCBAgQIECAAAECBAgQIECAQJMELHibVA1nGVLAgjfmwbDgjXGUQoAAAQIECBAgQIAAAQIECBBokoAFb5Oq4SwWvInPgAVvIq5oAgQIECBAgAABAgQIECBAgMAYCVjwjhG8tx29gE/wjt5quCsteGMcpRAgQIAAAQIECBAgQIAAAQIEmiRgwdukajjLkAIWvDEPhgVvjKMUAgQIECBAgAABAgQIECBAgECTBCx4m1QNZ7HgTXwGLHgTcUUTIECAAAECBAgQIECAAAECBMZIwIJ3jOC97egFfIJ39FbDXWnBG+MohQABAgQIECBAgAABAgQIECDQJAEL3iZVw1mGFLDgjXkwLHhjHKUQIECAAAECBAgQIECAAAECBJokYMHbpGo4iwVv4jNgwZuIK5oAAQIECBAgQIAAAQIECBAgMEYCFrxjBO9tRy/gE7yjtxruSgveGEcpBAgQIECAAAECBAgQIECAAIEmCVjwNqkazjKkgAVvzINhwRvjKIUAAQIECBAgQIAAAQIECBAg0CQBC94mVcNZLHgTnwEL3kRc0QQIECBAgAABAgQIECBAgACBMRKw4B0jeG87egGf4B291XBXWvDGOEohQIAAAQIECBAgQIAAAQIECDRJwIK3SdVwliEFLHhjHgwL3hhHKQQIECBAgAABAgQIECBAgACBJglY8DapGs5iwZv4DFjwJuKKJkCAAAECBAgQIECAAAECBAiMkYAF7xjBe9vRC/gE7+ithrvSgjfGUQoBAgQIECBAgAABAgQIECBAoEkCFrxNqoazDClgwRvzYFjwxjhKIUCAAAECBAgQIECAAAECBAg0ScCCt0nVcBYL3sRnwII3EVc0AQIECBAgQIAAAQIECBAgQGCMBCx4xwje245ewCd4R2813JUWvDGOUggQIECAAAECBAgQIECAAAECTRKw4G1SNZxlSAEL3pgHw4I3xlEKAQIECBAgQIAAAQIECBAgQKBJAha8TaqGs1jwJj4DFryJuKIJECBAgAABAgQIECBAgAABAmMkYME7RvDedvQCPsE7eqvhrrTgjXGUQoAAAQIECBAgQIAAAQIECBBokoAFb5Oq4SxDCljwxjwYFrwxjlIIECBAgAABAgQIECBAgAABAk0SsOBtUjWcxYI38Rmw4E3EFU2AAAECBAgQIECAAAECBAgQGCMBC94xgve2oxfwCd7RWw13pQVvjKMUAgQIECBAgAABAgQIECBAgECTBCx4m1QNZxlSwII35sGw4I1xlEKAAAECBAgQIECAAAECBAgQaJKABW+TquEsFryJz4AFbyKuaAIECBAgQIAAAQIECBAgQIDAGAlY8I4RvLcdvYBP8I7eargrLXhjHKUQIECAAAECBAgQIECAAAECBJokYMHbpGo4y5ACFrwxD4YFb4yjFAIECBAgQIAAAQIECBAgQIBAkwQseJtUDWex4E18Bix4E3FFEyBAgAABAgQIECBAgAABAgTGSMCCd4zgve3oBXyCd/RWw12ZseDt1WZgYCDmgFIIECBAgAABAgQIECBAgAABAgSWW8CCd7nJvGBFC1jwxohnLHgHJqxaZm55UFlllakxh+xoyjWXHV4WL15oWd7R+rttAgQIECBAgAABAgQIECBQI2DBW6PntStEwII3hjljwTthpdXLXq86r0yesmHMITuacsap65dHHnnYgrej9XfbBAgQIECAAAECBAgQIECgRsCCt0bPa1eIgAVvDLMFb4xjRooFb4aqTAIECBAgQIAAAQIECBAg0A0BC95u1LnVd2nBG1M+C94Yx4wUC94MVZkECBAgQIAAAQIECBAgQKAbAha83ahzq+/SgjemfBa8MY4ZKRa8GaoyCRAgQIAAAQIECBAgQIBANwQseLtR51bfpQVvTPkseGMcM1IseDNUZRIgQIAAAQIECBAgQIAAgW4IWPB2o86tvksL3pjyWfDGOGakWPBmqMokQIAAAQIECBAgQIAAAQLdELDg7UadW32XFrwx5bPgjXHMSLHgzVCVSYAAAQIECBAgQIAAAQIEuiFgwduNOrf6Li14Y8pnwRvjmJFiwZuhKpMAAQIECBAgQIAAAQIECHRDwIK3G3Vu9V1a8MaUz4I3xjEjJXrB2/t3ZuWVn1LKwISM43Ymc8mSxWXhw/eVgYGBztyzGyVAgAABAgQIECBAgACB9glY8LavZp07sQVvTMkteGMcM1IyFrzrbfCysvGmf5lx3M5k/vqGk8vv7vyxBW9nKu5GCRAgQIAAAQIECBAg0E4BC9521q1Tp7bgjSm3BW+MY0ZKxoJ302e/q2y1w1EZx+1M5tWXHlZunvNlC97OVNyNEiBAgAABAgQIECBAoJ0CFrztrFunTm3BG1NuC94Yx4wUC94M1fpMC956QwkECBAgQIAAAQIECBAgkC9gwZtv7B0qBSx4KwH/9+UWvDGOGSkWvBmq9ZkWvPWGEggQIECAAAECBAgQIEAgX8CCN9/YO1QKWPBWAlrwxgAmpljwJuJWRFvwVuB5KQECBAgQIECAAAECBAisMAEL3hVG7Y2erIAF75OVW/p1PsEb45iRYsGboVqfacFbbyiBAAECBAgQIECAAAECBPIFLHjzjVv1DmussUZZvHhxmT9/fmPObcEbUwoL3hjHjBQL3gzV+kwL3npDCQQIECBAgAABAgQIECCQL2DBm2/c6HfYZdfnlb9645vLrC22LNOmrVdWXnnl/nnnzZtXtth8xlJnnzx5cjnv/IsHfzZ79tnl0EMOXub9DQwMlHPOu6BMmbJG/5pbb72lHLDfq5bbw4J3ucmGfIEFb4xjRooFb4ZqfaYFb72hBAIECBAgQIAAAQIECBDIF7DgzTdu7Dt89Iijytv/+sAhz7do0aKyyTOmL/W7p0ydWq65bs7gz3qL1+22mVXuveeeITPeeeB7ymEfOWLwd3Pnzi1bzdpsuT0seJebzII3hmyFpVjwrjDq5XqjrAVv7z/T/KkT6P0fEP0hQIAAAQIECBAgQIAAgT8JWPB28EnoDcbf/+FPypZbbtW/+96y4brrri3XXnN1uf2228qMTXaw0tIAACAASURBVDctW2y5VXnp3nsspfP4BW/vl2f+4Hvl3Qe+Y0jFq6+bU6ZOnTr4OwvesX3YfIJ3bP2He3cL3mbWJnrB2/vP2kmT1ihT1966mTfcklMtfmRBmTv3V2XRwnlhJx4YWLlMmLBSKRbHlaYT+nWxgK9k9HICBAgQIECAAAECyylgwbucYOPh8r/524PLIYd+qH8r9913X3nj/31duebqq0a8taEWvL3v6+19Krf3lQ6P/bPPvvuV4074/FI/s+AdkTj1AgveVN6qcAveKr60F0cveHsHnbDSqmWfN9yWduYuBD8w75bysx/sWR5ZFPdd8SutNLk8e+tDytOmvaALhGn3eOn5B5Z5c2+w4E0Tbk5w7/9gZZHfnHo4CQECBAgQIEDAgrdjz0Dvv4xfP+fm0vs+3d5ydpfnbF9+97vfjkrhsQveK6+4vGy3/Q7915327W+WD7z/oKUyLrzkijJ9+vrl7j/8oUyeMqWsvvrqxYJ3VMxpF1nwptFWB1vwVhOmBFjwprBWh2YseCdOnFK23+W4Mn2jV1Sfr8sBvcX7ffdeF7r4mzxlo7LOert3mbX63ufPu63cc/dl5ZFFD1RnPRowcdKaZdXVnl4mTJgYltnFoD8++Nvy8IL/Cf13pouO7pkAAQIECBDwFQ2dewbe+zcHlQ988MP9+/7C5z9XPn7s0aM2eOyC95STv15232PP/hJ34cKFZdbMTcqCBQv6WTvvsmv51mmn9/+595ewHXn0sRa8o1bOu9CCN8+2NtmCt1Yw5/UWvDmutakWvLWCea+PXvD6Dv6YWun/MY4ZKRn93yer6yv16Hfls6y3lECAAAECK07AJ3hXnHUj3ulHP5ldnv3sWf2zbLPV5mW9aeuVHZ/z3LLpppv1F7W//MX15d//7bTS+0vWHv/n8Qveiy+6oHz2xC/2L/vqSV8uRx5xeP+fz/rpuWXm5psPfmL3lzfcYsHbgOob8BpQhGUcIWPA2/TZ7ypb7XBUc2+6BSez4G1mkSx4m1mX3qkseJtZG/2/mXXpnSqj/6+73h7+vxEqS37nrf9R/vC788I/We0vWa0szP++3OI9xlEKAQLjT8CCd/zVdNg7uvzK68rT1lmnf03v6xMe/efHvujhhx8unz/xhPLpf/qHpbIev+A9/MOHlquu+UV56tpr9z+9O3PTZ5RNZswoZ88+v/+6T378mH6OBW8zHjIDXjPqMNQpMgY8C976elvw1htmJFjwZqjGZFrwxjhGp+j/0aJxefp/nGVkUnT/7y12V5q4Wpkx8+2Rx+xc1sKH55Y7bjm9LAr8Dv7OIbphAgTGtYAF77gu7xNv7oabby+rrLLKUr/ofXK39z+rrbbaUv+X6o8fc3T5wr98bvDaoRa8b3rzW8vRx3yif83xx3267LTTc8tzd96lPPjgg+XZz3pm6f0XmuEWvJOnPn3ECjyycEFZbZWNyu4vO2vEa12wbIHegHftFYeViatOCmN6aN4D5UWvPKdMnrJhWGYXg844dYOy6ppPKQMDE0Juf8Ef55WNN/6rsqVP8FZ5XnPZ4eX2275dVl51clXOoy9esmRxWTDv/vJqf8lalWdvwTv7zL3KKlNi6tI7zKKHHi7b7PiPPvVWVZlSfnbmi8qCh+8sK01a+r9nPNlY/f/Jyi39Ov0/xjEjRf/PUK3P1P/rDTMSMvp/xjllDi8w/3/uQkSAQJKABW8SbFNjb7vz9/2j9b6C4Zv/ekr5x099vP9VCr0/vb947dhP/GPZd7/9B4//vJ13LHfccXv/fx9qwdv7ee8vbZsyZUp/STxx4sT+kvjEzx1fPvWJY/uvG27Bu+4m245IteDB+8vAwjXL7i/98YjXumDZAr0B7/prjyprPG3dMKZ77ri57Pnyn1nwVoqe8a8blLU3nFkmTFipMulPL3/g3rvKetP2KVtuf2RIXldDrrnsI+X3d59ZJj8l5t+ZxY88Uu6988by6tff2lXSkPvuDXjn/Ogl5anrbxyS1wuZd/ddZcttjrHgrRSd/cO9y8Aq88vKq61RmfSnl+v/IYxF/49xzEjR/zNU6zP1/3rDjISM/p9xTpnDC/z+5qsQESCQJGDBmwTbxNiVV1653PjrO/pHu+nGG8qeuz9/yGN++zvf7X8Kt/fn6KOOKF/50hf6/7ysBe9B7zukHPy+Dwxm9b7iYfPNNh78Hl+f4G3G0+ATPM2ow1Cn8AmeZtbGJ3iaWZeMT/D4BG9MrX2CN8YxOkX/jxaNy9P/4ywjk/T/SM24rIz+H3c6SaMV8Ane0Uq5jsDyC1jwLr9Zq19x0y13lkmTJpX/vvvusv22Wwx5L/vst3857vgT+787+6dnlbe95Y3DLngnTJhQ5tx46+BXP5x6yjfKYR/688LXd/A245HxHXzNqMPQC971yyOPPBz2l3n0vhrFd/DW1zv6O/h6J5qw0qplH1/RUFUc38FbxZf6Yt/Bm8r7pMP1/ydNl/5C38GbTvyk3kD/f1Js6S/K6P/ph/YGBAgQWIECFrwrELsJb/XoX7LW+5Ttps/cYMgj7bDjTuXfv/v9/u8uv+zSsv++rxx2wdv75ceO/WR545veUhYvXly22HxGmT9//mC2BW8TKl/6/y+aV178/vLIogfCDjRhpdXLXq86z1c0VIoa8CoBk15uwEuCrYzNGPAmTpxStt/lOF/RUFkbC95KwKSX6/9JsAGx+n8AYkKE/p+AGhCZ0f8DjiWCAAECjRGw4G1MKVbMQX7wo5+WLbfcqv9mj/1+3ce++xv+8q/KJz71T/0fnfyNr5WPHPbBERe8vb+47YW77VHu+t1vy7XXXrPUzVjwrpjajvQuBryRhMbu9wa8sbMf7p0NeM2sS8aAZ8EbU2sL3hjH6BT9P1o0Lk//j7OMTNL/IzXjsjL6f9zpJBEgQGDsBSx4x74GK/QE7zzwPeWwjxzRf88bfjWn7LXnC5/w/udfeGnZcMON+j9/y5v+b5n9s5+OuOAd7iYseFdoiZf5Zga8ZtRhqFMY8JpZGwNeM+uSMeBZ8MbU2oI3xjE6Rf+PFo3L0//jLCOT9P9IzbisjP4fdzpJBAgQGHsBC96xr8EKP8GlV1xT1l336f33veDn55d3vfNtZe7cuWXqU59avvTlr5Udd3pO/3e3335bef4uOw2eb1l/ydpIN2DBO5LQivm9AW/FOD+ZdzHgPRm1/NcY8PKNn8w7ZAx4FrxPphJPfI0Fb4xjdIr+Hy0al6f/x1lGJun/kZpxWRn9P+50kggQIDD2Aha8Y1+DFX6C7bbfoZx+xg+W+gudFi1aVCZOnDh4lt539O72/J3Lb35zpwXvCq9Qzhsa8HJcI1INeBGK8RkGvHjTiMSMAc+CN6IypVjwxjhGp+j/0aJxefp/nGVkkv4fqRmXldH/404niQABAmMvYME79jUYkxPMnLl5Oenrp5Tp09d/wvtfdukl5W1v+av+p3of+2ettdYq115/Q/9Hj/1u3pFu4NFP8N53331l6y2eNdLlT/j9kiVLytS1tyl7vPwny/1aL/izgAGvuU+DAa+ZtTHgNbMuGQOeBW9MrS14YxyjU/T/aNG4PP0/zjIySf+P1IzLyuj/vTlzYGAg7pAdTer9Res9R5YdfQDcdmMELHgbU4qxOcjTnz6t7LzLruWZm2xSrr3mmnLhBeeX+fPnj81hlvGuFrwx5TDgxThmpBjwMlTrMw149YYZCRkDngVvTKUseGMco1P0/2jRuDz9P84yMkn/j9SMy8ro/yutNLmst+FLylpP2TzuoB1MuvlXXysPzr/DgreDtXfLzRKw4G1WPZxmCAEL3pjHwoAX45iRYsDLUK3PNODVG2YkZAx4FrwxlbLgjXGMTtH/o0Xj8vT/OMvIJP0/UjMuS/+Ps4xOiu7/0eeTR6ArAha8Xal0i+/TgjemeAa8GMeMFANehmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYCXoVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFP0/Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8/T+mLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R0b8GJKZsCLccxIMeBlqNZnGvDqDTMSDHgZqjGZ0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMS9P8M1ZjM6P4fcyopBLonYMHbvZq37o4NeDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AFP/4+pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cGvJiSGfBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zAiymZAS/GMSPFgJehWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzz9P6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAU//j6mL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xwa8mJIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wNP/Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQEvpmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBT9P0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPP0/pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dG/BiSmbAi3HMSDHgZajWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBT/+PqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSNH/M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rA0/9j6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xAS+mZAa8GMeMFANehmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYCXoVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFP0/Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8/T+mLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R0b8GJKZsCLccxIMeBlqNZnGvDqDTMSDHgZqjGZ0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMS9P8M1ZjM6P4fcyopBLonYMHbvZq37o4NeDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AFP/4+pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cGvJiSGfBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zAiymZAS/GMSPFgJehWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzz9P6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAU//j6mL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xwa8mJIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wNP/Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQEvpmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBT9P0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPP0/pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dG/BiSmbAi3HMSDHgZajWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBT/+PqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSNH/M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rA0/9j6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xAS+mZAa8GMeMlO+eun5Z/MjDZWBgICS+9+/Mps9+V9lqh6NC8roaYsBrZuUNeM2sS+9U0QOe/h9Ta/0/xjEjxYI3Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsGboVqfacCrN8xIMOBlqMZkRg94+n9MXfT/GMeMFAveDNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha83at56+7YgBdTMgNejGNGigVvhmp9pgGv3jAjwYCXoRqTGT3g6f8xddH/YxwzUix4M1TrM/X/esOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKRa8Gar1mQa8esOMBANehmpMZvSAp//H1EX/j3HMSLHgzVCtz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DB272at+6ODXgxJTPgxThmpFjwZqjWZxrw6g0zEgx4GaoxmdEDnv4fUxf9P8YxI8WCN0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFb/dq3ro7NuDFlMyAF+OYkWLBm6Fan2nAqzfMSDDgZajGZEYPePp/TF30/xjHjBQL3gzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooFb4ZqfaYBr94wI8GAl6Eakxk94On/MXXR/2McM1IseDNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8Hav5q27YwNeTMkMeDGOGSkWvBmq9ZkGvHrDjAQDXoZqTGb0gKf/x9RF/49xzEix4M1Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqRY8Gao1mca8OoNMxIMeBmqMZnRA57+H1MX/T/GMSPFgjdDtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABW/3at66OzbgxZTMgBfjmJFiwZuhWp9pwKs3zEgw4GWoxmRGD3j6f0xd9P8Yx4wUC94M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKBW+Gan3m1Zd+uNw85ytlYGCgPux/EyastGrZ5w23heV1MciA19yqRw94+n9MrfX/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwdq/mrbtjA15MyQx4MY4ZKRa8Gar1mRa89YYZCQa8DNWYzOgBT/+PqYv+H+OYkWLBm6Fan2nBW2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMCLKZkBL8YxI8WCN0O1PtOCt94wI8GAl6Eakxk94On/MXXR/2McM1IseDNU6zMteOsNMxL0/wzVmMzo/h9zKikEuidgwdu9mrfujg14MSUz4MU4ZqRY8Gao1mda8NYbZiQY8DJUYzKjBzz9P6Yu+n+MY0aKBW+Gan2mBW+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUC94M1fpMC956w4wEA16Gakxm9ICn/8fURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAVv92reujs24MWUzIAX45iRYsGboVqfacFbb5iRYMDLUI3JjB7w9P+Yuuj/MY4ZKRa8Gar1mRa89YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHBryYkhnwYhwzUix4M1TrMy146w0zEgx4GaoxmdEDnv4fUxf9P8YxI8WCN0O1PtOCt94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2IAXUzIDXoxjRooFb4ZqfaYFb71hRoIBL0M1JjN6wNP/Y+qi/8c4ZqRY8Gao1mda8NYbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHRvwYkpmwItxzEix4M1Qrc+04K03zEgw4GWoxmRGD3j6f0xd9P8Yx4wUC94M1fpMC956w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpFrwZqvWZFrz1hhkJBrwM1ZjM6AFP/4+pi/4f45iRYsGboVqfacFbb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswIspmQEvxjEjxYI3Q7U+04K33jAj4YH7f11mn/mismjR/LD4iROnlO13Pb5M3/DlYZldDIoe8PT/mKdI/49xzEix4M1Qrc+04K03zEiw4M1QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKBW+Gan2mBW+9Q6ruMQAAIABJREFUYUaCBW+Gakxm9ICn/8fURf+PccxIseDNUK3PtOCtN8xIsODNUI3JjO7/MaeSQqB7Aha83at5+eo3Ti1bbrHVqO587712K/fec0//2smTJ5fzzr948HWzZ59dDj3k4GXmDAwMlHPOu6BMmbJG/5pbb72lHLDfq0b1vo+9yIC33GRDvsCAF+OYkWLBm6Fan2nBW2+YkWDBm6Eakxk94On/MXXR/2McM1L0/wzV+kwL3nrDjAQL3gzVmMzo/h9zKikEuidgwdu9mpeLL7uqTJu23qju/Hk771juuOP2/rVPmTq1XHPdnMHX9Qav7baZNbgAfnzgOw98TznsI0cM/nju3Lllq1mbjep9LXiXm2nEFxjwRiQaswsMeGNGP+wbW/A2sy4WvM2sS+9U0QOeBW9MrfX/GMeMFP0/Q7U+U/+vN8xIsODNUI3JjO7/MaeSQqB7Aha83av54IK3Nzj94hfXDyvw+tfsV3qL2aEWvL2fnfmD75V3H/iOITOuvm5OmTp1qgVvQ54xA15DCjHEMQx4zayNAa+ZdbHgbWZdLHibWxf9v7m10f+bWRv9v5l1seBtZl0y+n9z79TJCDRbwIK32fVJOd2jn+BdsGBB2WyTDUf9Ho//BG/vhYsXL+5/KnfevHlL5eyz737luBM+v9TPfIJ31NQpFxrwUlhDQg14IYzhIQa8cNKQQAveEMaUkOhP8PgEb0yZ9P8Yx4wU/T9DtT5T/683zEhI6/+7HFemb/SKjCN3JjO6/3cGzo0SCBaw4A0GbUNcxIL3yisuL9ttv0P/dk/79jfLB95/0FK3fuElV5Tp09cvd//hD2XylCll9dVX738S2Fc0jN0TYsAbO/uR3tmAN5LQ2PzegDc27iO9a9qAt+vxZfqGLx/p7f1+GIHoAc+CN+Zx0/9jHDNS9P8M1fpM/b/eMCMhrf9b8FaXK7r/Vx9IAIGOCljwdrDwEQveU07+etl9jz37S9yFCxeWWTM3Kb1PBPf+7LzLruVbp53e/+feX8J25NHHWvA24Dkz4DWgCMs4ggGvmbUx4DWzLmkDngVvdcGjBzwL3uqS9AP0/xjHjBT9P0O1PlP/rzfMSEjr/xa81eWK7v/VBxJAoKMCFrwdLPyjC96HH364vGTvPcrk1Vcvf3zoj+WWX/+6LFq0aJkij/2Kht6C9+KLLiifPfGL/eu/etKXy5FHHN7/57N+em6Zufnmg5/Y/eUNt1jwNuA5M+A1oAgWvM0twhAnM+A1s1xpA54Fb3XBowc8C97qkljwxhCmpVjwptFWBev/VXxpL07r/xa81TWL7v/VBxJAoKMCFrwdLPyjC96hbv3+++8v/3rqN8qn/+kfBj+R++h1j1/wHv7hQ8tV1/yiPHXttfvXztz0GWWTGTPK2bPP77/kkx8/pnz+xBOKBW8zHjIL3mbUYahTGPCaWRsDXjPrkjbgWfBWFzx6wLPgrS6JBW8MYVqK/p9GWxWs/1fxpb04rf9b8FbXLLr/Vx9IAIGOCljwdrDwwy14H+X4zW/uLM/becf+X6I23IL3TW9+azn6mE/0Lzn+uE+XnXZ6bnnuzruUBx98sDz7Wc8sveFsuAXvyqtNGbECix9ZVNZYY2bZ/WVnjXitC5Yt0FvwXn3ZB8vAhGV/Snt5/R5ZuKS86JXnlslTRv+X9S3ve3Th+jNOXb+stPLKZWBgIOR2Fz28oDxzs7eVrXY4KiSvqyFXX3pYue3mk8tKk1YOIej95+HihY+UV7/htpC8rob0B7wf7l0mTFwSRrDkkZXKdjv/s+/grRTtDXjz599UJqw0sTLpTy/X/0MY+1/RoP/HWEan6P/RojF5+n+MY3RKSv9fvFLZ7jmf9pesVRZrefr/w398oPLdvJwAgWUJWPB28Nk45NAPlSlT1ij/dd215Q+//31/qbThRhuVffbdv2y/w46DS6YLfn5+ecPrDhgUGuoTvL1fXj/n5jJlypT+d/FOnDix//oTP3d8+dQnju2/drgF77qbbDtiBRY8eH+ZsGitsttLfjTitS5YtkBvwLv+2qPKGk9bN4zpnjtuLnu+/GcWvJWiZ5y6QVl7o5llwoSVKpP+9PIH7r2rrDdtn7Ll9keG5HU15OrLDi9/uPtHZfJT1gkhWPzII+XeO28sr379rSF5XQ3pDXjn/vilZer6G4cRzLv7rrLltsda8FaK9hbvA6vMLyuvtkZl0p9erv+HMPYXvPp/jGV0iv4fLRqTp//HOEanpPX/bY6x4K0s1vL0/9/ffFXlu3k5AQLLErDg9WwsJbDHnnuVk752cn9J2/uO3k2fucHg75e14D3ofYeUg9/3gcHreq/bfLONB7/Pd7gF79T1ZoxYgYUPPVgmTVi37P7SH494rQuWLdAb8K67+qNltTXXDGPqLUX2fMU5FryVor1P8Ky5zgZlYMKEyqQ/vfyP8+4tG6z/2rLlDha8NaBXX3ZY+d1vzyirTplaEzP42iWLHym9f2de/QYL3hrQ3oB3zo9fUqas/bSamKVe+8e5c8vWO3zKgrdSdPaZe5VFA/9dJq2yemXSn16u/4cw9he8+n+MZXSK/h8tGpOn/8c4Rqek9P/77y9bb/cJC97KYi1P//+f395U+W5eToDAsgQseD0bTxA49/yLysYbP7P/8+fssE25667f9f95WQveCRMmlDk33lpWWWWV/nWnnvKNctiH/rzw9R28zXjIfAdvM+ow1Cl8B18za+M7+JpZl7Tv4PMdvNUFj/4OPt/BW12SfoD+H+OYkaL/Z6jWZ+r/9YYZCWn933fwVpcruv9XH0gAgY4KWPB2tPDD3fa3Tju97LzLrv1LDtjvVeWySy8ZdsHb++XHjv1keeOb3tL/zt4tNp9R5s+fP/gWFrzNeMgMeM2ogwVvc+vw+JMZ8JpZq7QBz4K3uuDRA54Fb3VJLHhjCNNSLHjTaKuC9f8qvrQXp/V/C97qmkX3/+oDCSDQUQEL3o4WfrjbvvCSK8r06ev3L9lskw3LggULRlzw9j69+8Ld9ih3/e635dprr1kq3oK3GQ+ZBW8z6mDB29w6WPC2ozZpA54Fb/UDED3gWfBWl8SCN4YwLcWCN422KtiCt4ov7cX6fxptdXB0/68+kAACHRWw4O1Y4V/4wt3736977rmzh7zzvfZ+SfnySV/v/+6BBx4os2ZuMnjdsr6iYSRCC96RhFbM7y14V4zzk3kXA96TUct/jQEv3/jJvIMB78morZjXRA94FrwxddP/YxwzUvT/DNX6TP2/3jAjQf/PUI3JjO7/MaeSQqB7Aha8Hav58Z/9l/LqffYtv//9XeVb3zy1XHThBeWKyy8r09abXt79nr8pr33dG/oL4N6fYz52ZPnSFz5vwTtOnhEDXnMLacBrZm0MeM2siwGvmXXpnSp6wLPgjam1/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1YzR9d8I5029ddd215xUv3Wuoyn+AdSa3ZvzfgNbc+Brxm1saA18y6GPCaWRcL3ubWRf9vbm30/2bWRv9vZl30/2bWJaP/N/dOnYxAswUseJtdn/DT7bHnXuWIvz+qPGPjZw5+Uvexb7Jw4cLyz//vH8vnPnvcE957rbXWKtdef0P/5yd/42vlI4d9cFTne/QrGu67776y9RbPGtVrHnuRT/AsN9mQLzDgxThmpBjwMlTrMw149YYZCQa8DNWYzOhP8Oj/MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2ref+Oe38p2pZbbV022WRG2egZzyh33H57ufjii8otv765cSIGvJiSGPBiHDNSDHgZqvWZBrx6w4wEA16Gakxm9ICn/8fURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JWPB2r+atu2MDXkzJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesDT/2Pqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEBL6ZkBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeDp/zF10f9jHDNS9P8M1fpM/b/eMCNB/89QjcmM7v8xp5JCoHsCFrzdq3nr7tiAF1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvD0/5i66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d9wb8J76F9uW3V92VuvO3qQDG/CaVI2lz2LAa2ZtDHjNrIsBr5l16Z0qesCz4I2ptf4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cWvDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R1b8MaUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswRtTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7wLHhj6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xBW9MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHFrwxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dW/DGlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3u7VvHV3bMEbUzIDXoxjRooBL0O1PtOAV2+YkWDAy1CNyYwe8Cx4Y+qi/8c4ZqTo/xmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wQseLtX89bdsQVvTMkMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3ROw4O1ezVt3xxa8MSUz4MU4ZqQY8DJU6zMNePWGGQkGvAzVmMzoAc+CN6Yu+n+MY0aK/p+hWp+p/9cbZiTo/xmqMZnR/T/mVFIIdE/Agrd7NW/dHVvwxpTMgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC97u1bx1d2zBG1MyA16MY0aKAS9DtT7TgFdvmJFgwMtQjcmMHvAseGPqov/HOGak6P8ZqvWZ+n+9YUaC/p+hGpMZ3f9jTiWFQPcELHi7V/PW3bEFb0zJDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TsODtXs1bd8cWvDElM+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPwIK3ezVv3R1b8MaUzIAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9AQve7tW8dXdswRtTMgNejGNGigEvQ7U+04BXb5iRYMDLUI3JjB7wLHhj6qL/xzhmpOj/Gar1mfp/vWFGgv6foRqTGd3/Y04lhUD3BCx4u1fz1t2xBW9MyQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7Dg7V7NW3fHFrwxJTPgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CCt3s1b90dW/DGlMyAF+OYkWLAy1CtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSn6f4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQEL3lLKOuusW979nr8pmz1rZv8JuPzyS8t/nPHdcvNNN3bviWjgHVvwxhTFgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2BcbvgPfFfvlSe/4Ld+hXtDQjP2WHr8sc//vEJFX7HO99VDjv8iDJhwoQn/O60b3+zfOD9B3XvqWjYHVvwxhTEgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2BcbvgvemWO8ukSZP6Ff31zTeV3V+46xOqu8OOO5V/O/17ZWBgYJmVv+qqK8s+r3xp956MBt2xBW9MMQx4MY4ZKQa8DNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkaL/Z6jWZ+r/9YYZCfp/hmpMZnT/jzmVFALdExiXC9699n5J+fJJXx+s5qtf+dJy9VVXPqG6s8/9edlkxqaDP+8NEnfeeUdZe+2/KKuvvvrgz9994NvLmT/4fveejobcsQVvTCEMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3RMYlwveL375q+XFL3lZv5rXXXdtecVL93pCZf/iL55Wrrj6vwZ/fsOv5pRXvGzvsmDBgv7PvnXa6WXnXf70qd9777mnbLv1s7v3dDTkji14YwphwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA54Fb0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J7AuFzwnvnjs8sWW2zZr+YnP35M+fyJJzyhsu9+z9+WD3748MGfv+zFe5brr//zwrf3i1/ddFtZddVV+9e8aI/nlxtvuKF7T0gD7tiCN6YIBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeBZ8MbURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JjMsF78WXXVWmTVuvX819X/3ycuUVlz+hst849VvlhS/cvf/z3/zmzrLLc7Z/wjWfOf7Esu9++/d/3vvL1np/6Zo/K17AgjfG3IAX45iRYsDLUK3PNODVG2YkGPAyVGMyowc8C96Yuuj/MY4ZKfp/hmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9gXG54L1+zs1lypQp/WpuvOG0snjx4idU9tIrrinrrvv0/s9/+pMfl7e/9U1PuObNb317OeroY/s//+pJXy5HHvHnT/x271EZuzu24I2xN+DFOGakGPAyVOszDXj1hhkJBrwM1ZjM6AHPgjemLvp/jGNGiv6foVqfqf/XG2Yk6P8ZqjGZ0f0/5lRSCHRPYFwueG+65c4yadKk8tBDD5VnzdhoyKrecvvvyoQJE/q/O+rIj5aTvvzFJ1y354v2Lid97eT+z88775zyxr98XfeekAbcsQVvTBEMeDGOGSkGvAzV+kwDXr1hRoIBL0M1JjN6wLPgjamL/h/jmJGi/2eo1mfq//WGGQn6f4ZqTGZ0/485lRQC3RMYlwvea6+/oay11lr9T+72PsH7+D8bP3OTcu5/Xjj442V9v+573vt35dAPHda/7odnfr+8651v794T0oA7tuCNKYIBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPeBa8MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewLjcsE7+9yfl01mbNqv5t4vemH51Zw5S1X2oIMPKQe//wP9n/WGh2ds8Kevanj8n96nd3uf4u39+eK/nFiOPeao7j0hDbhjC96YIhjwYhwzUgx4Gar1mQa8esOMBANehmpMZvSAZ8EbUxf9P8YxI0X/z1Ctz9T/6w0zEvT/DNWYzOj+H3MqKQS6JzAuF7xf+eo3yov2enG/mhddeEF53Wv2W6qyF15yRZk+ff3+z26//bby/F12GrLyP7/osrLBBhv2f3f4hw8tp5z89e49IQ24YwvemCIY8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuicwLhe8m262WTl79vmD1Tz1lG+Uo/7+I2XGjE3LoR8+vOy22x6DvzvuM/+vfPqf/uEJlV9zzTXLNf/1q8Hv6X3NAfuUSy6+qHtPSAPu2II3pggGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7gmMywVvr4xnfO+HZdvtth+2ogsXLizbbzOrzJ079wnXfekrXyt7v/il/Z8vWrSozNh4/f7XOfiz4gUseGPMDXgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TGLcL3mnT1is/+snsMnXq1GVW9f0H/235t+98+wm/3+gZG5fzzr+oDAwM9H93+WWXlv33fWX3no6G3LEFb0whDHgxjhkpBrwM1fpMA169YUaCAS9DNSYzesCz4I2pi/4f45iRov9nqNZn6v/1hhkJ+n+GakxmdP+POZUUAt0TGLcL3l4pJ0+eXE4/48zyrJkzB5e1vZ/Pnz+/HPahQ8oZ3z19yIp//4c/KVtttfXg79777r8u3//ef3Tv6WjIHVvwxhTCgBfjmJFiwMtQrc804NUbZiQY8DJUYzKjBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D2Bcb3gfbScEydOLLvv8aIyecrkct2115abb7px2EofdPAhZb3p0/vX9L6e4bAPfaB7T0aD7tiCN6YYBrwYx4wUA16Gan2mAa/eMCPBgJehGpMZPeBZ8MbURf+PccxI0f8zVOsz9f96w4wE/T9DNSYzuv/HnEoKge4JdGLB272yjq87tuCNqacBL8YxI8WAl6Fan2nAqzfMSDDgZajGZEYPeBa8MXXR/2McM1L0/wzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvN2reevu2II3pmQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7gmMywXvvvsdUF7y0pf1q/nxYz9Wbrv1lqUqe8D/eW3Za+8X9392zNFHljvuuH3Iyr/hL/+qvHC33fu/+/uPHl7uuut33XtCGnDHFrwxRTDgxThmpBjwMlTrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRor+n6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T2BcLnhP/eZ3yvOe/4J+NYf6C9K+ddrpZedddu3//h1ve3P5yVk/GrLyZ3zvh2Xb7bbv/+71r92/XHjBz7v3hDTgji14Y4pgwItxzEgx4GWo1mca8OoNMxIMeBmqMZnRA54Fb0xd9P8Yx4wU/T9DtT5T/683zEjQ/zNUYzKj+3/MqaQQ6J6ABa8Fb+OfegvemBIZ8GIcM1IMeBmq9ZkGvHrDjAQDXoZqTGb0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxL0/wzVmMzo/h9zKikEuidgwWvB2/in3oI3pkQGvBjHjBQDXoZqfaYBr94wI8GAl6Eakxk94FnwxtRF/49xzEjR/zNU6zP1/3rDjAT9P0M1JjO6/8ecSgqB7glY8FrwNv6pt+CNKZEBL8YxI+W7p0wvixcvLAMDAyHxvX9nNn32u8pWOxwVktfVEANeMytvwGtmXXqnih7wLHhjaq3/xzhmpFjwZqjWZ+r/9YYZCfp/hmpMZnT/jzmVFALdE7DgteBt/FNvwRtTIgNejGNGigVvhmp9pgGv3jAjwYCXoRqTGT3gWfDG1EX/j3HMSLHgzVCtz9T/6w0zEvT/DNWYzOj+H3MqKQS6J2DBa8Hb+KfegjemRAa8GMeMFAveDNX6TANevWFGggEvQzUmM3rAs+CNqYv+H+OYkWLBm6Fan6n/1xtmJOj/GaoxmdH9P+ZUUgh0T8CC14K38U+9BW9MiQx4MY4ZKRa8Gar1mQa8esOMBANehmpMZvSAZ8EbUxf9P8YxI8WCN0O1PlP/rzfMSND/M1RjMqP7f8yppBDonoAFrwVv4596C96YEhnwYhwzUix4M1TrMw149YYZCQa8DNWYzOgBz4I3pi76f4xjRooFb4Zqfab+X2+YkaD/Z6jGZEb3/5hTSSHQPQELXgvexj/1FrwxJTLgxThmpFjwZqjWZxrw6g0zEgx4GaoxmdEDngVvTF30/xjHjBQL3gzV+kz9v94wI0H/z1CNyYzu/zGnkkKgewIWvBa8jX/qLXhjSmTAi3HMSLHgzVCtzzTg1RtmJBjwMlRjMqMHPAvemLro/zGOGSkWvBmq9Zn6f71hRoL+n6Eakxnd/2NOJYVA9wTG/YL3oYceKr3/eeyfNddcs0yYMKH/owcffLA8/PDDQ1b+sde9/rX7lwsv+Hn3npAG3LEFb0wRDHgxjhkpFrwZqvWZBrx6w4wEA16Gakxm9IBnwRtTF/0/xjEjxYI3Q7U+U/+vN8xI0P8zVGMyo/t/zKmkEOiewLhf8EaV1II3SnL5cyx4l99sqFcY8GIcM1IseDNU6zMNePWGGQkGvAzVmMzoAc+CN6Yu+n+MY0aKBW+Gan2m/l9vmJGg/2eoxmRG9/+YU0kh0D0BC95R1tyCd5RQCZdZ8MagGvBiHDNSLHgzVOszDXj1hhkJBrwM1ZiOCrVOAAAgAElEQVTM6AHPgjemLvp/jGNGigVvhmp9pv5fb5iRoP9nqMZkRvf/mFNJIdA9gXG54N1qq63L1ttsG1rN0//9O2X+/PmhmcJGJ2DBOzqnka4y4I0kNHa/t+AdO/vh3vmqSz5Ufv2rk8rAwEDYASestGrZ5w23heV1MciA19yqRw94Frwxtdb/YxwzUix4M1TrMy146w0zEvT/DNWYzOj+H3MqKQS6JzAuF7zdK+P4vmML3pj6GvBiHDNSLHgzVOszLXjrDTMSDHgZqjGZ0QOeBW9MXfT/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwDlPz/Q94TXn+C3brX3HM0X9f/vu/7+7eE9KAO7bgjSmCAS/GMSPFgjdDtT7TgrfeMCPBgJehGpMZPeBZ8MbURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAXvMDU/43s/LNtut33/Ct/BO3b/cljwxtgb8GIcM1IseDNU6zMteOsNMxIMeBmqMZnRA54Fb0xd9P8Yx4wUC94M1fpMC956w4wE/T9DNSYzuv/HnEoKge4JWPBa8Db+qbfgjSmRAS/GMSPFgjdDtT7TgrfeMCPBgJehGpMZPeBZ8MbURf+PccxIseDNUK3PtOCtN8xI0P8zVGMyo/t/zKmkEOiegAWvBW/jn3oL3pgSGfBiHDNSLHgzVOszLXjrDTMSDHgZqjGZ0QOeBW9MXfT/GMeMFAveDNX6TAveesOMBP0/QzUmM7r/x5xKCoHuCVjwWvA2/qm34I0pkQEvxjEjxYI3Q7U+04K33jAjwYCXoRqTGT3gWfDG1EX/j3HMSLHgzVCtz7TgrTfMSND/M1RjMqP7f8yppBDonoAFrwVv4596C96YEhnwYhwzUix4M1TrMy146w0zEgx4GaoxmdEDngVvTF30/xjHjBQL3gzV+kwL3nrDjAT9P0M1JjO6/8ecSgqB7glY8FrwNv6pt+CNKZEBL8YxI8WCN0O1PtOCt94wI8GAl6Eakxk94FnwxtRF/49xzEix4M1Qrc+04K03zEjQ/zNUYzKj+3/MqaQQ6J6ABa8Fb+OfegvemBIZ8GIcM1IseDNU6zMteOsNMxLm3X9zOefMvcuiRQ+ExU+cOKVsv+vxZfqGLw/L7GJQ9IBnwRvzFOn/MY4ZKRa8Gar1mRa89YYZCRa8GaoxmdH9P+ZUUgh0T8CC14K38U+9BW9MiQx4MY4ZKRa8Gar1mRa89YYZCRkL3pUmTi477vrZst6GL8s4cmcyowc8C96YR0f/j3HMSLHgzVCtz7TgrTfMSLDgzVCNyYzu/zGnkkKgewIWvBa8jX/qLXhjSmTAi3HMSLHgzVCtz7TgrTfMSLDgzVCNyYwe8PT/mLro/zGOGSn6f4ZqfaYFb71hRoIFb4ZqTGZ0/485lRQC3RMYlwverbbaumyz7XbV1Xz3e/+2TJu2Xj/n9a/dv1x4wc+rMwUsv4ABb/nNhnqFAS/GMSPFgJehWp9pwVtvmJFgwZuhGpMZPeDp/zF10f9jHDNS9P8M1fpMC956w4wEC94M1ZjM6P4fcyopBLonMC4XvKd+8zvlec9/QWg1LXhDOZcrzIC3XFzLvNiAF+OYkWLAy1Ctz7TgrTfMSLDgzVCNyYwe8PT/mLro/zGOGSn6f4Zqfab+X2+YkWDBm6Eakxnd/2NOJYVA9wQseEdZcwveUUIlXGbAi0E14MU4ZqQY8DJU6zMNePWGGQkWvBmqMZnRA57+H1MX/T/GMSNF/89Qrc/U/+sNMxIy+r+/ZDWmUtH9P+ZUUgh0T2BcLniP+tjHyz777h9azdcesE+ZM+eXoZnCRidgwBud00hXGfBGEhq73xvwxs5+uHc24DWzLhkDnr9kLabW0QOe/h9TF/0/xjEjRf/PUK3P1P/rDTMSMvq/BW9MpaL7f8yppBDonsC4XPB2r4wxd/yZ4z43+NUWr3/d/uXGG25YKnjy5MnlvPMvHvzZ7Nlnl0MPOXiZbz4wMFDOOe+CMmXKGv1rbr31lnLAfq9a7sMa8JabbMgXGPBiHDNSDHgZqvWZBrx6w4yEjAHPgjemUtEDnv4fUxf9P8YxI0X/z1Ctz9T/6w0zEjL6vwVvTKWi+3/MqaQQ6J6ABW/3aj7kHR/6ocPKe977d4O/6y1iL7v0kqWufcrUqeWa6+YM/qw3eG23zaxy7z33DJn5zgPfUw77yBGDv5s7d27ZatZmyy1uwFtuMgveGLIVlmLAW2HUy/VGBrzl4lphF2cMeBa8MeWLHvD0/5i6WPDGOGak6P8ZqvWZ+n+9YUZCRv+34I2pVHT/jzmVFALdE7DgHaHmvU+hvnqffcvsn51d7r///nH5hOy73wHlM8d/bql7G82Ct/eCM3/wvfLuA98xpMvV180pU6dOteBtyFNjwGtIIYY4hgGvmbUx4DWzLhkDngVvTK2jBzwL3pi66P8xjhkp+n+Gan2m/l9vmJGQ0f8teGMqFd3/Y04lhUD3BCx4l1HzHXd6Tvmbvzu47LLL88qkSZPKeP1L1rbbfofy79/9fpkwYcKTWvAuXry4/6ncefPmLfX6ffbdrxx3wueX+plP8I7tf8AY8MbWf7h3N+A1szYGvGbWJWPAs+CNqXX0gGfBG1MX/T/GMSNF/89Qrc/U/+sNMxIy+r8Fb0ylovt/zKmkEOiegAXvY2q+/voblL896H3lpS97RVlzzTWXehrG44J32rT1ynk/v7isssoq5aGHHio//tEPS28x2/sz0id4r7zi8tJbDvf+nPbtb5YPvP+gpbwuvOSKMn36+uXuP/yhTJ4ypay++urFgnds/wPGgDe2/ha8zfVf1skMeM2sWcaAZ8EbU+voAc+CN6Yu+n+MY0aKBW+Gan2m/l9vmJGQ0f8teGMqFd3/Y04lhUD3BDq/4O39xWHv+Ot3lde87vX9heSy/uy/7yvL5ZddOm6ekNVWW61cdMmVZepTn1p6n8Ld51UvK72vanjLW98+qgXvKSd/vey+x559s4ULF5ZZMzcpCxYs6L925112Ld867fT+P/f+ErYjjz7WgrcBT44BrwFFWMYRDHjNrI0Br5l1yRjwLHhjah094FnwxtRF/49xzEjR/zNU6zP1/3rDjISM/m/BG1Op6P4fcyopBLon0NkFb2+Z+fa/PrDMmrVF6X3P7lB/el87cPZPzionnPCZcvNNN46rp+Ps2f9ZNt3sWf17eu+7/7p8/3v/0V/ELs+C9+KLLiifPfGL/YyvnvTlcuQRh/f/+ayfnltmbr754Cd2f3nDLRa8DXh6DHgNKIIFb3OLMMTJDHjNLFfGgGfBG1Pr6AHPgjemLvp/jGNGigVvhmp9pv5fb5iRkNH/LXhjKhXd/2NOJYVA9wQ6teDdYcedBr9Xd+WVVx6y2r1Po/7neeeUz55wXOl9DcF4/HPS104ue75o7/6t/fOn/7F85tP/1P/n5V3wHv7hQ8tV1/yiPHXttfuf3p256TPKJjNmlLNnn9/P++THjymfP/GEYsHbjKfIgNeMOgx1CgNeM2tjwGtmXTIGPAvemFpHD3gWvDF10f9jHDNS9P8M1f/P3nnH2VWWa/vJEBLIJJBQBQLSe+9dIIAUacI5CIogKiUUAakBFRQEVJCOepSeA8JRkY5SpQhISQKBGESqgjQJIYGEEL7f2vkYCZlkMvPcN1l73mv+OZLZ65p3Xc/G+9yPO2vyTPI/79BBcOQ/C17NpNT5rzkVFAyUZ6DbL3irRwh89Fzdueeeu8MJ337bH2Lfffbq8HXN+oJjjjs+Bh90aOP4N914fRy4/5RHMnR1wbv3PvvG908+tXH9OWefGeuuu36sv8GGMX78+FhxuSWjKmcseOvxbqHg1WMOLHjrO4dPnoyCV89ZOQoeC17NrNUFjwWvZi7kv8ajg8KC12E1zyT/8w4dBEf+s+DVTEqd/5pTQcFAeQa65YK3er7sfvsPjt332HO6z9WtSsPfnh4dV1xxWTz7zDNx2dCrGtPvzgveXXf77zjzrHMb9/nUk0/GNltvPtU7viuf4K0AI0c9E3379m08i7dnz56NR15ccP45cfqpp0z5WTN4RMOCS63R4b91E8a/HS2T+sdm29zU4Wt5wfQNVAVv5IiTot/8C8o0vfHiMzFo+9ujte9iMmaJoGuHDoz5Prti9Ghpkdz+O2++EgsvtHOsstaJEl6pkGEPDYlXX78lWvsvIFEw+YMP4s2Xno6d9nhOwisVUhW8u2/dPgYssrhMwdhXX45V1zw1Fl5sOxmzRNAdN20dPXqPi15z9pPcPvkv0Rjkv8ajg0L+O6zmmeR/3qGDQP47rGqYncn/fz3zmOaHQsEABqYx0C0XvFf879Wxyaafa3fcL7/8z/jtb66Jn194fuMZsdXXhhttHFf++jeN/9ydF7yPPPZEzDf//FE9W3i7zw+KiRMnTuXoqGOOi93+a/fGnw0+4BvxyMMPx7vvjm/z1H/AgBj++KjG96tfslY9oqH6OuyII+PwI45qY1XcFZZdIiZNmtT4Mxa89fhvHgpePebQ3ikoePWcDQWvnnOh4NVzLtWpOlPwZuYuWPDOjKWOX0P+d+xoVr2C/J9V5mf8c8n/es6F/K/nXDqb/yx46ztHTtb8BrrlgnfoldfExpts2jadapF7y803xrln/zRefPGFaaa2wYYbxVVX/7bx5yUseDvztn39tddirTVWblwyvQVvS0tLjHr6uejdu3fjdUOvuCyGHPufhS+PaOiMcd9r+SuaPrdZMn9FM2vQcz1/RdPjNUt1/BVNHtGQncqU69V/RZNHNGjmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPANFLHhHjnwiLvrlL+I3/3d145mwn/xiwTv9N/7MLHirq39wymnx1b2/FpMnT46VV1g6xo0b1wZlwVuP/2Kh4NVjDu2dgoJXz9lQ8Oo5FwpePefCgre+cyH/6zsb8r+esyH/6zkX8r+ec3Hkf33vlJNhoN4GuuWCd3qPaKieEfvQgw80ng977z1/aptMKQve+eabP/rNNdd035HVYxZ22nmXxvcPO/SgGDbssRj79tvx+uuvNf5sep/grb5XfXr3c5ttEa+8/M8YMWL4VD+DBW89/kuAglePObDgre8cPnkyCl49Z0XBq+dcHAWPT/BqZk3+azw6KCx4HVbzTPI/79BBIP8dVjVMPsGr8QgFA1kD3XLBO/fcc8fggw+NL+76X7HAAu3/QqnqE6a33/bHOOfsM2L++Rco4hm8Hb1ZuvpL1jrisuDtyNCn830K3qfjuSs/hYLXFWv+ayh4fsdd+QkUvK5Y+3SuURc8FryauZH/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwfnyMSy29THzrsG/HllttHa2tre1O+L333os55pij8b3u/Azejt7eLHg7MtTc36fg1Xd+FLx6zoaCV8+5UPDqOZfG/w91w6B4683Ho0ePHpJDsuCVaAzyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6PYL3o+PdLPNtogDDzok1l5n3ejZs2e70x47dmz8/MLz46Jf/WKq58iW8NZgwdu9p0zBq+98KXj1nA0Fr55zoeDVcy4seOs7F/K/vrMh/+s5G/K/nnMh/+s5F0f+1/dOORkG6m2gqAXvR6NoaWmJr+y1d+OXgi29zLLtftKk+tTIX0eNiisuvySGXnFZ45eHdfev7534g9j3G/s1bnOXnbaPRx95eKpbrh59MWLk6MafXX7ZJXHCkGNmSslHj2h46623YrWVl5upaz7+oimf4FkzNt/ulk5fywX/MUDBq++7gYJXz9lQ8Oo5FwpePefiKHh8glcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUw+wavxCAUDWQNFLng/Lq36xWGDBx/SeF7v/Ass0K7Parm7/TZbxpNPjsz65vouGGDB2wVp7VxCwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZKH7B+/GRL7PssnHot74dg7bcaprn9e6x+65x/333lvcOqcEds+DVDIGCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPAgnc6M998iy1j8EGHxJprrd14Xi8L3ln3LwcLXo17Cp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPAAveDmZePa93zy/vFTfccF289e9/l/cOqcEds+DVDIGCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPAgvdjM+/Xr1/jF669/fbb5b0TanzHLHg1w6HgaTw6KBQ8h9U8k4KXd+ggUPAcVjVMdcFjwauZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx02wXv2uusG6uutnpjotUvSbvskosa//eTX3POOWecdc75MWjLrWP22WdvfPu9996Lp54cGQfs9/V45ZWXy3tX1OyOWfBqBkLB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5Rnotgvevzw6IhZYYMHGRCdNmhQrLLtETJw4caoJV5/WffDhYbHggp9pd/LV67+5795x1113lPfOqNEds+DVDIOCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQLRe81WK3WvB+9HXxRb+ME797/DTTPe1HZ8Qee35lhlOvPvW7+irLx5gxY8p7d9TkjlnwagZBwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3mOOOz4GH3RoY5rV4xZWWn6pxqd4P/n11789H3PMMUfjj6vv33TjDfF/V1/VeLTDYUccGT179mx879Zbbor9vvG18t4dNbljFryaQVDwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa65YL319f8LtbfYMPGNIdecVkMOfaoaSa7xaCt4uJLr2j78/PPOzt+dNoP2/65eobvb353feOfq4KxyorLxNixY8t7h9TgjlnwaoZAwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3jvvvi+WXGrpxjQPPfiA+P21v5tmsh9/PMOECRNi+WUWn+aXsN12x59imWWXa1z71S9/Ke6++87y3iE1uGMWvJohUPA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BrrlgnfYiKdiwDzzNKa51uorx+uvvzbNZG/9412x/AorNP58xIjhscN2W0/zmuoxDYcfMeXTvz8+/dQ479yzynuH1OCOWfBqhkDB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5Rnolgvep//+YvTq1avxXN2lFl+k3ak++de/R2tra+N70/slbDvtvEucc97PGq+57vfXxiEH7V/eO6QGd8yCVzMECp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPQLdc8I5+5oXo3bt3TJw4MZZZctFpplp9r3rNR1/77rNX3H7bH6Z53c67fDHOPvfCxp9Xj2eoHtPA16dvgAWvxjkFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54H3pkeCy44Gca01xisYWmebbuVltvE7+86NK2aa+43JIxbty4aaZ/yqk/iq/stXfjz3991f/G0UceXt47pAZ3zIJXMwQKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc8FryauZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwXnvdTbHGmms1pnn6qafEBeefM9VkL7rk8hi05ZRn7laL3WrB297X9Tf9IVZddbXGt3502g/j/PPOLu8dUoM7ZsGrGQIFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54Dzn08Djy6GMb0xw/fnxsvumG8corLzf+eeDAReOe+x+KlpaWxj/feeftsc9ee7Y7+REjR8fcc8/d+N7gA74RN95wfXnvkBrcMQtezRAoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwD3XLB26NHj6h+iVqfPn0aE50wYULce8/dscgii8Zyyy8f1fc/+vryHv8V997zp2kmv+12X4if/eJXbX++/jprxMsv/7O8d0gN7pgFr2YIFDyNRweFguewmmdS8PIOHQQKnsOqhqkueCx4NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654K3G+M39D4wTvnPiDCc6YsTw2GG7KY9q+OTXsBFPxYB55mn88Wuvvhprr7lKee+OmtwxC17NICh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPddsFbjfLAwYfEsUNOaHeq//rXK7Hl5pvE22+/Pc33Dzr4W3H0sUPa/vyySy+O7xw/5ZEPfH36BljwapxT8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGuvWCtxrneutvEHvvs2+svsaa0WfOPvGPf/4jbr7xhjjv3LOmO+37H3wkFlpo4bbvb7jeWjyeYRb+u8GCVyOfgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFjwWvZi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsoz0O0XvOWNtPvdMQtezUwpeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHg7OfMLfvY/sdrqa8QxRx3R7i9n6ySOl8+EARa8MyFpJl5CwZsJSbPoJRS8WSS+gx9LwavnXCh49ZxLdSp1wWPBq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDg7eTMH/jLY43HN5ww5Ji4/LJLOnk1L++KARa8XbE27TUUPI1HB4WC57CaZ1Lw8g4dBAqew6qGqS54LHg1cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrydnDkL3k4KE7ycBa9AYkRQ8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPB2cuYseDspTPByFrwCiSx4NRJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvJ0cOwveTgoTvJwFr0AiBU8j0USh4JnEJrEUvKRA0+UUPJNYAVZd8FjwCoZC/mskmijkv0lsEkv+JwWaLif/TWIFWHX+C44EAgNFGmDB28mxs+DtpDDBy1nwCiRS8DQSTRQKnklsEkvBSwo0XU7BM4kVYNUFjwWvYCjkv0aiiUL+m8QmseR/UqDpcvLfJFaAVee/4EggMFCkARa8nRw7C95OChO8nAWvQCIFTyPRRKHgmcQmsRS8pEDT5RQ8k1gBVl3wWPAKhkL+aySaKOS/SWwSS/4nBZouJ/9NYgVYdf4LjgQCA0UaYMHbybGz4O2kMMHLWfAKJFLwNBJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvJ0cOwveTgoTvJwFr0AiBU8j0USh4JnEJrEUvKRA0+UUPJNYAVZd8FjwCoZC/mskmijkv0lsEkv+JwWaLif/TWIFWHX+C44EAgNFGmDB28mxs+DtpDDBy1nwCiRS8DQSTRQKnklsEkvBSwo0XU7BM4kVYNUFjwWvYCjkv0aiiUL+m8QmseR/UqDpcvLfJFaAVee/4EggMFCkARa8nRw7C95OChO8nAWvQCIFTyPRRKHgmWBu13AAACAASURBVMQmsRS8pEDT5RQ8k1gBVl3wWPAKhkL+aySaKOS/SWwSS/4nBZouJ/9NYgVYdf4LjgQCA0UaYMHbybGz4O2kMMHLWfAKJFLwNBJNFAqeSWwSS8FLCjRdTsEziRVg1QWPBa9gKOS/RqKJQv6bxCax5H9SoOly8t8kVoBV57/gSCAwUKQBFrydHDsL3k4KE7ycBa9AIgVPI9FEoeCZxCaxFLykQNPlFDyTWAFWXfBY8AqGQv5rJJoo5L9JbBJL/icFmi4n/01iBVh1/guOBAIDRRpgwdvJsbPg7aQwwctZ8AokUvA0Ek0UCp5JbBJLwUsKNF1OwTOJFWDVBY8Fr2Ao5L9GoolC/pvEJrHkf1Kg6XLy3yRWgFXnv+BIIDBQpAEWvDMY+4knnRxbb7Nt4xV777VHPD16dFR/tvIqq8bJPzgxhj32aJFvmk/7plnwaoy/+Oy18egD344PJr2jAUZEy2x9Yqsd747WvovJmCWCKHj1nDoFr55zoeDVcy7VqdQFjwWvZtbkv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIJ3BjO/9rqbYo0112q8Yo/dd43777u3vHdIDe6YBa9mCBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLngseDVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQngEWvCx4a/+uZ8GrGREFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABS8L3tq/61nwakZEwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMHLgrf273oWvJoRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwsuCt/bueBa9mRBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLngseDVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQngEWvCx4a/+uZ8GrGREFT+PRQaHgOazmmRS8vEMHgYLnsKphqgseC17NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABS8L3tq/61nwakZEwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMHLgrcp3vXzzLdObLbtDU1x1roe8sXnrotH/3x4fDDpHdkRW2brE1vteHe09l1MxiwRRMGr59QpePWcCwWvnnOpTqUueCx4NbNmwavx6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgZcFb+3c9n+DVjIiCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQLRe8e355r9hu+x3S01xjzbWib9++Dc4eu+8a9993b5oJoPMGWPB23ll7V1DwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa65YJ36JXXxMabbCqdJgteqc5OwVjwdkrXdF9MwdN4dFAoeA6reWZV8J4dfXEe9DFCy2xzxM57Pi9llgaj4NV34uqCx4JXM2vyX+PRQSH/HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAvemZw5C96ZFGV4GQtejVQKnsajg0LBc1jNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeyYI379BBIP8dVjVMdf5rTgUFA+UZ6JYL3uoRDdtu9wXpNI89+tvxj3+8JGUCmzkDLHhnzlNHr6LgdWRo1n2fgjfr3M/oJ7PgredcKHj1nEt1KnXBY8GrmTX5r/HooJD/Dqt5JgvevEMHgfx3WNUw1fmvORUUDJRnoFsueMsbY/e+Yxa8mvlS8DQeHRQKnsNqnsmCN+/QQaDgOaxqmOqCx4JXMxfyX+PRQSH/HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHfMglczMgqexqODQsFzWM0zWfDmHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap7Jgjfv0EEg/x1WNUx1/mtOBQUD5RlgwTuDmQ+YZ5449NDDY4cdd46999ojRo58orx3SA3umAWvZggUPI1HB4WC57CaZ7LgzTt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8kwVv3qGDQP47rGqY6vzXnAoKBsozwIL3EzPv2bNnfHWffWOvvfaOJZdauu27/JK1WfcvBwtejXsKnsajg0LBc1jNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeyYI379BBIP8dVjVMdf5rTgUFA+UZYMH7/2c+aMut48DBB8daa68TLS0t07wTWPDOun85WPBq3FPwNB4dFAqew2qeyYI379BBoOA5rGqY6oLHglczF/Jf49FBIf8dVvNMFrx5hw4C+e+wqmGq819zKigYKM9A0Qve5ZZfPr512Ldj8y22jD59+rQ7/cmTJ8cTTzweX99nr3j11X+V9w6pwR2z4NUMgYKn8eigUPAcVvNMFrx5hw4CBc9hVcNUFzwWvJq5kP8ajw4K+e+wmmey4M07dBDIf4dVDVOd/5pTQcFAeQaKW/BWz9U9+OBvxc677BrzzT9/uxOvCsXfn/lbDB16eVx+6cUxceLE8t4ZNbpjFryaYVDwNB4dFAqew2qeyYI379BBGDvmb3HnTZ+PSZPekeFn69ka62x0Xiy82HYyZokgdcFjwat5F5H/Go8OCvnvsJpnsuDNO3QQWPA6rGqY6vzXnAoKBsozUMSCt3qu7le+uk/svffXpnqubnvjHvXUU/Hfu+0UY8aMKe/dUNM7ZsGrGQwFT+PRQaHgOazmmSx48w4dBNuCd+PzY+FFt3UcuRimuuCx4NW8dch/jUcHhfx3WM0zWfDmHToILHgdVjVMdf5rTgUFA+UZ6NYL3i0GbRWDDzpkus/VrcZdLXKrT+uuseZajenfftsfYt999irvnVDjO2bBqxkOBU/j0UGh4Dms5pksePMOHQQWvA6rGqa64JH/mrmQ/xqPDgr577CaZ7LgzTt0EFjwOqxqmOr815wKCgbKM9AtF7z7fmO/OOro46b7XN0JEybEvffcHeec/dMY9tijseFGG8eVv/4NC96avv8peJrBUPA0Hh0UCp7Dap7Jgjfv0EFgweuwqmGqCx75r5kL+a/x6KCQ/w6reSYL3rxDB4EFr8OqhqnOf82poGCgPAPdcsE79MprYuNNNp1qmtUvS3vs0UfiFz+/MG65+capvrfBhhvFVVf/lgVvTd//FDzNYCh4Go8OCgXPYTXPZMGbd+ggsOB1WNUw1QWP/NfMhfzXeHRQyH+H1TyT/M87dBBY8Dqsapjq/NecCgoGyjNQxIL34ot+GSd//3sxadKkdifMgrfeb3wKnmY+FDyNRweFguewmmdS8PIOHQQWvA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOgi3/+SWr6XGp8z99IAAYKNRAEQvearZvvvFGXHfdtXHu2T+N119/bapxs+Ct97ufgqeZDwVP49FBoeA5rOaZFLy8QwfBVvD4JWvpcakLHvmfHkkDQP5rPDoo5L/Dap5J/ucdOgi2/GfBmx6XOv/TBwKAgUINdMsF74GDD4kjjjw6evXq1e5YX3jh+bhy6BXxq1/+PKrn8bLgrfe7n4KnmQ8FT+PRQaHgOazmmRS8vEMHwVbwWPCmx6UueOR/eiQseDUKbRTy36Y2BSb/U/psF9vynwVvembq/E8fCAAGCjXQLRe8H81yp513iW/sd2Csssqq0aNHj2lGXBWHkSOfaDybd6+v7tP4/u23/SH23WevQt8O9bxtCp5mLo4Fb8/Z+8WgL9wZrX0X1RyyUMq1Qz8bkye/J7v76t+ZZVY8MFZd+yQZs0QQBa+eU7cVPBa86YGrCx75nx4JC16NQhuFBa9NbQpM/qf02S625T8L3vTM1PmfPhAADBRqoFsveD+aae/eveMb3zwg9vjyV2LRRReb4ajvv+/e2GP3XQt9O9Tztil4mrk4Frwts/WJrXa8O1r7zvjfK80ddF8KBa+es6Xg1XMutoLHgjc9cHXBI//TI2HBq1Foo5D/NrUpMPmf0me72Jb/LHjTM1Pnf/pAADBQqIEiFrwfn+1CCy0ch3zr8Nj+CztG//792x37+PHj4647b4/zzjmr8QlfvmatAQqexj8LXo1HB4WC57CaZ1Lw8g4dBFvBY8GbHpe64JH/6ZGw4NUotFHIf5vaFJj8T+mzXWzLfxa86Zmp8z99IAAYKNRAcQvej8959TXWjG8ddkRsvMnnpvu83rfeeituufnGOPn734uxY8cW+jaZtbdNwdP4Z8Gr8eigUPAcVvNMCl7eoYNgK3gseNPjUhc88j89Eha8GoU2CvlvU5sCk/8pfbaLbfnPgjc9M3X+pw8EAAOFGih6wfvxme+8yxcbz+tdeeVV2n1eb/XYhurxDd3xa7755o/qMRb/+MdLtbw9Cp5mLCx4NR4dFAqew2qeScHLO3QQbAWPBW96XOqCR/6nR8KCV6PQRiH/bWpTYPI/pc92sS3/WfCmZ6bO//SBAGCgUAMseD8x+DnnnDO+/o39G8/rHTjwP784qrsseKtfNveVvfaO//7SnrHkkktFa2vrVAvtN994Iy695KI45+wzY/LkyVPZqV579z0PtP3ZHXfcFkcfefh0/9Wpftadd98Xffv2a7zmueeejd2+uGOn/1Wj4HVaWbsXsODVeHRQHAVv2ZW/FausebzjuMUwRzx8YoweeX60tLTI7rlltjli5z2fl/FKBNkKHgve9NtJXfDI//RIWPBqFNoojvznl6zmx8WCN+/QQbDlPwve9LjU+Z8+EAAMFGqgWy54+/XrF/37D2iM9KWXXoyqIHTla5FFBjae17vNttvHV7+8e4wYMbwrmFpds9lmW8SlV1zZ4Zkef3xEfGHbraZ6Xf8BA2L446Pa/qzyuubqK0W1FG7va/8DDoohJ3y37VtjxoyJVVdatsOf/ckXUPA6razdC1jwajw6KBQ8h9U8k4KXd+gg2AoeC970uNQFj/xPj6QBIP81Hh0U8t9hNc8k//MOHQRb/rPgTY9Lnf/pAwHAQKEGuuWC94r/vTo22fRzjZEOPuAbceMN1xc63mlv++ML3mr5PeyxR2P4sGHxYXwYgwZtFRtsuFHbRT8988dx1pk/afvnTy54q2/ceMN1MfiAb7brd9jjo2LAgCmL9uqLBe+sfRtS8Gat/xn9dApePWdDwavnXGwFjwVveuDqgseCNz2SBoD813h0UMh/h9U8k/zPO3QQbPnPgjc9LnX+pw8EAAOFGuiWC96hV14TG2+yaWOkBw/eL66/7veFjnfa215llVXjtB+fGd/7zpB4+C8PTfOCwQcdGsccN+WvdVefWN5hu63bXtPegrd6jEP1qdxP/gK66pnGZ5974VR8Fryz9m1IwZu1/lnw1tf/9E5GwavnzGwFjwVveuDqgseCNz0SFrwahTYKC16b2hSY/E/ps11M/tvUpsHq/E8fCAAGCjXAgrfQwU/vtqtnEI96+rnGt6tfurbhemu1u+B99JGHY8211m587+pfXxlHffuwqZD3P/hIVI+4eO3VV6O1b9/o06cPn+Cdxe81FryzeAAz+PEUvHrOhoJXz7lQ8Oo5l+pU6oLHglcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezGd4xzvsuFOcd8EvGq+56647Yu+v7NHugveKyy+NzbcY1Fjivv/++7HS8kvFhAkTGq+tHvNw1dW/bfzn6pewnfj9U1jw1uB9RsGrwRCmcwQKXj1noy541d946Df3MvH5ne+v5w03yanGjn027v3DbvHu+JdkJ+45e79Ye+MLYuGB//lbKzJ4QaC7btkxXv/Xn2W/mJAFr+bNQ/5rPDoo5L/Dap6pzv/qRPyS1fxcWPDmHboILHhdZuFioHMGWPB2zle3ffXAgYvGbv+9exx8yGEx++yzR7WI2GTDdRu/pO6jr48/oqFa8D7w5/valsEXX/TLOPG7Ux7tcOsf74rlV1ih7RO7T41+lgVvDd45FLwaDIEFb32H0M7JKHj1HBcFr55zqU7lKHifGbhNbLj5pfW96SY42T9euDkevv9b8cH7Y2SnnWPOhWLTra+LvnMtJmOWCLr12vVj3NhnZbde/Y8iy6x4YKy69kkyZokg8r+eUyf/6zkXV/7X9245GQbqa4AFb31n86mc7PwLfxGbb7FltLa2tv286rEK3z780Lj77junOsMnF7zHH3d0PDb8yZhn3nkbn95dfpnFY6mll47b7rincd1pPzw5Lrzg3GDB+6mMssMfwoK3Q0Wz7AV8gmeWqZ/hD6bg1XMuFLx6zsVR8PgEr2bW5L/Go4Oizv/qAxorrn5crLjaEY7jFsN8cviPYtSIM6T3yyd48zrJ/7xDF8HxP/C6zgoXA93ZAAve7jzdmbi3u/50fyyx5FJtr5w0aVL89jfXxAlDjml75MJH32xvwbv3PvvG908+tfGSc84+M9Zdd/1Yf4MNY/z48bHicktGVc5mtOAdsPDSHZ7y/ffGRa/ZFo7Ntrmpw9fygukbqAre48O+E3PONZdM09jXXolBX7gzWvvyCZ6M1N8NXSTmXnCx6NGjJYNpu/bdsW/GogN3j1XWPlHCKxUy7KFj4+WXr485+vaXKPhw8gdR/Tuz055TnnPOV9cMVAXv7lu3j9Z55+saoJ2r3h0zJlZf58ex8KLbypglgu64cauY1OP1mL13H8ntk/8SjUH+azw6KOS/w2qeqc7/yR98EGNffyV2Jv9Twxn79jNT8n+eeVOcj19M/mtUdib///3Pv2l+KBQMYGAaA91+wTtx4sTGM2KzX//1xR1j5MgnspjaXX/IoYfHeutvEAPmmSeWXHKpxqMUqq9qQfu5jdePV1/9V9uZ21vwVt8cOeqZ6Nu3b8Nzz549o0ePHnHB+efE6aee0rh2RgveBZdao0MnE8a/HS2TBsRm29zY4Wt5wfQNVAVv5IiTot/8C8o0vfHiMzFo+9tZ8CaNVgVv/s+uFD1aNAved958JRZeaOdYZS0WvJnRDHvouHjt9VujT/8FMpi2a6uC9+ZLT8dOe7DgzQhtLHj/8IUYsMjiGcxU17796sux2lqnseBNGr3jpq2jR+9x0WvOfknSlMvJf4nGxoKX/Ne4VFPIf7VRDY/813hUU8h/tVEdrzP5/69nHtP9YEgYwMBUBrr9glc17z123zXuv+9eFa62nNN+dEbssedXGucb9dRT8fmtNms76/QWvIcdcWQcfsRRba+rluorLLtEVJ8Grr5mtODtNWffDl1M/mBS9Jtrxdh825s7fC0vmL6BquAN+8sx0aNlylwUXx+8/2FsucNdLHiTMqu/otmzd+/G/zii+Jo0cUIsuezXeQZfUuawB4+N558dGrP17JUkTbm8+hsNk9//IHba83kJr1RI469o3rxNtPT8UKbgww9aYq0Nz2HBmzRa/RXNceP+Fi2z9UySplxO/ks0Nha85L/GpZpC/quNanjkv8ajmkL+q43qeJ3J/4nvvqP7wZAwgIGpDLDgnck3RCkL3krHR5/IrRa0Sy2+SJuh6S14W1paYtTTz0Xv3r0brx16xWUx5Nj/LHx5Bu9MvsnML+MZfGbBCbz6GXz8kpXEMD52Kc/g1XhUU3gGn9qojqd+Bh/P4NXMhvzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQa6/YK3WjY+9OCf05O99Zab4913301zmgHw8efyrrPmqm2PaZjegre6px+cclp8de+vRfXLHVZeYekYN25c262y4K3H1Cl49ZhDe6eg4NVzNhS8es6FglfPuVSnUhc8FryaWZP/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1/wHjx4v7j+ut+XN9nEHQ9/4q/Rv3//xl8nXvKzCzeWttXXjBa81ad3P7fZFvHKy/+MESOGT/XTWfAmhiG8lIInlClGUfDEQkU4Cp5IpBhDwRMLFeLUBY8Fr2Y45L/Go4NC/jus5pnkf96hg+DI/9l79Y+1N7ogFho4yHHkYpj33f7lePmlP0T1N3v5wgAGZp0BFryzzv0s+cn77T84Hn74oXj0kYfb/fm7/dfuccZPz2l876233orVVl6u7XUzWvDO6GZY8M6SUU/zQyl49ZhDe6eg4NVzNhS8es7FUfBm69ka62x8Ps/gTY6cBW9SoOly8t8kVoAl/wUSDQjy3yBVgCT/BRJNCHX+m44JFgPd3gAL3m4/4qlv8L4HHo6BAxeN559/Lq6+6sp48ME/x2OPPhJLLb10HHzI4bHDjju1/aKnM3/yozj7rDNY8HaT9wgFr76DpODVczYUvHrOhYJXz7lUp1IXPD7Bq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLWzmHy14O7rtJ554PLbfZsupXsYneDuyVu/vU/DqOx8KXj1nQ8Gr51woePWcCwve+s6F/K/vbMj/es6G/K/nXMj/es7Fkf/1vVNOhoF6G2DBW+/5yE/3lb32jv0PPCgWW+yz7bInTpwYZ535kzj/vLOn+f7cc88dI0aObvz55ZddEicMOWamzvfRIxo++ciHmbo4ovEs4HnmWzM23+6Wmb2E17VjgIJX37cFBa+es6Hg1XMuFLx6zsVR8Mh/zazJf41HB4X8d1jNM8n/vEMHgfx3WNUw+QSvxiMUDGQNsODNGmzS63v16hXLLbd8rLDiSrH4EkvEiy+80Hg279Ojpyxw6/RFwdNMg4Kn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5Brrlgnf3L+0Z22y3fWOa3z/xu/Hs358pb7Ld6I4peJphUvA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPQLdc8M7sGFtbW+Pdd9+NyZMnz+wlvG4WGKDgaaRT8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9AMQvegQMXjSOPOjaWXnbZWOgzC0X1C8N69uzZmPh7770Xr7/+Wrzw/PPx4AN/jrPPOqPx3Fe+6mGAgqeZAwVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHT7BW/v3r3jRz85K3baeZfo0aPHTE34nXfeie+ecFz85v+unqnX8yKvAQqexi8FT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx06wXvZpttEb/41SVRLXm78vX3Z/4Wn99q85g4cWJXLucakQEKnkYkBU/j0UGh4Dms5pkUvLxDB4GC57CqYaoLHvmvmQv5r/HooJD/Dqt5Jvmfd+ggkP8OqxqmOv81p4KCgfIMdNsFb79+/eLhx56IOeaYo22qVVEY9tijMXLkE/H006Pjub//PWbv1SuWX36FWGbZ5WLd9daLhRZaeKp3wR133BZf++qXy3tn1OiOKXiaYVDwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCR/5q5kP8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgoz0C3XfD+32+vi3XWXa9tog/8+f448ohvxYsvvjDDKe+w405x4kmnxHzzz9/2uoMH7xfXX/f78t4dNbljCp5mEBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg0D+O6xqmOr815wKCgbKM9AtF7ybb7FlXHLZ0LZpXnLxr+J73xky09NtaWmJhx4eHvMvsEDjmuqXsC239Gdn+npeqDVAwdP4pOBpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654D39x2fGl/aY8liFUU89FZ/farNOT3axxT4bd/7p/ujZs2fj2g3XWyv+8Y+XOs3hgrwBCl7eYUWg4Gk8OigUPIfVPJOCl3foIFDwHFY1THXBI/81cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ6BbrngvfGW22LllVdpTPO/d9s5Hnzgz12a7GVDr4rPfW7zxrVHH3l4/Pqq/+0Sh4tyBih4OX8fXU3B03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPdcsH7+JNPx1xzzRVVMVhisYUa/7crXwcfclgcdcxxjUuvufqqxjN8+fr0DVDwNM4peBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wyH/NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGegWy54n33h5aieoztu3LhYcbkluzzVDTfaOK789W8a1z/6yMOxy07bd5nFhV03QMHruruPX0nB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAPdcsE7ctQz0bdv38Yndxdf9DNdnuo39z8wTvjOiY3rf3/t7+LQgw/oMosLu26Agtd1dyx4Ne7cFAqeTF/k4QAAIABJREFU23DX+BS8rnlzX0XBcxvuOl9d8Mj/rs+C/Ne4c1PIf7fhrvHJ/655c19F/rsNd52vzv+un4QrMVC2gW654L31j3fF8ius0JjsDtttHSNGDO/SlH918WWx5Vafb1x7wpBj4vLLLukSh4tyBih4OX8fXc0neDQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM9At1zwnnXOBbHLF3dtTPO+e++JPb+0W6cnO2CeeeLBvwyL3r17N67dZMN144UXnu80hwvyBih4eYcVgYKn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BrrlgnennXeJc877Wds0T/7BifE/P7+wU9O960/3xxJLLtW4ZuLEibHMkot26nperDNAwdO4pOBpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCegW654K3GeNsdf4plll2uMdGqIFz96yvje98ZEu++++4Mp7zSSivH2ede0HZt9eITv3dCXPyr/ynv3VGTO6bgaQZBwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCR/5r5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwD3XbBu8ACC8afH3o0evbs2TbV999/P2668YZ47LFH4onHR8Sop56Mvn37xSqrrhYrrrhSbLbFoFhjjTWnehdUz++tnuPL16wzQMHTuKfgaTw6KBQ8h9U8k4KXd+ggUPAcVjVMdcEj/zVzIf81Hh0U8t9hNc8k//MOHQTy32FVw1Tnv+ZUUDBQnoFuu+CtRrn7l/aM0398ZvTo0aNLkx0zZkxssuE6Uf1fvmadAQqexj0FT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gx06wVvNc6FFlo4zr/wF7HW2uvM9HQnTZoUl1z0y6ie3VuVC75mrQEKnsY/BU/j0UGh4Dms5pkUvLxDB4GC57CqYaoLHvmvmQv5r/HooJD/Dqt5Jvmfd+ggkP8OqxqmOv81p4KCgfIMdPsF70cjXWfd9eLY406IRRdbLAYMmCd69erVNu2qQIwfPz5ef/21eHzE8Dh+yDHx1r//Xd67oaZ3TMHTDIaCp/HooFDwHFbzTApe3qGDQMFzWNUw1QWP/NfMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQaKWfB+crS9e/eOVVdbPd5669/x9OjR5U2+ie6YgqcZFgVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHTLBe/Xv7l/7LjTLo1pHnPk4TFq1FPlTbYb3TEFTzNMCp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPPJfMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZ6JYL3qFXXhMbb7JpY5oHD94vrr/u9+VNthvdMQVPM0wKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDHT7Be9NN14fj48YkZ7sFZdfEm+//XaaA6DzBih4nXfW3hUUPI1HB4WC57CaZ1Lw8g4dBAqew6qGqS545L9mLuS/xqODQv47rOaZ5H/eoYNA/jusapjq/NecCgoGyjPQ7Re8qpHusfuucf9996pwcDphgILXCVkzeCkFT+PRQaHgOazmmRS8vEMHgYLnsKphqgse+a+ZC/mv8eigkP8Oq3km+Z936CCQ/w6rGqY6/zWngoKB8gyw4J3JmbPgnUlRhpdR8DRSKXgajw4KBc9hNc+k4OUdOggUPIdVDVNd8Mh/zVzIf41HB4X8d1jNM8n/vEMHgfx3WNUw1fmvORUUDJRnoNsveN955514d/z49GT3+NKu8fTo0WkOgM4boOB13ll7V1DwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCR/5q5kP8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgoz0C3X/AePHi/uP6635c32W50xxQ8zTApeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wyH/NXMh/jUcHhfx3WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABW95M2+6O6bgaUZGwdN4dFAoeA6reSYFL+/QQaDgOaxqmOqCR/5r5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TEFTzMyCp7Go4NCwXNYzTMpeHmHDgIFz2FVw1QXPPJfMxfyX+PRQSH/HVbzTPI/79BBIP8dVjVMdf5rTgUFA+UZYMFb3syb7o4peJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64JH/mrmQ/xqPDgr577CaZ5L/eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHdMwdOMjIKn8eigUPAcVvNMCl7eoYNAwXNY1TDVBY/818yF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjCp5mZBQ8jUcHhYLnsJpnUvDyDh0ECp7DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg0D+O6xqmOr815wKCgbKM9AtF7yXXnFlbLbZFo1pfvPr+8Qfbr25vMl2ozum4GmGScHTeHRQKHgOq3kmBS/v0EGg4Dmsapjqgkf+a+ZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8A91ywVveGLv3HVPwNPOl4Gk8OigUPIfVPJOCl3foIFDwHFY1THXBI/81cyH/NR4dFPLfYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrzlzbzp7nhKwVsjNt/u1qY7e50OTMGr0zSmPgsFr56zoeDVcy4UvHrOpTqVuuCx4NXMmvzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzprtjFryakVHwNB4dFAqew2qeScHLO3QQKHgOqxqmuuCx4NXMhfzXeHRQyH+H1TyT/M87dBDIf4dVDVOd/5pTQcFAeQZY8JY386a7Yxa8mpFR8DQeHRQKnsNqnknByzt0ECh4DqsaprrgseDVzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MWvJqRUfA0Hh0UCp7Dap5ZFby///Wi6NGjRx72/wkts80RO+/5vIxXIoiCV9+pqwseC17NrMl/jUcHhfx3WM0zWfDmHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc9kwZt36CBQ8BxWNUx1wWPBq5kL+a/x6KCQ/w6reSYL3rxDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7ZsGrGRkFT+PRQaHgOazmmSx48w4dBAqew6qGqS54LHg1cyH/NR4dFPLfYTXPZMGbd+ggkP8OqxqmOv81p4KCgfIMsOAtb+bT3PFCCy0cb775RkyYMKGWNljwasZCwdN4dFAoeA6reSYL3rxDB4GC57CqYaoLHgtezVzIf41HB4X8d1jNM1nw5h06COS/w6qGqc5/zamgYKA8Ayx4C5t5796948DBh8QXdtgxFhm4aMw555xtz5d8//3347ln/x7fPuJbMXzYY9OYaW1tjbvveaDtz++447Y4+sjDp2uwem7lnXffF3379mu85rnnno3dvrhjp42z4O20snYvoOBpPDooFDyH1TyTBW/eoYNAwXNY1TDVBY8Fr2Yu5L/Go4NC/jus5pksePMOHQTy32FVw1Tnv+ZUUDBQngEWvIXN/JBDD48jjz62w7v+4cnfj5//7PypXtd/wIAY/viotj+riteaq68Ub77xRru8/Q84KIac8N22740ZMyZWXWnZDn/2J1/AgrfTyljwapR9ahQK3qemulM/iAVvp3R9ai8e+/YzceeNW8ekSe/IfuZsPVtjnY3Oi4UX207GLBGkLngseDXvIha8Go8OCvnvsJpnsuDNO3QQWPA6rGqY6vzXnAoKBsozwIK3sJl/fMH79Oi/xvDhw+JvTz8dG2y0UayzznrRp0+fhpGqVG01aNN4evToNkOfXPBW37jxhuti8AHfbNfisMdHxYABA9q+x4J31r7ZKHiz1v+MfjoFr56zYcFbz7mw4K3nXKpTqQse/wOvZtbkv8ajg0L+O6zmmSx48w4dBBa8Dqsapjr/NaeCgoHyDLDgLWzmO+/yxfjSHl+J44ccE8/87elp7v6Gm/8Yq6yyauPPf/GzC+KUk0+a4YJ38uTJjU/ljh07dipW9XPOPvfCqf6MBe+sfbNR8Gatfxa89fU/vZOx4K3nzFjw1nMuLHjrOxfyv76zYcFbz9mQ//Wciy3/Nz4/Fl5023redJOcigVvkwyKY3Z7Ayx4u/2IO3eDWwzaKi6+9IrGRX956MGpnpn78U/wPvrIw7HmWms3Xnf1r6+Mo7592FQ/6P4HH4lFFhkYr736arT27dv4ZDAL3s7NQv1qCp7aqI5HwdO5VJIoeEqbOpat4PGIhvSQ1AWPT/CmR9IAkP8ajw4K+e+wmmeS/3mHDoIt/1nwpselzv/0gQBgoFADLHgLHfz0bnvjTTaNoVde0/j2/ffdG3vsvmvbSz++4L3i8ktj8y0GNZa41S9nW2n5pWLChAmN126w4UZx1dW/bfzn6pewnfj9U1jw1uB9RsGrwRCmcwQKXj1nQ8Gr51xsBY8Fb3rg6oLHgjc9Eha8GoU2CvlvU5sCk/8pfbaLbfnPgjc9M3X+pw8EAAOFGmDBW+jgp3fbJ//w9Njrq/s0vn35ZZfECUOOme6C94E/3xfnXfCLxvcvvuiXceJ3j2/851v/eFcsv8IKbZ/YfWr0syx4a/A+Y8FbgyGw4K3vENo5GQWvnuOyFTwWvOmBqwseC970SFjwahTaKCx4bWpTYPI/pc92sS3/WfCmZ6bO//SBAGCgUAMseAsdfHu33draGo+NeCp69+7d+PYmG64bL7zw/HQXvMcfd3Q8NvzJmGfeeRuf3l1+mcVjqaWXjtvuuKdxzWk/PDkuvODcYMFbjzcZC956zKG9U1Dw6jkbCl4952IreCx40wNXFzwWvOmRsODVKLRRyH+b2hSY/E/ps11sy38WvOmZqfM/fSAAGCjUAAveQgff3m3f8oc7Y4UVV2x86+G/PBS77rLDVC/75CMaqgXv3vvsG98/+dTG6845+8xYd931Y/0NNozx48fHisstGVU5m9GCt3XAZzqcwKT3J0SfORaPzbe9pcPX8oLpG6gWvCMeGRI955hdpum9se/EljvcGa19F5MxSwT9bujAmHOueaJHjx6S25/w7thYYom9YpW1//NLEiXgwiDDHjouXnrhmph9jlbJnX/44eSYMPbt2GnP//wPZxJwYZCq4N118zbRq7WP7M7ff29irLnuGbHwYtvJmCWCbr9xy5gw8aWYbfYp/0Nx9ov8zxqccj35r/HooJD/Dqt5Jvmfd+ggWPL/3Qmx5vo/5ZesJQfWmfwf9+9Xkj+NyzGAgekZYMHLe6Nh4MKf/zK2237KQnfcuHGx3tqrxdixY6ey096Ct3rByFHPRN++fRvP4u3Zs2djSXXB+efE6aee0rh+RgveBZdao8MJTBj/drRM6h+bbXNTh6/lBdM3UBW8kSNOin7zLyjT9MaLz8Sg7W9nwZs0eu3QgTHfZ1eMHi0tSdKUy99585VYeKGdY5W1TpTwSoUMe2hIvPr6LdHafwGJgskffBBvvvR07LTHcxJeqZCq4N196/YxYJHFZQrGvvpyrLrmqSx4k0bvuGnr6NF7XPSas1+SNOVy8l+isbHgJf81LtUU8l9tVMMj/zUe1RTyX21Ux+tM/v/rmcd0PxgSBjAwlQEWvLwh4qyzz49ddt2tYWLixImx3TaD4unRo6cxM70F72FHHBmHH3FU2+srxgrLLhGTJk1q/Bmf4K3Hm4xP8NRjDu2dgk/w1HM2fIKnnnOxfIKHT/BKht2ZT/DMzA/kE7wzY6nj15D/HTuaVa8g/2eV+Rn/XPK/nnMh/+s5l+pUncl/PsFb3zlysuY3wIK3+WeYuoMLfvY/sf0Xdmwwqk/gfnGn7WPEiOHtMqe34G1paYlRTz/X9uzeoVdcFkOO/c/Cl2fwpkYku5hn8MpUykE8g0+uVALkGXwSjXKI7Rl8PIM3PSv1M/h4Bm96JA0A+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mjTuuHqNwzW9+H+usu17jn6tn5u74hc+3+8ndjxRNb8Fbff8Hp5wWX937azF58uRYeYWlG495+OiLBW893mQUvHrMob1TUPDqORsKXj3nQsGr51yqU6kLHgtezazJf41HB4X8d1jNM8n/vEMHgfx3WNUw1fmvORUUDJRngAVveTOP1tbWuPHmP8YSSy7VuPu33norPr/lZvHKKy/P0MaMFry9e/eOz222Rbzy8j+n+QQwC956vMkoePWYAwve+s7hkyej4NVzVhS8es6FBW9950L+13c2LHjrORvyv55zIf/rORdH/tf3TjkZBuptgAVvvecjP92iiy4WN9z8x+jfv3+D/cILz8d2nx80zS9Ua+8Hz2jBO6ODsuCVj7FLQApel7R9KhdR8D4VzZ3+IRS8Tiv7VC6g4H0qmrv0Q9Sf4OETvF0awzQXkf8ajw4K+e+wmmeS/3mHDgL577CqYarzX3MqKBgozwAL3sJm/tAjw2PBBT/TuOvqMQpn/OT0qArU9L5uv+2P8fxzzza+zYK3ud8sFLz6zo+CV8/ZUPDqORcKXj3nUp1KXfBY8GpmTf5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseAub+bART8WAeeaZ6bs+5+wz44wfn86Cd6aN1feFFLz6zoaCV8/ZUPDqORcKXj3nwoK3vnMh/+s7G/K/nrMh/+s5F/K/nnNx5H9975STYaDeBljw1ns+8tM9NvzJmGfeeWea+9MzfxxnnfmTxuvnnnvuGDFydOM/X37ZJXHCkGNmivPRIxqqZ/2utvJyM3XNx1/EJ3g6razdCyh4Go8OCgXPYTXPpODlHToIFDyHVQ1T/Qke8l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813j9DvGoAAAgAElEQVR0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7puBpRkbB03h0UCh4Dqt5JgUv79BBoOA5rGqY6oJH/mvmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQVPMzIKnsajg0LBc1jNMyl4eYcOAgXPYVXDVBc88l8zF/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezJvujil4mpFR8DQeHRQKnsNqnknByzt0ECh4Dqsaprrgkf+auZD/Go8OCvnvsJpnkv95hw4C+e+wqmGq819zKigYKM8AC97yZt50d0zB04yMgqfx6KBQ8BxW80wKXt6hg0DBc1jVMNUFj/zXzIX813h0UMh/h9U8k/zPO3QQyH+HVQ1Tnf+aU0HBQHkGWPCWN/Omu2MKnmZkFDyNRweFguewmmdS8PIOHQQKnsOqhqkueOS/Zi7kv8ajg0L+O6zmmeR/3qGDQP47rGqY6vzXnAoKBsozwIK3vJk33R1T8DQjo+BpPDooFDyH1TyTgpd36CBQ8BxWNUx1wSP/NXMh/zUeHRTy32E1zyT/8w4dBPLfYVXDVOe/5lRQMFCeARa85c286e6YgqcZGQVP49FBoeA5rOaZFLy8QweBguewqmGqCx75r5kL+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHFDzNyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfDIf81cyH+NRweF/HdYzTPJ/7xDB4H8d1jVMNX5rzkVFAyUZ4AFb3kzb7o7rgregHlXjy22/0PTnb1OB6bg1WkaU5+FglfP2VDw6jkXCl4951KdSl3wWPBqZk3+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgXPYTXPpODlHToIFDyHVQ1TXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMubedPdMQtezcgoeBqPDgoFz2E1z6Tg5R06CBQ8h1UNU13wWPBq5kL+azw6KOS/w2qeSf7nHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KBc9hNc+k4OUdOggUPIdVDVNd8FjwauZC/ms8Oijkv8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8Oyu+GDozJH0yMHj16SPDVvzPLrHhgrLr2SRJeqRAKXj0nT8Gr51yqU6kLHgtezazJf41HB4UFr8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5t5090xC17NyCh4Go8OCgteh9U8k4KXd+ggUPAcVjVMdcFjwauZC/mv8eigsOB1WM0zyf+8QweB/HdY1TDV+a85FRQMlGeABW95M2+6O2bBqxkZBU/j0UFhweuwmmdS8PIOHQQKnsOqhqkueCx4NXMh/zUeHRQWvA6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/mTXfHLHg1I6PgaTw6KCx4HVbzTApe3qGDQMFzWNUw1QWPBa9mLuS/xqODwoLXYTXPJP/zDh0E8t9hVcNU57/mVFAwUJ4BFrzlzbzp7pgFr2ZkFDyNRweFBa/Dap5Jwcs7dBAoeA6rGqa64LHg1cyF/Nd4dFBY8Dqs5pnkf96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM4c9dFw8M+pXsl9+V52oZbY5Yuc9n88frmACBa++w1cXPBa8mlmT/xqPDgoLXofVPJMFb96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CBQ8h1UNU13wWPBq5kL+azw6KCx4HVbzTBa8eYcOAvnvsKphqvNfcyooGCjPAAve8mbedHfMglczMgqexqODwoLXYTXPZMGbd+ggUPAcVjVMdcFjwauZC/mv8eigsOB1WM0zWfDmHToI5L/Dqoapzn/NqaBgoDwDLHjLm3nT3TELXs3IKHgajw4KC16H1TyTBW/eoYNAwXNY1TDVBY8Fr2Yu5L/Go4PCgtdhNc9kwZt36CCQ/w6rGqY6/zWngoKB8gyw4C1v5k13xyx4NSOj4Gk8OigseB1W80wWvHmHDgIFz2FVw1QXPBa8mrmQ/xqPDgoLXofVPJMFb96hg0D+O6xqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CO+8/fe448YtY9KkcTJ8z559Y62NzolFFttexiwRpC54LHg17yLyX+PRQWHB67CaZ7LgzTt0EFjwOqxqmOr815wKCgbKM8CCt7yZN90ds+DVjIyCp/HooLDgdVjNM1nw5h06CCx4HVY1THXBI/81cyH/NR4dFPLfYTXPZMGbd+ggsOB1WNUw1fmvORUUDJRngAVveTNvujum4GlGRsHTeHRQKHgOq3kmC968QweBBa/DqoapLnjkv2Yu5L/Go4NC/jus5pnkf96hg8CC12FVw1Tnv+ZUUDBQngEWvOXNvOnumIKnGRkFT+PRQaHgOazmmRS8vEMHgQWvw6qGqS545L9mLuS/xqODQv47rOaZ5H/eoYPgyP/ZerbGOhudFwsvtp3jyMUw1flfjDhuFANiAyx4xUKbEffto46Jr+37zXjxxRdi2623mO4ttLa2xt33PND2/TvuuC2OPvLw6b6+R48ecefd90Xfvv0ar3nuuWdjty/u2GlFFLxOK2v3AgqexqODQsFzWM0zKXh5hw6Co+DxDF7NpNQFj/zXzIX813h0UMh/h9U8k/zPO3QQHPnPglczKXX+a04FBQPlGWDBW97Mp7rjAfPME/fc91D069cv3n777VhlxWWma6T/gAEx/PFRbd+viteaq68Ub77xRrvX7H/AQTHkhO+2fW/MmDGx6krLdto4Ba/TyljwapR9ahQK3qemulM/iILXKV2f2osdBY8Fr2Z86oJH/mvmwoJX49FBIf8dVvNM8j/v0EFw5D8LXs2k1PmvORUUDJRngAVveTOPNddaO760x5dj6aWXiVVXWz1mn332hoXOLnira2684boYfMA327U47PFRMWDAABa8NXmPUfBqMoh2jkHBq+dsKHj1nIuj4LHg1cxaXfBY8GrmQv5rPDoo5L/Dap5J/ucdOgiO/GfBq5mUOv81p4KCgfIMsOAtb+Zx4vdPia/t+41p7rwrC97Jkyc3PpU7duzYqXg77/LFOPvcC6f6Mz7BO2vfbBS8Wet/Rj+dglfP2VDw6jkXR8FjwauZtbrgseDVzIX813h0UMh/h9U8k/zPO3QQHPnPglczKXX+a04FBQPlGWDBW97MY9CWW8e+X//Pp27X32DD6NmzZ6c+wfvoIw83PglcfV396yvjqG8fNpXJ+x98JBZZZGC89uqr0dq3b/Tp0ydY8M7aNxsFb9b6Z8FbX//TOxkFr54zcxQ8FryaWasLHgtezVzIf41HB4UFr8Nqnkn+5x06COS/w6qGqc5/zamgYKA8Ayx4y5v5NHc8bMRTUT2LtzOf4L3i8ktj8y0GNZa477//fqy0/FIxYcKEBnuDDTeKq67+beM/V7+ErfrEMAveWf9Go+DN+hlM7wQUvHrOhoJXz7lQ8Oo5l+pU6oLHglcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUx1/mtOBQUD5RlgwVvezGUL3gf+fF+cd8EvGryLL/plnPjd4xv/+dY/3hXLr7BC2yd2nxr9LAveGrzPKHg1GMJ0jkDBq+dsKHj1nAsFr55zYcFb37mQ//WdDflfz9mQ//WcC/lfz7k48r++d8rJMFBvAyx46z2fT+V0Xf0E7/HHHR2PDX8y5pl33sand5dfZvFYauml47Y77mmc+7QfnhwXXnBusOD9VMbY4Q+h4HWoaJa9gII3y9TP8AdT8Oo5FwpePefiKHh8glcza/Jf49FBIf8dVvNM8j/v0EEg/x1WNUw+wavxCAUDWQMseLMGu8H1mQXv3vvsG98/+dSGhXPOPjPWXXf9qJ7pO378+FhxuSWjKmczWvD2mrNvhwYnfzAp+vVbPjbf7tYOX8sLpm+gKnjD/nJM9GiZJNP0wfsfxpY73BWtfReTMUsEXTt0YMzWq1f06NFDcvuTJk6IJZf9eqy69kkSXqmQYQ8NieefuTxmm72XREH134eT3/8gdtrzeQmvVEij4N20dbT0/FCm4MMPZos1N/hpLLLY9jJmiaCq4I0b97doma2n5PbJf4nGIP81Hh0U8t9hNc8k//MOHQTy32FVw+xM/k989x3ND4WCAQxMY4AFL2+KyCx4K30jRz0Tffv2bTyLt/plbdWS6oLzz4nTTz2lYXdGC94Fl1qjwwlMGP92tEyaOzbb5uYOX8sLpm+gKngjR5wU/eZfUKbpjRefiUHb386CN2n02qGLxryfXT5aWmZLkqZc/s6br8TCC+0cq6x1ooRXKmTYX46PV1+7OVr7LyBRMPmDD+LNl56OnfZ4TsIrFVIVvLtu2TYGDFxCpmDsa6/EKmucwoI3abRavPfoPS56zdkvSZpyOfkv0dhY8JL/GpdqCvmvNqrhkf8aj2oK+a82quN1Jv//9cxjuh8MCQMYmMoAC17eEOkF72FHHBmHH3FUm8mJEyfGCssuEZMmTfmk6IwWvAMWXrrDCbz/3viYvWXB2HzbWzp8LS+YvoGq4D0+7Dsx51xzyTRVS5FBX7iTBW/SaPUJnrkWWDR6tLQkSVMuf3fsm7HowN1jlbVZ8GaEDvvLkHj5n9fGHH0HZDBt1344+YOo/p3ZaU8WvBmhVcG785Ztou+882cwU1377pgxsdrap7PgTRq948atYlKP12P23n2SpCmXk/8SjY0FL/mvcammkP9qoxoe+a/xqKaQ/2qjOl5n8v/f//yb7gdDwgAGpjLAgpc3RHrB29LSEqOefi569+7dsDn0istiyLH/WfjyDN56vMl4Bl895tDeKXgGXz1nwzP46jkXnsFXz7lUp1I/g49n8GpmTf5rPDoo5L/Dap5J/ucdOgjkv8OqhqnOf82poGCgPAMseMub+TR3nH1EQwX8wSmnxVf3/lpMnjw5Vl5h6Rg3blzbz2HBW483GQWvHnNgwVvfOXzyZBS8es6KglfPubDgre9cyP/6zoYFbz1nQ/7Xcy7kfz3n4sj/+t4pJ8NAvQ2w4K33fD6V0ykWvNWndz+32Rbxysv/jBEjhk91bha8n8oYO/whFLwOFc2yF1DwZpn6Gf5gCl4950LBq+dcHAWPT/BqZk3+azw6KOS/w2qeSf7nHToI5L/DqobJJ3g1HqFgIGuABW/WYDe4XrHgnZEGFrz1eJNQ8Ooxh/ZOQcGr52woePWcCwWvnnNhwVvfuZD/9Z0N+V/P2ZD/9ZwL+V/PuTjyv753yskwUG8DLHjrPR/L6Xr16hX9+//nlwbdduc9Mffcc8c777wTm2+6YdvPfPPNN9p+UVr1h/0HDIjhj49qfP+Kyy+N4487eqbOx4J3pjTZX0TBsyvu8g+g4HVZnfVCCp5Vb5fhFLwuq7NfqP4ED5/g1YyM/Nd4dFDIf4fVPJP8zzt0EMh/h1UNU53/mlNBwUB5BljwljfzOPGkk+NrX/9mh3d+ztlnxhk/Pr3tdSx4O1RW6xdQ8Oo7HgpePWdDwavnXCh49ZxLdSp1wWPBq5k1+a/x6KCQ/w6reSb5n3foIJD/Dqsapjr/NaeCgoHyDLDgLW/m8b0TfxD7fmO/Du/87LPOiDN/8qO211Wf8h0xcnTjny+/7JI4YcgxHTKqF3z0Cd633norVlt5uZm65uMvouB1Wlm7F1DwNB4dFAqew2qeScHLO3QQ/h975x0nRfG08TIrioIKouQcJOecc06KiJIzSM45Sg6Sc845Z46ccxAOEBEUUZEoAsbf+6m+d8e9uz1u97p6b/bm6X/kdmee6f7W9JRV21ONAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYBngqq+JgI8fYYmFBDgmaAqoykd4MH/y9gF/l+GowkV+H8TVPU14f/1GZpQgP83QVVGU9r/y/QKKiDgPAJI8DrP5gE3YgR4MiZDgCfD0YQKAjwTVPU1EeDpMzShgADPBFUZTekAD/5fxi7w/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrN5wI0YAZ6MyRDgyXA0oYIAzwRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKvD/Jqjqa8L/6zM0oQD/b4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLA02doQgEBngmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMAzQVVfEwGePkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQK/L8Jqvqa8P/6DE0owP+boCqjKe3/ZXoFFRBwHgEkeJ1n84AbMQI8GZMhwJPhaEIFAZ4JqvqaCPD0GZpQQIBngqqMpnSAB/8vYxf4fxmOJlTg/01Q1deE/9dnaEIB/hlXGp0AACAASURBVN8EVRlNaf8v0yuogIDzCCDB6zybB9yIEeDJmAwBngxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGAZ4KqviYCPH2GJhQQ4JmgKqMpHeDB/8vYBf5fhqMJFfh/E1T1NeH/9RmaUID/N0FVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAAzwRVGU3pAA/+X8Yu8P8yHE2owP+boKqvCf+vz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zecCNGAGejMkQ4MlwNKGCAM8EVX1NBHj6DE0oIMAzQVVGUzrAg/+XsQv8vwxHEyrw/yao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wecCNGgCdjMgR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ/OAGzECPBmTIcCT4WhCBQGeCar6mgjw9BmaUECAZ4KqjKZ0gAf/L2MX+H8ZjiZU4P9NUNXXhP/XZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqCPBMUNXXRICnz9CEAgI8E1RlNKUDPPh/GbvA/8twNKEC/2+Cqr4m/L8+QxMK8P8mqMpoSvt/mV5BBQScRwAJXufZPOBGjABPxmQI8GQ4mlBBgGeCqr4mAjx9hiYUEOCZoCqjKR3gwf/L2AX+X4ajCRX4fxNU9TXh//UZmlCA/zdBVUZT2v/L9AoqIOA8AkjwOs/mATdiBHgyJkOAJ8PRhAoCPBNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYBngqq+JgI8fYYmFBDgmaAqoykd4MH/y9gF/l+GowkV+H8TVPU14f/1GZpQgP83QVVGU9r/y/QKKiDgPAJI8DrP5gE3YgR4MiZDgCfD0YQKAjwTVPU1EeDpMzShgADPBFUZTekAD/5fxi7w/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrN5wI0YAZ6MyRDgyXA0oYIAzwRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKvD/Jqjqa8L/6zM0oQD/b4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLA02doQgEBngmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMAzQVVfEwGePkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQK/L8Jqvqa8P/6DE0owP+boCqjKe3/ZXoFFRBwHgEkeJ1n84AbMQI8GZMhwJPhaEIFAZ4JqvqaCPD0GZpQQIBngqqMpnSAB/8vYxf4fxmOJlTg/01Q1deE/9dnaEIB/t8EVRlNaf8v0yuogIDzCCDB6zybB9yIEeDJmAwBngxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGAZ4KqviYCPH2GJhQQ4JmgKqMpHeDB/8vYBf5fhqMJFfh/E1T1NeH/9RmaUID/N0FVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAAzwRVGU3pAA/+X8Yu8P8yHE2owP+boKqvCf+vz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zecCNGAGejMkQ4MlwNKGCAM8EVX1NBHj6DE0oIMAzQVVGUzrAg/+XsQv8vwxHEyrw/yao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wecCNGgCdjMgR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ/OAGzECPBmTIcCT4WhCBQGeCar6mgjw9BmaUECAZ4KqjKZ0gAf/L2MX+H8ZjiZU4P9NUNXXhP/XZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqCPBMUNXXRICnz9CEAgI8E1RlNKUDPPh/GbvA/8twNKEC/2+Cqr4m/L8+QxMK8P8mqMpoSvt/mV5BBQScRwAJXufZPOBGjABPxmQI8GQ4mlBBgGeCqr4mAjx9hiYUEOCZoCqjKR3gwf/L2AX+X4ajCRX4fxNU9TXh//UZmlCA/zdBVUZT2v/L9AoqIOA8AkjwOs/mATdiBHgyJkOAJ8PRhAoCPBNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqMD/m6Cqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVBDgmaCqr4kAT5+hCQUEeCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFOD/TVCV0ZT2/zK9ggoIOI8AErzOs3nAjRgBnozJEODJcDShggDPBFV9TQR4+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMq8P8mqOprwv/rMzShAP9vgqqMprT/l+kVVEDAeQSQ4HWezQNuxAjwZEyGAE+GowkVBHgmqOprIsDTZ2hCAQGeCaoymtIBHvy/jF3g/2U4mlCB/zdBVV8T/l+foQkF+H8TVGU0pf2/TK+gAgLOI4AEr/NsHnAjRoAnYzIEeDIcTaggwDNBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAr8vwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUBngmq+poI8PQZmlBAgGeCqoymdIAH/y9jF/h/GY4mVOD/TVDV14T/12doQgH+3wRVGU1p/y/TK6iAgPMIIMHrPJsH3IgR4MmYDAGeDEcTKgjwTFDV10SAp8/QhAICPBNUZTSlAzz4fxm7wP/LcDShAv9vgqq+Jvy/PkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQWbMwEf3zz5/03HPPicjznEmdoQVlztlfRM+pIgjw7Gl5BHj2tAv3SjrAg/+XsTX8vwxHEypI8Jqgqq8J/6/P0IQC/L8JqjKa0v5fpldQAQHnEUCC13k2D7gRI8CTMRkCPBmOJlSQ4DVBVV8TAZ4+QxMKCPBMUJXRlA7w4P9l7AL/L8PRhAoSvCao6mvC/+szNKEA/2+CqoymtP+X6RVUQMB5BJDgdZ7NA27ECPBkTIYAT4ajCRUkeE1Q1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oYIErwmq+prw//oMTSjA/5ugKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUJXhNU9TUR4OkzNKGAAM8EVRlN6QAP/l/GLvD/MhxNqCDBa4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59k84EaMAE/GZAjwZDiaUEGC1wRVfU0EePoMTSggwDNBVUZTOsCD/5exC/y/DEcTKkjwmqCqrwn/r8/QhAL8vwmqMprS/l+mV1ABAecRQILXeTYPuBEjwJMxGQI8GY4mVJDgNUFVX/P00R50NXiG2OZ33KPnX3iVqn56Xb9zDlZAgGdf40sHePD/MraG/5fhaEIFCV4TVPU1keDVZ2hCAf7fBFUZTWn/L9MrqICA8wggwes8mwfciBHgyZgMAZ4MRxMqSPCaoKqviQSvPkMTCgjwTFCV0ZQO8OD/ZewC/y/D0YQKErwmqOprIsGrz9CEAvy/CaoymtL+X6ZXUAEB5xFAgtd5Ng+4ESPAkzEZAjwZjiZUkOA1QVVfEwlefYYmFBDgmaAqoykd4MH/y9gF/l+GowkVJHhNUNXXRIJXn6EJBfh/E1RlNKX9v0yvoAICziOABK/zbB5wI0aAJ2MyBHgyHE2oIMFrgqq+JhK8+gxNKCDAM0FVRlM6wIP/l7EL/L8MRxMqSPCaoKqviQSvPkMTCvD/JqjKaEr7f5leQQUEnEcACV7n2TzgRowAT8ZkCPBkOJpQQYLXBFV9TSR49RmaUHj02zXiQOKfv38Xk3/xxTcoR4FxlDBJBTFNJwpJB3jw/zJ3Efy/DEcTKkjwmqCqr4kErz5DEwpI8JqgKqMp7f9legUVEHAeASR4nWfzgBsxAjwZkyHAk+FoQgUJXhNU9TWR4NVnaELBWII3/1eUMGlFE112jKZ0gAf/L3PrwP/LcDShAv9vgqq+JhK8+gxNKCDBa4KqjKa0/5fpFVRAwHkEkOB1ns0DbsQI8GRMhgBPhqMJFQR4JqjqayLBq8/QhAISvCaoymhKB3jw/zJ2gf+X4WhCBf7fBFV9Tfh/fYYmFJDgNUFVRlPa/8v0Ciog4DwCSPA6z+YBN2IEeDImQ4Anw9GECgI8E1T1NRHg6TM0oYAErwmqMprSAR78v4xd4P9lOJpQgf83QVVfE/5fn6EJBWP+HyWatM0l7f+1OwQBEHAoASR4HWr4QBo2AjwZayHAk+FoQgUBngmq+poI8PQZmlAwFuChRIO2uaQDPPh/bZMoAfh/GY4mVOD/TVDV14T/12doQsGY/0eCV9tc0v5fu0MQAAGHEkCC16GGD6RhI8CTsRYCPBmOJlQQ4Jmgqq+JAE+foQkFYwEeErza5pIO8OD/tU2CBK8MQmMq8P/G0GoJw/9r4TN2sjH/jwSvts2k/b92hyAAAg4lgASvQw0fSMNGgCdjLSR4ZTiaUEGAZ4KqviYCPH2GJhSMBXhI8GqbSzrAg//XNgkSvDIIjanA/xtDqyUM/6+Fz9jJxvw/ErzaNpP2/9odggAIOJQAErwONXwgDRsBnoy1kOCV4WhCBQGeCar6mgjw9BmaUDAW4CHBq20u6QAP/l/bJEjwyiA0pgL/bwytljD8vxY+Yycb8/9I8GrbTNr/a3cIAiDgUAJI8DrU8KaHHfftt+ne3bsil0GAJ4IRNfhkMBpRQYBnBKu2KAI8bYRGBIwFeEjwattLOsCD/9c2CRK8MgiNqcD/G0OrJQz/r4XP2Mnw/8bQagtL+3/tDkEABBxKAAlehxrexLCHDh9FJUqWonjx4tNzzz1Hf/31F9269SPNmjmdZs+cHuVLIsCLMrpQJ2IFrwxHEyoI8ExQ1ddEgKfP0IQCAjwTVGU0pQM8+H8Zu8D/y3A0oQL/b4Kqvib8vz5DEwrw/yaoymhK+3+ZXkEFBJxHAAle59lcfMTPP/88rd2whTJnzhKh9pzZM6lv7x5RujYCvChhC3cSAjwZjiZUEOCZoKqviQBPn6EJBQR4JqjKaEoHePD/MnaB/5fhaEIF/t8EVX1N+H99hiYU4P9NUJXRlPb/Mr2CCgg4jwASvM6zufiIx0+cSpWrVFW6jx49otWrVtDpUyepcJFiVKlyFeIEMLd2bVqp73xtCPB8Jeb5eAR4MhxNqCDAM0FVXxMBnj5DEwoI8ExQldGUDvDg/2XsAv8vw9GECvy/Car6mvD/+gxNKMD/m6Aqoynt/2V6BRUQcB4BJHidZ3PxEV++eoNeeeUVVZKheJECdOPGdesaFSpWoklTZqi/L18KplIlivh8fQR4PiPzeAICPBmOJlQQ4Jmgqq+JAE+foQkFBHgmqMpoSgd48P8ydoH/l+FoQgX+3wRVfU34f32GJhTg/01QldGU9v8yvYIKCDiPABK8zrO56Ihr1PyYRo8drzRXr1pJ7dq0DKe/7+BRSpIkqfo8W5YMdPfOHZ/6gADPJ1wRHowAT4ajCRUEeCao6msiwNNnaEIBAZ4JqjKa0gEe/L+MXeD/ZTiaUIH/N0FVXxP+X5+hCQX4fxNUZTSl/b9Mr6ACAs4jgASv82wuOuLJU2dQ+QqVlGaTRvVp29bN4fSHjRhNn9Suoz7v0qk9LV2yyKc+IMDzCRcSvDK4/KqCAM+vuL2+GAI8r1H59UAEeH7F7dPFpAM8+H+f8MP/y+Dyqwr8v19xe30x+H+vUfn1QPh/v+L26WLS/t+ni+NgEAABiwASvLgZtAisXL2ecubKrTRSJktIf//9dzi9qtVr0FfjJqnPx301mkaNGObTNRHg+YQLAZ4MLr+qIMDzK26vL4YAz2tUfj0QAZ5fcft0MekAD/7fJ/zw/zK4/KoC/+9X3F5fDP7fa1R+PRD+36+4fbqYtP/36eI4GARAwCKABC9uBi0Cu/YcoBQpUymNpIne86hVtGhxmrtgsfpuxfKl1LF9G5+uiQDPJ1wI8GRw+VUFAZ5fcXt9MQR4XqPy64EI8PyK26eLSQd48P8+4Yf/l8HlVxX4f7/i9vpi8P9eo/LrgfD/fsXt08Wk/b9PF8fBIAACFgEkeHEzaBE4ceo8vRsvHv3777+UPMn7HrWyZM1G6zZsUd/t37eX6tT+yDruvZTZIr3+H48f0nN/vUnFyoVooEWNANfg+/psf4odz3MiPiqqd76/SiUq7KTX30gSldNxzv8TWLMoMb2TJB09//wLIkwe3f2JPni/KmXK0U9Ez6kiZ471op9vb6TX48jMmX//+Yfu/nCFqtT+zqlIRcbNAd6uzWXp7UTJRfRY5LfbP1GmrIMoYdKKYppOFAraVJqee+V3evm12CLDh/8XwUjw/zIcTajA/5ugqq8J/6/P0IQC/L8JqjKavvj/n6+ekrkoVEAABMIRQIIXN4UWgdPngilu3LiqNAOXaPDUPvwwI23aulN9FdUE75+//UVJU9TS6qvTT35wP5ju3TtGb8b3nIiPCp9fb1ymZCnr0MsvvxWV03HO/xMIPj+G3k2aQTTB++pLiSl+giJgrEHg51u76c9/b4omeH+9EUzpMrbV6BVO/fPPe3T926X0TuKQt0ck2sOff6S338lLb76VRkLOsRrXv11Cr7z5imiCF/5f/3aC/9dnaEoB/t8UWT1d+H89fqbOhv83RVZf1xf/jwSvPm8ogEBEBJDgxb2hRWD/oWOUOHES4tcokyVO4FGrYKHCtHDxcvXd+nVrqXXLptZx3qzg1eogTgYBEAABEAABEAABEAABEAABEAABEIh2AkjwRrsJ0IEYTAAJ3hhsXH8Mbf2mbZQ5cxZ1qYhq8FaqXIUmTJqmjpk2ZRINHtQfCV5/GAfXAAEQAAEQAAEQAAEQAAEQAAEQAAGbEECC1yaGQDdiJAEkeGOkWf03qNlzF1DxEqXUBcuULErBwRfDXbxLtx7UqnXIK8l9+/SkObNm+K+DuBIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIxGACSPDGYOP6Y2gdO3elNm07qEtNmTyBhgweGO6yG7fsoIwZM6nPK5YrRefOnfVH13ANEAABEAABEAABEAABEAABEAABEAABEAABEIjxBJDgjfEmNjvA2LFj07kLV+i5556ju3fuUI5sGenff/+1LpooUWLad/AoPf/88+r7bFkymO0Q1EEABEAABEAABEAABEAABEAABEAABEAABEDAQQSQ4HWQsU0Nde2GLZQ1azYlf+rkCerWpaMq1ZC/QEGaNHk6xX37bfXdpInjaNiQwaa6AV0QAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQcBwBJHgdZ3L5AadOk4bWbdhKsWLFssT/97//qVW9rvbDD99TyWKF6MmTJ/IdgCIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIOJQAErwONbz0sOPHf4/WbdxC77//QShpTvQeP3aUPq5ZNVTpBunrQw8EQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEnEgACV4nWt3gmF9//XUqWqw4pU2Xno4eOUwHD+xHYtcgb0iDAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAg4mwASvM62P0YPAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQwASQ4A1g46HrIAACIAACIAACIAACIAACIAACIAACIAACIAACziaABK+z7Y/RgwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIBDABJHgD2Hjour0JvPbaa1Tzo1qULn0GeuON2HTt26s0e9Z0evDggb077oDeVahYibJmzU7vf5CQbv/yMy1YMI+ufnPFASO39xATJUpMFSpWpnTp0tO///uXTp08QYsWzkcdbxuYDXPGBkbw0IXsOXKquvfJk6ek3357SFs3b6I9e3bZs7MO6hX8v32NjWeZPW0D/29Pu3CvMGfsaRv4f3vaBb0CgegmgARvdFsA149xBJ577jnq3LU7NWnagl5++eVQ4/vf//5Hl4KDaeaMqbRs6eIYN3a7D6hS5So0cNBQivv22+G6+vPPPymbjP9qDP3xxx92H0qM6t9bb71Fo8aMo5KlyhDPH/f2999/05HDh2jM6BF07OiRGDXuQBgM5ow9rcQ/gnw1fjKlS58+XAcfPXpE27duoRHDh9DNmz/YcwAxtFfw//Y1LJ5l9rQN/L897cK9wpyxp23g/+1pF/QKBOxCAAleu1gC/YgRBBInTkKbtwVR7NixQ43nr7/+opdeeinUZ8EXL9JHNSrTw4cPY8TY7TwIDrq3bNsVLhny77//qm4///zzVvfZHp/WqkHnzp2185BiTN+qVqtOo8aMpxdffDHSObNi+VLq2L5NjBm7nQeCOWNf6wwdPopqf/pZqA7yj4f8Y4i7n+HnW49unWnxogX2HUwM6hn8vz2NiWeZPe3CvYL/t6dtMGfsaRfuFfy/fW2DnoGAXQggwWsXS6AfAU+AV+seOXaa3n7nHTUWDrjXrF5FfXp1U0ncN998k5q3bE2f1qlLcePGVcc8fvyYqlUuT8HBFwN+/HYewPyFS6lwkaJWFzl5+0Wr5qpsBid3P6ldhxo2akKp06S1bMeJES4PgGaOQNp06VTi3ZVg//PPP2nk8KFqhTsnq5KnSElt23agCpUqW6vhb9y4TiWKFiQ+Fs0cAcwZc2x1lOs3bEz9Bwy2JH69fZs6dWxHu4J2qM8KFipMLVu1ofwFClqr4deuWU1tWjfXuSzOjYQA/L99bxE8y+xpG/h/e9qFe4U5Y0/bwP/b0y7oFQjYjQASvHazCPoTsATWrNtE2bLnUP3nhG7F8qXp+nfXwo2Hk1nLV66lnLlyq+9+++03ypc7m/ovmjyBdu07UfuOnZUwJ92bNKpP27dt8Xihrt17quSI69ia1SvT8WNH5TsFRbXK/dDRU9Zq9/Pnz1HNapXoyZMn4egkTJiINm7ebpXWOH36FFWpWBYUDRHAnDEEVlOW6+2tWrPBStzOnjmd+vXt5VG1eIlSNH3mHGtlPJc4GTt6pGYPcHpEBOD/7Xlv4FlmT7vA/9vTLtwrzBl72gb+3552Qa9AwI4EkOC1o1XQp4Aj0K5DJ2rfISSJyK/Fli1dTNXafVYbMWosfVyrtjrkmyuXqUSxQgE3brt3OHPmLLR+0zarm3379KQ5s2Y8s9v8yuDYcZNUEuXp06eUL092unvnjt2HGnD9W7thC2XNmk31+97du5Q7Z5Znrsp95ZVXaMu2IEqRMpU6Z97c2dS7Z7eAG7fdO4w5Y08L8Q+DXwdfwLi9OgAAIABJREFUpVixYqkO7tu7hz779ONndjZlqtS0YdM265z6detYK33tOcrA7BX8vz3thmeZPe3CvYL/t6dtMGfsaRf4f3vaBb0CAbsSQILXrpZBvwKGACcCg698R6+++qrqc+eO7bzeQO3YybMUP/576rz8eXJgQxxhq2/csoMyZsykVHnVbuOG9by6wtTps6hsuQrq2AH9+9DM6VO9Og8HeUcgQ4YPVa1qblyKoXjRgh5Xu4dV4/InJ06dVyUdeMV7xvQhyV40OQKYM3IsJZU6delGX7RpryRv//KL+kHEVUP8WdfhH6x4MzZuhw4eoE8+ri7ZLcdrwf/b9xbAs8yetoH/t6dduFeYM/a0Dfy/Pe2CXoGAXQkgwWtXy6BfAUOgYeOm1LffQNXfn366RXlyZvW67yVKlqZZc+bT7t1BVO+zkNW8aDIEOHHOCXRuXJrhw3Qp6ffff/dKnOslnzp7kX57+JCyZg6/S71XIjgoQgKLl65UNUK5rV+3llq3bOo1rTFjJ1D1mh9R966dUCPZa2reHYg54x2n6Djq3IUrqo47t+ZNG9HmTRu87saBw8eJy5wUzJeLfvjhe6/Pw4GRE4D/j5xRdByBZ1l0UPfumvD/3nHy91GYM/4m7v314P+9Z4UjQQAEiJDgxV0AApoE1qzfTNmyZVcqo0cOp6/GjvJJccasudSxfRt68OCBT+fh4GcTcK8jdurkCapaubxPyDp06kKnT52ioJ3bfToPB0dO4OLla9Zr40UL51eb3XnbXnvtNZo0dQY1qFvH21NwnJcEMGe8BOXnw5IkSUr7DobUAueNOdOnSe5TD/LkzUelS5elgQP6+nQeDo6cAPx/5Iyi4wg8y6KDunfXhP/3jpO/j8Kc8Tdx764H/+8dJxwFAiDwHwEkeHE3gIAmgTPnL1GcOHHU67LpUiejP/74Q1MRp0sQcN8FmEszRLSxmsS1oOE9gRdffJGufndTnXDz5g+qNAmaPQhgztjDDmF78Xnd+jToy2Hq4zWrV1HbL1rYs6MO7BX8vz2NjmeZPe0C/29Pu3CvMGfsaRv4f3vaBb0CATsTQILXztZB3wKCwKkzF4hrg0ZlZZX7AAsWKkwdOnahVi2a0q1bPwbE2O3cSS59wSUwuOnUN+bdnpevXEf9+/VSNSzR9Alc/+FnJRKVldXuV+/avSfFixefenTr/MwN2vR77AwFzBl72rnmR7Vo1JhxqnNReUvEfVQcxAcF7aDZM6fbc7AB1iv4f3saDM8ye9qFewX/b0/bYM7Y0y7w//a0C3oFAnYmgASvna2DvgUEgaMnztB77yWgp0+fUtpUSaPc5+Mnz1G8+PHVSmDePMrberFRvmAMP3Hi5GlUsVIVNcpC+XPTjRvXozTi6TPnUOky5dS5zZo0pC2bN0ZJByf9R8AV4J09e4YqlQ9JwvvauF7ckeOn1YZrXFe0QN6cvkrg+DAEMGfseUtUqFiJJk2ZoTrHJYA4yRuVVq16TRo7bqI6ddWK5dS+XeuoyOAcNwLw//a8HfAss6dduFfw//a0DeaMPe0C/29Pu6BXIGBnAkjw2tk66FtAENi97xAlT55CbeTFSSZ+7dzX1rJVG+LViNyOHT1CNatX9lUCx4chMHT4KKr96Wfq0759etKcWSEJEl9a6jRpaPvOvcQ7pf/222+UKUNqZWc0PQLXbtxSiVmuO535wzRRElu5ej3lzJVbnfvloAE0dUpI4got6gQwZ6LOzuSZ+fIXoCXLVqlLHNi/jz79pKbPl+P5xhu1vPHGG+oZVqpEYbpy+bLPOjghNAH4f3veEXiW2dMu3Cv4f3vaBnPGnnaB/7enXdArELAzASR47Wwd9C0gCHxa53MaMmyk6uvePbvp8zq1fOo3bxp19uvL9PLLL6vVu3lyZqVffgl5hR0t6gTef/8DOnT0pErO3r9/n7JkTOuz2I6gvZQ6Tch5XPeS61+i6ROYu2AxFS1aXAn16tGV5s+b45Mobxq1bMUadQ7PlVzZM/t0Pg72TABzxr53xulzwRQ3blyVnM2XO7vPZXz6DRhMDRo2VgPcumUTNW3cwL6DDaCewf/b01h4ltnTLtwr+H972gZzxp524V7B/9vXNugZCNiRABK8drQK+hRwBI6dPEv8yjgH3316dad5c2d7PQb316I40cUJL0+N68mePHmc7t2967W20w+cPHUGla9QSWHg0gpcYsHbVqlyFZowaZo6/Nur31CxIgU8npouXXqVnOdyA2jeEeCa1SdOnVereHlTwprVKvnEz/VaNF+tdq0adPDAfo8X5lfS165ZpX44QfOOAOaMd5z8fVSVqtVo3IQp6rJckqRc6eL08OFDr7rhPt/+/PNPypopnccSQK+88gqVLlOW1q9b65UuDgohAP9vzzsBzzJ72gX+35524V5hztjTNvD/9rQLegUCdiWABK9dLYN+BRSBIkWKqVUJvFqU2+qVK6h3r27qtf5nteQpUtKuPQfUeVxzl2vvekpGxYkb10qIjRoxjCaMHxtQfKKrs2+++SYdPnaaXn/9ddWF4IsXqXHDuvT99zee2SW2B6+q5vO5lSlZlIKDL3o85+CRE5QwYSK1cVGDunWia6gBd92evfpS0+YtVb/5nh/Qv48qoxFZCYxGTZpRn74D1HnP2qStbLkKNHX6LHr06BE1a9KA9u/bG3CMoqPDmDPRQd27a27eFkQZMnyoDmbf0qRRPa82fuTyDvyaJ7eRw4fS+HFjPF5w7LhJVK16Dbp+/TuqWrk83b1zx7uOOfwo+H973gB4ltnTLtwr+H972gZzxp524V7B/9vXNugZCNiNABK8drMI+hOwBLJmy06Ll66kWLFiqTFwoupScDAtXryAzp87S2+9FYdSpExJM6dPtZK4W7fvpnTp06vjO3dsR8uWLvY4/gWLllGhwkXUd+O+Gk2c5EXzjgAnx9dt2EJJkyazTvjpp1u0auVyVVKDk7mpU6eh3bt30fXvrqlj3IOPnTu2UcP6n3u8WN16DWjg4KHqu3PnzlLFcqW86xSOUgTqN2xM/foPsn4Y+euvv+jokcO0eNF8unnzJiVMmJBefvkVWrlimTqeVxhyHVH+b2Svqp85f4nixImjzmO7sH3QvCOAOeMdp+g4yn2FFV+fE707tm2lNatX0u+Pf1f14H/88ab1g0b2HDlp9dqQjSE5YZstSwaP3U6SJCntPXBEzcXHjx+reuN///13dAwxIK8J/29Ps+FZZk+7wP/b1y6YM/a1Dfy/fW2DnoGAnQggwWsna6AvAU+A/8do1er1lDJVao9j+fX2bcqRLaP6rniJUjR77gL17xs3rlOh/CEbRoVtmTNnofWbtqmP7927p16vRfOdwKQp06lCRc+b1/EKUq5ryYnf2LFjq3pXL774InHCMXuWDB5fheayDJxsfPXVV1WysWC+XOrVaTTfCHACat6CJYq7p7Z92xZq3LCe+mrUmHFU86OQGtdLlyyiLp3aezynS7ce1Kp1W/Xdnj27qG6dT3zrFI5WBDBn7HkjNGjUhHr17qeeUZ5ah3ZfWD+KHDh8nBIlSqwOq/dZbdq9O8jjORu37KCMGTOp73p270IL5s+15+Bt3Cv4f/saB88ye9oG/t+edoH/t69d4P/taxv0DATsQgAJXrtYAv2IUQQKFipMnbp0VwHzSy+9ZI3t809r0d69u9Xf7qt3q1WpQCdPHPfIYP+hY5Q4cRL1HSe6OOHlavw6Fa/s/f3R73Ts2BGPdRVjFFjNwTDHfgMGUd58BdRu8q62cME86tGts/qzd5/+1Lhpc/XvWTOmUf9+vT1edeTor+ijj0MSh6tWLKf27VqHOi5L1myUJEkSVdoBu9VHbjhezVu/QSNKlix5qBW92TKnV6sUeWXh5as3VL1jriOaPk1yjysMeU6cOntRJb94BSIn6B88eIA5E7kJPB7hrznD9ZgLFy5Kr772Gp0+dVL92IIWMQHenLNHr75UrlwFihc/vnXgtWvfUtFC+dTf/Azitxe4Xb4UTKVKhLwFEra5/9jIP1IVyJsz1CF8D2TPkYN+/PFHOn7saKRlVJxuN/h/e94B/nqWueYe/L/39wH8v/es/Hmkv+YM/L9vVoX/940XjgYBpxFAgtdpFsd4/U6A67NycPziiy/R6lUr1PXfeustVeOV27Vvr1LRwvk99qv2p5/R0OGj1HcXLnytNtZxtfETp1LlKlWtv3kVKdck7de3F505fcrv4wy0C3IiMEfO3JQ8RQpV+9VV+/j02YsU9+23VXIwbaqkHpOIbFNeGcdJx6dPn6rXmTnpyI03XVuxen2oFan379+nJYsX0NAvByE54sWNwgw/zJiJbt360dpAzX0u8OpCXmXoqc2et5CKFy+pvpo0cRwNGzIYc8YL5t4cYmrOfF63PvUbMDjUilR+q2H0yOHWM9Ob/jn1GP4xI1v2HOrZs3fvHqvUzJz5i6hYsRIKS83qlenY0SMeEbmeefxllUrlVIKdG5dC2bItiFKkTGWdx885/pGxV89uqNHrxQ0H/+8FpGg4xNSzDP5f35jw//oMTSiYmjPw/3rWgv/X44ezQSAmEkCCNyZaFWOyPQHeXG333oOqn55Wf/Ln7LQ5CcwbhHHytkihfFbg3qNnH2rWopU1Tv7etcEb/5s3YePNdDw1/qU8fvz3sEIugruEV4lyYsPTSjbXKWvWb6Zs2bKrPzmhPnvmdPVv/lWdyztw2QZP7eeff6LqVSpGWMqBX6VGmQfPhunUpRt90SakJEP9unVoV9COcAfyBlS8EQU3XrWb+cM01jE6c+bdd+PRb789pD/++MP2z5bo6KDOnOHNv7h2ufvzy/VvHsvBA/vp8zq1IqwHizkTscVdZRfYJyRLnMDjge3ad6L2HUPeXmDWtWvVsI5zf8sk7Mmc6G3WpCEF7dzuURd2idgu8P/R8ZTy7po6zzL4f+8YR+Uo+P+oUPPPOTpzBv7fnI3g/82xhTII2J0AErx2txD6FyMJcPDLK0C5cUKP67dyEO7evhw6gup8Vld9tG7tGvqiVTPr64uXr6nN3HjVae+e3Wj5siVUv0Fj6tCpi5Vc3LRxPbVo1jgcv8FDhivd1StXUOdO7bCRThhCLra8gjdXjszhVqnxa+TzFy1VZ/EK07y5slkKbdt1VDbgFnzxItWp/RF98MEH1L1nH8pfoKD6nOv6lilVjK5+cyXUlfm13oWLl9OpUyepeZOGSMCHsQsndznI47Z61Upq16ZluHt7975DapMpbi2bN6aNG9aLzBn+MeaDhIlo6JBBqmwHWmgCOnNmzbpNavUptyWLF6qV2WXKlqOevfsRr350zTN+Robd9Atz5tl3ojtb3iiSN4x0b1z3msuZcBkh9iXZs35I9+7eVYfwpmv7Dh5V/3748CHV+7w2/XjzJn3Rtr3yH64kPNfB5nrYnnTv3btLrVs2oyOHD2HKuBGA/7fv7aDzLIP/N2dX+H9zbHWVdeYM/L8u/YjPh/83xxbKIGB3Akjw2t1C6F+MJcDBMwfR3G7e/IGGDRlE69etVYF2ggTv06GjJ4lX2/KqQS4B4L568Lvvf1IB9u1ffqGc2UM2xuHGKw03b9upVuhy41ecvxobUuKBG39+5PhppcsrsDKmT4VViWHusBGjxtLHtWqrT7n8AjNcvGi+tdHaiVPn6d148dT3YV97HjN2AlWv+ZH6rm2blrRm1UpL3T1A4ZqyubJnoidPnljfHz95zqql+azXqWPshIhkYLw66vzFb6zX+Hm14ehRw63XzmvU/JhGjx2vVDzVG43qnKlWvSaNHTcxQl2n2sN93Dpzxn0TMF5l6vqhi59vCxYtI07icuPyM1Urlw+FG3Pm2Xdf0aLFae6Cxeog5sqlTaZNmaQ29eQ2Y9ZcKlW6rPp32HrjxYqXpDnzFqrvtm3dTE0a1bcuxj9WzZ2/WNXDZt3qVSuGqiE/feYcKl2mnEddzJcQAvD/9rwTdJ5l8P/mbAr/b46trrLOnIH/16Uf8fnw/+bYQhkE7E4ACV67Wwj9i7EEUqdJQ6vXbgpVq5WDZU688ooqTsJyGzywP02bOikUB/eaiWETiVxegMsE8ArfLwcNoKlTJlKtTz6lTJmz0IcfZiTetZib67sYCziKA2N+GzZtozRp04VS4AT7Cy+8YCUYjx45TB/VqBLqGPc6sbxJFK/udV+Z3bFzV2rTtoPaNIyT9ryBBa+ovnjha6vkBtfJ5AQvWngCVavXIA6iXXODj+BVnf/8848qq8GNeZcoVijcCmlf54zLLrz6mjfkY91SJQpjwzwPN6bOnHGvE7th/Vpq1aJpqCts2LydMmXKrBL5PC/4RzHMGe+fDsNGjKZPatcJdYKrXjgnaLm5nkfuzyquQ37qzAX1QyLPsSIF84YqH+PawM19XsxfuJTWrllFvAEln+dJ1/uex+wj4f/taV+dZxn8v1mbwv+b5RtVdZ05A/8fVerenQf/7x0nHAUCMY0AErwxzaIYT0AR4E0L+g/4koqVKElx48YN1/dffvmZcmXPHO5z99WKvOKXayHyKitXK1e+IvUfOJhy58iiVlmdu3AlVF3YsCt/AwqanzrbrkMn+ujjT4hfpw3bmDnb5ddfb4f6ipMavEL6vfdC6l2eP3+OqlQsG+rV8oNHTtDwoYNpzepVtGnrTpV0dzXWzZMzK7Hd0TwT4Dq7nHTNkzefldR1P3LL5o1qPoRtvswZV/LKXWPrlk3UtHEDmOUZBKIyZzhhu2vvQeuHE65nzXWtXY3fStiz/7BKMPJ8w5zx/RasVLkKNW/5BfHccf9xxKXU9osW6nkUtk2eOoPKV6ikPuYyDbzJp3uN8K/GT6ZXX31Fzbeu3XtSy1ZtQklEpOv7CGLmGfD/9rVrVJ5l8P/m7Qn/b55xVK8QlTkD/x9V2t6fB//vPSscCQIxhQASvDHFkhhHwBPgTdU4+N5/6JiVIOQNb/hVdG5vvfWW2jjK1fr2G0gNG4esduNVVP379bY2++LPWIsThpzgnTBpKpUp+9/rzZzgbVCvDp07dzbguZkeAAdtvGnaqDHjqELFkJW18+fNoV49uqp/M18+xlVCg8tr7Ny9X6365MblN8qWKmaVeHDZhb/jsg1cs9eVdOGVdd26dKSVK5aZHlaM0OeVI3Hjvm2VM2F+WTOlo99//11rzvDKaq6z7Krny2K8grRxo3p0/969GMHO5CAimzNhn2UlSpammbPnWXVdt2/bQo0b1rO6iDkjZy3etLNkqdI0bsIUJfrt1W+oWJEC1gXC2mbLtl2UPkMG9T0/4/ithTOnT1nHs63Z/3BJh4mTp6lNQV2Nk/Xsl8LWl5cbTcxRgv+3py0je5bB/0ef3eD/o4/9s64c2ZyB/48+u8H/Rx97XBkE/EkACV5/0sa1QMALAvwKerUaNVXNyWpVKqgzeBUb1+QtX7ZEqFfE3eu68nHt2rSi1atWhLtKoybNqE/fAeE+37NnF33RslmoxLEXXXTkIXXrNaBeffqr1bhcu5iT59wmTZlO8eLFD1Wu4e133qFt23dbNXU5ycubRLnOcQHk3dR37TlgJbZcn1+79i21bNaYLlz42pGsfRk0s549dyFlzZqNRgwbQhPGjxWZM0uWrSLe4dm9se25VumXgwcgaeWFkSKaM0dPnKEZ06aGKj3DrPkVfy5Pwy3sxpKYM14A9/KQnLly05SpM9XzqXTJInQpOFidySt9vhw6krJkTBvqWbV46cpQm0QWL1LAquPruiQH9We/vky8KtW9cZmGXj26eFwh7GV3HXUY/L89zQ3/b0+7wP/b0y7cK/h/e9oG/t+edkGvQECSABK8kjShBQJCBLgswOMnj+nunTtKceny1ZQ3X366fv07KlwgT6irNGjUhPr1H6Q+4xVWaVMlDZV84lUOXKKB/+ta6duhYxcrEOekVb7c2VEWwAvbMcNkyZNbCZGUqVLTzl37VIK2ft06tCtoh6XCxx4+eoo4AOE2ZfIEGjJ4YKirbN2+m9KlT68+mzRxHJUpU45Y09U6tPsCq3m9sAsfkjlzFjp79ox1tM6c4f8BXrl6vdLiObhkyUJq2qylVUbg1q0fVX1ltMgJhJ0zTZq1oF69+9Fff/1FObJ+GOrHpXTp0tPmbUHWivbyZUrQ11+fx5yJHHOUjuBSJK7VuPwMYz8RO3ZsWrJ4IXXt3CGUJm94V6hwEfXZxQsXqGzpYqG+79mrLzVt3lJ9xm+dPH36hIqXKGUdwxuItm4Zur5ylDrtgJPg/+1pZPh/e9oF/t++doH/t69t4P/taxv0DAR0CSDBq0sQ54OAHwis37RNJbC4bdq4nlo0axzqqitWraNcuUMSvzWqVaLjx45a348dN4mqVa+h/nYF7hzMd+/Rm3hl748/3qRC+XP7YRQx7xKcCGT2rhINNatVCpVk5PpivFs6t7CvQpctV4GmTp+lvnNP3FepWo0GDxmhykJkz5LBKu0Q8+iZHZHOnOE6yQkTJlIdrPdZbdq9O0iVSBk3cQrxzsRLlyyiLp3amx1ADFV3bTTIw+N6rlzXleu7ulqLll9Qtx4hNXjdS6Hw35gz5m4K3qX+xOmvVYkF/iGwT6/uNG/ubOuCXCaDV+hyApi/T5Y4pM44tzhx49KJU+fVDyCcuHc9t7heJr/hwG8quOaRuRHEXGWdZxn8v7n7Av7fHFtdZZ05A/+vSz/i8+H/zbHVUYb/16GHc0HAfgSQ4LWfTdAjEAhHgH8FP3LsNPHO5tz41f06tT+yVvhu3LKDMmbMpL6rXLGstSqLa4lygpETkI8fP6ZMGVKH2vCLA/M3Xn8j1MY5wO8bAffyF1yCgWvocgKQG6/GDdodUkP5yuVLVLJ4YUv8zPlLFCdOHPV3xXKlQtVDZnulT58BJRp8M0Woo6M6Z/i1woGDhyotrlHNtnFvadOlo6vffBNqHml005GnLly8nAoWCpkLnNz9tFYN6/7v1KWbqk3NbfasGdSvT0/MGT/dJZyQZV/iqgm+eNEClejl2tb82cXL19QPT0+fPlVviria++recV+NplEjhoXqMW8kGXYltp+GFCMuE9VnGfy/efPD/5tnHJUrRHXOwP9HhbZv58D/+8bLX0fD//uLNK4DAuYJIMFrnjGuAAIiBLi24fKV66xX+lmUa7v+9vA36zNOlnAS19XcE789u3ehBfPnRtiX/AUKUs/e/YiDQk4w/njzpior4Kmmr8iAYpBIrU8+paHDR4XaLI0TGvw/TBxocOPNhrh+K7cu3XpQq9Zt1b+5DnLdOp9ESINXkg4fOYb49fXXYsWiO3d+pbVrVtG4saNV4gUtYgK+zhneMIdfU+ckFq9S5LrJvMo0osblBj799DOK/14C+vOPP+jy5Us05MuBdPrUSZglEgIjR39FH338333PG0jyKves2bKr5w/z5zcLvv/+hs9zBs+yqN9+nIxdsny1VcKHf7S6fOkSvfvuu/RuvHhKmFe084pcbvxmCa+W43bv3j21yWFEjefX4CHDqUDBQhQnTlx69Og3OnL4MA0e2I9++ulW1DvtgDN9fZYxEvh//9wY8P/+4ezrVXydM/D/vhKO+vHw/1FnZ/JM+H+TdKENAv4jgASv/1jjSiAgQoBrHXLdXddmRC5RDq4rlC2pkr7c+FXyuQsWq39zkqpA3pwer88JSF6BlTtPXo/fc9KlYvnS9Pvvv4v0P6aK8GrdmbPnUfLkKcIN0b3+Lr/ifPpcsHqdmesf8+vMnNzy1Pr2G0j1Gza2Esfux7A9qlUpb9UDjqlcJcbl7ZzhRDoH69xWrVhO7du19nj51GnS0Nz5i60yDmEPeta5EuOJKRq8qReXI+HyF+6N50XTxg1o546QxKG3cwbPMpk7g1/XnDFrnkrEcrLdvfHmn9WrVrQ2YeM3RLgUDbfGDevR9m1bPHaCbT185FiKFStWuO85mc8lT5YtDfFXaBET8PZZBv/v37sI/t+/vH25mrdzBv7fF6r6x8L/6zM0oQD/b4IqNEHAvwSQ4PUvb1wNBEQIcHKwYaOmlCdvXnrnnXcpOPgi9e/bi548eWLpb9+5h9KkDVlNVa1KBTp54rjHa69Zt4myZc+hvuNAm1eU/v7oEeXLV8DaIIyTx0UK5okwESkyqBgikilTZqrzeT1KnTqNsgfXsdy2dbM1Ok7aNmwcstnQjGlTaOCAvh5H3rZdR+rQqYv1HZcLuBR8USXiXQkVToR99unHdOjggRhCz9wwIpsz/Ar6pW+uE6/i4c0KM6ZP5XGFNNcoPXL8jEo6cuPSJzt3bKe4ceNS9hw5rQTWsaNHqGb1yuYGFIOUOdArVbocJUmShH7++ScaOWIoXbl82ec5g2eZ7E3x7rvxqEmz5pQpUxY1L3YF7aSJE76yLsKrrdeuD3m2BV+8SGVKFfXYAT6ObeNKFvNq3f379lK69BnUWw6ukhBjRo2gsWNGyg4iBqpF9izjIcP/R4/h4f+jh3tkV41szsD/R0bQ3Pfw/+bY6ijD/+vQw7kgEL0EkOCNXv64OggYIcC1ek+fvRhp4N21e09q2aqNOo7LO1StXJ6ufnPF6hMnGDnRyA0bS8mYylV7l5OI6VIns1bCuavny1+AFi9dqRIi/Io07z6/ccN665DChYvS7HkL1SrgGzeuY5M8AdN8Xrc+DfoypHbo1MkT6cvBAzyqbt4WpJJS3LgMR42qFa0fVthey1eutTY8/PzTWrR3726B3jlbwps5g2eZ/++R+QuXUuEiIUld3iyPa8OHbfya9OFjp9XmbdzmzJ5JfXv3sA6LH/892rp9l/oxkX+wypA2hfqBBS3qBOD/o87O9JnePMvg/01bIbw+/L//mXt7RW/mDPy/tzTljoP/l2MJJRCQJoAErzRR6IGADQjwRlDbduxRPQm7UZGrexxwn7/4jVo9xSt3y5YqplYCh22uVXFc7zV1isQ2GF1gd+HKt9+r1XBhN13pIs5GAAAgAElEQVRzH9XhY6fo/fc/UB8NGtiPpk+dHG7Q7it8y5cpgU2MNG+L7j17U/MWISUZ3DcqdJctW64CTZ0+S310//59ypU9k8dVvrwZFb+KfvHCBSpbuphmz3B6ZHMGz7LouUe2bNtF6TNkoL/++otSJU/ksRPjJ06lylWqqu8OHthPtWvVCHdc8hQpaffeg+pz93I20TOqwL8q/L99bRjZs4x7Dv/vf/vB//ufubdXjGzOwP97S1L2OPh/WZ5QAwFJAkjwStKEFgjYhACvijp28qzqzS+//EzFixSg3377LVTv3H/xnjZlEg0e1N9j77mcAJcV4JYyWUK1ygot6gR4Ey9e1cZJkcoVyoRb9carQ3mVKLdnvfbMJQI4Qc+tV4+uNH/enKh3CmeqWsf9BwxWJIKCdlCDunXCUdm0dSfxJhTcIkoC83e8+po3+uIkcJaMaUFXk0BkcwbPMk3AUTx90ZIVqk4vt+5dO9GihfPDKV2+ekNtNPmssid8Er9xwitPI9t0MopdddRp8P/2NXdkzzL4/+ixHfx/9HD35qqRzRn4f28oyh8D/y/PFIogIEUACV4pktABAZsRcHe+XCd0yaIFNG/eHLr27VXV0xOnzqtd0Tlhmz5Nco8rEfm4jp27Upu2HdQ5SRO9F2qUdes1oMxZslKPbp0jPN9mWKK9O+4Jcy6/sGXzRpo1czpxzVZuvFFbyVJl1L/r1P5I1ar01JImS0579x9WX/EGRVxCw9W4VMCyFWto9KjhqM/rg8XPfn3Z2vDr1q0faeaMabR82RK6f++eqrnLgQazvX79OypcIE+Eyhs2byeuxXjv7l3Kmjl9qONGjRlH58+fo9kzp/vQM2cfGtmckXiW8SZJQ4eNpDatWxDbHi1yArzydteeA1ZtXd6AbeaMqbR500blV2rU/JhGjx2vhJYsXkhdO4f4EU+N61+/+uqr4X5cwbMscjt4OgL+P2rcTJ8V2bMM/t+0BSLWh/+PPvbPunJkcwb+P3rsBv8fPdxxVRDwhgASvN5QwjEgEIAEODCeMWuulSzkIWzcsI5aNm+iRuNaWXX82FGqUa1ShCMM2r2fOPnBZRySJU5gHcersjjhxf+9e+cOZcuSIQApRU+XmzZrST169bESI7yxVO4cWVRnNm7ZQRkzZqLff/9d1aOMqA0cPJQ4wc6tWZOGKlHsar379KfGTZurP7G613sbcx3Q9Ru3UqJE/5Ui4frH69etJffXyIcNGUyTJo7zKMx1kYOvfEcvvfSSShTmzZXNOi5X7jy0YtU69XfQzu3UoN5n3nfO4Uc+a87oPssY7dbtuyld+vSq5nXBfLno5s0fHE7cu+HzPb1g0TKVnOXG/LJn/VD9uNGpSzf6ok179XmOrBnp119vexTlH0P4RxFu69auoS9aNcOzzDv8ER4F/68J0ODp8P8G4WpIw/9rwDN8Kvy/YcBRlIf/jyI4nAYChgkgwWsYMORBILoJ8A7mvXr3o1SpUlOBfDlV4pCbq67VhvVrqVWLph67mTpNGtoRtE99F7ZcwLgJU6hK1WrqO34V/fixI/T06VOVDHNPNkb3+O16fX6Ntk+/gVS0WHFq2ri+qk/JzbWJl3vSN+wYOHi/cOlbVeeVayOnSZlEJeC58WvOJ09/be1Mv2P7VvXvy5cv0eyZM4h3sEd7NoGaH9WiFi1b05OnT6liuVLqYPe50LJ541Cb3rmrtWvfidp37Kw+CrtZm3ttRd6g7eefbtHt27dp/tzZdO5cSEkVtIgJRDRndJ9l5cpXpCnTZqoLc4Jy+7Yt9MILL9D+/fvUmw9PnjyBWZ5BgH/U4Dc9eN5sXL+O+vXtpY52f3U27Nsf7nKuOu/8mXs9cTzL9G87+H99hiYU4P9NUJXRhP+X4SitAv8vTVRGD/5fhiNUQECSABK8kjShBQIBRMBV1+ratW+paKF8Hnt+8MgJSpgwZPMc96RWkiRJae+BI9YK1LAnc9KxScN6tHt3SC1ZNO8JuOq38ivOaVMl9VjzeOy4SVSteshmRWET9O6v5nq66onjx9SKbVdC2PueOftI97qWCxfMU2VJwrYECd6n/YeOqdW7zDdThtRW7Wv3Gn+eSP56+zaVK1NC1cxG842AzrOMr+T+am7YK7Mdp06ZSEMGh9QhR/OegPurtR/XrEpHDh8Kd3KlylVowqRp6vOwP2rhWeY9a1+P1Jkz8P++0vb+ePh/71n580j4f3/S9u1aOs8y+H/fWPtyNPy/L7RwLAjIEkCCV5Yn1EAgYAi4v8bvaYOcqdNnUdlyFdR4wr5q7r7Z1N49u1VN0vfee49y58lHceLEUedwYqRRg7q0c8e2gGFih45myZqN1m3YorqybetmatKofqhufVyrNo0YNVZ9xhu1Fcqf26oZ6n4ub6q3edMGtblRrlx5KE3atNaq3mdt3mYHBnbtg+s1fv4Bo0rFsqE2yOOdnLcH7bV+EHF/1fzll19W5Uz4NXaeF2tWr6IHD+6rDdu4hjWXOeH26NEjKlG0IFZZ+3gD6DzL3FeZ8o9dvJKe7ZEvfwHLltwdrpnsWpnqY/ccezi/OcC1dfn+Zx/C97brDRKGwqviN28NUj+IcGvTujmtXbNa/RvPMrO3jc6cgf83Zxv4f3NsdZXh/3UJmjlf51kG/2/GJqwK/2+OLZRBIDICSPBGRgjfg0AMJfDaa6/R6XPBVu1E3uRr5Ypl9M8//1Db9h2tOqSczOIkouvV/hIlS9OsOSG7pf/ww/dUIG/OUITadehE7TuErG68eOEClS1dLIYSNDcsV5kGvsKNG9dpxbKlqsQC19zNX6CgdeHmTRupJK6rHTh83LIb13flOq+uxqtLN27erjbW41a6ZBG6FBxsbhAxUJnZ86pCLpHBK6w5Ac8rqJMlS0Gt27RTJTO4ff/9DVXH1dV4YzV+7ZPbiuVLqWP7NtZ3/D/BvGorb7786rMpkydgtaiP905Un2VvvfUWnTxzgfgVQ7Zn9iwZ6MGDB9bVCxcuSrPmLlAJSH4Opk7xX21mH7vo2MO79+xNzVu0VuPnH53WrF5Ju4J2UomSpejTOp9bb4GEnRd4lpm9ZaI6Z+D/zdqF1eH/zTOOyhXg/6NCzfw5UX2Wwf+btw38v3nGuAIIeCKABC/uCxBwMAF+7Wzz1p1W0i8sCk+lFk6fvajqvHKrXLEsnTl9KhxBV61RrsnboV1rSpo0uVrFtXHjOrpy+bKDiXs3dE4gLlm2ykr6hT2LV4FOGD+WRg4fan3FyZIhw0aqv7m+K9eyDNtKlylH02fOUR8vX7aETp86Se8lSEDXv/tOJV44yYX2bALuST9PR3KphVIli6iNB7nxhm1ctoFtyvOByzbwvHJvnOT99vqP6pgrly/RxAnjKGnSZPT48WNatmwx3b93D2aJhEBUnmVzFyymokWLK2XeNI83zwvb3GuNt2vTSj373n77bTp25Ajt2bMLdvGCgPuPfp4OP3rkMH1UowqeZV6wlDwkKnMG/l/SAp614P/NM47qFeD/o0rO7HlReZbB/5u1iUsd/t8/nHEVEHAngAQv7gcQcDgBTrwOHDyUKlWuSvyaOTd+9X/P7iBq07pFqFdqO3TqQm3bdVTH7N+3l+rU/sgjvfMXv6HYsWN7/I43ZBs2ZBAtWhiyChgtYgKNmjSjli2/sBLwvAHUN1cuU/NmjenqN1esE3kFIpcA4BWknPwtXCCPWvkbtvFOxD179/V4QdbmhG/dzz6x6sbCNp4JJE6chIYOH6US8MyeGydjZ0yfQqNGDAt10vpN2yhz5izqsz69utPcObPCibrX9/N0RV4p37RRfZW4R4uYgC/PMi6Pwa+ac+NnUpaMaT0KL1+5lnLnyevxOy5/wj+MdOnUHmaJhAAnRvr0G0CpUqexVu3yjyHdu3VWK+FdDc8y/95KvswZ+H//2gb+37+8vb0a/L+3pPx7nC/PMvh//9oG/t+/vHE1EECCF/cACICARYBrT74WK5bHFYOcsD119qJ6XZlXeubMnonu3b0bjl6FipVo0pQZ6nNOev148wdViylJ0mRWMoy/w6vo3t94vKInXrz4EW7AxcnG2p9+pgS5vmvbL1p4FD964gy9914C9R0ngB///lit4I0bN651PL9GXahAbo+29b7HzjmSX/Pjlbmc7AvbihQpRvMWLlEf37z5A+XPk8MjmImTp1HFSiErGDnp9euvv1LsN2PTBx8ktJJhnIBvULcONi708tZ61rOMJXbvO0TJk6dQas2aNKQtmzeGU44TNy6dOnNBPb+Y//XvrtEff/xJyZInt0rb8Ennzp2liuVKedkzHMY/aNy+/YvHjR7xLIu++wP+P/rYP+vK8P/2tAv3Cv7fnraB/7enXbhX8P/2tQ16FnMIIMEbc2yJkYCAUQIzZ8+jkqXKqGvMmDaFBg7wvBL0xKnz1orTsCUcWn/Rjjp16aaSVpwwyZA2BT158sRov2O6ONfWPXT0pEpCcZKRSwB4SjbWqPkxjR47XuG4cOFrKlc65NV0bu+//wGtXrdR/Zdb2HqYMZ2hqfG5z4Ua1SrR8WNHw12K7cclTXhOsN14TrhKZXCQMmX6LCpevKQ6z1PNa1N9j8m6XA+Z6yJze9aGg+7PvLAlHAoWKkyz5iywNsir91ltJN81bxo8yzQBGjwd/t8gXA1pzBkNeIZPhf83DDiK8vD/UQRn+DQ8ywwDhryjCCDB6yhzY7AgEDUCadOlo2079qiTeYUnJxG5FEDY1rJVG+Jdabnxpm01q1cOd8zYcZOoWvUa6vOG9T+nnTu2Ra1TOEsRWL12I2XPEbLR3aCB/Wj61MnhyHDyl0s4vPHGG8pupUoUDlcLmV+N/ubaDyrR+KzVpsDuHQH+MaNz1+7q4MOHDlKtj6p5PHHl6vWUM1du9d2XgwbQ1CkTwx3n2nCKbZcsccgKbLSoEeC5wCVkuBwN8yxRrFCocicu1dRp0tCOoH3PfOa5bzi1etVKatemZdQ6hbPwLLPxPQD/b1/jwP/b0zbw//a0C/y/Pe2CWMa+dkHPApMAEryBaTf0GgT8SmDthi2UNWs2dc3WLZvS+nVrw12fd7I9+/VltZkar87NlT0z/frr7XDHjRg1lj6uVVt9HtEmbX4dXABfzD0J9fPPP1HuHCG1XsO2/gO/pPoNGqmP+VV0fiU9bOPELm/0xf8DzBt9lSxeOIDJRH/XL31zXb3G/6y5kCdvPlq2Yo3q7C+//KzmjKe27+BRSpIkqaqNnSp5ougfXAD3wH3Dj40b1lHL5k08jmbnrn2qXiw3LnnCpU/CNq4rN3/RUvXx7FkzqF+fkB+30HwngGeZ78z8dQb8v79I+3YdzBnfePnzaPh/f9L2/lrw/96z8ueReJb5kzau5QQCSPA6wcoYIwhoEnj7nXdo0uTp9FacOKFe7XeXnTRlOlWoGLJid/68OdSrR1ePV+UkMNct49fQ06dJTn/++adm75x9Otfe7dm7HzVpVI8OHTwQDgbbjl8V5MQts86aKV2ojfNcJ9Rv2Jj6Dxis/ly6ZBE2jtK8rbJmy05cW3f7tq0RJv7cayLXrlWDDh7YH+6qiRIlpv2HjqmV1Vw3uVD+kNW+aFEjwPNgwKAhalPJvLmyeiwRU6lyFZowaZq6wLdXv6FiRQp4vNiiJSuoQMFC6rvPP61Fe/fujlqncJYigGeZPW8E+H972gVzxr52gf+3p23g/+1pFzzL7GsX9CwwCSDBG5h2Q69BwFYEkqdISbv2HFBJqN9//50ypk+lVi6GbU2btaSevUNq9wbt3E4N6oVsDOZqxYqXpOYtWlHiJEnozz/+oMuXL9GI4UPClROw1eBt3pkly1ZRvvwhCaqRw4fS+HFjwvWY7cYlHHgjPX5tPVuWDKE2WUuZKjX17NWHUqRMpVZo37h+nWbO4OTlFpuP3r7da9KsBfXq3U918NTJE1S1cnmPnV2+ci3lzpNXfde5YztatnRxqONatW5LpcuWowQJEtD9e/fp2LEjNHLEUI8bJdqXhn16xnOBf4R68803VadKlyxCl4KDw3WQn3m79x5Un9+9c0fNGfeGOSNvU4lnGT/jevXpT1mzZqc4cePQrVu3aOvmTao0iiefJT+KmKcI/29fm0rMGTzL5O0L/y/PVEIR/l+CohkNiWcZ/L8Z20DVfgSQ4LWfTdAjEAg4Alu376Z06dOrfnds30Zt0hW2cWKQa1/yxlGcRCyQN6eq9cqNVynOmDWP0mcInSRxaezbu4c+r1PLY93fgIPlxw5zbVeu8RpREsrVle49e1PzFq3Vn0FBO6hB3Trq3/w/u7PnLaRixUp47DXbr2ql8qq8AJr3BHgOcELdNRfy5c5Ot279GE6AaytzjUVP9uMfQ8ZPnKKS8mEbz68xo0bQV2NHed8pHKkI9OzVl5o2D6mly/XBuU64p7Zl2y7redWlU3u16h1zxtxNpPss457x67lftGlPXG88bHv69Ck1avA57d+319wgYqgy/L89Das7Z+D/zdgV/t8MVwlV+H8JivIaus8y+H95m0DR3gSQ4LW3fdA7ELA9gdJlytH0mXNUP69f/44KF8jjsc9jv5pI1WrUVN/xKkRejciN/2f36ImzFCdOHPX37V9+oQ3r11KixIkpT9781ko6TiYWK5yf/vjjD9szsUsHDx45QQkThtRsrfdZbdq9Oyhc1+LEjatKOHDSg2u8Zs+SgR4+fKiOc189ygmQTRvW09///E2FixQl3vGWG9ujWuXy9PXX5+0ybNv3w32jwSWLF1LXzh089tndfvXr1qFdQTvUcfz6Jyd++XVDbsEXL9Ke3UGUI2cuypwlq1plzS2iesu2BxRNHeTSMSfPXLDmQrbM6dWmkmGb+zMvbNkMzBkzxtN9lrlvAMordTmRe/WbK1SwUGFVa5mTWfzDSJ9e3Wne3NlmBhEDVeH/7WtU3TmDZ5kZ28L/m+Gqqwr/r0vQ3Pm6zzL4f3O2gbI9CSDBa0+7oFcgEDAE3n//A5oyfRZlyZKVKpQt6THRlzhxEuKNojiIfvz4MWXKkFrV4OXmvoGLe+LXBaBr957Ezpnbs2r7BgwwP3a0UZNm1LVbT7p0KZgqlS/t8crzFy5VCVtuXL6Byzhw+3LoCKrzWV31b05icXLdZTP+rETJ0jR1+ix66aWXnlmn1I/DDZhL5S9QkMaNn0yvv/FGqLngPoDP69anQV8OUx+dP39OzS1ucd9+m44eP2MlccNuesiJ+qXLVxOveOD2cc2qdOTwoYBhE50d5cT48BFjqGr1GjTuq9E0euRwj905fS6Y4saNq77jeXX27BnMGcOG03mW8bNq1pz5qof8g1TJYoXUM83V+A2S9Ru3Etea5R+5MqRNgdrwXtoT/t9LUNFwmM6cgf83ZzD4f3NsdZTh/3XomT1X51kG/2/WNlC3JwEkeO1pF/QKBAKOQPz470X4qv7GLTsoY8ZMaky8+RonarmVLVdBJQld7cGDB2o14+ZNG0KN37WZEQfnaVImCTg20dlhXiH96quvErMN2zJlykwbNm9XH9+/f5+yZEyr/v3666/T18FXVUKeGyc9pkyeYCV/XTruG7OVLF4ItZJ9NHREc4aTtFzCIVasWGpVIW+s9v33N5T6+IlTqXKVqtaVrly+RC2aNw7H3rWZoXty2MfuOfbwZz3LOnXppl7z57Z3z25VOgZzxj+3SlSeZdyzw8dOESciXW3H9q3Urk2rUKuz3TczdP+hyz8jC/yrwP/b04ZRmTPw//6xJfy/fzj7ehX4f1+J+ef4qDzL4P/9YxtcxX4EkOC1n03QIxCIUQS4VuiceQvVmLjMQv48Oazxrd+0jTJnzqL+5iQirwblxq+ct2zRRL1Cy+3TOp/TkGEjVbIrWeIEMYpPdA6GV1UnSZJUdaFJo/q0betm9e8OnbpQ23Yd1b///PNPa7XovXv3VGkN1+ZqnAD+7vuf1HERlYCIzvEF6rWHjxxDtT75VHV/9aqV1K5NSE1Ybpe+ua4S9vyaOfN3vVrOtmvftrXa5JDb3AWLqWjR4vTDD9+retdo+gR44zUu4cDPKV7NniNbRmszO8wZfb46ChE9y1KnSUM7gvaFe5axv5kwfiyNHT3SuqxrZTbXkOda8mj6BOD/9RmaUoD/N0VWTxf+X4+fqbPh/02R1deF/9dnCIWYRQAJ3phlT4wGBGxH4NSZC+rVV27VqlSgkyeOq3+/9tprdPHyNZWg4tq9/Ar62HETqWSpMup7TuZu2rheBdq86/lnn9cLl+Dl+rH7Dx6j1atWUN/ePbALug/W5wQiBxLcOKFeplRImQZuR0+coffeS6B4pk6RWG1OxJuwuRLwFy9coGZNG1L8+PFpxap16py6dT6hPXt2WRqjxoyjPHnzUasWTenM6VM+9MzZh/JKw0NHT6p5wSvWM6ZPZb0uXqFiJZo0ZYYCxLV7Z0yfQpOnzKDUaUJWXnPS6qsxo1Spjd17DxLvbs8rfwvmy2VBxZyJ+v01e+4CKl6ilBKYOnkifTl4gOicYZvdunWLWrVsSnfv3Il6Rx125rOeZRMnT6OKlaooIrVr1aC33opDw0aMJq63yO3e3bvUoX0b2r1rJ1359ntVf3n5siXUqUNbiyLXmR09djwN6Ndb1Y9H854A/L/3rPx5JPy/P2l7fy34f+9Z+ftI+H9/E/fuevD/3nHCUc4igASvs+yN0YKAXwlwEnfNus2ULn16OnhgvwqwXY0TTWfOBas/J00cR8OGDFb/TpsuHU2ZOpNSpEyl/uYVpNy4PtatWz9S3lzZLA33+rED+vehmdOn+nV8gXwxTpj3GzBYJTSKFMpH17+7Zg3n/MVvKHbs2HThwtdUrnRx9TmvXvhqwmQqXjykFiwn4HkDKv6cE8GciHStHnWvuczH8Hdo3hHgshnzFy1TNV779+tNs2ZMs05s2qwl9ezdV/3tXhKjUuUq9OXQkdaGhJy04lq93NauWU1tWjfHnPEO/zOP4o0iuT4v39OZP0yj5oCr6c4Z95rLhw4eoE8+ri7QY2dIPOtZ5tooKmx5H67tzvOJn3/cfr19m96NF0/92/1tBv7bveYyv4HCb6KgRU4A/j9yRtF1BPx/dJF/9nXh/+1pF+4V/L89bQP/b0+7oFfRSwAJ3ujlj6uDgCMI8Aqo48ePhlqV5v56/4xpU2jggJDElatVqVqNBg8ZoRKNrvbloAE0dcpE9SeXduASD9w4wThoYD+VFLsUfJE2rF8XKvniCMhRGCSzLVqsOK1ftzbU2afPXlQJwrAre/mgDBk+pElTpqvVoa527OgRqlm9svW3e83lXbt20umTJ9Ur7WtWr1QlA9AiJ/BxrdrhVgu6r1QoX6ZEqA0NeT5179GbeDMKV9KKr8LlGVzMMWci5x7ZEfzKf5w4cYnvefemM2fcay6zJq/A5uTxnTt3aPnSxdYPJ5H1zcnfR/Qsmz1vofpRile3p0qeKBQiXsU7buIUVcrE1R49ekQfpvvv2eZec/nnn3+iObNm0muxXqNdQTutt1GczN2bscP/e0PJ/8fA//ufubdXhP/3lpR/j4P/9y9vb68G/+8tKRznFAJI8DrF0hgnCNiQwLUbt+j555+nb69+Q8WKFAjXQ05a9ek7gHgzLw7Q06VOZpVhcK+5FPZETibuCtpBLZs3wW7oUbC76/V+Xj2dNVM6jwmmatVr0qAvh9Ebb7xBlSuWtcowuNdc9HTp27/8Ql06d6CgnSGbu6F5TyBX7jxWSQzeqJA3LAzbeGX8hIlTqVDhIqFWYPNxmDPes/b1SJ05M2LUWOKA3lPjRO+l4GBq3LCutdGer31z8vGDhwxX5X248apoXh0dtn34YUaaPG0mJU2aLNTbJO41Fz0xfPz4sSrVMXbMf3V8ncza17HD//tKzD/H6zzL4P/N2Qj+3xxbXWWdOQP/r0s/4vPh/82xhbK9CSDBa2/7oHcgEKMJuP+PzbNKLPBq0jRp0tKRw4cUD/eVjA8fPqTLl4LphRdeoAwfZiTeadXVFsyfSz27d4mUYY2aH9Oqlcux6vf/SbkHaWFLa7jD5OR8iZKlrU3X+Dv3motff32eHty/T0mTJaOECf9bPccJeF5N5/6Kuycj8cqvY8eOqDqZaCEEXElaXrVeuUIZOnfurEc0vFr37t271updyTnDqyUKFylKGzesh1k054x7zUX+Eev8+XP0x9OnlD7Dh1adWL7EtW+vUtHC+SPljTkTGhEnaU+dvahWtXNd4yKF8hL7jIieN7yBpOu55F5zkVfB//D99/TOO+9QylSp1Q+TrsZvL4Rd0R1Wn5PI7KPOnj0TqQ2dcgD8vz0tDf9vT7vA/9vXLlGdM/D/Zm0K/2+WL9TtSwAJXvvaBj0DgRhPgJOxZ7++TK+++qoa68YN66hnj67PTOhxYM31Ll9//XUViIetH8sbUY0cPU7V7M2WOX2EwbwL7szZ89TGblcuX6KSxQvHeObeDnDT1p3ESQluvMK6aZMGdOXy5Wee3rZdR+rQKSShHjYxzK9Dcw3fYsVKqNIDnTu2e6ZW3XoNaODgoWoFNtc7ffLkibddj9HH5cyVm1auDkmscpJ35PChqmwJJ80japJzhutq7tl/WG3CN2f2TLW5IVoIgajMmTXrNlG27DnU+WFrLvProLPnLiSuaV2/bh31VsKzGuaMZzpcb7dlqzbqS64T/kWr5rRzR0h5n4gal6LZvC1Ifc0JYfeayzyfuHQDa/ImhoXy545Ua93GrWqTyjq1P6L9+/ZiyhCpH2Ph/+15K0TlWQb/b96W8P/mGUf1ClGZM/D/UaXt/Xnw/96zwpExhwASvDHHlhgJCAQkAV7ZuXb9ZooXP77V/xs3rtOe3bvox5s36cqVy6FWiLq/csO1Y1u3bBpu3Pyaeu7ceWnb1s3qOy71sGzFGho5Yqi1Cpg/Hz9xKlWuUlUlESuWL6VehXYdH9nq0oCE7UOneRnlu/cAACAASURBVMXbwsXLKW++/1YN3rt3T9nlmyuX6eHDBzR3zixLkRPuZ85fUkkMTjzmyJYxVM1l14G8SdWGdWuthOSoMePUKtQ5s2ZYWvy6Oq/u4sYrsHklNuzyn/GKlyhF02bMVqy5MW9e+XnowH66f/++Kn8RHHzROiEqc4ZXKX45ZDi1a9NKbW7IjX802b3vkFqNzZ8VKZiXePMq2CYEta9zpmChwmqOcfvpp1uUJ2dWjzO05ke1aMXypdZ3mDM+PMj+/9Au3XpQq9ZtrRP5vj106ACdPXOa/vzjT5oxfUqoH5Fcr9zyCexjwtYp58+zZstOT548tvwGJ9gzZc5C3bt2sp5vnKTftGWnmjtbt2yipo0b+N75GHwG/L89jevrswz+3392hP/3H2tfruTrnIH/94Wu3rHw/3r8cHbgEUCCN/Bshh6DQIwjwP9jNHPOfCpSpJhKxro3DpYXLZyvPoof/z06cvy0ej3Wl5Wd7dp3ovYdOyuN48eOUotmjalz1+6q7iWvfKxWubz16iy/ajVj1lyVHObjnN46du5KLVp+YSUTXTx27w6iep/9Vzd0+sw5xK+Hc5s9czr169srUnSc/NgRtE8dxwlDXlmXIEEClXjn+8B9RSPbPmjPAfrl55+oerVKdP/evUj1Y/IBnBhZuHhZqM3ueLz8w0TBfLms0gxRnTNr1m+mbNmyK72lSxZRvz491YrG5MlTENdR5lfdeTUkt959+lO9Bo1o2NDBNH3q5JiM3auxeTtnjp88Z/2w5c1r/nxxzBmvTODxIH62fzV+UqjSF3wgl4DJmjm9dQ7XFx87LmQzT1/e7Lh4+RrFihWLnj59SoMH9qPdu4Joe9Be9YbKnj27qG6dT5QmP9s2bw2ihIkSUcP6n0Va3iHqIw6MM+H/7Wsnb59l8P/+tSH8v395+3I1b+cM/L8vVPWPhf/XZwiFwCGABG/g2Ao9BYEYT4BX3nbq3I2KFC1GCRK8r1a1ub/+umLVOuKNJrgN/XIQTZ403ismvHpqyLCRxLV2ObjmpBX/l1c+flSjikr6cstfoKBaUccJ5CmTJ9CQwQO90o/pBzGPxk2aK36JkyRRyd6c2TLSgwcP1NA56bR9517F9LfffqNMGVJHWl/Xxaxh46bUrXuvULWT+bsRw4bQhPEhq3i5BvOefYdVYoZXqlYoWzKmI/d6fMy+a7eelDlLVooXL76qJd2xfcjr6NyiOme4NtzkqTOs8gGuOcOruIsUzGPZnoOZNm07KHtzwp8TWWikniHPmjP8o0m3HiE/gnD9Vk7wetswZ7wl5fk4rhvestUXlCp1GvVMadSgrlWygZ9h5y5cIa4zzfd0qRKFIy1N47pKvvwFaNyEyeqHSG6uOXP0yGHlZ1zN9VouPyuLFspHv/56W29AMeRs+H97GjKyZxn8f/TZDf4/+tg/68qRzRn4/+izG/x/9LHHlf1HAAle/7HGlUAABDQI5MmbT5VZ4MYrCHNmz+SzWqJEiWnL9l0qeOfGr+n27tlNrVDk2mbLV65ViZl5c2erz9G8I7AjaC+lTpNWHdy2TUtas2qldyf+/1Fci3H1uk1WzV9OjHBZhj69utMbb7xBe/cfUUleXk1XqkQRr5PHPnUiBh4sMWcKFy5K8xYusVbW//LLz9S4YT06c/qUeuWdX31je/Gr566SKDEQpeiQuI4x1x7lH574RyYuzcBcfWmYM77Q8v7YfgMGU4OGIW9uRLWkQveeval5i9bWRQ8dPEAtWzRRJWuWLl+tyt7w6vcSRQta5U+876Ezj5R4lsH/m7l34P/NcNVVlZgz8P+6Vgh/Pvy/PFMpRfh/KZLQiW4CSPBGtwVwfRAAAa8IHD1xRm3sxK12rRpqE69ntSRJkhLX8nVvrtWGnFS58+uv1uvRvEM6a/PK1OXLllCnDv/VavSqcw4+qFLlKjRh0jRFgDdjK1akgM92cV85zTZj23F79OgR/fXXXxQ37v+x997xURxJ+3h9fu/3fL4722dscDhjchAZkUUQkhBZ5BwEEgghEYQIJomcgwCRJRAIJEQUEiAyQhI555xMso1tOIN9d8a+e+/e3+epvRnP7s7uzu7OCmm36x8bbU9P99PTXd3VVU8VoocPv6RA/0ZWk4l58DCodt2eOYNLj9+99ZYZb7LkbYixQCi1lBDx9q1b5FWhAht3hw2NpJ07MgT8GhFYvnIVBbUxeHSmJK+jCePHiDmjETtXFvvgww/pwqXrMgVQ9SpeMg2J2nthMPzmm6/ZSC+JMtrgu+++ZW9eKVrk8eNHTHECCoemAb5m+smVfSvodduzlqGvQv/nzYgL/Z83ODvyFnvmjND/jiDs2DNC/zuGm6ufEvrf1QiL+vMSAWHgzUu0xbsEAgIBhxBQhgBeuniB2rdtZbWe4D4hNGPWXDpx/BgNHhTOHItSSBQMUqF9e3NG+v4DBjI9ADzpIDBiNfCp5fH8rvYM0qYt25naAtI80M8ouZdpPZ9/XoyOnTzLmecHRwxg3mMkKtqekcnGw1XxK2jmjKlc39Jl8VS4SBG5ig7tWtPFC+ftaZpHl7V3zqSkbiEk/UDivKmTJ7DhVhpbzAt/3/r06tVLmjtvIXXo1Fn26MUYtm3dXHhV2/G1gQLgvffeY+Nh5QpljAyEYs7YAaTORcMHDqKYiZO51th5c2jpkkVW3yAllUSkAZLgYUylaIObN29Qq+ZN6C9/+YyWx69mPmtJFi2cT3ELY3VuvftWZ+9aJvR/3n0LQv/nHdb2vMneOSP0vz3oOldW6H/n8HPV00L/uwpZUe+bQEAYeN8E6uKdAgGBgN0IIKkEsscPHzbEZlgrQmQHRgyWPadg6G3kawjtR+K0fXt38/thcMzKOSZ7JeJvSLq2ZnUCzZ413aLRCh5Z3jVq0qNHD808Hu3umBs8AEN5iRIlbdJaIPtzwuq1skEd3JTAEZ7ToGSIGTea0QBNBhKqwdtNKUjsFjU4QuZ/VYMO3LGFCxemGzeuWzWcuQHsNrtgz5xJ37GbataqzXXCoAuP6SpVqtLPP//MntNff/0V/waPLSkJntQAcInGjPvCqhcvsqxXqFiJbly/Rq9fv7bZdncugAslGMqPHM2xSWeSF3PGy6sCvf7lF3r86KE7w66pb7hcwmVgcK9uVssXLlyEDh0+QvD6gcA7949/+CNHhTy4f48CA3zl9Wde7CLq1r2nUX0Pv3xAEeH9rV6IibXsN8jsWcuE/tf0qetWSOh/3aDUtSJ75ozQ/7pCb7Uyof/zDmt73yT0v72IifL5FQFh4M2vIyPaJRAQCDiFQMlSpSk+YQ2HkUsCLyspARUOz4dzjxMMT0gMNXXyRIpPSKRy5b24OMqhvFKKlyhJ61M2sjETRl4IjFvxK5bJCcGcarQHPAy8YxcuppatgmQMQZHRoF4t7j1w3X8wh8cNXMutWgTSzNlzqWmzFvzb4ayD1C8k2AypiZOmUo9ewTyeEBjzL1+6SMOiBgvDlcbvCskncIkCSgxJ4O2effgQ/xNjgGzpGIepUybSV0+f0vwFcfT+++8z3t7VKrK3vFJaB7WhmbPmMYeyJBjvSRPGy4mtNDbPY4u5Ys7gkLk+ZRMnrcQFCwR0KPv37aUR0UPon//8p8fibU/Hh0WPpKHDhssY4oKwpndlOQpk6vRZFBLany8OO7RtRYHNmtOgwVFcHpy8mDOmItYye0ZAvazQ/85j6IoaXLGWoZ1izjg/WkL/O4+hK2pwxZwR+l+fkRL6Xx8cRS36IyAMvPpjKmoUCAgE8gkCHTp2prgly41aA+7QCTFjKGl9KidbM81gD4NU7+AQ5vlVCgySy1YkMJWAmsBI3KdX93zS8/zdDBy+D2blyp68aO3Lly/pi5HRNGz4SPYcffXqFfk2qCN76yLkcP6CxRQW2sco6zw2qki+B09gNYGhqmf3zjzOQmwjELdkBXXo+Nu3D8Mtkk1tT9vG3tfwrjYNX0eitXfffc/Mg3vylOnULyzc4ktnzZhGCfHG89N2Cz2zhJ5zBhdVOzP3GRnylaiCO7ZZoJ+gqtHwqUEfHD1xhuAtJwkM5cuWxNHv3/49G3PB0du1c3t5DYLegV7akbGdMnftlJ8Ta5kGwO0oIvS/HWDlYVE91zIxZ/QdOKH/9cVTr9r0nDNC/+s1KsTnQaH/9cNT1KQfAsLAqx+WoiaBgEAgHyEAg+zKhET2NoQh6d333uXM5pK3GpoKY2/zpn42W61MJILC4AGOX7mcPitalPqHhcuHe1Njsc2KPbAAEhMdyj5Kf/zjH5kjGUmm5s5fSH/+859lNMBN6tugrpEh1xJUJ06fJ9QJAZ3Alk2plJV1kDp36U7tO3SUaTrA4QuPXiGWEZg5ex71Du7L3oZ9g3tQaL8wCmza3OiB+JXLaPbM6TZhXBS3jDp27sLlYCQGLUrqhmRCVu7efUJkT+v5c2cL73cbaOo5Zz755FPmwZZ4x7/99hklxK+g599/R3369qM6detxaxCZULVSOY+nObE2NLjsyMo+SqXLlGVv3NCQ3hS7II7KlisvP4Zvv2/vHhwlYkvEWmYLIe2/C/2vHau8LKnnWoZ2izmj3+gJ/a8flnrWpOecEfpfv5ER+l8/LEVN+iMgDLz6YypqFAgIBN4wAv4BgZS0fgMb9xYtmE9xiwwJbZBZG7etEr0Ce1otjbOa8Ob9QoXo3IWrskHENOs96tq97xBVrlyF31GlYln66aef3jAC+fP1yCifc/QkvfPOO3Th/Dnq2D6IGwoML1+7zaH+EBhFDh7Yx3zLMPZaEulAgt9h3A1o3MCIn9nPL4CSklMNnL6HD3FyPSHqCCDENSw8gg163bt2pDOnT3FBKWGR9BQ8rUePGs7jY0kw/9Ylp8pjGR4WalQehwxwX8OT0VKYuhgnAwJ6z5ncoycJ3kCQ+/fuMlcs5psk4C/FRRgEHvVbt2wSQ6GCANasvQcOU8WKlTjaoHGjerLHc+qmbZywUBJcJA6KHMDcvGItc/3nJPS/6zF25A16r2VC/zsyCkL/64ea62vSe84I/a/PmAn9rw+OohbXISAMvK7DVtQsEBAIvAEEwPV5/uI1Dp1JWLmcZs2cxq2AMQkZzpEUBwlx/vPvf8uGDvCGBrVqRuAGNZV9B7P5EA/JyTlMIcHGyXLwd3hwZece5zJasq+/AVjyxStPnrnA3s5IgIYM85Js3JxGDRo2YiMtvKPx/xAY4IcNjaQ9uzPN2g/u0LT0Xfx3GCUD/BoSEheZyp79WWx8R90VypXMFzjkt0aAlmRFfCIb+vB9I5kdpFp1b0LyFcwleFtXrVad5xHk2rWrFNSyqVlXwBd3/tJ19tCGjBszijamppiVA63D4CHD+O8NfWrT06dP8hss+aI9es6ZMeNimDIA8uL5c6pbuzp7a5vK3QdP6Pe//z3PxfZtW+ULHPJbIxYvXckRAvB09mvkI0cbSJm4pUsq8Fpi/uDf65LW0JRJMWItc+FgCv3vQnCdrFrPtUzofycHQ/G40P/6Yal3TXrOGaH/9Rsdof/1w1LU5BoEhIHXNbiKWgUCAoE3iADCwMHJujhuAbfiD3/4Ax05fpo+/vgTNiThQM5Jbzp2phmz5rIHaeUKZczCkZEdetJkg4EYBsJqlcurJh+Ch+jDJ8+4HMLQx4/94g32Pv++GqFmg4ZEUcy40bLX4JqkZKYB+PXXX6l5U3820oKDd3n8aipevAS1bBZAN2/eMOvUtZv36L333uO/Y5wXxs5T7bhUP4zAJYt9mn/BecMtg2Hq4cMv6dDB/dwSL68K7JkOSpOM9O0UHTWI5wnmQ0i/MLpy5TK1b9PSrNWbt6aTT/0G/PerV69Qm1bNVHvWqXNXWhi3lH+Dx/CpkyfeMAL58/V6zRlcQh3OOSZHL2BcMD5qcuHSdSpcpAh/D1grhZgjAAP4pCnTacWyJfT1119xgT59Q2n6zDn8/9FRgykjPY0QAbJseQI18m1sFE2irFGsZfp+YUL/64unXrXptZahPWLO6DUqhnqE/tcXT71q02vOCP2v14gY6hH6X188RW36IyAMvPpjKmoUCAgE8hEC8J6CcRcbJfBNgtsVxkRJYJxF0gE178/rt+7LHosR4f2ZR1RNJA8I/Ibw9S2bN+YjBPJvU6RbcHjqtm4ZSHdu3zZqLBKr3bt716wDSsM7jCv166onWMODZy9cYcM+vLSrV62Qf8HIRy1DCP+BQzm8iQUVw4D+IUatg5ccBJgq5fPPi9HxU+f4T7hAqV2zKlMwqMnylasoqE07/qlsqc9VL07yEST5pimOzhml4X1HRjp7xqsJuHnhwQtjfnZ2FoX26ZVv+p6fG6K8sMAF1oaU9UbNxQFbjaJBrGWuHVWh/12LrzO1O7qWiTnjDOq2nxX63zZGb6qEo3NG6H/XjpjQ/67FV9RuPwLCwGs/ZuIJgYBAoAAhgAPekmUrOdy8RVN/DqnVIkruUVvJ2NZv2ETge4X4+dY3MxbDUNmrVx/yqd+Q/vW//6LzZ8/QwgXzPJ6rF+Hi4QMjqU/v7ha9CdXG6vLVWyQZGdu1aWkxeRq8565cMxiNr1+/Rq1bBBpVh8RuwX1CKaBJIBvyb9++zXzN1rgytXw7Bb0MLkMS1ybTt989U6UksdS/dSkbyd/fQL2xKn4FzZwx1SIU4FwuVKgQX7aUK13MrBy88Dp26kJVq1WjH374gfbt20NrE1cZ8cUWdJwdab8jcwY8frjogNEWeFcsX0qVmgHt6dkrmGbPNXCWL12yiClnlCLmjPqoNW7sTwsWLaGEhBW0OmGl5qHVay3DC3v07E3NWrSkEsVL0NOvntLa1atkuhXNDXKzgkL/598BdWQtQ2/0mjNiLVP/NoT+d685I/S/68dT6H/XYyzeYB8CwsBrH16itEBAIOAhCEhhyugu+GLBG6sm4PRFWXgCq/G89gsL57B2KbGbVAcoA+DppcZP6iEQO9TNNm3b0bIVq/hZNaOtstJViUnUvIWBQxQUDhJlB/5do2YtQjIkiStW+dyunTto6OCBDrXPUx/CYfnK9Tv8nf/yyy/Md4xvXE3AXQpPFIgaz6ty3JTPI+Fe5w5tVCk7PBV3Lf1eEb+aWge15aJqRltlHeAvL/LRR/wn8ForLzvEnNGCtvYyeq1luMjK3HOAk4iaypcP7jO/vLVkldpb7Dklhf7Pn2Ot15wRa5m+4yv0v7546lmb0P96oqlfXXqtZUL/6zcm7lSTMPC602iKvggEBAK6IAAPhhOnz3Nd1nhE8fvadSmERDoQZVI3/BuGSChxSX766Sd6/fpnpgyQZPmyxTRvzixd2u0JlYAXFhy9kGaBjc1oHSQMlF4L//znP6l8meKywRHe2eDKlIzuoIh49uwbAsWA9LeLF85Tx/ZBHu8xqvWbGvnFGIoaNoKLW+NExu+XrtzkZIcQJRcsErTtP5RjZKjCuLzzzrsyVQqoH/qHBHu8Z6LWcUG5O/cf09tvv82Gd6+yJSx+0527dGMvVIhp1IKYM/Ygrq2sHmtZpUqVKS0jU76oQjK3J08e06ef/oVAtwF5+fIlR6+AokiIbQSE/reN0ZsqocecEWuZ/qMn9L/+mOpVo9D/eiGpbz16rGVC/+s7Ju5UmzDwutNoir4IBAQCuiCgpGewxqkLrrKcIyfYKAgjIUKfYUyERA4aSmPHT+D/x6EbHqGZu3byv3GAhCELtAAQNVoHXTrihpVI4Zm2OHU3bdlO9Rs0ZATAhwlvaUjFipVo74HDsiE3JXkdTYwZy2OEcN5dew4QNk0QW4ZKN4TX4S4p6RmQsNASFUpo/wE0ZeoMfg94r/HtS5KWvouQHR3y97//nT0PJW7sZs1bUsLqtewpD0MlDPZCbCMAHmVw6kKscepiDYMHNjyxIMrEd2LO2MbZkRLOrmUw4F64fENONgmjfOeObeS5h3mG+QaxdVHpSPvd9Rmh//PvyDo7Z8Ra5pqxFfrfNbg6W6vQ/84i6LrnnV3LhP533di4Q83CwOsOoyj6IBAQCOiKwNLlCdS2XXuu01oCqKMnzlDx4iW4XHraNhoePYT/H0nbco+eZGOUqXFXamjhwkXo/KVrbGjctHEDjR09Utc+uGtlD588Y1wP7N9L4WGhqt30Dwikdcmp/BtoAmBwRIgynkPoreQ9imR4MOArBeOBMPXCRYrQw4dfkl8jH3eFUtd+5R47RSVLlqLn339PtWpUUa0bxkMYpH73u9/x7/1Cgulw1kH+/97BfWnm7Hn8/zDgBvo3oqdPDYZJSZQepl07t6czp0/p2gd3rMynfgNCghXIkEHh8iWTaV/nzl9I3XsYEqp99dVTalCvFv+/mDOu+yqcWcvQKqVRBWtVQOMGZrQoUoQJ1sFSxf8iIhI0DKfQ/xpAekNFnJkzYi1z3aAJ/e86bJ2pWeh/Z9Bz7bPOrGVC/7t2bNyhdmHgdYdRFH0QCAgEdEVgZUIitWrdhussWexTVS5RpYcuqBdqVq8ke++eOX+ZPvnkU37emvEWHnPvv/8+h9Q2ql9H1z64Y2Uwvj56+i137dDB/RTWr69ZN+GFiwReknf0nFkzaOWKpVxu+cpVFNTGQJlhzXibnLqZkDQBRhGMvxDbCCCJF6hHXjx/TjW9DR7QpqL00D139gx17mjghUU4+fFT59iDGtK3dw9VCoY//OEPdPveIy6zdcsm+mJktO2GeXgJJc9bcM9udPRorhkiXl4VOKIA8wsXUuAcv3nzhpgzLvx2nF3L2rXvQEuWxXMLETVSy7sy/fjjj2YtVl6cWBp/F3azQFYt9H/+HDZn54zQ/64bV6H/XYetMzUL/e8Meq571tm1TOh/142Nu9QsDLzuMpKiHwIBgYBuCDRs5MsJuCBTp0yktYmGpF6SwEM0af0GOcy/U4c2dP7cWf4ZmaHHjIvh/wf3oXfVCha9pm7dfcjciZcvX6J2QS10a787VyR5TQNbnzre9Pr1a7m72DTtO5BNFSpW5L8pk7CBTgNe1RAYsRo38qHHjx6qQrVj117yrlFTUAHY8SFJHqDAtnlTPzNu5ImTplJYeATXiGSEMEhJiZ/Sd+ymmrVq829Hj+RScK9uqm8GRzIMwZBFC+dT3MJYO1romUXhtfbg0dfsiXvi+DHq2b2zERDgqs45epLeeecd/ruSE1zMGdd+M46uZWjVjdsP5DEDxUzy+iTVxg6LHkkjRhnoaRr61DbzindtDwtm7UL/599xc3TOiLXMtWMq9L9r8XW0dqH/HUXO9c85upYJ/e/6sXGHNwgDrzuMouiDQEAgoDsCkvEVFS+MnceGj3//+98cSj5txmw2mEDA4Tph/Bj5/Vdv3FXlsTRtYNly5Sgr+xj/WXgjah++oVHDadTosfwAkgZ179qJeVph/EtITJL5c3/99VeqXaOK7NUGgz0O7hAYQ2AUsSTgLAV3mfCs1j4upcuUpezc4/wAPApBn5GTnUVInDZpynQ5/B+/9+nVnY4cyeGyyoRGeK56FS/Z8Gv6dlyc4AIFIrwRtY+NdGGBJ3JyDlN01GB69fIl1a3nQ4lrk2UO1y8f3Cf/xg3kisWc0Y6xIyUdXcv6hvRjHQR5cP8eBfgZuMbVBHzj4BQX0Qj2jZDQ//bhlVelHZ0zYi1z7QgJ/e9afJ2pXeh/Z9Bz3bOOrmVC/7tuTNypZmHgdafRFH0RCAgEdEMAYcsZu/YaZSf/3//9X5k/FC8ypQno0LEzxS1Zzm1AiHPLZgEW26MMAx05PIrStm0xKgtj5MhRY6i8VwXOhv7ixXNKTUlmQzMO654sCE1GiJIk8AiFJ7Qk4HDt1aOL7FVd6IMP6NKVm+xxDcMvkuFhLNVEGdIGfljwxCoFdAKz58VS9Wre9O5773FCI5SbMX0KIfGbJ0uPnr1p9txY2bMdBlvw7QJ3CLx7p0+bTGtWJ8gwKXlEVyxfQnNnz7QI4bmLVwkepxCvsiWMvLfxt/4DBlKPHr2YAxtz5OmTx7Qgdh7t27vbk4eFjez7DmbLfOEAw3TOgHe3dcumbPiF6DlnxFpm+fOzdy1DTeARB0c4pE2rZpxATU0whhcv3+DLyB/++lfyrmaIbJAEf581Zz75NvZjehWsm9euXqFpUybKFB2eOnGE/s+/I2/vnNFzLRP63/J3IfR//pwzQv/nz3FBq+xdy4T+z79jmd9aJgy8+W1ERHsEAgKBfIMAeHS378hkL0OlwFA1c8ZUWp2w0ujvJ89coM8+K8p/ax7oR7dv31LtizLBGg7VMFahTkmih4+i6BGjZMOYspKvv/6KWjT1J/D+erIg7Bg34JIntYQFDFVBrZoZGVvjFi+nDp0MoemL4xawR7YlURpPTMfQ19eP1qxLYYO7qcBw3KVTO7py+ZInDwtzF69ctYaNikrBd967Z1cC964k4Ny9//Ar/s5hcKzkVdri5YXy8kRJvYG68A2kpG6RPbRNB8ASX7MnDRQwBkaNfBubdRv4DOgfYrQG6TVnxFpm+yuzZy0LaNKU6YEgMOzCwGtJEteup6bNDNQ/S5csoth5c+Si0G279uxnw66pQBeBmihpzWrbjXfjEkL/59/BtWfO6LWWCf1v+3sQ+t82Rm+ihND/bwJ1be+0Zy0T+l8bpqIUkTDwiq9AICAQEAjYQKB2nbrUrn1H+vjjj+nEieO0c0e6qrcmEoBhI2Ua6mxafVJyKgUEBPKfk9Ym0pRJBs5eiDIRCP597+4dunjxAhuvJOMxkukE+jei77//zqPHDkm3QkLDqGq1avTXv/6VMnftoDOnT5lhAt5WUDjAa7dMyaIWOZG7de9J82IX8fPAPTDAQOkAMfVOAfY52YepWjVvKu/lxeMOr9HQPr1UE4R52kDBIIvD3v/3P/9Dhw7uowP798lJCCUscGBO2WjwXDelOjHF6/LVW+xVClFyXsO4i/GV5gbG+OyZ0/Ty5Q/k29hfTrZnyxjmKeODy6rgviFUpkxZI4SyCQAAIABJREFUunHjOu3ckcFh/qaix5wRa5n2r0rrWha7cDF16drdbB6YvgnGydPnLvG6BE/6CuVKylELoAfau/+wfFEFLuzDWYeoSJEiVKt2HTlKxZZHvfbeFeySQv/nz/HTOmf0WMuE/rfvGxD63z688qq00P95hbR979G6lgn9bx+unlxaGHg9efRF3wUCAgHdEFAmgLJ2MK5W3Zt27d7P74UxqnKFMnKoeafOXWlh3FL+DV5U/UP7cPi/JDETJlN4xCD+55bNG2n0qOG6td+dK7pz/zG9/fbbVmkzwLl7+dptmerBlCf22MmzsrewqVEet+prkpL5d8Hbq/1LGhczkSIih/ADzQIbmyVmk2oC5zK8tSGm+K5KTKLmLVrxbzBUBTRuwNzMEBi3du87RJUrV+F/g7bj+LGj2hvowSWdnTNiLXPNx7Nz936qXt2bjbZlSxlHlijfuGd/lvzdKzneMSeQ8V6iOrl75zY1C/STL71gGM7KOcYXI7iwKl3iM4+nBNIykkL/a0HpzZRxdi2DUUzof/3HTuh//THVq0Zn54zQ/3qNhHE9Qv+7Bld3rFUYeN1xVEWfBAICgTxHQBlC3jaohcVQ/fMXr1GRjz7i9im9FkHbAI8rcJZChg2NpB0Z6Wb9yDlygkqVLkMvnj+nmt6V87yfBe2FMGjAsxqSnraNhkcbDIqmogxnNvXAPnH6vEzTsWvnDho6eKDZ8zNmzaXgPoYw9yoVyzI3rxDrCIAyAPyfwKzE5+ah4nganrnwwJKoOJTJ1Vq0bE0Jq9fyS2DwauLXkA3ApvLg0dcEOoisQwf40kSIdQScnTNiLXPdFyZRyICKpkG9Wqov6tylGy1YtESeFzWrV5IpffB3/A4B3Y9vg7pmfOTw4t2ekcllRkQPpe1pW13XITepWej//DmQzq5l6JXQ/64ZW6H/XYOrs7U6O2eE/nd2BCw/L/S/67B1t5qFgdfdRlT0RyAgEHgjCJQsVZpyj57kd0+ZPEGVvxDh/6ABgDx79g3Vq+0ttzUr+yiVLVee/52dncWh/moCT9HAps2tGsXeCAD5+KWSN8KF8+eoY/sgs5Y2a96SVq9Zx3+HVzUMJ5IX6JRpMym0Xxj/ppaoSKpM6bHQt3cPQdOg4XsAz/TwEV9wydo1qppRjuCgceT4aTk5GOgEooZEcPn33nuPzl+6TvC8howdPZI2bTRwk5qKlk2xhuZ6VBFn5oxYy1z3qUgePPBWR7JIU0ESKMwZaV4MGRROmbt2crH6DRrSpi3b+f/hnQvj7tOnT8zqwGXKwycGL3gk/0QSUCHWERD6P/9+Ic6sZUL/u25chf53HbbO1uzMnBH631n0LT8v9L/rsHW3moWB191GVPRHICAQeGMISDyh8CZsF9TCKBP5mHExNGiw4aCMw3XjhvVkb0M/vwBav2ET/4ZkVNWreMm0Daadyc49TqXLGDxEQe8gxDYCSs7jCePHsOe0JOCJXZeyUfYQVRoKwYt1/dZ99v6EdGjXmi5eOK/6wukz51CfvqH8W7UqXvTq5UvbDfPwEn/+85/p6o27jAK8CeGB+/r1axkVZZg5PNZr1agih5Iruchu3rxBLZsFWERT8uA9dfIEde/a0cNR19Z9R+eMWMu04etoKSVP+P59e2jggH5yVfCcyj12Suadzj58iEL79pZ/V3oiWqMRqlGzFmXs3MPPTZs6idasTnC0uR71nND/+XO4HV3LhP537XgK/e9afJ2p3dE5I/S/M6jbflbof9sYiRIGBISBV3wJAgGBgEBAJwQQoo9QfQg8QU+cOMYGwfbtOxI8fCQx9fA9nHOMypQtxz+DVxf8umoCzyoYq/Bf0yRgOnXBLavx8qpAmXsPykmFrl27SlkHD1Aj38ZUs1Zt5mqF5OQcppBgg4c1ZOr0WRQS2p//35pXNX4HR1+xYsXpX//6FydyMxWMmX9AIPn5B9BXT5/S7sydbNT0dAHFAqgWILi0wLi8evWS2nfsTIUKFZLnUqsWTWSOXhjcb997xHQmoHeAJ7zkcW2KpzKRmyl3slQWNBDtO3SiwoUL05kzpwmGM08XR+eMWMtc++VgHQGVz8cfGyhNQNWwJ3MXfVa0KCES4a233uK/40Kkbu3qMv1C3Xo+tDVtB//28ocfqHrVChYbOn9BHHXt1oN/t0Y35NqeFrzahf7Pn2Pm6Fom9L/rxzM/6H/X97LgvcHROaOn/gcPfKvWbahK1Wp0+9ZNpgpSOgAUPFSdb3F+0f9Vq1ajoDbt6Nd//soJWi9fuuh850QNuiIgDLy6wikqEwgIBDwdgTZt29GSZfGyR6gSDxh9o6MGySGz+K1Spcq098BhLvb8++/ZS9GSjB47ngYPGcY/qyVZQwK3//vPf+jq1StyFfAaTt++zaIBzFPGq3iJkrRn3yHZu8203+uS1tDkiePlP8PoizA1hDrD4xp8x6BoUBPlGKolWYOxZO78hWbfBIz/Pbt39vhNq8RfrIbtq1evqH3bVvTwywfyz0pv+AP791J4mMFzWk2UXsCmSdZwgEhLzySvCsbGLoS/x4wbTRnpaZ4yPVT7ae+c0XMtAwWHf0ATAi2HJFhbv//+ezpz+pRHjwuMuJl7Dpp9txIoWP87d2hDv/76q4zTgUO5cnlL/O4ojAPkrbsPOSmlpSRruJA5f+4svXjxnOuHp2Pk4KG0JG6hGZ+vpw2U0P/5c8TtXcuE/s+7cXxT+h89FHtmy+Ns75zRU/8rI7SkFkIfpW5IJkThebK8Sf0Pw/+29F1MkaYUOFj07tmV7t01ROQJefMICAPvmx8D0QKBgEDAzRAoW64cTZ8xh71DoYxBu3Dv3l0aOjjCyFCFbqdu2kYNG/kyAhHh/Wnf3t2qaMBr8eadL9ngCK9FeGCZ0gBcunKTPvjwQ+ZVPHfmDFWuUoXKlffigzroBTz9lhWbkslTZ7DH6DvvvMPGCGC1YP4cI6M7BqBvSD+aNmM2j4WlxGrSQBkZT6IG0Y50A88lROkNh39j7CSPYfwbnnbNm/rLxhI3mwqauwPvw3HjJ1Cx4iWYEuPHH3+kc2dP06CIAUaGKlQIWgeEd+K79q5W0SIdBg5vu3bv5zaYXp5go5qWkWlk8Ed9UjI3PLMwdh4tjluguQ/uWNCeOaPnWpa0fgMFNGlKMPCfPHGM3n33Pfa4hyxaMJ/iFsW6I9x29WnI0GjmB/+wcGF+7vvvv2Mvp7mzZxrVowyFxkGsbq3qFt8zPmYSDYwczL8fPLCPBvQPMSoLjt9TZw3eOjduXKe7t2+Tf5NA9rb/+9//zrRBWOM8WYT+z5+jb89aJvR/3o5hXut/qXdiz2x9nO2ZM3ro/z/96U+UvmOP0eWl6b4MVFs9unXyeD2T1/ofyVlxnlHukZXnGUQv9undnU6eOJ63i4d4myoCwsArPgyBgEBAIOBCBGDMs3bgPXvhCofb/vzzz1ShXEmLLVGGCx49kkvBvQyZ0CWB0k3esFk2gih/g7GsWuXyHr8hUmJia1xWxK+m1kFt+REkXUMotJrUrlOX0tJ38U8wRgFnSSZPmU79wsL5n/gGYJiKX7mMjVUTJk2lDh078W8wzCDJmBADAtbGRpnh+dLFC+zda0mU4YJK7mUcWs5dvMZeipAH9+/R8OihdOXyJWoS2IwWL10hG36HmRjsPXmMbM0ZvdYyYDxq9FiOVlAeJqR51LiRDz1+9NCTh8Ks79bGBl6ly1as4mdi582hpUsWqWIHT1xcnuBS0hL1CWhoNmzaKic+VFaEgx0O3kJ+QyCv5ozQ//Z9dbbGReh/+/DUs7Sr9b/UVjFn7Bs1W3NGD/1/6PARdkqB4MJw7OgR7HxRsWIl3pdJv+3dk0mRAw3Jj4VY3zProf996jegzVvTZaj37N5F06ZMopcvf6C+If1p/IRJ8r4dZyCcOYW8WQSEgffN4i/eLhAQCHg4AvcffsVcotYOx59/XoyOnjgjGzt8G9azaOAAN9Ly+NXMByvJoIgw2rM708ORtq/7klfuTz/9RFUqllV9GBteeIAU+uAD/n3OrBm0csVS/n94j+7M3CdvegZHDjAbA2VoorUxta/l7l1aGQY4dcpEWptoMFyZSs9ewTR7rsHLEweFSl6/cWDvyNxH3t41+LcvH9ynJv6N2BtYko8++pg5lWEAvnTpIrVv09K9QdWpd3qvZZhXy1esogYNG8ktxGFvyCDDpYkQbQjMmbeAevQ0JFuDx7slqhkkm/T3b8Llzp09Q507Gi641ATePIhwgMcVxBaNjbaWel4pveeM0P/6fENC/+uDo9616KH/Tdsk5ow+o+TsWhY9fBQNH/kFNwYOL00DfI0cK7DfxqU9kkzbcojRp0fuUYuz+h9Roxev3OSoRwhoMsaPNYyTJEhWnZy6mf8pIqzyx3cjDLz5YxxEKwQCAgEPREDpjQiuyaghEaoo5Bw5QaVKl+HfbHGOogy8RuE9ChHJ2Bz7sC5cuk6FixShZ8++4SReaqI00MILt07Nauz5BoqBC5dv0Pvvv8+PWfKaQ9b7C5evcxlTDmDHWu3+T3Xq3JUWxhmM6O3atFSlHYGHLvCXEk6NiB7KoeumcwOGX++qFeif//ynGXDwyoZ3Nmg8Spf4zP2BdbKHrlrLwAN45NgpvijBOFWtVM7jOavtHar1GzYRsptjbSrxuSE5m6mAJgghthAYaxvVr2MxakF6dtOW7VS/QUP+Z9Ka1YTkoUK0I+CqOSP0v/YxsFRS6H/nMXRFDc7qf0ttEnPGudFydi0Drc2hw0dlh4jWLQKZAshUIgcNpbHjDXrG0v7PuZ6439PO6n+lnrcWNXfj9gM2At+/d5edJoS8WQSEgffN4i/eLhAQCHg4Apev3mIPUHgS+jduYIbGlGkzmWcR8vLlS6pRraKRt6HpAzBqXb91X+bqbdrEVxDfO/CNJSWnUkBAIIFXCt6fyoRFqA6h/GuSkuUNqRLnRXHLqGPnLvxWcPw29Kmt2gIk+cJYQRJXxdP0aZMdaKlnPaLkE1UzKuGgcTArVw7lO37sKCG5GgR4X752mw3wkLB+fenQQQNHr6mkpG4h38Z+PP5lShb1LJAd7K3eaxmasf9gDlWoWJFbNGvGNEqIX+5g6zz3sW7de9K8WAMtQ6cObThBmlI++eRTyj5yQvbGnTwphtatTbQKWI2atShj5x4u87e//Y2jHDyde9eRL0zvOSP0vyOjYP6M0P/64Kh3Lc7of0ttEXNGn1FyZi07cfo8FS36OTdk29bNNGqEIZm0qQT3CSE4VkBaNW+iagTWpzfuU4sz+h/nnLXrUhgM7IVr16xKL3/4QRWcK9fvsFPL7Vu3qHlTP/cBsID2RBh4C+jAiWYLBAQC7oEADt5QwBDTpDbjYiZSROQQ/g2H5zatmtG1a1etdjxu8XLq0Kkzl9Hi7eseKOrfC6VHG7x4m/g1pH/84x/8InjD4QAo8YMqPXQRzoRkeDAiYsxwkw2OVzUJ7T+ApkydwT8JGg3tYwj6BImCZGLMWEpen8QPYzx27t5PCLmEwEMXFyKScX7WnPnUq3cf/g2JOrp37Wjxpddu3uNMwd999y17ZguxjYDeaxkS76xes45fbJokz1JrwNv744+v6HDWIfa+F2KYFw8efc3/hRd0u6AWdPPmDYYGdCSHc4/LWbFt8VpLeJ48c4E++8xw8aGFp7q8lxd17NSFjuTm0OlTJ61eUnrSmOk9Z4T+1+frEfpfHxxdUYuj+t9SW8Sc0WeUHF3LEAUCL1EIKNHA4aqkzFK2TulNimgUcaloe+yc0f+5x05RyZKl+CXTpk6iNasTVF+I5N6gq4PsztxJgyMFjZbtkXFtCWHgdS2+onaBgEBAIGAVARiR9h/KkQ/Lv/zyC926dZPKlSsve1ShAi3ea+DqxeZXCmeuXsVLNkqKYbAfgVWJSdS8hSGJFzacd+/coUIfFOKkeJLk5mZT39495H8rPa6zDh2g/qEGg6Ka7DuYzckjIKbcmOC2RGI9HDT/9Kd36NWrl8zTPGf2DIs36Pb3sGA+AQNuWkYme6lD4Nn++PEjqly5iuydC0MWEj5J3orY5N65/1hOIFXLuwq9ePFcFQCMCcYGosZF2rRZCxozdjx9+pfP2Kvh66+/otWrVtKOdMMhxVNFz7UMGMLbulChQgwnxtJWdmZfXz9K2bhFhv/F8+eUtDaRExuCasOTJaRfGF8mQTdA8M3+/I9/UJmy5eS/gWYmoHED9si1JkovKkuRJ6bPKw+KWEsxljOnT5ENzZ46NnrOGUf1P/iZm7VoSSWKl6CnXz2ltatXEfSap8ub1P+ejr21/jui/y3VJ+aMfl+ao2uZxHeNlijptExbhj3c7XuPeN9nmlcBZUHnNGduLJUtW45+99Zb9Pz77yh9exrrf0sGY/16n79rckT/I4/Irt2GCDfspWp6V7bYyTHjYmjQ4Cj+XctZNX+j5R6tEwZe9xhH0QuBgECgACOAjUvGrr1Uvbo51ysMVQP69dV04NqzP4uNXBBr2dILMFR53vSYCZMpPGKQ6nuXLF5IC+YbwsUkufvgCW9AsaGsUb2SRWMsDimZew/yY6ZeokOjhlP0iFGysVJZP+r9YmQ0pW37zZCV56DkgxcinA/fu8RzrGwSvD3btG5u5MEJPIePMCSGQAbgQREDLPZCaXg39aw23SibvrdTx7YWEyDmA9hc3gS91rJRo8cS5gFEq1epkqtc2VEkZBkYFkpHj+a6vP/5+QW4mIhftUZ1XYHBFVQmtg7CiEyAd/sf//hH7mrzQD+6ffuW1W77BwRS0voNsiFZWTg7O4v1mycb4PWaM/bq//cLFaLMPQeMErJKYwPDfVCrZh5/Qfwm9L80BjCw9OsfTpUrV6aPP/mUfv3lF7pz5zZt3bKRdmT8ltE+P685rmqbvfrfUjvEnNF3hOxdy8C9m5V9THUfbNoypRHR1EtUolRR6w0uLDt1CKI7t2/r29kCVpu9+h/RcNKZFIltkeBWTbAnQNSidO6BBzY8sZUCD98RI0dTde8ahEsVyKNHDyk76xAtX7bYo/W/qz4jYeB1FbKiXoGAQEAgYCcCCP0fEhVNxUuUoL//7W906tRJWrp4kaZQYxyi1yWn8huRJR0eoY4KFHXfkP7UslVrilsYS0eO5DhalVs8V7JUaYqZMIkqVqrMYc4XL5xnz0B4dyqlSpWqtHvfIf4TuF3B8WpJlF4LMNhu3bKJi7Zr34GWLIuXH/vqq6fs7ebtXYOzB0u0EIvjFtDC2Hluga+jnYA3IpKjdOnSnYoUKULfPPuGcnMOcxZfU0MVsi/DWxEhfdiA/vjjj6qvVXKLms4j5W+oB4dsJJRoFdSGKlSoyGMDQ1X/kGBNFzKO9rsgPOfMWgZPIGRt/t3vfsfj5VOnhqY1ELhgDHBo7NGjN7Xv0In5zSWZOX0qrUpYURDgc1kbge3osTHUoEFDevfd9+ju3TuUvn2b5gsjZRju4ayD1C8kWHNbMRb16zegsAERfNCT1jJ4B9WvV9OM51xzxW5S0Jk5Y6/+r1SpMkdBSIZ6zLMnTx7Tp5/+RU5OiciIFk396dtvn7kJwo51Iy/1v7SGLVi4RObxV2v1q1evaPLEcR5t6LVH/6thKOaMY/NBy1Na1zJEqYWE9ucqo6MGU0Z6mmr14ElGEi/8F2uVMgJr8dKV1L7Db3RbuBB+9OgR1fPx4fUMgv1gz+6dmZrLk8Ue/Q9aJxhvbXnvTpw0lcLCDQnCsw8fotC+vY0g7hvSjyZOnsb7OTVBFFzK+iSaOmWiJw+N7n0XBl7dIRUVCgQEAgKBvEcA/Ee4JYWAMsDeEEtslpGhGLywCFGXDt+ob8XyJTR39sy871QBeyP4P0ePHc+t7tOru0XDuJJbFDfdSFAEwRjc+/KpvBFCaNnsmdNlFOC1AgMywtaxYYUR/9XLlwUMpTfTXCSzQ5I1a0nv0DJlsg9sONcmrpIbHLdkBXXo2In/beq9DSMAwtmwgQZXM+hR4H0vxH4E4O0Z0KQpP7hl80YaPcrgyeuIIPwc3MtYz7TymDvyHk94BoflU2cv8jqFQxn4rU09dbTigGRJW9N2kleFCvwIqFSQAE6IYwjYo/9hJLlw+YbMu4ykOJ07tpGpOUDlgX0A5OrVK8z9L8Q2As7qf7wBl1Pbtu+SqWnwt3t377Dn7gcffEhVq1XnTPWSpG5IpvFjDZEpQuxDQMwZ+/ByRekt2zKonk993s+WLvGZxQgSZeJiODyAsglSq3Yd2p6Ryf8P/d67Z1dCYl1JkCQMVCswVOKiqm6t6q7ohtvVieiOK9cMHs/Wkt7h0vbchavymaVBvVoEpxQIMN+15wDhMlES0EBdvXKZ9xCVKlchJHiVRCvdk9uB7aIOCQOvi4AV1QoEBAICgbxCYFj0SBoxajS/DknYgloajCNaBIaU8IGRvFFSu2G1lShMyzs8pQyyzWJDCcyQAEJNcLgGtyg4diFKr8IOHTtT3JLl/HdLB2ull3DG9jSKHjbYU+B1qp+Pnn7Lm8qM9O0UHaVOuaGcRwjrq1yhjNE7ldQNDX1qs7FYKdjI7j1wmP9kapx3qvEe9LCXVwU6kGWgUgC1Ai4/nA3fb9+xEy1eYvDcNeXM9iBone7qjl17ybtGTa5HjZ7G3hdgPuJwWOSjj/hRzDdb/L/2vsMTytur/9elbCR//yYMzcOHXzLvsmnEg6TL8PdSxf8ikhlp+JCc1f8wiJy/dF027sKjOmJAP7px47rR2+ERN2nKdDagbN6USmO+GKGhdaKIEgExZ/LH93D63CX2sgUnfP26Bt1iKthXgUoD+gJ766ZNfOne3btcLHHtegL1AMRSVJuS2gERJ4g8EWIdAaUTCpIRW/J8Vu4Jzp45TV06tZMr3rg5jRo0bMT/htPDuDEjaeeODKMX165Tl9YkpRAufJFHw7dBXTE0OiEgDLw6ASmqEQgIBAQCeYEAuFsTk5Jp7OhRHA4DQ+GV63fkcGYYnqQbVEvtAbfb0KhoauTrR2+//bZcDF5ZUNIfflhY9qzauyeTIgeG5UXXCvw75sxbQPAYhFQsX0qVv1CZuOXundvUtEljud/KzVLnjm3NKCCkguC7wrhj04XNlxDrCOBg8OXjb9iL89jRI+zlYSrwjkaCQslzXS2pV+SgoTR2/AR+dM6sGbRyxVKzeiRPYaWXiRgfdQRgoDh64gxtSt1AS5cs4kK5R08SvKEhMeNG04aU9brA9/DJMx5bW+GGurzMDSoBZ3WLFq1pYHg/5pRGssfUTdu4Zwjdh4e6HqKkfLAWoqvHu9yhDmf1v5ICCBEGtbwrq9LV9A7uSzNnGyiAgnt283j+ai3fjrP6X2kQsWR4l9qBi7C16zewQcTZCzAtfSvIZcScyb+jJyXfBOUIqLNMBXu3sxeu0Ecffcw/IaJKGcp/6+5DppnBHChb6nNVD2A8e+7iVX5+2tRJtGZ1Qv4FJJ+0zKd+A9q81cDzbYl/V+mQguTgtWtUkSN6QJ02eYoh+hC/NfFraPFcCkrAw7nHOU+C6WVWPoGjQDZDGHgL5LCJRgsEBAKeikBW9lEqW86wEbp+/Rq9/vlnwi0oJD1tGw2PHmIRmukz5zAvJcLIJYGHDrxFk9aupp0Z6UyAD6MLNlY4AOIgj9tXIbYRgGEKBirIgf17KTws1Oih8TGTaGCkweMW2NatXZ35kiUB/QI8dK15APO4/5duAFzAHdq1NmsYuGK/evqUEA4lxICAlDACuCPkWJkYqnDhIoSDBigcIOBDBi+yqcAgeef+Y/acAocv5obS8w2eKPBIkeZm6xaBchXhAwdRSL/+NGzoIIuGe08bqynTZlJoP8PlEebBnj2ZFNwnhP+NSyqE+9kr8PYxPST4+vpRykZDUkLTSxV76/eE8kqqGKxFuzN3kY9PfSpcpAh3H9zi4Bi3RxCKiUP4ixfPjR7DpUqxYsX5b4g8QQSKEMsIOKP/USt4LKUQ/4kxYyl5fZLqy5QejmrRCmKMzBFwRv8rDSKoGZcoP/z1BeVkH6a4RbHCs92JDy6/zBnJA9WJrrjdo8rkt6YXusALnrtSiD882hvVr2OEAfZjcFJ59uwbqlfbPEk1CivpBubPnU3Llsa5HY6u6JASW3/f+vT69Wv5NeBYRiQIxsh0T1Dey4v2H8yRnSWw5wY9xvVrV2nO7JkenYTYFeNkqU5h4M1LtMW7BAICAYGAkwjgEBGfsEb2sJWqwy0pwpkt8X52696T4C0FwaH9wf17lJqaQhuS1xk9o8wqbGkzhBtXcPjhwA7epJTkdRaTIzjZ3QL3uNJggWQPSxYvoufff8eJjXwb+8n9GRY1iHakbzfqHzym4DkF6dq5PZ05fcqs/zCG4B0Q1N++bSujMvBSlLLcb0xNIRziTcNvCxyoOjS4Zasgil+1hmvCHAGFwuaNqdSufUcaPHSYbPT47rtvqU7NavIb8a0nJCZR9WrefFCQNrQooAz3x6XJ0RNn5fBapYcvaDlglEddEHjJwyve1NilQzcLVBXwQl8Yt5Sat2hlhCs60a5NS7p86aJd/cFFV1r6LjaO5OZk04aUdcxZiYsViX4GXOLgFBdiHQGEvc5fEGfEBYonbt28SS2a+dsN36HDRzjJ4c2bN2h72lbm4Rs7boJ8OYlLREQ9CLGOgKP6H7UitH/ajNn8Auj/AL+GFl8GqhkYVqA7Shb7jScRDwj9b3mMHNH/0A+IypHWKOzPlHoG/4Yu18q1C297OAE8++YbOnPmFL384QePnlb5Yc6A0xrc1vBUvX3rJi1cME91f+dpA4XQfJwlpG8fTioJ8cupdJky9MWY8VSypEEn4KwBb3VQOShFivjB7+XLFFf1Zh80OIpA0wBBYmJQOSgF+5DWQW2pSJGP6Natm3Tq5HEjY6anjYnUX+j/rt168D+ff/89XzRhXxU5eCj17BUsG3B3Z+6kwZHhMkzZucc5ITSinVM5AAAgAElEQVTEdC3D33BuCe7VTVxaufjDEgZeFwMsqhcICAQEAq5AoEXL1jR3/kJ6//33uXrQK8yeNV01/AhGPxiYsJGBwh05PIoP2aYCPl4kOIJYC2U2zVqL8jigr0lMoAXz57qiuwWmThx+9x04LG9wTBuOAzMOaps2GnBWCjxvM3bu4T/BSOXn62OWRE1J8YCw9th5c4zqgJd2n76/eQ5jXKZOnsDJqjxdEFK2aPEyM2OihMv9e3fZYC7xgCKBxKGsIzJHKMbum2++5sPIxx8bOJYPHthH7777HmHsJAMukuK0ahEoX5xg/mFclJti1AX6gckTx3u8AR6JhVbGJ8qRCcAVB70xo0fYlahOmZxN7Vu3xGsNw71pskIcUGAE83QZ+cUYAjWJdACHsWhQ5AACBYlWgfcuPNuVRivlszicI9pBcCNqRZTIHv0v1Xrh0nXZCxtRDJgPaoJ17+LlG3yAh2c9knkqReh/y+PkiP5XRjKcO3uGQM+ENTF6+CgeZ0SMQJAMr3nT3y6JTVsxYGAkwfNaikSRfkekV1hoH/Zy9GR5U3MGBnxcuivp0DAOMJqNGjHM7oTI7jaG+NZ3Zu6X81KY9u/vf/87de3UTjV8XxkVJ80d0+fPX7wm7+FwqaXU60gsvWDREiPdhL3Z0aO5FDU4QpW+xt3wt9YfpZFXrZxpHhBl0jvso6tWKseOEQPCIyi4T6i8NiG/QgOfWkYRjJ6Ea170VRh48wJl8Q6BgEBAIOAiBEaPHU8DIwbLhwB4IEaE9yeE70vyhz/8gVJSt8jeUtJhIWJgf3r45QO53OWrtwiHO0ifXt3pyJEc1VbjNhwccJ9++hmVKVvWKDkbjGSdO7XzaK8RGDIWLlpKbdq1N8IGRvM+vbtb5ZlSHp7habp40QL2NoURxJRvuUb1SkYbJFANgGtM4pFVDh7C2wZHDLB4qHfR55nvqoWXJxLZgXNXEmzo4U1tSm8iJQBBOcwr8Ihh04pD/Omzl+iDDz806h/qQQZnjDEuUkwFhq7lK1dxQkNJcHiZNGGc6oVLvgPPxQ1qHdSGZs9dwAk3IIhKmDFtMkcIaBUYJIdGDecDGy43vv7qKb148YI2piZT5q6dZtVIh++f//EP2rRpA507e5aTTtZv0JApcEAboDaWWtvjDuXgnY45gwSSksALJzSkt+Z1HpEHm7Zul+cdjFX/+b//0I3r12j61El2H6RBh+LpBiuMhRb9j3LKy1tLFx3S2CoTF6ldIgr9b31W26v/kXS1UKFCXKmpAQr7sZ2Z+6h48RL8+6r4FTRzxlSzBoAvE7yZkph6zmEvAb1kKVmSO6xTWvuQ13MGaxWoiDCWFStVpooVKxnt0SyNqdb+uEM57KXWrE3mJJ7SRSC+YXjUwrhrLfnmyTMX6LPPijIMoCWbNmWirOuNuON/+IGqV60gwwXarJiJk432YthjS++HERJzBoZjTxZ4n48cNcbo4gh7symTYswcVdZv2ESgb4CYeksD12UrEiiojSERm60LK2uYC/1v+4sUBl7bGIkSAgGBgEAgXyMAg8jiZSvlzNjw0E3bZuCcVAqMW1CwMDRBsIFCEjWUh5F4+Mgv+O+XL1+idkGGzLS2BEobYTwIt5UMXo7yZ9p6V0H7HZ432LB+VrQohzaZegla6s+sOfOpV+8+8s8w7oLDCsYoKdmEWrKwbdt3Up269fi5pLWJnJUW46L0HDl6JJeGDonQ3JaChrnW9mIO1K5Th549e0bnzxkoL5SCb/nSlZv8J3gt+tStYRS2BwMxeHvh2YjxQfZg5aWKtXbUredDS5fHy17AKIukOjDAe3qSCawnSGQXNiCCL62yDh2g/qG/zQUt44t1DnMBdUUNiTDL3Kyso7p3DaZ1kDxUlb+JdcwYbVzqrUxIpFKly7DXuU+dGrwu2SMSzzieq1uruj2PslfjkKHDqUlgUz5sYs4MGhjGtA+eLFr0f+zCxdSla3eGqVOHNqprHn5TelvDKFihXEmrSbyE/rf85WnR/zD64WJd0gF+jXzMKsQFPYzA0OMwdFWuUMaoDC61ooaN4L9hXsKwAsM8jCBhAwZS/wEDeS3Eb+CNB3+8p8ubnDO4IEZUxNBhw2XHjAnjx9h1kemu44d1vXadeowLkkhrSSCIZzZtTef8FZLAOPvts2/ok0//wknYIErOccyHuw+e8J4aMmxoJO3ISOd/d+7SjSZPncHzDWekxo18BG8sEYFbt3LlqnT+/DmLeMBTHRfCGDfoDjXKwH0Hs/mSA4LoEGUeEmvftdD/9s16YeC1Dy9RWiAgEBAI5FsEwJkX0i9MNUGUstFI6AHDnxRSDiUMr09sqrChQXIjU64rW53Ghgm8fZLiXr5sMc2bM8vWY+J3Cwhgszp+wmQ22EohmlJRbJ6Q+EbpwSbxj6IMDoHgY8ZYYsM6d95C6tCps+yZgOcTV8fT7JmGLLdCzBFQ8rbhO8b3bCrK8EBHvHBw8B4zNkaeh6g/J+cwDRsS6fGHcIT1zZw1l8aOHmnkvYN5gWgEJCj89ddfLX66SADi799ENcTc9CEcEOGhGti0udFPbYNa0JXLhqR5Qn5DoH3HTvTZX4qazYkdmfso6+ABq0ls4CEFvlEIEhkioaE1gcERHNlBQW3NPObx3KIF85kbUAgxZ64l/a9MMols85ZEycFvKdmk2rNC/zv2BeKi8MRpQ7TVrBnTmH9UTXAJJSXTxfgpDSeYT5hXELWM9/DshYcvRC35q2Mtd4+n3uScAQ0QEsBh743xLFe6mMdHizjzVbVr34EvOoCrKR0QPHtr1/jNAKycd2rJ23Dxcvb8Fd4/I8+If+PfvOOdaaO7P3vr7kM2qFuiy0D/cbmBS3zIiOihVqPXhP53/IsRBl7HsRNPCgQEAgKBAosANi7z5i8iHNaVmyGEmPfq0cWhfsFQAq5fiMhWrw3Cxo396a3f/95qVnrcXB/MOiKH9al5aCvpBNQSuGFDG796rezlYI1jWVvL3bsUwvxHjR7LnQzr11d1fDCHsKGFAd70AKEVHVyyzIuNo/YdOsqPgFcZHlhCzBE4euIMhyurebArSy9dnkBt27XnA3OJzw18ybZk2YpV1KatIXzQmXXQ1nvc8XeEZSI8E16CgQG+FvmLMVfuP/yKdQ54lk1pUYANPIDCwiPYk0oKvZUwg1FfupiEZ70y5NYdcdWrTxL/rjWvdOANPkoIDE41q1ein376SXMThP7XDJVcELRKFy5f539PnhRD69YmqlaSufcgVa1qSP7p51tfptZCNMjWtB38d2vUGzlHTrDnPbx3wYspxDYCeTFnJD2F1jSqX4dgbBRiHQFEG+7amWGVogf5DmbPNVz8waHB37e+Ebbw4L5y/Q7rIUtnlXExEykicohdewhPHzvpsunE8WPUs3tnVThGjBrNXOEQNQogof/1+YqEgVcfHEUtAgGBgECgQCKg5OaTOnDp0kUOF7fXixcH7zv3H/OmSS05S4EEyMWNRuglNptjvhih6s2GG+wDWblyMj1QakQODDNqFby2pk6byX8D7ygO5q9fv1ZtOQwx8xfG0ajhwyxyLLu4ywWieniKIpwckpG+naKjBqm2G8YqhPcD94rlDRmf7RF4qiasWkv1fOrzY0iuhzBaIeYIwNPpxu0HcsjluqQ1nKTOVLD+IFQQBietBl4lfzUOhLVqVNHMLyvGikh5aINREN7PSn53CSMl76HSwAvDb3DfUOrVK5jKlC1ndOmIZETI1L1i+VLauz9LTpjTLyRYJGbT+PFJHryW1imE8x85flo2nqt5gtp6ldD/thAy/11pFN+2dTMn3TIVlLl64y5f8JqO34xZcym4Twg/YomaC79JHsDgfK/kVdr+hnrgE3kxZ+IWL+foKsiA/iGctFWIZQTgqHD81DmSEq+p0fP4+vrxZaOUi8KSl6iSKgDevbikVwq4xhHJBQkMaET37t4VQ2MDAaxTOM88ffqEowzVROmMgmhRXDoK/a//pyUMvPpjKmoUCAgEBAIFBoHs3OMc0gTB4UEK9Rs3ZhRtTE1R7QeUMTa/qSnr2Sgp8WQhdNq3sSHL8/59e2jggH5mz8+cPY82bkj2eK5RAKPMOIt/g1NyzeoEOn78GH344YfUPyycWrYKko0d2DTBy8M06ZMyrBb1/Otf/+LkbFq9QOGJ2rxFS+YJtpbMosB81Do1FJQjCOGEV2LXzu3Nkm0gJHDJsnh+G5Kw1alp8LDSKvBiiIoeIVNwYB71Dwn2+Kza1vADD9ze/YdlzC6cP0c9unUyomuQ6BlQDw6ALZsZkn5Yky3bMmQje+KqeJo+7bfkK7aeFb8bEEhav4GTeUHwLeMiSmmwMB275oF+dPv2LaZeQDiskgcZRmLQPSxZskg2FCtpU8BV3ap5E1Xoq1X3pmtXr/C8FWJAoFv3njQv1hAVYKqbcbkBPnEYEiHgvgzt29sidM7ofzEe5ghIUQmYM80C/cy83/cfzKEKFSvyg6YXvMh/gEz3kCmTJ1DSmtWqEB86fITKlffixJXlyxQXw6ABAT3njNrrkE/h2Mmzco6EalW8PD43gq1hmTxlOoFiDoJ9MPInrElcRdevXeXvG3zU2LNJkrE9jaKHDZb/jctf7LsDmgRS06bNqWy58vybqRcvKBqOnzxH77zzDr8Hc8aUEmrAwEhCJFxGepqtZnvM73PnL6TuPXpxf9UomCSvaPwuRb3prf89BmwbHRUGXvElCAQEAgIBD0VAaaCCt279ujU5dMbPP4A6tGttEZU58xZQj56GAyA2P/DUKlzkIw6tlf7WvKkf3bl926gOhD8jDBqSm5tNUYMjPJ5rFIcIeOFIyR7UQAfGMLbHjBttkaOtRs1aNG3GbKNEE7du3qRuXdrbxFiZgAcG3p070mn+vNkef9iAt0jO0ZM8NhgDJOFYl5RIly9dJIQATp85RzY0WuLpVRtPJPZalZhklGTt0sUL1C80WHPCCQ9dsrjbwC910zY+fEFgyANXLtawRr5+7EEirUMw/trKHK+8aIFhESHMppconoy3PX1X0lzgORyAL1w4R0WKfGSUIV1poN20ZTvVb9CQMT+cdZCWL1tilrAQiabgHSTNRd8GdVXDmXsH9yVcIqIuJLXckbGdFsTO9fiLK3izwXPq448NdCXwmtqTuYsTgDZr3lLWPxgv8FtbS27kjP7v2KkL/fnP79OTx49pz55Mq9RE9nx3BbmskmYBuKdv30YbUtbzhce8+QvlC3jQZuCCV5nYEEbCcxevcvdxQayWpE1ZRkRWaf9S9Jwzpm8tVqw47T+UIztU3L93l5r4NzJrHNrgHxDIe/Kvnj7lSAZ7I+u097hglIQREftmU55dZesxV5C4bsvmjfKfcYGFaDhT2h+pAMqOHjWc4AG8aPEyKlykCP+EvVn7tq2MwIFREhQeGB+cfwZFDPD4ZJ8ACFEciJ6SaJSOHMmhDcnr6fatmzRl2gxqEthMxlHyWNdT/xeMLzhvWikMvHmDs3iLQEAgIBDIVwgow5jRMGuZtU0bDkPt3PmL5M2p8nd4MkZHDaaTJ44bPYb34YAuGYHxIw4zqxJW0NzZBnoBTxUYLeB50K17LypUqJAMAzxxv3r6hIYOjqBr1wyHOFsCnr6UjVtlSge1BBLKOhCae+rsRbPNMgwkKcnrOPOwJwvw2bl7n5ExFtgoDxc7d2RQ1JAImzDBO37p8nijTS5CDRFaC686NYGHFg78ksEFXpB16tTz+IzbwHLjlu1Uvbq3Rdy1ZiZXhgxqDU2Hl+j//ec/zHspCTxMMVZKA4zNj8INC4DXPXbBYiOPXGU34bmD0EwcwqEPoBek+QTjRdSQSPbMUsqK+NXUOqgt/8nSfINnKQ6XUtZ06XnM1+1pW3meebJAz2TuOUheFSqowoBvuXOHNlaTF+JBR/S/qeFfagAoaQZFhJntFzxtnFoHteFoENOEqhIOuMTq27sHHT2aawaNMvrg8uVL1LtHF6MLjUVxy6hjZ0NeBVOPRqmy4iVKUmDTZlSvng+9996f2bMe3sJnTp/ytKEw6q9ec0aqFIYvJI0Et6tkBFPjiEV56H4YMyWqAamOixfOM7+pJRouTxgwUJdNmzGLL3SV6/3PP/9MV69cpvCwECPHBhhks3NPyPtrXHTEr1xOe3bvoq3bd8hGX8wzJd7Xr1+jNq2amUWDSEZJJdbZ2VmcINce3nJ3HCusJbt275fPIGp9lPJM6Kn/xVpmjLQw8Lrj7BJ9EggIBAQCNhBQcu+ePnWSunXpYBdm8KjCJse7Rk0+TGBDhTApS5ub8TGTaGCkIVQKYYJvv/22/D4k/gAH7b69u+1qgzsWBq4VKlaib77+2mFDEQ6J2UdOcDIqCMI2Eb6pJjhklCxZiuDlU6dePYKHldLD4fatW9SyeYBHhztjw//FmHHUOzjE6IICBqrNm1I1GcH7hvSjCZOmyp5ykkfwqBFRFr3lpBBRvAdZiV++/IGat2jFhjNrWYrdcV5Y6hO4kr8YO57q1vXhAzMOywjPh3EXXqK2RMlfbcmLSq2OS1duMrUAaFPOnTlDlatU4RBRHBAR/QAvb08WGEYGhEdScN8QvhyBARfr/Pp1ayhuYazReoIkkivjE+VwWeAGr+tBkQPYo71kqdKEJFGoA2GyVSqWVTVCYt1r7BdARYsW5bFo1rwFr2uSPHv2DYEWAu3wZBkyNJpC+4XRh4ULMwwwuMMAbs9Fqz36H9EKWLcgmJ/wiCv6+eeEyzMI1kLQCS2YP9eTh4UwD+bOW0iIxpEuPCSv9lEjoy1ygmMswJ8seWdjDYIhOG3rZnr86BFl7NrLhmPU5VOnhlFyKjy7KnGdTK1lOgBIZAgPeFz2erI4M2fgrdujV29q1qwFJ7pTGhCxF+4fGsxJPZUC2g0YeCUxvVSGp33zpv704sVzTx4W7jv0cKlSpenO7VsWIzWUUWrQA038GjIlHQQRP6fOXpIdVnDphLNMVtZB1aSHmJ8ZOw0X8nDCwNyS5iv+Hb9yGcGA6cmCdQXJg1u0bGUUnfjg/j2aNHG80feul/4Xa5nxFycMvJ48A0XfBQICAY9GAKHOOFD06tHFbKOIDUvf0P4WszoDOJQ5e+EKH6Jzcg5TSHBPVTyRSArhTNgI4fCBQ0bFSpVp4aIlBK4rSWBMxKEemwAhlhGAARbYI8zWkihDyCT6Da2YgpN5y9Z0OZmRFLqm9Xl3LgfPUXy7P/30oxkFiVq/sXldk5QiG9tRBuPRr29v9pKyJk2btaC4JctlKgJl2alTJtLaRAPdiRDHEIAREh6f0mWT1kQqOKAnb9hMjXwbm70YxsNqlcsLigcHhgSeobPmxMqXKNAVyeuTqH79BmywhcyYPoVWJ6zUXDs83hPXJhOMLBDoGNAHCTEgAD2iRkeil/5XJl6DcTfAryE9fvSQ3419Qdr2nbJhXyTN++2rxPf6u7feoi8f3Ne0lmC8Fi1eTqDdMvX4lGo9eiSXgnt1k1/SomVrDkVXekBi/frll9f0wQcfGnngY960ad2Mve49XSzNGeACz1LkofDxaUDVvb2p6OfFVOm3gOOe3Zk0MWaMmVHSlGd20YL5bDR89933+JK4Q8dOPAQSh6mnj4eW/l++eovPGljrQMFk6oiiNNra4u0/eeaC7ASBBG7nz5/jRLkSTzba8+rVK+agFUnzDAb4Tz7+hO7fv2d1/XBG/4u1zHwWCAOvlpVBlBEICAQEAh6GwJSpMyi0/wCydeiSPA1wc12mZFFVlJTJ1zZt3EBjR4+Uy0UPH0VDoqLlwwQ2YOvXraXJE8d7GOLau4vsv4ULFyZk/rUmML7Dq8fa2Fh6HsZ4hE7DoIkxwdha42XU3nrPKAn8YhcuofYdOsreHcBvYew8Wr5ssWYQcJicPHUGwQNYOriDAqBureqa6xAF1RFYsGgJde5iMHgcOrifwvr1tQsq0KEsj18tGw/xMMLNcXAX4hgC+N7HjZ9I/QcMNAtXd8agAQ9geM9BbOk0x1ruXk/ppf8Rrnv0+GkGx5JxHRyyuCSGUQSXI0JsI4DLKTVjKwzqCP+vWbs21apVR/ZKROh63VrVZMMWeMfT0nfJugnRDiOGDTG6dOzTN5TGxUxiAzD2AI0b+cjGedst9LwSx0+do88/L6baceCH9Qve61s2b+JEhmoC6p+dmfvki5fBkQPM9AlyNgT3CeHHfRvWE2Oi4VO7cfsBX5TDe7debXVap6zso/JlEyiE1BwogDvwh5hyXuNCHuchJc0aKB5atwjU0EJRBAg4ov/FWqb+7QgDr5hTAgGBgEBAIGCEAAxJ9758ygdshJD51K1hMfnT3gOH5ay1xYv+Fg4rVQgjSObeg/xPHDIQXmtqKETyA3iSYIMEgQEMSauEmCOAhBvrklP5B0t8evgNB8C7D57whgneCsDdXlEeJFo2CxBJJDQCCKMuPBFhHJfkwvlz1L9fH4thttaqNuWv7tyxLVM0CNGOAJJ71Klbl+bMmsHGCiTQw4Ec2OICxLtqBYcScSGjNzyuIPfu3qHAAF/tjRIlLSIA785lyxOMvKRhIAEPKTys7BWM/9p1KfxYeto2Gh49xN4qPKa8nvofe4g79x/zXsKScSVy0FAaO95AIVS6xGfiItHGlwb9MmPWPE6oZilEH0kLN25Okw2FXTq1k3UG9NK5i9dk/QT6BVDaqAn2Zodzj3MSSyRFEqKOgFIPoASoLWAABFXPoUMHmHLGVuJOzJELl2/I3KUST6npGwsXLkIXLhvoh9YlrRHOEBo+Ssn4bu0SCRz6Y8bFcG3YJ6xcsdSoZlOO91bNm6jSQCGfBtY0UGkJA6+GwVEpolX/i7XMMr7CwOvYtyeeEggIBAQCbo3A4qUr2fsQAiMvOHpNeSVr16lL27bvtGpEPHbyrOzhhhvx7l06Mm+lmiCcffSY8eIgYeXLgkcUPA1gwIUg6zw80kwlce162WC+IyOdhg2NtPt7TU7dTI0b+/Nzal5vMARg0yvCNg3QwmgIOgZlEiMkURs+bIhToXrjYiayVxZEcO/a/RnzA/BGB9ceQpDHjRlJ4RGD5QRtCIGNWxRrd8WYg9dv3WfuXxzemzbxpXt379pdj3hAHQEctnHoNhUkfgR1gz2iNCI6uh7a876CXlYv/Q8c1qVsJH//JgyJ2uWU0pNeXCTa/nKw5sDwCr07c8ZUIxot6GR4wIeFR8gRH+A3VnKC7t53iMBdDsFle+aunXTjxjVan7RGVZdL7wL/tRB1BJAgD/QYksDAOzx6KOVkZ2mGTJkMD3vkhj61VZ/FeOAbgCSuiqfp0yZrfoenFlQ6K0SE91fN96GMNJw1YxolxC83gkvJi4y5EBbaRzXpIR5C8jCUnzFtisXzjqeOhdZ+a9H/Yi2zjKYw8Gr90kQ5gYBAQCDgYQhs2LhV9qCCAQMeo0i4AUOtadIoU+oFQAUDyI7MfVSxYiWjpCEbUtZb9BjxMIgd6i64k7dnZMohzOB0nT1zGh/UwDMWuyCOAps257odNTwhCd+apGQ+JIILE55V+K9S5sUuovYdOvHhcVXCCof64k4PgcctYfVaDjeW5svIEVFOJagz5a8GNQM8GYXYhwAOzx06dZbXIeVBvHrVCvZV9t/ScYuXc52QA/v3UnhYqEP1iIfMEYAx/uKVmzJvO9YYZJ9HIhVrc6BDx840Z94C2rUzg5NLwtsXF5FICAqPKoglD3gYTv7n//0/evXypRgSInJG/yNUHUlVsSaCTxbYQpCQtXaNKvT69Wv+N8Zma9oO1jNqVELgZRw8JJquXLlEe3dn0pEjOR4/NvDMbdCwkYwDjE3gNf73v/9DpUqX5gsnSfeb7rV6B/elmbPnqWII/Q6qmiGDBmq+tAW/5uuff5bH05MHB17Ti5euMErsCA/OiAH9bBr5MGY373wpJ8Nr4t/IYi4KUKeBQgWiRgmEtQ4cypgzKeuT6Nq1q548LNx3rC+45MU6hEuNwZHhtH+fIVGatA5Jzir4N2gcEHGgFOj7oLbtjLipL144T316d7cr+kfMGdufoxb9r/daZrtVBauEMPAWrPESrRUICAQEAnmKwIhRoylq2Agzw4iyEU+ePCbfBnUthqDB6Dhj5hxq1bqN7FUCIzG8dUyTHZh2rmEjXxo5agyV96rABmOEJKamJDONg6nBMU+BecMvw6E5LWOXnDlbOtBJ2Xyl5o0bM4o2phpCk7UKPFHgwSXVlZubzaHRSkEG9FNnL8plYHSMGhLJoYieLrj8OHP6lM0kalpwUnqVWAul1VKXp5eBh3X86rWy9xrwwAG8a6d2ckZtrRjBgIXoBMwReNJVr+Jldx1a3+WJ5ZRen6kbkmn82C9Yd9SsVdsqPcmV63fkEGfgBqOhZNiVxtuUExHr3ey5C+SQdRgAbt26SVMnT/B4KhRH9D8uIGEskaJMgDvomaRkXqAyiRk/hvmvO3bqIl9Umq5vmFtIgigZh1EPPPBTN6yn+XNne7T+B3YxEyZzAiM1efH8OYX06Wlm3Lt87bbMEQovxdevf6aAwKYcqSNxvAPjoJZNCfs6SwKPyO49eslzC0bmI7nZNGXSBE4i6skyMGIwjRo9Vv7+cdmLqIExXwwnS17QU6bNpNB+YQxb1qED1D+0j0UIkYMBThMQ72oVjejTcCGybIVx8lWMx4L5c2l72lZPHhamktuStkNeT3D2OHf2NCevw0WTtN+1FuGBOTJ85BcUNiBCXs+wtiF54flzZ63iK+aM9s9Pi/7Xay0zbRXOq7jktUWpor03b6akMPC+GdzFWwUCAgGBQIFBAF44s+fEGoWeS42HgaR7lw6abrBhlNy6fQfBOAi5dfMmtWhmoABQEyRgix4xStW4jE1ri6b+Ng3EBQZkBxqKDen0mXP4kKzke0VV//jHP2jOrOl2hTKDAzkqegSBN1mSly9fUp2aVc08enbs2kveNWqatRoeDZEDw4rv9sUAACAASURBVAiJwIQ4hwDCaBGCJo1n5QplNBk1QOGBEM8Z06eyFxA8fsaOm0CrV600CtV1rnUF92k/vwDm/JaMIzDQLolbSAhl1ip79mdR5cpVuLglrkTTunD4njRlOi1dvIg2b0plb1RwmMMDLjIiTNA7/BcwGC9gxIBY4m23NE44qK9OXMeRDBDQC/3P//wP/e2nn5ivcnHcAqNHBwyMpAkTp1gc9m1bN9OoEcO0fhZuWc4e/Q/dsXP3ftlYeOzoEUKmeVwArl6zjpo1b6mK0YrlS2ju7JlGv8HoODd2IRtgoN+Ul5c//PWv1LVLe4+fM1jLEEVToWIl+s///YduXL9Gx48fpR3p281wRtn1Gzbx33HBjkRSksCDNHFtMvk29uM/YX9Vv665fsdvSuOL6Utw6T7mixG0dYvhPZ4qWNvnxcYR1nzpu4Vxd+6cmbRmdYIZLMiXgDEAfjWqV7LI1a/MafHdd99SnZq/7dVQKYyIdevWI/D0Yg1UzpmcnMPUr29vTXsIdx03rCOpm9PI27uGahcz0rdTdNQgm93HWCWtT5U96aGnsE9GhIKaiDljE1K5gBb9r9dahpdirsYtWU516tST5wyMu8+ff89Rq7Hz52iOaNDeS9eXFAZe12Ms3iAQEAgIBNwCARhE4GVQrFgJ+uGvL2jDhmSLYWSWOowN55nzl2XP09GjhtOWzRvNii9fuYqC2rST/w6vn4sXLxA8ej/7rCj/HZ4mgf6NRMg6EYFSoUXLVryhv3rlMiE009YNtJdXBWoV1IbpHMqVK2/k6QZ8kfW8W9cOZiHLGIPUTdvkMchITyNk3JY8gHBIwZgicYtpQj23mAh51Aklf/UXI6M1HZrr1vPhkGdJ8A1IhzwY/SuWL5VHrc//rxkaNZwvNCRPQ638n8pEhzA0wYtKi2TnHqfSZQzJDpXjgn/DI3HZ0jgt1bh9Gazv4LKuULEijR09kkD/Y49gHQKFDQyTuKCq5V1ZdR365JNPWRdJ44HEnvAOhcGsZ68+8oUmEiR2bB9kTxPcsqwW/Q8DIg7fkIMH9pnx6ecePUklS5Xm30GfsSk1hTIzd9pMPgmDyoDwSOoTEirvHaBbkNTw4ZcP3BJvvTulNLDHjBvNewRTUUaMwDBv6vWp9BDF5cmgiAFsVO4b2o969OgtX6w4ymuud5/fdH3ImZCwai2vZZIcP3aUevXoIv9beZELioywfn0tNvvAoVx5XbK1JwC9U3T0SOrWo5fsbSqSfhmgxRo0bNgIKlu+PP3pj3+kp0+fUtLaRMo+bLhQ1yorExI5MhGSnZ1FoX16mT0q5oxWNA3ltOh/PdYyvKtFy9Z82S9Fl6i1FFFA2J+ZcjLb16u8Ly0MvHmPuXijQEAgIBBwWwQQngaDnzWeUOUNrVo4WqfOXWlhnCGDLQwhCFdDMjFJEJoYHmG4ZYchEUZiIdYRwEEjKKgt1apdm8qV9yIYN5AgzVSA953bt/nWGocNNTl/8RoV+egj/klKWIHD/4qVq8mnfgP5EXg1TJ86yW6KCDGWRN269yRwHEMQKtuofh3NsMDzDfOncJEiRs/YOhBqfoEbFYRHDzb4b/3+9xQS3FNTzy5duSl7/4K6BBQmWgRGqvkLFlPbdu3NvBG1Gom1vMddysDwocYfCS9Q7xo1zDw+lf2GkffW3Yf09ttvW8w0r8yarmZYUeoZSxeR7oK1Xv0AjyjmFIyvZUoWNbtkhJ64ePkGf//2XI4o2zd5ynTqFxbOf8I+o3YNQ8IwIdYRgGd19ere7I1WttTnqoVxAYWLKAi816KHDTYqp0y8Gh1l2OtJgjm3d/9hNmbikhc6C57CQogT3iLpVqFChWjIoHDOlyDJ4CHDaPTY8fzPPr26W+SZxroHwxYE9AJVKhouC20JEn7tP5QjO0aYjput5z31dzgy/P73bxudPUyxwDp25/5j9r4GLUpN78pmcIk549gXZEn/ozY91jLsr7HPlgQe8cnrkuj+/XtUtmw56tKtOxUvXkL+HREmiDQpKCIMvAVlpEQ7BQICAYFAPkcAN68nTp9njxr/xr8Z+kybDY+5e18aNv4PH35Jfo185CIILTt97pLsTTpsaCTzl5lKzpETVKp0GYubqnwOVZ42D3iDyxDGDlPBQQzJJC5fusiJonDwsMZtrMxGDw/f5k0NIZ2S1Kpdh5YsWykfJvD3AL+Gdnt65ylA+exlOCgjS7ZEuwE+REcSpSgPFvYaifMZJPmmOcOiRxJ4SSEYE4yNvYLLliPHTslGXnuMxPa+yx3Lg2cXSVjgVQtKGEsiecCb6hipvHItA3XDwljz5FPQRaAUEvNH25ckcSCbUgAon1Z6iXbq0MYmd6Xam5UUKaAS8HTeVy2jk75jN3NYv3r1iqpVLq/6COYVklFBbty4Tq2aNzEqJ9WBPzb0qW2WPAzPgxsTOkxcvptD3DqoDe3ZnWn0w9p1KdQksBlfhpT4/BPVccEeDrhKe4KZ06faldgW9GhYDyHgisW8E2IdgctXb9Gf3nmHatesajXxpuTwgH1zyWKfmlUq5oz+X5qza1n7jp1o8RJDYmjMO1zgqtHK4FIF0aTg8ceFFajPCooIA29BGSnRToGAQEAgkM8RUCPGV2syvG/ghQPZuSODooZEyMXAH1q2nOHwYSnkCb+tSUpmagFrm+J8DleeNW/BoiWc0EaSSxcvUNahg5wUxR7DIbiqcPiTQtqtGW6RaGz8hMl0/dpVcZiwMdKbt6bTDz/8lUYOj+Js5MhyjgzBEGSNh1ePvaKXkdje97pTefAdJiYl09jRozh0E4drGLCw2ce6AwOHIx5qoIZAEh6Io0Zid8LZnr74+vpRysYt/Aj4DpsH+qka97BGwbMK88CSlyfG88btB2xot2QETkvfxQl4EI1QoVxJe5rqkWWli1eE73uVLaFKEwRufSQqgjhKTaLUaY7QeHji4GzZlkH1fOpzoq9ypYupQjBmXAzBsx2iltQTIc0Jq9fy76BOAfamgjn1zjvvEPYZ7du28kSo7erznHkLqEfP3vwMKJRApWQqqxKTqHkLA5Z379ympk0a2/UOFH7w6GuO2oKRCrpLiGUEMB4YF8iXD+4z3mp0Y0qaHzhK1KvtbVapmDP6f2nOrGVItnvk+Gk5gtGSE5HUauwDW7RqTaBwKkgiDLwFabREWwUCAgGBQD5GoGy5crTvQLbsfXvyxHHmGlN6hMLLN/fYKVXeSyVxPg6IyEwPg5eaSHyWOOQj+ZQQywj0HzCQk2xJhlkYp5A8aNyYUXZx5JqGNCFMcMqkGIvZmfE+GMOkAwu+j+0Zuyl23my7kr+589jC4xl8oRCEzq5ds4rCBw5iwxQOFDWqVWSuaXsFyVaC+4TwY1qNxOAs/erpU8Fp/V+wlZdN4C5EMjQY+yDpadtoePQQe4dFNyOx3S92oweUvIeYM32DexB0jVK2bd9JderW4z+pJc6BURdzb/HSFXK0gWnoNOgEzp6/wmuY0DPaPiClYSRh5XKaNXOa2YNILIiM9pCJMWOt6gKESRcuXNgoiufdd9+lU2cvEf4LqVurukjqqWF4oFdiJk7mkrNmTDPjlPzoo485AkvaJ5h6RuOCt36DRgRjIwyF4KaEoVCZUFW5hzt96iR169LBqGWYd7ZyA2joilsVAR8suKkhiKIKDws16t/4mEk0MNJAlYH1rm7t6kxvYo+079CRFi9dyY+oXSqKcTFGE3Pg6IkzckLo599/T0Gtmhl968Ds+KlzBIMhJH7lMpo90+C4Iomzc0bsmdW/cmfWMikqR1kzLr3OnjlNc2fPsMvpxZ45mNdlhYE3rxEX7xMICAQEAm6MAAwgGzenyYcEHIy3bEqlI7k51KBRIwrtN4D5qiCmIf6Hc45RmbLl+DdrnIcwfsEbAf9F8jUkWlETeGghuzSSgFgyFLvxUBh1DViAlxVeIFLSLRjRZ06fotnYikNd39D+FBE5mHAYlATGlZA+PdkzyJooE4QgpHbIoIFWQ6w9ZWzg0TYkKtosyZ3agUELJhgbJI+SjMTghXv18qXVR1EWNB5INrExNYUNL9aoOrS0o6CXwcE7PmGNnNRG6g/mDfgPcdi2V5SeWGocl6b1Ya28cPkGG/vhSQSvOiXvpb3vd5fyScmpFBAQyN2BwQhGi62bN/IahPVJmcwOdEFSIi6sg+k79lB5Ly8jHmTUA4NVQOMGTMeAUPMjx07LSaP27N7FCaXUBMkqX//yCz1+9NBd4HWqH5IXLyoBvRJ42F+8eM51Ro8YRcNHGLx3sb7Ay9ea3pAoH1AGye4ePLhPbdt14PGBQI/AEClEGwKIwJGwW5e0huIWxXKCO3iprU/ZJHOLIwEekk5C8H0jyqTQBx+YvQRei8AfY4kLE1ysSMlWTS9MJGoaeMM/ffKE1q9bI/j5/4uoMqEqPJ+XLF5Ez7//jkaPjSHfxr/RYA2LGkQ70rdrG+z/lmrZKohwKSbt+xAplLbNEAUhyaYt29m7G/MUhi4YKh2JTrGrYfm8MOZJVs4xea8L/QCu9q1bNlOxYsUoatgIOc8Bvul6tavLl/F6zRmxZ7b8kTiylsHpAc4PEOiUv/30E6950pqFv+/ft4ciB4Zp3v/mV/0vDLz5fIERzRMICAQEAgUNAfDopqXvlLNlq7UfHgj16njLhzt49MCzB4Lb8lo1qljsNhJSIDEFRI3nDTxnM2fNMzqQYLM6acJ4qwkTChrOjrQXHgEr4xNlGgzU4YixFRjHLlwiZ59FGHSdmtWseuf07BVMEydPM8pYC+Pw4EHhdnukONL3/7+984CO4si+/tv1eh2xkf/GNiYnkUEimJyjyTkHIXLOiJxzElGILBGNAZMzCJFtkxE5mmRwAmPjxQbW+51b+rrpGU1qaRRGc985e9aoq6qrflU93X371XtJuQ680ZDsC8lYNDtz5rR06djOdHxJbVs52nFVJB4zbqK0av3Kcwhe16NGDFXXl7cbtlhOmjJdUqZMqVDgRW/C+DGyeOF8U2hw7e3Zd1C9aLsqEsPrCt5XRsPcLF40X6ZNiX5R8VZr07a9DB8x2uLlzJqFUczAi9y+iEO6iAWOXx87IteuXZVOnaO9sfG3P/54avEBCx8iq39e0WK3Azy8IIjhgyY8fLV1sXPHdunTq1usxP/kMo/4KLFm3Ubx9y+gDwn3+9f//W/d6xaifFD/Pg5/X/Chak/EQf26s+aD+1aj+nW8Xogys27wYQMfOBBCQTOIU8Ys8vgoX+wzf+W1XrxESUHMZC0hKwTdI4cPKZFYu1fh3v/WW2/rc4t2l4UvVR8JjbZz936VgM1o+B0MmTNLEAPbmw3XzI5d+/QPU9YsIKAPHthfhcVw1SBa4Tm5b/8gXdy9ffs7KV0ieheKZn7+BWTTlh0xmsXvXmBAC9PPH672zxPK4V4dErpQqlW3H7MYc1O9akXBRxGYO68ZPjPbXyVmf8vQkjFBLnaXHj50UP224f7fpVsPPca1s9BZnnD/p8DrCb8w7CMJkAAJeCABCEaBbdtbCL14GELc3WFDgtQLhGYrV68VbMeEderQVnZs32pzxLgZI1M3HojxkuiXL6eFd6Ixw7atBmxtTfRAtHHuMgTaCZOm6d48aPDY0SPSpXN7l8VWeMNt2bZLfymxtb3QuqOYP8SYRfZazaMEayI8bIkSFL19+yZEQHiNap7sWjiN/n17uTTnEJwg8MIQ2gHJdJwxxQeZ46fO2RTK4M3YtVN7OXfurEvnT86F8GGpY6euutiBrMv4rXKU6MvIwxjyYeSIobJ08UKnuBATEx4iqVOnkazZsll4eV+/dlUa1K+tPPC81dKlSy+DhgxTYpO2tRwsIERhd4IxW/2W7buVpyIM28orliul34O6de8l/YMG6Rjxm/TTTz9K5P4ItZvEaPBEhCDi4+NjEzvWReWKZZ16zSf3OYO3LrbSaomhtPGCbZ9e3V3yRMc9YnrwbKnXoKGqvnvXDpXl/OujR1XoGbOGhHlYG95s7733nixbucZCgAcP3CfgoTigfx/9NwXPWtr87d2zS9q2aaWjQ2gheO1qhg9f9+7ekfDwpTZ/2yA0+vh8IFmzZhOEA9J2cqE+vLObNKrn1R9GtLVes3Ydi9/5n3/6SVq1aKKS3jkz/AbCw71+g0YWH59QDx9ZypcrGeN+AUGyXLkK8knqTyW/n59kyJDRYk6x0wpejd5sYNS3X5Bat0ZvT3hb9+3T0yKJsDuvGTDnM7P9lWfmtwz37YOHv1aN2YrLj3Aau/ZG6ut/+NBB6r3E2jzl/k+B15t/sTh2EiABEkgAAhCQ8uX3k99+eyJR587a3JL57cmz8vHHnzhNZjNqzHgJaNNW9frggUhp2fxV8rDgGXP0F0G8rEAkXrlimSAxT4tWAfqLSmwTuyQAqgQ9BV4oBg4eKu3ad9JFq9OnT0mdmp/r/cALg6Ot6PA8/fbkOeUBhG3kWTKmcWkMeNHGtkH/Aq+210LwHzokyPQWRJdO6GGFataqLeMnThU8wOIFD2EWXDGEZkDiD1iXTu1iZOy21YYxXunSJYsEXj6I2fzmm2/qxXGtde/WyetFK3iuzZwzT70Qw2xtd7XFGPM5J2SBOmQvGYuz+cX12qhxUzU38EaFYWdCiaKFnFX1iuP5/fyV5+2Vy5dUmAWj4SX52s276uUcXoP5cvvGuA8htFCJkqUcXju4trCdWhOTIRTPDw1R26lbtQ7U4/7itwzn8PYwJ4BZvkIlKVS4sLz/fkq5fOmi8to13lPSp88g339/32E8eG2HAbbVIua+mfAo+GjWrXtvqVCxkvIyRUI97IzQPO684uKwMUis5UqVq0jGjJnk/vf3ZevmTRbx18Ftb8QhVfPSxYtStXK5GNcUwsdgZwPu/YUL5nP54zAaql2nrowZN0n/yOxqrPjkPl/4rcJzUZq0adUHJkfhlSA2YV0jjAN2waVK9VGM0DOYmy2bNkqf3t1d+j3Cuhg2YpTUqFlbocazNLx+rX9Tk/s82BofPkrgI/o///FPORd1NsbcxOc1w2dm+yvO2W8ZahqT204cP1bmhcyO0WBKHx85c+6SuoaQdwGe2UbzpPs/BV5v/IXimEmABEggiRG4fuue8lrAlv2mjevb7B28tZD4QPuCXrpkUT3uYbnyFSVs2Ur9gRSJKuDtoxluzIinhRc8eDL457fcKpjEcCRod/BQM3tOqPKgxkvclcuX1fkhSo2bMEUl+rKVQVjrZPiK1YLkKrBSxT8z9SIAzwgkOjLG9EWsUcTAunz5UoJySGonw0MmEqzgxRdbyZxZYLsOAg92mKPY1MZ2jB6/EKUQWxYvdBCwJk2eLnXrN9BfGLEGFi0MjZFIxFm/kuNxvEwHBLYTVzyrMY+IFwexHtagXi05/u03scaC9hDOJleu3KqNuXNmelyG51gPPpYVkQgHCaRg+/bulsCAljFawofIE6ej1Hq35eGDCkiGhNjMMHhQI/670UMe3sRauAesjS/XrI5lj72n2snT5+Xs2dM250SjgDm5deeBmpvpUyc73dKP+33X7j2lRo1a+scQI9HgaVNU/FmafQLYPdClaw9VwN6HLHxwmjJthioDL8+O7QNNIYVgdvTrk3os01o1qsrZM6dNteFthbE1fcWqLwW/V0ZvUiMHfAi5dOmibN60QZaHLzX1QURrp0XL1mq3FcyWwO9t3F0Zb0JcM3xmdmUmYpYxCrxwRLH3TqPFfUcSaTwPG82T7v8UeGO3TliLBEiABEjATQTw0vbd3YeqNYRv6NGtk82WjclbjOEAsIXwxOnzehy5QUH9bCbvMMbuRfbnu3fvuGkEyaMZiN9a2AyjKBURsVfatGpud5DGRBCVK5bRBWIzVLD1HVuktXiW2PpWp1Y1M014VVl47mCL+JnTp9S4Iciev3RdD11SqUJpuXb1qlMmxozCthK4QBgLXbhE8ubNp9oy403s9OTJtAA+jGzbukX3ljJmQYewC4E3roZrFfMNu3rlslSqUCauTSb7+rfv/aDGuH3bFvUByZYZwzjg5Q4veZoZX95xHSCbva2XxKs37qjrkL9hzpcUBERwhTnacYAEX/Csgm3dskm6du4Qo3F8QGnXoZM0aNhY0qRJa3EcgpcWEgAhTRDaieaYAD5gjRo9ThWyTphmrHnl+m212wMhgeC1btYQ43z+wuit0IjFCwGfZp9ARORhi1i92CWA5Gi43x86eEBdH+56ttWeD7DrIXvWDJwWJwQS6ppBN/jMbG45du7SXe1YhGEXiDFEoNaScafP06dPJXeO6I+5ME+7/1PgNbc+WJoESIAESCAeCODlDS9x8N5E1nNrGzl6nLQJjH4pf/z4sfIq1ba/IsNzseLRdRArtGa1yjZ7iLhk02dEb8tBvDfEnKXZJoCt6MdPRekvxfaEd3gRwpsQgrCtL96u8EXd0WMnCDLc4r/hEQdPYHe9pLjSB08rs2//IRWnFx7viJs8YsQY5W0Lc9WTyvgyguRSBf1yy7Nnz2yigIf2lOkzpF/vnrGKfelpfGPb3yJFi8mX6zaqZF0jhw+R3bt3CjwU8eKA36sihfwstkHH9jwQqyCs4HrhjgTXKJ6Juqw+imBu8OJmKza18YNHQb88SjiBZcmaTXDNaXHDcY+xF5ca8/1hqlQqFEDZUsVc65yXlvq8Wg0JXbBYjR7XBxKv2fJ6NoZfWhAaIuPGjlJ1cF21bN1GmjdvqX4PtfnBMSRrhdgVMne2bN+5V1J99JGqA+9teHHTHBOASA6vdzC197EC/LH7CmVwXeXKntk0VoTwWBoenTzM0Qd+0w0nwwr4HYLAqxlClSCpozHWuDuHffSbk+pjCX4rM6b7xJ1NJ8u2Euqa4TOz+eVTt14DmTFrrqpoLwdCr979pHff/qqM8TnaE+//FHjNrxHWIAESIAEScDOByVODVeItGEIrtG8boJ/BuO0VD5p4uUaWUxjCNhw+dlz9t7M4cHPnLdDjimXLnC5W29bcPOwk3Ry8Njdu2aHH54WnYLu2AXpYDBz/Yu0GPSP32i+/kH59epoaE17u8NAFQVmz0HlzGAbAAUU83GPNw7sWBmEEf8P/8MLnlzeHetl2Ztt27pU8efLqxZAkZ2bwNJk9K9hZVR63Q6B1QKDgY5S2dRbzocVrXb4sTIYODjLFDgLKpq07ZeXycCV8aR6jyGyPuIvWLyKmGveywkgsGRK6SI0antSNGtSxiElZpkw5WbbyC3Uc1wLuEZoIbPyIuHHDV9Kze2eb9DDX8ODFtehs54OX4bc73LbtO8rwEaP14+A7fOhA5REKg6fa4KHD9eMIr4SPGohD/e2JsxYJqfCRce/uXTJrVrDcunlD1TF6CSNRVbUq0fGzac4JzJ47X2rVrqMKBk+fIjOmW4a1MH54dzUskPGsuE7w4QQCCmzggL6yelW02EuzTcDPv4DgWVa7/6MUwsV06tjWpV07rnLFR12E34LR691VaiLxfc3wmdn1ubAuGXXxmgqVhR0ddWtVs0hciBj+SJ6qfSQ0hovxxPs/Bd7YrxPWJAESIAEScBMB3HR37tmvb63EljDEEPP1zW6RhXv82NEyPzT6KywsbPkqPeGR0bPHVrc0Dy7c3H2zpHdTz5N3M4g1umrNepVIRTN4Rv39v79VUjzN7t+/Jwh74WpSIbycL1wUZpGFG3EvIexrYQeSN9m4jw4x8oYMG6mHJkGL1pnOnZ0FWaHhPa2FYEB5xNtr3LCOLrA4a4PHLQkgnnRI6EKVjEUzCIUF/HKbSkKEuhMnT5OmzVqoZtAGRKsPU32kx/PF36pUKhursCjeOG/Gj3zYonkgMkJ5DUIsB2cI6jCjGI/5RBJQvPjh3gEvRXvx+5o1bykTJkWLYPhQMnXyRG/EbHrMderWk2nBs3X+WNcIg/H2O+9Y3P9XLA+XIYMGqPZXr1kviEeJsvDInTtnlpw6GR1nWTNkRkf8awjvTBZlelrUDp6IA0d0MRH3+T27d6kEt60C2uix99GyWc9oXGs7d0dINt/sqmP4qILnMlefIcyPJnnVsHX/h3NEn17dbW4/NzN6hBmCUKmJXWFLF8uIYYPNNOG1ZePrmuEzc9yXFO4zM2aF6DsF8cEvYt8eyZkzl1SsVEVf78YQgJ56/6fAG/f1whZIgARIgATcQABebxs2bxc/P/8YrcETrn1ga4mMjNCPwesTAfHxEApBOKdvJrsvB7ixz5w9T9VlbERzk4UXsYVLwpWQbtwCq7WCUArINqt5XDlrvW//IOVVpYkpeKFDRtvJE8c7q8rjVgTAcPzEKYJkN9rcxCZJXb58+WX5qi91IR8ZsxEmgxZ7AhB4Z88NFWS/hmlJ6pDB2VZ4AFtnwov2pCnBFiKXVu6HHx5Krx5dVZgOmusEkIwQHqO2fsvQirWHLsT66jWi4yY7E21PnIrSQwGUL1tSbly/5nrHvLwktjevWLVGMmfJapPEnt07pV1ga3UMH4Qh3GpzCOGxR7fOcuL4txZ1jXPH7f+xX2CIkYtYubYMv2XYubNu7RqXT4BwWYiHaUyuai+Rm8uNemFBW/d/COVzZs2IVRJB3KuCBg6ROvXq69cW7jMILeTqPcsLp8HmkN15zfCZ2X2rCgm5Fy4Os9j5YWzdOk+Cp97/KfC6b82wJRIgARIgATcQwNawbj16SYaMGeXp77/LsWNHZfbMYHnw4HuL1vHQ06NnH/U3Z8k5Tp+9qGfTdhQ/0Q3dT7ZNIJld567dpVq1GvLmW2/Jjz/8oOIbwmvEFYPgNS90kS6AoM7581HSNqClPHz4wJUmWMYOAbyYzZu/SPwLFNRLfF65vFy8eMFlZnhZhLdWhgwZVZ2lixeqWGW0uBFo07a9DBw0VCUigpn9wAQvRHgrYm7hddqhXYCcjzpnkQAsbj30vtqI9z502Ejlgfh+ypRKzICQsWJZuITMnWUBREsihY+IObJltCt0ILnXaO03FgAAIABJREFUtODoupcvXVKe1TTzBNKnzyD9gwZL3nz51Ev4zRs3ZOyYETG81LP5+qr7ieYBijMhrj5ikiOEQ6bMWQSJWTXPayTNgwc2LXYEEG9/2IjRkjtPXkGSR3ywunH9ukyeNF55wTkyfIyv16CR1KpVR/LkzaeHrUEdCIfwdJ8ze0bsOsZa6iOi9f0f1wC2mTvLZVCo8GcqPBp2MXzySWoLmvfu3ZW6taq7JW68N05TXK4Z8OIzc/ysGtz/Bw0eJuXLV1T3f3wUuX37Ownq1ztGbH1Pvf9T4I2ftcNWSYAESIAE4pmAMTyDvayo6AIElpGjxqreYItz2dLF47lnbN5IAC+Dc0MXCmJcavaf//xHBgX1Vd5yNPcRwJblWbPnycv/vpSihS094eEhB7EDL232DNsAkSQK3vTwiite5JVg7L5eel9L2CI+eUqw8ozq3LGd7Ni+VYeAOWndpq2ELYmOD2vLUAZhAuDxtn//PgloGR2vnBa/BLDdFjF1YY5i6mJ+sJtEiyXOJJ7xOy/G1uHlPn7iVD1sCXaELAtfKsWLlxDf7DlU0bFjRsrC+dE7eGjxSwAfgkuULC0lSpaSgoUKS+bMWWzuQICwC4/rQQP7uTV2bPyOLmm3rt3/kVAQH6TwUQO73zTLniOHlC5TTooUKaqEdoTZ0uLFG0eGRMb4wAvHCVrCE+Azc8Izt3VGT77/U+BNGmuIvSABEiABEjBJIPLQMcmUKbPKll2owKtkUcZm8MJ98swFfTuO2ThxJrvE4lYEkEAH3otaoikc3r5ti9paTm+q+FsueEGAt6fRduyOkA8//FAKF8jn8MQQEvHiB6+GrJnSxl8nvbBlW/OCj0/4COXst2nKtBkqFAfnJeEWTrHiJQQJVmDdunSwm61+0pTp0qRpc1UOH1BKFC2UcJ3kmdSHK3hk4X6jhf7RsCC2u7PfPCJ0D4EZM+dK3foN7DaGME4XL5yXzZs2yPp1X/IZwD3YY7SCxIRY9xu+WqeO4cPtN8fPWDyHGSvhnoLfrSOHD8ny8KVy+fKleOoZm3VGgM/Mzggl3HFPvv9T4E24dcIzkQAJkAAJuJGAJkQhGUtB/zw2W1731WY92ZF1bCU3doVNWRHA1jTE7TVmesYLB2Ionj1zmrwSmADijoUtW6nOumH9OunVs6vNHkCIh8ciBBNkpIcHEC3+CMB76trNu0qUgsdVsSIF7CZi275rnyDpISxD2o/jr1NsWScA79A5IQvUv1s2aywHD0bGoJMjR06VIBTXDLwSq1WpYCo0CnG7j0BKHx+ZM3e+lCpdRm8U953WLZpyTtyH2WZLxpAYKIBdOndu35aoqLNy6GCk7N61U549exbPvWDztghoCQm1Ywh3dv3aNeVBvWPHVibpTALLhs/MSWASrLrgyfd/CrxJbz2xRyRAAiRAAi4Q0Lym7GWSHzZ8lLTr0Em1hJeNQv555I8//nChZRaJLQEIhMEz50iNmrX1JrBldu6cmcwoH1uobqiXIWMm2RtxUPfgQdZ5eIxa26Il4VKpclX1Z+tkU27oBpuwQQDJH5EEEgaRt3HDunLm9CmLkojFt3b9JgrvCbyCIMDf+O6+2sYM77ZmTSy9E1XIjINH5d1331U9w+8ck0Um8CRZnS5o0BCVxNPahg0ZqEI30OKHQNNmLWTCpKl6ci6EBpgZPI2xdeMHt6lWj3x9wuJjO2Lzd+rQVm5/d8tUOyzsfgJ8ZnY/U3e16Mn3fwq87loFbIcESIAESCBBCWTJmk0iIqMzyONlokO7NrI/Yq+K9zZ85Bh9yyyOt2reRA4c2J+g/fPGkyF5wdLwleLvX0ANPyrqnAS2bsEkHUlgMfj5F5D1G7boW5gRY3fCuNFq2znmbeq0GVKxUhXVU3w0qVShNGMjJtC8rVj1pe51CPbwsp42dZLaNts6IFCGDh+li/OrV62QgQP6JlDPeJqNm7fryQsR/xjhZX59/FiKFC0mi5Ys02O/3rxxXcqVKUFgiUgAIZlOnb2ofuPwYRHJu7p27ylIVFikkB/vQ/E8N4jzjnj72v0fp0OyL1wzfP6KZ/hOmsfW/6CBQwRxRbV7PO79/fr0YKiMRJwaPjMnInwXTu2p938KvC5MLouQAAmQAAkkTQK2vEaQeRvbZbWH2DGjR8jihfOT5gCSaa9Kly4r76d8327MymQ67CQ/LGSoX7dhs4qxqxkERe160f42KKifrFq5PMmPJzl1sE+/AdKjZ58Yc2Ec4507t6V0iSJKgKclDAF8MET86gwZMuonxI6Qt99+W/83hPjqn1dSwi8t8QgYE6+uXLFMBg/sr7yvkewLIZpoCUMA93/s5PkwVSr9hOfOnZXOHdo6TPKZML3z3rNA3J08dYbUrlNXv88gFwI+hCyYH+K9YJLAyPnMnAQmwUYXPPX+T4E3aa4n9ooESIAESMBFAmXKlJN5CxbHyNSM7c4tmjXii52LHFnMOwhAzB0zbqLUq98wxjWDECYTx4/hVuZEWgoFChaSCROnSo6cOWP04Pz5KGnSsG6M5HmJ1FWvOi2umeUr11jEdtUA7Nm9U9q3DaDonsgrAjEsIcTDIMAjfvjLly8TuVfeffqu3XpKrz799N0H2u6EoAF91K4rWuIQwIdePDPnyfMqOTFiVffo1lmOHT2SOJ3iWUkgiRLwxPs/Bd4kupjYLRIgARIgAXME6tZrIBB7//naa7Jn9w7ZtXMHXyLMIWRpLyNQvkIlqfp5NeXNc+7sGVmxPJxCVRJYA8h63iawnaRPn1Ee/fKzrFixTG5cv5YEeubdXUDSyJatAyRr1mxy4cJ52bRxA+cliSwJhAdYvHS55MyVS4UwQSgTWuITQHiMacGzpFr1mrrX6JMnTyRfbt/E75yX9wD3/+nBs1SIJs3GjhkpC+fP83IyHD4JxCTgSfd/CrxcwSRAAiRAAiRAAiRAAiRAAiRAAh5NIG/efCr2Oy1pEUDOhJB5C9XuBMR+7dalQ9LqoBf3Bl7W3br3ktdee00K+udRcZNpJEACnkuAAq/nzh17TgIkQAIkQAIkQAIkQAIkQAIkQAJJngC8Ro8dPSzPnj1L8n31pg6mSJFCChYsLJGR0WFOaCRAAp5LgAKv584de04CJEACJEACJEACJEACJEACJEACJEACJEACJODlBCjwevkC4PBJgARIgARIgARIgARIgARIgARIgARIgARIgAQ8lwAFXs+dO/acBEiABEiABEiABEiABEiABEiABEiABEiABEjAywlQ4PXyBcDhkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeC4BCryeO3fsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJcToMDr5QuAwycBEiABEiABEiABEiABEiABEiABEiABEiABEvBcAhR4PXfu2HMSIAESIAESIAESIAESIAESIAESIAESIAESIAEvJ0CB18sXAIdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTguQQo8Hru3LHnJEACJEACJEACJEACJEACJEACJEACJEACJEACXk6AAq+XLwAOnwRIgARIgARIgARIgARIgARIgARIgARIgARIwHMJUOD13Lljz0mABEiABEiABEiABEiABEiABEiABEiABEiABLycAAVeL18AHD4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEqDA67lzx56TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4OQEKvF6+ADh8EiABEiABEiABEiABEiABEiABEiABEiABEiABzyVAgddz5449JwESIAESIAESIAESIAESIAESIAESIAESIAES8HICFHi9fAFw+CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAp5LgAKv584de04CJEACJEACJEACJEACJEACJEACJEACJEACJODlBCjwevkC4PBJgARIgARIgARIgARIgARIgARIgARIgARIgAQ8lwAFXs+dO/acBEiABEiABEiABEiABEiABEiABEiABEiABEjAywlQ4PXyBcDhkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeC4BCryeO3fsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJcToMDr5QuAwycBEiABEiABEiABEiABEiABEiABEiABEiABEvBcAhR4PXfu2HMSIAESIAESIAESIAESIAESIAESIAESIAESIAEvJ0CB18sXAIdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTguQQo8Hru3LHnJEACJEACJEACJEACJEACJEACJEACJEACJEACXk6AAq+XLwAOnwRIgARIgARIgARIgARIgARIgARIgARIgARIwHMJUOD13Lljz0mABEiABEiABEiABEiABEiABEiABEiABEiABLycAAVeL18AHD4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEqDA67lzx56TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4OQEKvF6+ADh8EiABEiABEiABEiABEiABEiABEiABEiABEiABzyVAgddz5449JwESIAESIAESIAESIAESIAESIAESIAESIAES8HICFHi9fAFw+CRAAiRAAiSQlAmkSJFCfv/99yTXxffee09+++23JNWvN954Q1Kl+kju3bubpPrFzpAACZAACZAACZAACZAACcQvAQq88cuXrZMACZAACZAACbhIIG3adNK7b3/JmSu34L8hov7jH/+Q//3vf/Kf//xHHj36RbZv3SJzZs+IIa52695LmjZvoc6EMuPGjnJ61mHDR0nVatVVuVUrlsvcOTNt1kEfunbrKc1atBQfnw/k7bffVuXQr+fPn8sfT5/Kwx8eypZNG2X5sqW6IJ3N11fClq1y2g9nBRaEhkh42JIYxVL6+MjIkWMlT9688mmatPLOO++oMn///bf88vPPcuvWTdm8aYMsXxbm8BTZc+SQJWEr9DIvXryQ6lUryh9//OGw3r///W/ZtWe//PuNN/Ryg4P6y4ED+y3qzZ47XwoULOhsmDGOV61UzkLc37UnUt5N8W6Mci+eP5dff/1VHj9+JCdPnJCFC+bJX3/9Zfp8salgPTawq12jqjx58sRuc7PmhErBQoXU8cCAFnLl8mWnp169Zr2kz5BBL7d40QJZsmiB03pt2raXdu076uVu3rghLZs3dlqv8GdFZMasuXo5rPWypYrJy5cvLeramxNHJ7h75440aVTPaR9YgARIgARIgARIgARIwHUCFHhdZ8WSJEACJEACJEAC8UQgaNAQ6dS5m/zzn/90egaITRcunJeB/ftIVNQ5VX7h4jCpXOVz9d/Hv/1GGtSr5bSdrzZulYKFCqtyu3Zulw7t2sSoU7deAxk3YbIunjptVEQ2b9oo3bt2lOIlSgqEubjami9WyYB+vS2aqVOvvkyZOkMgsjqzixcvSLMmDeTxo0c2i5YtW17CV6y2OLZyxTIZPLC/w6YHDRmm5sxoI4YPkbAliyz+duTrE0qwN2uFC+STH3/8Qa/23d2HSvB3ZhC4v1q/Vvr27uGsaJyP2xrbzh3bpGP7QLttG+u0btFUIiMjHPYjS9ZsEhF52KIMuICPM5sWPEsaNLQUdJs2ri9Hj1i2Z93Ozt37JWeuXBZ/zpEtozx79szib67OibESPhzkyp7ZWdd5nARIgARIgARIgARIwAQBCrwmYLEoCZAACZAACZCAewl89NHHsnnbTkmd+lOLhjUv1OcvnquwA7aEzEULQmXM6BGqXnwIvBB3jV6MOA88NH99/Fj+ev6XfPhhKnnzzTdjALl86ZJUqVRWihQtJl+u2xhnYF+sXilB/fvo7YQtXyXlylWwaBeiNwTcJ09+lY8/Sa17GWuF4GkMAXt/xN4Y/bEl8GKcEPSsPTaNlS9dvRXjPO4UeP3z55JHv/yin9KsmLh1yybp2rlDnPk7asCWwIu5KFrYXx4+fGCzqlmBd+bseVKnbkyP1/JlS8qN69ccjs+WwHv92lWpUK6U3XrwPN8bcSjGcXcJvE+fPpXcObLE67ywcRIgARIgARIgARLwNgIUeL1txjleEiABEiABEkhCBLbu2CN5877yRMTW9rZtWiovXKP5fPCB1KlbXwYEDdZFxfgUeOEpevXGHV1YhtA5acI4tf0fAp5miHtbpEgxCWzfQSCUop4m8KIM+m3PTp25oHssBwa0lFOnTtgs+vtvv+lCa+MmzWTy1GC9HITwYUMGyorl4RZ133//fQlf8YX4+xfQ/45YxnlzZbPoPw7aEnjx9/nz5sr4caNt9imwXQcZMXJMjGPOBF6Ei5g2dZLTFQjGENKNZhR4K5YvJdeuXlWHIf6nS59BWrZsLc1btrb4GNCmdQuJ2LfH6fliW8Ao1qLPmocxPGThKWvLzAq8F6/ctOlBvmnjBunRrZPDrtsSeFGhZrXKcu7cWZt14XUO73NrcybwNmpQR65eveIU5csXL5JkXG2nHWcBEiABEiABEiABEkjCBCjwJuHJYddIgARIgARIIDkTqF6jpoSEvtrOD1EM8UEdeY1CzJs+Y47UrFVb4lPgbdkqQMaOfyVEIuSDtehsPTcZMmaSmbPmyp9//ulSjNEb392Xf/3rX6qZ+nVryonj3zqcboSvOH/pui72IclbnVrVHHpxDhg4WMUP1gxxW0eNHGZxHqPAi9i1EK1hGAdEPaOgrVU8c+6SLl7DO1jzsHYm8IbMnaWE8tiYPYHX2FauXLll2869unC+bu2aeA3VYBRrv1yzWho1bqp3xyhCG/toRuAtU6acLFv5haoOr2oI+W0C26l/uxLqwCjwYj41j/Pz56NUnGVrg1f6idNRSqhG3Gst3jTKORN47Y03NnPNOiRAAiRAAiRAAiRAAuYIUOA1x4ulSYAESIAESIAE3EAAYmXUxWvy7rvRSbOwbTtPzqw2xURbp0NisD///Etuf3dLHXZ3iIap02dKw0ZNXBbSYoPErMA7ctRYQdIszVyJ34qye/YdEN/sOVQ1iOcF/fNYeMcaBd579+4qcS9NmrSq/NTJE2X2rFcew/ibUZhHLORPP00jPj4+qnxiC7zog9ErHInmkBwsvsxarJ08LVg+/vgTdTrEh67xeaUYpzYj8Bq9aQ8fOig9u3eRk2fO6222at4kRlI74wmNAi9CVlSrXlMXv20JsnPnLZAaNWurJkLnzbGIsUyBN75WEdslARIgARIgARIggbgToMAbd4ZsgQRIgARIgARIwCSBz6vVkNAFi/VaSIgFb8vYmrsFXnjvwotXs/x5c8QIGRDbvmr1zAq8Rq9ZM8Jlfj9/2bx1p97diePHyryQ2fq/rQXeiePHyJyQBeo4wjpAeDfa4WPHJV269OpPdWtXlyVhK5KUwLvqi3VSomR0jNn79+9J8SIF4zpVdutbi7Wv/etfsiRsuV4efE6dtAy94arAi48g127e1b28teRoB498IxkyZFTnOHb0iENvcaPAi+sLHrkQeWHWyQjfeust5SEOr3J4ZWPeEaZEMwq88baM2DAJkAAJkAAJkAAJxJkABd44I2QDJEACJEACJEACZgkMGTpCOnTqoqq5I+mSuwVe6wRr27dtkc4do7fGu8vMCry37jzQvS/NCuJHvzmpe+Vu3rRRunftqA/DWuAtUbSQGMXkkSOGytLFC1X5wp8VkXVfbVb/fevmDSlburicibqcpATe/QeOSOYs0aL0yRPHpV6dGu6ashjt2BJrIw8elUyZo5OI3bxxXcqVKWFRz1WB1xgmxHiNdOnaQ4IGDVFtwiM7W+Z0gljMtsxa4J0wboweggGhN0oWKyzw2oaNGjNeAtq0Vf+NUBBDBwcJwmJoRoE33pYRGyYBEiABEiABEiCBOBOgwBtnhGyABEiABEiABEjALIGVq9dKyVKl7YpgZttzt8D7zjvvKOFSiy2L/iDmbcS+vbI/Yo9ERu6Ps0evGYEXydogumpWvmxJh7F3rfmtXb9JPitSVP3ZOv6qLYE3ILCdjBodHSv38ePH4pc3OsTD9l37JHfuPOq/A1o1l/0Re00JvIjr+uTJr06nF4JllYplLZJxuRKDt0DBQrJh0za9fcT7Rdzf+DJbYm2hwp/J+g1b9FNaJ3pzVeDdG3FQsvlmV+0YE6ohRvKV67f1hG5IsrcsfKnNIVoLvPgwYPRwjoyMEIT6QFgOtIm2wR7eu5grMwLvo19+kb+e/+UU9b27dwUxrWkkQAIkQAIkQAIkQALuI0CB130s2RIJkAAJkAAJkICLBIwiV0TEXmnTqrmLNW0Xc7fAi7O0DgiU0WMn2O0XtrE/ePC9nDp5UpYsmi/nzp01NQYzAm+lylVl0ZJwvf2M6T5xOV4xKk2eGiyNmzRT9SHE+efPpbdlS+DFwQuXb+gxkvv06i6nTp0UeKfCHj58IEUK+an/NuPBawZQ4QL55Mcff9CrOBN4A9t1kKCBQ/REYkhCljtHFlOczPQPZe2JtUj0lidP3hisHNUxnvv999+Xs+ev6CKudbxcY/vXrl6RiuWjP5ZYmy2BF97F2jzCi7eAX25p2rSFICEfbMvmTdKtSwd1bjMCr6vsXEkO52pbLEcCJEACJEACJEACJBBNgAIvVwIJkAAJkAAJkECCE7h09ZaKBwpbsmiBjBo5LE59iA+BFx1CrOCZs0OUZ6Mz+/mnn6R3z25y8GCks6LquBmBt3uP3tJvwEBVD8IytuWbsT79BkjPXn1VlRcvXkjWTNFJ1GD2BF5jnR9+eCjXr13TY9v27NFFNn61XtWPL4EXIjTEaM2MAi+E37/++kuFrHj33RQCj2vEjtXs119/lZbNGpkW3c0wRVl7Am82X1/ZG3FIbw4C+fp1X6p/u+LBixAMCMUA++nHH6VQgWixWLP6DRrJ9BnRcZQh0ubPk12ePHkSo/u2BF4U2rJ9t+TLl1+V37Z1s5QsVUYgKqMtcH/86FG8CbzuCMlidp5YngRIgARIgARIgASSOwEKvMl9hjk+EiABEiABEkiCBE6ePi8fpkqleqZ5DMalm/El8KJP8GSsXbeetGrVRnyz55AUKVI47OqI4UMkbMkip8MxI/A2aNhYINZpgh48eM3YyFFjpU3b9qqKdeI0ewIvxFNs2zeGqUB9Y8gG/NuMwLt0ySKZNmWi064jTAA8PY1mFHgdNYB4yV07d7Abl9bpyU0UcCTWrl6zXoqXKKlag+AMERbmisB7/NQ5+eijj1X5RQtCZczoERa9wppEArbXX39d/T103hxBfF1rsyfwWife0+ppIRu0dW/GgxcJ5eBN7MzwgQLiPI0ESIAESIAESIAESMB9BCjwuo8lWyIBEiABEiABEnCRwMYtO8Tfv4AqffnSJalSqayLNW0XMwq8ribWQqxWxGyF7dyxTTq2D3SpDxA+CxYqLOUrVJRixUuKn5+/vpUeDcBD1j9fTov4sbYaNiPwZsmaTSIiD+vNFPTLIz///JNL/UWhsOWrpFy5Cqq8deIvewIvyo4dP0mQ7Mto8LaG17VmZgRexMNFXNzYmFHghacp/geD2In/aWb0lo3NeczUcSTWpk79qRz79pTet3FjRsmC+SFOBV7ruQZrCMTWBsHex8dH/RkezQhpYW32BF6UMyaj0+ohwZ6WdM1siAbrMBJmOLIsCZAACZAACZAACZBA3AhQ4I0bP9YmARIgARIgARKIBYEp02ZIo8ZNVU1sLc+X2zcWrbyqYhQiHcUkNZ7EmMQKSaqQrCo2BiFvcdhyPfkY2kAyq3Vr1zhszozAi4aMAqeW4MzV/hrHum/vbgkMaKlXdSTwvvXWW3L+0nU9/IGt+KmJIfAaxcRPPkktB498o4fRgPCLJF4njn/rKp5Yl3PmjTt/4RKp+nl11T6SluXKnlkOHzsuadNGh9hAgjN4zRpt5ux5UqduPdN9siWwOhJ4jfOOk4FX/bo19fNS4DU9BaxAAiRAAiRAAiRAAolGgAJvoqHniUmABEiABEjAewm0aNlaxk2YrAOIq/efMSEa4sV+VjA6vqgjM26DHzo4SJYvC3NWxe5xCHYQ+zRbunihjBwx1GF7ZgVeY9KziH17pE3rFi7197333lMJu+B5DJs9K1imTn4VJsGRwKvKz50vtWrXUXVnzpgm06e+mjf8LbEFXvShUOHPZN1Xm3VvWYQBKFe6uO6N6hKoWBRyJvAiri34aOzhwVyrdl2HAu/FKzdVTGGztmnjBunRrZNFNUcCLwp+ffy04AMFrHLFMnLl8mW9PgVeszPA8iRAAiRAAiRAAiSQeAQo8CYee56ZBEiABEiABLyWQLp06ZUno2a3bt6QsqWLx5pH4c+KKIEP9vLlS8meNYP6f3uGuLKIL6sJb4gfeurkK4E2Nh0xJo6bO2emTJ443mEzZgXe9Ru2KCETBi9VbKe/f/+e067OCVkgNWvV1svV+LySREWd0//tTOD1+eAD6dsvSP773//KqBFDY8S2TQoCLwbTuEkzmTw1WB8XYgWXKFowRixfp8BMFHAm8KKpSVOmS5OmzVWrEJ5/+eVnXVS19uAtU6acLFv5hT7HM6ZPddibipWrSN680aEZbHlXOxN4cd3UrlNP7t65I/ND51qciwKviYXAoiRAAiRAAiRAAiSQyAQo8CbyBPD0JEACJEACJOCtBIxxc8HAOrarPS5FihaT0PmLZfXqFbqICo9HeD5qFjxtiswIti+O9e0fJD169tHL+2ZJb5H4CWIxksD17N5Fzp457XSKrD14a9Wo6rSeWYEX54AorsWbPXfurNSsVtlh37LnyCG79kTqdY5/+40KX2A0ZwKvs8EnFYFXraEx4yWgTVu9y9bxhp2NxexxVwTeN954Q4W5sE5Wh3NZC7xffPmVFCteQnXjwoXzUq1KdNxke5bN11f2RhzSD1u350zgddQ2BV6zq4HlSYAESIAESID+GmPTAAAIq0lEQVQESCDxCFDgTTz2PDMJkAAJkAAJeDUBCF/nLlyVN998U+dw5PAhadumpTx79iwGG8SDDQldKOUrVFLHFi0IlTGjR+jlVq9ZL8VLlFT//vvvv2XggL6y5otVMdpp2qyFjJ84RffePXggUlo2b2xRbtPWnSp5GgyiaLcuHeXhwwc25wtJsTZt2SEpUqRQx//880/lQezMzAq8aG/GrBCpW6++3jQ8eOvVrmGzbwGB7WTEyDH6OMGkSCE/lZDLaMlJ4MW41qzdIEWLvfIGP3Bgv7Rq3sTZdMTquCsCLxoOGjREunTtEeMcRkEW3uTXbt7V4x0P6Nfb5vq1buT02Yvywf/9n/rz18eOSuOGdfUiFHhjNa2sRAIkQAIkQAIkQAIeR4ACr8dNGTtMAiRAAiRAAsmHQIOGjQUilNGwjf3mjRty6dJFefr0d8mTJ69kzJhJUvr46J6oKG8t8CKUwIlTUbpAhjJIuHY+KkquXr0ivr7ZJXeePOKbPYd+OoRxKOifR359/NiiD0aBVzuALfD3792VixcvysOH30uaNOkkT968kilTZou6EBMhKjqz2Ai8EMVPnrmgi8k4B8Zw/do1iYo6K49++UWy58wpOXPmko8//sSiCwtCQ2Tc2FExupWQAi/E76e//+4MjQpBUb5sCfntt9/0ssYkc45iNkMohadzmjRp9bpLFi1QHuLuNlcFXnjDIoaydWxdo8DbslWAIFmgNqdZM6VVHJyZMcEg1kK2zOn0MBoJKfAiWeKL58+ddVfu3b8ntWtUdVqOBUiABEiABEiABEiABFwnQIHXdVYsSQIkQAIkQAIkEA8E4HUbErpIfHx8XG4dQlbf3t1l44avLOpYe606ahAerSOHD5HwsCUxii1eukwqVqricn9QEO0h7u68kNku1YuNwIuG4cm8NHylvpXf2clevHghQf37yPp1X9osmpACr7O+Go8XLpDPwtvYVYEXbUDsP3LshIWgCo/u1atWmOmC07KuCrxoqH3HzjJ02EiLNo0C796Ig5LNN7s6/u03X0vD+q/iJjvqCJKkIVmaZsOGDJRl4UvVPxNS4HUK6/8XsBUr2NW6LEcCJEACJEACJEACJGCbAAVergwSIAESIAESIIEkQWDkqLHSqEmzGF6OWufgzYgwCevWrpHZM4MtYuYaBwDPzSVhKyRHzpx2x3X+fJS0a9NKHjz43m6ZXLlyS+euPaRc+QoWHrPWFSDsRu7fJ31695DHjx65zPL6rXvy+uuvq/KuxOy1brh+g0YybMRoSZkypYVns1YOwu6VK5dV+Al49tqzkqVKy8rVa9Xh27e/k9Ilirg8BhQ0hggYOjhIli8Ls6h/6Oi3kj6985AV1if1z5/Lot+37jzQw00gIR8S8zkyzN+2nXv1Olg/GNudO7dNjc9RYePYmjauL0ePHHbYtjFeMQo2b9pQDh86qPp48/b3+jy2C2wte3bvdLmfR785qXssI4EeEunBkHQOyedgX6xeqYR+V806Bq91nGq0Y5wTV9v9/fffJU/OrK4WZzkSIAESIAESIAESIAEXCFDgdQESi5AACZAACZAACSQcAQhLEOcKFf5MPkmdWn788Uf57tYtOXQwUoUjcNWQ1Cq/n78UKFBIUn/6qTz4/ns5c+aUnDl9yq44bK9thEbInj2HCu+QOUsW1Q+Efjh18oT8/PNPrnYpXsqBV778flKqVBnlBQ3xGrGMrWPtxsvJ2SgJkAAJkAAJkAAJkAAJkECiE6DAm+hTwA6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQOwIUOCNHTfWIgESIAESIAESIAES8CACZcqUk0VLl7mlxzl9M5nyJnfLSdkICZAACZAACZAACZAACdghQIGXS4MESIAESIAESIAESCDZE6hZq7bMCVnglnFmy5xOnj9/7pa22AgJkAAJkAAJkAAJkAAJxJUABd64EmR9EiABEiABEiABEiCBJE8AicyyZI17cq+XL//rNMFbkofBDpIACZAACZAACZAACSQrAhR4k9V0cjAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALeRIACrzfNNsdKAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQrAhQ4E1W08nBkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeBMBCrzeNNscKwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLIiQIE3WU0nB0MCJEACJEACJEACJEACJEACJEACJEACJEACJOBNBCjwetNsc6wkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALJigAF3mQ1nRwMCZAACZAACZAACZAACZAACZAACZAACZAACZCANxGgwOtNs82xkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJCsCFHiT1XRyMCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAt5EgAKvN802x0oCJEACJEACJEACJEACJEACJEACJEACJEACJJCsCFDgTVbTycGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4EwEKvN402xwrCZAACZAACZAACZAACZAACZAACZAACZAACZBAsiJAgTdZTScHQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4E0EKPB602xzrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAsmKAAXeZDWdHAwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIA3EaDA602zzbGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkKwIUeJPVdHIwJEACJEACJEACJEACJEACJEACJEACJEACJEAC3kSAAq83zTbHSgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkKwIUOBNVtPJwZAACZAACZAACZAACZAACZAACZAACZAACZAACXgTgf8H0IBWq5lKGzQAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "AI-generated follow-up questions:\n",
-       "\n",
-       "* What is the country name for each of the top 10 customers by sales?\n",
-       "* How many orders does each of the top 10 customers by sales have?\n",
-       "* What is the total revenue for each of the top 10 customers by sales?\n",
-       "* What are the customer names and total sales for customers in the United States?\n",
-       "* Which customers in Africa have returned the most parts with a gross value?\n",
-       "* What are the total sales for the top 3 customers?\n",
-       "* What are the customer names and total sales for the top 5 customers?\n",
-       "* What are the total sales for customers in Europe?\n",
-       "* How many customers are there in each country?\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "vn.ask(\"What are the top 10 customers by sales?\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "SELECT n.n_name as country_name,\n",
-      "       sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales\n",
-      "FROM   snowflake_sample_data.tpch_sf1.nation n join snowflake_sample_data.tpch_sf1.customer c\n",
-      "        ON n.n_nationkey = c.c_nationkey join snowflake_sample_data.tpch_sf1.orders o\n",
-      "        ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l\n",
-      "        ON o.o_orderkey = l.l_orderkey\n",
-      "GROUP BY country_name\n",
-      "ORDER BY total_sales desc limit 5;\n"
-     ]
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>COUNTRY_NAME</th>\n",
-       "      <th>TOTAL_SALES</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>FRANCE</td>\n",
-       "      <td>8960205391.8314</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>INDONESIA</td>\n",
-       "      <td>8942575217.6237</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>RUSSIA</td>\n",
-       "      <td>8925318302.0710</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>MOZAMBIQUE</td>\n",
-       "      <td>8892984086.0088</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>JORDAN</td>\n",
-       "      <td>8873862546.7864</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "  COUNTRY_NAME      TOTAL_SALES\n",
-       "0       FRANCE  8960205391.8314\n",
-       "1    INDONESIA  8942575217.6237\n",
-       "2       RUSSIA  8925318302.0710\n",
-       "3   MOZAMBIQUE  8892984086.0088\n",
-       "4       JORDAN  8873862546.7864"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdB5QkVdUA4LeIgIFkAFEk5yg5SZSoIKCICUWCqAgKmEUUcwZBgR9FgmBCMkgGCUaQJDmJKEowIEnSL/zn9f7TOzM7u1NdO2+7b9XX53iO7Lx6dd93392uvV1TPWneeed9NnkRIECAAAECBAgQIECAAAECBAgQIECAQDiBSRq84XImYAIECBAgQIAAAQIECBAgQIAAAQIECHQENHhtBAIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQIECBAgQIAAAQIECBAgQIAAAQIENHjtAQIECBAgQIAAAQIECBAgQIAAAQIECAQV0OANmjhhEyBAgAABAgQIECBAgAABAgQIECBAQIPXHiBAgAABAgQIECBAgAABAgQIECBAgEBQAQ3eoIkTNgECBAgQIECAAAECBAgQIECAAAECBDR47QECBAgQIECAAAECBAgQIECAAAECBAgEFdDgDZo4YRMgQIAAAQIECBAgQIAAAQIECBAgQECD1x4gQIAAAQIECBAgQIAAAQIECBAgQIBAUAEN3qCJEzYBAgQIECBAgAABAgQIECBAgAABAgQ0eO0BAgQIECBAgAABAgQIECBAgAABAgQIBBXQ4A2aOGETIECAAAECBAgQIECAAAECBAgQIEBAg9ceIECAAAECBAgQIECAAAECBAgQIECAQFABDd6giRM2AQLNEnjZyxZIa6+zTndRZ515Rvrf//3fZi1ywFcz33zzp3XXW68b5Tln/zw9+eSTAx618AgQIECAAAECBAgQIECg7QIavGPsgEmTJqVll11uQvfGM888k2655eYJnXMQJ5ttttnSEkssWSu0J596Kt15x+21jq160KKLLZ623W77tMjCi6YXv+QlaY455kh//etfO+e99dZb0rXXXJ0eeOD+qtMZV1hgy61elxZ4+cu7Z/nh8celp556qvBZ+zP9gZ/9Qtplt3d3T779tq9LV1/1+/4EU/Css88+e1pjzbXS8suvmJZZZtm04CtfmR599JFOHd511x/TH++8M91y803p3nv/VjCKsaf+8Ec/nvb+wL7dH77z7W9Jl176i5kehxMSIECAAAECBAgQIECAAIFeBDR4x9DabPMt01FHH9eLY6WxO7zh9enKK35XaWzUQe/adff02c99sXb4Cy84f+1jp3fgXnvvk/bc6wPpBS94wbjz33PPX9Jxxxydjv7+d91BOUor32W6+RZbdv/0tFNPTg8//PC4pnUH3HDzHWnOOefsHr71Vpul66//Q93pBvq4pjd4cx4P/NwX03bbvzHNOuus4+bikUceSb/65WXpqO8dOdP+3tTgHTctBhAgQIAAAQIECBAgQIDAAApo8I6RlM232Cp97/vHTni62tDgzXcg5kZV3ddEN3jzHbs/OOHHaaGFFu45pPzr8RddeH7aY/ddej62qQe8f68Ppo9+/JPd5b13j93SOWefVWy5GrzNuIN3t3e/J31y/09XauyOtZlOO/WU9MG931dsnw1NrMFbnNgJCBAgQIAAAQIECBAgQKCAgAavBu+EbqtBavB+7BP7p/ftuXfKj9wY/Xr22Wc7d57mR2fMM888Y47Jx+THASy52Csn1CjyZBq85bLX1Dt4p3VXf67Bxx9/PP3nscfSnHPNlfKjG6b1uvCC89Juu7yzHP7/z6zBW5zYCQgQIECAAAECBAgQIECggIAG7xioudGw8SabTpf77Tu9M22w4UbdMeede3Y65eSTpntMblI0/UuTRjd4f37WGemkn51Yaes+9dST6ZeXX1Zp7HiDNthgo3T8j3461bDLLr0kffMbX03XXXtNyg2moddyyy2f1t9go/T67bZPK6ywYvfPNXhHEs7sBu9O79g5vWLBBbtBHPqtgzpNwSa+mtjgnfdFL0rXXHfTiA9Q8peWHXfM99NB3/zaiFzmx6estfa6aY0110ybbLJZWmbZZbtp1uBt4o63JgIECBAgQIAAAQIECBCYKAEN3pqS+3/qM2mP9+7ZPfobX/tK+vahB9ecrTmHjW7w9sMl37F7zR9uTvPOO++IRu1HPrxPOu2Uk8fFzs3eI486pvNYBw3e/jZ4x01WgwY0scH7jYMOSW/a8S3dLP3nP/9Jm268fvrrX+8ZN3MLLvjK9M2DD01rr7Nu0uAdl8sAAgQIECBAgAABAgQIEGixgAZvzeRPdIN3lllmSautvkbnruAFX/HKdO21V6dfXHxR+vOf764Z4ZTD8p1xm7xm0/Tq9TdM//znP9L5552brr3m6hmed6wJBqHB+5kDP5923X2Pbnj5Tt311l69UlNp+Jo+/8WvpK23fn1aZeXlpmtVMndFkpRSmmfeedMWW2yV1lxr7XT//fel3/3mN+mKK3477t2xM/sO3hlZf24Q5npadbXV04P/+le66qrfp9/8+pfpoYce6mna/IHB0ksvk1ZZdbW0xBJLpn/+85/plltuTjfdeEO67757e5preoOn1+DNe2z99TdMG2/ymjTrc5+bLr7ownTZpb8Y+N8IuOKq69L887+su+wD9v94+sFxx/Rk9rqtt0lPP/2/6fzzzpnmcbPNNltaZpll08KLLJIWXHChNP/886enn346/etf/0o33nB9uvLK3427t/PkM/KIhmj7rackGEyAAAECBAgQIECAAAECAy2gwVszPRPV4M1fAnbCj36acnNgrFd+pMM5Z/887f3+94x4pMDosaedcXZ61Sqrdv443yW33NKLpbe9/R3p4588IM0999xTTZ2fPXvcsUenAz+9f02BsQ/rd4P3ZS9bIP3miqtTbogNvX524k/Sh/f74ISuM082Ubk77Ijvptdt/fpOfLkZvdjCL59urpdcaql0wUVTHmVxxOHfTl/98henWt+Nt9yZcnM/v6677tq07dZbpne/531p3/0+0v3z4QflPZHvuD7sO4dMNVdumufcTut5xqMPuOGG69PWW23W+ePR8R5+2KHpa1/5Unre856XPrDPfmnd9dZPiy++RHrhC1/YWfc99/wlrb/ump1jf3LiKZ07OPMr30291OILTTePs846a/ruUcekDTfaZJpf6JWbvbvvtnP6/ZVXTHeuHPfXvn5wp7E71rrzwbmJeOUVv0tHHnFYuuSSi2doj43V4M37+DuHH5kWWODlY86dz73jDtt1niU9/JX/Pvnlb67s/lFe83gfVAwN/uGPf5bWe/X63WN3fdc70sUXXVBrbTfd+scRe237bV+Xrr5q4r44Lj9ne6d3vCvNNddc040v76tf/+qX6bMHfirdesst0xzba4M38n6rlVAHESBAgAABAgQIECBAgMBACmjw1kzLRDR4c8Ps05/53Ihm5LTC+fsDD6Q37bBduuuPd4455MKLL0tLLrV092e333briP+e1ry56fG2t+ww3YZiL0T9bvDmhs+e7/9AN+Qnnngirbjckp3m4ES+JjJ3P/jhT9KGG27cDW+RV75suvlYccWV0lnnTGm4Hf+DY9OnPvmxqZZ3x133pOc+97mdP//XP/+ZHn3s0c5jJ8Z7nXvOz9N73r3riGFf/+a30o5vfut4h3Z//sc770gbb7he579XWmnldObZ53d/lu/g/Muf/5w+8rFPpHzn5ehXfkbrUCP35+de2H0mcm7SZZtpvVZfY810zHE/HLfZN3T8j390Qvr4Rz805nS7vfs9ndrs5ZX3Wf7ivrqv0Q3eW26+ecRzaKc1b74De8vNN+nkePjr2vyYkhe9qPtHu++6c7rg/HOnG15ulP7hxtu6De2ci6WXWLj23w+/v/r69NL55uue88Sf/jh95EP71CWa6rjTzjwnrfL/H2xVnXR6Dr00eKPvt6pexhEgQIAAAQIECBAgQIDA4Ato8NbM0Yw2ePd4z55p/wM+M9XZc0Py0UceSS968YunavzmuwVXe9XyY/6K+egGby/L+smPf5g+9pH9ejlkmmP73eA9+7yL0vLLr9CN74Tjj0v7f+KjE7K2oUkmOnczo8HbK8Cmm6yfbr/ttu5hX/36Qektb3175WnuvOP2tMlGr+6MH93gzXebDr/DevSkdRq8a6y5VjrplDNGTJXP889//CPd/8D9aZ555uk8KmCo4T00MDeyc0N7+Cs37vJco+/azfP9+8EH05xzzTXVPPn4iW7wVsZOKQ33Hjpun30/nPb90Ee609x8001py82nfJAw1vwHfu6LaZddd+/+6JSTfpb23WevXkIZMfbU03/eeUTG0OuRRx5J66616gw1woefYKwGb/4gIP8Ww3Oe85yUvzBzdB7z36ObbLjemI+/qdrgbcJ+q51UBxIgQIAAAQIECBAgQIDAwAlo8NZMyYw0ePNdizfcfEen+TD0ys/a3f71r0v/+Mffu3+2zeu3TQcfctiIZtJFF56f8q9Mj35Nq8H7m1//Kp133jnp3LN/3vl18i23em365Kc+M+LXpvPdrcsuteiEPM9zdIM3N1r+89hj6TmzztoJ+YknHk/33Xtvuu22W9MhB3+z5+fijpeum2+7Kz3/+c/vDttvn73TySedON5hlX9eInczs8Gbm1+/vPyydN65Z6czzzw9PW+O56XXbr1N+tQBB45ouubHF7xx+226Lnmvzjff/Gm33ffoPKph6PXZAw9IF5w39V2hDz30724Tb3SDdzR2/lDjz3f/KT39v/+bXvrSl3b26bprrdYZVvUO3tHPes3x77brOzsN2aFX/nX6XE+v33a77p/9+9//TiuvMOXO9/yDX1z6q7TY4kt0x+Qa+tIXPpv+8Ifrun+WHwWyxZZbpb0/sG/3DtVSDd58137O1fnnnpPuuOP2zuMnPvyRj011h35+JMb11/+hG2Peq7ke8rqHXmut/qrpPjc4/70055xzdobnvbL6KiuO+DupcqH8/8DRz2zOf5wb+PmxKfmxFjP6jPHcQF5xpZXTDdf/IZ16yknp9NNPnSrn+c7zz3z2C2mOOebohj/WXer5h1UbvE3Yb73m0ngCBAgQIECAAAECBAgQGFwBDd6auZmRBu/oX3fPjaNtXrv5mJHkZ2lecvlvRjR5R99dmQ8c3eC9++4/pfftsVu68cYbppo3/9r2pZf/dsSzeb996MGd56/O6Gt0g3e8+XJ8n/jYh9N1114z3tBKP7/rz/eOaFRutMG603ysRaUJRw0qkbuZ1eC94/bb0u67vWtMj3XXe3X68U9P7q42P7P1VSstOxVRnS9Zm1aDN39Ysf8nPpbuvfdv00xFlQZvfiRHfjTH0OvMM05Pe+055Uv2Rk9+wo9OTOtvsGH3j/PjLfJjLoZewx9tMS2H4XPu8KY3pw/u+6G06cbrd5qXdV+jH9Hw6KOPpv0/+dF02ilT8jJ87tF3x15zzdVpu222GnH6o489Pr1m0yl/t5x68klpnw++f8wQ8wdK3zn8u92fXXvtNZ3nNs/oa/RjGobPlz9cyl9Ul/fm76+8MuU9kb/Aruor3wk++vnDYx079Bzoobt5c9M8/90w+lWlwduU/VbV2DgCBAgQIECAAAECBAgQGHwBDd6aOZqRBu/wBlI+/QavXjvd/ae7phnJ6KZi/jKnnXca+TzU4Q3e/MVsiy/yiumuLH/ZVr5rc+iV76Qb+mKrmiSdw3pt8OZjcryv3fI10/3yo6ox3X3P/d2h4z2zteqcw8eVyN3MaPDeddcf00brrzPdJQ//Qqxp7aGJaPDm59Tuvus70+9++5txU1ClwTs87oceeqhzR27O/bRe+QOO/Hzaodepp5yc9vnAnp3/zF/8dsvtf+r+LN+Bnu9unxmvsb5kbXpfSJa/eO23V075YCQ3OhddaIERoS6+xJLp4kt+2f2z4Y+/GL2m0R8SvWXHN6R89/KMvvIjU048+fTOl+hVeeW9l+9EPvw7h6bzzzunyiGVxlx1zQ3pJS99aWdsvms8P1t49KtKg7cp+60SmkEECBAgQIAAAQIECBAgEEJAg7dmmuo2ePOXGF1/0+3ds950041pq803mW4U+Vem8zFDd5+N1YzttcGb73y7/Y9/6f76dm665V8xn9HXm9/ytpSf15rnu/++e9O//vWv9O9/P9i5q/alL52v8+vs+a7k0a/cSFtvndWn+qKoXuLJTvlXzIde02tm9TLv0NhSuZsZDd6xntE62uC8Cy4Z8aVe+UOC3Gwb/pqIBm/+krUD9v94pRSM1+DNjx+4809/7c510s9+mj6075Qv2ZvWSYY36UbfQT/6LvBDvvXNdNA3vlYp3hkZ1GuDN58r392/6KKLdU+73NKLpccee2xEGKPHjL5jOQ9+5SsXSr/8zZXd4/KXOq6+6oozspwRx+bG+dHHnpDWWXe9qZ6JO72T5C+O2/FN2414HvR4QS233PKd5/6+YsEF08tfvmCab7750lxzz52WXHKp7mNxpvXhz3gN3ibtt/Ec/ZwAAQIECBAgQIAAAQIE4gho8NbMVd0G74YbbpxyQ2/oVbUhNfzZmLmBkxs5w1+9NnjzscPvaBvr7r+aNOMelhu8n/vCl0b86ng+6OKLLki77LzTuMdPb8DwO3jzuEVe+bLp3s3Zy8lK5W5QGrz5i8Xyl0cNvZZZcpH0+OOPjyAatAZv/kK0k089sxtj/pX/hx96aNy0Dt3JmQeObmb+6re/n+pDiPzlYL/77a/TJb+4OF1w/nnTfY7tuCefxoA6Dd6jjj4ubbb5lMco5Ocm5+cPD3+9cYcd00Hf+nb3j+655y9pvbWnfPFZ/sERRx6VXvu6Kc9c/sqXvpCOOHzKMXXXNPq4F7zgBWnnd+2W3vDGHdIrF1p4xHNxp3WO/HdTvpt4end8599IePOb35qWWHKpSg3kug3eJu23icqpeQgQIECAAAECBAgQIECg/wIavDVzULfBm7+UKd8lNvT6+le/nL7z7W+NG8XwptNYzYk6Dd6LfnF5pyEy9BqroTduYDMw4LAjvpu23mbb7gz5Waxrr7HKDMyY0ui7L/OzjYd/OdaMTF4qd4PS4D3mBz9Mm2yy6XT3w6A1ePd4z55p/wM+MyNpTbl5u8KyU75U7dXrb5B++OOfTXfO3Ei+84470gnHH5t+9MPjKz0Hdrwg6zR4P//Fr6R37rxLd+r8POscz+jX8DuW888233TD7iNR8t31t9355+5zvvPa8uMLqjzbdrw1jffz3PBde5310gYbbpRWW32NtPjiS4z4ksSh46d1R/Hcc8+d8rOI86MoennVbfA2ab/14mUsAQIECBAgQIAAAQIECAy2gAZvzfzUbfB+46BD0pt2fEv3rPt84P2db38f75Wfozm8iZEfp5AfgzD0qtPgveCiS9NSSy/TnWOl5ZdK+RmmM+uVHzmRG7JDj56YiLuIb77trhENos8eeEA6+qgpXxw1I2srlbtBafCO/kKuCHfwjn4+dZ38jvV4ks232CrlDyBmm222caf897//nXZ665s6z42dkVedBu8Bn/5s2n2P93ZPO639/sUvfy3t9I6du+OGP8f7fXvunT7+yU91f3b6aaemD+w1Zc4ZWVOdYzfYYKN08CHf6T4vd2iOd7ztzemyyy7pTpkfxXDyaWeN2RDOf4/9/YH703333de5Q/vvf3+g8/dufv5yftVt8DZpv9XJjWMIECBAgAABAgQIECBAYDAFNHhr5qVug3ef/T6c9t3vI92zfu0rX0qHfeeQcaPIz8fMz8kceo1+9ECdBu+vf3dVesUrFpxuw2PcwGZwwDXX3ZRe9OIXd2dZd63V0l//ek/tWc89/xdp2eWW6x5/5hmnp7323KP2fMMPLJW70Q3e/EVZ07t7csUVV0pnnXNBN7Tjf3Bsys9VHf0a/oVwVZ7BG7HBu9+HP5o+uM+Huks/+JtfTz/4wTE95fvpp57q3MU7+pWft7rzLrulnXZ6Z1po4UW6z6sea/J81+uqKy835jxVg6nT4B3dcNx9153TBeefO9Up55l33s4Xyw3/MCXfpZvjvvLqP6T55pu/e8xaq7+qyCMoqjrkcdn+DzfelvIdvkOvnNtvHfyN7n+P/lK43LT9xcUXpn332Tv9+8EHpzrdaWecnVZZdbXp/n033jN4m7TfesmHsQQIECBAgAABAgQIECAw2AIavDXzU7fBu8lrNkvHHHdC96x1nsGbv5Bs2aUWHRF5nQbv6G+Dz3fwzuzX8OcA53PnZ4PmZ4TWfX3sE/unPd8/5Uu28peE5cbbRNyZXCp3oxu8q71qhfSPf/x9mgSD1ODNzfPcRJ/ea6WVVk5nnn1+d8hEfsna6Ocil7z7dMmllkqbbrpF2mjjTTqNwtlnn33Esk895eS0zwf2rLt1U50G709OPKXzxWVDr5VXXGbM5mb++SmnndV5DMLQK3953OWXXZrys5eHXjfccH163ZZTHtNRezETcODh//O99LqtX9+d6cSf/jh95EP7dP47f2nbLbf/qfuz3Nx97RavSflLK6f1mogGb5P22wSkyBQECBAgQIAAAQIECBAgMCACGrw1E1G3wZvvpLvu+lu6Z80Nia0232S6UeS72G685c7u3XdjfUlSrw3efDdwvit46HXLzTenLTbbqKZG/cPu/NNfu3dG5mbs4ou8ov5kKXXuch6+rjzZLy+/LL39rW+qNW/+Ff18l2N+lcrd6Dtnt9h0o3TLLTdPM95BavDmhltuvE3vVbLBm2sjf1Ax9Lrrj3emjTZYt1auezko3wl77PE/ShttNKV2/3jnHWnjDac0W3uZL4+t0+Adfvft008/nZZYdPId+WO98hfoDW/mPvivf6U777wj5S8OG3qNfgxCr2sYPX54/fQ61+gvfjv8sEPTV7/8xc40r1pl1XT6med0p7zyit+lHd4wpRk81rkmosHbpP3Waz6MJ2yyO4YAACAASURBVECAAAECBAgQIECAAIHBFdDgrZmbug3efLrhTc383xu8eu1095/ummYkX/36Qektb3179+e/+uXl6W1v2WHE+F4bvD/+6clp3fVe3Z3jlJN+lvbdZ6+aGvUO22W3d3eaWkOv++67N+VfD5/R1/BGztBcb33zG9Ovf/XLylPnBt73vn9sWn+DjTpfODX0KpG7zxz4+bTr7lMeI/GFzx+YvnfkEdOMdeVXrZLOOGvKr+HPzEc07PCmN6dvHnxoN7aDvvG1lO8End6rZIM3n/f2P/5lxLNy99tn73TySSdWzvXogTn3+Y7Q8V75sQa5wTr0euCB+9Maq6403mHT/HmvDd7XbLp5yh8ODL3uv/++tOZqK0/3/L+/+vr00vnmG3PMv/75z7TKylMeb1J7IcMO/NNf7kvXXnN12mvP9/R8Z/7oWPMHYUN36G712q3T/3z3+90zXXzRBWmXnXeabsgT0eBt0n6biPyagwABAgQIECBAgAABAgQGQ0CDt2YeZqTBO/pXj6+99pq07dZbjhnJy162QOeO1Oc+97ndn2+91WZTfaFTLw3e7d7wxnTIoYd358t3zq62ygrT/NXuqkTveOe70t4f3Dd959Bvpfxr+NN75Tttf3HZr0esa6J+vX6ZZZZN517wi+4dzzmO3LDLjdAD9v/4uMvJj2L4+jcO7nzJU757d8nFXtk9pkTuRjdNp3cn6Dt33iV96tOfHfF4gJnZ4M2251045Yuubrzxhs6vxk/vVbrBO/oDkJyz12z06vTnP9893bjyIxeOOe6H6cLzz0sHfmbyl4wtvcwyKT/HOe/FT3zsQ+nxxx+f5hxzzz135zmxQ6+//OXP6dXrTHkEwrgbbdSAXhq8+U7SSy//7Yhmbd7b49VdfnxJfozJWK9vfO0r6duHHtxr2NMdf/c993d+nuvv52edkT764X3TY489Nu45Rt/VPvru5NHN9ek1p3PD/vNf/ErnS+aGnkFc90vWcuBN2W/jJsEAAgQIECBAgAABAgQIEAgjoMFbM1Uz0uDNzZnrbrh1RHMzN/W23War9PDDD3cjyr/+/b2jjxtxd2K+CzXfjTr6NfoLh/IjF4479vvp1FNO6jap8p2fe75/77TlVq8bcfiRRxyWvvTFz9WUmHLY8C8oevTRR1N+vvCll/wi/e63v+42dfLaP33g59Ob3/K2EQ3Y/FzhV624THryySdnOI48wV5775M+8rFPTDVXvsvyf444LP3y8kvTrbdMeVTGQgstnN7+jnembV6/XfeL5/LBoxu8JXKXz335r68YEWu+S/vjH/1Qp0mZf77tdm9Ib37r20Z80d7QATOzwTvLLLOku/5874hYDz3koPTNr3+1+2cbb7JpeuELX9B9Nm/pBm9u2l17/S1pnnnm6caQG3innXJy+vQBnxhRU8stt3zKDfyc52WWXbYzfvhzsIc//iI3FU/4wbHp+OOPS/lL6oa/8gcUPzvl9LTAAi/v/vHwRwjU2cSjG7y333Zr5+7os848Y8QdxfnvhcOPPGrEF5Dde+/f0tprrDLuafOXl+Vn1w7/wCgflNe6zJKLpPxhz0S+hhq8Q3Pm81x+2SXp9NNPTWefdWb38Sf557m2dtn13WmXXXfvfLgy/DVW83r4lwjmsddcfVV6//v26H5JY953m22xZXrXLrunueaaa8R8M9Lgbcp+m8g8m4sAAQIECBAgQIAAAQIE+iugwVvTf0YavPmUH/rIx9IHPrjfVGfPXwb2xBOPp3nmmXeqL3F65plnOr8CPtYXcI1u8A6fOB+XmxJDd68N/9mDDz6YVllp2Uq/kj4e1ehvoB8+PjdK8/lHN5aGxrx3j93SOWefNd4pevr5Nw46JL1px7dM85jc5Mlx5eeEjmWTDxzd4C2Ruzznqaf/PK262upTxZpjnFZsQ4NnZoM3n/O0M89Jq6yy6ohYc5y5OZgbiDne4Xchl27w5kDWWnuddOJJp42Z69xUzB8gzDnnnCk3qEe/ptXgHV1Due7y3ae5Nuedd94R0zzxxBOdL/OrcnfqtDbk6Abv0Lhsm+fNvvmu4bH2w447bJd+99vfVKqPI7939FQf8uS7a/d877srHd/LoNEN3tHH5jXl/+UaHCs3efzZPz8zve89u0912q994+DOB0WjXznfz3nOc6Y5Xx4/Iw3epuy3XvJoLAECBAgQIECAAAECBAgMtoAGb838zGiDN582N0TznabjNfDy2Hxn705v2zFdd+01Y0Y8vQbvtJaY7/LdcYdtU24qT8Rreg3eac2fmzFf/tLn0/e/d+REhDDVHG99206dX8+eVmN5eifNTcFjjv5e+tpXvjTVsInMXZ58wQVf2bmLd1pNrqEAcmPq91dekfIXZg29ZnaDN9+9mmOd3r6d2Q3ebPHq9TdI3znsyDTvi17U01764Qk/SJ/8+Ec6x4x+BEWVifJd56/batN0+21THtdQ5bjRY6bV4J3eXLk5+qF9906nnXpK5VOOdcf4umut1r3ztfJEFQaed8ElncdeVPk7bvR0+YOpn534k85jHab1uuKq69L8879s3EiGGslzzDFHZ+yMNnibsN/GRTOAAAECBAgQIECAAAECBMIIaPDWTNVHP/7J9P69Ptg9+ktf+Fw68n8O63m2fHfjccf/OL3oxS8e89jciPjl5ZelXd+104hfZx49eHSD94Lzz00bbfyaMRub+W7A/PiGoW+k7znoaRwwz7zzpt3f/Z70+m237zxWYLymTv7m+91323mGn/07Xvyzzz57+vgnPpW22/6Naa655+7cZTqtV24433rrLenoo7477hd1TVTuhmLJZj8+8eROs3es1z33/CXt9q53pGfTs+n8Cy/tDsmxfvbAA6Y6ZPiXj+Vm/habbTRdqtF3di61+ELTfGRGfn7tsT/40TRjHf5c6dFN06O++z/p85/7zHhp6/x8+Bdj5YbfogstMO5x+Rmzu+62Rxpq5o11QM5zbpR/77v/ky668PwRQ/JjGvb90Ec6X7CX7yyd3l75yY9/mD7/2U9PyKNFPrH/Aem975vyRYeXXHJxWm+99af54UR+LMOb3rBtys/+7eW1zrrrpZ+cOKUhXGVv9DL/6LFDj17YYcc3p0UWWXTcvxdyM/bSSy5O++37gXH/bsi1fdgR302bbT72M8zznrn88kvTB/Z6Xzrq+8d1PxiZ1l764D4fSvt9+KPdJVS5MzrqfpuRnDqWAAECBAgQIECAAAECBAZLQIN3QPKRnxG54UYbp7XWXjfNPfc86a677kyXX3ZppwmVm7zjvcb6krV8N+jyy6+Qll1u+bToYoul2269tdPMGv6c3/Hmrfvz3NRZZdXV0uKLL5EWXWzx9JKXvDT997//TTfc8If0u9/8uvMlcVXWVff80zsuN9PXWmudzmMG8pc13f/Afenee+9NV/7utyl/aVivrxnN3ejzrb7GmmnttddNSyy5VHr66afSZZf+Il180YUz9Ov/va6p6vj8JYBrrLlmZ4/957H/dO4C/c2vf5Xuu2/kc3qrzjeR43JzNj93evXV1+zs/xzTzTfdlK7/w3UpN8urvPK+XWnlV6X87N48xyMPP9z5AODGG65PN9xwfcqNwpKv/GHEppttkVZ+1avSYostnvKzrfOjGM4//9xxm5/Tiuvn516YVlhhxe6Pd9l5p3TxRReUXMaIufMHGEsvs2xaaqml0yKLLppmn232dOedd3Tycs01V9X6jYKFF1k0bbrZ5mnFFVZKs80+W7r3b39LN910Yzr9tFMm/LnC04Jqwn6baZvAiQgQIECAAAECBAgQIEBgQgU0eCeUs3+TjdXg7V80zkyAwCAK5Mdr/PI3V3ZDy8/gzl9u6EWAAAECBAgQIECAAAECBAjEFdDgjZu7EZFr8DYkkZZBoKDA0ccen16z6ebdMxzyrW+mg77xtYJnNDUBAgQIECBAgAABAgQIECBQWkCDt7TwTJpfg3cmQTsNgaAC+bEpN9x8R/eL/PKzbpddatHpPts76FKFTYAAAQIECBAgQIAAAQIEWiWgwduQdGvwNiSRlkGgkMCBn/ti2mXX3buz5y9i3H3XnQudzbQECBAgQIAAAQIECBAgQIDAzBLQ4J1Z0oXPo8FbGNj0BIIL3HzbXen5z39+dxXrr7tm+vOf7w6+KuETIECAAAECBAgQIECAAAECGrwN2QPHnfDjtPba63ZW88jDD6fVV12xISuzDAIEZlRgpZVWTj875YzuNDdc/4f0xu23mdFpHU+AAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzDAECBAgQIECAAAECBAgQIECAAAECBAZAQIN3AJIgBAIECBAgQIAAAQIECBAgQIAAAQIECNQR0OCto+YYAgQIECBAgAABAgQIECBAgAABAgQIDICABu8AJEEIBAgQIECAAAECBAgQIECAAAECBAgQqCOgwVtHzTEECBAgQIAAAQIECBAgQIAAAQIECBAYAAEN3gFIghAIECBAgAABAgQIECBAgAABAgQIECBQR0CDt46aYwgQIECAAAECBAgQIECAAAECBAgQIDAAAhq8A5AEIRAgQIAAAQIECBAgQIAAAQIECBAgQKCOgAZvHTXHECBAgAABAgQIECBAgAABAgQIECBAYAAENHgHIAlCIECAAAECBAgQIECAAAECBAgQIECAQB0BDd46ao4hQIAAAQIECBAgQIAAAQIECBAgQIDAAAho8A5AEoRAgAABAgQIECBAgAABAgQIECBAgACBOgIavHXUHEOAAAECBAgQIECAAAECBAgQIECAAIEBENDgHYAkCIEAAQIECBAgQIAAAQIECBAgQIAAAQJ1BDR466g5hgABAgQIECBAgAABAgQIECBAgAABAgMgoME7AEkQAgECBAgQIECAAAECBAgQIECAAAECBOoIaPDWUXMMAQIECBAgQIAAAQIECBAgQIAAAQIEBkBAg3cAkiAEAgQIECBAgAABAgQIECBAgAABAgQI1BHQ4K2j5hgCBAgQIECAAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzDAECBAgQIECAAAECBAgQIECAAAECBAZAQIN3AJIgBAIECBAgQIAAAQIECBAgQIAAAQIECNQR0OCto+YYAgQIECBAgAABAgQIECBAgAABAgQIDICABu8AJEEIBAgQIECAAAECBAgQIECAAAECBAgQqCOgwVtHzTEECBAgQIAAAQIECBAgQIAAAQIECBAYAAEN3gFIghAIECBAgAABAgQIECBAgAABAgQIECBQR0CDt46aYwgQIECAAAECBAgQIECAAAECBAgQIDAAAhq8A5AEIRAgQIAAAQIECBAgQIAAAQIECBAgQKCOgAZvHTXHECBAgAABAgQIECBAgAABAgQIECBAYAAENHgHIAlCIECAAAECBAgQIECAAAECBAgQIECAQB0BDd46ao4hQIAAAQIECBAgQIAAAQIECBAgQIDAAAho8A5AEoRAgAABAgQIECBAgAABAgQIECBAgACBOgIavHXUHEOAAAECBAgQIECAAAECBAgQIECAAIEBENDgHYAkCIEAAQIECBAgQIAAAQIECBAgQIAAAQJ1BDR466g5hgABAgQIECBAgAABAgQIECBAgAABAgMgoME7AEkQAgECBAgQIECAAAECBAgQIECAAAECBOoIaPDWUXMMAQIECBAgQIAAAQIECBAgQIAAAQIEBkBAg3cAkiAEAgQIECBAgAABAgQIECBAgAABAgQI1BHQ4K2j5hgCBAgQIECAAAECBAgQIECAAAECBAgMgIAG7wAkQQgECBAgQIAAAQIECBAgQIAAAQIECBCoI6DBW0fNMQQIECBAgAABAgQIECBAgAABAgQIEBgAAQ3eAUiCEAgQIECAAAECBAgQIECAAAECBAgQIFBHQIO3jppjCBAgQIAAAQIECBAgQIAAAQIECBAgMAACGrwDkAQhECBAgAABAgQIECBAgAABAgQIECBAoI6ABm8dNccQIECAAAECBAgQIECAAAECBAgQIEBgAAQ0eAcgCUIgQIAAAQIECBAgQIAAAQIECBAgQIBAHQEN3jpqjiFAgAABAgQIECBAgAABAgQIECBAgMAACGjwDkAShECAAAECBAgQIECAAAECBAgQIECAAIE6Ahq8ddQcQ4AAAQIECBAgQIAAAQIECBAgQIAAgQEQ0OAdgCQIgQABAgQIECBAgAABAgQIECBAgAABAnUENHjrqDmGAAECBAgQIECAAAECBAgQIECAAAECAyCgwTsASRACAQIECBAgQIAAAQIECBAgQIAAAQIE6gho8NZRcwwBAgQIECBAgAABAgQIECBAgAABAgQGQECDdwCSIAQCBAgQIECAAAECBAgQIECAAAECBAjUEdDgraPmGAIECBAgQIAAAQIECBAgQIAAAQIECAyAgAbvACRBCAQIECBAgAABAgQIECBAgAABAgQIEKgjoMFbR80xBAgQIECAAAECBAgQIECAAAECBAgQGAABDd4BSIIQCBAgQIAAAQIECBAgQIAAAQIECBAgUEdAg7eOmmMIECBAgAABAgQIECBAgAABAgQIECAwAAIavAOQBCEQIECAAAECBAgQIECAAAECBAgQIECgjoAGbx01xxAgQIAAAQIECBAgQIAAAQIECBAgQGAABDR4ByAJQiBAgAABAgQIECBAgAABAgQIECBAgEAdAQ3eOmqOIUCAAAECBAgQIECAAAECBAgQIECAwAAIaPAOQBKEQIAAAQIECBAgQIAAAQIECBAgQIAAgToCGrx11BxDgAABAgQIECBAgAABAgQIECBAgACBARDQ4B2AJAiBAAECBAgQIECAAAECBAgQIECAAAECdQQ0eOuoOYYAAQIECBAgQIAAAQIECBAgQIAAAQIDIKDBOwBJEAIBAgQIECBAgAABAgQIECBAgAABAgTqCGjw1lFzzEALPPPM7OnJJ3dLKb1woOMUHIHJAg+nOeY4Nk2a9AQQAgQIECBAgAABAgQIECBAgEDPAhq8PZM5YNAFnnnmeenhh69Ozz47/6CHKj4CadKkv6a5514rTZr0nxAazzzzwvTf/y6VUpo1RLyCbLvA02nWWe9MkyY9HALi2WefTZMmTQoRqyAJZAF71j4gQIAAAQIECAyGgAbvYORBFBMooME7gZimKi4Qr8HrA5Tim8IJJkwgWn39978vSpMm5Q9PZpkwAxMRKCfwTErpv2mWWf5Z7hRmJkCAAAECBAgQqCSgwVuJyaBIAhq8kbIl1mgNKPVlz0YSUF+RsiXWaALR6iuar3gJECBAgAABAr0IaPD2omVsCAENqBBpEuT/C0T7B7L6snUjCaivSNkSazSBePU1T5o06bFozOJtqUB+/ElKc6ZZZnmwpQKWTYAAAQK9Cmjw9ipm/MALaEANfIoEOEwg3j+QPaLBBo4joL7i5Eqk8QRi1tfl6dln54uHLeLWCUya9Lc099ybBPqOhrnSs8/O5jnyrdupkRf8VJpllociL0DsBKYS0OC1KRonoMHbuJQ2ekEx/4HsSwwbvSkbtDj11aBkWsrACaivgUuJgBokEK++Zk9PPPH59OyzczUoC5bSXIEH0/Of/7k0adLjzV2ilbVSQIO3lWlv9qI1eJud36atLt4FvDt4m7YHm7we9dXk7FpbvwXUV78z4PxNFlBfTc6utfVbIFp99dvL+eMIaPDGyZVIKwpo8FaEMmwgBKJdYKivgdg2gqgooL4qQhlGoIaA+qqB5hACFQXUV0UowwjUEIhWXzWW6JCWCmjwtjTxTV62BlSTs9u8tUW7wFBfzduDTV6R+mpydq2t3wLqq98ZcP4mC6ivJmfX2votEK2++u3l/HEENHjj5EqkFQU0oCpCGTYQAtEuMNTXQGwbQVQUUF8VoQwjUENAfdVAcwiBigLqqyKUYQRqCESrrxpLdEhLBTR4W5r4Ji9bA6rJ2W3e2qJdYKiv5u3BJq9IfTU5u9bWbwH11e8MOH+TBdRXk7Nrbf0WiFZf/fZy/jgCGrxxciXSigIaUBWhDBsIgWgXGOprILaNICoKqK+KUIYRqCGgvmqgOYRARQH1VRHKMAI1BKLVV40lOqSlAhq8LU18k5etAdXk7DZvbdEuMNRX8/Zgk1ekvpqcXWvrt4D66ncGnL/JAuqrydm1tn4LRKuvfns5fxwBDd44uRJpRQENqIpQhg2EQLQLDPU1ENtGEBUF1FdFKMMI1BBQXzXQHEKgooD6qghlGIEaAtHqq8YSHdJSAQ3elia+ycvWgGpydpu3tmgXGOqreXuwyStSX03OrrX1W0B99TsDzt9kAfXV5OxaW78FotVXv72cP46ABm+cXIm0ooAGVEUowwZCINoFhvoaiG0jiIoC6qsilGEEagiorxpoDiFQUUB9VYQyjEANgWj1VWOJDmmpgAZvSxPf5GVrQDU5u81bW7QLDPXVvD3Y5BWpryZn19r6LaC++p0B52+ygPpqcnatrd8C0eqr317OH0dAgzdOrkRaUUADqiKUYQMhEO0CQ30NxLYRREUB9VURyjACNQTUVw00hxCoKKC+KkIZRqCGQLT6qrFEh7RUQIO3pYlv8rI1oJqc3eatLdoFhvpq3h5s8orUV5Oza239FlBf/c6A8zdZQH01ObvW1m+BaPXVby/njyOgwRsnVyKtKKABKyrD4QAAIABJREFUVRHKsIEQiHaBob4GYtsIoqKA+qoIZRiBGgLqqwaaQwhUFFBfFaEMI1BDIFp91ViiQ1oqoMHb0sQ3edkaUE3ObvPWFu0CQ301bw82eUXqq8nZtbZ+C6ivfmfA+ZssoL6anF1r67dAtPrqt5fzxxHQ4I2TK5FWFNCAqghl2EAIRLvAUF8DsW0EUVFAfVWEMoxADQH1VQPNIQQqCqivilCGEaghEK2+aizRIS0V0OBtaeKbvGwNqCZnt3lri3aBob6atwebvCL11eTsWlu/BdRXvzPg/E0WUF9Nzq619VsgWn3128v54who8MbJlUgrCmhAVYQybCAEol1gqK+B2DaCqCigvipCGUaghoD6qoHmEAIVBdRXRSjDCNQQiFZfNZbokJYKaPC2NPFNXrYGVJOz27y1RbvAUF/N24NNXpH6anJ2ra3fAuqr3xlw/iYLqK8mZ9fa+i0Qrb767eX8cQQ0eOPkSqQVBTSgKkIZNhAC0S4w1NdAbBtBVBRQXxWhDCNQQ0B91UBzCIGKAuqrIpRhBGoIRKuvGkt0SEsFNHhbmvgmL1sDqsnZbd7aol1gqK/m7cEmr0h9NTm71tZvAfXV7ww4f5MF1FeTs2tt/RaIVl/99nL+OAIavHFyJdKKAhpQFaEMGwiBaBcY6msgto0gKgqor4pQhhGoIaC+aqA5hEBFAfVVEcowAjUEotVXjSU6pKUCGrwtTXyTl60B1eTsNm9t0S4w1Ffz9mCTV6S+mpxda+u3gPrqdwacv8kC6qvJ2bW2fgtEq69+ezl/HAEN3ji5EmlFAQ2oilCGDYRAtAsM9TUQ20YQFQXUV0UowwjUEFBfNdAcQqCigPqqCGUYgRoC0eqrxhId0lIBDd6WJr7Jy9aAanJ2m7e2aBcY6qt5e7DJK1JfTc6utfVbQH31OwPO32QB9dXk7FpbvwWi1Ve/vZw/joAGb5xcibSigAZURSjDBkIg2gWG+hqIbSOIigLqqyKUYQRqCKivGmgOIVBRQH1VhDKMQA2BaPVVY4kOaamABm9LE9/kZWtANTm7zVtbtAsM9dW8PdjkFamvJmfX2votoL76nQHnb7KA+mpydq2t3wLR6qvfXs4fR0CDN06uRFpRQAOqIpRhAyEQ7QJDfQ3EthFERQH1VRHKMAI1BNRXDTSHEKgooL4qQhlGoIZAtPqqsUSHtFRAg7eliW/ysjWgmpzd5q0t2gWG+mreHmzyitRXk7Nrbf0WUF/9zoDzN1lAfTU5u9bWb4Fo9dVvL+ePI6DBGydXIq0ooAFVEcqwgRCIdoGhvgZi2wiiooD6qghlGIEaAuqrBppDCFQUUF8VoQwjUEMgWn3VWKJDWiqgwdvSxDd52RpQTc5u89YW7QJDfTVvDzZ5Reqrydm1tn4LqK9+Z8D5myygvpqcXWvrt0C0+uq3l/PHEdDgjZMrkVYU0ICqCGXYQAhEu8BQXwOxbQRRUUB9VYQyjEANAfVVA80hBCoKqK+KUIYRqCEQrb5qLNEhLRXQ4G1p4pu8bA2oJme3eWuLdoGhvpq3B5u8IvXV5OxaW78F1Fe/M+D8TRZQX03OrrX1WyBaffXby/njCGjwxsmVSCsKaEBVhDJsIASiXWCor4HYNoKoKKC+KkIZRqCGgPqqgeYQAhUF1FdFKMMI1BCIVl81luiQlgpo8LY08U1etgZUk7PbvLVFu8BQX83bg01ekfpqcnatrd8C6qvfGXD+JguoryZn19r6LRCtvvrt5fxxBDR44+RKpBUFNKAqQhk2EALRLjDU10BsG0FUFFBfFaEMI1BDQH3VQHMIgYoC6qsilGEEaghEq68aS3RISwU0eFua+CYvWwOqydlt3tqiXWCor+btwSavSH01ObvW1m8B9dXvDDh/kwXUV5Oza239FohWX/32cv44Ahq8cXIl0ooCGlAVoQwbCIFoFxjqayC2jSAqCqivilCGEaghoL5qoDmEQEUB9VURyjACNQSi1VeNJTqkpQIavC1NfJOXrQHV5Ow2b23RLjDUV/P2YJNXpL6anF1r67eA+up3Bpy/yQLqq8nZtbZ+C0Srr357OX8cAQ3eOLkSaUUBDaiKUIYNhEC0Cwz1NRDbRhAVBdRXRSjDCNQQUF810BxCoKKA+qoIZRiBGgLR6qvGEh3SUgEN3pYmvsnL1oBqcnabt7ZoFxjqq3l7sMkrUl9Nzq619VtAffU7A87fZAH11eTsWlu/BaLVV7+9nD+OgAZvnFyJtKKABlRFKMMGQiDaBYb6GohtI4iKAuqrIpRhBGoIqK8aaA4hUFFAfVWEMoxADYFo9VVjiQ5pqYAGb0sT3+Rla0A1ObvNW1u0Cwz11bw92OQVqa8mZ9fa+i2gvvqdAedvsoD6anJ2ra3fAtHqq99ezh9HQIM3Tq5EWlFAA6oilGEDIRDtAkN9DcS2EURFAfVVEcowAjUE1FcNNIcQqCigvipCGUaghkC0+qqxRIe0VECDt6WJb/KyNaCanN3mrS3aBYb6at4ebPKK1FeTs2tt/RZQX/3OgPM3WUB9NTm71tZvgWj11W8v548joMEbJ1cirSigAVURyrCBEIh2gaG+BmLbCKKigPqqCGUYgRoC6qsGmkMIVBRQXxWhDCNQQyBafdVYokNaKqDB29LEN3nZGlBNzm7z1hbtAkN9NW8PNnlF6qvJ2bW2fguor35nwPmbLKC+mpxda+u3QLT66reX88cR0OCNkyuRVhTQgKoIZdhACES7wFBfA7FtBFFRQH1VhDKMQA0B9VUDzSEEKgqor4pQhhGoIRCtvmos0SEtFdDgbWnip7fshRdZND3+n/+kBx64P6SOBlTItLU26GgXGOqrtVs15MLVV8i0CTqIgPoKkihhhhRQXyHTJuggAtHqKwirMAdAQIN3AJIwCCHsuvse6QMf3C/NM888adKkSZ2Qnn322fT3vz+QvviFz6bTTjl5qjC3eu3W6fNf+PJUf/7Ms8+kp556Kj3x+OPpuuuuTd878oh0yy03z7RlakDNNGonmgCBaBcY6msCkm6KmSagvmYatRO1UEB9tTDpljzTBNTXTKN2ohYKRKuvFqbIkmsKaPDWhGvKYbmZe8FFl6Yll1p6uku68ILz0m67vHPEmD3es2fa/4DPVKI45uij0oGf3r/S2BkdpAE1o4KOn5kC0S4w1NfM3B3ONaMC6mtGBR1PYNoC6svuIFBOQH2VszUzgWj1JWMEqgpo8FaVaui4bx16eNr+DW/srO7vDzyQjj3m++mHP/xBmn+++dO7dt09vXGHHdNss83W+fn+n/hoOuH447oSwxu899zzl/Tnu+/u/Gz22WdPz3/+C9Kiiy2W5phjju74/fbZO5180onFJTWgihM7wQQKRLvAUF8TmHxTFRdQX8WJnaDFAuqrxcm39OIC6qs4sRO0WCBafbU4VZbeo4AGb49gTRt+6x13d5qwTz/9dFp5haXTY489NmKJa629TjrxpNM6f3bN1Vel7V7/2jEbvF/50hfSEYd/eyqe733/2LT5Flt1/vziiy9Mu7zz7cUJNaCKEzvBBApEu8BQXxOYfFMVF1BfxYmdoMUC6qvFybf04gLqqzixE7RYIFp9tThVlt6jgAZvj2BNG373PZO/SO2hhx5KKy2/1JjL+9Nf7us8l/f+++9La662ck8N3pVWWjmdefb5nWNuvummtOXmGxcn1IAqTuwEEygQ7QJDfU1g8k1VXEB9FSd2ghYLqK8WJ9/Siwuor+LETtBigWj11eJUWXqPAhq8PYI1bfh1N9za+WK1/Np+29elq6/6/YglLr3MMun8Cy/t/NlZZ56e3v++PXpq8G63/RvSId8+onPMYd85JH3tK18qTqgBVZzYCSZQINoFhvqawOSbqriA+ipO7AQtFlBfLU6+pRcXUF/FiZ2gxQLR6qvFqbL0HgU0eHsEa9rww474btp6m207y3r22WfTN7/+1fTtQw/uLvOkU85Ia6y5Vue/37j9Nun3V15RucG73HLLp5NOPTO94AUvSM8880xaZ81V03333VucUAOqOLETTKBAtAsM9TWByTdVcQH1VZzYCVosoL5anHxLLy6gvooTO0GLBaLVV4tTZek9Cmjw9gjWtOFzzjlnOumUM9Myyy7bXdoTTzyRzjv3nPSKV7wirb7Gmp0/P/4Hx6ZPffJjI5Y//EvW8rN7H330kc7Pnzvrc9Psc8zRaezm11NPPZW2ee3m6ZZbbp4pfBpQM4XZSSZIINoFhvqaoMSbZqYIqK+ZwuwkLRVQXy1NvGXPFAH1NVOYnaSlAtHqq6VpsuwaAhq8NdCaeMhvr7wmLbDAy8dc2sHf/Hr61sHfmOpnwxu845k8/PDD6UP7fiCdf945I4bO+/Ilxju055//62/3pof+/fv07LPz93ysAwjMbIF8gTHPvOumeReIsV/V18zeIc43IwLqa0b0HEtg+gLqyw4hUE5AfZWzNTOBkvX14N/uAEygbwIavH2jH4wT57ts82MU8uMU8iMazjj9tLTKqqumhRZauBtg/vMjDv92+uqXvzgi6OEN3nvu+Uu6+09/6vw8fyHbHHPMkfLdwQsvsmiabbbZusft+d7d08/POrP73/MvvsqEQ9z/x9vSvx/U4J1wWBMWEcgXGPPOu26ab7GJ/7CjRMDqq4SqOUsJqK9SsuYlkK/3vH/ZBwRKCaivUrLmJVD2/ev+O69BTKBvAhq8faMfjBMP3bmbm7jvf9+7u83XBRd8ZfrCl7+aNt74Nd1Azzv37LTH7rt0/3t4g/crX/pCpwk81uuII49Kr33dNp0fPfjgg+lVKy7THTbb81444RBP/ue/6aGHrnYH74TLmrCEQOdXhOZZO83+vEklpp/wOdXXhJOasKCA+iqIa+rWC6iv1m8BAAUF1FdBXFO3XqBkfT31+KOt9wXQPwEN3v7Z9/3Mm2+xVfre94/txHHLzTenLTbbaKqYNnnNZumY407o/vkySy6SHn/88c5/V23w5rHX33R7mmuuuTrHDZ+jBIJnhJZQNWcpgWjPgFJfpXaCeUsIqK8SquYkMFlAfdkJBMoJqK9ytmYmEK2+ZIxAVQEN3qpSDRz3hS99Nb3jne/qrOzQQw5K3/z6V8dc5RVXXZfmn/9lnZ/tuMN26Xe//U3n//fS4L3ksl+nRRdbvHPcppusn26/7bZiohpQxWhNXEAg2gWG+iqwCUxZTEB9FaM1MQENXnuAQEEB718FcU3deoFo9dX6hAGoLKDBW5mqeQOHN3gPPujr6VsHTf1FannVPz/3wrTCCit2AN71zrenX1x8Yc8N3utuuDXNM888nef8Lrbwy9MzzzxTDFQDqhitiQsIRLvAUF8FNoEpiwmor2K0JiagwWsPECgo4P2rIK6pWy8Qrb5anzAAlQU0eCtTNW/gZptvmY46+rjOwv7613vSumutNtUiZ5111vSHG29L+cvYcnN26SUWTk8++WRPDd5P7H9Aeu/79uoc869//jOtsvJyRTE1oIrymnyCBaJdYKivCd4ApisqoL6K8pq85QLqq+UbwPKLCqivorwmb7lAtPpqebosvwcBDd4esJo2dLbZZkv5ztrnP//5naVdecXv0i47vz098sgjnf+e90UvSif86MTu3btX/f7K9Ibttu4yDH9Ew8UXXZAuuvCCzs9mm3329NKXvjQt8LKXp4023qQzz9Brrz33SGeecXpRSg2oorwmn2CBaBcY6muCN4Dpigqor6K8Jm+5gPpq+Qaw/KIC6qsor8lbLhCtvlqeLsvvQUCDtwesJg5da+110k9/dmqaNGlSZ3n50Qn/+Mff0yyTZkkvfslLun/+4IMPpnXWXKX7BWt57PAG73g2+e7fww87NH3tK18ab+gM/1wDaoYJTTATBaJdYKivmbg5nGqGBdTXDBOagMA0BdSXzUGgnID6KmdrZgLR6kvGCFQV0OCtKtXgcSuuuFI69DtHpMUWX2KqVebG7GmnnpI+9pF9u49mGBq027vfkz79mc9NU+app55Kjz7ySLr2umvSxz68X3rggftniqIG1ExhdpIJEoh2gaG+JijxppkpAuprpjA7SUsF1FdLE2/ZM0VAfc0UZidpqUC0+mppmiy7hoAGbw20ph7yilcsmFZfY4203PIrpMf/83i6+qrfp6uuujI99thjoZasARUqXa0PNtoFhvpq/ZYNBaC+QqVLsMEE1FewhAk3lID6CpUuwQYTiFZfwXiF20cBDd4+4jt1GQENqDKuZi0jEO0CQ32V2QdmLSOgvsq4mpVAFlBf9gGBcgLqq5ytmQlEqy8ZI1BVQIO3qpRxYQQ0oMKkSqD+gWwPECgqEO0C3vtX0e1g8gkWUF8TDGo6AsME1JftQKCcQLT6Kidh5qYJaPA2LaPWk/wD2SaIJBDtAkN9RdpdYlVf9gCBcgLqq5ytmQmoL3uAQDmBaPVVTsLMTRPQ4G1aRq1Hg9ceCCUQ7QJDgzfU9mp9sOqr9VsAQEEB9VUQ19StF1Bfrd8CAAoKRKuvghSmbpiABm/DEmo5SYPXJgglEO0CQ4M31PZqfbDqq/VbAEBBAfVVENfUrRdQX63fAgAKCkSrr4IUpm6YgAZvwxJqORq89kAsgWgXGBq8sfZX26NVX23fAdZfUkB9ldQ1d9sF1Ffbd4D1lxSIVl8lLczdLAEN3mbl02qSBq9NEEsg2gWGBm+s/dX2aNVX23eA9ZcUUF8ldc3ddgH11fYdYP0lBaLVV0kLczdLQIO3Wfm0Gg1eeyCYQLQLDA3eYBus5eGqr5ZvAMsvKqC+ivKavOUC6qvlG8DyiwpEq6+iGCZvlIAGb6PSaTFZQAPKPogkEO0CQ31F2l1iVV/2AIFyAuqrnK2ZCagve4BAOYFo9VVOwsxNE9DgbVpGrUeD1x4IJRDtAkODN9T2an2w6qv1WwBAQQH1VRDX1K0XUF+t3wIACgpEq6+CFKZumIAGb8MSajnu4LUHYglEu8DQ4I21v9oerfpq+w6w/pIC6qukrrnbLqC+2r4DrL+kQLT6Kmlh7mYJaPA2K59W4xEN9kAwgUmT7klzz71OmjTpsRCRa/CGSJMg/18g2gW8+rJ1Iwmor0jZEms0AfUVLWPijSQQrb4i2Yq1vwIavP31d/YCAv6BXADVlMUENHiL0ZqYQFJfNgGBcgLR/oHs+rDcXjDzxAuor4k3NSOBIYFo9SVzBKoKaPBWlTIujIAL+DCpEmhKGlB2AYGCAhq8BXFN3XoB9dX6LQCgoEC0BpR/fxXcDKaecIFo9TXhACZsrIAGb2NT296FucBob+4jrtw/kCNmTcxRBNRXlEyJM6KA+oqYNTFHEYjWgPLvryg7S5xZIFp9yRqBqgIavFWljAsj4AIjTKoE6g5ee4BAUQENqKK8Jm+5gPpq+Qaw/KIC6qsor8lbLqDB2/IN0ODla/A2OLltXZoGb1szH3PdLuBj5k3UMQTUV4w8iTKmgPqKmTdRxxBQXzHyJMqYAtHqK6ayqPshoMHbD3XnLCqgwVuU1+QTLBDtAkN9TfAGMF1RAfVVlNfkLRdQXy3fAJZfVEB9FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9HU3/ueAAAgAElEQVR8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgWgXGOrLzo0koL4iZUus0QTUV7SMiTeSgPqKlC2xRhOIVl/RfMXbPwEN3v7ZO3MhAQ2oQrCmLSIQ7QJDfRXZBiYtJKC+CsGaloAPKO0BAkUFvH8V5TV5ywWi1VfL02X5PQho8PaAZWgMAQ2oGHkS5WSBaBcY6svOjSSgviJlS6zRBNRXtIyJN5KA+oqULbFGE4hWX9F8xds/AQ3e/tk7cyEBDahCsKYtIhDtAkN9FdkGJi0koL4KwZqWgA8o7QECRQW8fxXlNXnLBaLVV8vTZfk9CGjw9oBlaAwBDagYeRLlZIFoFxjqy86NJKC+ImVLrNEE1Fe0jIk3koD6ipQtsUYTiFZf0XzF2z8BDd7+2TtzIQENqEKwpi0iEO0CQ30V2QYmLSSgvgrBmpaADyjtAQJFBbx/FeU1ecsFotVXy9Nl+T0IaPD2gGVoDAENqBh5EuVkgVlmuSfNNdc6adKkx0KQqK8QaRLk/wtEu4BXX7ZuJAH1FSlbYo0moL6iZUy8kQSi1VckW7H2V0CDt7/+zl5AwD+QC6CaspiABm8xWhMT8AGKPUCgoEC0fyC7Piy4GUw94QLqa8JJTUigKxCtvqSOQFUBDd6qUsaFEXABHyZVAnUHrz1AoKiAD1CK8pq85QLqq+UbwPKLCkRrQPn3V9HtYPIJFohWXxO8fNM1WECDt8HJbevSXGC0NfMx1+0fyDHzJuoYAuorRp5EGVNAfcXMm6hjCERrQPn3V4x9JcrJAtHqS94IVBXQ4K0qZVwYARcYYVIlUHfw2gMEigpoQBXlNXnLBdRXyzeA5RcVUF9FeU3+f+ydd5xV5dWFN0QBISAYUVEBQUEEwRY1Gk3svUYTW9QYe43tS0yMJbEhMV9UBOwl5UtisAB2ETuxd0UBC2IiVgREZSTM97tnwgQCOPfO3H3PWe9+5p8Ac+5+937WXr95XTO5E5wAAW/wBUh4fALehMWNOhoBb1TlNefmAq+pG11rEMBfGjrRpSYB/KWpG11rEMBfGjrRpSYBAl5N3ei6aQIEvE0z4gkxAgS8YoIFb5cLfPAFYHxXAvjLFS/FgxPAX8EXgPFdCeAvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBDwauhElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwGsiI927tLFPps92+rq6mTGJ4CSkYpG+Q9kdgACrgTULvB8/XJdB4pXmQD+qjJQykFgAQL4i3WAgB8BNX/5kaByagQIeFNTtIXz/PDAg237HXayNfv1s65dV7DWrVtnFZ968gnba89dF6q+40672DnnXrDIifPq52WB8Beff27PP/+cXXXFCHv11Qkt7Kz8l/MfyOWz4sn8CahdMPBX/jtDB+UTwF/ls+JJCFRKAH9VSoznIVA+AfxVPiuehEClBNT8Vel8PB+XAAFvXO0Xmrxt27b2lxtvtvU3+OZiibzx+mTb8rvfXuhzRxx5jJ1+xlllEbzu2qvt7DNPL+vZlj5EANVSgry+lgTULhj4q5bbwVktJYC/WkqQ10NgyQTwF9sBAT8C+MuPLZUhoOYvFINAuQQIeMsllfBz3bv3sNvuvNc6d+6cTfnll1/ak088bi+88JzNnDHT1t9gA/vss8/t+GOPXGLA+847U+3tKVOyz5fC4vbtO1iv3r2tXbt2ja85+cTj7aaRN7qTJIByR8wBVSSgdsHAX1UUn1LuBPCXO2IOCEwAfwUWn9HdCeAvd8QcEJiAmr8CS8XoFRIg4K0QWIqP3zr6Dltv/Q2y0V5++SU7YL/v2/SPP25y1AV/gnfw+efaiOFDF3nNVddcb9ttv2P27+PGjbVDDjqgybotfYAAqqUEeX0tCahdMPBXLbeDs1pKAH+1lCCvh8CSCeAvtgMCfgTwlx9bKkNAzV8oBoFyCRDwlksq0ef69O1rY8c9nE33wfvv2zfXH1j2pOUEvIMGrWNj7rgnqznhlVdsh+22LLt+cx8kgGouOV6XBwG1Cwb+ymNLOLO5BPBXc8nxOgg0TQB/Nc2IJyDQXAL4q7nkeB0Emiag5q+mJ+IJCDQQIOANvgm3jLq98X13d9tlB3v+uWfLJlJOwLvHnt+zS4aOyGoOu+wSGzL4/LLrN/dBAqjmkuN1eRBQu2Dgrzy2hDObSwB/NZccr4NA0wTwV9OMeAICzSWAv5pLjtdBoGkCav5qeiKegAABLztgZpPemGpt2rSxWbNm2cD+fWzzzb9rAwetYz1XW80++uhDe/KJJ2zcffcullVTAW///gNs5C1jrEOHDjZv3jzbZKP1bdq0d925E0C5I+aAKhJQu2DgryqKTyl3AvjLHTEHBCaAvwKLz+juBPCXO2IOCExAzV+BpWL0CgnwE7wVAkvp8VatWtlbU6dlI5V+sdq//vWvhX4p2vxZp0+fbqecdILdN7bhrRbmfywY8M6ePds+/XRW9qmll1ra2rZrlwW7pY+6ujrbdaft7NVXJ9QEHwFUTTBzSJUIqF0w8FeVhKdMTQjgr5pg5pCgBPBXUOEZuyYE8FdNMHNIUAJq/goqE2M3gwABbzOgpfKS1dfoY+MeeGSRcebMmZP9W9u2bRs/V/oJ3N132cFeeOH5xQa8TTGZOXNmFhLfc/edCz3aZpmvN/XSij8/57N/2YwZz1h9/YoVv5YXQKDWBEoXjGWX3dTaLFPrk5t3Hv5qHjdelQ8B/JUPd06NQQB/xdCZKfMhgL/y4c6pMQh4+qvu809jQGTKQhIg4C2kLLVpatfddrfLhl+ZHTZjxgy75OLf2nXXXJW9nULpo0ePnnbt9X+wPn3XzP5eehuHtddao7G5BX+C9513ptqUt97KPlf6yeB27dpZx44dredqvbK3gJj/ccxRh9ntt41p/PuKq69X9WHfe2OifTL9KQLeqpOloAeB0gWjc5fNbYVevT3KV70m/qo6Ugo6EsBfjnApHZ4A/gq/AgBwJIC/HOFSOjwBT3+993r5v9MovBAAqDoBAt6qI9UpuN/+P7TBQ36bNXz9ddfYWWf8YpHmS+HsU8++ZMsuu2z2uXUHrWXTP/44+3NT78E7v9iIK662nXbeNftr6e0e1h3Yr/GcLiv/JzCuFrmP//muzfiEgLdaPKnjSyD7DnLnzaxLtxV8D6pSdfxVJZCUqQkB/FUTzBwSlAD+Cio8Y9eEAP6qCWYOCUrA01/T/zk5KFXGLgIBAt4iqJBTDwMGrG133H1fdvq999xlh/344MV2ctU119t22++Yfe7kE4+3m0bemP253IC39OyLr0yyTp06Za/r12c1+/zzz92m5j1C3dBS2IGA2ntA4S+HJaCkGwH85YaWwhAw/MUSQMCPAP7yY0tlCKj5C8UgUC4BAt5ySSX4XOvWre3Nt9/NJnt1wgTbftstFjvleRcMsR8e2BD+XnjBeTZ82KUVB7wPPDTeevVePXvdNlttbpMmTnQjSgDlhpbCDgTULhj4y2EJKOlGAH+5oaUwBAh42QEIOBLg65cjXEqHJ6Dmr/CCAaBsAgS8ZaNK88HXJk/J3i939uzZ1n/Nxb8H6A1//LNtscVWGYC9v7ebPfnE4xUHvM+/9Jp17tzZ6uvrrXfPlRvf59eDKgGUB1VqehFQu2DgL69NoK4HAfzlQZWaEGgggL/YBAj4EcBffmypDAE1f6EYBMolQMBbLqlEnxt582jbcKONs+muvfpK+9XZZyw0aeltFZ55/hVbeumls3C2V49u2f+WPsp9i4afn36GHXX0cdlrPv7oI1tvnf6uNAmgXPFSvMoE1C4Y+KvKC0A5VwL4yxUvxYMTwF/BF4DxXQngL1e8FA9OQM1fweVi/AoIEPBWACvFR5dfvqs9+cwLVnq7hlJwe+Xlw23wBedmP2E7cOAgu+6GP1nXFRp++dNf//J/9tNTT2rEsGDAO+6+e+2+sfdmn2vTtq117drVuq20sm2x5VbWZbnlGl9z3DFH2JjRo1xREkC54qV4lQmoXTDwV5UXgHKuBPCXK16KByeAv4IvAOO7EsBfrngpHpyAmr+Cy8X4FRAg4K0AVqqPnvrT0+z4E/4T3JbmLAW8pdB3/sfUqW/bZptsuBCCBQPeptiUwuPSe/cOGXx+U4+2+PMEUC1GSIEaElC7YOCvGi4HR7WYAP5qMUIKQGCJBPAXywEBPwL4y48tlSGg5i8Ug0C5BAh4yyWV+HN77Pk9u+DC31r79u0XmrQUzP7h99fbGaeftgiBQw8/0s4869dLJFNXV2efzpplzz3/rP3s1JPt/fffqwlFAqiaYOaQKhFQu2DgryoJT5maEMBfNcHMIUEJ4K+gwjN2TQjgr5pg5pCgBNT8FVQmxm4GAQLeZkBL+SV9+va1b2/2Hev49Y722GPj7emnnnT9hWgeLAmgPKhS04uA2gUDf3ltAnU9COAvD6rUhEADAfzFJkDAjwD+8mNLZQio+QvFIFAuAQLecknxnAwBAigZqWiU/0BmByDgSkDtAs/XL9d1oHiVCeCvKgOlHAQWIIC/WAcI+BFQ85cfCSqnRoCA9ysU7d69hx108CG2Wq9eNmnSRBt168322quvprYDyc3DfyAnJ2nSA6ldMPBX0uuY3HD4KzlJGahABPBXgcSgleQI4K/kJGWgAhFQ81eB0NFKwQmEDnifff4V69ylSybR/140xIZe+rtGuX544MF27vkXWqtWrRaS8Nqrr7RfnX1GwWWN3R4BVGz91aZXu2DgL7UNi90v/oqtP9P7EsBfvnypHpsA/oqtP9P7ElDzly8NqqdEIGzAu+FGG9vIm0dnWs6dO9fWHdjPZs2alf19pZW62d+feMZat269WK0vGjJ4oTA4pYVIYRYCqBRUjDOD2gUDf8XZzRQmxV8pqMgMRSWAv4qqDH2lQAB/paAiMxSVgJq/isqRvopHIGzAO2zElbbLrrtnitz41z/b/5xyYqM6510wxEo/wTv/4+23p9icL76wPn3XzP7ps88+s/5r9rb6+vriKUpHRgDFEigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpEQgb8N5x9302YMDamZ5bbbGZvT55UqO2jz/1XPZTvKWPv934Fzv15J9kfy79xG/pJ39LH8cdc4SNGT0qtX1IYh4CqCRkDDOE2gUDf4VZzSQGxV9JyMgQBSWAvwoqDG0lQQB/JSEjQxSUgJq/CoqRtgpIIGzA++QzL9gKK6xo8+bNs149GsLc+R9vvv1u49szbLrxBvaPf7yTferQw4+0M8/6dfbn4cMutQsvOK+AktISARQ7oERA7YKBv5S2i17xFzsAAT8C+MuPLZUhgL/YAQj4EVDzlx8JKqdGIGzA++Irk6xTp042c+ZMG9i/T6OupZ/qLf10b+mj9FYMa/Xt1fi5Hj162sPjn8j+fvddd9gRhx2S2j4kMQ8BVBIyhhlC7YKBv8KsZhKD4q8kZGSIghLAXwUVhraSIIC/kpCRIQpKQM1fBcVIWwUkEDbgfejRx61nz9Wy99Ht3XPl7Cd5Sx9n//o8O+THh2V/fnXCBNt+2y0aZevff4Ddec+47O/jxo21Qw46oICS0hIBFDugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0YgbMD7pz//zTbb/DuZnocf+iO75+47sz+/NGGydezYMfvzH35/vf3yFz9r1PzoY463037xy+zv1159pf3q7DNS24ck5iGASkLGMEOoXTDwV5jVTGJQ/JWEjAxRUAL4q6DC0FYSBPBXEjIyREEJqPmroBhpq4AEwga8P9hnP/vNby/OJJkzZ47dcftttuFGG9mqq3ZvlGmbrTa3SRMnNv79//4y0r692ebZ30856QQb+be/FlBSWiKAYgeUCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AiEDXhLQj71zIvWdYUVFqtp6RerlX7B2vyPbt1Wtr8/8Yy1atUq+6fNNtnQpk59O7V9SGIeAqgkZAwzhNoFA3+FWc0kBsVfScjIEAUlgL8KKgxtJUEAfyUhI0MUlICavwqKkbYKSCB0wNuv31o28pYxjW/JMF+fL7/80rbfdkt7ffKkRsn++rdb7FubbJr9/b33ptlGG6xTQDlpqUSAAIo9UCKgdsHAX0rbRa/4ix2AgB8B/OXHlsoQwF/sAAT8CKj5y48ElVMjEDrgLYlZer/dU079mW248besbZs29vLLL9vZZ51u0z/+eCGtxz/+tLVfpn32b0OHXmzXXHVFaruQzDwEUMlIGWIQtQsG/gqxlskMib+SkZJBCkgAfxVQFFpKhgD+SkZKBikgATV/FRAhLRWUQPiAt6C60FYLCBBAtQAeL605AbULBv6q+YpwYAsI4K8WwOOlEGiCAP5iRSDgRwB/+bGlMgTU/IViECiXAAFvuaR4ToYAAZSMVDRqZmoXDPzF2ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDwmlmbNm1s3/0OsAFrD7Q11uhjnTt3trffnmKHHPzDRmUOPfzI7N9LH6NH3WKTJk7MTzVO/koCBFAsiBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagfAB7yGHHm6n/fyX1q5du4W0nTVrlq291hqN/3bf/Q/bGn36Zn9/5OGH7ID9vp/aLiQzDwFUMlKGGETtgoG/QqxlMkPir2SkZJACEsBfBRSFlpIhgL+SkZJBCkhAzV8FREhLBSUQOuA96+xz7MeHHbFYaf474O3Tt6+NHfdw9mxdXZ316d29oJLSFgEUO6BEQO2Cgb+Utote8Rc7AAE/AvjLjy2VIYC/2AEI+BFQ85cfCSqnRiBswDtgwNp2+11jrVWrVpmm0z/+2EaNusW22nob69Gjp/13wFt65uHxT2SfK33st89eNv7RR1LbhyTmIYBKQsYwQ6hdMPBXmNVMYlD8lYSMDFFQAviroMLQVhIE8FcSMjJEQQmo+augGGmrgATCBrzDL7/Kdt5lt0ySRx952Pbfd+/sz9f/4f9syy23XmzAe+lll9vue+yZPTf4/HNtxPChBZSUlgig2AElAmoXDPyltF30ir/YAQj4EcBffmypDAH8xQ5AwI+Amr/8SFA5NQJhA975P407d+5c679mb5szZ06TAe8+++5vQy76XfbczSP/ZiedeFxq+5DEPARQScgYZgi1Cwb+CrOaSQyKv5KQkSEKSgB/FVQY2kqCAP5KQkaGKCgBNX8VFCNtFZBA2ID3tclTsl+sNm3au7bxN9dtlOarfoJ30KB1bMwd92TPjhs31g456IACSkpLBFDsgBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagbAB70sTJlvHjh3tH/94xzbdeINGXa/7/Z9sq622WexbNCz4E7xXjBhm55/369T2IYl5CKCSkDHMEGoXDPwVZjWTGBR/JSEjQxSUAP4qqDC0lQQB/JWEjAxRUAJq/iooRtoqIIGwAe9d99xva/Xvb3V1ddand/dGab7qJ3ivu+GPttXW22bPHnfMETZm9KgCSkpLBFDsgBIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwagbAB70X/e4l9/wf7ZnoOvfR3dtGQwdmflxTw9unb1+697yFr1apV9tyG6w+y999/L7V9SGIeAqgkZAwzhNoFA3+FWc0kBsVfScjIEAUlgL8KKgxtJUEAfyUhI0MUlICavwqKkbYKSCBswNuv31p21733Z4FtfX29nfPrs+yaq65YbMC76267229/N9Tatm2bSfjqhAm2/bZbFFBOWioRIIBiD5QIqF0w8JfSdtEr/mIHIOBHAH/5saUyBPAXOwABPwJq/vIjQeXUCIQNeEtC/vz0M+yoo49r1PTDDz6wZdq3tw4dOmSh77PPPG09evS05bt2bXym9O/f+fbG9vbbU1LbhWTmIYBKRsoQg6hdMPBXiLVMZkj8lYyUDFJAAvirgKLQUjIE8FcyUlR6utgAACAASURBVDJIAQmo+auACGmpoARCB7wlTUbePNo23GjjsuQphbult3K4bOjFZT3PQ/kQIIDKhzunNo+A2gUDfzVPZ16VDwH8lQ93To1BAH/F0Jkp8yGAv/LhzqkxCKj5K4YqTFkNAuED3hLEHXbc2X7z24utU6dOS2T6zjtT7UcH7W+TJk6sBndqOBIggHKES+mqE1C7YOCvqq8ABR0J4C9HuJQOTwB/hV8BADgSwF+OcCkdnoCav8ILBoCyCRDw/htV6b14Bw4cZBtsuJENGriOLbf8N2zau+/ac88+Y4899nd7843Xy4bKg/kSIIDKlz+nV0ZA7YKBvyrTl6fzJYC/8uXP6WkTwF9p68t0+RLAX/ny5/S0Caj5K201mK6aBAh4q0mTWoUgQABVCBlookwCahcM/FWmsDxWCAL4qxAy0ESiBPBXosIyViEI4K9CyEATiRJQ81eiMjCWAwECXgeolMyXAAFUvvw5vTICahcM/FWZvjydLwH8lS9/Tk+bAP5KW1+my5cA/sqXP6enTUDNX2mrwXTVJEDAW02a1CoEAQKoQshAE2USULtg4K8yheWxQhDAX4WQgSYSJYC/EhWWsQpBAH8VQgaaSJSAmr8SlYGxHAgkH/AefuTRduhhR1Qd3YEH7MMvXKs61eoUJICqDkeq1IaA2gUDf9VmLzilOgTwV3U4UgUCiyOAv9gLCPgRwF9+bKkMATV/oRgEyiWQfMB78SXDbM+99i6XR9nP7bfPXjb+0UfKfp4Ha0eAAKp2rDmp5QTULhj4q+WaU6F2BPBX7VhzUjwC+Cue5kxcOwL4q3asOSkeATV/xVOIiZtLgIC3meQIeJsJrgYvI4CqAWSOqBoBtQsG/qqa9BSqAQH8VQPIHBGWAP4KKz2D14AA/qoBZI4IS0DNX2GFYvCKCSQf8K6yyqrWf8DaFYNp6gUPPjDO6urqmnqMz+dAgAAqB+gc2WwCahcM/NVsqXlhDgTwVw7QOTIMAfwVRmoGzYEA/soBOkeGIaDmrzDCMGiLCSQf8LaYEAXkCBBAyUkWumG1Cwb+Cr2ucsPjLznJaFiIAP4SEotW5QjgLznJaFiIgJq/hNDSas4ECHhzFoDjq0+AAKr6TKnoR0DtgoG//HaBytUngL+qz5SKEJhPAH+xCxDwI4C//NhSGQJq/kIxCJRLgIC3XFI8J0OAAEpGKho1M7ULBv5ibZUI4C8ltehVjQD+UlOMfpUI4C8ltehVjYCav9T40m9+BAh4/82+y3LL2cYbb2Jt27YpS4277rzD5syZU9azPFRbAgRQteXNaS0joHbBwF8t05tX15YA/qotb06LRQB/xdKbaWtLAH/VljenxSKg5q9Y6jBtSwiED3jPOPNXdtCPfmxt2pQX7M6Hvd8+e9n4Rx9pCXte60SAAMoJLGVdCKhdMPCXyxpQ1IkA/nICS1kI8P9AYQcg4EqAr1+ueCkenICav4LLxfgVEAgd8F57/R9s6222qwDXfx4l4G0Wtpq8iACqJpg5pEoE1C4Y+KtKwlOmJgTwV00wc0hQAvgrqPCMXRMC+KsmmDkkKAE1fwWVibGbQSBswNu9ew975O9PNiKbN2+ezZ492zp27Jj92/Tp023mzBmNn+/Ro6e1atUq+/uUKW/ZIQf/0F6fPKkZyHmJNwECKG/C1K8mAbULBv6qpvrU8iaAv7wJUz8yAfwVWX1m9yaAv7wJUz8yATV/RdaK2SsjEDbgHX75VbbzLrtltKZOfdu2+u63bbPNv2vX3fDH7N9OPvF4u2nkjY00L/zN/9q++x2Q/f1/Lxpil1z828pI83TNCBBA1Qw1B1WBgNoFA39VQXRK1IwA/qoZag4KSAB/BRSdkWtGAH/VDDUHBSSg5q+AEjFyMwmEDXjvvvcB67fWWhm2nbbf2l5++SVbs18/u2fsg9m/DRl8vg277JJGrK1bt7aXJky2Dh06WF1dnfVdvYfV19c3Ezsv8yRAAOVJl9rVJtC69VTr2HFTa916drVLu9TDXy5YKepEQO0Cj7+cFoGyLgTwlwtWikIgI4C/WAQI+BFQ85cfCSqnRiBswPvkMy/YCiusaF9++aWt0WvVTNdSePvKa29kf77xr3+2/znlxIX0Lv1071Zbb5v9W+lzpWf4KB4B/gO5eJrQ0ZIJEPCyHRDwI4C//NhSGQJq/4HM/ZCdVSKAv5TUolc1Amr+UuNLv/kRCBvwln4at/R+u1988YWtuUbPRgXemjote6/dZ599xvbYdceFlPnxYUfYWWefk/3brbfcbD85/uj8lOPkJRLgAs9yKBEggFJSi17VCOAvNcXoV4mA2n8gcz9U2i56xV/sAAT8CKj5y48ElVMjEDbgffrZl2z5rl2t9MvVevXo1qjr8y+9Zp07d85+ydq6A/stpPfOu+xqwy+/Ovu3J5943Pb+XsN7+PJRLAJc4IulB918NQECKDYEAn4E8JcfWypDAH+xAxDwI6AWQPHfX367QOXqE1DzV/UJUDFVAmED3gceGm+9eq+e6brOwH72yfTp2Z//8Ke/2ne+u0X25xNPONZuuXlko/YL/qK1Rx5+yA7Y7/up7oX0XFwwpOUL1zz/gRxOcgauIQH8VUPYHBWOAP4KJzkD15CAWgDFf3/VcDk4qsUE1PzV4oEpEIZA2IB35M2jbcONNs6EHnz+uTZi+NDszwcdfIidc97g7M+fffaZ/e63v7Exo2+1n5x0iu2z7/5W+mVrpY+hl/7OLhrS8BwfxSLABaNYetDNVxPgP5DZEAj4EcBffmypDAH8xQ5AwI8A/vJjS2UIEPCyA6kSCBvw/uL0M+3Io4/NdH355Zdsp+23zv5c+kVrTz37krVv336Jms+dO9c22Wh9e//991LdC+m5CHil5QvXPBf4cJIzcA0J4K8awuaocATwVzjJGbiGBPBXDWFzVDgCav4KJxADN5tA2IB3nXXXs2uu/X0G7h///IftvssOjRDXXW99u3X0HdkvW1vcx7nnnG1XXTGi2dB5oS8BAl5fvlSvLgG1Cwb+qq7+VPMlgL98+VI9NgH8FVt/pvclgL98+VI9NgE1f8VWi+krIRA24G0K0g477mxHHX2srdV/gLVr187q6+vtgw/et1NOPMEeeuiBpl7O53MkQACVI3yOrpiA2gUDf1UsMS/IkQD+yhE+RydPAH8lLzED5kgAf+UIn6OTJ6Dmr+QFYcCqESDgLQPlct/4hn380UdlPMkjRSBAAFUEFeihXAJqFwz8Va6yPFcEAvirCCrQQ6oE8FeqyjJXEQjgryKoQA+pElDzV6o6MFf1CRDwVp8pFXMmQACVswAcXxEBtQsG/qpIXh7OmQD+ylkAjk+aAP5KWl6Gy5kA/spZAI5PmoCav5IWg+GqSoCA9ytwduzYMXsf3pkzZ1YVOsV8CRBA+fKlenUJqF0w8Fd19aeaLwH85cuX6rEJ4K/Y+jO9LwH85cuX6rEJqPkrtlpMXwmBMAHvNzfcyAats27GZt68efb766/N/ve/P5ZZZhm7+NJhtvU229nSSy+dffqLL76wCa+8bEcdcahNm/ZuJXx5NgcCBFA5QOfIZhNQu2Dgr2ZLzQtzIIC/coDOkWEI4K8wUjNoDgTwVw7QOTIMATV/hRGGQVtMIEzA++QzL9gKK6yYAZs7d66t1beX1dXVLQSw9NO6jz/1nK244kqLBVt6/vAfH2wPPDCuxeAp4EeAAMqPLZWrT0DtgoG/qr8DVPQjgL/82FIZAviLHYCAHwH85ceWyhBQ8xeKQaBcAiEC3lKwWwp4539cd+3VdvaZpy/CaPCQ39p++//wK9mVfup33YH9bMaMGeUy5rkaEyCAqjFwjmsRAbULBv5qkdy8uMYE8FeNgXNcKAL4K5TcDFtjAvirxsA5LhQBNX+FEodhW0QgRMD7s5+fbscce0IGqvR2CwP6rZ79FO9/f7w2eYq1a9cu++fS5++4/TYbeeNfsrd2OPHkU22ppZbKPnf3XXfYEYcd0iLwvNiPAAGUH1sqV5+A2gUDf1V/B6joRwB/+bGlMgTwFzsAAT8C+MuPLZUhoOYvFINAuQRCBLx//dst9q1NNs2Y/OmPv7dfnPY/i/DZautt7bob/tj478Muu8SGDD6/8e+l9/C96ZYx2d/r6+ttYP8+NmvWrHI581wNCRBA1RA2R7WYgNoFA3+1WHIK1JAA/qohbI4KRwB/hZOcgWtIAH/VEDZHhSOg5q9wAjFwswmECHjvf/BR6736GhmkE447ykbdessiwBZ8e4Y5c+ZYvz6rLfJL2MaOe8j69F0ze+1BB+xrDz54f7PB80I/AgRQfmypXH0CahcM/FX9HaCiHwH85ceWyhDAX+wABPwI4C8/tlSGgJq/UAwC5RIIEfA+98IE67LcchmTDdZd2z788INF+Nx97wPWb621sn9/4YXnbdedtlvkmdLbNJx0csNP//7mwgvssqEXl8uZ52pIgACqhrA5qsUE1C4Y+KvFklOghgTwVw1hc1Q4AvgrnOQMXEMC+KuGsDkqHAE1f4UTiIGbTSBEwDvpjanWpk2b7H11V19tlcXCeuW1N6xDhw7Z55b0S9h232NPu/Syy7NnRo+61Y4/9shmg+eFfgQIoPzYUrn6BNQuGPir+jtART8C+MuPLZUhgL/YAQj4EcBffmypDAE1f6EYBMolECLgnfj629a2bVurq6uzPr27L8Km9LnSM/M/fvyjA+2+sfcs8twee37PLhk6Ivv30tszlN6mgY/iESCAKp4mdLRkAmoXDPzFNisRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CIQIeJ94+nlbccWVMsq9enRb5L11t91uB7v62hsaVei/Zm+bPXv2Iqqcd8EQ++GBB2f//te//J/99NST8lOOk5dIgACK5VAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTIxAi4L119B223vobZNpdeMF5NnzYpQvpeO31f7Ctt2l4z91SsFsKeBf3MeaOe2zQoHWyTw0ZfL4Nu+yS1PYhiXkIoJKQMcwQahcM/BVmNZMYFH8lISNDFJQA/iqoMLSVBAH8lYSMDFFQAmr+KihG2ioggRAB7/EnnGSn/vS0DP9nn31mW35nU5s27d3s76uu2t0eHv+EtW7dOvv7/fffZz86cP/FSvXCyxNt2WWXzT53zFGH2e23jSmgpLREAMUOKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRCBHwtmrVykq/RK19+/aZfnPmzLFHHn7QVlmlu63Zr5+VPj//44D9vm+PPPzQIjrvuNMudvmV1zT++7c2XM/effefqe1DEvMQQCUhY5gh1C4Y+CvMaiYxKP5KQkaGKCgB/FVQYWgrCQL4KwkZGaKgBNT8VVCMtFVAAiEC3hL3w4882n55xtlfKcELLzxvu+7U8FYN//3x3AsTrMtyy2X//MH779s31x9YQDlpqUSAAIo9UCKgdsHAX0rbRa/4ix2AgB8B/OXHlsoQwF/sAAT8CKj5y48ElVMjECbgLQl39DHH22m/+OViNXzvvWm2zZab28yZMxf5/LHH/cR+etovGv/99zdcZ2ec3vCWD3wUjwABVPE0oaMlE1C7YOAvtlmJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mRyBUwFvCvPG3NrGDf/RjW3e99a39Mu3tH//8h915+2122dCLl6jC+Meftm7dVm78/KYbb8DbM+S3s02eTADVJCIeKBABtQsG/irQ8tBKkwTwV5OIeAACzSaAv5qNjhdCoEkC+KtJRDwAgWYTUPNXswflheEIhAt4wykccGACqICiC4+sdsHAX8LLFrB1/BVQdEauGQH8VTPUHBSQAP4KKDoj14yAmr9qBoaD5AkQ8MpLyAD/TYAAip1QIqB2wcBfSttFr/iLHYCAHwH85ceWyhDAX+wABPwIqPnLjwSVUyNAwJuaoszDL1ljB6QIqF0wCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHGMgJclkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxiHgZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+mMQJelkCLgNoFg4BXa7+id4u/om8A83sSwF+edKkdnQD+ir4BzO9JQM1fniyonRYBAt609GQaAl52QIyA2gWDgFdswYK3i7+CLwDjuxLAX654KR6cAP4KvgCM70pAzV+uMCieFAEC3qTkZJgSAQIo9kCJgNoFA38pbRe94i92AAJ+BPCXH1sqQwB/sQMQ8COg5i8/ElROjQABb2qKMg8BLzsgRUDtgkHAK7Ve4ZvFX+FXAACOBPCXI1xKhyeAv8KvAAAcCaj5yxEFpRMjQMCbmKCMw0/wsgNaBNQuGAS8WvsVvVv8FX0DmN+TAP7ypEvt6ATwV/QNYH5PAmr+8mRB7bQIEPCmpSfT8BYN7IAYAbULBgGv2IIFbxd/BV8AxnclgL9c8VI8OAH8FXwBGN+VgJq/XGFQPCkCBLxJyckwJQIEUOyBEgG1Cwb+UtouesVf7AAE/AjgLz+2VIYA/mIHIOBHQM1ffiSonBoBAt7UFGUeAl52QIqA2gWDgFdqvcI3i7/CrwAAHAngL0e4lA5PAH+FXwEAOBJQ85cjCkonRiD5gHfVVbvb2gMHVV22+8eNtTlz5lS9LgVbToAAquUMqVA7AmoXDPxVu93gpJYTwF8tZ0gFCCyJAP5iNyDgRwB/+bGlMgTU/IViECiXQPIB78WXDLM999q7XB5lP7ffPnvZ+EcfKft5HqwdAQKo2rHmpJYTULtg4K+Wa06F2hHAX7VjzUnxCOCveJozce0I4K/aseakeATU/BVPISZuLgEC3maSI+BtJrgavIwAqgaQOaJqBNQuGPiratJTqAYE8FcNIHNEWAL4K6z0DF4DAvirBpA5IiwBNX+FFYrBKyaQfMB76OFH2qGHHVExmKZecPCB+9mkiRObeozP50CAACoH6BzZbAJqFwz81WypeWEOBPBXDtA5MgwB/BVGagbNgQD+ygE6R4YhoOavMMIwaIsJJB/wtpgQBeQIEEDJSRa6YbULBv4Kva5yw+MvOcloWIgA/hISi1blCOAvOcloWIiAmr+E0NJqzgQIeHMWgOOrT4AAqvpMqehHQO2Cgb/8doHK1SeAv6rPlIoQmE8Af7ELEPAjgL/82FIZAmr+QjEIlEuAgLdcUjwnQ4AASkYqGjUztQsG/mJtlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoF41//WsVmzhxrZiu68KAoBKpJoFWrd6xjx53sa197p5pl3Wrx9csNLYUdCKh9/cJfDktASTcC+MsNLYUhIPcDNkgGgXIJhA94O3fpYsccc7ytt/4G1r1HD/va175WFrv9992bX7JWFqnaP8QFvvbMObH5BLjAN58dr4RAUwTU/DV37nI2a9Z4M1uhqdH4PARyJ1D6BkqnTttY69bv595LOQ1wPyyHEs8UhYDa1y/8VZTNoY9yCKj5q5yZeAYCJQKhA95111vf/vzXm6x9+/YVb8N+++xl4x99pOLX8QJ/Alww/BlzQvUIqF0w8Ff1tKeSPwH85c+YE+ISUPPXv/61ks2c+QDfQIm7slKTN/w/ULa3r33tXYm+581b1mbOfNzq6/kGpYRgwZts1Wqqder0XWvd+pPgJBg/NQKhA94JE99sVrhbWgIC3uJagQCquNrQ2aIE1P4DGX+xxUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AmED3oMOPsTOOW9wRr6+vt5uuWmkzf5sth140I+yfxs+7FJ7+KEHG5UZetnltnzXrtnff3rqSXbTyBtt7ty5+SnHyUskQADFcigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpEQgb8N46+o7sfXdLHxcNGWxDL/2dbbjRxjby5tHZv5115ul2/bVXN+q9/gbftFtG3Z79/dUJE2z7bbdIbReSmYcAKhkpQwyidsHAXyHWMpkh8VcyUjJIAQngrwKKQkvJEMBfyUjJIAUkoOavAiKkpYISCBvwPjz+CevRo2f207trrtHT5syZY926rWyPPflsJlXpJ3gvvOC8hWS7+94HrN9aa2X/tvmmG9nbb08pqKyx2yKAiq2/2vRqFwz8pbZhsfvFX7H1Z3pfAvjLly/VYxPAX7H1Z3pfAmr+8qVB9ZQIhA14n3/pNevcuXMW7PZdvUemaatWreytqdOyP48bN9YOOeiAhbQuvaVD6a0dSh/XXn2l/ersM1LahWRmIYBKRsoQg6hdMPBXiLVMZkj8lYyUDFJAAvirgKLQUjIE8FcyUjJIAQmo+auACGmpoATCBrwvvjLJOnXqZHV1ddand/dGeSa/+Y4tvfTS9uabb9gWm2+ykGw77rSLXX7lNUsMgAuqcbi2CKDCSS49sNoFA39Jr1u45vFXOMkZuIYE8FcNYXNUOAL4K5zkDFxDAmr+qiEajhInEDbgHf/407bKKqtm8q3WfaXsrRpKH+MeeMRWX6OPzZs3z9Zfd4BN//jjRokX/MVszz7ztO2x207i8qfZPgFUmrqmOpXaBQN/pbqJac6Fv9LUlamKQQB/FUMHukiTAP5KU1emKgYBNX8VgxpdKBAIG/Dedc/9tlb//plGP9h7D3v8sb9nfz73/AvtwIN+lP35wQfvt4MO2Df781JLLWXjHnzUevZcLfv7zSP/ZiedeJyCxuF6JIAKJ7n0wGoXDPwlvW7hmsdf4SRn4BoSwF81hM1R4Qjgr3CSM3ANCaj5q4ZoOEqcQNiAd/jlV9nOu+yWyTd61K12/LFHZn9eZ931bPRtdzXKOmvWLJs8eZINHDgoC3nnfxxz1GF2+21jxOVPs30CqDR1TXUqtQsG/kp1E9OcC3+lqStTFYMA/iqGDnSRJgH8laauTFUMAmr+KgY1ulAgEDbg3f+AA+2CCy/KNPr4o49svXUafpq39DFsxJW2y667L1G/yZMm2tZbbq6gb8geCaBCyi47tNoFA3/JrlrIxvFXSNkZukYE8FeNQHNMSAL4K6TsDF0jAmr+qhEWjkmAQNiAt0OHDrbtdttnEk7/eHr2dgwLfowd95D16bvmIhK/8fpk+/5ee9iHH36QgPxpjkAAlaauqU6ldsHAX6luYppz4a80dWWqYhDAX8XQgS7SJIC/0tSVqYpBQM1fxaBGFwoEwga85YjTvXsP+8G++9kmm3zb3pk61e6/f6yNuvWWcl7KMzkSIIDKET5HV0xA7YKBvyqWmBfkSAB/5Qifo5MngL+Sl5gBcySAv3KEz9HJE1DzV/KCMGDVCBDwVg0lhYpCgACqKErQRzkE1C4Y+KscVXmmKATwV1GUoI8UCeCvFFVlpqIQwF9FUYI+UiSg5q8UNWAmHwJhA94TTzrVDj284Rerbbrx+lb6ZWpNfVx62eW25VZbZ4/ttP3WNnXq2029hM/nQIAAKgfoHNlsAmoXDPzVbKl5YQ4E8FcO0DkyDAH8FUZqBs2BAP7KATpHhiGg5q8wwjBoiwmEDXgvvmSY7bnX3hnA0i9YK/2itaY+fnH6mXbk0cdmj5191i/tumuuauolfD4HAgRQOUDnyGYTULtg4K9mS80LcyCAv3KAzpFhCOCvMFIzaA4E8FcO0DkyDAE1f4URhkFbTICAt4KAd9vtdrCrr70hg/6H319vv/zFz1osAAWqT4AAqvpMqehHQO2Cgb/8doHK1SeAv6rPlIoQmE8Af7ELEPAjgL/82FIZAmr+QjEIlEuAgLeCgHe//X9og4f8NmM7ZvQoO+6YI8rlzHM1JEAAVUPYHNViAmoXDPzVYskpUEMC+KuGsDkqHAH8FU5yBq4hAfxVQ9gcFY6Amr/CCcTAzSZAwFtmwNuqVSu7974HrU/fNTPYQy/9nV00ZHCzwfNCPwIEUH5sqVx9AmoXDPxV/R2goh8B/OXHlsoQwF/sAAT8COAvP7ZUhoCav1AMAuUSCBPwnv3r82yVVVZp5LLueuvbCiusmP39oQcfsC+++HwRZqVQd6mll7aOX+9o/Qesbe3bt298Zt8ffM/+Pv7RcjnzXA0JEEDVEDZHtZiA2gUDf7VYcgrUkAD+qiFsjgpHAH+Fk5yBa0gAf9UQNkeFI6Dmr3ACMXCzCYQJeCdMfHOhgLbZxMzszTffsC0236QlJXitIwECKEe4lK46AbULBv6q+gpQ0JEA/nKES+nwBPBX+BUAgCMB/OUIl9LhCaj5K7xgACibAAFv2agaHnzppRft0B8daNOmvVvhK7Ueb9OmjY267S7runxXmzVrpm353W8vMsCOO+1i55x7wSL/Pq9+ntXV1dkXn39uzz//nF11xQh79dUJNQNAAFUz1BxUBQJqFwz8VQXRKVEzAvirZqg5KCAB/BVQdEauGQH8VTPUHBSQgJq/AkrEyM0kECbgPfHkU23llf/zFg3f3mxzW3XV7hm20aNutc8//2yJCGd/+mkWUD711JP2+uRJzUSt9bLb7xpra689MGt67ty5tvpq/2E3f5IjjjzGTj/jrLIGu+7aq+3sM08v69mWPkQA1VKCvL6WBNQuGPirltvBWS0lgL9aSpDXQ2DJBPAX2wEBPwL4y48tlSGg5i8Ug0C5BMIEvP8N5OJLhtmee+2d/fN66/S3jz/6qFxmyT83dNgVttvuezTOWU7A+847U+3tKVOy17Rt29bat+9gvXr3tnbt2jXWOfnE4+2mkTe68yOAckfMAVUkoHbBwF9VFJ9S7gTwlztiDghMAH8FFp/R3QngL3fEo7868AAAIABJREFUHBCYgJq/AkvF6BUSCBvwLveNb1ifPn1t3rx59uQTj1eILd3Hjz/hJDv1p6ctNGA5Ae/g88+1EcOHLgLmqmuut+223zH793HjxtohBx3gDo8Ayh0xB1SRgNoFA39VUXxKuRPAX+6IOSAwAfwVWHxGdyeAv9wRc0BgAmr+CiwVo1dIIGzAWyGnEI/vvMuuNvzyq7NZ33h9chZ+r9Gnb1lv0bCkgHfQoHVszB33ZDUnvPKK7bDdlu4sCaDcEXNAFQmoXTDwVxXFp5Q7AfzljpgDAhPAX4HFZ3R3AvjLHTEHBCag5q/AUjF6hQQIeP8NbOtttrP99j/AevZczVZYcSUr/ZKxz2bPtnenvWuvT55sF//uInvzjdcrxKvz+IABa9ttd95rrVu3tk8++cQ23Xh9GzXmTuvTd80WBbx77Pk9u2ToiAzEsMsusSGDz3eHQgDljpgDqkhA7YKBv6ooPqXcCeAvd8QcEJgA/gosPqO7E8Bf7og5IDABNX8FlorRKyQQPuDt07evDR9xlfVds99Xoquvr7d777nLSu8jO2vWrAoxF/vx5Zfvag+Pf8Lat29vdXV1tuV3NrXSe+qOHfdQiwLe/v0H2MhbxliHDh2ynwbeZKP1bdq0d91hEEC5I+aAKhJQu2DgryqKTyl3AvjLHTEHBCaAvwKLz+juBPCXO2IOCExAzV+BpWL0CgmEDnhLP7V6+11jrVWrVmVjK/0ytg3WWzsLLFP4KP2k8vjHnrauK6xgpRD7+3vt3viexJUEvLNnz7ZPP20Ivpdeamlr265dFuyWPkqh8a47bWevvjqhJsgIoGqCmUOqREDtgoG/qiQ8ZWpCAH/VBDOHBCWAv4IKz9g1IYC/aoKZQ4ISUPNXUJkYuxkEwga8yyyzjD3x9AvWqVOnRmyvTphg99xzp70+eZLNmDHTunXrlv1k7x577mVdunRpfO6eu++0ww/9UTNwF+8ld9x9n5WC7tLH/5xyot341z83NllJwNvUZDNnzrRTTjrBSuwW/OjQZaWmXlrx5z/9eKbNmPG01devWPFreQEEak2gdMHo1Onb9vXlvl7ro5t1Hv5qFjZelBMB/JUTeI4NQQB/hZCZIXMigL9yAs+xIQh4+mv29GkhGDJkMQmEDXiPP+EkO/Wnp2WqfPnll7b7LjvYyy+/tESVjj3uJ/bT037R+PnNN93I3n57SjFVLbOrYSOutF123T17+ooRw+z883690CsrCXhLb+kw5a23steXfiK6Xbt21rFjR+u5Wq/s/Yznfxxz1GF2+21jGv++4urrldlt+Y+998ZE+2T6UwS85SPjyRwJlC4Yy3be3FbsvXqOXZR/NP4qnxVP5k8Af+WvAR2kSwB/pastk+VPAH/lrwEdpEvA01/vvf5suuCYrPAEwga8o267y9ZdtyFcPPLwH9tdd97epFjXXPd722bb7bPnzjrzdLv+2qubfE2RH5jyzntZe888/ZQdfeRhi7R64023Zr90bv7755YemDHjE/v888+zZ4848hg7/Yyzsj8PPv9cGzF86GLHHXHF1bbTzrtmn5s+fbqtO/A/73fMT/AWeUPorRYEPL+D7NE/P8HrQZWaXgTwlxdZ6kLADH+xBRDwI4C//NhSGQKe/uIneNmvPAmEDXhfee2N7D1iSz+9u0avVcvSYONvbWI3jrw1e/a2MaPs2KOPKOt1RX1ofsBbSX+lXzR32I8PrijgLT384iuTGt8Oo1+f1RpD4krOLvdZ3iO0XFI8VwQCau8Bhb+KsDX0UC4B/FUuKZ6DQOUE8FflzHgFBMolgL/KJcVzEKicgJq/Kp+QV0QlEDbgfW3ylOxtBGbMmGGDBvQtS//OXbrY8y++mj373HPPZm/roPzRnIB37L1326GHHFRxwPvAQ+Ot17//L+jbbLW5TZo40Q0dAZQbWgo7EFC7YOAvhyWgpBsB/OWGlsIQyH6Ct2PHTa1169kSNPj6JSETTf6bAP5iFSDgR0DNX34kqJwagbAB78Pjn7AePXpafX29rda9vF/0tfsee9qll12e7cCCP8mquhTdu/ewpZZeeont/+FPf7HSM6W3aNhqi82y5z768AMr/cK00ke5b9FQevb5l16zzp07Z7x791w5q+n1wQXeiyx1PQioXTDwl8cWUNOLAP7yIktdCDS8RQMBL5sAAR8C+MuHK1UhUCKg5i9Ug0C5BMIGvFdfe4Ntu13DT+D++f/+aKf99JSvZFb6xWF/f+IZ69Zt5ey5nxx/tN16y83lcpZ8rpJfsvZV78H789PPsKOOPi5j8PFHH9l66/R35UEA5YqX4lUmoHbBwF9VXgDKuRLAX654KR6cAP4KvgCM70oAf7nipXhwAmr+Ci4X41dAIGzAu+tuu9tlw69sRFUKec/51Zk2e/ai/zezNfv1s8uGXWF912z45WCln0Ltu3oPq6urqwC13qOVBLzj7rvX7ht7bzZkm7ZtrWvXrtZtpZVtiy23si7LLdc4/HHHHGFjRo9yhUEA5YqX4lUmoHbBwF9VXgDKuRLAX654KR6cAP4KvgCM70oAf7nipXhwAmr+Ci4X41dAIGzAW2L0pz//zTbb/DuNuEpvGzBlylv23rRpNnPmDOu6woq20korNf7U7vwHL7zgPBs+7NIKMGs+WknA29SEpVC8xGzI4POberTFnyeAajFCCtSQgNoFA3/VcDk4qsUE8FeLEVIAAkskgL9YDgj4EcBffmypDAE1f6EYBMolEDrgbdOmjT3y9ydtxRXLew/eEtQU3nu33OW4974Hs59anjt3rq2+2iqLvOzQw4+0M8/69RLLlX7C+dNZs+y555+1n516sr3//nvlHt2i5wigWoSPF9eYgNoFA3/VeEE4rkUE8FeL8PFiCHwlAfzFgkDAjwD+8mNLZQio+QvFIFAugdAB73xIxx73E/vJSadY27Ztl8jtg/fft1NOOsEefPD+ctnyXE4ECKByAs+xzSKgdsHAX82SmRflRAB/5QSeY0MQwF8hZGbInAjgr5zAc2wIAmr+CiEKQ1aFAAHvvzGWfpp3o42/ZYMGrWtr9R9gnZbtZNPefddeefkle+bpp+zFF1+oCnCK+BMggPJnzAnVI6B2wcBf1dOeSv4E8Jc/Y06ISwB/xdWeyf0J4C9/xpwQl4Cav+IqxeSVEggR8G6y6bdt429tkrH54+9vsA8//KBSTjwvRIAASkgsWjW1Cwb+YmmVCOAvJbXoVY0A/lJTjH6VCOAvJbXoVY2Amr/U+NJvfgRCBLwL/jK14445wsaMHpUfcU52J0AA5Y6YA6pIQO2Cgb+qKD6l3AngL3fEHBCYAP4KLD6juxPAX+6IOSAwATV/BZaK0SskQMBbITAeLz4BAqjia0SH/yGgdsHAX2yvEgH8paQWvaoRwF9qitGvEgH8paQWvaoRUPOXGl/6zY8AAW9+7DnZiQABlBNYyroQULtg4C+XNaCoEwH85QSWshAw4y2G2AIIOBLg65cjXEqHJ6Dmr/CCAaBsAgS8ZaPiQRUCBFAqStFniYDaBQN/sbdKBPCXklr0qkYAf6kpRr9KBPCXklr0qkZAzV9qfOk3PwIEvPmx52QnAgRQTmAp60JA7YKBv1zWgKJOBPCXE1jKQoBvULIDEHAlwNcvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBBAaehElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRCBfw/vIXP7M777i9xcQ//PCDFteggA8BAigfrlT1IaB2wcBfPntAVR8C+MuHK1UhwDco2QEI+BLg65cvX6rHJqDmr9hqMX0lBMIFvJXA+apn9/3B9+zv4x+tVjnqVJEAAVQVYVLKnYDaBQN/ua8EB1SRAP6qIkxKQeC/COAvVgICfgTwlx9bKkNAzV8oBoFyCRDwlkvqv57bb5+9bPyjjzTz1bzMkwABlCddalebgNoFA39VewOo50kAf3nSpXZ0Avgr+gYwvycB/OVJl9rRCaj5K7pezF8+AQLe8lkt9OTe39vNnnzi8Wa+mpd5EiCA8qRL7WoTULtg4K9qbwD1PAngL0+61I5OAH9F3wDm9ySAvzzpUjs6ATV/RdeL+csnEC7gPe6YI2zM6FHlE+JJOQIEUHKShW5Y7YKBv0Kvq9zw+EtOMhoWIoC/hMSiVTkC+EtOMhoWIqDmLyG0tJozAQLenAXg+OoTIICqPlMq+hFQu2DgL79doHL1CeCv6jOlIgTmE8Bf7AIE/AjgLz+2VIaAmr9QDALlEiDgLZcUz8kQIICSkYpGzUztgoG/WFslAvhLSS16VSOAv9QUo18lAvhLSS16VSOg5i81vvSbHwEC3vzYc7ITAQIoJ7CUdSGgdsHAXy5rQFEnAvjLCSxlIcA3KNkBCLgS4OuXK16KByeg5q/gcjF+BQQIeCuAxaMaBAigNHSiywYCahcM/MXmKhHAX0pq0asaAfylphj9KhHAX0pq0asaATV/qfGl3/wIEPDmx56TnQgQQDmBpawLAbULBv5yWQOKOhHAX05gKQsBvkHJDkDAlQBfv1zxUjw4ATV/BZeL8SsgQMBbASwe1SBAAKWhE102EFC7YOAvNleJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mRyBEwNu//wAbOGidjPJdd95uM2bMyI84J7sTIIByR8wBVSSgdsHAX1UUn1LuBPCXO2IOCEwAfwUWn9HdCeAvd8QcEJiAmr8CS8XoFRIIEfBWyITHxQkQQIkLGKx9tQsG/gq2oOLj4i9xAWm/0ATwV6HloTlxAvhLXEDaLzQBNX8VGibNFYoAAW+h5KCZahAggKoGRWrUioDaBQN/1WozOKcaBPBXNShSAwKLJ4C/2AwI+BHAX35sqQwBNX+hGATKJUDAWy4pnpMhQAAlIxWN8h687AAEXAmoXeD5+uW6DhSvMgH8VWWglIPAAgTwF+sAAT8Cav7yI0Hl1AgQ8KamKPMY/4HMEigRULtg4C+l7aJX/MUOQMCPAP7yY0tlCOAvdgACfgTU/OVHgsqpESDgTU1R5iHgZQekCKhdMAh4pdYrfLP4K/wKAMCRAP5yhEvp8ATwV/gVAIAjATV/OaKgdGIECHgTE5RxjICXJZAioHbBIOCVWq/wzeKv8CsAAEcC+MsRLqXDE8Bf4VcAAI4E1PzliILSiREg4E1MUMYh4GUHtAioXTAIeLX2K3q3+Cv6BjC/JwH85UmX2tEJ4K/oG8D8ngTU/OXJgtppESDgTUtPpjECXpZAi4DaBYOAV2u/oneLv6JvAPN7EsBfnnSpHZ0A/oq+AczvSUDNX54sqJ0WAQLetPRkGgJedkCMgNoFg4BXbMGCt4u/gi8A47sSwF+ueCkenAD+Cr4AjO9KQM1frjAonhQBAt6k5GSYEgECKPZAiYDaBQN/KW0XveIvdgACfgTwlx9bKkMAf7EDEPAjoOYvPxJUTo0AAW9qijIPAS87IEVA7YJBwCu1XuGbxV/hVwAAjgTwlyNcSocngL/CrwAAHAmo+csRBaUTI0DAm5igjMNP8LIDWgTULhgEvFr7Fb1b/BV9A5jfkwD+8qRL7egE8Ff0DWB+TwJq/vJkQe20CBDwpqUn0/AWDeyAGAG1CwYBr9iCBW8XfwVfAMZ3JYC/XPFSPDgB/BV8ARjflYCav1xhUDwpAgS8ScnJMCUCBFDsgRIBtQsG/lLaLnrFX+wABPwI4C8/tlSGAP5iByDgR0DNX34kqJwaAQLe1BRlHgJedkCKgNoFg4BXar3CN4u/wq8AABwJ4C9HuJQOTwB/hV8BADgSUPOXIwpKJ0aAgDcxQRmHn+BlB7QIqF0wCHi19it6t/gr+gYwvycB/OVJl9rRCeCv6BvA/J4E1PzlyYLaaREg4E1LT6bhLRrYATECahcMAl6xBQveLv4KvgCM70oAf7nipXhwAvgr+AIwvisBNX+5wqB4UgQIeJOSk2FKBAig2AMlAmoXDPyltF30ir/YAQj4EcBffmypDAH8xQ5AwI+Amr/8SFA5NQIEvKkpyjwEvOyAFAG1CwYBr9R6hW8Wf4VfAQA4EsBfjnApHZ4A/gq/AgBwJKDmL0cUlE6MAAFvYoIyDj/Byw5oEVC7YBDwau1X9G7xV/QNYH5PAvjLky61oxPAX9E3gPk9Caj5y5MFtdMiQMCblp5Mw1s0sANiBNQuGAS8YgsWvF38FXwBGN+VAP5yxUvx4ATwV/AFYHxXAmr+coVB8aQIEPAmJSfDlAgQQLEHSgTULhj4S2m76BV/sQMQ8COAv/zYUhkC+IsdgIAfATV/+ZGgcmoECHhTU5R5CHjZASkCahcMAl6p9QrfLP4KvwIAcCSAvxzhUjo8AfwVfgUA4EhAzV+OKCidGAEC3sQEZRx+gpcd0CLQuvU71qnTJtaq1WyJxgl4JWSiyX8TULvA4y9WV4kA/lJSi17VCOAvNcXoV4mAmr+U2NJrvgQIePPlz+kOBPgPZAeolHQjQMDrhpbCEDD8xRJAwI8A/vJjS2UIqAVQ/PcXO6tEQM1fSmzpNV8CBLz58ud0BwJcMBygUtKNAP+B7IaWwhAg4GUHIOBIgK9fjnApHZ4A/gq/AgBwJEDA6wiX0rkSIODNFT+HexAg4PWgSk0vAlzgvchSFwJGwMsSQMCRAF+/HOFSOjwB/BV+BQDgSEDNX44oKJ0YAQLexARlHN6Dlx3QIqB2weAbKFr7Fb1b/BV9A5jfkwD+8qRL7egE8Ff0DWB+TwJq/vJkQe20CBDwpqUn0xgBL0ugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDQEvOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxuEneNkBLQJqFwwCXq39it4t/oq+AczvSQB/edKldnQC+Cv6BjC/JwE1f3myoHZaBAh409KTaXiLBnZAjIDaBYOAV2zBgreLv4IvAOO7EsBfrngpHpwA/gq+AIzvSkDNX64wKJ4UAQLepORkmBIBAij2QImA2gUDfyltF73iL3YAAn4E8JcfWypDAH+xAxDwI6DmLz8SVE6NAAFvaooyDwEvOyBFQO2CQcArtV7hm8Vf4VcAAI4E8JcjXEqHJ4C/wq8AABwJqPnLEQWlEyNAwJuYoIzDT/CyA1oE1C4YBLxa+xW9W/wVfQOY35MA/vKkS+3oBPBX9A1gfk8Cav7yZEHttAgQ8KalJ9PwFg3sgBgBtQsGAa/YggVvF38FXwDGdyWAv1zxUjw4AfwVfAEY35WAmr9cYVA8KQIEvEnJyTAlAgRQ7IESAbULBv5S2i56xV/sAAT8COAvP7ZUhgD+Ygcg4EdAzV9+JKicGgEC3tQUZR4CXnZAioDaBYOAV2q9wjeLv8KvAAAcCeAvR7iUDk8Af4VfAQA4ElDzlyMKSidGgIA3MUEZh5/gZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+m4S0a2AExAmoXDAJesQUL3i7+Cr4AjO9KAH+54qV4cAL4K/gCML4rATV/ucKgeFIECHiTkpNhSgQIoNgDJQJqFwz8pbRd9Iq/2AEI+BHAX35sqQwB/MUOQMCPgJq//EhQOTUCBLypKco8BLzsgBQBtQsGAa/UeoVvFn+FXwEAOBLAX45wKR2eAP4KvwIAcCSg5i9HFJROjAABb2KCMg4/wcsOaBFQu2AQ8GrtV/Ru8Vf0DWB+TwL4y5MutaMTwF/RN4D5PQmo+cuTBbXTIkDAm5aeTMNbNLADYgTULhgEvGILFrxd/BV8ARjflQD+csVL8eAE8FfwBWB8VwJq/nKFQfGkCBDwJiUnw5QIEECxB0oE1C4Y+Etpu+gVf7EDEPAjgL/82FIZAviLHYCAHwE1f/mRoHJqBAh4U1OUeQh42QEpAmoXDAJeqfUK3yz+Cr8CAHAkgL8c4VI6PAH8FX4FAOBIQM1fjigonRgBAt7EBGUcfoKXHdAioHbBIODV2q/o3eKv6BvA/J4E8JcnXWpHJ4C/om8A83sSUPOXJwtqp0WAgDctPZmGt2hgB8QIqF0wCHjFFix4u/gr+AIwvisB/OWKl+LBCeCv4AvA+K4E1PzlCoPiSREg4E1KToYpESCAYg+UCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AgQ8KamKPMQ8LIDUgTULhgEvFLrFb5Z/BV+BQDgSAB/OcKldHgC+Cv8CgDAkYCavxxRUDoxAgS8iQnKOPwELzugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDW/RwA6IEVC7YBDwii1Y8HbxV/AFYHxXAvjLFS/FgxPAX8EXgPFdCaj5yxUGxZMiQMCblJwMUyJAAMUeKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRIOBNTVHmIeBlB6QIqF0wCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHH4CV52QIuA2gWDgFdrv6J3i7+ibwDzexLAX550qR2dAP6KvgHM70lAzV+eLKidFgEC3rT0ZBreooEdECOgdsEg4BVbsODt4q/gC8D4rgTwlyteigcngL+CLwDjuxJQ85crDIonRYCANyk5GaZEgACKPVAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTI0DAm5qizEPAyw5IEVC7YBDwSq1X+GbxV/gVAIAjAfzlCJfS4Qngr/ArAABHAmr+ckRB6cQIEPAmJijj8BO87IAWAbULBgGv1n5F7xZ/Rd8A5vckgL886VI7OgH8FX0DmN+TgJq/PFlQOy0CBLxp6ck0vEUDOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUxQxuEneNkBLQJqFwwCXq39it4t/oq+AczvSQB/edKldnQC+Cv6BjC/JwE1f3myoHZaBAh409KTaXiLBnZAjIDaBYOAV2zBgreLv4IvAOO7EsBfrngpHpwA/gq+AIzvSkDNX64wKJ4UAQLepORkmBIBAij2QImA2gUDfyltF73iL3YAAn4E8JcfWypDAH+xAxDwI6DmLz8SVE6NAAFvaooyDwEvOyBFQO2CQcArtV7hm8Vf4VcAAI4E8JcjXEqHJ4C/wq8AABwJqPnLEQWlEyNAwJuYoIzDT/CyA1oE1C4YBLxa+xW9W/wVfQOY35MA/vKkS+3oBPBX9A1gfk8Cav7yZEHttAgQ8KalJ9PwFg3sgBgBtQsGAa/YggVvF38FXwDGdyWAv1zxUjw4AfwVfAEY35WAmr9cYVA8KQIEvEnJyTAlAgRQ7IESAbULBv5S2i56xV/sAAT8COAvP7ZUhgD+Ygcg4EdAzV9+JKicGgEC3tQUZR4CXnZAioDaBYOAV2q9wjeLv8KvAAAcCeAvR7iUDk8Af4VfAQA4ElDzlyMKSidGgIA3MUEZh5/gZQe0CKhdMAh4tfYrerf4K/oGML8nAfzlSZfa0Qngr+gbwPyeBNT85cmC2mkRIOBNS0+m4S0a2AExAmoXDAJesQUL3i7+Cr4AjO9KAH+54qV4cAL4K/gCML4rATV/ucKgeFIECHiTkpNhSgQIoNgDJQJqFwz8pbRd9Iq/2AEI+BHAX35sqQwB/MUOQMCPgJq//EhQOTUCBLypKco8BLzsgBQBtQsGAa/UeoVvFn+FXwEAOBLAX45wKR2eAP4KvwIAcCSg5i9HFJROjAABb2KCMg4/wcsOaBFQu2AQ8GrtV/Ru8Vf0DWB+TwL4y5MutaMTwF/RN4D5PQmo+cuTBbXTIkDAm5aeTMNbNLADYgTULhgEvGILFrxd/BV8ARjflQD+csVL8eAE8FfwBWB8VwJq/nKFQfGkCBDwJiUnw5QIEECxB0oE1C4Y+Etpu+gVf7EDEPAjgL/82FIZAviLHYCAHwE1f/mRoHJqBAh4U1OUeQh42QEpAmoXDAJeqfUK3yz+Cr8CAHAkgL8c4VI6PAH8FX4FAOBIQM1fjigonRgBAt7EBGUcfoKXHdAioHbBIODV2q/o3eKv6BvA/J4E8JcnXWpHJ4C/om8A83sSUPOXJwtqp0WAgDctPZmGt2hgB8QIqF0wCHjFFix4u/gr+AIwvisB/OWKl+LBCeCv4AvA+K4E1PzlCoPiSREg4E1KToYpESCAYg+UCKhdMPCX0nbRK/5iByDgRwB/+bGlMgTwFzsAAT8Cav7yI0Hl1AgQ8KamKPMQ8LIDUgTULhgEvFLrFb5Z/BV+BQDgSAB/OcKldHgC+Cv8CgDAkYCavxxRUDoxAgS8iQnKOPwELzugRUDtgkHAq7Vf0bvFX9E3gPk9CeAvT7rUjk4Af0XfAOb3JKDmL08W1E6LAAFvWnoyDW/RwA6IEVC7YBDwii1Y8HbxV/AFYHxXAvjLFS/FgxPAX8EXgPFdCaj5yxUGxZMiQMCblJwMUyJAAMUeKBFQu2DgL6Xtolf8xQ5AwI8A/vJjS2UI4C92AAJ+BNT85UeCyqkRIOBNTVHmIeBlB6QIqF2lqB1qAAAgAElEQVQwCHil1it8s/gr/AoAwJEA/nKES+nwBPBX+BUAgCMBNX85oqB0YgQIeBMTlHH4CV52QIuA2gWDgFdrv6J3i7+ibwDzexLAX550qR2dAP6KvgHM70lAzV+eLKidFgEC3rT0ZBreooEdECOgdsEg4BVbsODt4q/gC8D4rgTwlyteigcngL+CLwDjuxJQ85crDIonRYCANyk5GaZEgACKPVAioHbBwF9K20Wv+IsdgIAfAfzlx5bKEMBf7AAE/Aio+cuPBJVTI0DAm5qizEPAyw5IEVC7YBDwSq1X+GbxV/gVAIAjAfzlCJfS4Qngr/ArAABHAmr+ckRB6cQIEPAmJijj8BO87IAWAbULBgGv1n5F7xZ/Rd8A5vckgL886VI7OgH8FX0DmN+TgJq/PFlQOy0CBLxp6ck0vEUDOyBGQO2CQcArtmDB28VfwReA8V0J4C9XvBQPTgB/BV8AxncloOYvVxgUT4oAAW9ScjJMiQABFHugREDtgoG/lLaLXvEXOwABPwL4y48tlSGAv9gBCPgRUPOXHwkqp0aAgDc1RZmHgJcdkCKgdsEg4JVar/DN4q/wKwAARwL4yxEupcMTwF/hVwAAjgTU/OWIgtKJESDgTUzQlo7TunVr69ZtZfvnP/9h9fX1LS2Xy+sJoHLBzqHNJKB2wcBfzRSal+VCAH/lgp1DgxDAX0GEZsxcCOCvXLBzaBACav4KIgtjVoEAAW8VICqXKIW5PznpFNtiy63sG99Y3tq0adM4zhdffGGPPTbeTvrJcfbxRx8tMuaOO+1i55x7wSL/Pq9+ntXV1dkXn39uzz//nF11xQh79dUJNcNEAFUz1BxUBQJqFwz8VQXRKVEzAvirZqg5KCAB/BVQdEauGQH8VTPUHBSQgJq/AkrEyM0kQMDbTHCpvOzW0XfYeutv8JXjzJs3z3bZcVt7+eWXFnruiCOPsdPPOKssFNdde7WdfebpZT3b0ocIoFpKkNfXkoDaBQN/1XI7OKulBPBXSwnyeggsmQD+Yjsg4EcAf/mxpTIE1PyFYhAolwABb7mkEn1ufsBbCnGffebpLMR9/733bPsdd7K11upvSy21VDb5jBkzbNCAvksMeN95Z6q9PWVK9vm2bdta+/YdrFfv3tauXbvG15x84vF208gb3UkSQLkj5oAqElC7YOCvKopPKXcC+MsdMQcEJoC/AovP6O4E8Jc7Yg4ITEDNX4GlYvQKCRDwVggstcfPH/wbW3rppe2cX51pM2fOXGi8Dh062JPPvGil/y197LjdVvbKKy83PrPgT/AOPv9cGzF86CJ4rrrmettu+x2zfx83bqwdctAB7ggJoNwRc0AVCahdMPBXFcWnlDsB/OWOmAMCE8BfgcVndHcC+MsdMQcEJqDmr8BSMXqFBAh4KwQW7fGLLxlme+61dzb2f4e45QS8gwatY2PuuCd7/YRXXrEdttvSHSEBlDtiDqgiAbULBv6qoviUcieAv9wRc0BgAvgrsPiM7k4Af7kj5oDABNT8FVgqRq+QAAFvhcCiPT7kot/ZPvvun439q7PPsGuvvrIRQTkB7x57fs8uGToie82wyy6xIYPPd0dIAOWOmAOqSEDtgoG/qig+pdwJ4C93xBwQmAD+Ciw+o7sTwF/uiDkgMAE1fwWWitErJEDAWyGwaI/f/+Cj1nv1NbKx99pzV3vqySfKDnj79x9gI28Zk73FQ+k9fjfZaH2bNu1dd4QEUO6IOaCKBNQuGPiriuJTyp0A/nJHzAGBCeCvwOIzujsB/OWOmAMCE1DzV2CpGL1CAgS8FQKL9PiGG21sI28enY386aef2oB+qy80/oI/wTt79mz79NNZ2eeXXmppa9uuXeN799bV1dmuO21nr746oSb4CKBqgplDqkRA7YKBv6okPGVqQgB/1QQzhwQlgL+CCs/YNSGAv2qCmUOCElDzV1CZGLsZBAh4mwEtwkuWXXZZe+zJ56x9+/bZuKW3Vii9xcKCHwsGvE0xKf0Ct1NOOsHuufvOhR7tsnLDTwdX8+Pjf75rMz55yurrV6xmWWpBwIVA6YKxbOfNrEu3FVzqV7so/qo2Uep5EsBfnnSpHZ0A/oq+AczvSQB/edKldnQCnv6a/s/J0fEyf44ECHhzhF/Uo9u2bWsPPvKYdeu2ctbiSy+9aDvvsM0i7S4Y8L7zzlSb8tZb2TOtWrWydu3aWceOHa3nar2sTZs2ja895qjD7PbbxjT+fcXV16s6hvfemGifTCfgrTpYCroQKF0wOnfZ3Fbo1dulfrWL4q9qE6WeJwH85UmX2tEJ4K/oG8D8ngTwlyddakcn4Omv915/Njpe5s+RAAFvjvCLePRSSy1l9z803nr06Jm19+67/7TvbvYtmzNnzlcGvIPPP9dGDB+62JFGXHG17bTzrtnnpk+fbusO7Nf4XJtlvl51DHM++5fNmPEMP8FbdbIU9CCQfQd52U2tzTIe1atfE39VnykV/QjgLz+2VIYA/mIHIOBHAH/5saUyBDz9Vff5pwCGQG4ECHhzQ1+8g0u/DO2e+x60VVftnjX33nvTbMvvbGql99dd3MeCP8H7VQFv6bUvvjLJOnXqlJXp12c1+/zzz90A8B6hbmgp7ECgVatSwLuJtWq1eJ85HNmikvirRfh4cY0JqL3HGv6q8YJwXIsI4K8W4ePFEPhKAviLBYGAHwE1f/mRoHJqBAh4U1O0mfMsv3xXGzvuIeuy3HJZhTffeN2233bLxf7k7vwjKgl4H3hovPXq3fBL2rbZanObNHFiMztt+mX8B3LTjHiiOAQIeIujBZ2kRwB/pacpExWHgNp/IHM/LM7u0EnTBPBX04x4AgLNJaDmr+bOyeviESDgjaf5IhP37z/Abrr1tsZfqPbss8/YnrvtZPX19V9Jp5KA9/mXXrPOnTtnNXv3XNnmzZvnRp4LvBtaCjsQIIBygEpJCPybAP5iFSDgRwB/+bGlMgTUAij++4udVSKg5i8ltvSaLwEC3nz55376DjvubKX3yG3dunXWy5jRo+y4Y44oq69yA96fn36GHXX0cVnNjz/6yNZbp39Z9Zv7EBeM5pLjdXkQ4D+Q86DOmVEI4K8oSjNnHgTwVx7UOTMKAfwVRWnmzIOAmr/yYMSZmgQIeDV1q1rXU955r7HWK6+8bH+78S9LrF366ds//eEGq6ury55ZMOAdd9+9dt/Ye7N/b9O2rXXt2tW6rbSybbHlVo1v+1D6XCk8LoXInh8EvJ50qV1tAmoXDPxV7Q2gnicB/OVJl9rRCeCv6BvA/J4E8JcnXWpHJ6Dmr+h6MX/5BAh4y2eV5JMLBrzlDPidzb5lU956c5GAt6nXlsLh4cMutSGDz2/q0RZ/ngCqxQgpUEMCahcM/FXD5eCoFhPAXy1GSAEILJEA/mI5IOBHAH/5saUyBNT8hWIQKJcAAW+5pBJ9rtKAd7NNNrSpU9/OaBx6+JF25lm/XiKZ0k/6fjprlj33/LP2s1NPtvff/89PC3viJIDypEvtahNQu2Dgr2pvAPU8CeAvT7rUjk4Af0XfAOb3JIC/POlSOzoBNX9F14v5yydAwFs+K54UIUAAJSIUbWYE1C4Y+IvFVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwEsHtUgQACloRNdNhBQu2DgLzZXiQD+UlKLXtUI4C81xehXiQD+UlKLXtUIqPlLjS/95keAgDc/9pzsRIAAygksZV0IqF0w8JfLGlDUiQD+cgJLWQjwDUp2AAKuBPj65YqX4sEJqPkruFyMXwEBAt4KYPGoBgECKA2d6LKBgNoFA3+xuUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AgS8+bHnZCcCBFBOYCnrQkDtgoG/XNaAok4E8JcTWMpCgG9QsgMQcCXA1y9XvBQPTkDNX8HlYvwKCBDwVgCLRzUIEEBp6ESXDQTULhj4i81VIoC/lNSiVzUC+EtNMfpVIoC/lNSiVzUCav5S40u/+REg4M2PPSc7ESCAcgJLWRcCahcM/OWyBhR1IoC/nMBSFgJ8g5IdgIArAb5+ueKleHACav4KLhfjV0CAgLcCWDyqQYAASkMnumwgoHbBwF9srhIB/KWkFr2qEcBfaorRrxIB/KWkFr2qEVDzlxpf+s2PAAFvfuw52YkAAZQTWMq6EFC7YOAvlzWgqBMB/OUElrIQ4BuU7AAEXAnw9csVL8WDE1DzV3C5GL8CAgS8FcDiUQ0CBFAaOtFlAwG1Cwb+YnOVCOAvJbXoVY0A/lJTjH6VCOAvJbXoVY2Amr/U+NJvfgQIePNjz8lOBAignMBS1oWA2gUDf7msAUWdCOAvJ7CUhQDfoGQHIOBKgK9frngpHpyAmr+Cy8X4FRAg4K0AFo9qECCA0tCJLhsIqF0w8Bebq0QAfympRa9qBPCXmmL0q0QAfympRa9qBNT8pcaXfvMjQMCbH3tOdiJAAOUElrIuBNQuGPjLZQ0o6kQAfzmBpSwE+AYlOwABVwJ8/XLFS/HgBNT8FVwuxq+AAAFvBbB4VIMAAZSGTnTZQEDtgoG/2FwlAvhLSS16VSOAv9QUo18lAvhLSS16VSOg5i81vvSbHwEC3vzYc7ITAQIoJ7CUdSGgdsHAXy5rQFEnAvjLCSxlIcA3KNkBCLgS4OuXK16KByeg5q/gcjF+BQQIeCuAxaMaBAigNHSiywYCahcM/MXmKhHAX0pq0asaAfylphj9KhHAX0pq0asaATV/qfGl3/wIEPDmx56TnQgQQDmBpawLAbULBv5yWQOKOhHAX05gKQsBvkHJDkDAlQBfv1zxUjw4ATV/BZeL8SsgQMBbASwe1SBAAKWhE102EFC7YOAvNleJAP5SUote1QjgLzXF6FeJAP5SUote1Qio+UuNL/3mR4CANz/2nOxEgADKCSxlXQioXTDwl8saUNSJAP5yAktZCPANSnYAAq4E+PrlipfiwQmo+Su4XIxfAQEC3gpg8agGAQIoDZ3osoGA2gUDf7G5SgTwl5Ja9KpGAH+pKUa/SgTwl5Ja9KpGQM1fanzpNz8CBLz5sedkJwIEUE5gKetCQO2Cgb9c1oCiTgTwlxNYykKAb1CyAxBwJcDXL1e8FA9OQM1fweVi/AoIEPBWAItHNQgQQGnoRJcNBNQuGPiLzVUigL+U1KJXNQL4S00x+lUigL+U1KJXNQJq/lLjS7/5ESDgzY89JzsRIIByAktZFwJqFwz85bIGFHUigL+cwFIWAnyDkh2AgCsBvn654qV4cAJq/gouF+NXQICAtwJYPKpBgABKQye6bCCgdsHAX2yuEgH8paQWvaoRwF9qitGvEgH8paQWvaoRUPOXGl/6zY8AAW9+7DnZiQABlBNYyroQULtg4C+XNaCoEwH85QSWshDgG5TsAARcCfD1yxUvxYMTUPNXcLkYvwICBLwVwOJRDQIEUBo60WUDAbULBv5ic5UI4C8ltehVjQD+UlOMfpUI4C8ltehVjYCav9T40m9+BAh482PPyU4ECKCcwFLWhYDaBQN/uawBRZ0I4C8nsJSFAN+gZAcg4EqAr1+ueCkenICav4LLxfgVECDgrQAWj2oQIIDS0IkuGwioXTDwF5urRAB/KalFr2oE8JeaYvSrRAB/KalFr2oE1Pylxpd+8yNAwJsfe052IkAA5QSWsi4E1C4Y+MtlDSjqRAB/OYGlLAT4BiU7AAFXAnz9csVL8eAE1PwVXC7Gr4AAAW8FsHhUgwABlIZOdNlAQO2Cgb/YXCUC+EtJLXpVI4C/1BSjXyUC+EtJLXpVI6DmLzW+9JsfAQLe/NhzshMBAignsJR1IaB2wcBfLmtAUScC+MsJLGUhwDco2QEIuBLg65crXooHJ6Dmr+ByMX4FBAh4K4DFoxoECKA0dKLLBgJqFwz8xeYqEcBfSmrRqxoB/KWmGP0qEcBfSmrRqxoBNX+p8aXf/AgQ8ObHnpOdCBBAOYGlrAsBtQsG/nJZA4o6EcBfTmApCwG+QckOQMCVAF+/XPFSPDgBNX8Fl4vxKyBAwFsBLB7VIEAApaETXTYQULtg4C82V4kA/lJSi17VCOAvNcXoV4kA/lJSi17VCKj5S40v/eZHgIA3P/ac7ESAAMoJLGVdCKhdMPCXyxpQ1IkA/nICS1kI8A1KdgACrgT4+uWKl+LBCaj5K7hcjF8BAQLeCmDxqAYBAigNneiygYDaBQN/sblKBPCXklr0qkYAf6kpRr9KBPCXklr0qkZAzV9qfOk3PwIEvPmx52QnAgRQTmAp60JA7YKBv1zWgKJOBPCXE1jKQoBvULIDEHAlwNcvV7wUD05AzV/B5WL8CggQ8FYAi0c1CBBAaehElw0E1C4Y+IvNVSKAv5TUolc1AvhLTTH6VSKAv5TUolc1Amr+UuNLv/kRIODNjz0nOxEggHICS1kXAmoXDPzlsgYUdSKAv5zAUhYCfIOSHYCAKwG+frnipXhwAmr+Ci4X41dAgIC3Alg8qkGAAEpDJ7psIKB2wcBfbK4SAfylpBa9qhHAX2qK0a8SAfylpBa9qhFQ85caX/rNjwABb37sOdmJAAGUE1jKuhBQu2DgL5c1oKgTAfzlBJayEOAblOwABFwJ8PXLFS/FgxNQ81dwuRi/AgIEvBXA4lENAgRQGjrRZQMBtQsG/mJzlQjgLyW16FWNAP5SU4x+lQjgLyW16FWNgJq/1PjSb34ECHjzY8/JTgQIoJzAUtaFgNoFA3+5rAFFnQjgLyewlIUA36BkByDgSoCvX654KR6cgJq/gsvF+BUQIOCtABaPahAggNLQiS4bCKhdMPAXm6tEAH8pqUWvagTwl5pi9KtEAH8pqUWvagTU/KXGl37zI0DAmx97TnYiQADlBJayLgTULhj4y2UNKOpEAH85gaUsBPgGJTsAAVcCfP1yxUvx4ATU/BVcLsavgAABbwWweFSDAAGUhk502UBA7YKBv9hcJQL4S0ktelUjgL/UFKNfJQL4S0ktelUjoOYvNb70mx8BAt782HOyEwECKCewlHUhoHbBwF8ua0BRJwL4ywksZSHANyjZAQi4EuDrlyteigcnoOav4HIxfgUECHgrgMWjGgQIoDR0ossGAmoXDPzF5ioRwF9KatGrGgH8paYY/SoRwF9KatGrGgE1f6nxpd/8CBDw5seek50IEEA5gaWsCwG1Cwb+clkDijoRwF9OYCkLAb5ByQ5AwJUAX79c8VI8OAE1fwWXi/ErIEDAWwEsHtUgQACloRNdNhBQu2DgLzZXiQD+UlKLXtUI4C81xehXiQD+UlKLXtUIqPlLjS/95keAgDc/9pzsRIAAygksZV0IqF0w8JfLGlDUiQD+cgJLWQjwDUp2AAKuBPj65YqX4sEJqPkruFyMXwEBAt4KYPGoBgECKA2d6LKBgNoFA3+xuUoE8JeSWvSqRgB/qSlGv0oE8JeSWvSqRkDNX2p86Tc/AgS8+bHnZCcCBFBOYCnrQkDtgoG/XNaAok4E8JcTWMpCgG9QsgMQcCXA1y9XvBQPTkDNX8HlYvwKCBDwVgCLRzUIEEBp6ESXDQTULhj4i81VIoC/lNT6//buO06KIm3g+GM6T0URPRRPSYLkLCCiSBDMBAVBjJgBkWDAgFkxoAKioCiSBDEBIqiISM5ZQMnmnMBw5lffz1Nz09c7O6Fnd2p3avpX/yg73dVV36rq6Xm6upqyuibA+HKtxSivSwKML5dai7K6JuDa+HLNl/IWnwAB3uKz58iWBAhAWYIlWysCrl1gML6sdAMytSTA+LIES7YIcIOSPoCAVQG+v6zyknnIBVwbXyFvLqqfhgAB3jSw2NQNAQJQbrQTpYwIuHaBwfii57okwPhyqbUoq2sCjC/XWozyuiTA+HKptSirawKujS/XfClv8QkQ4C0+e45sSYAAlCVYsrUi4NoFBuPLSjcgU0sCjC9LsGSLADco6QMIWBXg+8sqL5mHXMC18RXy5qL6aQgQ4E0Di03dECAA5UY7UcqIgGsXGIwveq5LAowvl1qLsromwPhyrcUor0sCjC+XWouyuibg2vhyzZfyFp8AAd7is+fIlgQIQFmCJVsrAq5dYDC+rHQDMrUkwPiyBEu2CHCDkj6AgFUBvr+s8pJ5yAVcG18hby6qn4YAAd40sNjUDQECUG60E6WMCLh2gcH4oue6JMD4cqm1KKtrAowv11qM8rokwPhyqbUoq2sCro0v13wpb/EJEOAtPnuObEmAAJQlWLK1IuDaBQbjy0o3IFNLAowvS7BkiwA3KOkDCFgV4PvLKi+Zh1zAtfEV8uai+mkIEOBNA4tN3RAgAOVGO1HKiIBrFxiML3quSwKML5dai7K6JsD4cq3FKK9LAowvl1qLsrom4Nr4cs2X8hafAAHe4rPnyJYECEBZgiVbKwKuXWAwvqx0AzK1JMD4sgRLtghwg5I+gIBVAb6/rPKSecgFXBtfIW8uqp+GAAHeNLDY1A0BAlButBOljAi4doHB+KLnuiTA+HKptSirawKML9dajPK6JMD4cqm1KKtrAq6NL9d8KW/xCRDgLT57jmxJgACUJViytSLg2gUG48tKNyBTSwKML0uwZIsANyjpAwhYFeD7yyovmYdcwLXxFfLmovppCBDgTQOLTd0QIADlRjtRyoiAaxcYjC96rksCjC+XWouyuibA+HKtxSivSwKML5dai7K6JuDa+HLNl/IWnwAB3uKz58iWBAhAWYIlWysCrl1gML6sdAMytSTA+LIES7YIcIOSPoCAVQG+v6zyknnIBVwbXyFvLqqfhgAB3jSw2NQNAQJQbrQTpYwIuHaBwfii57okwPhyqbUoq2sCjC/XWozyuiTA+HKptSirawKujS/XfClv8QkQ4C0+e45sSYAAlCVYsrUisNtun0rJksfIbrv9bCX/TGfK+Mq0KPnZFGB82dQl77ALuPYDme+vsPdYt+rP+HKrvSitWwKujS+3dCltcQoQ4C1OfY5tRYALeCusZGpJgACUJViyRcDMkOcGCh0BAVsCjC9bsuSLAE940QcQsClAgNemLnkXpwAB3uLU59hWBAjwWmElU0sC/EC2BEu2CBDgpQ8gYFWA7y+rvGQecgHGV8g7ANW3KkCA1yovmRejAAHeYsTn0HYECPDacSVXOwJcwNtxJVcEVIDxRT9AwJ4A48ueLTkjwPiiDyBgT8C18WVPgpxzTYAAb661KPURArx0ApcEXLvAYHy51LsoK+OLPoCAPQHGlz1bckaA8UUfQMCegGvjy54EOeeaAAHeXGtR6kOAlz7glIBrFxgEeJ3qXqEvLOMr9F0AAIsCjC+LuGQdegHGV+i7AAAWBVwbXxYpyDrHBAjw5liDUh0hwEsncErAtQsMArxOda/QF5bxFfouAIBFAcaXRVyyDr0A4yv0XQAAiwKujS+LFGSdYwIEeHOsQakOAV76gFsCrl1gEOB1q3+FvbSMr7D3AOpvU4DxZVOXvMMuwPgKew+g/jYFXBtfNi3IO7cECPDmVntSGyHASydwS8C1CwwCvG71r7CXlvEV9h5A/W0KML5s6pJ32AUYX2HvAdTfpoBr48umBXnnlgAB3txqT2pDgJc+4JiAaxcYBHgd62AhLy7jK+QdgOpbFWB8WeUl85ALML5C3gGovlUB18aXVQwyzykBArw51ZxURgUIQNEPXBJw7QKD8eVS76KsjC/6AAL2BBhf9mzJGQHGF30AAXsCro0vexLknGsCBHhzrUWpDwFe+oBTAq5dYBDgdap7hb6wjK/QdwEALAowviziknXoBRhfoe8CAFgUcG18WaQg6xwTIMCbYw1KdZjBSx9wS8C1CwwCvG71r7CXlvEV9h5A/W0KML5s6pJ32AUYX2HvAdTfpoBr48umBXnnlgAB3txqT2rDEg30AccEXLvAIMDrWAcLeXEZXyHvAFTfqgDjyyovmYdcgPEV8g5A9a0KuDa+rGKQeU4JEODNqeakMipAAIp+4JKAaxcYjC+XehdlZXzRBxCwJ8D4smdLzggwvugDCNgTcG182ZMg51wTIMCbay1KfQjw0gecEnDtAoMAr1PdK/SFZXyFvgsAYFGA8WURl6xDL8D4Cn0XAMCigGvjyyIFWeeYAAHeHN9nc+sAACAASURBVGtQqsMMXvqAWwKuXWAQ4HWrf4W9tIyvsPcA6m9TgPFlU5e8wy7A+Ap7D6D+NgVcG182Lcg7twQI8OZWe1IblmigDzgm4NoFBgFexzpYyIvL+Ap5B6D6VgUYX1Z5yTzkAoyvkHcAqm9VwLXxZRWDzHNKgABvTjUnlVEBAlD0A5cEXLvAYHy51LsoK+OLPoCAPQHGlz1bckaA8UUfQMCegGvjy54EOeeaAAHeXGtR6kOAlz7glIBrFxgEeJ3qXqEvLOMr9F0AAIsCjC+LuGQdegHGV+i7AAAWBVwbXxYpyDrHBAjw5liDUh1m8NIH3BJw7QKDAK9b/SvspWV8hb0HUH+bAowvm7rkHXYBxlfYewD1tyng2viyaUHeuSVAgDe32pPasEQDfcAxAdcuMAjwOtbBQl5cxlfIOwDVtyrA+LLKS+YhF2B8hbwDUH2rAq6NL6sYZJ5TAgR4c6o5qYwKEICiH7gk4NoFBuPLpd5FWRlf9AEE7AkwvuzZkjMCjC/6AAL2BFwbX/YkyDnXBAjw5lqLUh8CvPQBpwRcu8AgwOtU9wp9YRlfoe8CAFgUYHxZxCXr0AswvkLfBQCwKODa+LJIQdY5JkCAN8calOowg5c+4JaAaxcYBHjd6l9hLy3jK+w9gPrbFGB82dQl77ALML7C3gOov00B18aXTQvyzi0BAry51Z7UhiUa6AOOCbh2gUGA17EOFvLiMr5C3gGovlUBxpdVXjIPuQDjK+QdgOpbFXBtfFnFIPOcEiDAm1PNSWVUgAAU/cAlAdcuMBhfLvUuysr4og8gYE+A8WXPlpwRYHzRBxCwJ+Da+LInQc65JkCAN9dalPoQ4KUPOCXg2gUGAV6nulfoC8v4Cn0XAMCiAOPLIi5Zh16A8RX6LgCARQHXxpdFCrLOMQECvDnWoFSHGbz0AbcEXLvAIMDrVv8Ke2kZX2HvAdTfpgDjy6YueYddgPEV9h5A/W0KuDa+bFqQd24JEODNrfakNizRQB9wTMC1CwwCvI51sJAXl/EV8g5A9a0KML6s8pJ5yAUYXyHvAFTfqoBr48sqBpnnlAAB3pxqTiqjAgSg6AcuCbh2gcH4cql3UVbGF30AAXsCjC97tuSMAOOLPoCAPQHXxpc9CXLONQECvLnWotSHAC99wCkB1y4wCPA61b1CX1jGV+i7AAAWBRhfFnHJOvQCjK/QdwEALAq4Nr4sUpB1jgkQ4M2xBqU6zOClD7gl4NoFBgFet/pX2EvL+Ap7D6D+NgUYXzZ1yTvsAoyvsPcA6m9TwLXxZdOCvHNLgABvbrUntWGJBvqAYwKuXWAQ4HWsg4W8uIyvkHcAqm9VgPFllZfMQy7A+Ap5B6D6VgVcG19WMcg8pwQI8OZUc1IZFSAART9wScC1CwzGl0u9i7IyvugDCNgTYHzZsyVnBBhf9AEE7Am4Nr7sSZBzrgkQ4M21FqU+BHjpA04JuHaBQYDXqe4V+sIyvkLfBQCwKMD4sohL1qEXYHyFvgsAYFHAtfFlkYKsc0yAAG+ONSjVYQYvfcAtAdcuMAjwutW/wl5axlfYewD1tynA+LKpS95hF2B8hb0HUH+bAq6NL5sW5J1bAgR4c6s9s6Y2pQ46SHZ+912xlIcAVLGwc9ACCrh2gcH4KmBDs1uxCDC+ioWdg4ZEgPEVkoammsUiwPgqFnYOGhIB18ZXSJqFamZAgABvBhDJIiJw/6CH5cTWbaR06UNkt912kz/++EM+//wzGf30UzLm6aeKjIkAVJFRc6AMCLh2gcH4ykCjk0WRCTC+ioyaA4VQgPEVwkanykUmwPgqMmoOFEIB18ZXCJuIKhdQgABvAeHY7X8Cu+++u0ybMVPq1KmbkGXsmKfl9ltvLhI2AlBFwsxBMiTg2gUG4ytDDU82RSLA+CoSZg4SUgHGV0gbnmoXiQDjq0iYOUhIBVwbXyFtJqpdAAECvAVAY5e8Ao8OHynt2ncwf/zpp59k6pSXZN3aNXJC85bStl170QCwpr69rzKf2U4EoGwLk38mBVy7wGB8ZbL1ycu2AOPLtjD5h1mA8RXm1qfutgUYX7aFyT/MAq6NrzC3FXVPT4AAb3pebB1HYOuOj2Tvvfc2SzK0an6cfPTRh95Wp5/RVkY8Mcr8e+uWzdLmxObWDQlAWSfmABkUcO0Cg/GVwcYnK+sCjC/rxBwgxAKMrxA3PlW3LsD4sk7MAUIs4Nr4CnFTUfU0BQjwpgnG5nkFOnbqLIOHPmr+OHXKZOnbu2c+ooVLVki5cuXN3+vXrSHfffutVUYCUFZ5yTzDAq5dYDC+MtwByM6qAOPLKi+Zh1yA8RXyDkD1rQowvqzyknnIBVwbXyFvLqqfhgAB3jSw2DS/wOMjR8lpp7c1H1x+aTeZ9cbr+TZ64MHBck7X88zf+1/XT55/7lmrlASgrPKSeYYFXLvAYHxluAOQnVUBxpdVXjIPuQDjK+QdgOpbFWB8WeUl85ALuDa+Qt5cVD8NAQK8aWCxaX6ByVOnS8NGjc0HlSocLn/++We+jTqc1VEeGTbC/H3YI4Pl4QcfsEpJAMoqL5lnWMC1CwzGV4Y7ANlZFWB8WeUl85ALML5C3gGovlUBxpdVXjIPuYBr4yvkzUX10xAgwJsGFpvmF5g7f7EcWamy+aD8EYfGJWrRopWMmzDJfPbSi8/Ltf16W6UkAGWVl8wzLODaBQbjK8MdgOysCjC+rPKSecgFGF8h7wBU36oA48sqL5mHXMC18RXy5qL6aQgQ4E0Di03zC6xeu1H+Vbq0/PXXX1Kx3GFxierWqy+vzJhpPlu0cIGc1/Vsb7tDK9XPOOuX722VXTtXyd9/xw84Z/yAZIhAIQT0AqNUqaZyyJGRGyXZnhhf2d5ClM8vwPiiPyBgT4DxZc+WnBFgfNEHELAnYHN8fbljrb2CkzMCKQQI8NJFCiWwbsNmKVWqlFmaQZdoiJdq1qwlr73xlvmoSAK8OzbJr79eJn//vV+h6sbOCBSFwG67/Sj77DNWDjmyalEcrtDH+JLxVWhDMig6AcZX0VlzpPAJML7C1+bUuOgEGF9FZ82Rwidgc3wR4A1ff8qmGhPgzabWcLAsi5aulLJly8nff/8tFcqWiVuD45udIBMnvWg+m/7KNOnV8wpvOxszeB1kpMgIIIAAAggggAACCCCAAAIIIOCwAAFehxsvB4pOgDcHGrE4qzD9tVlSp05dU4REa/C2bddeHhvxpNnmySdGyMB77iTAW5yNxrERQAABBBBAAAEEEEAAAQQQQCCjAgR4M8pJZmkKEOBNE4zN8wqMGTdBWp3Yxvzx5NYtZPPmTfmI+t94s1zVq4/5++23DZCxo0fBiAACCCCAAAIIIIAAAggggAACCCCAAAIZECDAmwHEMGdx7fU3SO8+1xiCJx5/TO4beHc+jldnzpZatWqbv59xahvZsGF9mMmoOwIIIIAAAggggAACCCCAAAIIIIAAAhkTIMCbMcpwZrT//vvLhne3yW677SbfffutHF2/lvz1118exhFHlJWFS1bI7rvvbj6vX7dGOKGoNQIIIIAAAggggAACCCCAAAIIIIAAAhYECPBaQA1bltNmzJR69eqbaq9ds1pu7H+tWaqh6XHHy4jHn5JSBx1kPhsxfJg8cN/AsPFQXwQQQAABBBBAAAEEEEAAAQQQQAABBKwJEOC1RhuejI+qUkVemfGG7Lvvvl6l//77bzOrN5o++eRjad2ymfzyyy/hgaGmCCCAAAIIIIAAAggggAACCCCAAAIIWBYgwGsZOCzZH3LIofLKqzPlsMP+nafKGuhdtXKFdO7UIc/SDWFxoZ4FE9hnn324GVAwOvYqRoF//OMfUmL//c1yNK6nPffc01Thzz//dL0qlD+EAvod8uuvv4pegxQk0f8LosY+yQT0+vjzzz8DqZgFSpYsab7X/vOf/xRzSTi8iwL6e/ebb77mN62LjUeZEQiJAAHekDR0UVVzv/32kxYtW0nVatVlxfJlsmTxIr4EY/BPPe0Mufue+wI3yVkdzpCPPvpQEu335//9Kb/8/LN88MH7MvyxYSagHjQ9OnykHHtsU7P5X3//JSe2OF5+/PHHhLvHluHjjz+SM9ufHnd7ndk96bnJ5rNbb7lJXn9tRsJ8L7iwm3Ts1FnKl68gB5YqZdZs1h/mP//8s3z26ScybuxomfDMuDw/1u8eeL+cemr8Y8c70NW9usvSJYuD0rCdRYGTTj5V7r1vUNwjfP/9LjmxZTPvs9h2njHjFbnjtgFx973ksiukZ8+rzWfNmzXJ8wMuXn/5v7/+z4ydn3/5RT75+COZ/srLMv2VaWnV/KpefaTDmWfJ4UeUFT3/afrjjz/MD4B339ko113bN2HAV7efv3CZdzwdy6ec1Ep27dwZtwxz5y+W/fc/QF5//VW5dcCN3jax+aSqwJYtm+W8rmfn2UyfuOjT91o574IL5cADS4kGq8154a+/jOPOnd/JrJmvy6inRuYJUqTTlrHluvCii72XdOpnN9/UX2a98Xqq4vN5FggkOv/+/sfv8p+ffpJ169bK0MEPyaeffhK3tLp+/9z5S8xnsf053g7LVq6VPffYUxYvXiR9ru6RbxMN2txz7yA5oXkLKVGihEQDtDoW9XtEyzFl8ovy7ITxcQM7xdH/y1eoKJOnvOLVJdm5LQuaPOeKEHvenDNntvS/rl/Cemof0XNwiRL7m230mqvTWe0Sbt+yVWvp0+9aqVChohx44IHmqTa9rtn53Xfy/vvvyb0D70p4vab7PvjQkLTM9fujSaPIcmnxUrrnWxs+L7/ymui7OWKTXn/+/vvv8tWXX8rLUyfLc5Mmmn/709577y2Llq6U3eR/Twf6P+94Vjv58IP38+Wt32UPDBosDRs3ljJlDvO+2/QG0OeffSqLFi0036eJbgbdc+8Dcsopp5l8Y68rYg+mL57u2vV88+cO7U4TfXoxmhLVPV5bpWrLtDoGGxuBqtWqycRnX4yrkajv6MZly5aT+wc9LFWqVpWDDjrY+27R30r6G0i/U54ZPzahcmG/KxNd3+l37e+//SZffvmlbNywXkY+MUK++urLtFq7sOeEgl6zplVINkYAgbQFCPCmTcYOCBRO4Iore8qAW28PnEnb006S9evflqD7vbdju5zcpmW+i+PYA+pF75btH5pgajQNe2SwPPzgAwnLFq8MfXtfJVOnvJRvn0aNj5GX/vvjdeDdd8qTI0fk2+bww4+Qcc88K0dVqZrSQ3+o33P3HTJ29Ciz7YuTp0njY5qk3C+6QZ/ePeXlKZGAM6l4BTQQe/sdd8cthM6sqVThcO+z2HbWH2EN69c2AdTYNPC+QXL+BReZP9etXS1PoDRof9Fg0OSXXpBbbr4hKZL+UJz0/EtyZKXKSbfTfnvzjdfLC89Pyred3sx4e8PmPH9/c9ZMueySSB1i0/sffW7Gq948O7tje+/jePkkK9TXX30lDRvU9jbRmzHTps/0AtSpeke3C8+TuXNmm83SacvYfBcvW5Xnx/6GDevljFPbpDo8n2eBQNDxNHXyS9K3z1X5SnzQwQfL2rffNX+P7c/xqvfhJ5Efrps3bZKT27TIs0m3Sy4z5xP/d1kiIr1hUbHcYXk+Lq7+P2ToY3JWp//daNGAU9XK5bOgdcNRhNjzpn63NKhXM+ENuSu7XyU333Kbh/P9999LnZpV8mHpzYXhjz8ppwS4AT3p2QnmvRWxSW96a2Ax3VT+iEMT7pLu+daGz8ZN20Vv7qRKGjw7pU3LPAFS3U/3T5Tatz1V1q1dk+djfRfIk6PGpjymBt31puc772zMl71ex+r1rKbY64rYjZ96eqzoTU9Np518Yp78gtY9mmeytkzlx+f5BY5tepw898KUuDTtzjhF3l63Nt9nPXpeLf1vvDnld4ve0LzwvC6i54TYVNjvynSu77Zu2SzXX9cv3zhI1B8Ke07QfAtyzUr/RAABuwIEeO36kjsC+QT8QVJ9lPurr75KqtTtwnPNjDn/fjob6eOPPjIXHfpI+GFlDvNeZqeZaZC3ZfPjkuYbL1irx0k2AyTePjt37pR6tavlO1aqAK/eTZ85a6534aQ/vFevWikb1r8tX3zxhdSrX1+qV68hOssp+sN9xvRpclWPK8yx/BdNO7Zvkz/+SP4oef/r+8W9gKOLFr1AuXLlvcBGv2uuNwXQsTBu3Gj54YcfZPSoJ71Cxbs4nj9/rlx43jn5Ch40wKsvg9TA6z777is68++AA0qaGVb+NOetN+XiiyIzcWLTv/5VWnRG4V577WU+ivbd1atXmvHcuPExckyTplKqVClv10eHDZGHBt2fJ6t4F+4aZDiuScO4Mx+DBHg1SPTB+/lnMfkPvOndd7ygm74Ec/HSVV5wV+vy4YcfyKKFC+THH3+Q2rXrypGVKsm//324t656z+6Xyaszppss02lLfxn05s6S5avzeGjdq1epyPIsRT8k0z6if1zqePrtt99kjz32MONIZ7P71+TX2U2xN0wyFeDVYIoGVaJJy7F16xZZuGCeme1eo0ZN00dLH3KIt40/cFJc/V8LEy/gc+Xll8jM119Nuz3YIX2BeOffV2e8Ij27Xx43s3UbNuc5pycK8MYGTfSmhH43bNm8SWrXqStHH90wz41BvYGvN/L96Zgmx8pdd6d+0qvMYYd53116/qxQtkzcshfkfGvDJ9rn9Xtm2dLIDH69vvvnPvtI6dKl83zPfPP113J0/VpefaKz7HUCb8+reovO6NV8Hhn6sNlGrxv0+iGa2rZrL4+N+N+1hN68Xb58qaxcvtx8d+s1qk4SiD6ton46Izv2KbhMB3j1OFs2572xG9toOjPy9FNap9+p2SOhgH7nXHvd/27ct2x1oui40BQvwBt7A+7LL7+QFcuXm7Fcrmw5qd/gaKlXv4F3XaRPOtWvU918F/pTYb8r/eNQj6G/kfQmkrl2LVnSzCqOXovqcfXatt3pJ8u7776TtDdk6pxQkGtWuikCCNgVIMBr15fcEcgn4A+S3n/vPfL4iEcDKaXar81Jp5gfutGX2zU95uiEj8fqAectXCoVKx5pHkv77LNPvQudZk0bmyUh4qXYIHP04khn1j418vE8u6QK8C5cssL88NakgeUuZ58V9/E6Xbfu6bHPSM2atSRRgLd+3Ro5se5poI6QYxtFZ+bpzBmd8RKbohfH0aUCdBaP9tnmzY7N11+CBnjj9Rd9DO+aa/vLmR07eWNoyksvSr++vfKVadLzk0VnBmnatWuXdDqrrWzbujXPdjoOnxw1xpvNozOT9ceqf/kF/4W73rSJjif94dvl7DPzHTdIgHfliuVJHxuOzfSOO++Riy+NBDT0RknrVifEXVZH150bPPRRaXZCc/EHeP35pWpL/7b6yGPXcyMBdA2AVKte3fz/gw/cJ489OjTHennuVcf/ozXeeLrjroFy8SWXmYprYEUD9/6UqQCv/3skXiA5eswGRzeUwUOGScUjK4k/wFtc/V/PH3oeie3/a1avSrjsUe71ouKtUbwApn7P6Kzc2KWqdBmeRx7Ne40TL8Cr51LtU5r0nH/tNb3jPjl0+ZU9ZMAtt3vfNZdf2i3t5Wn0nKxLFmigU1O867CocEHOtzZ8ogHen376SWpWq5SvA1SqfJTMmj3Pewy+RtUj4y6psm79JjOpQYNpVSqVi9uR1r+z1QTBNG3cuEE6d2yfLy89D02b/rp3Larfw3rt7E+ZDvAmqnvxjobwHf3xkaPktNPbmorHBnh1Ysn8hUu98alLxA24qX8+JP2dM37Cc94NzalTJkvf3j3zbFfY70r/OIx3fafXmmd3Pkeu63+jHHpo5AaPjgt9sXmi33K6TWHPCYW5Zg1fb6PGCBStAAHeovXmaAjkmYmbyQCv0vofD7v3nrtk5BPD44rrD4OVa9Z7F76vTn9Fbrgpsq7pSy8+L9f26x13P3+At3ev7uYHj15c6F1lvVj3r2GWLMDr/xGkF7u1axyVcq3m9h3OlN1338NbDiLVRRNdzQ2BVEFBf4BX18nTIK4mnTWoa9z5U2ECvNF8Op3dRR4eMszLdsjgB81aotFUp05dmf7aLPNP/QGvs9eTrVutjwTqo4Ga5s2bIxed39XLy3/hrj8gTj+jnTdD7KTWzfPN8rER4H3jzXlecPXUk1qlnPWhgfBdu3bGrXOqtvS3VfTHt/4Q0bW/NVChSdcs1BnMpOwWCHL+XbVmgzdztlGDOnnWB8xUgDc6JnTWUuWKkdlYyVK1atVl8+ZN3ibF1f8nTnpRjm92gilH61bNvCVSNMCoyzTErj+aql58nr6A//yrgXW9CaBJl9O5/tq+eTLUpw30Bpwub7NfiRImoBMb4NVZde9s3iH//Oc/zb6XdLtA3pod+a6Ily69/Eq57fa7zEeJnoRKtK/Oel26Yo1ZU1aTzvrW2d+JUkHOt5n20bKlCvDqNnPmLRIN9GqK9z2of08V4NXH6nV9fE1BvlM2vLtNDjjgALP9TTdcJ89OfMajJMCb/thyYY9kAd5XZ86WWrUiy1glutEfraNOVFmweLm3xvbxxzbKs7RIYb8rUwV4o+XQmehzFyzxlr3S32V6fZrou6Sw54TCXLO60D8oIwIuCxDgdbn1KLuTAqlm4iaqVJD9/LORxo8bk+dFTP58ddF/XVxf0zV9r5bXXp0um7a+by5QNFhVq3r8dUX9ZdBH2a64soc3Q3HE8GHywH0DvcMkC/CuXrtR/lW6tNlWX2ry/HPPpt2WQS6a0s6UHYpcIFVQ0B/g1bUz/UGj6PrU0UJnIsCreenY0DGiKXa2jT8w8+ILz8l110R+RCZK+kIZ82KY/75gx/8IbWyAVx8NHTosclMm3oxmGwFe/wzIROtpB+0Uqdoymk/DRo1l8tTIEg+z33xDLr34QrPkhc7W16TLxPC2+aDqxbNdkPPv7DkLvPXV9WWcGkSLpkwHePXmot4oTHazJZ5UcfR/PRdse+9j81ht9DF0feFpu/YdTBGTzcQsntbOzaPGnn+jj2zrzQK9YR191Nq/dqder+js9HgB3ou6XSJ3/fcFuvryJQ30pEr+Waa67JAuPxQkPfvcS3Lc8ZGXkeoL21o0OzbhbgU932baRwsYJMAb/Y5PNjs3VYDX76o3VfXmarKk63jfeVfk+jW27QjwBumR7m2TKMDrX+tZb+LrjH4NliZL/vEYe11Y2O/KoAFeLd8+++wjCxev8G6sJppElKlzQkGvWd3rLZQYAbcECPC61V6UNgcEggRq41UzyH5jxk+UVq0i63bFzkLw5xm9ONYfMkcdWdbMvPXfsT6n81mydMnifMWIDfBu27bVvChHZ5PoXWL9URS9W5wswLvjg0/NI3h60aSP4BUkBbloKki+7FO0AqmCgrEB3lNPO0OeePJpU8htW7eYJQWiKVMBXs1PZ2KVKFHCZO0fDxqs1VmsmhI9Phor6J8lqLNTo2/Wjv0BrY8A+gOdehNFH8mLJhsB3nETJkmLFq3MIfSRO53FG+9FIUF6Raq2jOYx9plnpWXLyHIc0Ucj/TOuEr14KEgZ2KZoBIKcf6PfM1oifYzavzZhpgK8/nVRk73sJZFKcfR/XZpEH4/VNObpp+SO228RfdHb7DkLzd9SBeyKpoVz/yix599lSxd7a7aOGT1K7rgt8lRT9PwdnbGrN8PjBXgfGvyIeVRakz5tojfZUyVdpuGK7pFHuoc8/KAMHfK/p0US7XvNdf2lT9/Ii9n0GqpJo3p51p6N3a+g59tM+2i5kgV49Zrw3vsflC7nnGuqoBMPelwZWeYlNqUK8H7w8RfmpqouoVS3VuqX+Gr+etNFZ0HGLilDgDdVL3bz80QB3ubNW8r4ic+ZSi1cMF/OP7dzygrqWu+vz4rcRFi7do10aBt50Z6mwn5XphPg1eP5XwaZ6LskU+eEgl6zpgRlAwQQKJQAAd5C8bEzAukL+IOk+kKknxPcGf7++13S4oSm3gFSBXj1kTadMaXBVn3MUx/NiReoqV27jsx4/U2Tr75ISd8crKljp85mjc3Yv/trGBvg1eDTgw8Plc5dIo+d+wMziQK8+oKq1esibyrWlzmdcFzk7cTpJv9Fk95lT5W6X3GpedsrKbsEUgUFYwO8Wnr/rLsLzu0iCxbMM5XKZIDXf8PDvy5s9Md90EfCtVy6Fu/Jp0SWk9ClTaa9PNX8f7wArwZbNeikKfbiPEiAV/dLNR4+eP89ObFlZPaXviRE1yCMJr3Zoy9pfHvdOlm6dLHMnj0r8PrWqdoyeozoD2n/I866VuLbG7eYH+WJXl6UXT033KVJ9aPVP5sx3ss7MxXg1aWF9IVL0aTjUtfb1Dei601KfdlastlXxdH//Td8jq5XS7755mtTfP+TLf6/h7un2at9vPOv3rDWvqk3I6odVUEqVa7sBd6js+ESBXhffuU18+IlTbFPlySqhX9t31TLLGgerU5sI2PGTTDZ6XXeGae2MU97JEsFPd9m2kfLGA3w6vfMV199aYqt5/y99/6n6MzJeC/UjVe3ZAFe/8ujYm8CJ3PyPx2kT9pElxzLdIA3yHe0tq1OviDZE0gU4NWbJ3oTRVP0BlyqUmgf1psKmrRf65JE0VTY78p0A7y6zvy8BZEXGCaaRJPJc0JBrllTefI5AggUToAAb+H82BuBtAX8QdJkO2uQplKFw71N/Pvpkgb6GNA+/9xHyleoYNby07eJRy+Ox455Wm6/9ea42fvX6e3apaMsWbzIu8iOPjbqn9nrzyRegFdf8KEX7TrzQS9KdbaEvsk4UYD39DPayognRplsg94dj1cR/0VTkEbo07tn3JedBNmXbewJpAoKxgvw6hvGX3jpZVMo/0tRMhng9S9jEl2T0X8Rv/O776RenciLwVIlfxBq1JNPyN133W52ifcDWv/uX4Pwsksu8m5MBA3wpiqPriPZsEFkfTlNsUGy2P31RtT6gJy8IAAAIABJREFUt9eJrkccPV/EO0aqttR9OpzVUR4ZNsLs/tykiXLD9dd4WSV7pD9Vnfi8aAX8519d+/Pbb7+RAw4oKRUqVpR27c+UevXqmwJpkOTii86XuXNm5ylgpgK8munUaa9666fGU9BlG+bOeUsefODeuC+dKcr+r+t86uPjei6JvcHpfzFdsu/wom3p3D1avPOv/8bEsEcGS+PGTaTJsU3NrE59YkP7c6IAr77XQN9voEmv3VLdaNPt/DO39WWTJ7dpkRBcl/vRl+Pq0h6a9F0J+s6EZKkw59tM+2g5owHeVL1KnfW75sLzz4nrmCzA27Zde28m9pw5s+XiC89LdTjz+WtvvGVe5qtJX/gaDZzbCPAGKZD/ZZBBtmeb9AQSBXj9f09nCbmtOz4yLzyMvflf2O/KdAO8qhB9SlJ/k+nSZv6U6XOC5p3uNWt6LcXWCCCQrgAB3nTF2B6BQgr4g6QaaPnyv7MYYrPVAJL/0aAggWG9sLj5xuvNS0ISpehFSLw3+frXkYp3YRMvwKvHuXnAbXJlj6siF8n/fawuUYDX/3hqQR6pjdbLf9GkLzL5+edfkraMBqd2bN9WyNZj90wLpAoKxgvwahn8s+Cis2IzGeC9acCt0r1HL1Pd6IsH9SaG3gTRFDtLI5nLtdffIL37RAKZEyeMN2NUU6IAb9169eWVGZHZ5v7jBAnw6iOpeuMkWdJZTY8MjTwiHk06XnUc16lbz3uDebw85rz1pgnYxUup2lL38c+M9i9XoZ/510FM54d5pvsk+aUWCHKDTb/D9AmReDMMMxng1dKee94FcvkV3UVnL2nwNF7SoNF9A++O+/LRour/+qbzq3v3M8WLXR/R/3RLOjeQUrcWW8QTSHT+jS7Po9dTumyA9if/OwYSBXj9S5IEDc7puuO6LI+mZEtz6HfP8pXrzOzi2O+RZK1bmPNtpn20nNEArwae/MuA7bHHHubldYceeqgXJNftP/roQ2nWtHG+KiYL8PqvMYPMio5mrk+26RNumvS8pU+4acp0gFfr/uqMyBr0iZLeHOjbO7J0B8mOQKIAr3/5Av8TV6lKsWX7h+YFi7FB1cJ+VxYkwBudoavfef73PmgdbJwT0r1mTWXJ5wggUDgBAryF82NvBNIWSLXUQqIMgwR4U72cxb9+qb7w5s47bs1zuGOPPU5uvPkW87d4s0kSBXh15rD+KNJ16fSCQl+SVLZcOXNhrGng3XfKkyMjs/b8M1a2b9vqPSqeLmSqx57SzY/ti0cgVVAwUYC3WrXq8sbsyNIM0WBIJgO8/pep6Uyuhx98wBwreuGc7AUwsZJDh42QM8/qaP6sa5bp24c1JfoBrZ9NmzHTmwUZvdkSJMCry6bo2r2FSfoj9/hmzaVR48ZSo2Yt7+Vn0TwTrRWZqi31BSDRlznqLP8LzuuSp5g6My16ztC1vHlEtTCtaHffID9aW7U4PuFNNX+AN0ifjfatVLMcNRDWpElTadK0qTRqdIx5yVupUqXyYPhn58VTstX/9VjLV62TMmUiM6o6d+qQZ11i/dvY8c965U1VTrstnPu5Jzr/9r3mOul3TeQmnCY9F1WvUtGbSZoowOu/6ajLa73/3o6UiCe2PklGj33GbKcvWNMXrcVL/uUfdAmS00+JvGshWSrs+TbTPlrWIC9Z01m0U195zcyG1OT/zozWN1mA139tENRK812yfLXo8g6a9BH76BIS/gCvPrWj1xuJkv8JudjxG6TuqdqUzzMnkCjA65+w8uiwIfLQoMgLd1Ol6LrPO3fuNEvkRVNhvyvTDfDqUyIb3o1MZtGnr6pWLu+VxdY5QQ+QzjVrKks+RwCBwgkQ4C2cH3sjkLZAJgK8Optk3JjR5tgXX3qZN9NQg6tnd2yf58VM/gL6fySkKni8t5InCvBqXv6F/RcvWmge544X4NVtoxdC+uhsreqVUxUl7ucEeAvElnU7pQoKJgrwakX8P7xuv22AHHVUFTn/gotMHevWria7du6Me5Fdv26NlOvKrlj9thx6aBmz/+WXdpNZb0TWqfX/3b9OXzJY/yPkJ7duIZs3bzKbJwvw+tdRi65JW1QB3ti66E2ZJ0Y+LZWPqmI+il3iIbp9qrbUmYs6gzFo6nN1D3l56pSgm7NdEQr4z7/6Yr7v/hv0GDVmvDcLToP4xzU5Ou4LoPSmoPZnTe+++455uV+i5P/Bqm/t7nhm27Rq2uakU2TII4+ZNT416VjWMR00Zar/l69QURYsWhb0sPLGzNfkissuDrw9G6YnkOj8q31z87YPvACj/6kLPUKiAO+IJ56S08+I3FwLOvOv19V95fobbjL7jHx8uNw78K58lbjjznvk4ksvN3/X4NExDevmuzEQr+aFPd9m2kfLGDTIecllV8jtd9xtqrVg/rx8NwOTBXiTrYearIe8u+U92W+//cwkBf+sRw3AayBeU+tWzWTb1q0Js5n0/GRpetzx5vPYdbSD1j29XszWBRVIFOD1L/ERdAa43rTTm3eaYm9CFva7Mt0Ar7/8sevf2zonaL3TuWYtaJuxHwIIBBMgwBvMia0QyJhAJgK8sY92jhk/UVq1iszo0NkmLU9oKp98EnmUPJp0ZpM+QhRdpzdIhfwzF3X7ZAFe/VxfknTggQearHXW4aCHhpj/98/g1X/r3WX90a4p6MtIYstLgDdIC2b/NqmCgskCvLom4aKlK80jtLrkyLSXp8h5519oKl2YAG/VatXMEhCab+xMUv9NEp0BP3rUk0mRddzp7Hb9ryZ/UDhZgFe3nfDsC9LshOZmvwfuG2gCATp+VyxfZm7kRFO6PwAK0ivKli1nrKPnmHiza1O15eJlq0TbLGjasGG9eYkQKfsEEp1/tZ8vWbZaSh9yiCn0xx9/ZB6xjr6wyF+T6Gx4/zra8WrqfzHolJdelH59I0unpJOu6tVH+t8YWZc+VUA5Xr6Z6P9Dhj4mZ3WKvNQ0SIqdfRVkH7YJLpDs/Btdg10ft9ab0P4X9SUK8PqDJ7p+rL7jIFXyrzves/tl+R7d9wdrdMmIVs2Pi7uOdLzjFPZ8m2kfLWPQIGfDRo1l8tTIMga6xIvOhvWnZAFe3S7aRnre0fOPnoeSJf/xYpdHGXDL7XJF98hyCZd0u0B0SbBE6c235kuVqtXyBYnTqXuqPsPnmREYNXqc6M0/Te3OOMW8mFOTf9kUvUlZu8ZRKQ/ovwkzY/o0uarHFd4+hf2uTPf67rkXpsixTY8zx3/i8cfMskTRZPOcoMcIes2aEpQNEECgUAIEeAvFx84IpC9gI8CrpdC3puodVE06y0NnTvl/lPhn2E57eaqMHRN50Vls0lmLTzz5tPlz7N3fVAHeTmd3kYeHDDP7fvP11/Kv0qXN/8cGeMdNmCT65lVNqX7cR8unj/QeUvoQb/YjAd70+1427pEqKJgswKv18c+u8fe5ggZ49SU58xctM8uNaJr+yjTp1fN/F+sXXNhN7rk3slxDvHWsY411W91HU+wai6kCvFoWnTGsgWZ9yY+u75bpAK++oDG61mCq/hGdQZyo3sna0v9mc325VN/ekTW74yX9gaKP5+qPc300+pdfkq+vnarcfJ55gWTnX53NtGDxcm8GpK61eU7ns/IVYu3b75o1RTWIpi+wStTOOpNPZ/Rp8t/c1LGgL1z0r+WZqKb6g1f7lSb/khBF1f/1uP61XXV5hkRp0IODzdISmvQFdjqLjJR5gWTnXz3/NG/RSr74/DNZv/7tPAdPFOD133DUHZItUaKf+/ukBm/1BbX+azadOT5z1lxvTXT/CzdTaWTifJtpHy1z0ACv/3s2NmCm+aQK8D4z8Xk5oXnkhXVBloCZO3+xHFkp8jRZbFDMf10bXY8/nr+ej3QShd7kivcdGbTuqdqWzzMj4A+Exk408U9WiZ1QE3t0XfZAJ61EX354wbldZMGCyPJhmgr7XZlOgNf/ok7/S6+1HLbPCXqMoNesmWlBckEAgUQCBHjpGwgUsYCtAK8+frpk+RpvZux7O7ZLy+aRu7ia9Ad3+fIVzP/71xeLV/3oD2/9TGc/6IsuNKUK8Oo2/kfYo3nHBnh19u7qde94sxr1B2yPKy8zP/TjJZ19dc11/c0P3eidcQK8RdxxLR2usAHeUgcdJGvWvZNvZnpBArwa7Hls+EjRPDXpEiIN6tYws3j9SV+Ko7M8NOlMLV1LNt4b0zuceZYMeWS4VzadjaqzUqMpVYBXtxv++JNyRtv/zdY1YyyDM3g1WKHBhdtuuTHpcgj+2Wm6fveZ7U/P1yOSteUDDw6Wc7pG3mZ+x+23yJinn0rYo/xBe13/TtfBI2WXQKrzb4OjG8qUl2d4LzzTdad1LU1/8gdhpk6ZHPelQhoAXrx0lXfDxf+IdHSmlb48s1fPK83M3ETJv0zKgw/cJ489OtRsWlT9Xx/b1se3o+eMZLM7/QGltWtWS4d2p2VX4+dIaYKcf+NVNVGAV7cd9tgT0r7DmWY3Xcqm7eknmxvlsUmDt1NeftW7Xot9WkqDRstXvS0lS5Y0u6azFqhun4nzrQ2fIEFOHfMLF6+QEiVKmLpf26+3edGpP6UK8MZeFyRaN17z9N+EjTdjW88zS1es8Z7oifeEnPle8y2lEW/cBql7jgwtJ6qx/p2t3viqUqlcnmVP/O8r0eujS7tdYNbIjk26pMfkqTOkeo0a5qN4Tx0V9rsySIBXf//dNOA27wk2Lcug+++V4Y894hW5qM4JQa5ZneggFBIBhwUI8DrceBTdTQFbAV7V0Bm8+ohY9E5y9KUdeld15ZpIYEmXbtC31ydL0ccTdRv/I7FBArytTmwjY8ZNyJN9bIBXP/Svsab/1nVGdQ26RYsWmIDy8cc3k2OaNJXWbU7ygmn+mRz+i6Yxo0fJTz/9mLROE58ZH/eHlpu9yO1S60wXfWO8pmi/3LZ1i5x7ztny+x+/x107N/bNxH4BnTWuQRF/Shbg1QDPjz/+IAccUFLKHHaYlClTRho2OsZbXkTz0aCuvqws+tieP+9GjY/x1pfWv+sjnY88MljeenOWfP31V9LshBbS9dzzRMdCNC1cMF/OP7dznjIG+QGtN0PWrt/kzeLSDJIFePXFMM8/92zSDvLB++97P5ijwYrouUFn8y5dutise6ipXr0GclWv3qKPsGrSWbVndThDNMirKWhbRn9MaTvq8g7xAuLRQvsflw1yvnJ7NLhZ+lQ/WrVWXc4511umR/+t62SPHf2/J0c0kLN67UbvBoj260eGPizLli4x54dWJ7aW2++8x8xc1xT7Eir/o7T6uc60XLFsqSxevEiWL1siBx10sFni5Kqr+3hLg+hNG13DNDpTsqj6/7PPvSTHHd/M1OOi87vKvHlzEja8ztjf/v4nZszreNGX5MTeZHKz12RXqYOcf+OVOFmAV2f+aiAvuiSPBof0BbOz3pgp699eJ0c3bCSnn95WLrr4Uq/f79q1y8ze9Sf/Wq66VMdTTz4eCC96nZOJ860Nn2iQU/vznbdHXuir/b1kyQPNE1/16tWXuvXqezb6hJder0aXeNHzgn7nzJ670ATnNJ/o9Wz0pWhRKH/ANXp+eHrUSJk3d47suceecmLrNtK9x1XezF3dJl4wWf/+6PCR0q59ZNa9HvO+e++WWTNfl88++9S0ac9evb1l0rSsxx/bKN8yadG6a5/QWcLJ0p9//ClDhzwUqM3ZKLmALsOgbf3ajOnmKSp9OqJ3n35Sv8HRZkftNzrpJTb5l0/Rz/TJx6lTXpLFixZI+QoVpFWrNtK77zXejYhEy4EU9rvSPw51POjvpD323FMOPfRQKVPm31KpcmWpVau2dzNVy6rLiOhyIv5UVOeEINes9FkEELArQIDXri+5I5BPwGaAVw/WslVrE2DVi2ZNukbonnvtJRdeFHlZS7KZDNHC+l8Y4H8RWpAAr+bhXy5C/x0vwKt/v2nArWZWcNB1gceOeVpuvzWyjmKQN9P68fv07ikvT4nMoCIVr4C+MEZ/fMVL+uOncsXIm6z97ZwswBv7iJzulyzAm6r2+iOga+eOSW8IdOzU2cySit5MSZbn3LlvyRWXdssXpAn6A3rgfYO8l8fpcZIFeFPVTT/3vyQt+mKZIPvpNnfdeZs8/dRIb/MgbekP2K5du0Y6tD015eGiP4Z1wyaN6nNzJqVY0W4Q5EerlujOu++VbhdfagqnP4A1uOmfCdW333XS79rrUxZelyhp0qieuREYTf7vqZQZiJiZ6u1OPznPTN+i6P/6XazrDeu5Quuhy46kSv7HhxN9f6bKg8+TCwQ9/8bmkizAq9vWqFFTJk560Sw/kirpDawunc7MFwz0P3GVKg//57r0ja43G12/tjDnWxs+/vN6qnrp91Sb1s3NDVRNOktR90+U/OuoRrfR705dlz96PZxoXz036cuLddZjvKSB+1VrN3ozrpOVXScc3HHbgHybpFN33bn8EYemIuLzAAL+JX5iN0/2YmoNVI6f8JwXCE52KD2v9+x+ucydMzvfZoX9rvSPw1TV1e847ceDHxqUZ9NMXYMFPSekumZNVQ8+RwCBwgkQ4C2cH3sjkLbApZdfKbfdHnlTcjo/3NLZr0fPq+XGmyOzIzR9//0uM0NCL2b0hQEatE2VlixfbdZs0hRdn8pfBn2Tub7RPF7Sx3P1kdhoig0K+ffRWVhPjR4n1avXyDNLMbqNXrBs3LDeBKb9gQH/D+BUddHPg77VOkhebFM4gW6XXCZ33jUwbiaxAd5oO+uMz0oVDk944Ftvu1Muu6K793mdmlXyBIMS9RcdE//3f/8nP/7wg6xcuVzuv2+g6CPfQZI+BqqPmSfquxqMGnDT9WYd33hJZyDprApNz4wfK7fcfEPc7WJf1Ba7pqk/nyDl9s9Y0dn9V3bvKW3bdxBdfzteUiN99FCDB7E2Qdpy5FOj5ZRTI0s69Lm6R9KlIKLHH/rIcDmzYyfzT13OQZd1IGWPgH881atT3QvCxCvh8y9OlSbHNjUf6fhu2KB2nln6uhbpiMefShgQm/XG69K7V4+4a/TWrFlLelzVW1q0bGUCQPGSnjtee3WG3Hzjdfm++4qi/+sj+/rovqY3Zr4mV1wWudmaLPmfhNGnG1q3OiHVLnyepkDQ829sttEAb7yZt9FtNaCoL9U7vW07bzavP5/ffvtNnp0wPuF5bd7CpVKx4pFp1ihyftXHyzNxvrXhkyzIqTdxNVD23XffymPDhuZ7EkUfh9cbMolSohf26vWovldCx3q8QK+2Y5dOHbz3OyTKX2fUPzzkUbMER7x89PtevyPnvPVm3CwI8KbdnTOyww03DZCeV/XOl5cundLn6p6yfNnSpMfRyTH9bxwQ9/tFv1v0d9Al3c7Ps362P8PCflf+/ddf3nVibEH12kzXrte1wseNGyPjxjwd94WmmboGC3pOSHXNmpGGJRMEEEgoQICXzoEAAlkjoAGzY4451vyw+eKLz2XL5k1J11XMmoJTkNALlC1bzgSZ9LHwZcuWyOpVK5MuQ5CNYDqTXpd5qVSpslSoUFG+/fYbWbdubeCAdzbWiTK5I6Czg44+upHUrlPH3JzRdSz15l6y5Tz8tdOZ/FWrVZeqVavJwQf/S957b4dZSiT20e1EIvR/d/qKSyXVft2s2QlSpWo1eWfjRlmyeKH88MMPLlUhZ8pap05dOe74E+Tfhx/uPdUW9EW/UQQN7upNXZ0VWfqQQ+Tdd94x3/dBzzM5g+lQRXRpj2rVq5tlQL775ltZu3Z1oIku/ipq0LJJk6bSsHFj+eTjj0WX3Yq3vrZDLBQVAQRyVIAAb442LNVCAAEEEEAAAQQQQAABBBDIK7Djg0+9p8bO63q26PrzmvTR/H333c9MMiAhgAACCCDgmgABXtdajPIigAACCCCAAAIIIIAAAggUSODpMeOldZuTvX31xYv6yHuJEiXyrXNfoAOwEwIIIIAAAsUgQIC3GNA5JAIIIIAAAggggAACCCCAQNEL6Jq6b741X46sVDnfwWNfZFr0peOICCCAAAIIFEyAAG/B3NgLAQQQQAABBBBAAAEEEEDAUYG27drLyaecLhUqVpQ/fv/dLM3w/KRnZd68OY7WiGIjgAACCIRZgABvmFufuiOAAAIIIIAAAggggAACCCCAAAIIIICA0wIEeJ1uPgqPAAIIIIAAAggggAACCCCAAAIIIIAAAmEWIMAb5tan7ggggAACCCCAAAIIIIAAAggggAACCCDgtAABXqebj8IjgAACCCCAAAIIIIAAAggggAACCCCAQJgFCPCGufWpOwIIIIAAAggggAACCCCAAAIIIIAAAgg4LUCA1+nmo/AIIIAAAggggAACCCCAAAIIIIAAAgggEGYBArxhbn3qjgACCCCAAAIIIIAAAggggAACCCCAAAJOCxDgdbr5KDwCCCCAAAIIIIAAAggggAACCCCAAAIIhFmAAG+YW5+6I4AAAggggAACCCCAAAIIIIAAAggggIDTAgR4nW4+Co8AAggggAACCCCAAAIIIIAAAggggAACYRYgwBvm1qfuCCCAAAIIIIAAAggggAACCCCAAAIIIOC0AAFep5uPwiOAAAIIIIAAAggggAACCCCAAAIIIIBAmAUI8Ia59ak7AggggAACCCCAAAIIIIAAAggggAACCDgtQIDX6eaj8AgggAACCCCAAAIIIIAAAggggAACCCAQZgECvGFufeqOAAIIIIAAAggggAACCCCAAAIIIIAAAk4LEOB1uvkoPAIIIIAAAggggAACCCCAAAIIIIAAAgiEWYAAb5hbn7ojgAACCCCAAAIIIIAAAggggAACCCCAgNMCBHidbj4KjwACCCCAAAIIIIAAAggggAACCCCAAAJhFiDAG+bWp+4IIIAAAggggAACCCCAAAIIIIAAAggg4LQAAV6nm4/CI4AAAggggAACCCCAAAIIIIAAAggggECYBQjwhrn1qTsCCCCAAAIIIIAAAggggAACCCCAAAIIOC1AgNfp5qPwCCCAAAIIIIAAAggggAACCCCAAAIIIBBmAQK8YW596o4AAggggAACCCCAAAIIIIAAAggggAACTgsQ4HW6+Sg8AggggAACCCCAAAIIIIAAAggggAACCIRZgABvmFufuiOAAAIIIIAAAggggAACCCCAAAIIIICA0wIEeJ1uPgqPAAIIIIAAAggggAACCCCAAAIIIIAAAmEWIMAb5tan7ggggAACCCCAAAIIIIAAAggggAACCCDgtAABXqebj8IjgAACCCCAAAJFK7DPPvvIb7/9Jn/99VfRHpijIYAAAggggAACCCCAQFwBArx0DAQQQAABBBBAAIGEAhd1u0RatzlZKlWuLKVLHyL/+Mc/zLa///67/PTjj7Jjx3YZNnSwLFgwD0UEEEAAAQQQQAABBBAoBgECvMWAziERQAABBBBAAIFsF6hU+SgZO36ilCtXPlBRf/zxR3nx+Uly5x23BtrexY2u6tVH+t94syn6iuXL5OyO7V2sBmVGAAEEEEAAAQQQyDEBArw51qBUBwEEEEAAAQQQKKzANdf1l959rpHddtstT1b/+c9/5Ntvv5GSJQ+UAw44IN/nf/zxh1SueERhD5+1+/e95jrpd831pnxr16yWDu1Oy9qyUjAEEEAAAQQQQACB8AgQ4A1PW1NTBBBAAAEEEEAgpUCdOnVl+muz8mw3dcpkueH6fmbt3WjS4G/devXlhhsHSNPjjjd/JsCbkpcNEEAAAQQQQAABBBDIuAAB3oyTkiECCCCAAAIIIOCuwLKVa+Www/7tBWwv7XaBzJ8/N2mFjm92gjw24kkpUaJEoBm8u+++e1a9pC1oeZjB626/puQIIIAAAggggEAuCxDgzeXWpW4IIIAAAggggEAaAv41ZnW3B+4bKCOGDwuUg87o1ZexvTlrZr7tdR3fBx4cLEcdVUUO/te/RAOqP//8s3z6yceis4OHP/ZIwmNMmzFT9txzT/l+1y4595xOCbcb/viTUqHikebz88/tLDu/+87bVgPWo8aMN//evm2b9Lm6h5x62hnSvWcvqVSpsuy///4m4Lxr506ZNGmCDLr/3jzH2W+//eSFydPk34f9Ww46+GDz2a+//irbt2/Ls90333wtF53f1fytbbv20r3n1eb/X546WZ4a+bh5Qd3Jp5wqrVq1kcpVqsjvv/0mEyeMk0suu9Jb7qJ3rx6yIyZf/0E0Dy3LXnvtZf58XtezTblJCCCAAAIIIIAAAuEVIMAb3ran5ggggAACCCCAQB6B5avWSZkyh5m/ffftt1K/bo1CC11wYTe56577TFA3Udq8aZN07tRevv/++3ybfPjJl+ZvGoCtWC5Stnhp46btJlCrqXWrZrJt61Zvs3r1G8i06a+bf+s6wlu3bJb6DY5OmNe6dWul/RmneJ+ridqkSv4lKu68+17pdvGlZpcF8+fJxAnjZfDQR0WDxf408/VX5ZgmTaVUqVLmz2/NniWXdLsg4aH8s4i1LjWqRoLaJAQQQAABBBBAAIHwChDgDW/bU3MEEEAAAQQQQCCPwLb3PjazTDXde89dMvKJ4YUS6nru+XL/oIe9PDRI++WXX8j3u76XI8qWNUs6RNM3X38tR9evle94mQ7wxh5Ay/Tnn3969Y5+3qvnFTL9lWnmn6UOOkhWrdkge+yxR54Xy+l+/vTjjz9KvdrVzJ/8AV49RqIAtwZ4t27dYl5qp0nzrFq5vPlvvLRu/SZTHk3PjB8rt9x8Q6HaiJ0RQAABBBBAAAEE3BcgwOt+G1IDBBBAAAEEEECg0AI6+1VnwUZTxzPbyqqVKwqcrwY0Nb/ojNXPP/9MOrQ9Tb744nMvz779rhOdkarLO2i6/9575PERj+Y5pq0A78oVy+WB+weK/ldT7dp15KWp0+Wf//yn+fd7O7ZLy+bH5SlLOmvw+gO80Ux0hu+2bVtl+dIl8s0330jlo6rIwgU0HXaQAAAS8klEQVTzZMb0afLulvfMUhSaHhp0vzw6bEg+e13reOKkF83f//77b6lTs4r88MMPBW4jdkQAAQQQQAABBBDIDQECvLnRjtQCAQQQQAABBBAolECLFq1k3IRJXh5HHVlWfv/99wLnecNNA6TnVb3N/jobtVb1yvLLL7/ky++hwY/I2Z3PMX//7bffpEqlcnm2yXSAV8ty8YXnyYIF8/KVpdfVfeX6G24yf9fZuFpmfypMgHfJ4kVyxWXdTL7x0pjxE6VVq9bmo0SzmXU94nr16pttli1dIl3OPrPA7cOOCCCAAAIIIIAAArkjQIA3d9qSmiCAAAIIIIAAAgUWuLp3P7mu/41mf/9asgXN8LU33pKaNSNLLkx7ear07tU9blYHHHCAvL1xi7eEQYsTmsr77+3wts10gHfXrl1St1bVuGU55JBDZeWa9eYznSFboWyZPNsVNMCrwd2uXTompTyqShWZPWeht02ns9p5s4v1j/pytzXr3vFmO59xahvZsCFSVhICCCCAAAIIIIBAuAUI8Ia7/ak9AggggAACCCBgBDp26mxeApYouJku09q33zVBSU19ru4hL0+dkjALXd+29CGHmM+v6Xu1TH7pBW/bogzw6kGjx9P/L3/EoXnKXNAAr75k7YLzuqQkXLB4uZQvX8Fst3rVSjmrwxnePoMeGiJdzjnX/PvTTz+RpsckfklcygOxAQIIIIAAAggggEBOCRDgzanmpDIIIIAAAggggEDBBI44oqwsXrbK2/nk1i1k8+ZNBctMRHZ88Km3pmyqvN54c55Uq17dHGvM00/JHbff4h23qAO8H3z8hTdLtqgDvJ27dJUHHx5q6q4ziHWm8ffff2/+vWX7h976wANu6i8TnhlX4LZhRwQQQAABBBBAAIHcEiDAm1vtSW0QQAABBBBAAIECC7z/0efeUgm33XKTjBs7usB5+QOlxzVpKJ988nHCvGbOmivVa9Qwn0+cMF5uvvH6UAZ4tdKbtr4v++67r6n/+HFj5NYBN0rXc8+X+wc9bP7266+/StXK5QvcLuyIAAIIIIAAAgggkHsCBHhzr02pEQIIIIAAAgggUCCBdRs2S6lSpcy+a1avkjPbn16gfHSndzbvkBIlSpj9u114nsydMzthXkuWr5bDDz/CfD7w7jvlyZEjvG2jM3jjrYnrz3Djpu2y//77mz+1btVMtm3d6n1cr34DmTb9dfPvZGvw6ufFOYNXj6+BXA3oavrpp5+kZrVKsnDJCilXLhLUnfTsBLmx/7UFbhd2RAABBBBAAAEEEMg9AQK8udem1AgBBBBAAAEEECiQwIuTp0njY5p4+15wbhdZsGBegfKat3CpVKx4pNl3yOAHZejghxLm419+oHOnDrJ82VJv22Rr4vozLOoA78aNG+T0U1onrNOdd98r3S6+1HwedA1e3bbUQQeJrl+82267mX0HPzRIrrmuv/l/DXLXq1Nddu3cWaA2YScEEEAAAQQQQACB3BQgwJub7UqtEEAAAQQQQACBtAUOO+zforNpd999d7Pvzu++k+OObSj/+c9/kua15557ykODh0nrNidJreqVzbZjxk+UVq0iAVDNRwOT8ZJ/+QH9vEqlcvLbb795m25//xPZa6+9zL87ndVOVq5Yni8bDYa+u+U9b2kDWzN4L7zoYrl74P3m+B9//JEcf2yjhC4FDfBqhi+/8prUb5D/JWqrVq6Qjme2Tbtd2QEBBBBAAAEEEEAgtwUI8OZ2+1I7BBBAAAEEEEAgLYGbBtwq3Xv08vbRNV/79r5KXn9tRtx82px0igwdNtwsx/DHH39I5YqRpRYqVT5K3pq70JuJOvLx4XLvwLvy5KHLMrwxe563tMKSxYuka5eOebbR2awHHXyw+dvaNaulQ7vT8nzeslVrc/wDDzzQ+7utAG+DoxvK1GmvmuPobNrGR9eVr776Mq5LYQK8xzY9Tp57YUq+fHXJDF06g4QAAggggAACCCCAgF+AAC/9AQEEEEAAAQQQQCCPwIrVb8uhh5bJ87cvv/xCdmzfLls2b5LDjzhCqlarLmXKHCZ77723t50/wKt/HDV6nGgAOJp0WYNXXp4q3377jZmh2uWcc73ZuX/99Zc0alBHvvnm6zzHfWzEk9K2XXvvb/qytrVr1kjJkiWldu06ZkmD2GQrwKt13bztA2+Gs85s1sD3jz/8IBWOPFLKHlFWTmzZzBSnMAFe3X/12o3yr9Klvap9/vln0qRRfXoqAggggAACCCCAAAL5BAjw0ikQQAABBBBAAAEE8gj84x//MEsutGvfwZuBG4Ro29Yt0rrVCd6mBxxwgLw6c7b3grBEeWhw947bBsi4saPzbbLffvvJ2xu3eIHgeHn8+eefostERJOtAK/mP+ihISYwHS/5A9yFDfD2urqvXH/DTd5hbr9tgIwdPSpIM7ANAggggAACCCCAQMgECPCGrMGpLgIIIIAAAgggEFSgRo2aMvzxJ6Vc+Qp5Aqj+/XW9XF0bVl+kFm99XN1W16294MJucYPFusTBued0km1btyYsVs2atWTCsy94SzX4N9ywYb1cctH58ta8RaIBZU0tTmgq77+3w9tM93/tjbfMv5OtB6yfv//R52aGri7BUKFs3lnM+rl+9uDDQ6Vjp8756vPzzz9L9SoVzXFuve1OueyK7ub/58yZLRdfeF5QdrPd+RdcJAPvG2T+X42rVi5vykRCAAEEEEAAAQQQQCBWgAAvfQIBBBBAAAEEEEAgpcCBpUpJo0bHSJ26deXPP/4UXSph1aqV8uEH76fcN7pBnTp15YTmLc3yChs3rpf58+fJrp07A+2vL1Jr2KixNG16vOisXj32/Hlz8ryQLVBGGdpIl2vQNXmr16gpP3z/vWzbtlXeXrc2Q7mLedmdrlGs6cUXnpPrrumTsbzJCAEEEEAAAQQQQCC3BAjw5lZ7UhsEEEAAAQQQQAABxwUaNT5GXpryiqmFztptUK+mfPftt47XiuIjgAACCCCAAAII2BIgwGtLlnwRQAABBBBAAAEEECiAwPTXZonOdta0ds1q6dDutALkwi4IIIAAAggggAACYREgwBuWlqaeCCCAAAIIIIAAAlkvoMsy6PIM0dTprHYJ1zbO+spQQAQQQAABBBBAAIEiESDAWyTMHAQBBBBAAAEEEEAAgdQCTz09Vk46+VSzob6ArlGDOql3YgsEEEAAAQQQQACBUAsQ4A1181N5BBBAAAEEEEAAgWwSGDV6nFSoUNEU6fERj8nkl17IpuJRFgQQQAABBBBAAIEsFCDAm4WNQpEQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgAgR4gyixDQIIIIAAAggggAACCCCAAAIIIIAAAgggkIUCBHizsFEoEgIIIIAAAggggAACCCCAAAIIIIAAAgggEESAAG8QJbZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUIAAbxY2CkVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCCBDgDaLENggggAACCCCAAAIIIIAAAggggAACCCCAQBYKEODNwkahSAgggAACCCCAAAIIIIAAAggggAACCCCAQBABArxBlNgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIQgECvFnYKBQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIIkCAN4gS2yCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkoQIA3CxuFIiGAAAIIIIAAAggggAACCCCAAAIIIIAAAkEECPAGUWIbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCwUI8GZho1AkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgiAAB3iBKbIMAAggggAACCCCAAAIIIIAAAggggAACCGShAAHeLGwUioQAAggggAACCCCAAAIIIIAAAggggAACCAQRIMAbRIltEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLBQgwJuFjUKREEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIAIEeIMosQ0CCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAgR4s7BRKBICCCCAAAIIIIAAAggggAACCCCAAAIIIBBEgABvECW2QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEslCAAG8WNgpFQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEgggQ4A2ixDYIIIAAAggggAACCCCAAAIIIIAAAggggEAWChDgzcJGoUgIIIAAAggggAACCCCAAAIIIIAAAggggEAQAQK8QZTYBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEIBArxZ2CgUCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCJAgDeIEtsggAACCCCAAAIIIIAAAggggAACCCCAAAJZKECANwsbhSIhgAACCCCAAAIIIIAAAggggAACCCCAAAJBBAjwBlFiGwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAsFCPBmYaNQJAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIgAAd4gSmyDAAIIIIAAAggggAACCCCAAAIIIIAAAghkoQAB3ixsFIqEAAIIIIAAAggggAACCCCAAAIIIIAAAggEESDAG0SJbRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSwUIMCbhY1CkRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSACBHiDKLENAggggAACCCCAAAIIIIAAAggggAACCCCQhQIEeLOwUSgSAggggAACCCCAAAIIIIAAAggggAACCCAQRIAAbxAltkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJQgABvFjYKRUIAAQQQQAABBBBAAAEEEEAAAQQQQAABBIIIEOANosQ2CCCAAAIIIIAAAggggAACCCCAAAIIIIBAFgoQ4M3CRqFICCCAAAIIIIAAAggggAACCCCAAAIIIIBAEAECvEGU2AYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhCAQK8WdgoFAkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgiQIA3iBLbIIAAAggggAACCCCAAAIIIIAAAggggAACWShAgDcLG4UiIYAAAggggAACCCCAAAIIIIAAAggggAACQQQI8AZRYhsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCALBQjwZmGjUCQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCIAAHeIEpsgwACCCCAAAIIIIAAAggggAACCCCAAAIIZKEAAd4sbBSKhAACCCCAAAIIIIAAAggggAACCCCAAAIIBBEgwBtEiW0QQAABBBBAAAEEEEAAAQQQQAABBBBAAIEsFCDAm4WNQpEQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgAgR4gyixDQIIIIAAAggggAACCCCAAAIIIIAAAgggkIUCBHizsFEoEgIIIIAAAggggAACCCCAAAIIIIAAAgggEESAAG8QJbZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUIAAbxY2CkVCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCCBDgDaLENggggAACCCCAAAIIIIAAAggggAACCCCAQBYKEODNwkahSAgggAACCCCAAAIIIIAAAggggAACCCCAQBABArxBlNgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIQgECvFnYKBQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIIkCAN4gS2yCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkoQIA3CxuFIiGAAAIIIIAAAggggAACCCCAAAIIIIAAAkEECPAGUWIbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCwUI8GZho1AkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgiAAB3iBKbIMAAggggAACCCCAAAIIIIAAAggggAACCGShAAHeLGwUioQAAggggAACCCCAAAIIIIAAAggggAACCAQRIMAbRIltEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLBQgwJuFjUKREEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIAIEeIMosQ0CCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAgR4s7BRKBICCCCAAAIIIIAAAggggAACCCCAAAIIIBBEgABvECW2QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEslCAAG8WNgpFQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEgggQ4A2ixDYIIIAAAggggAACCCCAAAIIIIAAAggggEAWChDgzcJGoUgIIIAAAggggAACCCCAAAIIIIAAAggggEAQAQK8QZTYBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEIBArxZ2CgUCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCJAgDeIEtsggAACCCCAAAIIIIAAAggggAACCCCAAAJZKPD/mPLQmOuKNKgAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "AI-generated follow-up questions:\n",
-       "\n",
-       "* What are the total sales for each country in descending order?\n",
-       "* Which country has the highest number of customers?\n",
-       "* What are the total sales for each customer in descending order?\n",
-       "* Which customers in the United States have the highest total sales?\n",
-       "* What are the total sales and number of orders for each customer in each country?\n",
-       "* What are the total sales for customers in Europe?\n",
-       "* What are the top 10 countries with the highest total order amount?\n",
-       "* Which country has the highest number of failed orders?\n",
-       "* Which customers have the highest total sales?\n",
-       "* \n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "vn.ask(\"Which 5 countries have the highest sales?\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "with ranked_customers as (SELECT c.c_name as customer_name,\n",
-      "                                 r.r_name as region_name,\n",
-      "                                 row_number() OVER (PARTITION BY r.r_name\n",
-      "                                                    ORDER BY sum(l.l_quantity * l.l_extendedprice) desc) as rank\n",
-      "                          FROM   snowflake_sample_data.tpch_sf1.customer c join snowflake_sample_data.tpch_sf1.orders o\n",
-      "                                  ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l\n",
-      "                                  ON o.o_orderkey = l.l_orderkey join snowflake_sample_data.tpch_sf1.nation n\n",
-      "                                  ON c.c_nationkey = n.n_nationkey join snowflake_sample_data.tpch_sf1.region r\n",
-      "                                  ON n.n_regionkey = r.r_regionkey\n",
-      "                          GROUP BY customer_name, region_name)\n",
-      "SELECT region_name,\n",
-      "       customer_name\n",
-      "FROM   ranked_customers\n",
-      "WHERE  rank <= 2;\n"
-     ]
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>REGION_NAME</th>\n",
-       "      <th>CUSTOMER_NAME</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>ASIA</td>\n",
-       "      <td>Customer#000102022</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>ASIA</td>\n",
-       "      <td>Customer#000148750</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>AMERICA</td>\n",
-       "      <td>Customer#000095257</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>AMERICA</td>\n",
-       "      <td>Customer#000091630</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>EUROPE</td>\n",
-       "      <td>Customer#000028180</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>EUROPE</td>\n",
-       "      <td>Customer#000053809</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>MIDDLE EAST</td>\n",
-       "      <td>Customer#000143500</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>MIDDLE EAST</td>\n",
-       "      <td>Customer#000103834</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>8</th>\n",
-       "      <td>AFRICA</td>\n",
-       "      <td>Customer#000131113</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>9</th>\n",
-       "      <td>AFRICA</td>\n",
-       "      <td>Customer#000134380</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   REGION_NAME       CUSTOMER_NAME\n",
-       "0         ASIA  Customer#000102022\n",
-       "1         ASIA  Customer#000148750\n",
-       "2      AMERICA  Customer#000095257\n",
-       "3      AMERICA  Customer#000091630\n",
-       "4       EUROPE  Customer#000028180\n",
-       "5       EUROPE  Customer#000053809\n",
-       "6  MIDDLE EAST  Customer#000143500\n",
-       "7  MIDDLE EAST  Customer#000103834\n",
-       "8       AFRICA  Customer#000131113\n",
-       "9       AFRICA  Customer#000134380"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdebyM5f/H8Q+JlF22rMe+Z9/3ZKkQkexLSJQobSiVVJasUZJs2couspN9y87h2LeoSBItfPk9Prff3GbmzH7PmDPnvK7H4/v4Zuba7ud1z/zxPtdcd6K0adPeFgoCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxAkkIuCNuDVjwggggAACCCCAAAIIIIAAAggggAACCCCAgCFAwMuNgAACCCCAAAIIIIAAAggggAACCCCAAAIIRKgAAW+ELhzTRgABBBBAAAEEEEAAAQQQQAABBBBAAAEECHi5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQgVIOCN0IVj2ggggAACCCCAAAIIIIAAAggggAACCCCAAAEv9wACCCCAAAIIIIAAAggggAACCCCAAAIIIBChAgS8EbpwTBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEECDg5R5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiVICAN0IXjmkjgAACCCCAAAIIIIAAAggggAACCCCAAAIEvNwDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhAoQ8EbowjFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJd7AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFABAt4IXTimjQACCCCAAAIIIIAAAggggAACCCCAAAIIEPByDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAhEqQMAboQvHtBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJe7gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBCBQh4I3ThmDYCCCCAAAIIIIAAAggggAACCCCAAAIIIEDAyz2AAAIIIIAAAggggAACCCCAAAIIIIAAAghEqAABb4QuHNNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIeLkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCBUg4I3QhWPaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAS/3AAIIIIAAAggggAACCCCAAAIIIIAAAgggEKECBLwRunBMGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlHkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCJUgIA3QheOaSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgS83AMIIIAAAggggAACCCCAAAIIIIAAAggggECEChDwRujCMW0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQICAl3sAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIUAEC3ghdOKaNAAIIIIAAAggggAACCCCAAAIIIIAAAggQ8HIPIIAAAggggAACCCCAAAIIIIAAAggggAACESpAwBuhC8e0EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABAl7uAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEIFCHgjdOGYNgIIIIAAAggggAACCCCAAAIIIIAAAgggQMDLPYAAAggggAACCCCAAAIIIIAAAggggAACCESoAAFvhC4c00YAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQcQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEIFSDgjdCFY9oIIIAAAggggAACCCCAAAIIIIAAAggggAABL/cAAggggAACCCCAAAIIIIAAAggggAACCCAQoQIEvBG6cEwbAQQQQAABBBBAAAEEEEAAAQQQQAABBBAg4OUeQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEIlSAgDdCF45pI4AAAggggAACCCCAAAIIIIAAAggggAACBLzcAwgggAACCCCAAAIIIIAAAggggAACCCCAQIQKEPBG6MIxbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgICXewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhQAQLeCF04po0AAggggAACCCCAAAIIIIAAAggggAACCBDwcg8ggAACCCCAAAIIIIAAAggggAACCCCAAAIRKkDAG6ELx7QRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXu4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgQgUIeCN04Zg2AggggAACCCCAAAIIIIAAAggggAACCCBAwMs9gAACCCCAAAIIIIAAAggggAACCCCAAAIIRKgAAW+ELhzTRgABBBBAAAEEEEAAAQQQQAABBBBAAAEECHi5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQgVIOCN0IVj2ggggAACCCCAAAIIIIAAAggggAACCCCAAAEv9wACCCCAAAIIIIAAAggggAACCCCAAAIIIBChAgS8EbpwTBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEECDg5R5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiVICAN0IXjmkjgAACCCCAAAIIIIAAAggggAACCCCAAAIEvNwDCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhAoQ8EbowjFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJd7AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFABAt4IXTimjQACCCCAAAIIIIAAAggggAACCCCAAAIIEPByDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAhEqQMAboQvHtBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJe7gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBCBQh4I3ThmDYCCCCAAAIIIIAAAggggAACCCCAAAIIIEDAyz2AAAIIIIAAAggggAACCCCAAAIIIIAAAghEqAABb4QuHNNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIeLkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCBUg4I3QhWPaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAS/3AAIIIIAAAggggAACCCCAAAIIIIAAAgggEKECBLwRunBMGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlHkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCJUgIA3QheOaSOAAAIIIIAAAggggAACCCCAAAIIIIAAAgS8Lu6BRIkSSaFChYN6d9y6dUsOHYoOap9xubPUqVNLteo1JH+BgpI3bz7JniOn3L59W06eOCExhw/Jli2bZPu2rSG5hIcfziAZM2Z02/f/bv1P/vvvhly58of8fumSX3OoV/9JyfLII2abaVMny3///edXH1SO+wJp0qaVJs80kwIFChr3UsqUqeTSpYty/PgxOXz4kOzbu1eOHT0S9y+EGSKAAAIIIIAAAggggAACCCCAQLwXIOB1scSP16knX309OeiL37RJw5CFmkGfbAAdJk2aVHq//pY0atxEMmfO4rWHs2fPSO9XX5HNmzZ6retPhRWrfjSCZV/LX3/9JRs3rJPxX37hdX32Rx+VlClTml0/Vf9x2bdvr69DUc9HgTp160vmzJmN2vpHgXXr1vrY0lq16tVryqfDR0kGD38gsI1w5coVWTB/rgwfNsTvPxRYm6X11o+WKCmPPlrC6OjatWsyZ/a31julBwQQQAABBBBAAAEEEEAAAQQQCIsAAa8Ldg2Xxk+YFPQFie8Bb6XKVWTGrDl+u437fIx8NPADv9u5a7By9TrJl79AQP15mwsBb0Csfjc6ePi4PPTQQ0a7CxfOS/kyd8LIUJXkyZPLF+O/lho1agU0hO5Kb9b0afnj8uWA2t/rRnPnfy+ly5Q1h82ZLdO9ngLjIYAAAggggAACCCCAAAIIIIBAkAQIeF1AEvAGdne5C3j1eApb8JUqdWpJkiRJrAFaNH9GNm3cENjATq2sBLza1TdTJ0vft99wORcC3qAskddO7mXAqzv2Pxs7Th544AGX87p+/bpcv3ZN9NgGV/eurVHd2jUi5hgWAl6vtyAVEEAAAQQQQAABBBBAAAEEEIgYAQJeF0uVLFkyqVmrtsdFbNW6rXHGrK0sW7pE5s6Z7bHNyhXL5ObNmxFzc/g7UfuAV489mPDVOPlmymT59ddfHLp6uUcv6flqb4ew7PLly1KimO/HKniam3PA+0zjBvLbb7+ZTVKlTCkpU6WSXLmipGGjxlK+QkVJnDix+b6eqZsvd3aXQ7Ru006yZstmvjdqxDD5+++//aWivheBexXw6nEbO/ccFD1exL6cO3dW+r79pmzauF7+/fdf862sWbMZn/vH69Q1viPs7xsCXm5rBBBAAAEEEEAAAQQQQAABBBAIhwABb4Dqffv1ly5du5mthw7+REaPGh5gb/GjWYGCBWXqtFkydsxomfT1Vx4vSh9WNm781w51NFQNxgPLnAPe0iWKysWLdwNe54mVLVdevpuzQPTherZSo1olOXH8WPxYmAi8insV8E6ZNlP03F1b0QcBTp0ySd7p+5ZXNd3RO2LUGKlZ8zGjLgGvVzIqIIAAAggggAACCCCAAAIIIIBACAQIeANEDXbAqzsB9UxM3R2YLWt22b17p6xZvUpOnz4V4AzvNtOzTGs9VluqVK0uly5dlOXLlsruXTst92u1gy3bd0mWLI+Y3bRr3ULWrl1ttVvxN+DVATds3i7Zs+cwx36vfz+ZOGG85bnYOtD1rVathtR8rLakTp1GLl38TbZu3SIrli8VDRUDKaHoU+eROnVqqVK1mlSoWFnuu+8+417R4zP0oXj+Ft3xWqp0aSlcpKixe13Pqj148KAcP3bU43Xfi4BXg/3Zcxc6XNIbvXvJrJnT/brMpxs3kY8HfWoEvMH4vPozuK5VqdJlpXjxR40zi48dOyrRBw8YR0V4+mNJsI5oCOX3lu6urv14XalcpaocO3pU5s2dbZzH7K6kTZdO6tSpJ+XKV5Dz53+WbVu2yJYtmwL+o1GRIkWlWvWaUqBAQTl58oRs27ZFdmzfFnB//qyrrW6gn59AxqINAggggAACCCCAAAIIIIBA5AoQ8Aa4dsEKeKNy55Fvps+SbNlcHwmgodgPSxbLy91f8BiIzV+4REqULGVcjZ4ZWrhAbmnZqo281ecdI7BzLnou7uRJX8t77/YNUMB6sznzFkmZsuXMjgYOeF++HDfWcseBBLxr12+WqKjc5tjdunaSxd8vijWXmd/OlQoVKxmva4CWP8/dUNjVxDNmzCTTZnxrPPTNfoewra72sW3rFiPEspX+7/Qx1sZdCUWfOpYenfFSj55uz6LVuX74QX+Pc9N+UqVKJR98+Ik0aNjI7Zm1GmofPnRIpn0zWaZPm2oeXRJz7LRxXIKzlbsQ/Ml6teXAgf0B3TM7du6TDBkzmm3PnDktVSreffBYQJ3+fyOd//FTP5vX8f2ihfJSty4eu5y3YLGULFXaqKPHfhTKH+Wyvvbd/aVX5MXuL0uKFCnc9qkhp4ai474Ya56BvXT5GilYqJDPvp+PHS2DPh4Ya4xQfm/pGeiDhw6XtGnTxhr32rVr8slHA2TK5InGexowvz/gI2narLk8+OCDLr/n9PNkq+9tTTVQnTptpuTOk9fl51Xb6/3WuuWz8vulSy67y5c/v6xYtc58b+yYUTL4k49EH+TXo+erUqlyVcmTJ6+xdnpf6x9Oqla6+z1o5fPj7fp4HwEEEEAAAQQQQAABBBBAIH4KEPAGuK7BCHg7PN9Z3u3/gcM5nu6m89uvv0qzpk+7PTbAOdQ8EnPYCBW9Fd2Z2fK5pgHvIvXWv6f3V6/dIHny5jOrtG/bStasXmmlS6NtIAFvdMwJh4DI3bEOi5eulKJFixnjaDiTK3tmt/Nt/lxLGfjxYLn//vv9uiYNg8Z8NtJlm1D0mS59epkxc44R/PlSNOBq3PAJh7Npbe0KFy4ii5Ys9/gwMucxPnj/XZkwfpzx8onT5336PNj6aNqkoWzfttWXaTvU0RBu5er1Dq81alA/aDvbNXjUa7EV3ZmuO9Q9lRWrfpT8Be6cQ61/2MmTK2us6no++KYtP8nDGTL4fM2bN22U555tYtRfv2mb5MiR0+e2elxFvz5vOtQP1feWfp50rnqWt6ei9To/394423vajO9Ed/p6K199+YUM+KC/x2rtO3aSd95936d798aNG/LWG6/J7O9mxepTd1PrZ8BWNFw+c/q0vP7m27HOetY6esaz7Q9FVj8/3hx4HwEEEEAAAQQQQAABBBBAIH4KEPAGuK5WA94uL3STvu/EDhz++ecf+evqVdHQzf4BTjpNDRVKlygiV65ciTVr51DTn8uaOWOavPn6q/40CUpd3a2pgZWtlCheSC7//rvlvv0NeCdOmSa17B6qp4GhBoeuiq8B7+N16slXX0922YfusNbQ113w6y7gDUWfuqtQHzLmvPtR77HzP/8sSZPeL5kyZzF+/m9fFsyfJz1e6urwmgZtm7ftihW4aSD3xx9/GDsYH3jggVgmVgJefYCe/mze3/Lm232lW/ceZjM9b1nPXQ5WCVXAO3/RD1Ly/3fq28/16tWrxj9dhZ32Ae+6jVslZ85cPl+mc8AbV763bDu6Xe2Kd3VxGpgXLZTX7QMR3+77jnR98SWHpvp9qyGyPgAyY8aMkiFDRoddvdpnmVLFYn1nOQe8+msJ5+9y+4FsAW8wPj8+LywVEUAAAQQQQAABBBBAAAEE4pUAAW+Ay2kl4NWfoO+PPuoQburZnY0bPunwMDD9ifvwkWMcgsBVK5dLx/ZtYs3aXcCr4c6yZT/I0iWLjYC4Xv0npE+//g6Bnf70Xn8OroHFvSqdX3hR+r3znjmc/vRaj5UIRnG2eOXlF+X3S3eD45SpUsrDD2cwdks+1aCRpEmTxhx2186fjHDXnYUvAa+GOXv2HzaOKrAVDe7f6N3TOPbB1rcenaEOzz3XyuGoAFcBbyj61LmN/WK8PPnU3TD7l18uyPPt28i+fXsdlkLn+dbb/czdjRqwVatc3uHM2Q8/GiRt2rY322k49ubrr8naNatEQy4tGhRXrVbD+Km6nnGqxT7g1eMnNPRfuWa9GQbrT+EbPlUv1q1h+3l7IPeMHmliOw5B269csUye79A2kK5ctglFwOt8ZrB+nt/t97Z8v2iB/Pnnn8Y8bGfidu7SVfSoAw1A7QNevedSpUot4ydMlkKFC5tzd3c0hd4PtrN87+X3ln4OFy1aIAvmzTXuufpPPuXx1w4/7dguixcvMo6keDD5g8Y9raGtfQA88euvXB5Jo98F23fuNUNYva++mTrZeNCe/dEgmTNnMY5vsO2yVrwN69dJqxbNHO4B54DX+QbR74LTp07KjZs3JUOGDMb3cqXypSUYn5+g3cB0hAACCCCAAAIIIIAAAgggEFECBLwBLpeVgHfIpyPk2eZ3f669d+8eafBEHZcz0bN59XxY+92etWtVlSMxMQ71nUPNU6dOyotdnnd5Pqk+jOjH9VsczuYdPWq4DB38SYAa/jXTnWpbd+xxCJnHfT5GPhr4gX8duakd6G5mPQuzepUKHoNuXwLejz4ZIq1a3w0L9XiNx2pWcbnzWi+h/hNPyRdfTjCvxlXAG4o+bWeF2kIwfYBV+TIl3K5B23YdZMDAu/fIuh/XSptWzc36y1asdTjmQXdM2naWuupUz4z+eNBQGTZ0sPGwOfsS6oesOZ+5HOz7PxQBrx4f0KnL3V3T3h4Ip8HlkE+Hy6mTJ0UfGmhfAnnI2r343tKd3t1f7GwEp85FH2Y3cvTnDi/rjv/Ondq7PKZD/9igoamt7Nq1U55uUD9Wv85ngevOdN2h7q7oH2/s/yjk/MsDdwGv/nGu79tvGg+Ac1WC+fkJyhcpnSCAAAIIIIAAAggggAACCESMAAFvgEtlJeA9euKsQ2BbrUoFOXXyhNuZOAcrrs7ztA813Z3faT+A8w5a3UFs/6CfAFl8auYcZOgOQQ0D9afKwSiBBrw6tu401V2DPV/p7nIqvgS89uGkdtKi+TOiZx27K74EvKHo0z7k052K1atW9Hgf6vx37ztkPvzq3Lmzxs5DW9l7IMbhjwZ6P+l9FUgJdcD70679DufY6pmuy5f9EMhUXbYJRcCr581WqVrNHE//IKPBdCAlkIA31N9b+tnLnfMRt+eB2x5cZzvuwP7sWlcGuvNX52z7A4YGqxXKlnSoqn9A27hlh/mafk718+qp6MMr9Q8TtqK/qNDw1lacA17dXd2pY1vZumWzx36D+fkJ5J6gDQIIIIAAAggggAACCCCAQOQKEPAGuHaBBrz6s/19B4+Yox48eEDq16nlcRa641Xb2IIKV2GsvwGvhiRHjp8xf3KvIUSxwncfeBYgi9dmI0aNlcZNHAOUTh3bxdrB6bUjDxWsBLy2bo8eiZHHH6tuHi1ge91bwOsc7OlOaj3KwFPxFvCGok+dz649B42znrXo7uXKFcp4ZbcPBvWn5gXy3n1gl/P5rt6Ou/A0WKgDXv082R+h4WpXvFcMDxVCEfAOGjJMnmvRyhxVz0mu81h10Z3X/hZ/A9648r21e2+06C8QtHgLeLWO/Tq7OgamabPm8unwUSafPghP/4DmqegxInqkg62MHPGpsQvdVlw9ZE2Pe/BWgvn58TYW7yOAAAIIIIAAAggggAACCMQvAQLeANcz0IC3evWaMmXaTHNUfQr7a73uPuzJ3XT0zF7bA5RcBRX+Brw6jv0uRt09F5UjS4AavjVzPmNSWzk/xMm3njzX8uUha3oWbJo0aSVT5szSsOHTxlm8GTJmdOjY1dy8Bbx67MCCRXd3gi7+fqF069rZ44S9Bbyh6FMndOzkOYczdS9dvOiV3/nhf7myZzZ3XGpQpoGZfdHzRXfv2ik/rl1jhPiHDkV7HUMrhDrg3bFzn8N6e/tZvk+TtqsUioC3Zq3aMmnKNIep6M5r/WOE+q5atUK2bN4U648Srubub8AbV763tmzfJVmyPGJcku78z5c7u8elsf+Oc/6DhDZ0/k66+NtvPi31wxkymPWWLV0iXTp1MP8daMAbzM+PTxdBJQQQQAABBBBAAAEEEEAAgXgjQMAb4FIGGvC+3KOX9H7j7m6uIYM+ls9Gj/A6C/0Zsf6cWIuGOhqs2ZdAAt5Va9ZL3nz5zW4K5svl9inzXifopYLz+aFa3ZfwM5BxfQl4nfvV3dF6FmfpMmXNtzT01qMjNFC3FW8B7wtdu0uffu+a9UeNHCafDrl7Dqir6/EW8IaiT90FqbshrZbiRfKbZwtraK5HOOjDuNwVNf3553OyYP5c0XOXdReqqxLqgNf5DN6JE8bHOqfWik0oAl6dj/Nn1nmO+t3wx+XLsnbNahk9eoQcO3r31wL2df0NeOPK95b9LldfAt5NW3+SrFmzGZfuKuD9bs4CKVe+gpWlNkL15s0am30EGvAG8/Nj6YJojAACCCCAAAIIIIAAAgggEHECBLwBLlmgAe/QYSOl2bPPmaP27NHdePK7t7J67QbJk/fuEQp6nIIeq2ArgQS8K1b96PBEePuwztt8/HlfH8ylD+iyL2vWrJL2bVr6043PdQMJeG2dHzh0TFKkSGGO1b5tK1mzeqX5b28Br/O16k+zp0ye6HHu3gLeUPRZrVoNmTp9ls+m7io634dRufPI3HmLzKMfPA2gZ0X3eet1mTVzeqxqoQ545y9cIiVL3T0/2JezV/3BClXAmyxZMvl2zgIpUcLxLFl3c/t21gx5/bWesd72N+CNK99b9sF8MALe9Zu2SY4cd48Z8WeNbXWd751AA17tL1ifn0CugzYIIIAAAggggAACCCCAAAKRK0DAG+DaBRrw9ny1t/R69XVz1MGffCRjPhvpdRYbNm+X7NlzmPXsfxqvLwYS8NrvbnO1K9jrpHyo8OVXE6VuvSccai5auEBe6tbFh9aBVbES8C5ZtkqKFClqDux8vqa3gPf5zi/Iu/0/MNuPHTNKBn080OOFeAt4Q9GnhloabtnKzp92yPMd2/oFrrtxdbeoq/LkUw3kxe49JE+evPLggw967LdVi2ayYf06hzqhDnjf7vuOdH3xJXNMPce2fJkSfl2/p8rOAe+PP66Rtq3u/mHHVVv7P7h4e1Ci3qNv9uknJUqUcniwnat+XR014m/AG1e+t4Id8C5aslw0kLUVfeDl1at3/3Dmyw3x19WrxnERtmIl4LX1YfXz48u8qYMAAggggAACCCCAAAIIIBB/BAh4A1zLQAPeWo89LhMnf2OOGsgZvNevX5dC+aMcZh5IwGsfoulP5XUHb7CKHnmgIVKp0o4P7pr49Vfy3rt9gzWMy36sBLzOP9n2N+CtWKmyzPx2rjkvX8JsbwFvKPrUCZ48c8F8cN/58z9LhbK+7Qr1d/EefjiDPF6nrtSoWUvKV6gkadOmdeji3LmzUqn83d20+qb9vfnrr79I2VLF/R3WY/18+fPLytXrHep0bN9GVq1cHpRxnAPeHdu3yTONG3js25+A176j5MmTS/UataRmrcekarXq5pEEtjr6x5u8UdlEQ2Nb8TfgjSvfW8EOeJ13Jnd+vr0sX3b3DO1AboZgBLz24wby+Qlk3rRBAAEEEEAAAQQQQAABBBCIXAEC3gDXLtCAN03atLJn3yFz1IMHD0j9OrU8zkLPZtSjAzQ01XL27BmpXMExOPU34NXdwLor2FYORUdL3cdrBKjh2EwfBqc746Kicju84etuZauTsBLw2p91rPPQXZe6+9JWvO3gTZUqlew7ePfc08uXL0uJYgU9XpK3gDcUfeqE9uw/LGnSpDHmpuFfgbw5HUJAq+vgrn2btu2Nh1vZiqvdqvYB7++XLknJRwsHfTr2Dy7Uzv/44w9jrTQQ9bfoucP2uzj1s6oBuj+fr0ADXue5Fi5cxPj8JUmSxHxLw2UNmW3F34A3rnxvBTvgdb4Xv5k6Wfq+/Ya/y+9QP9gBr/NkfPn8WLoAGiOAAAIIIIAAAggggAACCEScAAFvgEsWaMCrwx07ec4hfNGfBZ86edlNyssAACAASURBVMLtTAYNGSbPtWhlvr9xw3pp+VxTh/r+BrwzZs2RSpWr3A18Zn8nvXre/cl6gCzGeZbf/7DC4WfjGpi91quHzJn9baDd+tUu0IBXdxtr8GUL0nXeuXM+InoUga14C3i1Xsyx06JnpdpKh3atZfWqFW6vYcSosdK4yTPm+66C8FD0+cPy1aJhoK3ozkXdwRhoUTdfw1HncDVntkwOw+7ac9A8x9fVjvVA52jf7pWer8mrvR3DvEkTJ0j/d/r41b0+BE+PfHj8sWpyJCbGbHv0xFm5//77jX9fvXrVeGCfp+LvZ9hTX7O+mycVKlYyq+iRKLqb3Fa+njRVHqtdx/y37qDWndSeSlz43gp2wOu8k1s/61UqlvVq4ckp0IA3mJ8fv25gKiOAAAIIIIAAAggggAACCES8AAFvgEtoJeAd+8V4efKphubIu3fvkkZP1XM5k8yZsxg7bW1BkVZ6qv7jsm/fXof6/oRDTzd5RkaOGmu21x2UpUsWdXueqq9EGhhP+Wamw1x1V2OL5s847B70tb9A6wUS8JavUFG+mf6t6E5MW/nllwtSrvTd8zn1dV8C3v7vDZCOne6eMayhUY+XujoEbNrX042byPsDPjZ30drGdRXwhqLPmrVqy6Qp0xyYdZ4L5s/zSK87tMd8MV4yZMjosPv88NFTEn3wgLzSo7vHP1ho5/a7h12d/7xsxVopWKiQOY/atao6hKeB3hv27TRQ06DZ/qF6+r7udO3QrpXDQwxdjacPPRw2YrT5wLO6tWvIoUPRZlX7kFpfbNqkoWzftjVWVxkzZhI9q9r+oW+udjVrIJ8+fXp547Vesnbtao8Eei/rcQ224rwTvU/fd+WFF7ub7/tyVnS4v7d0ssEOeLXPdRu3Ss6cuUyL06dPSe2aVeXff//1aKw77/WIh3ZtWjh8vwUa8Abz8xOMzwd9IIAAAggggAACCCCAAAIIRI4AAW+Aa2Ul4NUjFzTgsg9tjx87Ko0a1HcIlWrUqCXjv57sEDo6P7HdNn3nUFOPXJg8aYLMmztb/v77b6PaoyVKSrfuL0u9+k86XPW4z8fIRwPvPhgsQBKH0M7Whz5gTM939bVs3rRR9IFXVoqzxVtvvCZ6VIKt6JmlGk6mfzi9PPJINqleo2asB1VpKPtkvdqiR2jYF18CXv1pfHTMCYd10z7++ecf0fNkU6ZIKfqTd9tOYedrdRXwhqJPHdc5CNTX9u7dIy91e8EhpM2S5RGp/XgdqVO3vlSpWk30jFnno0JsO1Y1sF2zZpWMGT1Sftqx3WFXr4bDoz77XPRMV1txdUzJ+AmTjLFs5fLvv0u9OrXMeyNd+vTSokVrmTplotcg1tO9pJ+JBYt+iLUWGu5N+GqcrF2z2ghlbbu49biMZs1bSOMmTaVYMcdzgZ0DXudjEG7cuCG9Xukuy5ctlf/973+GQYOGT8tTDRoanvbFVcBrf4TDkZjDMnjQx7J+3Vrz863t9Z7q/tIr8vqbb5vd6bXo8Rv2u6td/ZGnY7vW5nEk+oeOps2ay/59e437QUuov7e8PVhO5xCKgDcqdx5Z8+NGh3tAzYYO/kS+nvCleWyJrpH+Eat69ZqifhrMa2nXuoVD4B5owBvMz4+V70/aIoAAAggggAACCCCAAAIIRJ4AAW+Aa2Yl4NUhX3v9TenxyquxRteHnf3zz9+SJk1ah5/5a0UNmfRhUxcv/harnXOoaV9B22nw4ypQ1OCzZPFCPv+03hPX3gMxsYJSf3l92UnorU9PFt7a2t7XIyX0AXjOxZeAV9u0aNlaPh401G2I62ke7s4qDkWfGtrt2hsd616z3W96tMCDDz7o8McI29zdBbz216ahot7Tv1+6KClSpjSCdfv7UN/X40b0Dxf2RY+O0B2rzkXvZf2f7XxZd7tifV1nrfdM02eNnZjOIat9Hxr46R9kPNVxDnhdPcjN13l5C3jt+7l27ZrxhwMNZTV0tP/DkdZz9QccvQ4911vX1vm7wt536pRJ0q/Pm2aVUH5vhSvg1Ytz3iFvb6J/mNFwXv844aoEO+ANxufH1/uMeggggAACCCCAAAIIIIAAAvFDgIA3wHW0GvDqsL3feEteermnTyHgn3/+Ka1bPit7du9yOeNAQk3d5fts00ZGABeMEh8C3hMnjsvbb/YW3Unsqvga8GrbEiVLyfSZs42dj+6KBpvz582RwUOHm1Ve6dFN5s+d47JJKPrMmjWbfDlhkhQtWsyv20CtalStaLY5cvxMrF3LnjrUcFetZ0z/xmW1yd/MEN3F7qkEI+DV/osUKSrTZ82JdVyGLyAaiK5auVxe7t7VYTettnXeieyuP32QXOL77nN46F2eXFkdqjufmezL3L5ftEC6v3j3uBD7Nm3bdZABAz/x2I1zwBvK761wBrx6XV1e6GbsfLY/psUX4+eebeLwfRHoDt5gf358mTt1EEAAAQQQQAABBBBAAAEE4ocAAW+A6/jGW32Mn0LbykcffiDjvhjjd28aBkyeOsN8oJRzBxqCbVi/Tjq2by16nq274hzwrli+VGrUfMzlzkvd8afHN+jxCcEsu/cdkrRp01rqcuSIT2XY0MGW+li6fI0UKlzYax9qq//TXarHjx+T4UMHmz9Rd9d4/sIl5lmpGuxF5cjicRwNdxs2aiyVKleVYsWKyX1JksjRo0eMoH7ViuXGWcoaLPV9p7/Zj7fzZkPRpw7eoGEjGfDhJ5I2XTq316ReejzA9OnfyLSpkx3uSd092qPnq8axA2nSpPHYh97TenSG7gL2VPSs2M4vvOh252yDJ+qYRwh4XXAfKrRs1Ua6v/yKsRPWU9CnDvpQsu9mzZTxX34u+plyV/RBbrpb39UOeg01p06eKO/172fsWLY99E53jOaNyubQpc7n+U4vSOu27SRbtuwer+bY0SPSt8+bbv9QYWusaz546IhYO3lt77vbUR+s7y37z6qra3a+yNVrN4iefaxFd1Xnz5PDo8P6TduMBz9q0TUqXCC3x/q6S/ezz7+UKlWqOTwI07mRfmesWa3HkIxwOHdZ6xUsWEiWrVxrNvnqyy9kwAd3P9/uJhCKz48PtzxVEEAAAQQQQAABBBBAAAEE4oEAAW8cWUQ921PPgi1foZKkTp1GTpw4JuvX/Wg8vMf+7Ex303X1kDX9GbbuTCxUuIhE5c4tMYcPGzsNdTcwJe4I6PEAzZ59zpxQruyZfVpzT1dgpU8NIgsUKChly5U37p2/r183ziLev3+vcQ/5cj9qCF24SFEpWqy40ZeWmJjDxkPY9FxXDch8LXocQ/FHS0jpMmUlXbp08ssvv0jM4UOyZfMm82xcX/vyp56e1axjli5dVqKicssfV/6Qn8+dk8OHomXdurU+OdjG09BcP99ly5Y3Pt/ah/4Rxv6hbP7MTT/bhQoVNnz1/1OmSiUnjh+X6OiDsm/vHuPIBn+KHidRpkw5yZEzp1z+/bKcPHlCNm/a4HWdrH5v+TPHe103derUUrpMOSlZqpRkypTZ8D14YL/s2bvb8gMpvV1LMD8/3sbifQQQQAABBBBAAAEEEEAAgcgXIOCN/DU0rsBVwBtPLi1eX4aGqXoWqu0YBz3vUx+IZaWEok8r86EtAggggAACCCCAAAIIIIAAAggggEDoBAh4Q2d7T3sm4L2n3F4H092vjzzyiCxcMN/tTk/9yf2kKdOlcpWqZn/Ll/0gnZ9v77L/UPTp9UKogAACCCCAAAIIIIAAAggggAACCCAQpwUIeOP08vg+OQJe363uRc2xX4yXJ59qaBwhcPLEcdEHkh05EiPHjx2TLI88Ypy1WqVqdYcHsOkZpCWLF3L7s/hQ9HkvLBgDAQQQQAABBBBAAAEEEEAAAQQQQCB0AgS8obO9pz0T8N5Tbq+D2cJYrxXtKnh7wFwo+vRnftRFAAEEEEAAAQQQQAABBBBAAAEEEIh7AgS8cW9NApoRAW9AbCFr5E8Ye+3aNenzVm+ZP2+ux/mEos+QAdAxAggggAACCCCAAAIIIIAAAggggMA9ESDgvSfMoR9k8jczpEKFSsZAV//8U8qUKhb6QRnBrUDx4o9Kh46dpUTJkpI5yyPywAMPSOLEiY36N2/eNNbowoULsmPHNnnv3b7Ga95KKPr0NibvI4AAAggggAACCCCAAAIIIIAAAgjEbQEC3ri9PswungkkSZLEpzDXn8sORZ/+jE9dBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBMInQMAbPntGRgABBBBAAAEEEEAAAQQQQAABBBBAAAEELAkQ8FriozECCCCAAAIIIIAAAggggAACCCCAAAIIIBA+AQLe8NkzMgIIIIAAAggggAACCCCAAAIIIIAAAgggYEmAgNcSH40RQAABBBBAAAEEEEAAAQQQQAABBBBAAIHwCRDwhs+ekRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUsCBLyW+GiMAAIIIIAAAggggAACCCCAAAIIIIAAAgiET4CAN3z2jIwAAggggAACCCCAAAIIIIAAAggggAACCFgSIOC1xEdjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfAIEvOGzZ2QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCSAAGvJT4aI4AAAggggAACCCCAAAIIIIAAAggggAAC4RMg4A2fPSMjgAACCCCAAAIIIIAAAggggAACCCCAAAKWBAh4LfHRGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJ8AAW/47BkZAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwJEDAa4mPxggggAACCCCAAAIIIIAAAggggAACCCCAQPgECHjDZ8/ICCCAAAIIIIAAAggggAACCCCAAAIIIICAJQECXkt8NEYAAQQQQAABBBBAAAEEEEAAAQT8E+jwfGfp1PkFl43++/dfuf7333Li+HEZ/+Xnsmf3Lv86D1PtJEmSyN4DMZIoUSJjBu3btpStWzaHaTYMi0DCEiDgTVjrzdUigAACCCCAAAIIIIAAAggggECYBT4dPkqaNmvu0ywu/vabtGrRTA4divapfrgqJUuWTGKOnTaH79rleflhyffhmg7jIpCgBAh4E9Ryc7EIIIAAAggggAACCCCAAAIIIBBuAX8CXp3rf//9J0/Ue0yOxMSEe+puxyfgjbNLw8QSgAABbwJYZC4RAQQQQAABBBBAAAEEEEAAAQTijoB9wHvw4AGpX6eWObl06dNLmTLl5JVer0nRosXM18+dOyuVypeOOxfhYiaVKleRJPclMd7ZunWz/Pvvv3F6vkwOgfgiQMAbX1aS60AAAQQQQAABBBBAAAEEEEAAgYgQ8BTw2l/AN9O/larVqhsv3b59W3Jlz+zX9SVOnFhu3brlVxv7ynqu7s2bNwNu70tDq3O0HyOYffkyd+ogEFcECHjjykowDwQQQAABBBBAAAEEEEAAAQQQSBACvga8OXNFyboNW0yTZ5s+7fHBZdmz55CPPhkiBQoWlPTpHxYNaPV4h0uXLsqqlSukX583jaDYU2nXvqO0adtecuTMJXrsgpbr16/Lxg3r5NTJk1KhUmXjtaGDP5E1q1c6dDVxyjTJmDGTMUaTRk8aY7sqL/foJY2ebixZs2WXBx980AihL128KDExh+WN3r3k7NkzLts1aNhIunZ72Xhv/rw5Mn7c59KzV2/R17PnyGnM98aNG/Lrr79I/3f6yorlSxPE/cRFIkDAyz2AAAIIIIAAAggggAACCCCAAAII3EMBXwNeDWiPnTxnzqxTx3ZuQ8vnO78g/d55T3QXq7vy+6VL8lzzJnL40KFYVVKlSiVTp38rJUqU9Eli+LAhMmLYUIe6R46fkaRJkxqvFS+SX65cueLwfpq0aWXWt/OkYKFCbsfQHcPv9H1Lpk+bGqvO+wM+kvYdnjdeP37sqKRImdIIlN2VsWNGyaCPB/p0PVRCIJIFCHgjefWYOwIIIIAAAggggAACCCCAAAIIRJyArwFvmbLlZM68Reb1lS1V3Nid6lzeeKuPdH/pFfPlv/76S47EHJYrf16RnDlySlTuPOZ7v/xyQcqVfjRWH2vXb5aoqNzm67ZdtTf/d1PSpk0nDzzwgEObQALeXXsOip4xbCtXr16Vc2fPSuo0qSVTpswO4fRrvXrI7O9mOYxpH/A6X4DuFtZA3D7g1msoVaKIXP7994i7R5gwAv4IEPD6o0VdBBBAAAEEEEAAAQQQQAABBBBAwKKArwHv4qUrzQetXbt2TQoXuBvA2qaggelPu/abwebUKZOMHbD2RzGULVdeZsyaI/fff7/R7IP335UJ48eZV6HHMnzw4cfmv1etXC66W9j+/N7yFSrKF+MmmAGtvwHvSy/3lNfffNsYQ+f26ZBBMnrUcHPMLFkekQXf/2AEvVo0/C1WOJ/DdTgHvNrPt7NmyJjPRsmpkyeMdm3bdTCuJVGiRMa/1UOPpqAgEJ8FCHjj8+pybQgggAACCCCAAAIIIIAAAgggEOcEvAW8epbu8JGfiQaztjJk0Mfy2egRsa5Fg9tKlasYr69du1ratW7h8nr1rNper71uvKe7e2vXqmbWi445YZyFq2X9uh+ldctnXfYxf+ESKVmqtPGevwFvzLHT5pm+M2dMkzdffzXWGA899JDsPRBj7MTVMuazkTL4k4/MevYB78XffpNGDeq7PK933oLFUqp0GaPdtq1bpNkzjeLcPcCEEAimAAFvMDXpCwEEEEAAAQQQQAABBBBAAAEEEPAiYB/w6pmz58//bLR4INkD8lCKFGbYautGjyrQIwtclYOHj4sGo1oeLVZQ/rh82WU9raN1tejZuHpGrpa06dLJ7r3Rxn/rjlg9vsHVMRD6fqABb778+WXl6vXGGLorWMfWHbquymdjvzQemqZl//598mS92mY1+4B33Y9rpU2r5i770OMq9NgKLWfOnJYqFctyTyIQrwUIeOP18nJxCCCAAAIIIIAAAggggAACCCAQ1wTsA15Pc7t+/bp0bN9aNm/a6LKaHkNw8swF871Tp056vNScOXMZ72vIGpUji/HfTz7VQMZ+8ZXx33pWYehj/wAAIABJREFUbYni7h+AFmjA+2zzFjLk0zu7j3/79VcpU6qY23k+3eQZGTlqrPG+7tItXbKoWdfXgLdxk6YyYtQYo527M4fj2j3BfBCwIkDAa0WPtggggAACCCCAAAIIIIAAAggggICfAs4Br/1Zt/YPCbtw4bxULFfK4Sxc+6GKFCkqS5at8nP0O9VzZstk/P87774vnbp0Nf7b+egG544DDXjtg9lD0dFS9/Eabudsf003btyQvFHZzLq+Bry1HntcJk7+xmhHwBvQ7UGjCBMg4I2wBWO6CCCAAAIIIIAAAggggAACCCAQ2QKezuD9ZPCn0qJla/MCd+38SZ5u+ITLC36sdh35etJU8z0NaH0pN27elPp1ahlVP/xokLRp29747+iDB6VenZpuu7A/23b4p0NkxPChDnWPHD8jSZMmNV7TYxj0KAgtI0aOkcbPNDX+e9eunfJ0g/pux8iZK0rWbdhivG+/01j/TcDry+pSJyEKEPAmxFXnmhFAAAEEEEAAAQQQQAABBBBAIGwC3h6yZh+k6iTdncHrfH5uruyZ/b6m9h07yfsfDDTa6Y7h8mVKuO0j0B28L3Z7Wd7q08/o9+zZM1K5wp0HoLkq9rtv9ZzeooXymtUIeP1eXhokEAEC3gSy0FwmAggggAACCCCAAAIIIIAAAgjEDQFvAW+SJElk09afJFOmu4HtRx9+IOO+uHOurH05dvKcaH0tuiv34MEDfl1k2XLlZfbchUYb3TFbMF8u+ffff132EWjAW7FSZZn57Vyjz3/++UcK5M3pdo6v9n5DXun5mvH+iRPHpUbVimZdAl6/lpbKCUiAgDcBLTaXigACCCCAAAIIIIAAAggggEBcE7h9+7bow8JCVULdfyDz9hbwap8PP5xBNm7ZIQ888IA5RKeO7WTF8qUOQ27fuVcyZrxznu7xY0elZvXKXqeULFkyM8RNnjy5RMecMNfg66++lPffeydWH1mzZpPFP6wQ3TWsZfiwITJimG9HNDz00ENy8PBxs883eveSWTOnu5zn7r3R5hirVi6Xju3bmPUIeL0uLRUSqAABbwJdeC4bAQQQQAABBBBAAAEEEEAAgbgg8FDSxFK3aCbJm+GhkExn+cFfZdfpKyENkf2duC8Br/ZZvPijsuD7pWJ78NrNmzflyXq15dChaHPIps2ai/ZnK4sWLpCePbqJ1nUu+fLnl+Ejx0iqVKmkWuXy5ttffT1ZHq9Tz/y3HgkxftzncubMaalarYY0erqx1H/iKQdDfwJe7fi7OQukXPkKxhh69ELd2jXk3LmzDlPs26+/dOnazXhNg/nqVSvKqZMnzDoEvP7eadRPKAIEvAllpblOBBBAAAEEEEAAAQQQQAABBOKgQMpk98mXbUtI3SIZQzK77tP2yvRtZyMy4FWQxk2ayohRd49muH79ulSuWEZ+v3TJ9Fq8dKUULVrM/LfWWbN6pRw8cEAefOhBKVu2vOTNm0/SpU9v1NHgtkrFsmZ9ff2nXfvNINmXhfA34M2cOYts3rbTHOPGjRvGLl59iFz69A9Lo8ZNpEiRoubQy5YukS6dOjhMhYDXl5WhTkIUIOBNiKvONSOAAAIIIIAAAggggAACCCAQRwQIeA8YZ+d6KvY7W7XeL79ckErlS5u7dPU4h9lzF0hU7jw+rapzwKuNdLfwjG/nSooUKVz2oWPqrmA9qkHLwAHvy5fjxjrUPXL8jCRNmtR4rXiR/HLlyhWH9zs831n6vzfAa9iuZ+82eKKOsdPXvhDw+rS8VEqAAgS8CXDRuWQEEEAAAQQQQAABBBBAAAEE4opAQgx4Bw8dLs2fa2kswf79+4xjF7yVb6Z/K1WrVTerrV/3o7Ru+axDs5at2kiffv0lZcqULrvTnb3r162Vz0aNkL1798Sqo+1e7tFL9MFruXJFyZU/r8ixo0fkx7VrZMrkibJy9TrJl7+A0a5Vi2ayYf06hz5ijp0WPd9XS9FCeWMFtPq6HhMxY+YcyZAx9o5tPZZh0sQJ8t67fV3O/51335dOXboa761evVI6tG3lsl61ajVk6vRZxnvnz/8sFcqW9MbL+whEtAABb0QvH5NHAAEEEEAAAQQQQAABBBBAILIFEmLAG+oV0120j5YoKSVKlpJEkkiOHj0ie/fslosXf7M09N4DMZI6dWqjj2KF88mff/4ZcH9p0qaV6tVrSNGixY2dvut+XOMydA54ABoikIAECHgT0GJzqQgggAACCCCAAAIIIIAAAgjENQEC3ri2Iq7n06BhI/ls7JfGm3p+bt6oO0c1UBBAIPwCBLzhXwNmgAACCCCAAAIIIIAAAggggECCFSDgjRtLv3b9Zrl08aLMnzdHtmzZJEePHBE9MkEfjta5S1d5vvML5tm5U6dMkn593owbE2cWCCAgBLzcBAgggAACCCCAAAIIIIAAAgggEDYBAt6w0TsMfPjoKXnggQccXtOAN1GiRA6v6Tm+RQrmkVu3bsWNiTMLBBAg4OUeQAABBBBAAAEEEEAAAQQQQACB8AkQ8IbP3n5kVwGv88wORUfL8x3ayNmzZ+LGpJkFAggYAuzg5UZAAAEEEEAAAQQQQAABBBBAAIGwCRDwho3eYeCatWpLvfpPSPFHSxgPUnvwwYfk5o0bcuGXC3L82DH5Ycn3xv8oCCAQ9wQIeOPemjAjBBBAAAEEEEAAAQQQQAABBBKMAAFvgllqLhQBBEIkQMAbIli6RQABBBBAAAEEEEAAAQQQQAAB7wIEvN6NqIEAAgh4EiDg5f5AAAEEEEAAAQQQQAABBBBAAIGwCRDwho2egRFAIJ4IEPDGk4XkMhBAAAEEEEAAAQQQQAABBBCIRAEC3khcNeaMAAJxSYCANy6tBnNBAAEEEEAAAQQQQAABBBBAIIEJEPAmsAXnchFAIOgCBLxBJ6VDBBBAAAEEEEAAAQQQQAABBBDwVYCA11cp6iGAAAKuBQh4uTMQQAABBBBAAAEEEEAAAQQQQCBsAgS8YaNnYAQQiCcCBLzxZCG5DAQQQAABBBBAAAEEEEAAAQQiUYCANxJXjTkjgEBcEiDgjUurwVwQQAABBBBAAAEEEEAAAQQQSGACBLwJbMG5XAQQCLoAAW/QSekQAQQQQAABBBBAAAEEEEAAAQR8FSDg9VWKeggggIBrAQJe7gwEEEAAAQQQQAABBBBAAAEEEAibAAFv8Ohv374dvM5c9JQoUaKQ9k/nCCAQmAABb2ButEIAAQQQQAABBBBAAAEEEEAAgSAIEPAGAVFENNxNmixNcDpz0cutWzfk9q2bcuvWfyEbg44RQCAwAQLewNxohQACCCCAAAIIIIAAAggggAACQRAg4A0C4v8HvDnztJQylUcEp0OnXo4d/lr27ugvtwl4Q+JLpwhYESDgtaJHWwQQQAABBBBAAAEEEEAAAQQQsCRAwGuJz2ysO3gJeINjSS8IRJoAAW+krRjzRQABBBBAAAEEEEAAAQQQQCAeCRDwBmcxCXj9d0yePLn8888/xvEWFAQiWYCAN5JXj7kjgAACCCCAAAIIIIAAAgggEOECBLzBWcCEFPCOHjNOKlasZMDdun1LHqtRRa5eveoVMnXq1PLhR4OlWvUakiJFCkmSJInR5saNG3L9+nU5d+6szJ3znUz/Zopcu3bN7O+9DwbKU081dNn/5s2b5OXuL7gdO9C5er0YKiBgJ0DAy+2AAAIIIIAAAggggAACCCCAAAJhEyDgDQ59Qgl4kyZNKoePnpLEiRObcKNGDpNPhwzyCNm+Yyfp/94Ah3buGty6dUuicmQx354xa45UqlzFZfWjR2LksZpVXb4X6FyDc0fQS0ISIOBNSKvNtSKAAAIIIIAAAggggAACCCAQxwQIeIOzIAkl4O3yQjfp+05/B7Tz53+WCmVLuoWsU7e+jJ8wyXz/33//lZiYw7J+3VpJmTKVFC5cRHLkyCkZMmY06+TMlsn87ypVq0mZsuWkZKnSUqNGLeP1Xbt2yto1q+RQdLQs/WGxy7EDmWtw7gZ6SWgCBLwJbcW5XgQQQAABBBBAAAEEEEAAAQTikAABb3AWI6EEvGvXb5aoqNzGubk//3xOsmbNZgBWrVROTp8+5RJz/aZtRoCrZeqUSdKvz5su65UqXUaGDR8lUbnziH3Aa6vc/LmWMnjocOOfY8eMkkEfD/S4eIHMNTh3A70kNAEC3oS24lwvAggggAACCCCAAAIIIIAAAnFIgIA3OIuREALejBkzyfadew2w/fv3yeJFC+XNt/sa/5793Sx5rVcPl5gnTp83jmbQs3bzRt0JhD2VggULyaFD0bGq+BPwBjpXb3PjfQRcCRDwcl8ggAACCCCAAAIIIIAAAggggEDYBAh4g0OfEALeAQM/kbbtOhhgr/Z8WZYsXiTRMSckUaJExkPWihbK6zHgVaNihfP59EA2Vx35E/AGOtfg3A30ktAECHgT2opzvQgggAACCCCAAAIIIIAAAgjEIQEC3uAsRkIIeHfvjZa06dIZO3Hz5c5uHNOweOlKKVq0mIH43LNNZPOmjbFAd+87JGnTpjVeX7F8qXTq2C4gdH8C3kDnGtDEaJTgBQh4E/wtAAACCCCAAAIIIIAAAggggAAC4RMg4A2OfXwPeIsVKy7f/7DCwNqwfp20atHM+O9nmj4rw0aMjvW6vaoe49Ct+93jGzQg1iMe9uzeZQTC+rC1a9eueV0IXwNeK3P1OgkqIOBCgICX2wIBBBBAAAEEEEAAAQQQQAABBMImQMAbHPr4HvCOnzBJ6tStb2C1aP6MbNq4wfhvPZ7hyPEzcv/99zvs7HVWnbdgsehD1NwVPeJhzepVMmTQR24f1uZrwGt1rsG5I+glIQkQ8Cak1eZaEUAAAQQQQAABBBBAAAEEEIhjAgS8wVmQ+B7wxhw7LcmSJZO//vpLihTM44A2feZsqVylqvHaG717yayZ012itmzVRjp36SpRufMYwbCroo4fDxwg474YE+ttXwPeYMw1OHcFvSQUAQLehLLSXCcCCCCAAAIIIIAAAggggAACcVCAgDc4ixKfA976TzwlX3w5wYDa+dMOef+9dxzQKlasLG/16We8dig6Wuo+XsMjatKkSaVChUpSoVIlKVu2vOTLX8A8o9fW8Im6j8mBA/sd+vEl4A32XINzd9BLfBcg4I3vK8z1IYAAAggggAACCCCAAAIIIBCHBQh4g7M48Tngnb9wiZQsVdonKHUoVjif6JEL/pTH69ST4SM/k5QpUxrNli/7QTo/397vgPdezNWf66JuwhAg4E0Y68xVIoAAAggggAACCCCAAAIIIBAnBQh4g7Ms8TXg1d22h4+eksSJE/sMNWrkMPl0yCCf69sqdn/pFXnjrT7GPw8ePCD169TyK+C9l3P1++JoEK8FCHjj9fJycQgggAACCCCAAAIIIIAAAgjEbQEC3uCsT3wNeF/o2l369HvXQFowf55MmviVS7BMmTKbxzicP/+zVChb0qinwXD5ChVl86aNXqErVqosM7+da9Tbvm2rNG3S0K+A1+pcvU6QCgi4ESDg5dZAAAEEEEAAAQQQQAABBBBAAIGwCRDwBoc+vga86zZulZw5cxlIZUsVl19//cUt2K49ByVd+vTG+1UrlZPTp09JliyPyJbtu+TY0SPyUrcXjJ257sq8BYulVOkyxttDBn0sn40e4VfAa3WuwbkT6CUhChDwJsRV55oRQAABBBBAAAEEEEAAAQQQiCMCBLzBWYj4GPBmzJhJtu/cawCdPXtGKle4E766KwMGfiJt23Uw3p47+zvp1fMlM+C1tdm7d49s27JZNm7cIFu3bJJ06dJL1WrVpfvLr0i2bNmNanp+b/kyj8q1a9eMfydPnlxSpkwljZs0NXcTT50ySUaNGCZ//33dqB+MuQbnTqCXhChAwJsQV51rRgABBBBAAAEEEEAAAQQQQCCOCBDwBmch4mPAax/YDv90iIwYPtQjVubMWWTrjt1mSFu0UF6xf80X6Rs3bkjDJ+s67PSdMWuOVKpcxWXzIzGHpXatahKMufoyP+og4EqAgJf7AgEEEEAAAQQQQAABBBBAAAEEwiZAwBsc+vgY8OruXd0Zq9dWrHA+Y6est7Jp60+SNWs2o1qDJ+qI7tgtUqSovNi9h9SoWUtSpkzpsoubN2/KksXfS5+3escaZ/rM2VK5SlWPAW+w5urt+ngfAQJe7gEEEEAAAQQQQAABBBBAAAEEEIhTAgS8wVmO+BjwBkfGsRc9bqFAwUJSoEBBSZ/+YTl+/Jjs/GmHx7N9QzEP+kQgmALs4A2mJn0hgAACCCCAAAIIIIAAAggggIBfAgS8fnG5rawBb7ZcjaV46feC06FTL6eOzZTofcPk9q3/QtI/nSKAQOACBLyB29ESAQQQQAABBBBAAAEEEEAAAQQsChDwWgT8/+Ya8CZJ8pBIotvB6dCpl1u3/ie3b/1PRPR/FAQQiEsCBLxxaTWYCwIIIIAAAggggAACCCCAAAIJTICAN4EtOJeLAAJBFyDgDTopHSKAAAIIIIAAAggggAACCCCAgK8CBLy+SlEPAQQQcC1AwMudgQACCCCAAAIIIIAAAggggAACYRMg4A0bPQMjgEA8ESDgjScLyWUggAACCCCAAAIIIIAAAgggEIkCBLyRuGrMGQEE4pIAAW9cWg3mggACCCCAAAIIIIAAAggggEACEyDgTWALzuUigEDQBQh4g05KhwgggAACCCCAAAIIIIAAAggg4KsAAa+vUtRDAAEEXAsQ8HJnIIAAAggggAACCCCAAAIIIIBA2AQIeMNGz8AIIBBPBAh448lCchkIIIAAAggggAACCCCAAAIIRKIAAW8krhpzRgCBuCRAwBuXVoO5IIAAAggggAACCCCAAAIIIJDABAh4E9iCc7kIIBB0AQLeoJPSIQIIIIAAAggggAACCCCAAAII+CpAwOurFPUQQAAB1wIEvNwZCCCAAAIIIIAAAggggAACCCAQNgEC3rDRMzACCMQTAQLeeLKQXAYCCCCAAAIIIIAAAggggAACkShAwBuJq8acEUAgLgkQ8Mal1WAuCCCAAAIIIIAAAggggAACCCQwAQLe4C347du3g9eZi54SJUoU0v7pHAEEAhMg4A3MjVYIIIAAAggggAACCCCAAAIIIBAEAQLeICCKiIa7qe+/Lziduejl5q3bcvP2bfkvtBlyyOZPxwjEZwEC3vi8ulwbAggggAACCCCAAAIIIIAAAnFcgIA3OAukAW+zR9LI4CJZg9OhUy9Tz/wuAw9fkP9C0judIoCAFQECXit6tEUAAQQQQAABBBBAAAEEEEAAAUsCBLyW+MzGBLzBcaQXBCJRgIA3EleNOSOAAAIIIIAAAggggAACCCAQTwQIeIOzkAS8wXFMSL0kT55c/v7774R0yfH2Wgl44+3ScmEIIIAAAggggAACCCCAAAIIxH0BAt7grFFCCnhHjxknFStWMuBu3b4lj9WoIlevXnULWf+Jp2TAhx+b7w/88H2ZN3e22/oFChaUadO/M99fMH+uDPigv/nvhx56SH5cv8XnhTt8+JC0atHMrD9/4RLJli27Q3u9jr+uXpU//vhDNmxYJ5+PGe0yfE2WLJls2LxdEonrB94906ShnDp5wuXcypYrL6++9oZE5c4tDz+cQe6//36j3j///COXL/8uep1jRo+UP//80+215cwVJXPmLjTf//77hfLeu319tqBiaAQIeEPjSq8IIIAAAggggAACCCCAAAIIIOCDAAGvD0g+VEkoAW/SpEnl8NFTkjhxYlNl1Mhh8umQQW6VurzQTfq+czegvfjbb1K6ZFG39WfPXSgahtrKhvXrHALaNGnTyp59h3xYlTtVfvv1VylTqphZf3/0UUmZMqXH9rdu3ZLer74ic2Z/61BP22l7d6VRg/qye9dOh7fVbPSYL6Re/Se9zlnvo8XfL5TuL3ZxWXf4iM+kSdO7YbWGwwXy5vTaLxVCK0DAG1pfekcAAQQQQAABBBBAAAEEEEAAAQ8CBLzBuT0SSsDrHNaq3vnzP0uFsiXdQrpq81K3LrJo4YJYbTJnziJbtu+SRInu7pD1FPBqwHnyhOsds7bOow8ekJ6vdDfHsgW8GuJu23pnJ7CGsGnSpJFcUbnN8FrXtEunDrJ82Q9mW53XKz1fE93A2617D9EdvdrPyBGfGnW+/upLhx24GoTv3HNQ0qZNa/ZxKDpa9u7dLYcORUvBgoWkaLHikidPXqMvLb/8ckHKlX7UpaercPqFzh1l6Q+Lg3Mj00tAAgS8AbHRCAEEEEAAAQQQQAABBBBAAAEEgiFAwBsMRZGEEvCuXb9ZoqJyG9f788/nJGvWbAZg1Url5PTpUy4xXQW8586dlUrlS8eq/+VXE6VuvSccXvcU8G7ftlWaNmno1yLaQtK//vpLihTM49BWg95Fi5dLwUKFjNd37fxJnm7oOB9bg917oyVtunTy77//Sv48OVzOYfDQ4dL8uZbGexpGv9y9q0NgbGuUJEkS+XT4aGn0dGP59ddfXAa8lSpXkRmz5hhNNCS2zXHnTzukcSPvu4P9QqKyXwIEvH5xURkBBBBAAAEEEEAAAQQQQAABBIIpQMAbHM2EEPBmzJhJtu/ca4Dt379PFi9aKG++fef819nfzZLXevVwiWkf8O7Yvk3KlC1n1GvXuoWsXbvabKNn62r4qrteNbi1HdNwLwNenYzupI05dtqYl6sQ2DZhbwFvVO48subHjeZu5Dq1q8vhQ56PltAdvU81bCRDB38Sy3LajO+kStVqxuu1a1WVBYuWiprpDmI9puG///4Lzs1ML34LEPD6TUYDBBBAAAEEEEAAAQQQQAABBBAIlgABb3AkE0LAO2DgJ9K2XQcD7NWeL8uSxYskOuaEEWDqQ9aKFsrrEtM+4G3ftpV8PWmqEeKeOH5MalS787A2LQM/Hiyt27QzdgfrrtkFi+4cjXCvA14d8+iJs8ZD0G7evCl5cmV1eV3eAt6vvp4sj9epZ7RdvWqFdGjXOuCbTY2PHD9jzMl2hrE+7K5ho6eNPj8c8J6MH/d5wP3T0JoAAa81P1ojgAACCCCAAAIIIIAAAggggIAFAQJeC3h2TRNCwGsLNG/cuCH5cmc3gtjFS1dK0aJ3HmD23LNNZPOmjbFA7QNePU6hQ8dO8uRTd45VeKZxA9FdvRr46sPb9IiEjRvWyxu9e8nGLTuMOvc64E2ePLkcOnLSGPvy5ctSolhBlzeJt4BXd+/mznMn9C5fpoRcuHA+4JutRcvW8sngO+f8TpwwXt7r30/y5c8vK1evN147ceK41KhaMeD+aWhNgIDXmh+tEUAAAQQQQAABBBBAAAEEEEDAggABrwU8u6bxPeAtVqy4fP/DCuOK7QPXZ5o+K8NGjI71ur2qc8B74vhx2bFrn7HzN/rgQalXp6b07NVber32utGsWpUK8r+bN30KeLW+7rL1VE6eOC6P1axqVvF0Bq9W+mb6t1K1WnWj/oL586THS11ddu8t4D1w6JikSJHCOEIhKkcWSzfashVrzTN3S5coKhcv/mb099Ou/fJwhgzGf9u/bmkwGvstQMDrNxkNEEAAAQQQQAABBBBAAAEEEEAgWAIEvMGRjO8B7/gJk6RO3foGVovmz8imjRuM/7Y/OsB+Z6+9qnPAq+fr2p8nW7d2DZk9b5GkTJlSdu3aKU83qC/ZsmX3OeD1toK//fqrlCl1Z5exFlvAqw9Ha9WimfFa5syZJXfuvNKqTVvJlCmz8dqff/4pVSqWkStXrrgcwlPAqy4nz1ww2v3xxx/yaNEC3qbp9v1UqVLJ3gMxhvWpUyelWuXyZt33Phho7IjWMmniBOn/Tp+Ax6Fh4AIEvIHb0RIBBBBAAAEEEEAAAQQQQAABBCwKEPBaBPz/5vE94NWHjunDx1w9dGz6zP9j7y7ArKr6PY7/QVJeaUFeSrq7u1E6FQnpUFDU18KkEelQFFFARRQJKSkRhu7uljAABZHu+/zX3HM8M3NmTu3h1Hfd5z7MnL3W2mt91h7vfX6zZu1ZUqly5A5ZPVphxnfTo6A6C3izP55DVq/daOpdvXrVvCxMS8N6dWTPnt1uB7wanq5ZvSrORTxy+JCMHRN5vIEWW8AbVyMNsDs82zrOF5fFFfDqURN6Zq4W25m53j5pr73RR17s/YppPnTIIPlkQuSOaS3p0z8q23buNV9fvHBBihct4O1taOeDAAGvD3g0RQABBBBAAAEEEEAAAQQQQAAB3wQIeH3zs7UO5YC3Xv2G8ulnX5ipbt+2Vfr3ey8KWoUKlaTP2++azw4eOCBP1Kke5bqzgFcrzFu4RIoXL2Gvq0Fs7ZpVzffu7uDV3cB6rq8nxVXAqy+MK1oorzlaIa7i6ogGWyge14va3Bn3pq075bHHIo94eLplU9Gdx45l6lfTJU2aNOaj+k/Ukn37IgNfyoMTIOB9cNbcCQEEEEAAAQQQQAABBBBAAAEEogkQ8FrzSIRywDt3/iIpUbKUW1DqUKRgHtGQ1FZiC3iLFi0mCxYts9dzPPrhQQS8165dkxpVK5r7J02WTBYtWW7OzNWyY/s2adq4fpxzdhXwrt+0TTJnzmL6KFYkv/x98aJbho6VHHc6u9N46ZJF0r1rJ3eqUsdCAQJeCzHpCgEEEEAAAQQQQAABBBBAAAEEPBMg4PXMK7baoRrw6lEDh46elIQJE7oNNW7sKBk5/EN7/dgCXq2wImKt5MqdR86cOS2Vype2t3kQAW/04yby5M0rS5atlESJEplxzJo5Q159pXes83YV8H47Y7ZUrFTZtP/4o7EybOgQtw1tFUeP+Uiat4w8J9idcuPGDcmXO7s7ValjoQABr4WYdIUAAggggAACCCCAAAIIIIAAAp4JEPB65hVb7VANeHs810vefvd9M+15c3+QqVM+d0qgLyazHePw+++/Sfky/x69EFfAmynTf6VI0WKyf99eE/KJ+M3IAAAgAElEQVTaij8CXr23vkhOXyhnK0MGDZCJn37sdM6uAt42bZ+VDz4cYdrqMQ2lShR2uYtXX6RWtlx52bRxg2m37+Axs6tYX2CnxzPEVoYNHyV58ka+yK1Ht86yZPGP1jzY9OKWAAGvW0xUQgABBBBAAAEEEEAAAQQQQACB+BAg4LVGNVQD3tXrNkn27I8bpDIli8q5c2djBduxa7+kTZfOXK9SsaycOnXSfB1XwBtbZ/4KeHU8L738qvzvtTfsQ+vauYP8tGxJjKG6Cni1QcSaDZIjR07TVj1aNG0Uq2G1ajVk/ISJcuPGdSlbqpjZ/au7gLXoS9/0CIvYSsunWsnI0ePMZXeOl7DmqacXmwABL88CAggggAACCCCAAAIIIIAAAgj4TYCA1xr6UAx4M2TIKFu27zZA0Y9QcKY2cPBQad8h8vzXObNmyisvv2C+js+AVwPnGd9Nj3MRfzlxwhy3YCu2l6xFP6LBsZPPPp8iTzwZeQav7r5t8GRtOXjwgPk+ffpHzZEVy1eukVSpUsmtW7fsx0tED8D1+ImfV64R3Zlr62va11/KiuU/yY4d26R48ZJSoVIlqVylmuiZxFrOnv3DBLzTv5sllSpXMZ91aNdaIiJWxDpP7f/oiTPmeAl9OZwe06DjojwYAQLeB+PMXRBAAAEEEEAAAQQQQAABBBBAwIkAAa81j0UoBryOge3okcNlzOjI4wZiK489lkk2bd1pLutL1goXyG2+js+A153VO3/unJQuWcRe1Z2AVysvX7HafuyBvpCtUoXScvvWLdH2sZXGDZ+UXTt3RLncoGEjGT5yrKRIkcKd4cqRw4ekTq1qcuT4aUmcOLHovQvkzeGy7Xffz5EKFSuZeoMH9pfPJk5w2YYK1ggQ8FrjSC8IIIAAAggggAACCCCAAAIIIOCFAAGvF2hOmoRiwKu7d3UXr86tSME8JrR1VdZv2iaZM2cx1RrVryu7d++SLt16yPt9B5jPWjRrJFu3bHbVjejZvBu3RAalq1dFyLNtW9nb6K7Z3fsOu+zDVkF31erxErZiC3gdQ2hnnSVPnlw2btkpqVOnNpd1F3PdWtVk/6Hjsd7bNufoFXRn7cjR46V+g4aiL66LXtT4l19OyJQvJsmXUydLk6bNZNxHn5pqS5csku5dI3dGx1Vq1qojU76cZqpoSFy7ZlVXTbhukQABr0WQdIMAAggggAACCCCAAAIIIIAAAp4LEPB6buasRSgGvNbI0Et0gaRJk0qp0mWkcOGicuXKZTlx4rh5qZoerUAJTgEC3uBcN0aNAAIIIIAAAggggAACCCCAQEgIEPBas4wa8DbKmFLezvuYNR1G62X2b3/L+OPnhVNV44WXThHwSYCA1yc+GiOAAAIIIIAAAggggAACCCCAgC8CBLy+6P3bVgPeFA8llPuR79KyvNy9d1/M//7/y7osvwEdIoCA1wIEvF7T0RABBBBAAAEEEEAAAQQQQAABBHwVIOD1VZD2CCAQ7gIEvOH+BDB/BBBAAAEEEEAAAQQQQAABBPwoQMDrR3xujQACISFAwBsSy8gkEEAAAQQQQAABBBBAAAEEEAhOAQLe4Fw3Ro0AAoEjQMAbOGvBSBBAAAEEEEAAAQQQQAABBBAIOwEC3rBbciaMAAIWCxDwWgxKdwgggAACCCCAAAIIIIAAAggg4L4AAa/7VtREAAEEnAkQ8PJcIIAAAggggAACCCCAAAIIIICA3wQIeP1Gz40RQCBEBAh4Q2QhmQYCCCCAAAIIIIAAAggggAACwShAwBuMq8aYEUAgkAQIeANpNRgLAggggAACCCCAAAIIIIAAAmEmQMAbZgvOdBFAwHIBAl7LSekQAQQQQAABBBBAAAEEEEAAAQTcFSDgdVeKeggggIBzAQJengwEEEAAAQQQQAABBBBAAAEEEPCbAAGv3+i5MQIIhIgAAW+ILCTTQAABBBBAAAEEEEAAAQQQQCAYBQh4g3HVGDMCCASSAAFvIK0GY0EAAQQQQAABBBBAAAEEEEAgzAQIeMNswZkuAghYLkDAazkpHSKAAAIIIIAAAggggAACCCCAgLsCBLzuSrmud//+fdeVfKiRIEECH1rTFAEE4kuAgDe+ZOkXAQQQQAABBBBAAAEEEEAAAQRcChDwuiRyq4IJdx9J7lZdbyrdv3NXEty9Jwlu3/WmOW0QQCAeBQh44xGXrhFAAAEEEEAAAQQQQAABBBBAIG4BAl5rnhANeG8+WUquv9bCmg6j9ZJ03kZJNnGRJCTgjRdfOkXAFwECXl/0aIsAAggggAACCCCAAAIIIIAAAj4JEPD6xGdvTMBrjSO9IBCMAgS8wbhqjBkBBBBAAAEEEEAAAQQQQACBEBEg4LVmIQl4rXH0Ry+pUqWSO3fuyNWrV/1xe+4ZAgIEvCGwiEwBAQQQQAABBBBAAAEEEEAAgWAVIOC1ZuVCOeCdO3+RZMmS1S2oO3fvSPkyJex15y5YLFkyZ5EzZ05L08b14+zjm29nSr58+eXixQtSp1Y1e90UKVLIqjUbY7TVe136+5JcuPCXzJo5Q2bP+t6tMSZJkkQ+HDZKSpctK489lkn0ey03btyQ33/7VdauXSPvvdNHYntpXr36DWXgoA+cjufixYuybesWGTF8qPx98WKUOrHNI7ZBHzp0UNq2fsqtOVHJvwIEvP715+4IIIAAAggggAACCCCAAAIIhLUAAa81yx/KAe/eA0flkUcecRsqe5aM9rr7Dh6T//znP3L58mUpXCB3nH1s3b5HHs2QQW7fvi25c2Sx102dJo3s2nPQ5f11B26jBk/IsaNHYq1bsVJl+ezzqS7nc/HCBROu7tu3N0Zf3Xv0lHfe6xvnePR5+O7bb6TPG696PA9bg/PnzknpkkVczpsK/hcg4PX/GjACBBBAAAEEEEAAAQQQQAABBMJWgIDXmqUPh4BX53joYNxBq+6qbfBk7XgLeDXE3bN7l+n/4RQpJF26dJI5879hsO7CrVS+tPz55/kYC9uocRP5aMJn9s+vXbsmmzZtkC2bNknixImlTNlyUrZcefuOXp1vy+aNZeuWzVH6cgx4f/31jJw+dcq0SZ06tWTOklWSJk1qr//5Z5/KwAGRYbBjUK3j/OXEiTgfvgP798nLL/Wy5gGll3gVIOCNV146RwABBBBAAAEEEEAAAQQQQACBuAQIeK15PsIh4L1y5YoUyp/LIzCrd/Bu2bzJhK6ORQPen1asFj0CQcuIYUNl/LjRMca5e99h0fN2tezdu0eebtEkxrm7adOlk3kLFku2bNlNPQ1wK5YrFaUvx4B36JBB8smE8VGu9+03UDp37W4+0+ciZ/b/yr1796IEvM7m4REslQNKgIA3oJaDwSCAAAIIIIAAAggggAACCCAQXgIEvNasNwGvc8cHEfDqnZs2byFjx00wg3AWnr7R523p9cJL5rqeB6y7fOMqe/YfkZQpU5oqb735mkz/5mt7dVcBr1ZcsmylFChY0LR5tk0rWb06goDXmh+1gOyFgDcgl4VBIYAAAggggAACCCCAAAIIIBAeAgS81qwzAa9zxwcV8BYsWEgWL1thBqFn8NasXjnKgBx373Zo11oiIiLrxlY6du4q/QcMNpdPnz4llSuUsVd1J+AdOmyktG7TzrTR3cS6q9jxiAZ28FrzcxcovRDwBspKMA4EEEAAAQQQQAABBBBAAAEEwlCAgNeaRSfgde74oALeVs+0kWEjIo9l0PBWQ1zH8svpPyRBggTy999/S7HC+dxa9CPHT5uzdfWs3gJ5c3gU8I4d/4k0bdbctHn/3bfky6mTCXjdUg/OSgS8wblujBoBBBBAAAEEEEAAAQQQQACBkBAg4LVmGcMh4FWpO3fuxAmmZ83myZnVXudBBLwJEyaU7bv2S5o0acx9e3TrLEsW/2gfg57Ru37TNvP9kcOHpHbNqm4t+tbte+TRDBlM3cezPmbO09Xiagdv8uTJZeeeg5IsWTJTv0rFsnLq1MkoAa87lr+cOC61alRxa6xU8q8AAa9//bk7AggggAACCCCAAAIIIIAAAmEtQMBrzfKHS8Drjlb2LBnt1awOeDWgfavP65IoUSLR4LZI0WLyTOu29jB1x/Zt0rRx/SjDbNS4iXw04TPz2YoVy6VT+7buTEMWLf1ZChUqbOrWf6KW7Nu313wdV8BbsVJlGTf+E3swfPzYUalRrZJp53hEgzsDOH/unJQuWcSdqtTxswABr58XgNsjgAACCCCAAAIIIIAAAgggEM4CBLzWrH44BLy6O/fHhQviBNMdvi/37mmvY3XAG9vN1f+TCePlww8iz811LHoWrp6Jq0V39uoOX3fKwsU/SZEiRU3Vp1s2lU0bN5ivHQPemzdvyvXr181RDrpzV4+BsJXbt29L9SoVzEvdtDgGvHpUxJrVq+IchobZY8dEjpsS2AIEvIG9PowOAQQQQAABBBBAAAEEEEAAgZAWIOC1ZnnDIeC9cuWKFMqfyyMwW8DrTlvbkQgajObOkcV+H3d2vm7dsllaNGvkdGz58xeQpcsjzLW9e/dIgydruzUHPdZBdwlryZ/ncRPkanEMeGPrSMfTpXN7+fviRafz4CVrbi1B0FQi4A2apWKgCCCAAAIIIIAAAggggAACCISeAAGvNWtKwOvccceu/ZI2XTq5detWlLN5ndXes/+IpEyZUq5evSoF8+V0Gozu2bNbunZqb64VLFRYJk/92r5rdvTI4TJm9IgYXeuuWn3JmpZz585KmZKRu3Jdlf2HjkuKFClijN0x4D1x4ricOH5MdHfzLydOyJ49u2TL5s3y669nYnTvGFQT8LrSD67rBLzBtV6MFgEEEEAAAQQQQAABBBBAAIGQEiDgtWY5CXidOy79KULyFyhgXlCmLyqLqxw9cUYSJ05sjjSoVL60vWpcweiz7TvKoCEf2uu+0LO7LJg/L8ZtDhw+IQ8//LAZh7707PTpU3GOpXSZsjL7h8jjKM6e/UPKlipmr+/qJWuxdUzAa83PWiD2QsAbiKvCmBBAAAEEEEAAAQQQQAABBBAIEwECXmsWmoDXuaPusK1Vu6652KFda4mIWOG0YvESJWXegsXmWvTdra6C0SFDh0vbdpG7enUnbZOGT8ru3bui3Ofrb2ZI1WrVnfbvbEArV62TnLlym0vfTPtK3u7zur0aAa81PzOh1AsBbyitJnNBAAEEEEAAAQQQQAABBBBAIMgECHitWTACXueOjjtsdWdutcrlRV/E5lj0CIUly1aanb5aRgwbKuPHjbZXcRXwasUf5v0oJUtF7vq9ceOGuc8ff/xu7yNN2rSyfec+SZgwofkstuMc9JruCNZxa7l27ZoUKZgnypgJeK35mQmlXgh4Q2k1mQsCCCCAAAIIIIAAAggggAACQSZAwGvNgoVDwKsvP/v0k4/iBLtz+06Mc3A3btkhmTL917Q7f+6c9O/3rqxeFWF221aoWFn69h8oWbJkNdcvXrwoxYvkj3IPdwLeRIkSib4ULWPGyGMgLvz1l5QvW0Ju3rxp76tf/0HSqUs3+/e6y/eLzydKxMoVkuihRFKrdh157vle9p27WvG9d/rIV19OiTIeKwJePQt4xnfT47TUM31nzZxhzQNKL/EqQMAbr7x0jgACCCCAAAIIIIAAAggggAACcQkQ8FrzfIRDwOuuVPYsGaNU1Z21ep6tbfdsbP2oYeeOz8qKn3/yOODVBunTPypr1m82Z+1qOXjggDxRJ/JYBlsZ/MEwc5yD7hqOq+hYxowa4fSlbVYEvO5YahheumQRd6pSx88CBLx+XgBujwACCCCAAAIIIIAAAggggEA4CxDwWrP6BLz/OkYPePWK7uD9YurXUqhQYafgRw4fMuHuqVMnY1xPlSqV7N532Hy+edNGeapFk1gXrWjRYjJv4RJ7mKw7YF99pXeU+ho4f/rZF5IhQ8YYQa+uox4l0alDWzlyOPKe0UuXbj3k/b4DzMeDB/aXzyZOcOshcpyHOw10l2+ZkkXdqUodPwsQ8Pp5Abg9AggggAACCCCAAAIIIIAAAuEsQMBrzeqHcsBrjVBkL0mTJhV9oVrJkqXloYcekt27dsqOHdvk8uXLVt7G7b40EK5Uuarcun1L1q1ZLQcPHnC7LRURsAkQ8PIsIIAAAggggAACCCCAAAIIIICA3wQIeK2hNwFvjaJyo3s9azqM1kuSZdsl2TcrJeHtu/HSP50igID3AgS83tvREgEEEEAAAQQQQAABBBBAAAEEfBQg4PUR8P+ba8B7P3lSSSD3rekwWi/3794TuXdfEuq/FAQQCCgBAt6AWg4GgwACCCCAAAIIIIAAAggggEB4CRDwhtd6M1sEELBegIDXelN6RAABBBBAAAEEEEAAAQQQQAABNwUIeN2EohoCCCAQiwABL48GAggggAACCCCAAAIIIIAAAgj4TYCA12/03BgBBEJEgIA3RBaSaSCAAAIIIIAAAggggAACCCAQjAIEvMG4aowZAQQCSYCAN5BWg7EggAACCCCAAAIIIIAAAgggEGYCBLxhtuBMFwEELBcg4LWclA4RQAABBBBAAAEEEEAAAQQQQMBdAQJed6WohwACCDgXIODlyUAAAQQQQAABBBBAAAEEEEAAAb8JEPD6jZ4bI4BAiAgQ8IbIQjINBBBAAAEEEEAAAQQQQAABBIJRgIA3GFeNMSOAQCAJEPAG0mowFgQQQAABBBBAAAEEEEAAAQTCTICAN8wWnOkigIDlAgS8lpPSIQIIIIAAAggggAACCCCAAAIIuCtAwOuuFPUQQAAB5wIEvDwZCCCAAAIIIIAAAggggAACCCDgNwECXr/Rc2MEEAgRAQLeEFlIpoEAAggggAACCCCAAAIIIIBAMAoQ8AbjqjFmBBAIJAEC3kBaDcaCAAIIIIAAAggggAACCCCAQJgJEPBat+D379+3rjMnPSVIkCBe+6dzBBDwToCA1zs3WiGAAAIIIIAAAggggAACASWQJGFyuXXvRryNKTI4ui8EPPFGHLYdE/Bas/T6M5oiSWqJr4j37r3bcvf+Hbl775Y1A6YXBBCwTICA1zJKOkIAAQQQQAABBBBAAAEE/CeQ5KEU0qb4B1Iua4t4GcTCAyNl4cGRBLzxohvenRLwWrP+GvBWyt5GOpYeY02H0XpZeWyyzNzdV+7cJ+CNF2A6RcAHAQJeH/BoigACCCCAAAIIIIAAAggEioAGvO1KDJPy2VrGy5AW7B8u8w8MJ+CNF93w7pSA15r1J+C1xpFeEAhGAQLeYFw1xowAAggggAACCCCAAAIIRBMg4OWRCFYBAl5rVo6A1xpHegkNAT1OKFmyZHL9+vXQmJCLWRDwhsUyM0kEEEAAAQQQQAABBBAIdQEC3lBf4dCdHwGvNWsbygHv3PmLJEuWrAbq3PlzUv+JWnGiTZw0WUqVKmPq3Jf7UqFsSblz5475vu4T9WTIB8Octr906W+pVaOK/Vq9+g1l4KAPotTV/m7cuCHXrl6T8+fPybq1a+SLzyfKrVtxH13hOAdbh3fu3jHtLly4IEcOH5Kvv5wiu3fvinNujmPq3+9dWTB/nssHKEWKFLJqzUaX9WwVDh06KG1bP+V2/YGDh0q9eg3crv/iC8/JhvXrnNbP/ngOmT1nvv3awoXzpd/777jV95P1Gkift96RTP/NbMJds/7375uQ9/Llf2TTxo1mrXbu2G6urYhYKylTpnKr7+iVOjzbWvbt2+tV2/hoRMAbH6r0iQACCCCAAAIIIIAAAgg8YAEC3gcMzu0sEyDgtYYylAPevQeOyiOPPGKH+t/LL8rsWd87hcuWLbusWb85yrW8ubLJzZs3zWedu3aXvv0GOm2rIXCuxzPbr3Xv0VPeea+vywW6d++eCSyf79FFLl265LR+9DnE1un5c+dk5IgP5dvp05xWcRzT0CGD5JMJ412OL3WaNLJrz0GX9WwVdAylSxZxu/7M2fOkbLnybtd/qXdPmTtnttP6o8d8JM1b/hsua5ieL3f2OPtOkiSJLFseITly5nJrDN99+428+fr/5Ngvv0qiRIncahO9Uod2rSUiYoVXbeOjEQFvfKjSJwIIIIAAAggggAACCCDwgAUIeB8wOLezTICA1xrKcAp4z579Q8qWKuYU7qtvvpNq1WpEueYY8GoAbAsQX/nf66behb/+ki+/nCz//POPTP78M3tbxzD111/PyOlTpyRp0qSSOnVqeeSRlJIuffoo55KfO3dWqlYq5/RYAFvAq2Hw5k0bJWHChKaPlKlSSurUaUR32TqW9999S76cOjnGHH0NeDUw/eXEiTgfugP798nLL/Vy+8F0DHiPHT0it29H7paOrbzx+iuya+cOp5edBeE9unWWJYt/jLW/xctWSMGChezXdR3U+Mjhw1KocGHJnTuPZMmaTTQI1rJwwTzp9Xx3+e77OZImTdoY/ebKnVsSJ05sPj944IDT+77Qq7vpP1AKAW+grATjQAABBBBAAAEEEEAAAQR8ECDg9QGPpn4VIOC1hj+cAl4V69q5g/y0bEkUPN2punP3gRgvg3QMeB0bnDxz1nyrf2rv7NgHV2GqhrI9nu8lzz3/ggl+tZw6dVKqVS4vGuQ6FltweeXKFSmUP+ZO0zJly0mft96V0mXK2pu99OLzMveHOVH6cTUmZ0+T4w7eLZs3Scvmja156P6/F8eAt0SxgiYw96ZUrFRZvp0RubNXg9X8BQqYr7dv2yrNmjg/AqJo0WKyYNEyU+/atWtSu0YV0TA+etGduu/1HSDtnu1gwmINeGMrEWs2SI4cOc3xDo9nfcybqTzwNgS8D5ycGyKAAAIIIIAAAggggAAC1gsQ8FpvSo8PRoCA1xrncAh4T58+JZky/df8Wb0GqVUq/huGquKYcROkWfMWJpjTM23z5stvcOMr4LWtXK7ceWTx0p/tIe+OHdulaaN6URbWVcBrqzzuo0+lSdNm5ludh4axW7f8e+REKAe833w7UypXqWrmXrtmFZm3YInZ2axhuR7T4Oyc47ffed+E7Fo+/+xTGTgg7iM19KgP3TGtz1JshYDXmv8m0QsCCCCAAAIIIIAAAggggICHAgS8HoJRPWAECHitWYpwCHhPHD8mO3fskGYtWhq0Z55ubn9Zl/75/f5Dx82f1q9Ysdz86X2JEiVNvfgOePUe+fMXkB+XLLef6VqpfGk5c+a0fXHdDXi1wZSvvpGaNWubttF33IZqwJsgQQI5cvy0Wb8/z5+XUiUKy/iPJ0rjJk2Nw6CB/WTSxE9i/LAMGzFaWj3TxnyuO7p1Z7evhYDXV0HaI4AAAggggAACCCCAAAIIeCVAwOsVG40CQICA15pFCJeAt0mjerJzz0Fzhq3u0q1dM3LH5zvv9pXuz/U0u141XP3400kPNODVMcyaM1/0qAUt+pK0Pm+8al9cTwLe9OkflW0795q2uns1R7ZM9n5CNeBt3aadDB020sxzyheTpF/fdyVP3ryyfMUa89mJE8elepUKMX5Y2rR9Vj74cIT5XHf4Nm/SQPbs2e3TDxUBr098NEYAAQQQQAABBBBAAAEEEPBWgIDXWzna+VuAgNeaFQiXgLd61Yoy5ctpUrNWHQPXqH5dE+jp7t2HH37YvuN17oLFDzzgfe2NPvJi71fMuKKfG+tJwKvtDx+LfKGblnKli8sff/xuvvY14NU+7tyJ+yVov5w4LrVqVHH7wXQ8g9dV39rpc927xDg/eelPEfYzd0sVLyx//nne3H/bjr2S/tFHzdeOn9sGp0a79x2WZMmS2cerL+HTl7ht3rxJVvy8XPTFb54UAl5PtKiLAAIIIIAAAggggAACCCBgmQABr2WUdPSABQh4rQEPp4A3c+Yssm7jVvMyNQ13582dI+++189A6tmtRw4fFn8EvMVLlJR5CxabcUQ/I9jTgHdFxFrRs321PNumlaxeHWG+tiLgdfXEnT93TkqXLOKqmv26Y8DrTqOXeveUuXMiX6amJWXKlCak1fU8efIXqVopche0ln4DBkunzl3N11OnfCF933s7xi1q1a4rEydNNsc7OCsaOmtoPWXy5zLt6y9dDpGA1yURFRBAAAEEEEAAAQQQQAABBOJDgIA3PlTp80EIEPBaoxxOAa+KOR6HcPPmTbPbdf/+fVKvbk0D6o+AN1u27LJmfeQL0fT8XT0qwlY8DXiXLFspBQoWNM07tGstERErzNe+Brx///23rFm9Ks6HTo++GDsm8rgEd4pjwPvz8mVy7dr1OJuNHjU8yq5ax53PQ4cMkk8mjLe3dzyu4uKFC1K8aAGnfWu9ocNGSMVKVcyL2WIrui6NGjwhF/76K9Y6BLzurDp1EEAAAQQQQAABBBBAAAEELBcg4LWclA4fkAABrzXQ4Rbw5sufX5YtjxpUtmjWSLZuiQxY/RHwdujYWQYM+sDcX3cWN6wXeYyEFk8DXt3RmipVKtO2auXycvKXE+ZrXwPe6C9ts+Lpcwx4SxQrGGd46ux+m7bulMceizxn+OmWTUUDe8cy9avpkiZNGvNR/Sdqyb59kecTx1ayZs0mVapWk3LlK0rRokXl8Rw5zZnNtrJjx3Zp2qherO0JeK14KugDAQQQQAABBBBAAAEEEEDAYwECXo/JaBAgAgS81ixEuAW8quZ4bmv0l3D5I+Cd8OkkadCwsVnQeXN/kN4vPGdfXE8CXg0jj5/8zRxZoOuqL1nTf7WEWsCb/fEcsnrtRrd/CJYuWSTdu3Zyu75W1CMgBn8wXBo3aWpvp6b6AjtnhYDXI14qI4AAAggggAACCCCAAAIIWCVAwGuVJP08aAECXmvEwzHgLVO2nDmqQUunDu1kxc8/2TEfdMCbJEkS2bJ9j6ROndqMIfpOU08C3i7desj7fQeYfg7s3y9P1q1hn1eoBbyjx3wkzVs+5fYPwY0bNyRf7uxu13esqC/isx3fYDurmYDXK0oaIYAAAggggAACCCCAAAIIxIcAAVQIxQ8AACAASURBVG98qNLngxAg4LVGORwDXpWrXKWqPJTwIVm1amUUyAcd8C5fsVry5M1nxvDHH79LudLFo4zH3YC3Zq06Mnnq12b3rpaez3WVHxcuCNmAd9/BY/Kf//xHbt++bY5niK0MGz7K7tujW2dZsvhHU1VfbHfs6BG5fPmyyx8k285crVimZFE5d+6s0zbs4HVJSQUEEEAAAQQQQAABBBBAAIH4ECDgjQ9V+nwQAgS81iiHa8Abm96DCnj1iIFxH30ixYuXMEPRdWjwZO0Y58S6Cng10H22fUfp23+QJEqUyPSl5wnrucKOJZR28FasVFm+nTHbTG/9urXSulWLWH8YWj7VSkaOHmeu79i+TZo2rm++njt/kRQuUlS++Hyi6AvabEdZRO+oZKnSMmfuQhOcX716VQrmyxnrvQh4rflvEr0ggAACCCCAAAIIIIAAAgh4KEDA6yEY1QNGgIDXmqUg4I3qGFvAq+fbpk//qKm8Zftu8++Rw4ekzTNPya3bt+TvixftHTmGqStX/iwrf14uyZIll0z//a9kyJBBihQtJtmy/XtcgK7BwAF95YtJE2Msqi3gvXXrlgwa0FcSJEwo6dKlMy8Xy5w5i+hxE3rMg62cPfuH1Kha0YSRjsVxTPrCtI0b18f6AOkZs6NHDpdUqVPLrj0HTT3dtTrju+lxPnS/nDghs2bOcPvBdHzJ2pTJn8uVK3Hvpv3m66/k999/k+nfzZJKlauY+3Ro11oiIlbEek8NZo+eOGPCb52XHtOglhrwlihZyrS7cuWKRKz8WbZs2SyrIlbKn+fPmV2/nTp3k4aNGttftKYmY0aPiPVeBLxuLz0VEUAAAQQQQAABBBBAAAEErBQg4LVSk74epAABrzXaBLxRHWMLeDt16Sb9+g9yiq7HBOTOkcV+zTFMdbVKly5dkpde7CkrVyx3WtUW8LrqR9dRj5vo1L6t05eAeTImvVfeXNkk+cMP2wNeV/fX6+fPnZPSJYu4U9XUcQx43Wn0Uu+eMu+HOXLk+GlJnDixXLt2TQrkzeGy6Xffz5EKFSuZeoMH9pfPJk4wu3JLlS7jsq2twooVy41tXIWA121OKiKAAAIIIIAAAggggAACCFgpQMBrpSZ9PUgBAl5rtMMh4D1+7KjUqBYZ8Lkqjjs78+TManZ7aunYuav0HzDYafPoAa/jy86iN9BdpLpjVM9/HTNqRJy7T7VtbAGvrpve96+//pQli36U0aOGi4bFsZW4xuSsjc49efLksnvfYVdk9uu6y1fPqHW3OAav7rTp/cJzptq4jz41/y5dski6d+3ksqmeTzzly2mmnu66rl2zqiRNmlTate8orVu3ldx58trPLo7eme6IfuvN1+Xn5ctc3mflqnWSM1duc9zD41kfc1k/ECokSJMmzf1AGAhjQAABBBBAAAEEEEAAAQQQ8F6AgNd7O1r6V4CA1xr/UA54rRGil3AQyJTpv5I3bz7JkSuX3Lt7V3bt2in79u6RO3fuhPT0CXhDenmZHAIIIIAAAggggAACCISLAAFvuKx06M2TgNeaNdWAt0yWZvJU0X7WdBitl/Unv5MfD4ySO/cjd8JSEEAgcAQIeANnLRgJAggggAACCCCAAAIIIOC1AAGv13Q09LMAAa81C6ABb9JEKUQkfv5Q+969u3L//l3R/6EggEBgCRDwBtZ6MBoEEEAAAQQQQAABBBBAwCsBAl6v2GgUAAIEvAGwCAwBAQSCWoCAN6iXj8EjgAACCCCAAAIIIIAAApECBLw8CcEqQMAbrCvHuBFAIFAECHgDZSUYBwIIIIAAAggggAACCCDggwABrw94NPWrAAGvX/m5OQIIhIAAAW8ILCJTQAABBBBAAAEEEEAAAQQIeHkGglWAgDdYV45xI4BAoAgQ8AbKSjAOBBBAAAEEEEAAAQQQQMAHAQJeH/Bo6lcBAl6/8nNzBBAIAQEC3hBYRKaAAAIIIIAAAggggAACCBDw8gwEqwABb7CuHONGAIFAESDgDZSVYBwIIIAAAggggAACCCCAgA8CBLw+4NHUrwIEvH7l5+YIIBACAgS8IbCITAEBBBBAAAEEEEAAAQQQIODlGQhWAQLeYF05xo0AAoEiQMAbKCvBOBBAAAEEEEAAAQQQQAABHwQIeH3Ao6lfBQh4/crPzRFAIAQECHhDYBGZAgIIIIAAAggggAACCCBAwMszEKwCBLzBunKMGwEEAkWAgDdQVoJxIIAAAggggAACCCCAAAI+CBDw+oBHU78KEPD6lZ+bI4BACAgQ8IbAIjIFBBBAAAEEEEAAAQQQQICAl2cgWAUIeIN15Rg3AggEigABb6CsBONAAAEEEEAAAQQQQAABBHwQIOD1AY+mfhUg4LWO//79+9Z15qSnBAkSxGv/dI4AAt4JEPB650YrBBBAAAEEEEAAAQQQQCCgBAh4A2o5GIwHAgS8HmDFUVXD3dQPJ7amMye93L57T+7cvS+37sZviBxvE6BjBEJYgIA3hBeXqSGAAAIIIIAAAggggED4CBDwhs9ah9pMCXitWVENeNuVyyLj2xS1psNovXy+5qS8O/cAAW+86NIpAr4JEPD65kdrBBBAAAEEEEAAAQQQQCAgBAh4A2IZGIQXAgS8XqA5aULAa40jvSAQjAIEvMG4aowZAQQQQAABBBBAAAEEEIgmQMDLIxGsAgS81qwcAa81joHYS5IkSeTOnTty7969QBweYwoAAQLeAFgEhoAAAggggAACCCCAAAII+CpAwOurIO39JUDAa418OAW84z+eKBUqVDRw9+7fk1rVK8vly5djhaxXv6EMHPSB29DNmzaUU6dOysDBQ6VevQYx2t26fUuuXrkiO3fukDGjRsivv55x2ne/AYOlYcPGTq9t2LBeXuzVw+m1DBkyysDBH0i+/AUkY8bH5OGHHzb1bt++LZf/+UfWrVsrw4d9ICd/ORHnnJavWC2pU6cxdU6fPiXNmsSci9soVAxoAQLegF4eBocAAggggAACCCCAAAIIuCdAwOueE7UCT4CA15o1CZeAV3ezHjp6UhImTGiHGzd2lIwc/mGskN179JR33uvrNnSj+nVl9+5dMnP2PClbrrzLdj/MniUvv9QrRr1vZ8yWipUqO21/9MhhqVWjSoxrPXv1lldff1MSJUrk8r4aQlepWNZpvZq16siUL6dFuVa7ZhU5cviwy36pEHwCBLzBt2aMGAEEEEAAAQQQQAABBBCIIUDAy0MRrAIEvNasXLgEvM7C2t9//03KlynhVsB74a+/5Ny5c3Gid2zfRrRPx4B3x/ZtcvPmTXnooYckderUkjlLVvvOWu3s66+myrtvvxml38pVqkrpMmWlRMlSUr16TXNtx47tErHyZzl44IAsWfxjlPrTpn8vVapWs3929uwfsnXLZtm1c6dkypRJihQtJrnz5DX3t5XsWTI6nYuzcHr+vLmx7hq25imkF38JEPD6S577IoAAAggggAACCCCAAAIWChDwWohJVw9UgIDXGu5wCXgj1myQHDlyis73t99+lcyZsxhA3cmqO1qdFcdQeOiQQfLJhPFuoTuGpCWKFRQNhx2LHsHQqXNX89G1a9ekQN4cTvtt9UwbGTZitLk24eNx8uEHg2PUq1Gztkz96hvzuc5Nx+isnl7v1uN5ebPPO5I4cWJxFvDq7l/d5az/njt3VtKnf9TseL569aoUzJfTrblTKbgECHiDa70YLQIIIIAAAggggAACCCDgVICAlwcjWAUIeK1ZuXAIePVs2i3bdxuwvXv3yI8L5subb71jvp81c4a8+kpvp5jxFfDqzbZu3yOPZshg7lumZFETqEYvrgLeBAkSyK69hyRVqlSm6fAPP5CPxo+J88FImTKlvPt+f3njtVdi1OvQsbMM+P8zhz/+aKyUK1fB7CTW0qFda4mIWGHNQ0cvASNAwBswS8FAEEAAAQQQQAABBBBAAAHvBQh4vbejpX8FCHit8Q+HgFdfeta+QycD9r+XX5RFPy6QA4dPiAak+pK1wgVyO8WMz4BXX2SWJ28+c199idn2bVtjjMFVwNuseUsZM+5j0053CetuYV/Kioi1kit3HrMTuGihvFKxUhWZOGmy6XLjhvXS6qlmvnRP2wAUIOANwEVhSAgggAACCCCAAAIIIICApwIEvJ6KUT9QBAh4rVmJcAh4d+4+IGnSppXbt29LnpxZTYD545LlUrhwEYP4zNPNZcP6dTFA4zPgtY1Jb5o3VzZzTm/04irgHTTkQ3m2fUfTzJ3du3E9MeqjY9Jy5PAhqV2zqvn68LFTkjRpUrlz546xu3fvnjUPHr0EhAABb0AsA4NAAAEEEEAAAQQQQAABBHwTIOD1zY/W/hMg4LXGPtQD3iJFisrCxT8ZrLVrVkvb1k+Zr1u0fFpGjYk8U9fxc0dVx4D3xo0bcu3qVafoly79LdWrVrRfc3UGr+NRCHG96M1VwDtrznwpU7acuW/rVi1k/bq1Xj8U77zbV7o/19O0f//dt+TLqZE7d7+Y8pXUrvNEjM+9vhENA0qAgDegloPBIIAAAggggAACCCCAAALeCRDweudGK/8LEPBaswahHvBO+mKq1H2iXowQVI9nOHL8tHnhmOPOXkdVx4A3Lm3d3Zrr8cz2Ko4Bb49uneWvv/6UlClTyeM5ckjjJs2kePESpq7ad+rQTlauWO60e1cB7+ZtuyRjxsdM2/x5Hpfr1697/VDYzgTWHbo6F9tO3eIlSsq8BYtNv0ePHJZaNap4fQ8aBp4AAW/grQkjQgABBBBAAAEEEEAAAQQ8FiDg9ZiMBgEiQMBrzUKEesBrO2LgypUrUih/riho07+bJZUqRwaW+tKxGd9Nj3LdMeA9f+6cnHXyIjRtcPHCBWnX5ml7W8eAN7ZV0ja6m3jfvr2xLqSrgNfxmIcc2TJ5fXxCnrx5ZfmKNWYcWzZvkpbNG0cZ0+59h82L3PRZKV60gPx98aI1Dx+9+F2AgNfvS8AAEEAAAQQQQAABBBBAAAHfBQh4fTekB/8IEPBa4x7KAW+9+g3l08++MFD6ErP+/d6LglahQiXp8/a75rODBw7IE3WqR7luxRm8sa1SzeqV5djRI3EuoquAd9HSn6VQocKmjyaN6snOHdu9eig+mvCZNGrcxLQdPWq4RKxcEaWft95+T8pXiDyCYuInH8uQwQO8ug+NAk+AgDfw1oQRIYAAAggggAACCCCAAAIeCxDwekxGgwARIOC1ZiFCOeCdO3+RlChZyi0odShSMI9cvnzZXt+KgLde3Zpy4cIF0+fnU74SPRNYyz///COVypcy/8ZWXAW8Y8d/Ik2bNTfNBw3sJ5MmfuLWXKNXOnD4hDz88MNutdWdzKVLRr6cjhL8AgS8wb+GzAABBBBAAAEEEEAAAQQQEAJeHoJgFSDgtWblQjXgTZIkiRw6elISJkzoNtS4saNk5PAP7fWtCHhLFCsoF/76y/SpY1q/cZs8miGD+f706VNSpWJZc/SBs+Iq4O3ctbv07TfQNN27d480eLK223O1VaxZq45M+XKaR+1q16wiRw4f9qgNlQNTgIA3MNeFUSGAAAIIIIAAAggggAACHgkQ8HrEReUAEiDgtWYxQjXg7fFcL3n73fcN0ry5P8jUKZ87BdOXlNmOcfj999+kfJnIF6BpsTrg1T4feyyTrF63SZImTWrusWH9Onnm6chduNGLq4A3c+Yssm7jVtEXxmnp1qWjLFsa+UK0uErFSpVl/bq1psqsOfOlTNly5uuXe/eSkyd/iXUsz7Rua67NnzdXXuzVw9VtuB4EAgS8QbBIDBEBBBBAAAEEEEAAAQQQcCVAwOtKiOuBKkDAa83KhGrAqyFq9uyPG6QyJYvKuVhekKbXd+zaL2nTpTN1dUftqVMnzdfxEfBqvyVLlZY5cxfag9lpX38p77z1RowFdRXwaoMhQ4dL23btTdtr165Jx/ZtZNPGDU4fjixZsprdunnz5ZfsWTJKokSJ5Mjx02aXsx4VoUdUxFb0JWu79h4yY7569aoUzJfTmgeQXvwqQMDrV35ujgACCCCAAAIIIIAAAghYI0DAa40jvTx4AQJea8xDMeDNkCGjbNm+2wCdOXNaKpUvHSfWwMFDpX2HTqbOnFkz5ZWXXzBfx1fAq307hrf6fd/335GpkyN3GSdPnlweeSSlNGve0r4L+euvpsq4MaPk+vVrUc4J1sBVg1cNYG1l+U9LZf68H2T16lWSJXMWqVK1upQtX16qVathP7JCA96OnbtK/wGDTbNZM2fIq6/0jtNpRcRayZU7MgTu2L6trFyx3JqHkF78JkDA6zd6bowAAggggAACCCCAAAIIWCdAwGudJT09WAECXmu8QzHgdQxsR48cLmNGj4gTS49N2LR1p6mjL1krXCC3+To+A17tv//AIdKxUxdzL12HDu1ay6pVK+XbGbNFj1FwVo4cPiS1a1aNcilP3rwyeeo0yZYtu1sPxe3btyV3jiziGNhWr1pRThw/Fmf7Lt16yPt9B5g6mzdtlKdaNHHrflQKXAEC3sBdG0aGAAIIIIAAAggggAACCLgtQMDrNhUVA0yAgNeaBQnFgFd37+ouXp2bHjugoa2rsn7TNtEzbbU0ql9Xdu/eJY6B5uCB/eWziRNcdWOuf/f9HKlQsZL5unjRAnLxwoVY282Y+YOUr1DRXNfgtXTJIjLhk0lSqXIVp22cBby2it16PC8vvfyqPPLII07b6sve5v4wW0aNHCY3b96Uw8dOmSMXzp87Z+7rqji+uM4WErtqw/XAFiDgDez1YXQIIIAAAggggAACCCCAgFsCBLxuMVEpAAUIeK1ZlFAMeK2RCd5eNLQtXLiIOes3QcKEcvrUKdm8aYNbQXfwzpqReyNAwOuNGm0QQAABBBBAAAEEEEAAgQATIOANsAVhOG4LEPC6TRVnRQ14W5TIJAOaFrCmw2i9fLv5jAxfelRu3b0fL/3TKQIIeC9AwOu9HS0RQAABBBBAAAEEEEAAgYARIOANmKVgIB4KEPB6CBZLdQ14UyRNZE1nTnq5e++e3Ll3X+7ei7db0DECCHgpQMDrJRzNEEAAAQQQQAABBBBAAIFAEiDgDaTVYCyeCBDweqJFXQQQQCCmAAEvTwUCCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggAABL88AAggggAACCCCAAAIIIBACAgS8IbCIYToFAt4wXXimjQAClgkQ8FpGSUcIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJEPBaRklHCCCAAAIIIIAAAggggID/BAh4/WfPnX0TIOD1zY/WCCCAAAEvzwACCCCAAAIIIIAAAgggEAICBLwhsIhhOgUC3jBdeKaNAAKWCRDwWkZJRwgggAACCCCAAAIIIICA/wQIeP1nz519EyDg9c2P1ggggIDHAW/BgoWkVeu2Ru7ggf3y7fRpKCKAAAIIIIAAAggggAACCPhZgIDXzwvA7b0WIOD1mo6GCCCAgBHwOODtP3CIdOzU5f8D3gPyRJ3qUCKAAAIIIIAAAggggAACCPhZgIDXzwvA7b0WIOD1mo6GCCCAgHcB78jR46TlU61M45+WLZGunTtAiQACCCCAAAIIIIAAAggg4GcBAl4/LwC391qAgNdrOhoigAAC3gW8Xbr1kPf7DjCN165ZLW1bPwUlAggggAACCCCAAAIIIICAnwUIeP28ANzeawECXq/paIgAAgh4F/BmyZJV1m3cahpf+OsvKVGsIJQIIIAAAggggAACCCCAAAJ+FiDg9fMCcHuvBQh4vaajIQIIIOBdwKuttmzfLRkyZDQdVK5QRk6fPgUnAggggAACCCCAAAIIIICAHwUIeP2Iz619EiDg9YmPxggggIDnL1lTs6JFi8mCRcsM39Ejh6VWjSpQIoAAAggggAACCCCAAAII+FGAgNeP+NzaJwECXp/4aIwAAgh4HvBWrVpdGjdtJvUbNJIUKVIYwoiIFXL+3Dm3OIcOGSR//nnerbpUQgABBBBAAAEEEEAAAQQQcE+AgNc9J2oFngABb+CtCSNCAIHgEkiQJk2a+54MeczYj6VZi5aeNIlSt3WrFrJ+3Vqv29MQAQQQQAABBBBAAAEEEEAgpgABL09FsAoQ8AbryjFuBBAIFAEC3kBZCcaBAAIIIIAAAggggAACCPggQMDrAx5N/SpAwOtXfm6OAAIhIOBxwFurdl15utUzXk+973vvyB9//O51exoigAACCCCAAAIIIIAAAgjEFCDg5akIVgEC3mBdOcaNAAKBIuBxwBsoA2ccCCCAAAIIIIAAAggggAAC/woQ8PI0BKsAAW+wrhzjRgCBQBEg4A2UlWAcCCCAAAIIIIAAAggggIAPAgS8PuDR1K8CBLx+5efmCCAQAgIEvCGwiEwBAQQQQAABBBBAAAEEECDg5RkIVgEC3mBdOcaNAAKBIuBTwFu8REl57fU+ki17dkmf/lFJmjSpnD37h1QsV8o+vy+nfSvp0qU3348bM0qWLV0cKHNnHAgggAACCCCAAAIIIIBAyAgQ8IbMUobdRAh4w27JmTACCFgs4FXAmyJFCvl88ldSsVLlGMO5fPmyFC6Q2/75pC+mSt0n6pnvD+zfL0/WrWHxFOgOAQQQQAABBBBAAAEEEECAgJdnIFgFCHiDdeUYNwIIBIqAVwHvzNnzpGy58k7nED3gTZkypezae0gSJkwo9+/fl3y5s8vNmzcDZf6MAwEEEEAAAQQQQAABBBAICQEC3pBYxrCcBAFvWC47k0YAAQsFPA54GzVuIh9N+Mw+hJUrf5Yxo0bIq6+9KVWrVZfoAa9WXLT0ZylUqLBp81z3LrJ40UILp0BXCCCAAAIIIIAAAggggAACBLw8A8EqQMAbrCvHuBFAIFAEPA54v/5mhglytYwbO0pGDv/QfD316+lSo0YtpwHvoCEfyrPtO5p6Y8eMlFEjhgXK/BkHAggggAACCCCAAAIIIBASAgS8IbGMYTkJAt6wXHYmjQACFgp4HPBu2b5bMmTIKDdu3DDHLdhKXAHvk/UayMRJk03VHxfOl57PdbNwCnSFAAIIIIAAAggggAACCCBAwMszEKwCBLzBunKMGwEEAkXA44D3yPHTkiRJEjl9+pRUrlDGrYC3dJmyMvuHBabu0iWLpHvXToEyf8aBAAIIIIAAAggggAACCISEAAFvSCxjWE6CgDcsl51JI4CAhQIeB7w7du2XtOnSyblzZ6VMyaL2oUz56hupWbO20yMaunTrIe/3HWDqjh45XMaMHmHhFOgKAQQQQAABBBBAAAEEEECAgJdnIFgFCHiDdeUYNwIIBIqAxwHvnLkLpVTpMnLv3j0pmC+nXL9+3cwlriMalv4UIfkLFDD12rd9RlatWhko82ccCCCAAAIIIIAAAggggEBICBDwhsQyhuUkCHjDctmZNAIIWCjgccDbr/8g6dQl8gzdlSt/lo7Ptokz4G3avIWMHTfBPuTCBXKbXb4UBBBAAAEEEEAAAQQQQAAB6wQIeK2zpKcHK0DA+2C9uRsCCISegMcBb8qUKWXrjr2SNGlSo7F+3Vrp2rm9fPzpJKlRo5b9iAY9p3fk6PHSuElTu9qSxT9Kj26dQ0+RGSGAAAIIIIAAAggggAACfhYg4PXzAnB7rwUIeL2moyECCCBgBDwOeLVRvfoN5dPPvohCeP/+fUmQIIH57OrVq5IiRYoo12/evClFCuYR/ZeCAAIIIIAAAggggAACCCBgrQABr7We9PbgBAh4H5w1d0IAgdAU8CrgVYoXe78iL//vNUmUKJFLmUuXLkm3Lh1k08YNLutSAQEEEEAAAQQQQAABBBBAwHMBAl7PzWgRGAIEvIGxDowCAQSCV8DrgFennCZtWpnwySQpU7acJE6cOIaC7tZdMH+uvP7qy+albBQEEEAAAQQQQAABBBBAAIH4ESDgjR9Xeo1/AQLe+DfmDgggENoCPgW8jjR6Nm+p0mUlR86ccvDAftm2dQvHMYT2s8PsEEAAAQQQQAABBBBAIIAECHgDaDEYikcCBLwecVEZAQQQiCFgWcCLLQIIIIAAAggggAACCCCAgP8ECHj9Z8+dfRMg4PXNj9YIIIAAAS/PAAIIIIAAAggggAACCCAQAgIEvCGwiGE6BQLeMF14po0AApYJWBLwZn88h6RLl86tQe3csZ3zeN2SohICCCCAAAIIIIAAAggg4L4AY5WVAAAAIABJREFUAa/7VtQMLAEC3sBaD0aDAALBJ+BVwJsoUSJ59fU35dn2neSRRx7xaNatW7WQ9evWetSGyggggAACCCCAAAIIIIAAAnELEPDyhASrAAFvsK4c40YAgUAR8DjgTZgwoazdsEUyZ87i1RwIeL1ioxECCCCAAAIIIIAAAgggEKcAAS8PSLAKEPAG68oxbgQQCBQBjwPefgMGS6fOXaOM//bt23Lz5k3Rf12VZ55qJgcPHnBVjesIIIAAAggggAACCCCAAAIeCBDweoBF1YASIOANqOVgMAggEIQCHge8G7fskEyZ/mumeunSJWn7TEvZs2d3EE6dISOAAAIIIIAAAggggAACoSNAwBs6axluMyHgDbcVZ74IIGC1gMcB76GjJyVZsmRmHE+3bCqbNm6wekz0hwACCCCAAAIIIIAAAggg4KEAAa+HYFQPGAEC3oBZCgaCAAJBKuBxwLt732FJlSqVmW6uxzPLnTt3gnTqDBsBBBBAAAEEEEAAAQQQCB0BAt7QWctwmwkBb7itOPNFAAGrBTwOeOfMXSilSpcx42jb+ilZu2a11WOiPwQQQAABBBBAAAEEEEAAAQ8FCHg9BKN6wAgQ8AbMUjAQBBAIUgGPA97X3ugjL/Z+xUz3hzmz5eXePYN06gwbAQQQQAABBBBAAAEEEAgdAQLe0FnLcJsJAW+4rTjzRQABqwU8DniTJk0qO3YfkBQpUsi9e/ekSsWycubMaavHRX8IIIAAAggggAACCCCAAAIeCBDweoBF1YASIOANqOVgMAggEIQCHge8Osc6dZ+Uzyd/aaZ78uQvMmniJ5I4SRK3pj9zxrdy+fJlt+oGU6XkyZPL9evXg2nIjPUBCKRJm1YuXrjg1Z18afvII4/IzZs35datW17d29tGet8UKf4jf/zxu7ddeN0uS5ascu36Nbnw118e95E+/aPySMqUcuL4MY/bagNf1sqrG9IIAQQQQAABBBBwIkDAy2MRrAIEvMG6cowbAQQCRcCrgDdBggSyc89BSZ06tcfzaN2qhaxft9bjdoHWoEzZcvK/V9+QHDlzioZDiRMnNkO8ceOGXLx4QebNnSMfjx8r//zzj9+GnjVrNkmbLp1cuXJFjh094rdxBNuNW7R8Wt56+z2ZM3umDBk8wAx/4qTJUqpUGencsZ3s3r0rzikNHTZSatWuI48+mkH0Z+X27dvy+++/yeQvJsmULybF2bbdsx2kx/O9JFOm/5pn6v79+3L+/DlZvSpCXn2ld5xtixYtJsNHjpVs2bPLww8/bOpeunRJDh08IN26dpS/L150ayleff1N6dS5m5w+fUrq1a0ZZ5uSpUrLc8/3knLlK0rKlCklYcKE9vrXrl2TpYsXSf/+73kUcufJm1e+/maGJHookWzevFF6Ptctxhg0SO75Qm+pV7+hsUqWLJm9jpppUDtq5DBZMH9erOOvWKmyfDh8lGgw7Dhu/XmZ9vVU+fCDweavFGIrvqyzWwtBJQQQQAABBBBAwEMBAl4PwageMAIEvAGzFAwEAQSCVMDjgFePaFi89GfJlTuPV1MO9oA3SZIkMv7jT+XJeg1czl+Dph8Xzpdez3d3WTc+KqzdsEU05L169aoUzJczPm4Rkn1+9/0cqVCxkowaMUzGjhlp5njk+GnRtVdH9XRWNCSct3CJaNAaW5k65Qvp+97bTi+/935/6dr9uVjbHti/XxrWryN37tyJUUd31X/2+ZQoQaVjJd01r2GthrZxFd2JumbdZtEAVX85UaRg3D/nv5z+w4TYcRW9d5VKZd0KeVOnSSPrNmyV//znP6bL48eOSo1qlWJ0P3L0OGn5VCuXz9/HH42VYUOHxKg3+INhomF6XOXcubNSoWzJGN6+rrPLQVMBAQQQQAABBBDwUoCA10s4mvldgIDX70vAABBAIMgFPA54X/7fa/LK/163T1tDzL/+/FMuX7ksN2/cdMnRvVsnOfnLCZf1ArGCBjvbd+2XNGnS2Id38MAB2b17pxw8eEDy5y8ghYsUlVy5cosG4VrOnv1DypaKPfCLz3kS8Hqnu/fAURNwVipf2pwvreu6dHmECSiLFy0Qa6fjP54ojZs0Ndd1F+gPc2bJzh3bpWq1GtKocRN7+Ppy717mmmPRnaiffvaF+Uh3jf64cIFErPxZihQtJs1bPGV2x2r5adkS6do5ajCp52HrmG27UDesXydLliySVClTSbMWLSVHjshw/8/z56VUicIxxq+7cJ9p3VZy584jRYsVt+9G9yTg1Z3C27dvld27dpr/HpQqXVbqN2ho72vnzh3SpOGTcS6Ijl+f2cyZs9jruQp49b8/Bw7slz27d8m+vXskdeo00rRZc8mZK7e9j9o1q8iRw4ft3+svZ3RHthY9xuLb6dPMjt2LFy5K+46d5NlnO5qd71oiIlZIh3ato4zbl3X27omkFQIIIIAAAggg4J4AAa97TtQKPAEC3sBbE0aEAALBJeBxwKs7FIsXL2FmeerUSaldo4oJScKhDBsxWlo908ZMVY9ieLHXc7Js6eIYU0+UKJGMHD1emjRtJroLkIA3eJ4ODfZ27NoverxAgbw5zMDffud9c2zCihXLpVP7trFO5vCxUybY1yMZalarZH4+bKVBw0Yy4dPPzbeHDx2UOrWqRennxyXLpXDhIuaz6AGwHkGwet0ms4NY+86TM6s5usFW3ujztvR64SXzrR5J8ELPf3eM6+7aNes3m53cWho3fFJ27dwR5d79BgyWTp27xpiXOwHvkmUrZcrkSTLju+kx2mswvuSnlWaHr/685MudPc4HYfYPC6R0mbJR6sQW8Pbs1VtKlS4t77z1ptPzfh370l3YuhvbVhYsWmbfZf3M081FA3HHouG+vkhSj8hwfA5sdXxZ5+D5SWCkCCCAAAIIIBCMAgS8wbhqjFkFCHh5DhBAAAHfBDwOePcfOi66Y1BL/Sdqyb59e30bQZC0zpEzl6xctc7+5+h1a1eTQwcPxjl6DbgaNm4iI4YNNfXqPlFPypUrb14yN2b0CKdtu/foKRkzZpS9e/fE2OWpDYqXKCkdO3aRHLlySdq0ac1uyZMnT5ozf1f8/JPpU//M/oUXXpJn2rQzf+quf9I/dXJkuGgrc3+YLXv27LZ/r+Hh8z1fFD1bOGeuXHL1yhXZt3evGcOqVSudjrVN22fNbmUNMr+cOllq1a4rLVo+ZXaBXrl8RVav0vDvc3P+rJbsj+eQTp26SOmy5SR9+vRy5vRpmT3re7ODMq7ydKvWUr1GTSlQoKAkTZZMfjlxwoRy48eNjtFMd3927hJ5ZutXX001u8U1cK9WvaaULlNGbly/Id9M+0r+/PO801t27tpd+vYbKDt2bJemjeqZOhpiFihYUPq88WqsY9Vze0eNGW/q/zBntrzcu2eM/jVozZYtMuQsUayg/WVgqVKlkl17D5ln69dfz0jFcqVitHX85cI7b70h076OfMmhlm079kr6Rx81oW+ObJmihL96vXKVqvLNtzNNXV3L9m2fidK/rpvNTC+Ur1DRmLkT8Ma5cCKye99h0fnp2B7P+lis1R3np3PTX6RowBpbwOvqvh06dpYBgz4w1eb+MEdeevF5e5Ot2/fIoxkymO/1CApn52Rv3LLDnO2rJXuWjPa2vqyzqzFzHQEEEEAAAQQQ8FWAgNdXQdr7S4CA11/y3BcBBEJFwOOA1xYmKUCuxzM7PQ80VHAc5/H55C9FzznVokFqpw7tPJ7mD/N+FP1zeP0TfA3inJUDh0+YF2SdOHFcqlepYK+i4d+sOfNj7HB07OPvv/+WYoXzib486tsZs+Mc34SPx5mXSGnRM2OnfTvTBHHOypLFP8rzPbrGeOHUlu27JUOGjOZM2sOHD0mJEiVjNNdrVSuVk249npMez/Vyel6rnlPs7EVajz2WSb6dMSvKn9s73kCPHGjTumWUoF13TY/76FNT7b13+pgjMzQgdjwnVsM+Df1Mnff7y9P/vytbv0+ePLkJFnWN9JgFLbqjU9vrXO7evWs+mz1zhvTr+659OJ9M/FzqN2hkvu/WpaPTnd36Qi89CkHLG6+9Yt/1qsc3fDThM/P5vLk/SO8XYp7D67im0XcSnzxz1rTVIL18mcjd9dHLiVO/myMcXB0zoe127j5gfknga8Cr5+lqX2p38eJFKV4kv9OxdevxvLz7Xj9zbeOG9dLqqWZy9MQZnwJex/V4683XZPo3X9vvrS9wq1qtuvl+8uefSf9+78UYl+3M5ehHrPiyzk4nz4cIIIAAAggggICFAgS8FmLS1QMVIOB9oNzcDAEEQlDA44B32vTvpUrVyD8vjy3ICkEns3vXdq5nudLFnf5ZuKt5+xLwOgZLuiNXX5alAWe27Nnl0UczmPBOP9fQvWDBQjJ9xmxJnTq1PdjUgM2xjBj2gdkFmj79o6JBre38Vq136OABc5Zp3nz57J+vW7tG2jzTMkoftoDX8cNbt27JP5cumTNMbX3q7k3HgFVDxiRJk9p3gmv7J2pXN+cY24ruKNZdrRp2a9HwUo8W0OC1VOkykjFj5G5QPQKjTMmi9naOAW/0+9oqOQa8jsG9q/VzvB495Hc8EiC2X3w0bd5Cxo6bYLoZN3aUjBz+oflajxt48613zNfvvv2mfP3VVKdDsQW5uvO6Yb06po6u37adkbvoV6+KkGfbOn/xmG3XqjtHJfga8Gog3rRZC3np5VftO2Vff/Vl+X7GtzHmVbNWHZk89WvzfOgzXaViWbPb19uAV3e4t23X3oT6WpydO+x4XIbWWf7TUun9wvP2l+fpTvY+b0eG97oWuia24ss6e/J8URcBBBBAAAEEEPBGgIDXGzXaBIIAAW8grAJjQACBYBbwOODV4GT4yDFmzq7OJA1mmOhj33fwmDnuIK7dt67m60vAa9tRqC+zKle6mFy/ft1+Oz0yo//AIVK7zhNRdkm685I13emru0O1aACnQZyt6HECCxf/ZN/Zq6Gi47EOjgGvBsO9ez0nq1dHmOYaPOqRBLaAVkM7Paf1/Xffsp/ZPHrMR9K85VOmfvQ/ox87/hPzsiwten6qnqPqWPQlWfqyLC1933/HfgSFY8Cr1/TM2kU/LpSfly+VE8ePS6HCReTn5T+ZYFiL2qVNG/lCrXTp08u8BYvNzt1qlcubz/Slgs+27yhr16w2RzTYyoULf9kDQf3M8RcAjn/S7zjm6tVrypfTIkPOWTNnyKuv9DZfDxryobmHlp7PdTUvWHNWfjn9hwlC9cVv+gI4LXqkhu7s1rJwwTzp9fy/5+869rFu41bJkiXy7N64jkrQNt4GvJ26dJOXX3nN/GLBVvTnZeiQQTLx049jTClP3rzm+As9DkKPLalYrqT9uARPA94VEWslW/bH7S9105vpCxA7tm9jPyLEcQD63zBbCKyf6zg3bdwgJ0/+Yt9lrcekNG/SIMoZ476ss9NF5UMEEEAAAQQQQMBCAQJeCzHp6oEKEPA+UG5uhgACISjgccCrBo4hR6P6dWX37l0hSPPvlDRU03BNi+0YBG8m7G3Aq7tZNeDVEtef4Ucfk6uAV48jOHjkF9Mstj+h13ODJ30RuaN065bN0qJZ5DEEWmwBr4Zzepap44u/9Pr4jydK4yZNTd3oLw7Tz1KmTCl79h8x13ds3yZNG9c3X+vO3+MnfzNh5s6dO6RJw8ijMRyLmhw6etLU1fC1bevIoNgx4D2wf78806q5/B1t93Jsa2c7KmDL5k3SsnljU00D7iJFiprg29kOVFtftqNL4voFQLHiJWT+wiWmieOYv5jylQnntbRu1ULWr1vrdIi20FND/qKF8po6jmfCfvftN/Lm6/9z2nb5itWSJ28+cy1/nsej/IIgegNvA97BHwyTds92iNKdHrmgdo4vnNMKenzDug1bzS9NNITXl86dOH7M3tbTgNd2BIWtAzX65OPx8smEyHORnRU9ykOfF2dFw90GT9aOccmXdY51IFxAAAEEEEAAAQQsEiDgtQiSbh64AAHvAyfnhgggEGICHge8VatWly7de4juRtSiwaD+ibO7RXfzxfaCK3f7eND1HANWZ3/y7e54vA14tf8du/abYw+0aAD54dDB5t+4iquAt0LFSvLd95Fn0U6d8oX0fe9tp93ZzgWOfhyCLeCNLRzWP9H/32tvmD5j25lqC/Iczxx2DELXrF5ldoo7K33eeleSJk1qdl3qOb9aHAPe6C8jc7VOtt3MQwYNsO841RA5WbJkUjBfzig7dqP3tXPPQUmTJo39mAxn9ypUqLAsWvqzueQY8H71zXdSrVoN87kGy7Gtq7OAVwNVDVa1RD9OwHEMS3+KkPwFCpiP4ivg1TOqn+3QUVKmTCXZs2W3P68a/OsZzosXLTT311B+/aZt5iVmek1f+mbb+W0bs6cBr+74zpAhg3l5X+48ee3Hgxw7ekRqVo/coe5Yhgwdbo5y0KIhdLLkyaVYseJRjhLRoL1zx3ZRwnBf1lnvlTGX8zOSXT2bXEcAAQQQeLAC9+/fk2uXnL+Q1aqRPJwqg9N3E1jVP/2Ep8D182elZd53pHy2qEerWaWxYP9wWXF2mvwnrfP3iVh1H/oJP4Hbfx2Xj5/KLU8UinwZstXlhel7ZP4xkRSpH/Wq67PHdnjVjkYIIIDAgxLwOOAdM/ZjadbC+/+HIa4dig9q0t7c5/CxUyZMtJ1z600fvgS8egRDx05dotxWd4vqS6D0yIEB/d6L8qfkWtFVwKsvPXv73fdNn3Gd/bpxyw4Txun5unlyZrWPwVXAq3+y36//IFM/toDXFqA6Brydu3aXvv0Guk3sGDD7EvDqbmLdVWw7Yzn74zlk9dqNcb4gzDZIm3VcRyBUrlJVvvl2pmmyYP48eaFn5HEKI0aNlaeefsZ8rS/v0/N9nRXbLtU//vjdjFGLBsMaEGv5YfYsefmlXk7b6nEZeuSGltiOkLA19HYHb/Qb16vfUPTsaN2Jrc9OvtzZzVEIzZq3lDHjIo9sGD1quHw3/ZsYY9YjJfToBj2OokXTyF3j+gsGbe+q6C9klixbIbly5zFVP//sUxk4oK+9mePOcj2HWn8RoEWP63jt9T7SvmNnc28t58+dk9Ili9jb+rLO2gkBr6vV4zoCCCAQGAKX/v5NLmdLIXdzxU+I9dCR3+SRM9clVer46T8wFBmFPwQIeP2hzj2tECDgtUKRPhBAIJwFCHjdXH3dcZg5cxZTu1iR/G7/2b9j974EvNqPntXa6pk2ogFW9KJ/5j5+7OgoZ9W6Cng1RNUwVctz3bvYd1hG7ztizQbJkSNnjPOHXQW8HTp2lgGDPjDdxRbw2nYHOwa8GgprOKxF/9T+ypXLca7SsaNH7S8X8yTg1dAzTZq09r715WC2e+q/iRMnNmcIa2ir5/LaSoN6deTkLyeijGnBomVStGgx81lsAWqjxk3kowmfmTqffTpBBg/qb77WXc6621nLS717ytw5s53O1/aSNT1b9ok61U0dDW11HlqWLV1sXnzorGzetsu8mC56SO+srlUBr/at5wPrOcFabLuTHY+ViHNho110dsxHbO0zZMhojhDRcvzYUalRrZL5Wn929Jc1Gjrrz0zuHJE/045Ff5mhz7zu3NbieF9f1tmTuVIXAQQQQMC/AvcSJZQbXZ+Umy0i/++H1SXpzDWSfPJPkuDOXau7pr8wF+CIhjB/AIJ4+hzREMSLx9ARQCAgBDwOeGvVritPt4rcbehN6fveO6I7EIOtOL6M7OOPxsqwoUM8noIt4I1rl6ezwNPxRhpM1axVR+rUfUJKlCglufPkse821HpP1K4uBw8eME1cBbwaFg8bMdrU/fCDwTLh43FO52Q7HuLq1avmqAJbia+A1/FFfuqs3u4WTwJe265sd/u21Yv+sjn9fMqX08y6RF8Dx77f6PO29HrhJfOR44vhHOc78ZOPZcjgATGGpLtR9UViWtatXSNtnoncRa/HHejOXi2OwW/0DmxzdTy/N7Z5WxnwOp7La1tLbwPe/738osye9b3by2Xb8ez43Dq+lE5fGKhr6axM+HSSNGgYeQ7zN9O+krf7vG6+9mWd3R44FRFAAAEE/C5AwOv3JWAAXgoQ8HoJRzO/CxDw+n0JGAACCAS5gMcBb5DP1+vht2n7rHzw4QjTXo9pKFWisMtdvBrGli1XXjZt3GDazZj5g5SvUNF8nSNbJqd/bu4q4I0+Ab2HBsclSpYyl8aOGSmjRkSeyWr7s/wbN26YP4+PXvLlzy/Llq8yH+s5t53at41RR4+l0BexaZCoL8qqUrGsvU58BbyOu1L1fNRWTzl/EZazxfQk4E2TNq0kSxq5S3PS5C/Ny9Q+/eQjmTr5C/OZBuT6p/pVK5eXWzdv2m+nL7qLXl59/U3p/VLkC860jw8Gxzxi4scly6Vw4cg/93cMiR3DW30x3JN1I8/jdSyvvdFHXuz9ivko+pEDtmMuYtud69h/XCGw7X5WBrzTpn8vVapWM13bdnGradb/Py7C2Rqa5zFirXnmfv31jLRt/bSpdvrUSfOz507R4xb2HzpuquoxJmVLRe6uLl2mrMz+YYH5OrYX+Ok1R+85s2bKKy+/YNr4ss7ujJs6CCCAAAKBIUDAGxjrwCg8FyDg9dyMFoEhQMAbGOvAKBBAIHgFCHg9WDvbUQXaRMNOPRtUzwV1VvRs1PETJsqNG9ft4dLwkWNEd2tqef3Vl+X7Gd9GaVr3iXoycdLkyF2ZJ45L9SoVzPXUadLI62+85fScXb3e8qlWMnJ05O5bDXc15NUyd8FiKVGipPm6cIHccvly1KMONBzWnZ36Z+t6tmnxIvnNkQiOZeDgodK+QyfzkWPQpd/HV8CrfTvuru3QrrVERKxw6lyxUmXJkDGj/VgDTwJexw73HjgqekRD5Qpl5PTpU5I/fwFZujxCLl64IMWLRr6cLK6ibfUMXzW98Ndf5hcAjufFZsmS1QTuurZ6vUSxglG6s1lqm+pVK0Y5AkL71CMW9NgB3f2t4/n74kV7ez3ntn6DyHNq+7zxqnw7fVqUvid9MVX02YrtuYs+L3cDXn2pmr5YLvpzbOsva9ZssnrdJvsLz1y9qM5xHK5esqbHi0z8dEKsfw3gOOfVqyLsR3iope7s1X81LNazjJ299HHu/EX2X5r06NZZliz+0QzP13V29RxxHQEEEEAgMAQIeANjHRiF5wIEvJ6b0SIwBAh4A2MdGAUCCASvAAGvB2unOyF/XrnG/sZjDYj0JU0rlv8kO3Zsk+LFS0qFSpWkcpVq9vNYHXcPOv4pvu6qffP1V2TXrl1StWq1/2PvLKCjOrf2/7R/WqzFipS2QCEQQgiB4O7u7u6QYKU4FCoUDRCsSNHirsVdSrEEC+70FmmhuN3e/td+5zvTM5PRJJOZSZ691re+4ZxXf/uka93n7PO8aNq8Jfz9cxtXoxd4c/j6YufuA8o/dfFPC7ByxTKcO3dWVZeWLFkaY0MnKn9ViWqVyyMy8pz6PWnydNSr30D9PnH8GHqGdMPjx3+hYqUquHL5EuQT9d5ffIk+Xxg+P3/y5IkSwiLCTyrRV0Tlzl27q3syd2BuX7x8+dK4RlcKvHpWImrKp/mTwyYq4VPyUKFCJdRv0Ai5/P2V+CsisER0BF6p5BVR88WLF8jlm1WNM2jIMHTtFoI9e3ahbavmDj0l6zdtRb58Qapt+MkTSmwVuwwRoaf/MBsyj4RYYYglhj70eZBD43r36I59+/YoC44xYyegQMFCqrnkVnKsD32FrgjEYiewbu1qJE2WDD169Db6LL9+/Rq+Ppmj7EVynSpVauP1nXsOIGXKlMp3uFxpQ8W5xMOHf5pU0E6cNBX1GzZSz82qFctw4MB+HDt6BB988CGaNGuO7sE91cGEGo+6tas7xFEa2RN4b9y+q8Y6fuwoNm5Yh8OHD+LmjRuK05BhI1Q1toQ8O7VrVMHp06eMc+srqeUQtWZNG+DypUvqvgjw4hvdqrXBy9jclkSuxSTPDgNgQxIgARIgAbcSoMDrVvycPAYEKPDGAB67upUABV634ufkJEAC8YBAjAVe8eRt1rwFsmT5HOkzfKyEwRfPn+P3u79DDr+aNHE8rl+7Gg9QGbZQo2YtjAsNg3wC7khcvnQRFcuXNjbVqiPt9bUk8Or7iHAlVYj62L1rB9q1aWm8JFWjYjNg3k4a6EVGzcpB6ygioQhd+tB7xmrXXSnwyhzzf1qCcuUq2EMVY4FXDnSTg930n+xv2b5bCe6DBnyJJYt/srsGaSBC/IZN29TBbFqY5+nOnduoWK6UiVAubeXvZvuufeowO2shLwXq1a5uFPD17TSx1VpfWcfQwQPUCwnz0B9qZ2ujk8MmIHTcGGMTe3NqDUUkLVIwb5QKcltzOSLwWnquzce0ZJeRIkUK/Hr8lEmeRFSXavu0adOpw/Uk5O9AxGF5EaKPmOTZoQeJjUiABEiABNxOgAKv21PABUSTAAXeaIJjN7cToMDr9hRwASRAAl5OINoCr4gcUpXom9PPJgIRlnZs3wo5IMncIsBb2UnlbOjEKaheo6YS5sxD9nzjxnXMmzMbC+bPNbktvreLl6xEuvTpTa6LwNQrpBt+mDVHicciisun+hJJkybFqDGhqFylqkVhWavsHTF8aJS1yEFq330/Jso6J4aOU+K7FuMnhCmrB3PRTHLWrk0LHDv6a5SxxTZAKoet2RhIFaTMLaH/zF0/kPikmu9Xf1+sBeQgOLECMA+poJZK2TGjRxrXV6t2HUydPks1tWRXYOmZm7dwMcqXr2jiX6x5Iefxz6EqVB0NsVHYsHkrMmb8xKSLPBNSbdq4YV2L3svSWNjLYX7i02yeB6kEr1OzGiz5/2oTiT9sSI/eUcR5EYa7du6APbt3WtyG2B2079jZ7hb1/s7SWPxsh0q1bGBek4P+tIFkz5s2bkDfPj0g1cPOhCbwXr1yGeXLlozSVZ4AVc45AAAgAElEQVSrmrXqWHwupLHYYPTpFWLV2kNsT8KmTEfZsqbV0NpEIvYHd+0EEeQtRUzy7AwHtiUBEiABEnAPAQq87uHOWWNOgAJvzBlyBPcQoMDrHu6clQRIIP4QiJbAmzt3AOQzZ0cq6DRUlnxJ4wNG+QRdPgsPCAjEs2dPlXeuHKqm918136dwkz5FihTD8xfPsW3LzzaFO31/EabyBuaDr5+fElYjz51VNgD25pNq1Fz+uZXH7qmIcIvewVK1K+sqXrwkHjy4j31796hDrjwhREjPmy9IiYkP7t/DqYgI5YPsqSGiddly5ZHTLxeO/noEhw8dtJkj/T7k+RCRt1jxEpAK8L17djv1ckReIlSoUFk9jzu2b3P42YoJy6zZfBAQEKDsM6RiVyxBTp+KcPhQtOjOLdW48lzL/6VNmxYXL5zHsaNHrXrzms8jVhQFChZWlipJkyVVa/71yBGLvryW1hiTPEd3z+xHAiRAAiTgegIUeF3PmDO4hgAFXtdw5aiuJ0CB1/WMOQMJkED8JuC0wCvVpEdPnIYIK1pcOH8e27dvgVTbPX78BBkzZlSVvXXrNTCpsNu+bQs6dTB4WzJIgARIgARIgARIgARIwBMJUOD1xKxwTY4QoMDrCCW28UQCFHg9MStcEwmQgDcRcFrg7dGzD77sP1Dt8e3bt6hTs6o68MtaBIf0Qv+Bg423SxUv7NGVl96UPK6VBEiABEiABEiABEgg9glQ4I19phwxbghQ4I0bzpwl9glQ4I19phyRBEggYRFwWuDVnyBvzVfVHOGceQtRsVIVddnSYV0JCzl3SwIkQAIkQAIkQAIk4MkEKPB6cna4NlsEKPDy+fBWAhR4vTVzXDcJkICnEHBa4NUOxZLq3exZP3NoH0WKFsOKVetU200b1yO4m/0DnRwamI1IgARIgARIgARIgARIIJYJUOCNZaAcLs4IUOCNM9ScKJYJUOCNZaAcjgRIIMERcFrgvXjlJpIkSaIO6wrM7esQMDkY7NSZC6qtnE4vtg4MEiABEiABEiABEiABEvBEAhR4PTErXJMjBCjwOkKJbTyRAAVeT8wK10QCJOBNBJwWeA8cPorMmbPgn3/+weeZPnZor3Xq1sPkqTNU2x3bt6Jj+zYO9WMjEiABEiABEiABEiABEohrAhR445o454stAhR4Y4skx4lrAhR445o45yMBEohvBJwWeH+cuwCVKhsqcJcuWYSB/fvaZPLOO+/gl6MnkTHjJ6pdrx7dsG7tmvjGkfshARIgARIgARIgARKIJwQo8MaTRCbAbVDgTYBJjydbpsAbTxLJbZAACbiNgNMCb63adTB1+izjgkXk/fbrr/D8+fMom8jp54ep02bCN6efuidVv74+mfHmzRu3bZgTkwAJkAAJkAAJkAAJkIAtAhR4+Xx4KwEKvN6aOa6bAi+fARIgARKIGQGnBV6ZbvHSlShZqrRx5v/973+4efMG7t29iydPHiNd+gz4+OOPjVW7WsMxo0Zi+rTJMVsxe5MACZAACZAACZAACZCACwlQ4HUhXA7tUgIUeF2Kl4O7kAAFXhfC5dAkQAIJgkC0BN73338fB385hgwZHPPgFZL03k0QzxM3SQIkQAIkQAIkQAJeT4ACr9enMMFugAJvgk2912+cAq/Xp5AbIAEScDOBaAm82pqDQ3qhV5++SJw4sdVtPLh/H3379MS+fXvcvFVOTwIkQAIkQAIkQAIkQAL2CVDgtc+ILTyTAAVez8wLV2WfAAVe+4zYggRIgARsEYiRwCsDSzVv4SJFERiYD7n8cyNFyhS4+/vviDx3FidPHMeZM6eZARIgARIgARIgARIgARLwGgIUeL0mVVyoGQEKvHwkvJUABV5vzRzXTQIk4CkEYizwespGuA4SIAESIAESIAESIAESiA0CFHhjgyLHcAcBCrzuoM45Y4MABd7YoMgxSIAEEjIBpwXe3n2+RIdOXRSz4kXy4+nTp3b5TZ46A+XKV1DtqlepgNu3b9ntwwYkQAIkQAIkQAIkQAIk4A4CFHjdQZ1zxgYBCryxQZFjuIMABV53UOecJEAC8YmA0wLvpLBpqNegoWIQlNcfD//80y6PwUO+QpduwardiOFDMW/ObLt9vK1B0qRJ8fLlS29bNtfrYgKp06TBo4cPozVLTPp++OGHeP36Nd68eROtuaPbSeZNnvwD3L37e3SH8Lp+CXHPXpckLpgESIAEnCRAgddJYGzuMQQo8HpMKrgQJwlQ4HUSGJuTAAmQgBmBOBF4K1Wuih/nLlBT/7RwPoYOHuD1iShUuAi+6NsfWbNlQ9q06fDee++pPb169QqPHj3E+nVrMG1KGJ48eeK2vWbKlBlpPvoIz549w9Url922Dm+buEHDxhg0eBjWrF6J70d+o5Y/c/ZcFChQCO3btsTp06dsbmn02FBUqFgJ6dKlxzvvvIO3b9/i99//g7lzZtt9udGyVRv1MiRjxk/UM/XPP//gwYP72L9vrzqs0FYEBubFuNAwZM6SBcmSJVNNHz9+jIsXzqNTx7b469Ejh1LRt98AtGvfSVXaV6tc3maf/AUKomu3YBQpWhwpUqTAu+++a2z/4sULbNvyM77+ephDIrewOnbiNJIkTYoB/fpg86aNDq1Xa7RsxRoE5AnEpo3rMbB/X6f6umvPTi2SjUmABEiABOKMAAXeOEPNiWKZAAXeWAbK4eKMAAXeOEPNiUiABOIpgTgReJs1bwkRvSQ2bliPkO6dvRanHCo3ZdoMVK1Ww+4eRJzbvGkDgru5Z78HfzkGEXmfP38O/5zZ7K6XDQwERCgsVrwEJowfi7BJhuf28rXb6kBB4Sg8LYWIm+s3bYUIrdZi/rw5GD5ssMXbw776Gh07d7Xa93xkJGpWr4T//ve/UdrIS5RZP84zEVj1jcRKRcRae/YoUjV84NBRSFWqvJzI45/D5mNx4/ZdJWLbCpm7VInCdkXeL77sj169DcKss5X+8sJl5er1ai2HDx1EsyYNHH6c3blnhxfJhiRAAiRAAnFKgAJvnOLmZLFIgAJvLMLkUHFKgAJvnOLmZCRAAvGQgMsFXhFcduzahxy+ORW+KZMnYvzY0V6JUgS8k6cikTp1auP6L5w/j9OnI3Dhwnn4+eVSFYQ+PtmROHFi1ebevbsoXMC64OdKEBR4o0f37PkrSuAsUbQg7ty5rfK6bedeJVDmC8xlddAp02aidp266r5UTa9dswoR4SdRukw51Kpdxyi+9u4ZrO7po1r1mpgxa4669L///U9Vr+7dswt5AvOifoNGqjpWYsf2rejYvo1J3+TJk0PWrFXP/nL4ELZu/RkpU6RUdipZsxrE/T8ePECBoIAo65cq3KbNWiB79hwIzJvPWI3ujMArlcInTx7H6VMR+POPP1CgYGFUr1HTOFZERDjq1KwaZW6pnJV5g/IXUFXLWjgi8EqldalSZRCQJw+y5/A1Cs2OCLzu3HP0nkr2IgESIAESiEsCFHjjkjbnik0CFHhjkybHiksCFHjjkjbnIgESiI8E7Aq8I74ZiU8//dS493xB+ZE+fQb1b/ls/NWrqL6zIuomeu89fPjBh/DPHWD8XFz6NG1cHyJAeWOMHT8RTZo2V0sXK4YewV2xfduWKFtJlCgRQidOQZ269XD//j0KvF6UbLG0CD8VCbEXyOWbVa1c85DevXsn2rVuYXU3l67eUsK+WDKUL1MCt27dNLatUbMWps/4Uf370sULqFShjMk4m7fuREBAHnXNXAAW4XP/oV9VBbGMnSNbJmXdoEX/gYMRHNJL/dO8Ql7+Fg8cPqoquSVq16yKUxHhJnPL33i79h2j7MsRgXfr9j2YN3c2li9bEqW/CONbd+xRwqv8veTMniVKmyvX7xhFYP1NRwTenbv3G18c6fs6IvC6c89e9OfApZIACZBAgiVAgTfBpt7rN06B1+tTmGA3QIE3waaeGycBEoglAnYF3vOXrpsItDGZ9/r1ayhbqlhMhnBb36zZfLBn3yFjlWDlimVw8cIFm+sRgatm7TrGiuXKVaqhSJGikE/WJ00cb7Fv5y7dkSFDBpw9eyZKlad0EIG9bdsOyOrjgzRp0qhqyZs3byrP3927dqgx5ZPzkJBeaNq8JT744AP1Sf/8uQZxUYt1a1fjzJnTxn+LeNitew/Ip+7ZfHzw/NkznDt7Vq1h3749FtfavEUrVa0sQuaC+XNRoWJlNGjYSFWBPnv6DPv3ifj3o/KflcjyeVa0a9cBBQsXQdq0aXHn9m2sXrUCS5csssmxcZNmKFuuPHLl8kfiJElw4/p19ZJAqsHN49NPP0P7Dp3U5YUL5+PmjesQwb1M2fIoWKgQXr18hcWLFuKPPx5YnLN9x84YPuJbhIefRN1a1VQbETFz+fsrX1dra5Vq0gmTpqj2a9esRu+e3aOML0Jr5swGkVN/QGHKlClx6uxF9Wz99tsdFC9SIEpf/cuFIYP6Y9FPBk9riRPhZ5E2XTol+mbNnNFE/JX7JUuVxuKlK1VbyWXrFk1Nxpe8aczkRtFixRUzRwRem4kDcPrcJcj+ZG2fZ/o4SnOpepbnWEJeJMnfmYQjAq/YORQuUtQ4puxTwhGB1517tseM90mABEiABNxPgAKv+3PAFUSPAAXe6HFjL/cToMDr/hxwBSRAAt5NIM4EXhEsO7Rthbt3f/dKYnJInPicSoiQ2q5NS6f3sXb9Zsin4fIJvghxlkIT1M3FcBH/Vq3ZgIKFClud96+//kLegJwoXqIkli5fbXN906dNxphRI1Ub8YxdtHSlEuIsxdYtm9GtS0e1bn0cO3laVXOLJ+2lSxcRFJQ/Sne5V7pEEXTq0hVdugZb9GsVn+LuXQ2irD4+/jgjli5fhWw+2S2uSywHmjdraCK0S9X05KkzVPthQwYqywwRiPU+sb16dMO6tWsMbb76Go3/rypb/p00aVJVUSp7FZsFCbFrkP6yl7///ltdW71yuRIhtfhh5o+oXqOW+menDm0tVnaPGTdBWSFI9P+yj7HqVewbpk6fpa6vX7cWPUOi+vDqc2peSXzzzj3VV4T0ooWCLLK6fut3ZeFgz2ZCOkecPq9eEsRU4E2VOrUaS9g9evQI+fL4WVybdlGq40XIlnBE4DUfTOPgiMBr3tdde7YJhDdJgARIgATcRoACr9vQc+IYEqDAG0OA7O42AhR43YaeE5MACcQTAnYF3t5ffIlPPvnXoqFEyVL47LNMavsb1q/Dy5cvrKKQKlDxpj1+/BiuXrns1cikelcTGosUzBctoTomAq9eQJSKXDksSwTOzFmyIF269Eq8k+s+n38Kf//cWLJ8NVKlSmUUNkVg08f4saNUFWjatOkgQq3m3yrtLl44j1SpUsM3Z07j9UMHD6B504YmY2gCr/7imzdv8OTxY4jVgTamVG/qBVYRGd9PnBjiHatFlYpl1bOihVQUS1VrsmTJ1CURL8VaQITXAgULIUMGQzWoWGAUyh9o7KcXeM3n1RrpBV69cO/MA2ou8q9eu9EovksOLB2EVrd+A4RNnq6mmRw2AaHjxqjf3YN7YsCgIer30MED8NPC+RaXogmYUnlds1ol1UbydyLirPotlimtWjSx2Pf4yTNIlz69VasEfaeYip0iiNet10AdmCZzSvTr2xsrli+1idibBd7o7tmZZ45tSYAESIAE4o4ABd64Y82ZYpcABd7Y5cnR4o4ABd64Y82ZSIAE4icBuwKv+bYnhU1TBzdJ6D8zj594/t3VuQtXld2BrepbewxiIvBevnZbebDKYVZFCubFy5f/eh+LUPr1t9+jYqUqJlWSjhyyJpW+Uh0qIQKcCHFaiJ3Api07jJW9IirqbR30Aq8Iwz2Du2L//r2quwiPYkmgCbQitopP61dDB+H169eqzcRJU1G/YSP1WypqRXjVImzKD6hbr77654TxYxE2KdQE78zZc1G1Wg11bfhXQ4wWFHqBV+6JZ+3Pmzdh185tuH7tGnIH5MGunTuUMCwh7NKk+Uj9/ihtWqzfuEVV7pYpafj0X15wtGrdFgcP7FcWDVo8fPinqujVQv8CIMtnBo9q8yhbtjwWLDKInKtWLkffPj3V7+++H6PmkOjetaM6YM1S3Lh9VwnlcvCbHAAnIZYaUtktsWnjegR362yx76Ejx9WLGWtWCfpO0RV423XohN59vlQvFrSQv5fR33+HmTOmWVyX/qI3Crwx3bNdKGxAAiRAAiTgFgIUeN2CnZPGAgEKvLEAkUO4hQAFXrdg56QkQALxiIDTAq9UZubI4auEzmNHf41HKKxvRUQ1EdckNBuE6Gw8ugKvCLsi8ErY+gzffE32BF6xI7hw+YbqZu0TevENnj3HUFF6/NhRNKhnsCGQ0ARe8RTO458jiver+KvWrlNXtTU/OEyupUiRAmciDZXd4SdPoG7t6uq3VP5eu/kfJWZGRISjTk2DNYY+hMnFKzdVWxFfWzQzCMV6gfd8ZCSaNqmPv8yql63lrlOXbhg6bIR6rhvWr62aicCdJ0+g3QpUzQfX1guAvPmCsGHTVjWufs1z5i1U4rxEsyYNlIespdAOJBORPzC3r2qi9/5dtnQxBvT7wmJf/YFkfjk+N3lBYN4hugLvyFFj0bJVG5PhjvxyWLHTHzhnjb83Crwx3bM1FrxOAiRAAiTgXgIUeN3Ln7NHnwAF3uizY0/3EqDA617+nJ0ESMD7CTgt8Dq6ZbEJ8MmeHZGRkV5vz6AXWMUWoUBQgKMYTNpFV+CVQcJPRSrbAwkRIMeMHmlXYLcn8BYrXgLLVhi8aOfPm4PhwwZb3JfmC2xuh6AJvNbEYflE/4sv+6sxrVWmaqKl3nNYL4Qe2L8P4jlrKQYOGorEiRPj5s0byudXQi/wmh9GZi9pWjXz9999Y6w4FRE5SZIk8M+ZzaRi13ysiDMXkDp1aqNNhqW5cucOwM/bdqlbeoF34eJlKFOmnLouwrK1FyeWBF4RVEVklBBrB7F4sBTbduyFX65c6parBF7xqG7Vpi1SpEiJLJmzGJ9XqRoWD+ctP2+ymQJvFHid3XMGH8seyfaeTd4nARIgARKIWwKPH/2Gh40L4nWDEi6ZOPHKA0izOgIpU1k+k8Elk3LQBEHg5YN7aOg7BEUzm1qrxdbmN0aOw+57i/BBGj67scWU4xgIvH1wGUWzJEPm1EldguTItUe4+ioFkqVMF63x710Nj1Y/diIBEiCBuCIQLYFXBKnPP8+q1jhj+lQsWfyTcb1S7fjT4uXqkCYtXr16hS4d22Hv3t1xta9Yn+fS1VtKTNR8bqMzQUwEXrFgaNuug8m0Ui16795dZTnwzYhhRusDrZE9gVcOPRs89CvV3Jb365Fj4ciY8ROIv26ObAb/ZQl7Aq98vj7i6+9UW2sCryag6gXe9h07Y/iIbx1GrBeYYyLwSjWxVBVrHstZPs+K/QePOHRAmMbalgVCyVKlsXjpSrWvjRvWI6S7wU5h/IQwNGrcVP2Ww/vE39dSaAelyUGFskYJEYbl71Fi7epV6N0r2GJfscsQyw0JaxYSWsfoVvCaT1ytek2Id7RUYsuzkzN7ligH9en7eKPA6+yeKfA6/GfNhiRAAiTgVgIUeN2Kn5PHgAAF3hjAY1e3Enh57xJ8P0qE9CmSuGQdkf95ij+QBslTUeB1CWAOSgIk4HYCTgu8mTJlhohZWpQvW9JYoSsC6ImIc5ADh8xDhK8O7Vpj187tbt90dBZw+NcT+PTTz1TXvHn8HP7sXz9XTAReGUe8WkUEk4pi8xCv2SlhE028au0JvCKiipgq0bVzB6sVlnsP/IKsWbNF8R+2J/C2adse33w3So1vTeDVqoP1Aq+IwiIOS4gdwbNnT22m7OqVK8bDxZwReEX0TJ363xcR2nMrc0q89957ykNYnl3x5dWiRrVKuHnjusmaNv68HYGBedU1awJqrdp1MHX6LNVm1ozpGPnd1+q3VDlLtbNEr57dsW7Naov71Q5Zu3D+PKpUKqvaiGgr+5DYvm0LOnUwePmax9ETp9TBdOYivaW2sSXwytjiDyw+wRK2qpPlfnwQeJ3ds80HmzdJgARIgATcRoAWDW5Dz4ljSIAWDTEEyO5uI0CLBreh58QkQALxhIDTAq/+QCi9V6nwCOnRG/0GDDKikQrTv//+WwllEs74x3oaX/1hZNOmhmHs6O+dXqIm8Nqq8rQkeOonkmrI8hUqoVLlKggKKoDsOXIgUaJExiZVKpbFhQvn1b/tCbx6QW3MqJGYPm2yxT1p9hByqJhYFWjhKoG3cZNmGBc6SU0jnIW3o+GMwKtVZTs6ttbO/LA5uT5vwSKVFwl9DvRj9x84GMEhvdQl/cFw+v3O/GEavh/5TZQl+WTPgd17Dd68hw4eQPOmhs/uxINYKnsl9MKv+QDaXvX+vdb2HZsCr96j1l4u44vA68yenX322J4ESIAESCBuCFDgjRvOnCX2CVDgjX2mHDFuCFDgjRvOnIUESCD+EnBa4F234WcE5S+giJhX5O3ZdwjZfLKre6dPn0K92tVV1acIjVr1q70qPk9F3bxFK4waM14tT2waxIfX3uFdIsYWLlIUvx75RfVbvnItihYrrn5nzZzR4ufq9gRecz4yhwjHWk7CJoViwniDJ6v2Wb5YZMjn8eaR088P23fuU5fF57Zd6xZR2khVthzEJkKiHJRVqnhhYxtXCbz6qlQ5pKtJo3oOPxbOCLxiI5IkseEToNlzF6jD1Gb8MBXz585R1+S5FfG8dMmiePP6tXEN8qLCPPr2G4CevQwHnMkYo0ZGtZjYvHUnAgLyqDZ6kVgv3srBcFUrG/x49fFl/4Ho0bOPuvTjrBn49pvhxtuazYW16lz9+LZEYG3A2BR4Fy1ZgVKly6ihrVVxa/PGF4HXmT07/GCzIQmQAAmQQJwSoMAbp7g5WSwSoMAbizA5VJwSoMAbp7g5GQmQQDwk4LTAq1kVSBWqiJTy/7W4fO220T6gTq1qiAg/qW7pxS8RH0WE9MbQrApk7SJ2NqhbC3LwmKUQb9Qp02fi1auXKFzA8Om+VKVKtaZEv769sWL5UpOulatUw8zZcw1VmdevoWypYup+qtSp0a//IIs+u3K/YaMmCJ1oqL7V8123cQuCgvKr6wG5suPpU1OrAxGHpbJTLB9EiM+Xx09ZIujj25Gj0bpNO3VpzaqV6NM7xHjbVQKvTKCvrm3TsplV/+biJUoifYYMRlsDZwRe/T7Pnr+irEVKFiuE27dvwc8vF7bt3ItHDx8iX6DhcDJbIX3Fw1eYPvzzT/UCQJhq8dlnmZTgLrmV+0F5/U2G01hKn7Kli5tYQMiYYrGQPn0G9fcm69G/XBCf2+o1aqnxBvbvi6VLFpmMPXvOfMizZe25M9+XowKvHDAmB8uZP8faeGLnsv/Qr2rPEvYOqvMGgTe292zvueJ9EiABEiAB9xCgwOse7pw15gQo8MacIUdwDwEKvO7hzllJgATiDwGnBV5NCBOxUERDLaRCV8RfCfGDzZ7V4FcrkTdfEDZs2qp+r1+3Fj1DunolQamE3LXngBLxJKSSd9FPC7B75w6Eh59Avnz5UaxECZQsVcboxyqHoGkCr/5TfKmqHdCvD06dOoXSpcugafOW8PfPbeSiF3hz+Ppi5+4Dyj918U8LsHLFMpw7d1ZVl5YsWRpjQycqf1WJapXLIzLynPo9afJ01KvfQP0+cfwYeoZ0w+PHf6FipSq4cvkSzpw5jd5ffIk+X/RTbZ48eaK8bEWYF9FXROXOXburezJ3YG5fvHz50rhGVwq8elYiaq5etQKTwyYq4VPyUKFCJdRv0Ai5/P2V+CsisER0BF6p5BVR88WLF8jlazg8cNCQYejaLQR79uxC21bNHXpe12/ainz5glTb8JMnlNgqdhkiQk//Ybbx4EGxwhBLDH3o8yCHxvXu0R379u1RFhxjxk5AgYKFVHPJreRYH/oKXRGIBw/sh3VrVyNpsmTo0aO30Wf59evX8PXJHGUvkutUqVIbr+/ccwApU6ZUvsPlShsqziUePvxTPfNaTJw0FfUbNlLPzaoVy3DgwH4cO3oEH3zwIZo0a47uwT3VwYQaj7q1q0eZW15evP+ewVO6Xv2GxkP/Jk4YhyWLDIc3vnn7xmK1vIjqSZMmM3ke5R8nTxxHl07tjdctvYRx554depjYiARIgARIwK0EKPC6FT8njwEBCrwxgMeubiVAgdet+Dk5CZBAPCDgtMB75Fg4Mmb8RAk9Pp9/akTQpWuwUZwx/5RfL/7u37fXeCCWN/KrUbMWxoWGIXny5A4t//Kli6hYvrSxrVYdaa+zJYFX30dET01o1q7v3rUD7dq0NDaTqlGxGTBvJw30IqNm5aB1FJFQq7rUruk9Y7VrrhR4ZY75Py1BuXIV7KGKscArB7rJwW4REeGoU7Oqmm/L9t1KcB804EssWWwQGu2FCPEbNm1TB7NpYZ6nO3duo2K5UiZCubQVwXH7rn3qMDtrIS8FxPZEE/D17TSx1VpfWcfQwQPUCwnz0B9qZ2uPk8MmIHTcGGMTe3NqDcW7uUjBvFEqyOX+let3jB7dtvZtyWJk5+79yOGb015alMWG+aF47tyz3QWzAQmQAAmQgNsJUOB1ewq4gGgSoMAbTXDs5nYCFHjdngIugARIwMsJOC3wrl67EQULGXxYq1epoCpJJTTrBvltXqWr969dvGihqjD05pDK2dCJU1C9Rk2jJYV+PyKm3bhxHfPmzMaC+XNNtiq+t4uXrES69OlNrkvVZq+Qbvhh1hwlHl+/dlV9qi+RNGlSjBoTispVqloUlrXK3hHDh0bBKp+9y8F4IiDqY2LoOEyaaPAUlhg/IUxZPZiLwVKp3a5NC8iBeuYhtgFSOWzNxqBV67ZqbgmpqNy6ZXOUMSIvXouyX30jsRYYO36isgIwD3nJIJWyY0aPNK6vVu06mDp9lmpqya7A0nM3b+FilC9fUVNhKBMAACAASURBVFmHaP7FmhdyHv8cqkLV0RAbhQ2bt6qXIObPxPFjR9G4YV2L3svSVtjLYX7i02yeB6kEr1Ozmjqo0FqIFYocdGguzosw3LVzB+zZvdNi1+EjvjVW+drap56PtJP/DgwdNgJ5AvOaHPSnjSF/B5s2bkDfPj0g1cOWIiYC745d++Cb089uasQ3Wl466cOde7a7YDYgARIgARJwOwEKvG5PARcQTQIUeKMJjt3cToACr9tTwAWQAAl4OQGnBd7+AwcjOKSX2rZUI4qXbKNGTdWn2lq0bd3CREyaMm0matepq25bqgT1ZobyCbp8Ph8QEIhnz54q71w5VE3vv2q+PxHvpE+RIsXw/MVzbNvys03hTt9fPmnPG5gPvn5+SliNPHdW2QDYm0+qUXP551Yeu6ciwi16B4swKOsqXrwkHjy4j3179+C33+54RHpEoBarDxETH9y/h1MREVFEO49Y6P8tQkT6suXKI6dfLhz99QgOHzpoM0f6tcvzISJvseIlIBXge/fstlj9am2/8hKhQoXK6nncsX2bw89WTPhlzeaDgIAAZZ8hFbtiCXL6VISJpUNMxvfEvglxz56YB66JBEiABFxBgAKvK6hyzLggQIE3LihzDlcQoMDrCqockwRIICERcFrglepVqbrUvDXNYYlvZ24/H+NlEebEt1drX6t6ZZw+fSohMeZeSYAESIAESIAESIAEvIgABV4vShaXakKAAi8fCG8lQIHXWzPHdZMACXgKAacFXlm4HIAln81b8nYN6d4ZGzesN+5v9NhQNGtu8IU1F389BQLXQQIkQAIkQAIkQAIkQAIaAQq8fBa8lQAFXm/NHNdNgZfPAAmQAAnEjEC0BF6ZUvw3R48Zj0yZsyjPT/mkf+S3I7B500aTFek9NtesWok+vUNitmL2JgESIAESIAESIAESIAEXEqDA60K4HNqlBCjwuhQvB3chAQq8LoTLoUmABBIEgWgLvAmCDjdJAiRAAiRAAiRAAiSQ4AhQ4E1wKY83G6bAG29SmeA2QoE3waWcGyYBEohlAhR4YxkohyMBEiABEiABEiABEvBuAhR4vTt/CXn1FHgTcva9e+8UeL07f1w9CZCA+wlQ4HV/DrgCEiABEiABEiABEiABDyJAgdeDksGlOEWAAq9TuNjYgwhQ4PWgZHApJEACXknAaYE3h68vihYtHu3Nrlm9Es+fP492f3YkARIgARIgARIgARIgAVcSoMDrSroc25UEKPC6ki7HdiUBCryupMuxSYAEEgIBpwXeSWHTUK9Bw2izadakAQ4fOhjt/uxIAiRAAiRAAiRAAiRAAq4kQIHXlXQ5tisJUOB1JV2O7UoCFHhdSZdjkwAJJAQCFHgTQpa5RxIgARIgARIgARIgAYcJUOB1GBUbehgBCrwelhAux2ECFHgdRsWGJEACJGCRgNMCb8tWbdC2XQeHcebwzWlse/nSRXRo3wY3b1x3uD8bkgAJkAAJkAAJkAAJkEBcEqDAG5e0OVdsEqDAG5s0OVZcEqDAG5e0ORcJkEB8JOC0wOsshIWLl6FMmXKqW6+e3bFuzWpnh2B7EiABEiABEiABEiABEogzAhR44ww1J4plAhR4Yxkoh4szAhR44ww1JyIBEoinBFwu8KZIkQInT0Xivffew6tXr5Dbzwf//e9/4ylObosESIAESIAESIAESMDbCVDg9fYMJtz1U+BNuLn39p1T4PX2DHL9JEAC7ibgcoFXNrhqzQYUKlxE7bVdm5bYvWuHu/fN+UmABEiABEiABEiABEjAIgEKvHwwvJUABV5vzRzXTYGXzwAJkAAJxIxAnAi8PXr2wZf9B6qV/rRwPoYOHhCzVbM3CZAACZAACZAACZAACbiIAAVeF4HlsC4nQIHX5Yg5gYsIUOB1EVgOSwIkkGAIxInAG9KjN/oNGKSghp88gbq1q8c7wEmTJsXLly/j3b64oZgRSJ0mDR49fBitQWLS98MPP8Tr16/x5s2baM0dk07RXXeiRInw8ccZ8dtvd/DPP/84vYQsn2fFyxcvcP/+Paf7pk2bDokTJ1ZzM0iABEiABEiAAi+fAW8lQIHXWzPHdVPg5TNAAiRAAjEjECcC79bte5DL31+tdPfunWjXukXMVu0BvcVy4ou+/ZE1WzaIOCQewxLiM/zo0UOsX7cG06aE4cmTJ25bbaZMmZHmo4/w7NkzXL1y2W3r8LaJGzRsjEGDh2HN6pX4fuQ3avkzZ89FgQKF0L5tS5w+fcrmlkaPDUWFipWQLl16vPPOO3j79i1+//0/mDtnNubNmW2zb8tWbdClWzAyZvxEPVMidD54cB/79+1F3z49bfYNDMyLcaFhyJwlC5IlS6baPn78GBcvnEenjm3x16NHDqWib78BaNe+E27fvoVqlcs71Cc6e/7008/QtXsIqlSthjRpPjL+DcmEwuzE8WP4ZsQwnDt31uoa2nfsjJ69vkCqVKkUawmN2cjvvrZ4qKO0E86NmzZHtmw+SJ48ubGv9H/4559YMH8uJodNwP/+9z+H9i+Nmrdopf6bIDFt2mS7uXZ4YDYkARIgARKIcwIUeOMcOSeMJQIUeGMJJIeJcwIUeOMcOSckARKIZwScFnilyi116jQ2MYgw9VHatMiTJxBt2rZHDt+cxvbDvxqC+XN/9FqM77//PqZMm4Gq1WrY3YMITZs3bUBwt85227qiwcFfjkFE3ufPn8M/ZzZXTBEvx1y2Yg2KFS+BCePHImxSqNrj5Wu3IbkXjsLTUrz77rtYv2krRGi1FvPnzcHwYYMt3h721dfo2Lmr1b7nIyNRs3oli4cUVqpcFbN+nAdZg6V4+vSpEmtFtLUVUn174NBRSAWwvJzI45/DZvuY7PnQkeP47LNMNseXv6GWzRvj4IH9Ju1EpN2xa5/Jf1ssDbRzxzZ0aNfa5FbZsuWxYNFSu8/umTOnUbNaJbvtpIE8L0uXrzYKxbSicQgbG5EACZCAxxKgwOuxqeHC7BCgwMtHxFsJUOD11sxx3SRAAp5CwGmBN3TiZDRs1CRa65dK0oJBAV5rZSBi1slTkUidOrVx/xfOn8fp0xG4cOE8/PxyISBPIHx8sqvPvSXu3buLwgWsC37RAulgJwq8DoIya3b2/BUlcJYoWhB37txWed22c6+yWsgXmMvqoFOmzUTtOnXVfXnW165ZhYjwkyhdphxq1a5jFF979wxW9/RRrXpNzJg1R12SqtHNmzZi755dyBOYF/UbNEKKFCnUvR3bt6Jj+zYmfaUCVdasibu/HD6ErVt/RsoUKVGvQUNkzWoQ9/948AAFggKirD9/gYJo2qwFsmfPgcC8+YyVtI4IvDHZsybwSrWuWLecO3sGV69eUX8/9Rs2RsqUKdVapSo+Z/YsJuueNHk66tVvoK49uH8fIpwvXrwQGdJnQNv2HSFV2CLISwwZ1B+Lflpg7K8XeCW/kqNTERH4B/+gQoVKSqzVYuKEcZg0YbzNBylz5izYtfegcT5pTIE3en977EUCJEACnkKAAq+nZILrcJYABV5nibG9pxCgwOspmeA6SIAEvJWA0wLvpLBpSjRyNl68eIHWLZvi2NFfne3qMe3Hjp+IJk2bq/WI6NQjuCu2b9sSZX3iJRo6cQrq1K2n/EAp8HpMCu0uRCwtwk9FQp7XXL5ZVfvBQ75Stgn27EUuXb2lhH0RLMuXKYFbt24a56tRsxamzzBUrl+6eAGVKpQxWcvmrTsREJBHXTMXgMWuYf+hX5WAKGPnyJbJxKO2/8DBCA7ppfpu3LAeId3/rRiXStcDh4+qSm6J2jWr4lREuMncI74ZiXbtO0Zh44jAG5M9i+3FrZs3MW7sqChewcLxePhZo7BdumRR3Lxx3bjGi1duIkmSJIpH3oCcUaqqixQthhWr1qn25r7f8mXB6HETVCX18WNHo+y7e3BPDBg0RF0XO45a1StbfW7kRcChIyeMYrTWkAKv3T81NiABEiABjyZAgdej08PF2SBAgZePh7cSoMDrrZnjukmABDyFgNMCr4hJHTp2sbt+qUJ88fw57j+4j8MHD0D8MJ3xs7Q7QRw3yJrNB3v2HTJ+gl25YhlcvHDB5iqk8rNm7ToYP3a0ale5SjUUKVIU8rn8pImWqwI7d+mODBky4OzZM1GqPGWMfEH50bZtB2T18UGaNGnw5x9/4ObNm8rzd/euHWoe+cw+JKQXmjZviQ8++EB90m9ui7Fu7WrIJ+haiHjYrXsPiLdwNh8fPH/2DOfOnlVr2Ldvj8V9iueoVFuKkCmepRUqVkaDho1UFeizp8+wf98ezJv7o/KflZBDsNq164CChYsgbdq0uHP7NlavWoGlSxbZ5Ni4STOULVceuXL5I3GSJLhx/TqkSnXK5IlR+omva/sOndT1hQvnK1FQBPcyZcujYKFCePXyFRYvWog//nhgcU7xdB0+4luEh59E3VrVVBvNQ3pg/75W1yoVoxMmTVHt165Zjd49u0cZX4RWqfaUCMrrr7xeJaRS9dTZi+rZkkO+ihcpEKWv/uWCeUXqifCzSJsunRJ9s2bOGOWAspKlSmPx0pVqTMll6xZNTcaXvGnM5EbRYsUVM3sCb0z27Mifr6xZ1i4hVctSvazFzTuGg9TEYzgwt6/F4W7cvquYOltFLwcmXrh8Q41pLR9yT8bed/AIsmT5XLWdGDoOffr2U78p8DqSYbYhARIgAc8lQIHXc3PDldkmQIGXT4i3EqDA662Z47pJgAQ8hYDTAq+nLDyu1/Hj3AUQn1MJEVLbtWnp9BLWrt8M+RxehG4R4izF+UvX1QFZ169fQ9lSxYxNRExatWYDChYqbHXev/76S1UzFi9RUvmB2orp0yZjzKiRqol4xi5aujJKFaLWf+uWzejWpWMUgf7YydNInz6Dqp68dOkigoLyR5lS7pUuUQSdunRFl67BJodZaY3Fp7h7V4Moq4+PP86IpctXIZtPdotbEcuB5s0amgjtUjU9eeoM1X7YkIHKMkMEYu0ALrneq0c3rFu7xtDmq6/VYVtaiLgnHtKSI7FZkJAqTekve/n777/VtdUrl2PE8KHGfj/M/BHVa9RS/+7Uoa3Fyu4x4yYoKwSJ/l/2wfJlS9RvsW+YOn2W+r1+3Vr0DInqw6vPqXklsSZ2ipBetFCQRVbXb/2uLBzs2UxI54jT59VLAnsCb0z2bHGRZhe150suB+TKrl6MaCGCuBysJlGvTg2cPHHcpHdOPz9s37lPXdu0cb1TPtj6fOzduxttWjazuNwly1ahRMlS6t7o77/D4cMHsWGTQYSmwOtIhtmGBEiABDyXAAVez80NV2abAAVePiHeSoACr7dmjusmARLwFAIUeB3MhFTvakJjkYL5cPfu7w72/LdZTARevZgmFblyWJYInJmzZEG6dOmVeCfXfT7/FP7+ubFk+WolgGnC5qNHj0zWO37sKOVLmjZtOoiQpvm3SruLF84jVarU8M2Z03j90MEDaN7U1JpDL8Bpg7958wZPHj+GWB1oY0plqV5gFZHx/cSJId6xWlSpWFb5GGshFcUi4onYLSHipVgLiPBaoGAhZMjwsbouFhiF8gca++kFXvN5tUZ6gVcv3DuTUHORf/XajUbxXXIguTCPuvUbIGzydHV5ctgEhI4bo37rLQGGDh6gxEFLoQm5+sO/JH8nIs6q5vv37UWrFpb9sY+fPIN06dNb9LM1n8tRgTcme7bGWp6ZipWqoHtwDwTlN1QyWzoobdoPs1CzVh11X/IsLPUV3fIyRKrRJRrUq2XRisF8DXLgW8PGTRDSo7dR5C9VvLDyYTaPr7/9Hm3bdVCX16xaiT69Q5A3XxAFXmf+iNiWBEiABDyYAAVeD04Ol2aTAAVePiDeSoACr7dmjusmARLwFAIOCbxSwaiFVDE6arUgPpraQUci/L1+/dpT9u30Os5duKrsDmxV39obNCYC7+VrtxVL+SS9SMG8JgfViVAqgpMIY/ny+BmX4cgha1LpK9WhEiuWL0W/vr2N/cVOYNOWHcbK3prVKpnYOugFXhGGewZ3xf79e1V/ER7FkkATaEWEk4rVr4YOMj4HEydNRf2GjVR7qagV4VWLsCk/oG69+uqfE8aPRdikUBO84t9atVoNdW34V0OMFhR6gVfuiUfrz5s3YdfObbh+7RpyB+TBrp07lDAsIezSpPlI/f4obVqs37hFVe6WKVlUXev9xZdo1botDh7YD7Fo0OLhwz9NfF/1LwCyfJbB4qOgP9xr1crl6Nunp2r33fdj1BwS3bt2VAesWQrNckAERzkATkJETBEzJWxVqmoHmkkePs9kEMethaMCb0z2bD53Dl9fLFu+RuVA/zJAxF2xZ5B160P+m7RqzUb45fr30Dvxxd62dQs+/fRTo9juSCWtiMXlylc0eeEgB7dJfizZk0iuJGcSeisPCrw2HyveJAESIAGvIkCB16vSxcXqCFDg5ePgrQQo8Hpr5rhuEiABTyFgV+AVX9aBg//9FF3/ab+9TegFQBFG/XNmMxEm7fX3lPsiOIm4JqHZIERnbdEVeEXYFYFXwtZn+OZrsifw6r1GRaDVi8PaWOIbPHuOoaJUDqSSakgttPzKp/N5/HNEEeGmTJuJ2nXqqubmB4fJtRQpUuBM5GV1X38QllRxXrv5HyX0RUSEo05NgzWGPoSJHLQlbUV8bdHMIBTrBd7zkZFo2qQ+/jKrXraWu05dumHosBHqIMCG9WurZiJwy6FcInyLAG4tNB9cWy8A9AKgfs1z5i1U4rxEsyYNcPjQQYvTXLl+R1WW6n1n9T64y5YuxoB+X1jsu3P3fuTwzanu+eX43ObfoaMCb0z2bL5IvVCt3bt58waGDxuCPbt3WuV+5Fg45BA6SyGeuNa8rvXt9+4/DPHY1kKqr9esXgmppjZ/KSUvQ8SaQZ5NqeIXoV2r1nZE4H0/6QdW98IbJEACJEACnkPg7T9v8bxtBbxuUMIli0q88gCSL9yL995J5JLxOWjCJfDu3++ieeAoFM3s/KHYjlDbGDkOm6+EIdF7iR1pzjYk4DCBpHiDGS3zoEru9A73caZh8JLTWH7yARK9974z3Yxt37w02PcxSIAESMBTCdgVeA//egJycJWEVO/KgUaWPj+3tEE5vGnu/J+Mt2b+MA3fj/zGU1lYXZdeYBVbhAJBAdHaQ3QFXpks/FSksj2QEAFyzOiR6v/bCnsCb7HiJbBshcGLdv68ORg+bLDF4TRfYHM7BE3gtSYO9+rdF1982V+Naa0yVRMt9Z7DeqHswP59EM9ZSzFw0FBIlbgIgeLzK6EXeM0PI7OXNK2a+fvvvsHMGdNUcxGRkyRJol5OyPNvLSLOXEDq1KmNNhmW2uXOHYCft+1St/QC78LFy1CmTDl1XYRla3m1JPC2bNUGI0eNVX1tVatu27HXWO0aWwJvTPZszkdE2tHjQpE8WXJ8nDEjMmXKbGwih+INHmg4vEwLqbxetXajsiOR6t4N69chKH9+4yF20k6u/zB9itFr2lruevTsgyJFiynf4WzZfIxV5y9evFCV3Fq1txwSuGvPASWyy7NQolhB5WmshSMCbwYfyx7J9p5N3icBEiABEohbAo8f/YaHjQu6VOBNszoCKVNZPpMhbnfL2eITgZcP7qGh7xCXCry77y3CB2n47Man58YT9vL2z2uY1ii7ywTekCVnsOEqkDxVumht997V8Gj1YycSIAESiCsCNgVeqWqT6jYtQrp3xsYN651a28rV61G4iOFz94d//omgvP5O9feUxpeu3lJiouZzG511xUTg1Xt+anNLtei9e3eV5cA3I4ZFqTa0J/DKoWeDh36lhrPl/apVSYrNRo5smYxbtyfwtuvQCSO+/k61tybwagKqXuBt37Ezho/41mHEeoE5JgKvVBNLVbHmsSyC3v6DR2BNwNYvUGNtywKhZKnSWLx0peomf0fy9yQxfkIYGjVuqn7L4X3i72sptIPSpHJU1ighwrAIxBJrV69C717BFvuKXYZYbkhYs5DQOjpawRuTPdtLrvjh7tp7UInrEubCt/ZMCu/gbp2MthbS77tRY1CuXAXjFNu2/ozOHdvZm9J4f/TYUDRrbjhE8cL586hSqaz6rfk1y5ytWzRVBwvqI09gXtVGQixHRo38Rv334o8/Hhibpf7E8oGBDi+ODUmABEiABOKEwLPnf+Jxs2IuFXhTLT+K5MnTxMl+OEnCIfD28RM0zjXcpQLvjjtzkDSFofCEQQKxRuDZXUxvktNlAm/wkjNYd+EVknxgOKjZ2Xj0nyvOdmF7EiABEohTAjYFXr1H6rlzZ1G9yr+iiaOrTJkyJU6eikSiRIZP0ArkCzARPBwdx93t9JXMefP4OfzZv37dMRF4ZRzx/WzStLnR11g/tnjNTgmbaOJVa0/gFRFVxFSJrp07YMvPmyxi3nvgF2TNmi2K/7A9gbdN2/b45rtRakxrAq9WHawXeEUUFnFYQuwInj17ajP9V69cMR4u5ozAK6Jn6tT//g8rzWta5pSQSk3xEBZBT3x5tahRrRJu3rhusqaNP29HYGBedc2agFqrdh1MnT5LtZk1YzpGfve1+i1VzlLtLNGrZ3esW7Pa4n61Q9b0oqOItrIPie3btqBTB4OXr3kcPXFKHUxnLtJbauuowBuTPdtM6P/d1NvD6KuT9bYhehb6MctXqIR5CxYZL9mrWjZfj+a5rX+ho7fScGT9Wht7grozY7EtCZAACZBA3BCgB2/ccOYssU+AHryxz5Qjxg0BevDGDWfOQgIkEH8J2BR4t2zfrT6Blhg2ZCAWLpgXLRJ6j8uvRwzD3B8NIpc3hf4wsmlTwzB29PdOL18TeG1VeVoSPPUTifeniFeVKldBUFABZM+RwyieS7sqFcviwoXzqos9gVfE4rHjJ6q2Y0aNhPgrWwrNHkI+SxerAi1cJfA2btIM40InqWmEs/B2NJwReLWqbEfH1tqZHzYn10VMlLyY50A/dv+BgxEc0ktd0h8Mp9+vNRsTn+w5sHuvwZv30MEDaN7U4KsmHsRS2SthTeyUe9pe9f691vbtqMAbkz07wlzvy3vi+DHUr1tTddMfSjc5bAJCxxkOPDMPTdSW640b1sWvR35xZFrVRv/frEL5A5VNAwVeh/GxIQmQAAl4PQEKvF6fwgS7AQq8CTb1Xr9xCrxen0JugARIwM0EbAq8x0+eQbr0BpPz0iWLRqladHTtM2fPRdVqNVRzWwdBOTqeO9o1b9EKo8aMV1NLVZ/48No7vEvEWLGn0ISl5SvXomix4mqMrJkzqopY87An8Jq3lzlEOA7KX0DdCpsUignjDZ6s2mf5r169Qs7shs/z9ZHTzw/bd+5Tl8Tntl3rFlHaiC3Fhcs3lJB469ZNlCpe2NjGVQKvvir1yC+H0aRRPYdT7ozAK56rSRIbLABmz12gDlOb8cNUzJ87R10TgVwqz+XZf/P6tXENctCdefTtNwA9exkOOJMxRo2MajGxeetOBATkUW30IrFevJWD4apWNvjx6uPL/gMhXrESP86agW+/GW68rdlcWKvO1Y9vSwTWBnRU4I3Jnh1JaOs27fDtyNGq6aaN6xHczVBtrhd4J04Yh0kTDH+X5qHn3bZ1C5uHtZn3PXX2IlKlSqWqt7Nl+UT9rYp9x0dprXt2BQQEGCu0Zb3jx43Bf9++xe3btxzZLtuQAAmQAAl4EAEKvB6UDC7FKQIUeJ3CxcYeRIACrwclg0shARLwSgI2BV6t6k/EDREkoxsdOnXBV8MNh6tZExKjO3Zc9tOsCmROETsb1K1lPIDJfB3ijTpl+ky8evUShQsYPt2XqlSp1pTo17c3VixfatJNPj0XMVxVZV6/hrKliqn7qVKnRr/+gyz67Mr9ho2aIHSiofpWxF0ReSXWbdyCoKD86ndArux4+tTU6kDEYcmxHCInOc6Xx09ZIuhDBDYR2iTWrFqJPr1DjLddJfDKBPrq2jYtm2Hv3t0WU128REmkz5DBaGvgjMCrH/Ds+SsQi4aSxQopQc7PLxe27dyrDtHKF5jL7mMmfcXDV5iK17S8ANAL+OINK4K75NaSF7XGUvqULV3c5GWKjCnVqOnTZ1CCo6xH/3Lhh5k/onqNWmqNA/v3xdIl/1oTyLXZc+ZDni1rz5355hwVeGOyZ+HRtHkLTJ40QdlGmIfs+diJ08YXTHqP6EqVqxq9bn/77Q6KFzG83NCHCPOnz12CHMYmzOQFx+v/E+k7d+mO48eP4uSJ4xbzqv97+uuvv5A3IKfd/EsDRw5Zc2ggNiIBEiABEnA7AQq8bk8BFxBNAhR4owmO3dxOgAKv21PABZAACXg5AZsCr1YZKMKIr8+/p9o7u+e69RsgbPJ01W3H9q3o2L6Ns0N4RHuphNy154AS8SSkknfRTwuwe+cOhIefQL58+VGsRAmULFXG6Mcqh6BpAq/+U3ypqh3Qrw9OnTqF0qXLoGnzlkY7DBlbL/Dm8PXFzt0HlBC2+KcFWLliGcQTWUSskiVLY2zoROWvKlGtcnlERp5TvydNno569Ruo3/KJe8+Qbnj8+C9UrFQFVy5fwpkzp9H7iy/R54t+qs2TJ0+Ul21E+Ekl+oqo3Llrd3VP5g7M7YuXL18ac+FKgVfPSgS61atWYHLYRCV8Sh4qVKiE+g0aIZe/vxJ/RQSWiI7AK5W8Imq+ePECuXyzqnEGDRmGrt1CsGfPLrRt1dyh52/9pq3Ily9ItQ0/eUKJrWKXISL09B9mQ+aRECsMscTQhz4Pcqhb7x7dsW/fHmXBMWbsBBQoWEg1l9xKjvWhr9AVgXjwwH5Yt3Y1kiZLhh49eht9lq39HUuuU6VKbRxy554DEO9s8R0uV9pQcS7x8OGf6pnXR3T3XK58RcxfuBjiHb3l583YtWs7jhw+jBcvnqNCxcoYMnS4UdyVdeTP628UaGW9UmEr/sgSx47+inZtWhhfYAjnRUtWI01w9gAAIABJREFUGKul9fYO0v7QkeMQgfnmzRtYsWwpfv31F5Uvn+zZEdKjD8QrWfsb178wsfcQUOC1R4j3SYAESMB7CFDg9Z5ccaWmBCjw8onwVgIUeL01c1w3CZCApxCwKfBqn/jLYp09pEi/Qf0n1XoLAU+B4Mw6atSshXGhYaoy0JG4fOkiKpYvbWyqVUfa62tJ4NX3EdFTE6G067t37UC7Ni2NzUTEEpsB83bSQC8y6vMs90QklEpTfeg9Y7XrrhR4ZY75Py1BuXL2D/aLqcArB7rJwW4REeGoU7Oq2p7mPz1owJdYsvgne+lS90WI37Bpm1F4lGvmebpz5zYqlitlIpRLOxEtt+/apw6zsxbyUqBe7epGAV/fTn8goqX+sg6pgpUXEuahP9TO1kYt+d1Gd8+awGsPrKy7WZMG+OXwIZOmRYoWg1ieaM+2PLN//PEA777zLj5Km9Z4XcTyYoWDTHhrAq+9uc+ePYMaVSvaa2a8T4HXYVRsSAIkQAIeT4ACr8eniAu0QoACLx8NbyVAgddbM8d1kwAJeAoBmwKv/hAlqbqV6tvohN4L09bn9tEZ2x19pHI2dOIUVK9RUwlz5iGi1I0b1zFvzmwsmD/X5Lb43i5estJYnajdFCGqV0g3/DBrjhKPr1+7qj7Vl0iaNClGjQlF5SpVLQrLWmXviOFDo6xFDlITgd18nRNDx2HSxH+9S8dPCFNWD+ZisNg6SHWkVEmah3aIlTUbg1at26q5Jbp0ao+tWzZHGSPy4rUo+9U3EmsBOQgudep/K0y1+1JNKpWXY0aPNK5Pqi+nTjcc4mfJrsDS8zJv4WKUL1/RxL9Y80LO459DVTY7GmKjsGHzVmTM+IlJF3kmjh87qg77suS9LI2FvRzmJz7N5nmQSvA6NavBkv+vNpF44ob06B1FnBdhuGvnDlY9aIeP+NZY5Wtrn9ZezkRnz2k++gjjxk9EseIlrb4skWrlzh3aWvWwFc/kyVN/QDaf7Bb/BtetXaOq5DVrBq1Ry1Zt0KVbMMTr2VLI35P4+jpzuJ+MI+vZtGWHGlIOpJSDKRkkQAIkQALeSYACr3fmjasGKPDyKfBWAhR4vTVzXDcJkICnELAp8Pbu8yX69DV8vq+3GnBm8SVLlcbipSuNXSx5wToznqe1lUPI5PP5gIBAPHv2VFkryKFq1kQ8TciTPkWKFMPzF8+xbcvPNoU7/Z7FjzdvYD74+vkpf9jIc2eVDYC9+fz9cyOXf27lsXsqItyid7BU7cq6ihcviQcP7mPf3j0Qj1NPCBGopUIyT2BePLh/D6ciIpQPsqeGiPRly5VHTr9cOPrrERw+dNBmjvT7EHFXRN5ixUtAKsD37tkdxT/Z1r7lJUKFCpXV87hj+zaHn62YsozunkUgDsgTiJw5/dSLCHk+T5w45vCeP/30MxQsVAj+uQPw8sVL5a0r/Z8/f25zSzKXzCl/F59nzYrbt24pb97Lly7FFAX7kwAJkAAJeDkBCrxensAEvHwKvAk4+V6+dQq8Xp5ALp8ESMDtBGwKvFk+z4p9B34xVhMuX7YE/b/s4/CiRUA5eSpSHV4l8ceDB+rwKQYJkAAJkAAJkAAJkAAJeCoBCryemhmuyx4BCrz2CPG+pxKgwOupmeG6SIAEvIWATYFXNvH96HFo0bK1cT9yYFFwt852qwLlsKvvR4/HBx98YOwrn6dLdSuDBEiABEiABEiABEiABDyVAAVeT80M12WPAAVee4R431MJUOD11MxwXSRAAt5CwK7AK5+Lh5+KhJxMr4X4ie7bt0f5n8qn8idPHEOaj9KicOEiCMpfAEWLFkPWbD4mDKR96xZNvYUL10kCJEACJEACJEACJJBACVDgTaCJjwfbpsAbD5KYQLdAgTeBJp7bJgESiDUCdgVemSlfUH4sWbbK6mFI9lZz+/YtVKtc3mFPTXvj8T4JkAAJkAAJkAAJkAAJuIoABV5XkeW4riZAgdfVhDm+qwhQ4HUVWY5LAiSQUAg4JPAKjESJEmH8hMmoW6++0ZPXHqS3b99i7OjvMWvmdHtNeZ8ESIAESIAESIAESIAEPIIABV6PSAMXEQ0CFHijAY1dPIIABV6PSAMXQQIk4MUEHBZ4tT3m8PXFsOHfIFs2H6RLlx5JkiQxbl+sG54+fYq7v/8H586dw/Bhg/D48WMvxsOlkwAJkAAJkAAJkAAJJDQCFHgTWsbjz34p8MafXCa0nVDgTWgZ535JgARim4DTAq/5At5//30E5s2Hx4//wuVLl2J7fRyPBEiABEiABEiABEiABOKUAAXeOMXNyWKRAAXeWITJoeKUAAXeOMXNyUiABOIhgRgLvPGQCbdEAiRAAiRAAiRAAiSQgAlQ4E3AyffyrVPg9fIEJuDlU+BNwMnn1kmABGKFAAXeWMHIQUiABEiABEiABEiABOILAQq88SWTCW8fFHgTXs7jy44p8MaXTHIfJEAC7iJAgddd5DkvCZAACZAACZAACZCARxKgwOuRaeGiHCBAgdcBSGzikQQo8HpkWrgoEiABLyJAgdeLksWlkgAJkAAJkAAJkAAJuJ4ABV7XM+YMriFAgdc1XDmq6wlQ4HU9Y85AAiQQvwlQ4I3f+eXuSIAESIAESIAESIAEnCRAgddJYGzuMQQo8HpMKrgQJwlQ4HUSGJuTAAmQgBkBCrx8JEiABEiABEiABEiABEhAR4ACLx8HbyVAgddbM8d1U+DlM0ACJEACMSNAgTdm/NibBEiABEiABEiABEggnhGgwBvPEpqAtkOBNwElO55tlQJvPEsot0MCJBDnBCjwxhLypEmT4uXLl7E0GoeJLwRSp0mDRw8fRms7Men74Ycf4vXr13jz5k205nZHp0SJEuHjjzPit9/u4J9//onTJcjcyZIlw5MnT6I1b0xyFa0J2YkESIAESMClBCjwuhQvB3chAQq8LoTLoV1KgAKvS/FycBIggQRAgAJvNJNcqHARfNG3P7Jmy4a0adPhvffeUyO9evUKjx49xPp1azBtSli0BaNoLsukW6ZMmZHmo4/w7NkzXL1yOTaGTBBjNGjYGIMGD8Oa1Svx/chv1J5nzp6LAgUKoX3bljh9+pRNDqPHhqJCxUpIly493nnnHbx9+xa///4fzJ0zG/PmzLbZt2WrNujSLRgZM36inikROh88uI/9+/aib5+eNvsGBubFuNAwZM6SRYmVEo8fP8bFC+fRqWNb/PXokUP569tvANq174Tbt2+hWuXyDvUxb9S8RSv19yExbdpki/v+9NPP0LV7CKpUrYY0aT4y/g1JH2F24vgxfDNiGM6dO2txDYeOHEfi9xPbXd+9+/dQo2rFKO1SpEiBmbPnIXdAHqRMmVLdf/HiBW7dvImhQwbg2NFfXZZnu4tmAxIgARIgAbcSoMDrVvycPAYEKPDGAB67upUABV634ufkJEAC8YAABV4nk/j+++9jyrQZqFqtht2eIs5t3rQBwd06223rigYHfzkGEXmfP38O/5zZXDFFvBxz2Yo1KFa8BCaMH4uwSaFqj5ev3YbkXjgKT0vx7rvvYv2mrRCh1VrMnzcHw4cNtnh72Fdfo2Pnrlb7no+MRM3qlfDf//43SptKlati1o/zIGuwFE+fPlVirYi2tkIqUQ8cOgqpAJZq1jz+OZzOsbBbuny1Erclflo4H0MHD4gyjgi0n32Wyeb48jfUsnljHDywP0q7G7fvGuewNYi8dMmZPYtJE5n35227jMKuef///e9/6N61E7b8vCnK0DHNs9NA2YEESIAESCDOCVDgjXPknDCWCFDgjSWQHCbOCVDgjXPknJAESCCeEaDA60RCRdg5eSoSqVOnNva6cP48Tp+OwIUL5+HnlwsBeQLh45MdiRMbKgvv3buLwgWsC35OTO90Uwq8TiNTHc6ev6IEzhJFC+LOndsqr9t27lVWC/kCc1kddMq0mahdp666L1XTa9esQkT4SZQuUw61atcxiq+9eware/qoVr0mZsyaoy6JuLh500bs3bMLeQLzon6DRpBqU4kd27eiY/s2Jn2TJ0+u1qyJu78cPoStW39GyhQpUa9BQ2TNahD3/3jwAAWCAqKsP3+BgmjarAWyZ8+BwLz5jJW00RF4M2fOgl17DyoxXAt7Aq9U64afPIFzZ8/g6tUr6u+nfsPGRvHVkkArY2sCr1hRXLFRoX739/+gfdtWJvs+cixcVUlL3Lp1E6tXrcDDP/9UL25KlCylrou4LPk2r3yOSZ6j90SyFwmQAAmQQFwToMAb18Q5X2wRoMAbWyQ5TlwToMAb18Q5HwmQQHwjQIHXiYyOHT8RTZo2Vz1EdOoR3BXbt22JMoL4eYZOnII6devh/v17FHidYOzupmJpEX4qUn2qn8s3q1rO4CFfKduE3bt3ol3rFlaXeOnqLSXsi2BZvkwJJRxqUaNmLUyf8aP656WLF1CpQhmTcTZv3YmAgDzqmrkALELk/kO/KtFUxs6RLZOJR23/gYMRHNJL9d24YT1Cuv9bMS5VtAcOH1WV3BK1a1bFqYhwk7lHfDMS7dp3jLIvZwVeEcUPHTkRpSrWmsArthdihzBu7KgoXsHC8Xj4WaOwXbpkUdy8cd1kjZrAe/bsGYsWDNYSldPPD9t37lO3xTqjeJECSlTXInTiZDRs1ET9c+6Ps/D1iGEmQ8Ukz+5+vjk/CZAACZCAYwQo8DrGia08jwAFXs/LCVfkGAEKvI5xYisSIAESsEaAAq+Dz0bWbD7Ys++Q8ZPwyhXL4OKFCzZ7S+Vnzdp1MH7saNWucpVqKFKkKORz+UkTx1vs27lLd2TIkAEiWplXeUqHfEH50bZtB2T18UGaNGnw5x9/4ObNm8rzd/euHWpM+cw+JKQXmjZviQ8++EB90j9/rkFc1GLd2tU4c+a08d8iHnbr3gPiLZzNxwfPnz3DubNn1Rr27dtjca3isyrVliJkLpg/FxUqVkaDho1UFeizp8+wf98ezJv7oxLRJLJ8nhXt2nVAwcJFkDZtWty5fVtVTi5dssgmx8ZNmqFsufLIlcsfiZMkwY3r1yFVqlMmT4zST3xd23fopK4vXDhfiYIiuJcpWx4FCxXCq5evsHjRQvzxxwOLc7bv2BnDR3yL8PCTqFurmmqzdfse5PL3x8D+fa2uVXx7J0yaotqvXbMavXt2jzK+CK1S4SoRlNdfVYxKiP/rqbMX1bMlB4yJ4Gge+pcLQwb1x6KfFhibnAg/i7Tp0inRN2vmjFEOKCtZqjQWL12p2ksuW7doajK85E1jJjeKFiuumDkj8Mra9x08gixZPldjTwwdhz59+6nf1gRem0kH1Jpl7RJStSzVy/qIrsA7Z95CVKxURQ0llb27dm43GVf2cu3mf1RF9KNHj5Avj5/xfkzybG+/vE8CJEACJOA5BCjwek4uuBLnCFDgdY4XW3sOAQq8npMLroQESMA7CVDgdTBvP85dAPE5lRAhtV2blg72/LfZ2vWbIZ/DS7WgCHGW4vyl6+qArOvXr6FsqWLGJiI6rVqzAQULFbY6719//YW8ATlRvERJ5YFqK6ZPm4wxo0aqJuIZu2jpSqt+pFu3bEa3Lh1Nqhyl37GTp5E+fQblSXvp0kUEBeWPMqXcK12iCDp16YouXYMteqaKT7H4nZrHxx9nxNLlq5DNJ7vFrYjlQPNmDU2Edqmanjx1hmo/bMhAZZkhArHmByvXe/XohnVr1xjafPU1Gv9fVbb8O2nSpMqiQHIkNgsSUpkq/WUvf//9t7q2euVyjBg+1LiuH2b+iOo1aql/d+rQ1mJl95hxE5QVgkT/L/tg+bIl6rfYN0ydPkv9Xr9uLXqGRPXh1efUvJL45p17qq8I6UULBVlkdf3W7wbB0o7NhHSOOH1evSRwRuBdsmyV0dpg9Pff4fDhg9iwySDIRlfg1Z4vGSMgV3b1YkQf0RV4tXFFEM+W5ZMoz7XMIRXTmlgtf6tahW9M8mwxMbxIAiRAAiTgkQQo8HpkWrgoBwhQ4HUAEpt4JAEKvB6ZFi6KBEjAiwhQ4HUwWVK9qwmNRQrmw927vzvY899mMRF49cKSVOTKYVkicGbOkgXp0qVX4p1c9/n8U/j758aS5auRKlUqo7AplYj6GD92lKoCTZs2nRJqNf9WaXfxwnmkSpUavjlzGq8fOngAzZs2NBlDL8BpN968eYMnjx9DrA60MUVI0wusIjK+nzgxxDtWiyoVyyofYy2koliqWkXslhDxUqwFRGgrULAQMmT4WF0XC4xC+QON/fQCr/m8WiO9wKsX7p1JqLnIv3rtRqP4LjmwdBBa3foNEDZ5uppmctgEhI4bo353D+6JAYOGqN9yGJkIopZCE3Kl8rpmtUqqieTvRMRZ9Xv/vr1o1cJgLWAex0+eQbr06ZW1iPmBY+ZtnRV4v/72e7Rt10ENs2bVSvTpHYK8+YKiJfDKMyPVtd2DeyAov6GSeeeObejQrnWUPWkC7+VLFxHcvTMSv58Y8pJDb41hiUXkxWvq2dNeiFhqM3vOfFVxL6G3h4hJnp15vtiWBEiABEjAvQQo8LqXP2ePPgEKvNFnx57uJUCB1738OTsJkID3E6DA62AOz124quwObFXf2hsqJgLv5Wu3lQfr48ePUaRgXrx8+dI4nYhVIrKJMKb/nNyRQ9ak0leqQyVWLF+Kfn17G8cVO4FNW3YYK3tFVNTbOugFXhGGewZ3xf79e1V/ER7FkkATaEVslYrVr4YOghyKJTFx0lTUb9hI/ZaKWhFetQib8gPq1quv/jlh/FiETQo1wSv+rXIglsTwr4YYLSj0Aq/cE8/anzdvwq6d23D92jXkDsiDXTt3KGFYQtilSfOR+v1R2rRYv3GLqtwtU7Koutb7iy/RqnVbHDywX1k0aPHw4Z+qolcL/QuALJ9lsPgolC1bHgsWLVX3Vq1cjr59eqrf330/Rs0h0b1rR3XAmqXQBE05+E0OgJMQSw2p7JbYtHE9grv967+rH+PQkeP47DODd+/nmQziuLVwRuCVdcv6JfS2Fs4KvDl8fbFs+RqVA/3LABF3xZ5B1m0eGg9L+xBGkydNMFZJ69tcvfGbsqCwdQCi3oe3Tctm2Lt3txoiJnm2CZ03SYAESIAEPIoABV6PSgcX4wQBCrxOwGJTjyJAgdej0sHFkAAJeCEBCrwOJE0EJxGTJGxV/dkbKroCrwi7IvBK2PoM33x+ewKv2BFcuHxDdTP3GtXGkipGqWaUOH7sKBrUM9gQSGgCr3w6n8c/RxQRbsq0mahdp65qa35wmFxLkSIFzkReVvfDT55A3drV1W+p4hQPVOEeERGOOjUN1hj6ECYXr9xUbUV8bdHMIBTrBd7zkZFo2qQ+/jKrXraWp05dumHosBE4dvRXNKxfWzUTgTtPnkAlfIsAbi00H1xbLwD0oqd+zXpP2GZNGuDwoYMWp7ly/Y6yjxCRPzC3r2qj94RdtnQxBvT7wmLfnbv3I4dvTnXPL8fnJi8IzDs4KvDKiwGxZpA8SUW7iM5a5bKzAq9eqNbWc/PmDQwfNgR7du+0uCdbAq/WYcP6degR3MXYX/+3LOOLfYil0B88Jy8lxGNaIiZ5lv7vJ/3A6jPEGyRAAiRAAp5D4O0/b/G8bQW8blDCJYtKvPIAki/ci/feSeSS8TlowiXw7t/vonngKBTNbPrlXWwR2Rg5DpuvhCHRe4lja0iOQwKKQFK8wYyWeVAld3qXEAlechrLTz5Aovfej9b4b14a7PsYJEACJOCpBCjwOpAZvcAqtggFggIc6BW1SXQFXhkp/FSksj2QEAFyzOiR6v/bCnsCb7HiJbBshcGLdv68ORg+bLDF4TRfYHM7BE3gtSYO9+rdF1982V+Naa0yVRMt9Z7DenHwwP59EM9ZSzFw0FAkTpwYeqFOL/CaH0ZmL2laNfP3332DmTOmqeYiIidJkgT+ObOZVOyajxVx5gJSp05ttMmwNFfu3AH4edsudUsv8C5cvAxlypRT10VYtpZXSwJvy1ZtMHLUWNXXltftth174Zcrl2oXGwKvHJi3a88BJThLJXOJYgWVv68Wzgq8GTN+gtHjQpE8WXJ8nDEjMmXKbBxLDsUbPNBwYJs+xLf4+vWruHL5Eu7evYsUKVIiRw5fNGvR0niYnbT/esQwzP3R4HGs/1u+dvUKypWx/D/cxZu5Y2eDF7Je4I1JnmWsDD6WPZLtPZu8TwIkQAIkELcEHj/6DQ8bF3SpwJtmdQRSprJ8JkPc7pazxScCr+7fxztv/8Z7/y+pS7b16r/P8HeyRPgwje0vwlwyOQeN1wTe/nkN0xpld5nAG7LkDDZcBZKnShctjveuhkerHzuRAAmQQFwRoMDrIOlLV28pMVHzuXWwm0mzmAi8ep9TbVCpFpXPzMVy4JsRw4zWB9p9ewKvHHo2eOhXqrkt79cjx8IhApz46+bIlsm4J3sCb7sOnTDi6+9Ue2sCryag6gXe9h07Y/iIbx1GrBeYYyLwSjWxVBVrHssiYu4/eMRqdbN+gRprWxYIJUuVxuKlK1W3jRvWI6S7wU5h/IQwNGrcVP2Ww/vE39dSaAelSbWsrFFChGERiCXWrl6F3r2CLfYVuwyx3JCwZiGhdXSkglfzLpb9tm7RVB2yp488gXkhbSTEfmPUyG/U384ffzxwKK9iJ7Fr70ElrkvYEr4tDfjtyNFo3aaduiWV3FUrGwR0Ca3y97ff7qB4EYPPr3mMHT8RTf7v8L2unTtgy8+bVJOY5Fn6p/7E8oGBDkFhIxIgARIggTgj8Oz5n3jcrJhLBd5Uy48iefI0cbYnTpQwCLx+9BcKZ6yNHB9Z/kopphRO/LYRkU8OIWkKQ+EJgwRijcCzu5jeJKfLBN7gJWew7sIrJPkgVbSW/Og/V6LVj51IgARIIK4IUOB1kPThX0/g008/U63z5vFz+LN//fAxEXhlHPE6FdFJqhDNQ7xmp4RNNPGqtSfwiogqYqqEXsQyH3vvgV+QNWu2KP7D9gTeNm3b45vvRqnhrAm8WnWwXuAVUVjEYQmxI3j27KnNLF29csV4uJgzAq+InqlT//s/rD788EPjnPJDqlPFQ1hETPHl1aJGtUq4eeO6yZo2/rwdgYF51TVrAmqt2nUgVacSs2ZMx8jvvla/pcpZqp0levXsjnVrVlvcr3bI2oXz51GlUlnVRkRb2YfE9m1b0KmDwcvXPI6eOKUOpjMX6S21dUTg1dtK2EyO2U174rK+ebfuPTBw8FB1yVZ1srX5NUFcKoylAlsL7aXCg/v3UTB/Hovdp8+YjRo1/z97Zx0fxdm9/dO+bYHSAqFIaYsGYiSB4BqCuya4BXd3KxSKE0JwD+7BnQDBnSS4ewUoLgEqz/u57v3NMrs7K8lmSXbmnH+eZObW60z6efjOmevW2XRUrVSOLl26KH62J8/x0YnbsgKsACvACiStAuzBm7T68+wJV4A9eBOuHfdMWgXYgzdp9efZWQFWwPkVYMBrYw7lh5HNmB5GE8aNsbHnx2YS4LVU5akEPOUTwUO0XPmKVLFSZfLzK0i58+QRB0ZJUblCAF25cln8ag3wAhajUhExfuxomjljquKeJHsIY1DmKMDboGFjmhgyRawFOkNvWyM+gFeqyrZ1bKmd8WFzuB6+eJnIC0KeA/nY/QcOpi5de4hL8oPh5PudM2sGjRk90mRJrrnz0L4onTfvkcOHqEkjna8aPIgBMhFy8Gs8gLRXuX+vuX0nF8Ar9+U9c/oU1atTI16punD5BgHaG1fdS8+zJdi9bWckeXvr4K/c0sKePMdr8dyYFWAFWAFWIEkVYMCbpPLz5HYowIDXDvG4a5IqwIA3SeXnyVkBVkAFCjDgtTGJTZo2p7HjJ4nWAEbw4bV2eBdgbJGixejE8WOi3+q1G6hY8RLi55zZsoiKWOOwBniN22MOgGO/ArpPzcOmhNDkSTpPVumz/Hfv3pF7bt3n+fJw9/Cg3ZEHxCX43LZq0dSkDWwpcBAbQOK9e3epdIki+jaOArzyqtTjx45Sw/p1bcyS4SFr1jx4XdKnp5QpdBYA8xYuFoepzZ41nRYtXCCuAZADnvuXKkYf3r/XrwEH3RlHn34DqHsP3QFnGGPsaFOLCTk0lENiObw1thOQ5unbfyB1695L/Dp/7mwaNXK4fglSRao5YCkf3xIElga0BfDCyuK7DOb9q7y9vfXVylu3bKJJE8fTP3//Tffv37M5l7BYgNUCAmN06aSrNrcl5Af1wRs4v6/Of1iM9X8H5+FnczBeAuKojM+dU1e5j7Anz7asm9uwAqwAK8AKJA8FGPAmjzzwKuKvAAPe+GvGPZKHAgx4k0ceeBWsACvgvAow4I1H7iSrAnQB7AysU5Nw8JhSwBt12sw59O5dHBUpqPt0H1WpqNZE9OvTk9asXmnQtVLlqjRn3kJdVebtWxRQuri4n87Fhfr1H6Tos4v7QfUbUkiorvoWcBeQF7Fxyw7y8ysgfvb2zE2vXhlaHQAOA2TB8gGwOb+Ph7BEkIfcy3T9urXUq2dX/W1HAV5MIK+ubdmsMUVF7VPUuUTJUpQpc2a9rUF8KnjlA0rVnqWKFxYQ0sPDk3ZFRomDw+Rw0NzjgkpRePhC06dPnogXAHKAD09ZAHfkFvf98nkZDCVpiT4B/iUMLCAwJiwWMmXKLOwisB75y4VZc+ZTteo1xXgD+/ehlSuWGYw9b8EiwrNl7rkz3pMtgNfan421Q9agR6MmTWnqlMnCNsI4sOdTZ85Rxky6U3SNPaJxuNyRI4fp9q2bikvB3wP+LhA4tA4evlLIrTKUXmzUqRdIYVNniubwQ4YvshT25tmabnyfFWAFWAFWIHkowIA3eeSBVxF/BRjwxl8z7pE8FGDAmzzywKtgBVgB51WAAW88codKyL37DwmIh0Al77Kli2lf5B6Kjj5D+fMXoOIlS1Kp0mX0fqw4BE0CvPJP8VFVO6BfL4qNjSV//zLUqEnsapiVAAAgAElEQVQz8vLKq1+NHPDmcXOjyH2HBAhbvnQxrV2zii5evCCqS0uV8qcJIaHCXxUh9wudMnUm1a0XKK7jE/fuXTvRixfPqULFynTj+jU6f/4c9ezdl3r17ifavHz5UnjZxkSfFdAXULl9x87iHub2zetGcXFx+jU6EvDKtQLUjFi3hqaGhQrwiTyUL1+R6gXWJ08vLwF/AYERCQG8qOQF1Hz79i15uuUU4wwaMow6dupK+/fvpeDmTWx6SjZt3Un58/uJttFnzwjYCrsMQOiZs+YR5kHACgOWGPKQ5wGHxvXs1pkOHNgvLDjGT5hMBQsVFs3hBYscy0NeoQtAPHhgP9q4IYJSff01devWU++z/P79e3JzzWayF+Q6XToX/fXI/Ycobdq0wne4rL+u4hzx9OkT8czbEtYAb9lyFWjRkuWECtkd27fR3r276fjRo/T27RsqX6ESDRk6XA93sY4C+bwMDhGUDv7D38G6tavp+NEj4qC3vN4+9PPwkVSosK7SHM9OxfL+dP3aNYNlS1XPuLgofAHNmBYm/jZq1KwtDr0DiEfI/56kAezJsy3acRtWgBVgBViBpFeAAW/S54BXkDAFGPAmTDfulfQKMOBN+hzwClgBVsC5FWDAG8/8Va9RkyaGhFHq1Klt6nn92lWqUM5f31aqjrTWWQnwyvsAXEmgWbpuXG2IKknYDBi3Q3s5ZJSsHKRxAAklwCVdk3vGStccCXgFeFu6gsqWLW9NKrsBLw50w8FuMTHRVLtGFTHfjt37BHAfNKAvrVi+1Ooa0AAgfvPWXeJgNimM8/TgwX2qULa0AShHW0DW3XsPiMPszAVeCtStVU1/4Je8XeiU6VQvqL7ZvlgHqmDxQsI45IfaWdro1LDJFDJxvE1a2Ap4rQ2GdTduGEjHjh4xaCoBXmv9zdllBAY1EFXvSn8b0pjmbCHsybO19fJ9VoAVYAVYgeShAAPe5JEHXkX8FWDAG3/NuEfyUIABb/LIA6+CFWAFnFcBBrwJyB0qZ0NCp1G16jUEmDMOQKk7d25T+IJ5tHjRQoPb8L1dvmKtvjpRuomqzR5dO9GsuQsEPMan5/hUH5EqVSoaOz6EKlWuogiWpcreEcOHmqwFB6n9Oma8yTpDQybSlFCdpzACVYv4pN0YeMHWoVXLpuIzd+OAbQAqh83ZGDRvESzmRnRo15p27thmMsalq7dM9itvBGsBHATn4vKxwlS6j2pSVMqOHzdavz755/dKdgVK6Q5fspzKlatg4F8seSH7eOURlc22BmwUNm/bSVmy/GDQBc/E6VMnqUFQHUXvZTSG9jjMDz7NxnlAJXjtGlVJyf9Xmgj+sF279TSB8wDDHdu3of37IhW3MXzEKH2Vr6V9yv2drekBP2N43SKWLA6nYUMGGnRJ/913NHFSKBUvUcrsyxJUK7dvE6zo2ws/4pbBrU3+jqRJnj9/Tt27dBRV0ObC3z+A5swPNwDyaIsXHADDxlXW8nHsybM17fg+K8AKsAKsQNIrwIA36XPAK0iYAgx4E6Yb90p6BRjwJn0OeAWsACvg3Aow4LUzfziEDJ/Pe3v70uvXr4R3Lg5VUzpATZoK8A59ihYtTm/evqFdO7ZbBHfyJcKPN59vfnLz8BBg9dLFC8IGwNp8qEb19MorPHZjY6IVvYNRtYt1lShRih4/fkQHovbTb789sFOhxOkOkI6qUB/ffPT40UOKjYkRPsjJNQDpA8qWI3cPTzp54jgdPXLYYo7k+8DzAchbvERJQgV41P59Jv7JlvaNlwjly1cSz+Oe3btsfraSSkvAUm8fX3J39xAvIvB8njlzyqY9w/bCx9uXcuXOTRkyZKCrVy4Lb174HNsamB8vT9KmTScgOMCyrWFPnm2dg9uxAqwAK8AKfHoFGPB+es15xsRRgAFv4ujIo3x6BRjwfnrNeUZWgBVQlwIMeNWVT94NK8AKsAKsACvACrACrICdCjDgtVNA7p5kCjDgTTLpeWI7FWDAa6eA3J0VYAU0rwADXs0/AiwAK8AKsAKsACvACrACrIBcAQa8/Dw4qwIMeJ01c7xuBrz8DLACrAArYJ8CDHjt0497swKsACvACrACrAArwAqoTAEGvCpLqIa2w4BXQ8lW2VYZ8KosobwdVoAV+OQKMOD95JLzhKwAK8AKsAKsACvACrACyVkBBrzJOTu8NksKMODl58NZFWDA66yZ43WzAqxAclGAAW9yyQSvgxVgBVgBVoAVYAVYAVYgWSjAgDdZpIEXkQAFGPAmQDTukiwUYMCbLNLAi2AFWAEnVoABrxMnj5fOCrACrAArwAqwAqwAK5D4CjDgTXxNecRPowAD3k+jM8+S+Aow4E18TXlEVoAV0JYCDHi1lW/eLSvACrACrAArwAqwAqyAFQUY8PIj4qwKMOB11szxuhnw8jPACrACrIB9CjDgtU8/7s0KsAKsACvACrACrAAroDIFGPCqLKEa2g4DXg0lW2VbZcCrsoTydlgBVuCTK8CA95NLzhOyAqwAK8AKsAKsACvACiRnBRjwJufs8NosKcCAl58PZ1WAAa+zZo7XzQqwAslFAQa8ySUTvA5WgBVgBVgBVoAVYAVYgWShAAPeZJEGXkQCFGDAmwDRuEuyUIABb7JIAy+CFWAFnFgBBrxOnDxeOivACrACrAArwAqwAqxA4ivAgDfxNeURP40CDHg/jc48S+IrwIA38TXlEVkBVkBbCjDg1Va+ebesACvACrACrAArwAqwAlYUYMDLj4izKsCA11kzx+tmwMvPACvACrAC9inAgNc+/bg3K8AKsAKsACvACrACrIDKFGDAq7KEamg7DHg1lGyVbZUBr8oSytthBViBT64AA95PLjlPyAqwAqwAK8AKsAKsACuQnBVgwJucs8Nrs6QAA15+PpxVAQa8zpo5XjcrwAokFwUY8CZSJlKlSkVxcXGJNBoPoxYFXNKnp2dPnyZoO/b0/fbbb+n9+/f04cOHeM/9xRdf0Ndff00vX76Md197OmDe77/PQr/99oD+97//xXuo7DlyUtzbt/To0cN497Vnz1999RXh7//Fixfxnpc7sAKsACvACiRPBRjwJs+88KqsK8CA17pG3CJ5KsCAN3nmhVfFCrACzqMAA94E5qpwkaLUu09/ypkrF2XIkJG+/PJLMdK7d+/o2bOntGnjepoxLeyTQzL5drJmzUbpv/uOXr9+TTdvXE/gTrXXLTCoAQ0aPIzWR6ylMaNHCgHmzFtIBQsWptbBzejcuViLooybEELlK1SkjBkz0WeffUZ///03/fHH77RwwTwKXzDPYt9mzVtSh05dKEuWH8QzBdD5+PEjOnggivr06m6xr69vPpoYEkbZsmcXgBYB6Hj1ymVq1zaYnj97ZrZ/mjRpaM68cMrr7UNp06YV7d6+fUv37t6loUMG0KmTJxT7duvei1oGt7bpIRn96y+0Yf06fdsff/yJOnbuSpWrVKX06b/T/w2hATQ7c/oUjRwxjC5evGB2/NZt21P3Hr0pXbp0QmuEpBnm27g+ItH3jAEB32fNnk+++fJT6tSpxRxSnvv27kEnjh+zSRNuxAqwAqwAK5A8FWDAmzzzwquyrgADXusacYvkqQAD3uSZF14VK8AKOI8CDHjjmStU602bMZuqVK1utSdA07atm6lLp/ZW2zqiweFjpwiQ982bN+TlnssRU6hyzFVr1lPxEiVp8qQJFDYlROzx+q37hNxDR+ipFJ9//jlt2rqTAFrNxaLwBTR82GDF28N+/oXatu9otu/lS5eoRrWK9M8//5i0qVipCs2dH05Yg1K8evWKqlYqR/fv3zO5/dNPWWn7rr16sGvc4L///qPOHdvRju1bTfpOnT6batepa9NzEDp5Ik2ZPEnf9sjx04S5LQX+hpo1aUCHDx00aAaYu2fvAcrj5m6xf+SeXdSmVYtE3XP1GjUpbNosAyBtPMHyZUto8MB+NunCjVgBVoAVYAWSnwIMeJNfTnhFtinAgNc2nbhV8lOAAW/yywmviBVgBZxLAQa88cgX4NnZ2Evk4uKi73Xl8mU6dy6Grly5TB4enuTt40uurrkpRYoUos3Dh39SkYLmgV88po93Uwa88ZZMdLhw+QbB4qBksUL04MF9kdddkVHCaiG/r6fZQafNmEO1atcR91E1jWrVmOiz5F+mLNWsVVsPX3t272JQyYr2VavVoNlzF4i+AKrbtm6hqP17ycc3H9ULrE+osEXs2b2T2rZuabAGVJBizRLcPXb0CO3cuZ3SpklLdQODKGdOHdz/6/FjKujnbbL+46eiRcUw4t69uxSxbg09ffJEvMQoWaq0uA7Qir0bVwHLAe+tmzco7t07s/qETBxPeyN36+9LgBeVr9Fnz9DFC+fp5s0b4u+nXlADPXBGVbx77uwG406ZOpPq1gsU1x4/ekQA58uXL6HMmTJTcOu2hCpsAHnEkEH9adnSxQb9E7pnVMSfPB2rh7uobF61crmA/nXq1jN48RNYtyadPnUyYQ8h92IFWAFWgBVIUgUY8Cap/Dy5HQow4LVDPO6apAow4E1S+XlyVoAVUIECDHjjkcQJk0KpYaMmogegU7cuHWn3rh0mI8DPMyR0mqhshB8oA954iJzETQHwomMvCXsCT7ecYjWDh/wsbBP27YukVi2aml3htZv3BNgHsCxXpqSApVKg6nPm7Pni12tXr1DF8mUMxtm2M5K8vX3ENWMADPh68MgJASwxdp5cWQ08avsPHExduvYQfbds3kRdO3+sGEel66GjJ0UlN6JWjSoUGxOtn9vdw4N2Rx4Qv8NGokTRggIwSxESOpWC6jcUvy6cP5d+GTHMYN1ywBvgX4Ju37ppcwZhewELiIkTxpp4BUPH09EX9GDbv1Qxunvntn7sqzfuUsqUKYUe+bzdTaqqixYrTmvWbRTtAY/r1KqWKHtet34zwZ4FsWRxOA0bMtBgv/jvA/47gcDffuECvjbrwQ1ZAVaAFWAFko8CDHiTTy54JfFTgAFv/PTi1slHAQa8yScXvBJWgBVwTgUY8NqYt5y5XGn/gSN6n89KFcrQ1StXLPZG5WeNWrVp0oRxol2lylWpaNFihM/lp4R+/FRdPkj7Dp0pc+bMdOHCeZMqT7TL71eAgoPbUE5XV0qfPj09+esvunv3rvD83bd3jxgK/qBdu/agRk2a0TfffCM+6V+0UAcXpdi4IYLOnz+n/x3wsFPnbgJe5XJ1pTevX9PFCxfEGg4c2K+4zyZNm4tqS4DMxYsWUvkKlSgwqL7wJX396jUdPLCfwhfOF+AQgUOwWrVqQ4WKFKUMGTLQg/v3RbXoyhXLLOrYoGFjCihbjjw9vShFypR05/ZtQpXqtKk6kCYP+Lq2btNOXFqyZJGAggDuZQLKUaHCheld3DvC5/N//fVYcU54ug4fMYqio89SnZpVRZudu/eTp5cXDezfx+xaUTE6eco00X7D+gjq2b2zyfgArdmy6SpR/fJ5iSpZBDxvYy9cFc8WDhgDZDUO+csF44rUM9EXKEPGjAL65syWxeSAslKl/Wn5yrViSOSyRdNG+uEXhC+hChUri99bBzc3qLDFNazp1t3fRXXws2fPKL+Ph8HS7AG8FpNOJNaMtSNQtYzqZSnuPtAdpAaPYd+8bopD3bn/p1i/cRW9PXu+eOWm+JvC4XVurtkUD4OLOniU8N8LBFfxWssy32cFWAFWIHkqwIA3eeaFV2VdAQa81jXiFslTAQa8yTMvvCpWgBVwHgUY8NqYq/kLFxN8ThEAqa1aNrOx58dmGzZtowIFC4kKSYA4pbh87bY4IOv27VsUULq4vglAFaoHCxUuYnbe58+fi2rGEiVL0crV5g+XwgAzZ0yl8WNHi7HgGbts5VqzHqw7d2yjTh3aGlR2ot+ps+coU6bMonry2rWr5OdXwGRtuOdfsii169CROnTsogfk8obwKYbHq3F8/30WWrl6HeVyza24Z1gONGkcZADaUTUN6IhAdSUsMwCIpQO4cL1Ht060ccN6XZuff6EG/1eVjd9TpUolPr9HjmCzgIBdA/pjL//++6+4FrF2NY0YPlS/rllz5lO16jXF7+3aBCtWdo+fOJkaNdZVAPfv24tWr1ohfoZ9w/SZc8XPmzZuoO5dTX145Tk1riSWYCdAerHCfopa3b73hw7SGtlMSDkEHM6V/QeTHGMwVA9nz55DjIvnVl7h60jAK60N83p75hYvRqQAEMfBaoi6tavT2TOnDfYtr0zeumWTgQ92QveMFwU37/wm5jEH4nFvyNDh1L6jDvDPnzubRo0crpgTvsgKsAKsACuQfBVgwJt8c8Mrs6wAA15+QpxVAQa8zpo5XjcrwAokFwUY8NqYCVTvSqCxaKH89Oeff9jY82MzewCvHCCiIheHZQFwZsuenTJmzCTgHa675viRvLzy0orVEQKASWAT1ZfymDRhrPAlzZAhowC1kn8r2l29cpnSpXMhN3d3/fUjhw9Rk0ZBBmPIAZx0A5WNL1+8IFgdSGMCHsoBKyDjVylSELxjpahcIUD4GEuBimJAPMBuBOAlrAUAFwsWKkyZM38vrht/Bi8HvMbzSmPLAa8c3McnocaQP2LDFj18Rw6UDkKrUy+QwqbOFNNMDZtM8KRFdO7SnQYMGiJ+Hjp4AC1dskhxKRLIReV1jaoVRRvk70zMBfHzwQNR1Lypzk7BOE6fPU8ZM2US1iJyP9tLV2+JPEgvB5T6zluwSFSfI4ytEuSAF5XBT58+EVW1eD6hf3wDzwwqijt36UZ+BXSVzEoHpc2YNZdq1Kwt7mMeaCmv6JZbKRhX0SZ0z4D/V67fEXPi7x//HVAKeTX3rp3bqX3bVvGVgduzAqwAK8AKJLECDHiTOAE8fYIVYMCbYOm4YxIrwIA3iRPA07MCrIDTK8CA18YUSp9mW6q+tTaUPYD3+q37woMV8KxooXwUFxennw6A7pdRYwQYk39Cb8sha6j0RXUoYs3qldSvT0/9uLAT2Lpjj76yF1BRbusgB7wAw927dKSDB6NEf4BHWBJIgBYQDhWrPw8dRO/fvxdtQqdMp3pB9cXPqKgFeJUibNoscWgVYvKkCRQ2JcRAXvi34hAwxPCfh+gtKOSAF/fg0bp921baG7mLbt+6RXm9fWhv5B4BhhHQLn3678TP32XIQJu27BCVu2VKFRPXevbuS81bBNPhQweFRYMUAJmo6JVC/gIg+0+ZFR+FgIBytHjZSnFv3drV1KdXd/Hzr2PGizkQnTu2FQesKYVkOYCD33AAHAKWGoCZCONKVfkY0oFmyEOOrDo4jkBFKipTLR0GKPfhbdmsMUVF7dP3lwNe4zUD9gPOjhzxs96mQ3FjRJTHzY1WrV4vciB/GYD+sGcwhsWoql63fgt5eH489A7wetfOHfTjjz/qYTtgOaC5POzZswSHAfC93HPpn2X5+LBRwXOEgJVIowa655iDFWAFWAFWwHkUYMDrPLnilRoqwICXnwhnVYABr7NmjtfNCrACyUUBBrw2ZALACXANYanS0dpQCQW8ALsAvAhLn+Ebz28N8MorEpX8VTEeKjdRwYk4feqk8BSVQgK8+HTexyuPCYSbNmMO1apdRzQ3PjgM19KkSUPnL10X9+UHYaGKE76v0D0mJppq19BZY8gDmuCgLbQFfG3aWAeK5YD38qVL1KhhPXpuVL1sLk/tOnSiocNG0KmTJyioXi3RDIDbx8dXgG8AcHMh+eBaegGQL78fbd6q85GVr1nuCdu4YSAdPXJYcZobtx8I+wi576y8WnTVyuU0oF9vxb6R+w5SHjd3cc8jTw7xgkD+XN+9e0dYaSjFiJGjqVXrtuIWAD38lqWwBHilNgC95QNKGRw6ZzyPHFRL97Cm4cOG0P59kWZ1P34qmnAInVKEhkw08bq2d8+SHzPmu37tKlWqEGBgWQFY3n/AYHEoH8LY8zi1y0e4bnZTfIMVYAVYAVYgyRV49+E1vWruT+8DSzpkLSnWHqJvlx+hlF99/JrJIRPxoJpT4H9xH6iR9ygqls3wy7vEEmLLpYm0884s+irVt4k1JI/DCggFvvz7Bc1q7EWV82ZyiCJdVpyjdedf0lcpE/bf3TfPdDyAgxVgBViB5KoAA14bMiMHrLBFKOjnbUMv0yYJBbwYKTr2krA9QABAjh83WvyvpbAGeIuXKEmr1ui8aBeFL6DhwwYrDif5AhvbIUiA1xwc7tGzD/Xu21+Maa4yVYKWcs9hOQg9dPAAwXNWKQYOGkopUqQgOZyUA17jw8isJU2qZh7z60iaM3uGaA6InDJlSlGtKa/YNR4r5vwVcnFx0dtkKM2VN683bd+1V9ySA94ly1dRmTJlxXWAZXN5VQK8zZq3pNFjJ4i+StWq0jp27YnSV7tKgFf+XN+6eYPKllH+Ryx8itu21/kCGwNe6F3aP4DOxcbQgwcP6M2b15Q1azYKKFueqlStJoA0wtJhaLgPSDtuYgil/jo1fZ8lixhDChyKN3hgPwNJUXm9bsMWYUeC6t7NmzaSX4EC+kPs0BjXZ82cpveaxjV794xKY0BegFwEKsRhLYJDCTN//71Yt3QP943XntlV2SPZ2rPJ91kBZ1Xgw7s39PaPG/T5Z585ZAv//vcfpcuUjT77Jr1DxudBtavAi2e/0dMGhRwKeNNHxFDadMpnMmhXed65vQrEPX5IQW5DHAp49z1cRt+k52fX3lxxf0MF/n5yi2bUz+0wwNt1xXnafJModbqMCZL+4c3oBPXjTqwAK8AKfCoFGPDaqPS1m/cETJR8bm3sZtDMHsALC4bgVm0MxkO1KD6th+XAyBHDTD4XtwZ4cejZ4KE/izEteb9KVZKoxMyTK6t+DdYAb6s27WjEL7+K9uYArwRQ5YC3ddv2NHzEKJsllgNmewAvqolRVSx5LGfPkZMOHj5O5gC2fIGS1sYWCPI2pUr70/KVa8WlLZs3UdfO7cXPkyaHUf0GjcTPOLwP/r5KIR2UJvd/BRgGIEZsiFhHPXvoKkeNA3YZsNxAyC0kJNsHS4eGTZgUSg3/7yC6ju3b0I7tW23KDWw6YA0BQI6oVKGMwYF4lgb56aestDfqsL6vMfiWnkno3aVTO72tBfr9OnY8lS1bXj+8sQ+uvXsuX6ESzZ0fbgBy5XuRez/jIL7wBfP0t7mC16ZHhxupSIEPca8oOFMK6pAjg0N2teXPFxR67yX9myqtQ8bnQbWrAFfwajf3zr5zruB19gxqd/1cwavd3PPOWQFWIHEUYMBro45HT5yhH3/8SbTO5+Nh82f/8uHtAbwYB16tAG2oQjQOVBJOCws18Kq1BngBUQFTEZbAXdShY5QzZy7xKXrObB/f1lsDvC2DW9PIX8eK8c0BXqk6WA54AYUBhxGo/Hz9+pXFLN28cUN/uFh8AC+gp4vLx6ov+LpKc+J/UX0KD2EAO/jySlG9akW6e+e2wZq2bN9Nvr75xDVzHrw1a9Wm6TPnijZzZ8+k0b/+In5GlTOqnRE9unemjesjFPcrHbJ25fJlqlwxQLQBtMU+ELt37aB2bXRevsZx8kysOJjOGNJLgP3xo0dUqICPYt+Zs+dR9Ro6y4qqlcrRpUsXLeZDfnPMuInUtFkLcWnCuDE0Y3qYzX07de5GAwcPFe3l1cly2xC5FvKBy5WvSOGLl+kvSVXLuJAYe8bLnr79BlLhosUoY8aM9P7dO7r/4D5t3rhBeFoH1dcddtcgqA6dOH7M5j1zQ1ZAbQrgv589cmWknq6O+dwy4vfnNPzKH/T2v/gf6qg2rXk/iasAe/Amrp482qdTgD14P53WPFPiKsAevImrJ4/GCrAC2lOAAa+NOZcfRgZIBVgV35AAr6UqTyXgKZ8HHqKAVxUrVSY/v4KUO08eg0rCyhUCxCfjCGuAF7AY1ZmI8WNH08wZUxW3JNlDwKIAVgVSOArwNmjYmCaGTBHTxBcKxgfwSlXZ8c2j8WFz6A+YiLwg5DmQj91/4GDq0rWHuCQ/GE6+3zmzZtCY0SNNluSaOw/ti9J58x45fIiaNNL5qsGDGJW9CHOwE/ekvRpbJUi5NQa/8gVs2xlJ3t46+CsHpbbo1qZdB/p5uG4/liwklMaS+/KeOX2K6tWpIZrJD6WbGjaZQiaOV1yKBLVxUw5aHb1n+YF2nm45DQ5EtEUzbsMKqEkBBrxqyqa29sKAV1v5VtNuGfCqKZva2gsDXm3lm3fLCrACia8AA14bNW3StDmNHT9JtIZNA3x4rR3eBRhbpGgxfQXf6rUbqFjxEmIMVMKiItY4rAFe4/aYA+DYr0BBcStsSghNnqTzZJU+y3/37h2559Z9ni8Pdw8P2h15QFyCz22rFk1N2qBS8cr1OwIk3rt3l0qXKKJv4yjAK69KPX7sKDWsX9fGLBkesmbNg9clfXpKmUJnHzBv4WJxmNrsWdNp0cIF4hoAOfxU/UsVow/v3+vXgIPujKNPvwHUvYfugDOMMXa0qcWEHJTKIbEc3uJguCqVdH688ujbfyB1695LXJo/dzaNGjlcf1uqSDUHaeXjG0Ng6RA5DGYOTEtwGFXiuXPqqthtjSlhM6huoA5G9+/bi1avWmFrV2rRshWNGj1OtN+6ZRN16aSrNpcD3tDJE2nKZN3fpXHI9Q5u0VR/WJsj91ynXiCFTZ0plhK5Zxe1aaWrXuZgBbSqAANerWbe+ffNgNf5c6jVHTDg1WrmnX/fDHidP4e8A1aAFUhaBRjwxkN/yaoAXQA7A+vUJBw8phTwRp02cw69exdHRQrqPt1HVSqqNRH9+vSkNatXGnTFp+dz5i3UVWXevkUBpYuL++lcXKhf/0GKPru4j8/BQ0J11beAu4C8iI1bdpCfXwHxs7dnbnr1ytDqAHAY8A6WD4DN+X08hCWCPADYANoQ69etpV49u+pvOwrwYgJ5dW3LZo0pKmqfos74HD5T5sx6W4P4VPDKB7xw+QbBoqFU8Wk/P2UAACAASURBVMJ0//498vDwpF2RUfTs6VPK7+tp9SlBX3j4QtOnT56IFwBygA9vWAB35Bb3/fJ5GYwpaYk+Af4lDCwgMCaqUTNlyizsIrAe+cuFWXPmU7XqNcV4A/v3oZUrPloT4Nq8BYsIz5bScye3jVCC/HJgCW9geARLAcuSipWr0KKF8xX1AUA/deac/qC1wgV89X8v0KNRk6Y0dcpkYRthHNgz+mbMpPusW+4RXbFSFZq/cLG4bs47GGD+3MVrhMPYoBlecLz/P0hvz54tPQh4QYCD3+A5jDkL+fnQX389tvrscANWQM0KMOBVc3bVvTcGvOrOr5p3x4BXzdlV994Y8Ko7v7w7VoAVcLwCDHjjoTEqIffuPyQgHgKVvMuWLqZ9kXsoOvoM5c9fgIqXLEmlSpfR+7HiEDQJ8Mo/xUdV7YB+vSg2Npb8/ctQoybNyMsrr341csCbx82NIvcdEiBs+dLFtHbNKrp48YKoLi1Vyp8mhIQKf1WE3CN1ytSZVLdeoLiOT9y7d+1EL148pwoVK9ON69fo/Plz1LN3X+rVu59o8/LlS+FlGxN9VkBfQOX2HTuLe5jbN6+bwefmjgS8cq0ACCLWraGpYaECfCIP5ctXpHqB9cnTy0vAX0BgREIAL0BkzLnL9PbtW8In9YhBQ4ZRx05daf/+vRTcvIlNT8mmrTspf34/0Tb67BkBW2GXAQg9c9Y8wjwIWGHAEkMe8jzgULee3TrTgQP7hQXH+AmTqWChwqI5/G+RY3nIK3QBiAcP7EcbN0RQqq+/pm7deup9lgE43VyzmexFqgDGjUXhC2jGtDDxnNSoWVscAAcobfxs4XfJCxe6bVi/jg4eiKJjRw/T//viC6pbL4j6DxisPyTNuBK7bLkKtGjJckJV8I7t22jv3t10/OhRevv2DeEQsyFDh+vhLvyPC+Tz0gNaPJuxF64Kf2TEqZMnqFXLpvoXGNB52Yo1elsJub2DtPmE7hn9ixYrTnm9fYTGf3/4QEWKFqfadepRrdp19P9tQKUyKpY5WAGtK8CAV+tPgPPunwGv8+ZO6ytnwKv1J8B598+A13lzxytnBViB5KEAA9545qF6jZo0MSRMVAbaEtevXaUK5fz1TQESJdBnqb8S4JW3xz+aJdAsXTeusESVJGwGjNuhvRwySlYO0jiAhBLUk67JPWOla44EvJhj0dIVVLZseasy2wt4caAbDnaLiYmm2jWqiPl27N4ngPugAX1pxfKlVteABgDxm7fu0oNHXDPO04MH96lC2dImvqyAlrv3HhCH2ZkLvBSoW6ua4iFnoVOmU72g+mb7Yh2ogsULCeMIDGogKsCVnhOprdwiQbomP+zMkkAAtMWL+IkXCFJIgNeasFh344aBdOzoEYOmgKywPJHWjGcW1bKff/Y5fZchg/46YDnmjouLM+if0D1jEMBn6cWH8fqxXsD7WTOnWdsa32cFNKEAA15NpFmVm2TAq8q0amJTDHg1kWZVbpIBryrTyptiBViBT6gAA94EiI3K2ZDQaVSteg1R6aoEee7cuU3hC+bR4kULDW7D93b5irX66kTpJkBUj66daNbcBQIe3751U3yqj0iVKhWNHR9ClSpXUQTLUmXviOFDTdaCg9TgWWq8ztCQiTQl9KN3KSo1YfVgDPlg64DqSFRJGod0iJU5G4PmLYLF3IgO7VrTzh3bTMa4dPWWyX7ljQARcRCci4uLSV9UUKNSdvy40fr1yT+/V7IrUEp3+JLlVK5cBQP/YskL2ccrjwGYtPa4wEZh87adlCXLDwZNATlOnzopDvtS8l5GY2iPw/zg02ycB1SC165RlZT8f6WJ4APctVtPEzgPMNyxfRu9B63SHvz9A2jO/HADOI12WCs8hY0rjnEPLxCmz5xDPr75DA76k8bHnnft3E7dunQ0sWFI/913NHFSKBUvUcrsyxJUK7dvEywsM5QClghTp8+iXK65Ff8GN25YL6rkJWsG40YJ2TPGUAK8+BuEXUTP7l1EBTwHK8AK6BRgwMtPgrMqwIDXWTPH62bAy8+AsyrAgNdZM8frZgVYgeSiAANeOzOBQ8jw+by3ty+9fv1KeOeeOH7MLMSTQB76FC1anN68fUO7dmy3CO7kS4Qfbz7f/OTm4SH8YS9dvCBsAMxBQ2k+VKN6euUVHruxMdGK3sGo2sW6SpQoRY8fP6IDUfsFtEoOAUCdL7+fgImPHz2k2JgY4YOcXAOQPqBsOXL38KSTJ47T0SOHLeZIvg/AXUDe4iVKEirAo/bvM/FPtrRvvEQoX76SeB737N5l87OFMQGo8SIhbdp0AggDsloLrNfT04vc3N0pR85c9PbNWzpx4hidi40RcMdaYE5vH19yd/cQLyLwfJ45c8rmPcMLuFDhwuSV15vi3sbR2TOnRf83b95Ym1rcj++e06ZNS/ABxrx//vkH7d+316wXt00L4EasgIoVYMCr4uSqfGsMeFWeYBVvjwGvipOr8q0x4FV5gnl7rAAr4HAFGPA6XGKegBVgBVgBVoAV0KYCDHi1mXc17JoBrxqyqM09MODVZt7VsGsGvGrIIu+BFWAFklIBBrxJqT7PzQqwAqwAK8AKqFgBBrwqTq7Kt8aAV+UJVvH2GPCqOLkq3xoDXpUnmLfHCrACDleAAa/DJeYJWAFWgBVgBVgBbSrAgFebeVfDrhnwqiGL2twDA15t5l0Nu2bAq4Ys8h5YAVYgKRVgwJuU6vPcrAArwAqwAqyAihVgwKvi5Kp8awx4VZ5gFW+PAa+Kk6vyrTHgVXmCeXusACvgcAUY8DpcYp6AFWAFWAFWgBXQpgIMeLWZdzXsmgGvGrKozT0w4NVm3tWwawa8asgi74EVYAWSUgEGvEmpPs/NCrACrAArwAqoWAEGvCpOrsq3xoBX5QlW8fYY8Ko4uSrfGgNelSeYt8cKsAIOV4ABr8Ml5glYAVaAFWAFWAFtKsCAV5t5V8OuGfCqIYva3AMDXm3mXQ27ZsCrhizyHlgBViApFWDAm5Tq89ysACvACrACrICKFWDAq+LkqnxrDHhVnmAVb48Br4qTq/KtMeBVeYJ5e6wAK+BwBRjwOlxinoAVYAVYAVaAFdCmAgx4tZl3NeyaAa8asqjNPTDg1Wbe1bBrBrxqyCLvgRVgBZJSAQa8Sak+z80KsAKsACvACqhYAQa8Kk6uyrfGgFflCVbx9hjwqji5Kt8aA16VJ5i3xwqwAg5XgAGvwyXmCVgBVoAVYAVYAW0qwIBXm3lXw64Z8Kohi9rcAwNebeZdDbtmwKuGLPIeWAFWICkVYMCblOrz3KwAK8AKsAKsgIoVYMCr4uSqfGsMeFWeYBVvjwGvipOr8q0x4FV5gnl7rAAr4HAFGPA6XGKegBVgBVgBVoAV0KYCDHi1mXc17JoBrxqyqM09MODVZt7VsGsGvGrIIu+BFWAFklIBBrxJqT7PzQqwAqwAK8AKqFgBBrwqTq7Kt8aAV+UJVvH2GPCqOLkq3xoDXpUnmLfHCrACDleAAW8iSZwqVSqKi4tLpNF4GLUo4JI+PT17+jRB27Gn77fffkvv37+nDx8+xHvuL774gr7++mt6+fJlvPtizf/9+y+9ePEi3n0///xzcs2dm/784w969epVvPvb0yFDhoz0bZo0dPvWzQQNY0+uEjQhd2IFnEQBBrxOkihepokCDHj5oXBWBRjwOmvmeN0MePkZYAVYAVbAPgUY8CZQv8JFilLvPv0pZ65cBDj05ZdfipHevXtHz549pU0b19OMaWEJgmQJXJJJt6xZs1H6776j169f080b1xNrWNWPExjUgAYNHkbrI9bSmNEjxX7nzFtIBQsWptbBzejcuViLGoybEELlK1SkjBkz0WeffUZ///03/fHH77RwwTwKXzDPYt9mzVtSh05dKEuWH8QzBTjy+PEjOnggivr06m6xr69vPpoYEkbZsmcXgBYB0Hr1ymVq1zaYnj97ZrZ/mjRpaM68cMrr7UNp06YV7d6+fUv37t6loUMG0KmTJxT7VqxUhVq3aUc+vvkoderUBEiL+O+//+ivvx7T+LGjad3a1WbnTZEiBY0aPY5q16lHKVOm1Lf7559/6Mb169S3d3c6f/6cTc/cqjXrydvHl7Zu2UQD+/ex2qdEyVI0fuJk+umnrPp1oxP+XpYtXSTWjn2YC3vybHVx3IAVUIkCDHhVkkgNboMBrwaTrpItM+BVSSI1uA0GvBpMOm+ZFWAFElUBBrzxlPOrr76iaTNmU5Wq1a32xD9st23dTF06tbfa1hENDh87RYC8b968IS/3XI6YQpVjAhQWL1GSJk+aQGFTQsQer9+6T8g9dISeSgG4uWnrTgJoNReLwhfQ8GGDFW8P+/kXatu+o9m+ly9dohrVKhLgp3EAtM6dH24AKuVtUBFbtVI5un//nklfAM7tu/bqwa5xA0DOzh3b0Y7tWw1uAUIfPxVt9Rk4cvgQNWkUZNIOLx8OHz0lwLClGDp4AC1dsshiG7xwWRuxSQD1o0cOU+OGgRbbjx47gQDTLcWjRw+peJECJnrbm2ergnEDVkBFCjDgVVEyNbYVBrwaS7iKtsuAV0XJ1NhWGPBqLOG8XVaAFUh0BRjwxkNSgJ2zsZfIxcVF3+vK5ct07lwMXblymTw8PEUFoatrbkJlIuLhwz+pSEHzwC8e08e7KQPeeEsmOly4fINgcVCyWCF68OC+yOuuyChhtZDf19PsoNNmzKFateuI+6gC3bB+HcVEnyX/MmWpZq3aevjas3sXcU8eVavVoNlzF4hLAKrbtm6hqP17RWVsvcD6hApbxJ7dO6lta0MwCUCKNUvVs8eOHqGdO7dT2jRpqW5gEOXMqYP7fz1+TAX9vE3WD0gLWIu4d+8uRaxbQ0+fPBEvMUqWKi2uA9Jg7/IqYDngBQw9feokXbxwgXLnzkNlAsqK6nEpRgwfalK9fOjoScqWLbtoEhMTTUsXh9PmTRuoZCl/ata8BVWoWFk/d+kSRUzgNCqtS5cuQ94+PpQ7j5uAuwhrgBf7QkU2AjYWK1csExW7z54+oxbBrah582D92qOi9lHLZo0NNLMnzwl7IrkXK+C8CjDgdd7caX3lDHi1/gQ47/4Z8Dpv7rS+cga8Wn8CeP+sACtgrwIMeOOh4IRJodSwURPRA1YM3bp0pN27dpiMAA/TkNBpVLtOXQL4YsAbD5GTuCmgZHTsJWFP4OmWU6xm8JCfhW3Cvn2R1KpFU7MrvHbzngD7sGQoV6akgKVSVK9Rk2bOni9+vXb1ClUsX8ZgnG07I8nb20dcMwbAAKkHj5wQFcQYO0+urAK4StF/4GDq0rWH+HXL5k3UtfPHinFAT4BUVHIjatWoQrExH6tu3T08aHfkAXEPNhIlihY0sCUICZ1KQfUbivsL58+lX0YM08+bzsWF1kVsojGjR9G+vXtMdOnTbwB179FbXMeLkMoVA/RtYANx7uI18fvdu3fIv2RRk/5jxk2kps1aiOuTJoyjaVNDDdpE7jtIedzcTfpZA7xbtu/WV1k3alCPAMTlAbgffe6ysMiQPwdSG3vybLJYvsAKqFwBBrwqT7CKt8eAV8XJVfnWGPCqPMEq3h4DXhUnl7fGCrACn0QBBrw2ypwzlyvtP3BEXyVYqUIZunrlisXeqPysUau2gFOISpWrUtGixcQBUlNCJyn2bd+hM2XOnJkuXDhvUuWJDvn9ClBwcBvK6epK6dOnpyd//UV3794Vnr8SZMOBT1279qBGTZrRN998Iz4xX7RQBxel2LghwsDbFPCwU+duhE/dc7m60pvXr0U1JipNDxzYr7jWJk2bi2plgMzFixZS+QqVKDCoPvnmy0+vX72mgwf2U/jC+QIcIrLnyEmtWrWhQkWKUoYMGejB/fuiWhQVlJaiQcPGFFC2HHl6elGKlCnpzu3bAsoZAz+M8eOPPwlPWMSSJYvo7p3bBOBeJqAcFSpcmN7FvaPly5YIf1ilaN22PQ0fMYqio89SnZpVRZOdu/eTp5eX8HU1t1ZUk06eMk2037A+gnp272wyvLxi1S+fl6iSRQB2xl64Kp6t3357ICCrcchfLgwZ1J+WLV2sb3Im+gJlyJhRQN+c2bIYwF80KlXan5avXCvaI5ctmjbS910QvkRfKds6uDntjdxtMDXWdOvu76I6+NmzZ5Tfx8Niroxv3rn/p9gXKprzerjqb8srlg8fOkhNG9c3GRd/L/MW6KwZYHUCmwh59OjZh4oULaa/hH0irAHe02fPU8ZMmURbH688ij7Z8qrm7D9l1s9hT57jJRw3ZgVUogADXpUkUoPbYMCrwaSrZMsMeFWSSA1ugwGvBpPOW2YFWIFEVYABr41yzl+4mOBzigBIbdWymY09PzbbsGkbFShYSFRIAsQpxeVrt8UBWbdv36KA0sX1TQDJ1q3fTIUKFzE77/Pnzymftzvh8KiVqyMsrm/mjKniECkEPGOXrVxr1oN1545t1KlDW5MDp06dPUeZMmUWnrTXrl0lP78CJnPiHqoz23XoSB06dtEDcnlDJXiH+99/n4VWrl5HuVxzK+4FlgNNGgcZgHZUTU+dPlu0HzZkoLDMACCWPt/H9R7dOtHGDet1bX7+hRr8X1U2fk+VKpWo3ESOACURqOhEf+zl33//Fdci1q4m2A5IMWvOfKpWvab4tV2bYMXKbhzo1aixrgK4f99etHrVCvEz7Bumz5wrft60cQN172rqwyvPqXEl8d0HD0VfgPRihf0Utbp97w8dpDWymZByCAiTK/sPioeKoXo4e/YcYlw8t5YOHjOeXJr35cuXAqZKgerf2PO6FySohi9cwMcEtA4aMow6duoq2nTu2FbYVlgKSQdrgHfp8tXkX0ZXTWxclSyNL3kuG1us2JNni4vnm6yAShVgwKvSxGpgWwx4NZBklW6RAa9KE6uBbTHg1UCSeYusACvgUAUY8NooL6p3JdBYtFB++vPPP2zs+bGZPYBXDpZQkYvDsgA4s2XPThkzZhLwDtddc/xIXl55acXqCEqXLp0ebKL6Uh6TJowVVaAZMmQkQD7JvxXtrl65TOnSuZCbu7v+utJBWRIclI/74cMHevnihfAwlcbEP/DlgBWQ8asUKQwO16pcIUD4GEuBimJUtQJ2IwAvYS0AuFiwUGHKnPl7cR0WGIUL+Or7yQGv8bxSIznglYP7+CTUGPJHbNiih+/IgdJBaHXqBVLY1Jlimqlhkylk4njxc+cu3WnAoCHiZ0sHikkA8/z5c1SjakXRHvk7E3NB/HzwQBQ1b6qzUzAOqWoVMNU9t873FnHp6i2RB+nlgFJfVNGimhbhX6qYqIq2JVANjpcSiFs3b1DZMiUNup08E6vPI6wQOrVvQ/C8RcBz+NDRU+IZhpa5c/5kUplsvAZbAa/cLgNjRO7ZRd27dtIfnodK9oGDdfAeh7shJ1LYk2dbNOM2rIDaFGDAq7aMamc/DHi1k2u17ZQBr9oyqp39MODVTq55p6wAK+AYBRjw2qjrxSs3hd2Bpepba0PZA3ilisIXL15Q0UL5KC4uTj8dAN0vo8aIT+3ln9DbcsgaKn1RHYpYs3ol9evTUz8uDsDaumOPvrIXUBFwUQo54AUY7t6lIx08GCVuAzzCkkACtPhHPipWfx46SBxshQidMp3qBek+zUdFLcCrFGHTZlGduvXEr5MnTaCwKSEG8uKQLByWhRj+8xC9BYUc8OIePGu3b9tKeyN30e1btyivtw/tjdwjwDAC2qVPrzsM7LsMGWjTlh2icrdMKd2n/z1796XmLYIJNgKwaJDi6dMneiCIa/IXAPJP+uWLDggoR4uXrRSX1q1dTX16dRc//zpmvJgDYalSVbI7wMFvOAAOIYeoW7dsoi6dPvrvyuc+cvw0/fSTzrs3R1YdHEfcvPObsLCwdBig3IcXB45JENYgIQq/yD1yx435lWbN1FlYSAELk3UbtogKaSkeP3ok7EZwsBxeEiB/qIjevy/S2nRkK+DFQBNDpojKbinwd33i+DHhByxVWcMmpV7t6vrn1d48W90AN2AFVKgAA14VJlUjW2LAq5FEq3CbDHhVmFSNbIkBr0YSzdtkBVgBhynAgNcGaVF9CriGsFTpaG2ohAJeVLMC8CIsfYZvPL81wAs7givX74hu5vxV5T6op0+dpMC6OhsChAR44SmMz+/lB3/h/rQZc6hW7TqirfHBYbiGKs3zl66L+9Fnz1CdWtXEz6j8he8rdI+JiabaNXTWGPKAJldv3BVt5R6ucsB7+dIlatSwHj03ql42l6d2HTrR0GEj6NTJExRUr5ZoBsDt4+MrwDcAuLmQfHAtvQDIl9+PNm/dKYaQr1nug9u4YaDwkFWKG7cfCPsIQH7fvG6iidwTdtXK5TSgn+5QM+OQw1aPPDnECwL5c23uoDOMM2LkaGrVuq0YEoAefsvWQm6vAGDu7ZlbsQIXEBfaSdXexuNWq1yeLl7UVShbi/gAXowFKw88L0oBuFu9SgWTW/bkGYOldvkI163th++zAmpQ4EPcK+qUJRX1dNX5Xid2RPz+nEbdekb/pkqb2EPzeBpX4N2H1/SqSSl6X+ejXVZiSpJi/RH6dtUxSvlV6sQclsdiBeh/cR+okfcoKpYtyCFqbLk0kXbemUVfpfr4gt4hE/GgmlPgy79f0KzGXlQ5r2P+P0OXFedo3fmX9FXKhP13980zHQ/gYAVYAVYguSrAgNeGzMgBK2wRCvp529DLtElCAS9Gio69JCoaEQCQ48eNFv9rKawB3uIlStKqNTov2kXhC2j4sMGKw0m+wMZ2CBLgNQeHcQhW7779xZjmKlMlaCn3HJaD0EMHDxA8Z5Vi4KChlCJFClF1CZ9fhBzwGh9GZi1pUjXzmF9H0pzZM0RzQOSUKVOSl3sug4pd47Fizl8hFxcXvU2G0lx583rT9l17xS054F2yfBWVKVNWXAdYNpdXJcDbrHlLGj12guhrbCcgX8OuPVHk4ekpLkmAV/5cK1koSP3hU9y2vc4X2BbA27hJMxo3QVdxDehfP7C24p7yuLlRxIatokIcVd3bt26hgHLlhY5SwFKiR7fOBB9oaxEfwDtm3ERq2qyFGPL4saOUMlUqypcvv4GVCEB76+BmBtXy9uQZc2V2VfZItrY3vs8KOKsCr5/+QW3S/eNQwDv2fhx9mUnnE87BCiSWAi9e/UFxjx8SfZZYIxqN8z+ir9N8R2kyZHXQBDysVhXAcxvkNsShgHffw2X0TXrl80S0qjvv234F/n5yi2bUz+0wwNt1xXnafJModbqMCVrsw5vRCerHnVgBVoAV+FQKMOC1UelrN+8JmCj53NrYzaCZPYAXFgzBrdoYjIdqUXxaD8uBkSOGGXxKjobWAC8OPRs89GcxpiXv1+OnoilLlh8I/rp5cn38h4g1wNuqTTsa8cuvYnxzgFcCqHLA27ptexo+YpTNEssBsz2AF9XEqCqWPJaz58hJBw8fN1vdLF+gpLWxBYK8TanS/rR85VpxacvmTdS1s85OYdLkMKrfoJH4GYf3wd9XKaQDy+D/jDUiAIYBiBEbItZRzx5dFPvCLgOWGwi5hYRk+/Dbbw+oRNGCin0nTAqlhv93EF3H9m1ox/atZnNTt14QTZmqg+OIQQP60orlS03a42XFqTPnhD0E/HfhwXzv3l3RDrYT4yeEkGvuj4eyWaugRj9bAa+8shw+1HgRgIBdR99+A6lFcGuxLgQsIwoV8NGv3548izm4gtfss8M31KkAV/CqM69a2JWo4G3uT+8DDf3jE2vvKdYeom+XH+EK3sQSlMfRK8AVvPwwOKsCXMHrrJnjdbMCrEByUYABr42ZOHriDP3440+idT4fD5s/+5cPbw/gxTjwagVoQ+WlccCrdFpYqIFXrTXAC4gKmIqwBO6iDh2jnDlzmfgPWwO8LYNb08hfx4rxzQFeqTpYDngBhQGHEbAjeP36lcUs3bxxQ3+4WHwAL6Cni0t6/diSFyzmRMAOAR7CgLawGZCietWKJgeNbdm+m3x984km5jx4a9aqTdNnzhVt5s6eSaN//UX8jCpnVDsjenTvTBvXRyjuVwKYVy5fpsoVA0QbQFvsA7F71w7hV6sU0oFmxpBeAuzGIFM+xszZ86h6DZ1lRdVK5ejSpYuKc8BHeNTocfoq2BHDh1L4gnmKbeX2CPPnzqZRI4ebtJN7E9tSOW8L4MXfDl7WwJ4CfzM4vM048DIDzzwqtxFyexF78mzxIeabrIBKFWAPXpUmVgPbYg9eDSRZpVtkD16VJlYD22IPXg0kmbfICrACDlWAAa+N8soPI5sxPYwmjBtjY8+PzSTAa6nKUwl4yicCmCpXviJVrFSZ/PwKUu48efTVhmiHSsgrVy6LLtYAL2AxqjMR48eOppkzpiruSbKHePPmjbAqkMJRgBeHX+EQLAR0ht62RnwAr1SVbevYUjvjw+ZwPXzxMpEX4xzIx+4/cDB16dpDXJIfDCff75xZM2jM6JEmS0I1674onTfvkcOHqEkjna8avGtR2YuQg1/jAaS9yv170UbKrTH4lffftjOSvL11VaySvYPx+HJIjecbB8hFrFtjVlr5oXT+pYqZAHN0lMNYWw43tAXwyg+lw4GByKVSyKH28mVLaPDAfqKZPXmO73PG7VkBNSjAgFcNWdTmHhjwajPvatg1A141ZFGbe2DAq828865ZAVYg8RRgwGujlk2aNqex4yeJ1rBpgA+vtcO7AGOLFC1GJ44fE/1Wr91AxYqXED/nzJZFVMQahzXAa9wecwAc+xXQfV4fNiWEJk/SebJKn+XDx9Q9t+7zfHm4e3jQ7sgD4hJ8blu1aGrSBrYUOIgNIBGf0JcuUUTfxlGAV16VCn/UhvWVD8JSSl18AK9L+vSUMoWuSnPewsXiMLXZs6bTooULxDUAcnyqDwD54f17/XQ46M44+vQbQN176A44wxhjR5taTMhBqRwSSC8WfgAAIABJREFUy+EtDoarUknnxyuPvv0HUrfuvcQl44pXqQrXHKSVj28MgaVD5DCu/OWAfG4JDpureJ0ydSbVrRcouuCZbh3cnPab8U2WxpUD3lLFC9P9+/eU0imqbfEMmptb3skWwFuocBGK2LBFdDN3gB/uyfVev24t9erZVfSxJ8+KG+SLrIDKFWDAq/IEq3h7DHhVnFyVb40Br8oTrOLtMeBVcXJ5a6wAK/BJFGDAGw+ZJasCdAHsDKxTk3DwmFLAG3XazDn07l0cFSmo+3QfVamo1kQoeYpWqlyV5sxbqKvKvH2LAkrrTm5O5+JC/foPUvTZxf2g+g0pJFRXfQu4C8iL2LhlB/n5FRA/e3vmplevDK0OAIcB0FApCTCX38dDWCLIA5/ct2jZSlySgy787ijAi7Hl1bUtmzWmqKh9ijqXKFmKMmXOrLc1iA/glQ944fINgkWDBBs9PDxpV2QUPXv6lPL76g4nsxToCw9faPr0yRPxAkAO8H/6KasA7sgt7vvl8zIYTtISfQL8SxhUtGJMWCxkypRZ2EVgPfKXC7PmzKdq1WuK8Qb270MrVywzGHvegkWEZ0vpuZPbRihB/jr1Ails6kzRF97A8AiWAvB7w+btemsKeOkG1a1JFy9esCYXhU2bRXXq1tM9pxvWU49unUz64BC2yH2HxPUHD+5TyWKFLI5rC+CFlqh4xv/iRQ28jP/667HJuBs3b9e/NOnQrrX+kDd782xVGG7ACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAFvPGRFJeTe/Yf0HqMARDikaV/kHoqOPkP58xeg4iVLUqnSZfTQC4egSYBX/ik+qmoH9OtFsbGx5O9fhho1aUZeXnn1q5EDXgl0oUJz+dLFtHbNKgHRANhKlfKnCSGhlDnz96Kv3CNVXll55vQp6t61E7148ZwqVKxMN65fI3yi3rN3X+rVW/f5+cuXL4WXbUz0WQF9AZXbd+ws7mFu37xuFBcXp1+jIwGvXCsAAnzuPzUsVIBP5KF8+YpUL7A+eXp5CfgLCIxICOBFJW/MucvisC9Pt5xinEFDhlHHTl1p//69FNy8iU1PyaatOyl/fj/RNvrsGQFbYZcBCD1z1jzCPAhYYcASQx7yPODQuJ7dOtOBA/uFBcf4CZOpYKHCojn8b5FjecgrdAGIYSewcUMEpfr6a+rWrafeZ/n9+/fk5prNZC9SBTBuLApfQDOmhYnnpEbN2uIAOEBp42cLv8+YNVe0kWJq2GRxIJ25uHzpIh07ekTcLlCwEK3fuFX/t2RsTYFq6mUr11K6dOlE+19HjaB5c2YZDA3YmirV1wbPI345e+Y0AcpKYfwSRl5JDe/hxo0C6fq1a6I59grfaPgJI4xtSXDNnjybFYdvsAIqVYABr0oTq4FtMeDVQJJVukUGvCpNrAa2xYBXA0nmLbICrIBDFWDAG095q9eoSRNDwih16tQ29bx+7SpVKOevbwuQKIE+SwMoAV55e/yjGVWI8jCusETVKGwGjNuhjxwySlYO0liAhBLUk67JPWOla44EvJhj0dIVVLZseas62wt4caAbDnaTf7K/Y/c+AdwHDehLK5YvtboGNACI37x1lziYTQrjPKEStULZ0gagHG0B1HfvPSAOszMXeClQt1Y1xUPOQqdMp3pB9c32xTqGDh4gXkgYR2BQA1EBrvScSG23btlEXTrpDuSTwtb8SO2NPW8liC7dx0uEJ0/+EtBWAru4B9Ddomkjk3VH7jtIedzcrebG2OM3TZo0dOJ0rEGeAKZRbZ8hQ0ZxuB4Cfwe1qlcWL0LkYU+erS6WG7ACKlOAAa/KEqqh7TDg1VCyVbZVBrwqS6iGtsOAV0PJ5q2yAqyAQxRgwJsAWVE5GxI6japVryHAnHHgH7R37tym8AXzaPGihQa34Xu7fMVaypgpk8F1AKYeXTvRrLkLBDy+feum+FQfkSpVKho7PoQqVa6iCJalyt4Rw4earAUHqf06ZrzJOkNDJtKUUJ2nMAKVmrB6MIZ8sHVo1bIpnTp5wmRs2AagcticjQGqIDE3Qv6Zu3ygS1dvmexXfh/WAjgIzsXFxWR+VFCjUnb8uNH69cktB5TsCpTSHb5kOZUrV8HAv1jyQvbxyiMqm20N2Chs3raTsmT5waALnonTp05Sg6A6it7LaAztcZgffJqN84BK8No1qpKS/680Efxhu3braQLnAYY7tm9j0RfX3z+A5swPN4CeGBeQE57CxhXHuCc/cMwWfZQ8b+vWCxIVs4CuxoGK40kTxtHcOTqLCOPYs/cAubl7WJ0avtGwVJEHbE/Cps2kgADDamipDdbapWM7YQ2hFPbk2eqCuQEroCIFGPCqKJka2woDXo0lXEXbZcCromRqbCsMeDWWcN4uK8AKJLoCDHjtlBQHQOHzeW9vX3r9+pXwzsWhakoHqElTAd6hT9GixenN2ze0a8d2i+DOGEzl881Pbh4eAqxeunhB2ABYmw/VqJ5eeYXHbmxMtKJ3MKp2sa4SJUrR48eP6EDUfvrttwd2KpQ43QHS8+X3Ix/ffPT40UOKjYkxgXaJM1PijAJIH1C2HLl7eNLJE8fp6JHDFnMknxXPByBv8RIlCRXgUfv3mfgnW1olXiKUL19JPI97du+y+dnCmACXeJGQNm06AYRhCfEpAp7HsG1wc3On+w/uEyxFzsXG2KxZQteYNm1aKlioiLBUSfV1KjHniePHFX15leawJ88JXTP3YwWcSQEGvM6ULV6rXAEGvPw8OKsCDHidNXO8bga8/AywAqwAK2CfAgx47dOPe7MCrAArwAqwAqyAGQUY8PKj4awKMOB11szxuhnw8jPgrAow4HXWzPG6WQFWILkowIA3uWSC18EKsAKsACvACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAGvQ2TlQVkBVoAVYAVYAVaAAS8/A86qAANeZ80cr5sBLz8DzqoAA15nzRyvmxVgBZKLAgx4k0smeB2sACvACrACrIDKFGDAq7KEamg7DHg1lGyVbZUBr8oSqqHtMODVULJ5q6wAK+AQBRjwOkRWHpQVYAVYAVaAFWAFGPDyM+CsCjDgddbM8boZ8PIz4KwKMOB11szxulkBViC5KMCAN7lkgtfBCrACrAArwAqoTAEGvCpLqIa2w4BXQ8lW2VYZ8KosoRraDgNeDSWbt8oKsAIOUYABr0Nk5UFZAVaAFWAFWAFWgAEvPwPOqgADXmfNHK+bAS8/A86qAANeZ80cr5sVYAWSiwIMeJNLJngdrAArwAqwAqyAyhRgwKuyhGpoOwx4NZRslW2VAa/KEqqh7TDg1VCyeausACvgEAUY8DpEVh6UFWAFWAFWgBVgBRjw8jPgrAow4HXWzPG6GfDyM+CsCjDgddbM8bpZAVYguSjAgDe5ZILXwQqwAqwAK8AKqEwBBrwqS6iGtsOAV0PJVtlWGfCqLKEa2g4DXg0lm7fKCrACDlGAAa9DZOVBWQFWgBVgBVgBVoABLz8DzqoAA15nzRyvmwEvPwPOqgADXmfNHK+bFWAFkosCDHiTSyZ4HawAK8AKsAKsgMoUYMCrsoRqaDsMeDWUbJVtlQGvyhKqoe0w4NVQsnmrrAAr4BAFGPA6RFYelBVgBVgBVoAVYAUY8PIz4KwKMOB11szxuhnw8jPgrAow4HXWzPG6WQFWILkowIA3uWSC18EKsAKsACvACqhMAQa8KkuohrbDgFdDyVbZVhnwqiyhGtoOA14NJZu3ygqwAg5RgAFvIsmaKlUqiouLS6TReBi1KOCSPj09e/o0Qduxp++3335L79+/pw8fPsR77i+++IK+/vprevnyZbz7fvXVV4S/hRcvXsS7b2J2SOfiQm/fvLF5/xkyZKQUKVLQb789SNAy7MlVgibkTqyAkyjAgNdJEsXLNFGAAS8/FM6qAANeZ80cr5sBLz8DrAArwArYpwAD3gTqV7hIUerdpz/lzJWLAIe+/PJLMdK7d+/o2bOntGnjepoxLSxBkCyBSzLpljVrNkr/3Xf0+vVrunnjemINq/pxAoMa0KDBw2h9xFoaM3qk2O+ceQupYMHC1Dq4GZ07F2tRg3ETQqh8hYqUMWMm+uyzz+jvv/+mP/74nRYumEfhC+ZZ7NuseUvq0KkLZcnyg3imAEceP35EBw9EUZ9e3S329fXNRxNDwihb9uwC0CIAWq9euUzt2gbT82fPzPZPkyYNzZkXTnm9fSht2rSi3du3b+ne3bs0dMgAOnXyhNm+gJuzZs8n33z5KXXq1KKdtOe+vXvQiePHbHpmoNWpM+coZapUNKBfL9q2dYtN/dAIulWuUo3cPTyE7p9//rnoe/rUSQqsW9NgHMyD9g0aNaFcuVzFmnFNiqdPntDiRQtpathk+u+//8yuwZ4827wxbsgKOLkCDHidPIEaXj4DXg0n38m3zoDXyROo4eUz4NVw8nnrrAArkCgKMOCNp4yoUJw2YzZVqVrdak/8w3bb1s3UpVN7q20d0eDwsVMEyPvmzRvycs/liClUOeaqNeupeImSNHnSBAqbEiL2eP3WfULuoSP0VApAxU1bdxJAq7lYFL6Ahg8brHh72M+/UNv2Hc32vXzpEtWoVpH++ecfkzYVK1WhufPD9WDTuMGrV6+oaqVydP/+PZO+P/2Ulbbv2qsHu8YNADk7d2xHO7ZvNelbvUZNCps2S/+CQ2nxy5ctocED+1l9Vnr37U89evYR7UYMH2oVhqMdqm6RrwIFCymOf+vmDSpbpqTBvYCAcrR42Uqr6zl//hzVqFrRpJ29ebY6MTdgBVSkAANeFSVTY1thwKuxhKtouwx4VZRMjW2FAa/GEs7bZQVYgURXgAFvPCQF2Dkbe4lcXFz0va5cvkznzsXQlSuXycPDk7x9fMnVNbcAT4iHD/+kIgXNA794TB/vpgx44y2Z6HDh8g2CxUHJYoXowYP7Iq+7IqOE1UJ+X0+zg06bMYdq1a4j7qNqesP6dRQTfZb8y5SlmrVq6+Frz+5dxD15VK1Wg2bPXSAuAaiiejVq/17y8c1H9QLrEypsEXt276S2rVsa9EUFKtYsVa0eO3qEdu7cTmnTpKW6gUGUM6cO7v/1+DEV9PM2Wf/xU9GiYhhx795dili3hlDFipcYJUuVFtcBabB3eRUwqsNPno7Vw11U+a5auVwA8Dp16xm8BEEVLappjaNPvwGUO3ce8itQUL8GtLEF8OLlxdYdeyhdunRiWFQNYw34e3z54iUVKFiQ3r6No25dOhhMKwe8yC9yFBsTQ/+j/1H58hUF3JcidPJEmjJ5kkF/e/KcsCeSe7ECzqsAA17nzZ3WV86AV+tPgPPunwGv8+ZO6ytnwKv1J4D3zwqwAvYqwIA3HgpOmBRKDRs1ET1gxdCtS0favWuHyQjwMA0JnUa169SlR48eMuCNh8ZJ3RTQMjr2krAn8HTLKZYzeMjPwjZh375IatWiqdklXrt5T4B9gMZyZUoKWCoFKl1nzp4vfr129QpVLF/GYJxtOyPJ29tHXDMGwICvB4+cEBXEGDtPrqwCuErRf+Bg6tK1h/h1y+ZN1LXzx4pxWA8cOnpSVHIjatWoQrEx0fq+sDTYHXlA/A4biRJFCxrYEoSETqWg+g3F/YXz59IvI4bp+65bv5lgVYJYsjichg0ZaLAn/K3gbwaBv4PCBXxNtLtx+4Fi9a8tgHfj5u0CDCMuXrxATRvXt8nv2MfHl8ZNnCwqqZWgc+cu3WnAoCFiXNhx1KxWyWDd9uTZ7MPDN1gBlSrAgFelidXAthjwaiDJKt0iA16VJlYD22LAq4Ek8xZZAVbAoQow4LVR3py5XGn/gSN6r85KFcrQ1StXLPZG5WeNWrVp0oRxol2lylWpaNFihM/lp4QaVgVKA7Xv0JkyZ85MFy6cN6nyRJv8fgUoOLgN5XR1pfTp09OTv/6iu3fvCs/ffXv3iGHgidq1aw9q1KQZffPNN+KT/kULdXBRio0bIgifoEsBeNipczcB7HK5utKb16/p4oULYg0HDuxX3GeTps1FtTJAJjxLy1eoRIFB9YUX6+tXr+nggf0UvnC+AIeI7DlyUqtWbahQkaKUIUMGenD/vqgWXblimUUdGzRsTAFly5GnpxelSJmS7ty+TahSnTZVBw/l8eOPP1HrNu3EpSVLFtHdO7cJwL1MQDkqVLgwvYt7R7AM+Ouvx4pztm7bnoaPGEXR0WepTs2qos3O3fvJ08uLBvbvY3at8O2dPGWaaL9hfQT17N7ZZHyA1mzZsovrfvm8RJUsAp63sReuimcLh3wBshqH/OXCkEH9adnSxfomZ6IvUIaMGQX0zZktiwH8RaNSpf1p+cq1oj1y2aJpI33fBeFLqELFyuL31sHNaW/kboOpsaZbd38X1cHPnj2j/D4e+vsXr9wUzxcOcnNzzWYyLxpGHTxK+NtBKFXxohoWzzHixx9/1Le1BnjzuLlR5L5Dot/jR4+oUAEdHE+MwCFxV67fEUMZ58OePCfG2ngMVsDZFGDA62wZ4/VKCjDg5WfBWRVgwOusmeN1M+DlZ4AVYAVYAfsUYMBro37zFy4m+JwiAFJbtWxmY8+PzTZs2ia8QvEJPkCcUly+dlsckHX79i0KKF1c3wSgDRWThQoXMTvv8+fPKZ+3O5UoWYpWro6wuL6ZM6bS+LGjRRt4xi5budasB+vOHduoU4e2JgdOnTp7jjJlyiw+yb927Sr5+RUwmRP3/EsWpXYdOlKHjl0MDrOSGsOnGB6vxvH991lo5ep1lMs1t+JeYDnQpHGQAWhH1fTU6bNFe1SUwjIDgFh+iFaPbp1o44b1ujY//yIO25ICcA+HmyFHsFlAwK4B/bGXf//9V1yLWLta2AhIMWvOfKpWXXeYV7s2wYqV3eMnTqZGjXUVwP379qLVq1aIn2HfMH3mXPHzpo0bqHtXUx9eeU6NK4nvPngo+gKkFyvsp6jV7Xt/6CCtkc2ElENAmFzZf1A8VAzVw9mz5xDj4rmFNoDmN+/8Jq6Zg9K4N2TocGrfUQe758+dTaNGDldcHy7KK36tAV7pbwn9jKuSzU5g4w15PqKi9lHLZo0TJc82Ts/NWAFVKcCAV1Xp1NRmGPBqKt2q2iwDXlWlU1ObYcCrqXTzZlkBVsABCjDgtVFUVO9KoLFoofz0559/2NjzYzN7AK8cIKIiF4dlAXBmy56dMmbMJOAdrrvm+JG8vPLSitURwptUApuovpTHpAljRRVohgwZCZBP8m9Fu6tXLlO6dC7k5u6uv37k8CFq0ijIYAwJDsovoprz5YsXBKsDaUz8A18OWAEZv0qRguAdK0XlCgHCx1gKVBSjqhWwGwF4CWsBwMWChQpT5szfi+vGn/7LAa/xvNLYcsArB/fxSagx5I/YsEUP35EDpYPQ6tQLpLCpM8U0U8MmU8jE8eJnuSXA0MEDaOmSRYpLkUCu/PAv5O9MzAXR/uCBKGreVGenYBynz56njJkyCWsR99y6KmLEpau3RB6klwNKfectWCSqzxH+pYqJqmh5lSv+FvA3oRTyitddO7dT+7atzMocH8ArHXqHangfrzxUunQZ4VecPUcOevLkLzp18qS+ot3WvOKwuaAGDalrt556yF+6RBHhwyyFPXm2dR3cjhVQkwIMeNWUTW3thQGvtvKtpt0y4FVTNrW1Fwa82so375YVYAUSXwEGvDZqKn2Obqn61tpQ9gBeCWi9ePGCihbKR3FxcfrpAOh+GTVGfGov/4TelkPWUOmL6lDEmtUrqV+fnvpxYSeAQ6xgIYCoUbWiga2DHPACDHfv0pEOHowSbQEeYUkgAVr8Ix8Vqz8PHUTv378XbUKnTKd6QfXFz6ioBXiVImzaLHFQF2LypAkUNiXEQN458xbqD/Ea/vMQvQWFHPCiAzxrt2/bSnsjd9HtW7cor7cP7Y3cI8AwAtqlT/+d+Pm7DBlo05YdonK3TKli4lrP3n2peYtgOnzooLBokOLp0yeiolcK+QuA7D9lVnwU5Id7rVu7mvr06i7a/TpmvJgD0bljW3HAmlLcuf+nAOUAjjgADgFLDVR2I7Zu2URdOn3035WPceT4aQLARB5yZNXBcQSqcFGNa+kwQLkPL6pZUdWKkOAwYLaXey59XuXzwlIEmiJgq9GogS6nSmEr4IUG0AKB/KKqOmXKlCZD4pmExsa2E8YNZ8yaS2XLVTB44QDbB/Q1tiexJ89mN843WAEVK8CAV8XJVfnWGPCqPMEq3h4DXhUnV+VbY8Cr8gTz9lgBVsDhCjDgtUFiOVCyVOlobaiEAl5UswLwIix9hm88vzXAK6/CNPZXlcZC5SYqOBE4kAo+qlJIgFeqopQf/IU28FetVbuOaG58cBiupUmThs5fui7uR589Q3VqVRM/o/IXvq/QPSYmmmrX0FljyAOaXL1xV7QFfMUBWwg54L186RI1aliPnhtVL5vLU7sOnWjosBF06uQJCqpXSzQD4MahXADfAODmQvLBtfQCIF9+P9q8dacYQr5muQ9u44aBdPTIYcVppAPJAPl987qJNvIK2VUrl9OAfr0V+0buO0h53NzFPY88OcQLAvlzfffuHWGloRQjRo6mVq3bilsA9PBbRkjexPj5+rWrVKlCgIHFA8Bx/wGDxQF1CGP/X+O5bAW8rrnz0L4oU42kFwc46E4K5APPDw5LMxdyn2C0AbBeH7GWUE0tjSn1tSfPGMPlB2W7EbOL4xusgJMrEPfyCbXP+P+op2smh+wk4vfnNPruS/os7ccXVw6ZiAfVnAKv3zyhF42L0/vAkg7Ze4q1hyjd6pOUOrXOh56DFUgsBf5+8ZIaeA6nYtkMv7xLrPG3XJpIex4soFRpdAUSHKxAoinw+k+a2dCdKud1zP9n6LLiPG288o5SfpMuQUt+9vuNBPXjTqwAK8AKfCoFGPDaoLQcsMIWoaCftw29TJskFPBipOjYS8L2AAEAOX7caPG/lsIa4C1eoiStWqPzol0UvoCGDxusOJzkC2xshyABXnNwuEfPPtS7b38xprnKVAlayj2H5SD00MEDBM9ZpRg4aCgB5snhpBzwGh9GZi1pUjXzmF9H0pzZM0RzQGRUh6JCVV6xazxWzPkr5OLiorfJUJorb15v2r5rr7glB7xLlq+iMmXKiusAy+byqgR4mzVvSaPHThB9Ye0AKKkUu/ZEkYenp7glAV75c33r5g0qW0b5H7HwKW7bXucLLAe8OOgMkBcgF4FqWths4IC+zN9/T1mzZtPfw30cbjd4YD+zabAV8Mo9cgG7Ud0dvmCeHi6j8nzhoqV6oI0XEN6e5sFqt+69qGix4uJwwly5XPVV52/fvhWV3FK1NxZuT57RP7OrskeytWeT77MCzqrA66d/UJt0/zgU8I69H0dfZtL5hHOwAomlwItnv9HTBoUcCnjTR8RQ2nTKZzIk1j54HO0pEPf4IQW5DXEo4N33cBl9k56fXe09XY7d8d9PbtGM+rkdBni7rjhPm28SpU6XMUEbeXgzOkH9uBMrwAqwAp9KAQa8Nip97eY9ARMln1sbuxk0swfwwoIhuFUbg/FQnYhP62E5MHLEMJNqQ2uAF4eeDR76sxjTkvfr8VPRlCXLDwR/3Ty5surXYA3wtmrTjkb88qtobw7wSgBVDnhbt21Pw0eMslliOWC2B/CimhhVxZLHcvYcOeng4eNkDmDLFyhpbWyBIG9TqrQ/LV+5VlzasnkTde2ss1OYNPn/s3fW8VGc3du/2rctXghFStEQJAlJILgGTXB3dw/uVtwJIbi7uzskuJMESXALLVacom1/7+fc+8wyuzu7O5vNkuzuOf88m5lbrzP7fMp3z1x3COo3aCQ+0+F95O+rFNJBaXLPWwLDBIgptmzaiJ49NNWy+kF2GQQ+KeQWEpLtg6mD0iZNCRYHoFF06tAWe3bv1A5fvkIA5i9cogNy5XPLfZDNHZymFvA2btIMEyZpLDuM/TBB8Pp8+BWtvUg+Hw9xwJyaoLFpDopr0dGo6F9G282aPNMgPyVJrmYJ3IYVcBgF/vnyCYGZU9oU8I68+Qyff/haue8w4vFG4lWBL//3BX+3Km9TwJtseRh+/E7zIykHKxBXCnz/7/do4jPepoB3160Q/PAj//9uXOWMx9EokASfMbeZt80Ab9fVl7Du4jP88ONPsZL88wfNAdwcrAArwAokVAUY8KrMzMkzF5AxYybROq+3u+rX/uXDWwN4aRzyaiUIRvBKP6h6ckZIsI5XrTnASxCVYCqFPriTjx927BRcXbOLCknXLF9/rTcHeFu2aoNRY8aLoYwBXqk6WA54CQoTHKagCs13796azNLtW7e0h4tZAngJerq4fH01MkWKFNo56cOPP/4oqjkJUpIvrxRVK/uLg8bksWP3fvj45BWXjHnwyitP58+djbFjRor2VOVM1c4UPbp3wdbNmxT3Kx2yJoeOBG1pHxT79+1B+7YaL1/9OHshUhxMpw/pJcBOnrMF83sr9p09dwGqVtNYVlQOKIeoqKs67eiHj779BqJQkaJImzYtPn38iJiHMdi+dYvwd65XX3PwW4N6tXDm9CmjuVQLeOWV0Af270W7Ni0Vx5QfDte7Zzds2rje5HMkvyl5buv/oGNNnlVPzg1ZAQdSgD14HSiZTrYV9uB1soQ70HbZg9eBkulkW2EPXidLOG+XFWAF4lwBBrwqJZUfRjZrZggmTRinsufXZhLgNVXlqQQ85RORb2q58v7wD6gIX98CyJEzp071ZMUKZcRr8hTmAK8cqE0cPxazZ01X3JNkD0EWBWRVIIWtAG+Dho0xOWiamIZ0Jr3VhiWAV6rKVju21E7/sDm6vmTZSpEXCnkO5GP3HzgYXQN7iEvyg+Hk+503ZxbGjR1lsCS57+yJ48fQpJHGV408iKmyl0K/2lQ+iLRXuX/cUkjNAAAgAElEQVQv3Zdyqw9+5X137T0ILy8N/JXsHdRqJj/czSOXq87hgPpjqAW8avdM1hVkYUFh6vlW2ovcl7dQfh+tTYM1eVarGbdjBRxJAQa8jpRN59oLA17nyrcj7ZYBryNl07n2woDXufLNu2UFWIG4V4ABr0pNmzRtjvETp4jWVNVHPrzmDu8iGFu4SFFt1eK6DVtQtFhxMQZVwlJFrH6YA7z67WkOAse++QuIW+RHOnWKxpNVei3/48ePyJ1D83q+PHK7u2P/wSPiEvnctm7R1KANVWdeu3lPgMQHD+6jVPHC2ja2ArzyqtTTp06iYf3aKrOke8iaOQ9e8lxNnCixGHvB4mXiMLW5c2Zi6eJF4hoBcvKX9StZFJ8/fdKugQ66048+/Qagew/NAWc0xvixhhYTclAqh8RyeEsHw1UK0PjxyqNv/4Egr1iKhfPnYvSo4drbUhWuMUgrH18fAkuHyNFgxsC0BIepSjyHq6aKXU3UqlMXIdNni6YHD+xD29YtTHZTC3hpEGnP+j86yCdYtnINypQpJy6Z8jZWWlTkletIlSqVqN7OnvU37XfVmjyr0YzbsAKOpgADXkfLqPPshwGv8+Ta0XbKgNfRMuo8+2HA6zy55p2yAqyAbRRgwGuBrpJVAXUh2Fm3VnWdA5jkQ5E36ozZ8/Dx4wcULqB5dZ+qUqlak6Jfn55Yv26NzuwBFStj3oLFmqrMu3dQplQxcT+Viwv69R+k6LMr4FX9hggK1lTfEtwlyEuxdcce+PrmF5/pkCk6bEoeBIcJ3pHlA8HmfN7uwhJBHqPHTkCLlq3Fpc0bN6BXz0DtbVsBXppAXl3bslljhIUdVswUWQCkS59ea2tgSQWvfMAr0bdAFg0lixVCTMwDuLt7YN/BMOHbSv6t5oL6kocvafri+XPxA4Ac4GfKlFkAd8ot3ffN66kzpKQl9SnjV1zHAoLGJIuFdOnSC+BI65H/uDBn3kJUqVpdjDewfx+sWb1SZ2y5VYH+cye3jVCC/HJIS97A5BGsJgiWb9yyQxxQR2su6OuNv/56ZrKrJYB34+btKFS4iBhv8cL5GDlimM7Y5KV8MTJK2GzQ/PSDCv0vRYeOXXD+/FlcvHBecT3y79OrV6+Q1yu3tp21eVajHbdhBRxJAQa8jpRN59oLA17nyrcj7ZYBryNl07n2woDXufLNu2UFWIG4V4ABrwWaUiXkodBjAuJRUCXvyhXLcPjgAYSHX0C+fPlRrEQJlCxVWuvHSoegSYBX/io+VdUO6NcLkZGR8PMrjUZNmsHTM492NXLAmzNXLhw8fEz4p65asQwb1q/F1atXRHVpyZJ+mBQULPxVKeQeqdOmz0btOnXF9Qvnz6F7YGe8fv0KFfwr4tbNG7h8+RJ69u6LXr37iTZv3rwRXrYR4RcF9CWo3KFTF3GP5vbJk0vnFXtbAl65VgQIyD91ekiwAJ+Uh/Ll/VGnbn14eHoK+EsQmCI2gJcqeSMuReP9+/cgGwGKQUOGoVPnQISGHkKr5poDxszFtp17kS+fr2gWfvGCgK1kl0EQevacBaB5KMgKgywD5CHPAx3q1rNbFxw5EiosOCZOmooCBQuJ5uR/SzmWh7xClwDx4IH9sHXLJiRJmhTduvXU+ix/+vQJudyyGGxDqoalG3Ro2awZIeI5qVa9pjgAjqC0/rMlDVKkaDHk8fIW8335/BmFixRDzVp1UKNmLe33ZN3a1ejfV1N9rB/048VP/zvooHadetpD/4KnTsbqlStE889fPhtUy6dJkxb0/NHa6PkgT+MJ48cIqE5wecmyVUibLp3orz+/ZBtx//49rF+7BmfOnBL5csuRA4HdeoGgt/Qdl/9gIq3dmjybe4b4PivgaAow4HW0jDrPfhjwOk+uHW2nDHgdLaPOsx8GvM6Ta94pK8AK2EYBBrwW6lq1WnVMDgpBsmTJVPW8eeM6KpTz07YlkCiBPlMDKAFeeXv6R7MEoaTr+hWWVDVKNgP67ai9HDJKVg7SOATJJKgnXZN7xkrXbAl4aY6lK1ajbNnyZnW2FvDSgW50sFtERDhqVqsk5tuz/7AA7oMG9MXqVRrQaC4IxG/fuU8czCaFfp4ePoxBhbKlDLxoCajvP3REHGZnLOhHgdo1qhgcckbtg6fNRJ169Y32pXUMHTxA/CChH3XrNRAV4ErPidR2545t6NpZcyCfPIYMHa79EUD/Hs1JIHvO7BlG13Xr7kNRZWsqjFmMyG0rjD27VI1NVdnykACvuXxeuXIZVStVMGhmTZ7Nzcn3WQFHU4ABr6Nl1Hn2w4DXeXLtaDtlwOtoGXWe/TDgdZ5c805ZAVbANgow4I2FrlQ5GxQ8A1WqVhOVrkpg6969u1iyaAGWLV2sc5t8b1et3qCtLpRuUtVmj8DOmDN/kYDHd+/cFq/qUyRJkgTjJwYhoGIlRbAsVfaOGD7UYC302vuYcRMN1hkcNBnTgjWewhRUqUmvputDPrJ1aN2yKc6dPWMwNtkGUOWwMRuD5i1aibkpOrZvg717dhmMEXX9jsF+5Y3ItmLSlGC4uLgY9KUKaqq8nDhhrHZ9cssBJbsCpXQvWb4K5cpV0PEvlryQvT1zispmtUE2Ctt37UWGDL/pdCHIcf7cWTSoV0vRe5kak/Z0mB/5NOvngSrBa1arDCX/X2ki8ocN7NbTAM4TIO3UoS1CDx80ug0/vzKYt3CJDpymxgT7yVNYv+JYGkgJ8NLz+McfD9Gze1dRDW4qrAG8NG6t2nXEd0MO1ek66b1i+VIMGzLQYHo6eK1j564gr2eloPVPmzrF5OF+1uRZ7bPE7VgBR1CAAa8jZNE598CA1znz7gi7ZsDrCFl0zj0w4HXOvPOuWQFWIO4UYMBrpZZ0CBm9Pu/l5YN3794K79wzp08ZhXgSyKM+RYoUw9/v/8a+PbtNgjv5EumV9rw++ZDL3V2A1airV4QNgNKBbVI/goVUjerhmUd47EZGhCt6B1PVLq2rePGSePbsKY6EhQpQlxCCQHrefL7w9smLZ0+fIDIiQvggJ9QgSF+mbDnkdvfA2TOncfLEcZM5ku+D8kWQt1jxEqAK8LDQwwb+yab2TT8ilC8fIJ7HA/v3qX62aEwCl/RDQsqUqQQQJksIU5EyZUr4B1RCxoyZ8PjxI4QePmTUl9qWuaKq2hIl/ZAieQqcPn1SWJKY+k7QWuiZyp3bXXwvsrm6IubBA+HNe/PGDdVLtSbPqifhhqyAHSvAgNeOk+fkS2fA6+QPgB1vnwGvHSfPyZfOgNfJHwDePivAClitAANeqyXkAVgBVoAVYAVYAVZASQEGvPxc2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAaxNZeVBWgBVgBVgBVoAVYMDLz4C9KsCA114zx+tmwMvPgL0qwIDXXjPH62YFWIGEogAD3oSSCV4HK8AKsAKsACvgYAow4HWwhDrRdhjwOlGyHWyrDHgdLKFOtB0GvE6UbN4qK8AK2EQBBrw2kZUHZQVYAVaAFWAFWAEGvPwM2KsCDHjtNXO8bga8/AzYqwIMeO01c7xuVoAVSCgKMOBNKJngdbACrAArwAqwAg6mAANeB0uoE22HAa8TJdvBtsqA18ES6kTbYcDrRMnmrbICrIBNFGDAG0eyJkmSBB8+fIij0XgYR1HAJXVqvHzxIlbbsaZvihQp8OnTJ3z+/NniuX/44QckTZoUb968sbjvTz/9BPouvH792uK+1nT4/vvvkSHDb/jzzz9AQImDFWAFEoYCDHgTRh54FZYrwIDXcs24R8JQgAFvwsgDr8JyBRjwWq4Z92AFWAFWQK4AA95YPg+FChdB7z794Zo9O9KkSYsff/xRjPTx40e8fPkC27ZuxqwZIbGCZLFckkG3zJmzIPUvv+Ddu3e4fetmXA3r8OPUrdcAgwYPw+ZNGzBu7Cix33kLFqNAgUJo06oZLl2KNKnBhElBKF/BH2nTpsN3332HL1++4NGjP7F40QIsWbTAZN9mzVuiY+euAlbSM0Vw5Nmzpzh6JAx9enU32dfHJy8mB4UgS9asAtBSEGi9fi0a7du1wquXL432//nnnzFvwRLk8fJGypQpRbv379/jwf37GDpkAM6dPWO0L4HoOXMXwidvPiRLlky0k/bct3cPnDl9SrFvPt/8WLhomarn6dChAxjQr7e2LenTo1cflClbDr/8kgYElqWg7+Dp0yfRq0cgXjx/rjj+kuWr4O3lo2ruAP8y2nEmTQlGuXIVVPWjRqdOnUS3rh1Vt+eGrICjKcCA19Ey6jz7YcDrPLl2tJ0y4HW0jDrPfhjwOk+ueaesACtgGwUY8FqoK4GkGbPmolLlqmZ70j9sd+3cjq6dO5hta4sGx0+dA0Hev//+G565s9tiCoccc+36zShWvASmTpmEkGlBYo8378QIiEg6kp5KQVWk23buBYFWY7F0ySIMHzZY8faw30eiXYdORvtGR0WhWhV//PPPPwZt/AMqYf7CJaA1KMXbt29ROaAcYmIeGNzOlCkzdu87pAW7+g3+++8/dOnUHnt27zToW7VadYTMmKP9gUNp7lUrl2PwwH4GtwIqVsaCRUtVPUMREeGoWa2Stu3W7bvhm7+Ayb607mqV/XH16hWDdqfPhQuIriZKFiuk1W3H7v0m86s/3q2bN1C+bCk103AbVsAhFWDA65BpdYpNMeB1ijQ75CYZ8DpkWp1iUwx4nSLNvElWgBWwoQIMeC0Ql+DZxcgouLi4aHtdi47GpUsRuHYtGu7uHvDy9oGbWw4kSpRItHny5DEKFzAO/CyY3uKmDHgtlkx0uBJ9C2RxUKJoQTx8GCPyuu9gmLBayOfjYXTQGbPmoUbNWuI+VU1v2bwREeEX4Ve6LKrXqKmFrz27dxX35FG5SjXMnb9IXCIwuWvnDoSFHoK3T17UqVsfVGFLcWD/XrRr01KnL1XN0poluHvq5Ans3bsbKX9Oidp168HVVQP3/3r2DAV8vQzWL4edDx7cx6aN60XFKv2IUaKkBk4SpKG9y6uAqTr87PlILdylKt+1a1YJAF6rdh2dH0Hq1q6O8+fO6swtB7yk7Z+P/jSq7eFDBzBl0gTtfQnwklbhFy8IiPv0yRNUrFwFHh6eIJsJCqpg9smTy+ieaV9RUVdNPiiNG9TRWk707T8Q5cr7m2xPVduennlEGwa8sfsOci/HUYABr+Pk0tl2woDX2TLuOPtlwOs4uXS2nTDgdbaM835ZAVYgrhVgwGuBovR6dsNGTUQPeg28W9dO2L9vj8EIBJeCgmegZq3aePr0CQNeCzSO76YELcMjo4Q9gUcuV7GcwUN+F7YJhw8fROsWTY0u8cbtBwLskz1BudIlQLBUCqp0nT13ofjzxvVr8C9fWmecXXsPwsvLW1zTB8BUaXr0xBlRQUxj58yeWcdntv/Awega2EP03bF9GwK7fK0YJ9h47ORZUclNUaNaJURGhGvnzu3ujv0Hj4i/yUaieJECAjBLERQ8HfXqNxR/Ll44HyNHDNPe27h5O8iqhGL5siUYNmSgzp7ou0LfGQr6HhTKr2uJIAe8M6YH6wBcc8/BuAmTBVgePfJ3AxsUAt7nLl7W2kVQ5bI+xJWgNvkU53LTaBNX0b5jZwwdNkIMt23rFnQPNF6VHVdz8jisQEJVgAFvQs0Mr8ucAgx4zSnE9xOqAgx4E2pmeF3mFGDAa04hvs8KsAKsgGkFGPCqfEJcs7sh9MgJ4alKEVChNK5fu2ayN1V+VqtRUwuuCGgVKVIU9Lr8tOApin07dOyC9OnT48qVywZVntSBfEtbtWoLVzc3pE6dGs//+gv3798Xnr9U5UhBnqiBgT3QqEkzJE+eXLzSv3SxBi5KsXXLJly+fEn7N8HDzl26CWCX3c0Nf797h6tXrog1HDkSqrjWJk2bi2plApnLli5G+QoBqFuvvvBifff2HY4eCcWSxQsFOKTIms0VrVu3RcHCRZAmTRo8jIkR1aJrVq80qWODho2F1ypVZiZKnBj37t4FVakSFNSPjBkzoU3b9uLy8uVLcf/eXVHNWbpMORQsVAgfP3wEWQb89dczxTnbtOuA4SNGIzz8ImpVryza7N0fCg9PTwzs38foWsm3d+q0GaL9ls2b0LN7F4PxCbRmyZJVXPfN66n1dSXP28gr18Wz9ccfDwVk1Q/5jwtDBvXHyhVfvWsvhF9BmrRpBfR1zZLB4JCxkqX8sGrNBjEk5bJF00ba4RctWY4K/hXF321aNcehg/t1pqY13bn/p6gOfvnyJfJ5u2vvX712WzxfdJAbQVKlw83Cjp4EfXco9Kt4rQG8Jh8YANNCZonqZYoJ48ZgzmxNbqSwFeAlnUgX8kCm7x3pRd93DlbAWRVgwOusmbf/fTPgtf8cOusOGPA6a+btf98MeO0/h7wDVoAViF8FGPCq1H/h4mUgn1MKAqmtWzZT2fNrsy3bdiF/gYKiQpJAnFJE37gr4NDdu3dQplQxbRMCbVQxWbBQYaPzvnr1Cnm9cqN4iZJYs26TyfXNnjUdE8ePFW3IM3blmg1GPVj37tmFzh3b6VR2Ur9zFy8hXbr04pX8Gzeuw9c3v8GcdM+vRBG079gJHTt11QJyeUPyKSaPV/349dcMWLNuI7K75VDcC1kONGlcTwe0U9X09JlzRXuqKCXLDALEEpin6z26dcbWLZs1bX4fiQb/q8qmv5MkSSIqQylHZLNAQXYN1J/28u+//4prmzasw4jhQ7XrmjNvIapUrS7+bt+2lWJl98TJU9GosaYCuH/fXli3drX4TPYNM2fPF5+NVXzKc6pfSXz/4RPRl0B60UK+ilrdffBIA2n1bCakHBKEyZ71N4Mc02BUPZw1azYxLj23pA1B89v3/hDXjEFpujdk6HB06KSB3Qvnz8XoUcO167Ml4JUDcao6pupjedgK8I4YNRat27QTU61YvhRDBw9QzAdfZAWcRQEGvM6SacfbJwNex8ups+yIAa+zZNrx9smA1/FyyjtiBViBb6sAA16VelP1rgQaixTMh8ePH6ns+bWZNYBXDhCpMpAOyyLAmSVrVqRNm07AO7ruli2j8P9cvW4TUqVKpQWbVH0pjymTxosq0DRp0gpQK/m3Urvr16KRKpULcuXOrb1+4vgxNGmkqYiUQoKD8mtUzfnm9WuQ1YE0Jv0DXw5YCTL+lCiR9hV66l+xQhnhYywFVRRTVSvBbgqCl2QtQHCxQMFCSJ/+V3Fd/9V/OeDVn1caWw545eDekoTqQ/5NW3Zo4TvlQOkgtFp16iJk+mwxzfSQqQiaPFF87tK1OwYMGiI+ExAkMKgUEsilyms6PIyC8nchQnOI2NEjYWjeVGOnoB/nL15G2nTphLVI7hyaKmKKqOt3RB6kHweU+tJBaARjKfxKFhVV0QTCr928J67Rd4G+E0ohr2zet3c3OrRrrW0mB7xUVb1y+VL8+9+/uHvnjqgKtibk31cl/18J8NI8lQLKIVnSpPjw8YOYWyl3atZCPsnhl6IF/CbrBzqQL7ZjqZmP27AC9qAAA157yBKvUUkBBrz8XNirAgx47TVzvG4GvPwMsAKsACtgnQIMeFXqJ72Obqr61txQ1gDem3dihAcrHRpVpGBefPjwQTsdAbqRo8eJV+3lr9CrOWSNKn2pOpRi/bo16Nenp3ZcshPYueeAtrKXoKLc1kEOeAkMd+/aCUePhon+BB7JkkACtPSPfKpY/X3oIAG/KIKnzUSdevXFZ6qoJfAqRciMOeKgLoqpUyYhZFqQjrzzFizWHuI1/PchWgsKOeClDuRZu3vXThw6uE/Auzxe3jh08IAAwxSkXerUv4jPv6RJg2079ojK3dIli4prPXv3RfMWrXD82FFh0SDFixfPRUWvFHKgmDVTesVHoUyZcli2co24t3HDOvTp1V18HjNuopiDokunduKANaW4F/NYgHI6+I0OgKMgSw2q7KbYuWMbunb+6r8rH+PE6fPIlEnj3ZstswaOU1AVLgFJU4cByn14WzZrjLCww6KvBIcJYhLMlPIqn5csRUhTCrLVaNRAk1MKOeDV3y99zwjojx0zEnR4myUh14RymcddYxEhD/nBcvr33rx5g9WrlovnTmlPxtYifyaDgyYbtWGxZC/clhWwdwUY8Np7Bp13/Qx4nTf39r5zBrz2nkHnXT8DXufNPe+cFWAF4kYBBrwqdCSoRnCNwlSlo7mhYgt4CewS4KUw9Rq+/vzmAK+8ClPfX1UaSw7hzp87K3xUpZAAL3mMenvmNPBgnTFrHmrUrCWa6x8cRteo4vFy1E1xP/ziBdSqUUV8pspf8n0l3SMiwlGzmsYaQx6kyfVb90Vbgq9NG2tAsRzwRkdFoVHDOnilV71sLE/S4VgEFOvVqSGaEeD29vYR4JsAuLGQfHBN/QCQN58vtu/cK4aQr1nug9u4YV2cPHFccZpbdx8K+wiC/D55cok28grZtWtWYUC/3op9Dx4+ipy5cot77jmziR8I5M/1/fv3hJWGUshtBwjQk98yheRNTJ9v3riOgApldCweCBz3HzBYHFBHoe//awrwyteh9OwYywP5GZ8+F6H9YWHShHGYNTPEoLkpwCs1JuuJksUKKdpW6A9I8Jy+b6QpfR+8PJRtRVx+U75u9MHiG6yAnSvw4c1zVE7+L+r85mKTnRx7/g5rn37E/3NRtj2yyaQ8qFMo8O7v53jduBg+1S1hk/0m2nAMqdadRbJkqW0yPg/qvAp8ef0GDTyGo2gW3Tfv4kqRHVGTceDhIiT5WVMgwcEKxJkC7x5jdsPcqJgnXZwNKR+o6+rL2HrtIxInTxWr8V/+eStW/bgTK8AKsALfSgEGvCqUlgNWskUo4Oulopdhk9gCXhopPDJK2B5QEICcOGGs2cpGc4C3WPESWLte40W7dMkiDB82WHFfki+wvh2CBHiNweEePfugd9/+YkxjlakStJR7DstB6LGjR0Ces0oxcNBQJEqUCHI4KQe8+oeRmUuaVM08bswozJs7SzQniJw4cWJRoSqv2NUfK+LyNbi4uGhtMpTmypPHC7v3HRK35IB3+aq1KF26rLhOYNlYxaoS4G3WvCXGjp8k+pryfN13IAzuHh6inQR45c/1ndu3ULa08j9iyae4XYdOoq8c8ObMlUtAXgK5FFQtTTYbdEBf+l9/RebMWbT36D7ZMAwe2E8rDR26N3DQEESEh4uD+ujgu19//RX58xdE3foNtZXjVAHoX94PN2/cMJlCehaOHD+NDBl+E+3ooMKqlSoo9unbfyCSJ0+BK5cv4emTJwLMkt1Jrdp1hQWIZCmiZE2iNKD03aZ7pmw20rspeySbezb5Pitgrwq8ffEIid49w0/faw4ojev48t//4fvEP+P/pdP4hHOwAnGlwOuXf+BFg4I2BbypN0UgZSr+cSKucsbjaBT48OwJ6uUaYlPAe/jJSiRPzc8uP3Nxq8CX53cwq34OmwHewNWXsf02kCxV2lgt/Mnt8Fj1406sACvACnwrBRjwqlT6xu0HAiZKPrcqu+k0swbwkgVDq9ZtdcajalF6tZ4sB0aNGGbwOrk5wEuHng0e+rsY0xSUkvuV5syeWbsGc4C3ddv2GDFyjGhvDPBKAFUOeNu064DhI0arllgOmK0BvFRNTFXFkscyAcijx0/DGMCWL1DSWt8CQd6mZCk/rFqzQVzasX0bArto7BSmTA1B/QaNxGc6vI/8fZVCOihN7nlLYJgAMcWWTRvRs4emWlY/yC6DLDco5BYSku2DqYPS5AeWderQFnt279QOX75CAOYvXKIDcuVzy32Q6VC6JYsWqM7rodBjyJFTU6k8d85MjB9r/JkgyBx69KR2j1TpTjYbllgsSAsrV94fi5euEJCXPHrlz7zS4uU2FM+ePkXB/N5G9/hTkuSq988NWQFHUOCfL58QmDklerrZphpn05+vMPLmM3z+IZEjyMV7SEAKfPm/L/i7VXmbAt5ky8Pw43eaH0k5WIG4UuD7f79HE5/xNgW8u26F4Icf+f934ypnPI5GgST4jLnNvG0GeLuuvoR1F5/hhx9/ipXknz9oDuDmYAVYAVYgoSrAgFdlZk6euYCMGTOJ1nm93VW/9i8f3hrAS+OQV2vDRk2EF69+UPXkjJBgHa9ac4CXICrBVAp9cCcfP+zYKbi6Zhevqrtm+fprvTnA27JVG4waM14MZQzwStXBcsBLUJjgMAXZEbx799Zklm7fuqU9XMwSwEvQ08Xl66uRKVKk0M5JH8gOgTyECVKSl6sUVSv7i4PG5LFj9374+OQVl4x58FavURMzZ88XbebPnS38ZSmoygX7m3kAACAASURBVJmqnSl6dO+CrZs3Ke5XOmTtWnQ0KvqXEW0I2tI+KPbv24P2bTVevvpx9kKkOJhOH1hKgN0UmJw9dwGqVtNYVlQOKIeoqKs6w9MPH337DUShIkWRNm1afPr4ETEPY7B96xbh71yvvubgtwb1auHM6VMmcym/WaRoMazfuFVcunD+HOrUqqbYl3yU9x86IjyGKehHj7J+xU1WXJtbhPTMUztzhyrK23Zs3wZ79+wyNzzfZwWcRgH24HWaVDvcRtmD1+FS6jQbYg9ep0m1w22UPXgdLqW8IVaAFfjGCjDgVSm4/DAy8vQkb09LQwK8pqo8lYCnfB6qKqQKQ/+AivD1LYAcOXPqVE9WrFBGvCZPYQ7wEiym6kyKiePHYvas6YpbkuwhyKKArAqksBXgbdCwMSYHTRPTGPNQNaa9JYBXqsq2NI/6h81R/yXLVoq8UMhzIB+7/8DB6BrYQ1ySHwwn3++8ObMwbuwogyW55ciJw2Eab165bQB5EFNlL4Uc/OoPIO1V7t9LbaTcmqpU3bX3ILy8NFWpkr2DWs3kh7t55HLVORzQ3BgE3K9Ea7yujFlI0GF+5C/skloD6u/euY2K/mVjVbkrXw9Zl5CFCYUp24zKVaph7vxFoh3ZTJQqXtjctvg+K+BUCjDgdap0O9RmGfA6VDqdajMMeJ0q3Q61WQa8DpVO3gwrwArEgwIMeFWK3qRpc4yfOEW0JpsG8uE1d3gXwdjCRYpqqxbXbdiCosWKizGoEpYqYvXDHODVb09zEDj2zV9A3AqZFoSpUzSerNJr+R8/fkTuHJrX8+WR290d+w8eEZfI57Z1i6YGbag689rNe+IwM32AZSvAK69KPX3qJBrWr60yS7qHrJnz4CUomDhRYjH2gsXLxGFqZAWwdLEG2BEgp1f//UoWxedPn7RroNf/9aNPvwHo3kNzwJkxOwE5KJVDYjm8pYPhKgVo/HjlQZ6x3br3EpcWzp+L0aOGa29LVbjGIK18fH0ILB0iR4MZA9MSHKYq8Ryumip2NVGrTl2ETJ8tmh48sA9tW7dQ003bhoA5gXMKpefT0zMPNm3dqT1QLTz8ImrXqGJw2J9Fk/6vsbxiP5dbFqPAWO6NbQoEx2YN3IcVcAQFGPA6Qhadcw8MeJ0z746wawa8jpBF59wDA17nzDvvmhVgBeJOAQa8FmgpfxWbYGfdWtVBB48pBXmjzpg9Dx8/fkDhAppX96kqlao1Kfr16Yn169bodA2oWBnzFiwWMFVuWZDKxQX9+g9S9NmlAegV+KBgTfUtwV2CvBRbd+yBr29+8dnLIwfevtW1OiA4TPCOLB8INufzdheWCPIYPXYCWrRsLS5t3rgBvXoGam/bCvDSBPLq2pbNGiMs7LCizmQBkC59eq2tgSUVvPIBqVKUKkZLFiuEmJgHcHf3wL6DYXj54gXy+WgOJzMV1Jc8fEnTF8+fix8A5ACf7AMIuFNu6b5vXk+d4SQtqU8Zv+I6FhA0JlkspEuXXsBLWo/8x4U58xaiStXqYryB/ftgzWoNFJViwaKloGeLQv+5k9tGKEFUOaQlb2DyCFYTBMs3btkhDqijNRf09RaHqMmDgPXSJQsNnkupjVT9S3/LD76jvytVrgraN+lJIfc0Nrc++m6SpsaeKf+ASli4eJkYhqw58ri7KQ7ZvmNnDB02Qty7evUKqlQsb25qvs8KOJ0CDHidLuUOs2EGvA6TSqfbCANep0u5w2yYAa/DpJI3wgqwAvGkAANeC4SnSkg6+IngEAVV8q5csQyHDx5AePgF5MuXH8VKlEDJUqW1fqzkByoBXvmr+FRVO6BfL0RGRsLPrzQaNWkGqkiUQg54c+bKhYOHjwn/1FUrlmHD+rUCKFF1acmSfpgUFCz8VSnkHqnTps9G7Tp1xXXyMO0e2BmvX79CBf+KuHXzBi5fvoSevfuiV+9+os2bN2+El21E+EUBfQkqd+jURdyjuX3y5NJ5xd6WgFeuFQGCTRvXY3pIsACflIfy5f1Rp259eHh6ClBHEJgiNoCXKnkjLkXj/fv3IBsBikFDhqFT50CEhh5Cq+ZNVD0l23buRb58vqJt+MULAraSXQZB6NlzFmhtBMgKgywx5CHPAx3q1rNbFxw5EiosOCZOmooCBQuJ5uR/SzmWh7xClwDx4IH9sHXLJiRJmhTduvXU+izTgWNUjaofUgUwXV+6ZBFmzQgRz0m16jXFAXASRFXy3yWf3Dxe3mK+L58/o3CRYqhZqw5q1Kyl/Z6sW7sa/ftqqo/lQQe8UW7DQg9hz+5dwnrixYvn4vszZtwE/Pqrxu+Znsu8Xrl1gLnkRyxpQt8JY0Fz0PeGnmGK6TPniueEvptr16zCqZMnxPcjw28Z0aVrN+FzLX3Hx4wegQXz5hgMTZpcvXZbWz1coVwp3LxxQ9Vzwo1YAWdSgAGvM2XbsfbKgNex8ulMu2HA60zZdqy9MuB1rHzyblgBVuDbK8CA10LNq1arjslBIaCDndTEzRvXUaGcn7YpgUTJL9RUfyXAK29P/2iWIJR0Xb/CkqpGyWZAvx21l0NGycpBGocgoQT1pGtyz1jpmi0BL82xdMVqlC1rvirSWsBLB7rRwW4REeGoWa2S2N6e/YcFcB80oC9Wr1qhJtUgEL995z4t9KNO+nl6+DAGFcqWMvCiJaBOB4XRYXbGgn4UIAsC/UPOqH3wtJmoU6++0b60jqGDB4gfJPSjbr0GogJc6TmR2u7csQ1dO2sO5JPHkKHDtT8C6N+jOQlkz5k9Q3FdBHhNzUmd6FmkHx2OHzuqM4Yc8KpJDtlsSAfjSYDXXD/6AYSsNJRi5OhxaNW6rbhFgLhRgzrmhuP7rIBTKsCA1ynT7hCbZsDrEGl0yk0w4HXKtDvEphnwOkQaeROsACsQjwow4I2F+FQ5GxQ8A1WqVhOVrkpg6969u1iyaAGWLV2sc5t8b1et3oC06dLpXKeqzR6BnTFn/iIBj+mwKHpVnyJJkiQYPzEIARUrKYJlqbJ3xPChBmuhasQx4yYarDM4aDKmBWs8hSmoUpOsHvSBG9k6tG7ZFOfOnjEYm2wDqHLYmI1B8xatxNwUHdu3wd49uwzGiLp+x2C/8kZkLUAHwbm4uBj0pQpqqpSdOGGsdn1yywEluwKldC9ZvgrlylXQ8S+WvJC9PXOKClK1QTYK23ftRYYMv+l0Ichx/txZNKhXS9F7mRqT9nSYH/k06+eBqk1rVqsMJf9faSLyAQ7s1tMAzhMY7tShLUIPHzS6DT+/Mpi3cIkOnKbGBFjJU1i/4lgaSAnw0vP4xx8P0bN7V1ENbizIjqSUXxmjP5bQjyOtWjQFQXH9sBTwStYbNA55+/4+fCSyuWZXBMzkNUzfDzpMUSkoN7fuPhQV9JTXYoXzm8yL2meH27ECjqgAA15HzKpz7IkBr3Pk2RF3yYDXEbPqHHtiwOsceeZdsgKsgO0UYMBrpbZ0CBm9Pu/l5YN3794K79wzp08ZhXgSyKM+RYoUw9/v/8a+PbtVAyLy483rkw+53N0FWI26ekXYACgd2CZtjYAUVaN6eOYRHruREeGK3sFUtUvrKl68JJ49e4ojYaEC1CWEIJCeN58vvH3y4tnTJ4iMiBCHviXUIEhfpmw55Hb3wNkzp3HyxHGTOZLvg/JFkLdY8RIgyBkWetioT63S/ulHhPLlA8TzeGD/PtXPFo1FgJp+SEiZMpUAwkrVwvI5U6ZMCfKszZgxEx4/foTQw4eM+lIby1XmzFnEs+nmlgP0fbp44TzOnTtjUOUc17mmueh5onmzZsuGmAcPcPr0KfHjCgcrwArEjQIMeONGRx7l2yvAgPfba84zxo0CDHjjRkce5dsrwID322vOM7ICrIBjKcCA17HyybthBVgBVoAVYAUSjAIMeBNMKnghFirAgNdCwbh5glGAAW+CSQUvxEIFGPBaKBg3ZwVYAVZATwEGvPxIsAKsACvACrACrIBNFGDAaxNZedBvoAAD3m8gMk9hEwUY8NpEVh70GyjAgPcbiMxTsAKsgEMrwIDXodPLm2MFWAFWgBVgBeJPAQa88ac9z2ydAgx4rdOPe8efAgx44097ntk6BRjwWqcf92YFWAFWgAEvPwOsACvACrACrAArYBMFGPDaRFYe9BsowID3G4jMU9hEAQa8NpGVB/0GCjDg/QYi8xSsACvg0Aow4HXo9PLmWAFWgBVgBViB+FOAAW/8ac8zW6cAA17r9OPe8acAA974055ntk4BBrzW6ce9WQFWgBVgwMvPACvACrACrAArwArYRAEGvDaRlQf9Bgow4P0GIvMUNlGAAa9NZOVBv4ECDHi/gcg8BSvACji0Agx4HTq9vDlWgBVgBVgBViD+FGDAG3/a88zWKcCA1zr9uHf8KcCAN/6055mtU4ABr3X6cW9WgBVgBRjw8jPACrACrAArwAqwAjZRgAGvTWTlQb+BAgx4v4HIPIVNFGDAaxNZedBvoAAD3m8gMk/BCrACDq0AA16HTi9vjhVgBVgBVoAViD8FGPDGn/Y8s3UKMOC1Tj/uHX8KMOCNP+15ZusUYMBrnX7cmxVgBVgBBrz8DLACrAArwAqwAqyATRRgwGsTWXnQb6AAA95vIDJPYRMFGPDaRFYe9BsowID3G4jMU7ACrIBDK8CA16HTy5tjBVgBVoAVYAXiTwEGvPGnPc9snQIMeK3Tj3vHnwIMeONPe57ZOgUY8FqnH/dmBVgBVoABLz8DrAArwAqwAqwAK2ATBRjw2kRWHvQbKMCA9xuIzFPYRAEGvDaRlQf9Bgow4P0GIvMUrAAr4NAKMOB16PTy5lgBVoAVYAVYgfhTgAFv/GnPM1unAANe6/Tj3vGnAAPe+NOeZ7ZOAQa81unHvVkBVoAVYMDLzwArwAqwAqwAK8AK2EQBBrw2kZUH/QYKMOD9BiLzFDZRgAGvTWTlQb+BAgx4v4HIPAUrwAo4tAIMeOMovUmSJMGHDx/iaDQexlEUcEmdGi9fvIjVdqzpmyJFCnz69AmfP3+O1dzx0en777+HW44cePzoEd6+fRsfS4j1nNbkKtaTckdWwA4UYMBrB0niJSoqwICXHwx7VYABr71mjtfNgJefAVaAFWAFrFOAAW8s9StUuAh69+kP1+zZkSZNWvz4449ipI8fP+LlyxfYtnUzZs0IwZs3b2I5g/XdMmfOgtS//IJ3797h9q2b1g/oJCPUrdcAgwYPw+ZNGzBu7Cix63kLFqNAgUJo06oZLl2KNKnEhElBKF/BH2nTpsN3332HL1++4NGjP7F40QIsWbTAZN9mzVuiY+euyJDhN/FMERx59uwpjh4JQ59e3U329fHJi8lBIciSNSuSJk0q2r5+/RrXr0WjfbtWePXypaoM9uk3AK3btEdMzANUDiinqo9+oyZNm4vvB8WsWdON7jtRokQYPXYCataqg8SJE2uH+eeff3Dr5k307d0dly9f0hmenun9B8IsWlfdOjVw/95dbZ8ly1fB28tH1RgB/mXw4vlzg7bW5FnVxNyIFXAABRjwOkASnXQLDHidNPEOsG0GvA6QRCfdAgNeJ008b5sVYAXiTAEGvBZK+dNPP2HGrLmoVLmq2Z70D9tdO7eja+cOZtvaosHxU+dAkPfvv/+GZ+7stpjCIcdcu34zihUvgalTJiFkWpDY4807MaDck46kp1JQBeq2nXtBoNVYLF2yCMOHDVa8Pez3kWjXoZPRvtFRUahWxR8EP/XDP6AS5i9cAlqDUlBFLMFagramgipRj504C6oAph8nvD1zWpxj0m7Nuk0CblOsWL4UQwcPMBiHQO3xk+eQLFkyk3NQXxpDiixZsuLYybMWratm9cqICL+o7XP6XLiA6GqiZLFCOrpZm2c1c3IbVsBRFGDA6yiZdL59MOB1vpw7yo4Z8DpKJp1vHwx4nS/nvGNWgBWIWwUY8FqgJ4Gdi5FRcHFx0fa6Fh2NS5cicO1aNNzdPeDl7QM3txygykSKJ08eo3AB48DPguktbsqA12LJRIcr0bcE4CxRtCAePowRed13MExYLeTz8TA66IxZ81CjZi1xn6qmt2zeKKCiX+myqF6jpha+9uzeVdyTR+Uq1TB3/iJx6b///sOunTsQFnoI3j55Uaduffz888/i3oH9e9GuTUudvgRIac0S3D118gT27t2NlD+nRO269eDqqoH7fz17hgK+Xgbrz1+gIBo1boocOXLCJ28+bTV6bAAvwddDYccFDJfCGOAlSEvtKSIiwrFi2RJs37YFJUr6oVnzFqjgX1HcI0BUqnhhLWRNmTIl1qzfbDa5WbNmQ/LkyUU7Y4CXxo6KumpyrMYN6ohKaCmsybPZRXMDVsDBFGDA62AJdaLtMOB1omQ72FYZ8DpYQp1oOwx4nSjZvFVWgBWwiQIMeC2QddKUYDRs1ET0ICuGbl07Yf++PQYj/PDDDwgKnoGatWrj6dMnDHgt0Di+m1JVaXhkFN6/fw+PXK5iOYOH/C5sEw4fPojWLZoaXeKN2w8E2CdLhnKlS+DBg/vatlWrVcfsuQvF3zeuX4N/+dI64+zaexBeXt7imj4ApkrToyfOCGhKY+fMnllATyn6DxyMroE9xJ87tm9DYJevFeNURUsglSq5KWpUq4TIiHCduUeMGovWbdoZ7MtSwEtQ/MTpCyAAKw8lwEttLl29IZrdv38PfiWKGMw/bsJkNG3WQlyfMmkCZkwPtujxkEA9AfN83u46kFaq4CWf4lxuGm3UhjV5VjsHt2MFHEUBBryOkknn2wcDXufLuaPsmAGvo2TS+fbBgNf5cs47ZgVYgbhVgAGvSj1ds7sh9MgJ7WvnARVK4/q1ayZ7U+VntRo1BZyiCKhYGUWKFBUHSE0LnqLYt0PHLkifPj2uXLlsUOVJHfL55kerVm3h6uaG1KlT4/lff+H+/fvC8/fwoQNiTHrNPjCwBxo1aSYqGOmV/qWLNXBRiq1bNul4mxI87NylG8hbOLubG/5+9w5Xr1wRazhyJFRxreSzStXKBDKXLV2M8hUCULdefVEF+u7tOxw9EoolixcK/1mKrNlc0bp1WxQsXARp0qTBw5gYbNq4HmtWrzSpY4OGjVGmbDl4eHgiUeLEuHf3LqhKVQn4ZcyYCW3athfjLV++VPiuEnAvXaYcChYqhI8fPmLVyuX4669ninO2adcBw0eMRnj4RdSqXlm02bs/FB6enhjYv4/RtZJv79RpM0T7LZs3oWf3LgbjyytWffN6an1dCXZGXrkunq0//niI4kUKGPSV/7gwZFB/rFyxTNvmQvgVpEmbVkBf1ywZdOAvNSpZyg+r1mwQ7SmXLZo20hmf8iZpRjeKFisuNLME8NLajxw/DaqapQgOmoxeffqJz0qAV16xfPzYUTRtXN9gz/R9WbBIY81AViddOmnyqiZ69+2PHj37iKYb1q9F394aAC5FbAGvNXlWs25uwwo4mgIMeB0to86zHwa8zpNrR9spA15Hy6jz7IcBr/PkmnfKCrACtlGAAa9KXRcuXgbyOaUgkNq6ZTOVPb8227JtF+h1eKooJBCnFNE37ooDsu7evYMypYppmxBA27h5OwoWKmx03levXiGvV24UL1FSeKCaitmzpmPi+LGiCXnGrlyzwaDyUuq/d88udO7YTqxbHucuXkK6dOmFJ+2NG9fh65vfYEq6R9WZ7Tt2QsdOXbWAXN7QGLz79dcMWLNuI7K75VDcClkONGlcTwe0U9X09JlzRfthQwYKywwCxJIfLF3v0a0ztm7RvOJPvrcN/leVTX8nSZJEWBTQXslmgYIqU6k/7eXff/8V1zZtWIcRw4dq1zVn3kJUqVpd/N2+bSvFyu6Jk6cKKwSK/n17Yd3a1eIz2TfMnD1ffN62dQu6Bxr68Mpzql9JfP/hE9GXQHrRQr6KWt198EhYOJizmaDOEZeixY8ElgDe1Ws3okTJUmLuCePG4OTJ49i+c6/4WwnwpnJxQeRlzQ8kVA1fKL+3wYGEg4YMQ6fOgaJNl07thG2FmqAqaqrepR8tPn/+DC+PHKBKXXnEFvBak2c1a+c2rICjKcCA19Ey6jz7YcDrPLl2tJ0y4HW0jDrPfhjwOk+ueaesACtgGwUY8KrUlap3JdBYpGA+PH78SGXPr82sAbxysEQVuXRYFgHOLFmzIm3adALe0XW3bBnh6ZkHq9dtQqpUqbRg8+XLlzrrnTJpvKgCTZMmLQjUSv6t1O76tWikSuWCXLlza6+fOH4MTRrV0xlDArzyiwTU3rx+DbI6kMakf+DLAStBxp8SJdI5XKtihTLCx1gKgnNU1Uqwm4LgJVkLEHgtULAQ0qf/VVwnC4xC+X20/eSAV39eqZEc8MrBvSUJ1Yf8m7bs0MJ3yoHSQWi16tRFyPTZYprpIVMRNHmi+Nyla3cMGDREfNY/UEy+JgnkXr58CdUq+4tblL8LEVfE56NHwtC8aUPFbZy/eBlp06UTMDV3Do3vrbGwFPCOHD0OrVq3FcNt3rgBvXoGIm8+X5OAl9qevRCpzSNZYnTu0BZhYYfFOOQ5fOzkOfEMk5Y5XDMZVCYbW39Q8HTUq6/RYe6cmRg/drRBUwnw0vNaKaAckiVNig8fP+DunTuKuZMGsCbPljxf3JYVcBQFGPA6Siadbx8MeJ0v546yYwa8jpJJ59sHA17nyznvmBVgBeJWAQa8KvW8eu22sDswVX1rbihrAO/NOzGiIpEOeypSMC8+fPignY4O2SLIRodSkdeoFGoOWaNKX6oOpVi/bg369emp7U8HYO3cc0Bb2UtQkeCiFHLAS2C4e9dOOHo0TNwm8EiWBBKgpX/kU8Xq70MHaaspg6fNRJ16mlfzqaKWwKsUITPmoFbtOuLPqVMmIWRakI688xYsRqXKVcW14b8P0VpQyAEv3SPP2t27duLQwX0C3uXx8sahgwcEGKYg7VKn/kV8/iVNGmzbsUdU7pYuWVRc69m7L5q3aAWyESCLBilevHguKnqlkP8AkDVTesVHoUyZcli2co24t3HDOvTp1V18HjNuopiDwlSl6r2YxwKU08FvdAAcBVlqUGU3xc4d29C181f/XfkiTpw+j0yZNN692TJr4LixsATw0rpp/RRyWws1gJcsTDZu2SEqpKV49vSpsBuhg+XoRwLKH1VEhx4+aHLN0k35DxYEjfO4uxlUnlNbCfAqDUqVy6tXLRfPnX7lrzV5VrUBbsQKOJgCDHgdLKFOtB0GvE6UbAfbKgNeB0uoE22HAa8TJZu3ygqwAjZRgAGvClkJqhFco5BsEFR0M2gSW8BLYJcAL4Wp1/D1JzQHeMmO4NrNe6IbAVo5HJbGkvugnj93FnVra2wIKCTAS57C3p45DSosZ8yahxo1a4m2+geH0TWq0rwcdVPcD794AbVqVBGfqfL3zv0/BcyMiAhHzWoaawx5kCbXb90XbeUernLAGx0VhUYN6+CVXvWysdy179gZQ4eNwLmzZ1CvTg3RjAC3t7ePAN8EwI2F5INr6gcAOfSUr3nRkuUCzlM0blgXJ08cV5zm1t2Hwj6CIL9PnlyijdwTdu2aVRjQr7di34OHjyJnrtzinnvObDo/EOh3UAt46YcBsmagPFFFO0FnqXJZDeCleQniknZStbf+WqpULI+rVzUVympi5er1KOWnOcBu7OiRmD9PUzGtH6YAr9SW/JBLFiukA4ityTONm95N2UJDzd4+vnuJ//tPYxFii0iULBW+/38/2GJoHtOJFXj34hHapvoHPd3S2USFTX++wviYD/gxncb/m4MViCsFXr/8Ay8aFMSnuiXiakidcRJtOIbUmyKQMpWyZZdNJuVBnUKBD8+eoF6uISiaRffNu7ja/I6oyTj8ZCWSp+ZnN6405XE0Cnx5fgez6udAxTy2+W+GwNWXsf02kCxV2lhJ/uS27kHVsRqEO7ECrAArYEMFGPCqEFcOWMkWoYCvl4pehk1iC3hppPDIKAHDKAhATpwwVvyvqTAHeIsVL4G16zVetEuXLMLwYYMVh5N8gfXtECTAawwO0yFXdNgVhbHKVAlayj2H5XDw2NEjIM9ZpRg4aCjIb/X+/XvC55dCDnj1DyMzlzSpmnncmFGYN3eWaE4QOXHixPDMnV2nYld/rIjL1+Di4qK1yVCaK08eL+zed0jckgPe5avWonTpsuI6gWVjeVUCvM2at8TY8ZNEXyWvW2kd+w6Ewd3DQ/wZF4CXDsw7FHpMAGeqZC5RrKDw95VCDeDNmSsXNm3ZKSrEqVJ2984dKFOuvNBRCrKU6NGtC8gH2lzQeAcPHxPNjD2T0hh9+w9E8uQpcOXyJTx98kRAarI7qVW7rrAAkSxF9K1JrMkzzR1bwPvhzXPgSzKkTPW1Qt+cHpbc//D+Cd5/vI8UaW3zH9SWrIXbOpYCDHgdK5/OtBsGvM6UbcfaKwNex8qnM+2GAa8zZZv3ygqwArZQgAGvSlVv3H4gYKLkc6uym04zawCv3OdUGpSqRZ88eSwsB0aNGGbwOrk5wEuHng0e+rsYzpT3q9yvNGf2zNo9mQO8rdu2x4iRY0R7Y4BXAqhywNumXQcMH2Hom2pMcznMswbwUjUxVRVLHssEMY8eP20WFtK6JK1NWSCULOWHVWs2iG3s2L4NgV00dgpTpoagfoNG4jMd3kf+vkohHZRG1bK0RgoCwwSIKbZs2oiePboq9iW7DLLcoDBmISF1VFPBK3kX035bNG0kDtmTh7dPXlAbCrLfGD92lPju/PXXM3GNfqw4d+ESfvjhB5CVAnkwP3hwX9wj24mJk4LgliOndkhzFdTUcO/+UHh4eoo+ShXjxp4f/evlyvtj8dIVAvKSR6/8mbcmz2rnV2pHOmd1a4KCJaZZM4zRvn/G7MH5493wzz9vbTI+D+q8CrBFg/Pm3t53zhYN9p5B510/WzQ4b+7tfeds0WDvGeT1swKsQHwrwIBXZQZOnrmAjBkzidZ5ZFJvJAAAIABJREFUvd1Vv/YvH94awEvjkNdpw0ZNhBevfpBX6YyQYB2vWnOAlyAqwVSKTh3aYs/unYpqhB07BVfX7Ab+w+YAb8tWbTBqzHgxpjHAK1UHywEvQWGCwxRkR/DunWnodPvWLe3hYpYAXoKeLi6ptXuWvGBpTgqqTiUPYQIU5MsrRdXK/rh/766OVjt274ePT15xzRhArV6jJmbOni/azJ87G2PHjBSfqcqZqp0penTvgq2bNynmQTpk7Vp0NCr6lxFtCNrSPij279sj/GqVQjrQTB9YKrVVA3jlthKKExq5KGkzfeZcUW1NsXD+XIweNdygh9yb2FzlvByeW2JjYmzt0jNP9+WHKlqTZ0t00m/LgNca9bhvfCrAgDc+1ee5rVGAAa816nHf+FSAAW98qs9zW6MAA15r1OO+rAArwAoADHhVPgXyw8hmzQzBpAnjVPb82kwCvKaqPJWAp3wiqiqkCkP/gIrw9S2AHDlziipIKagS8tq1aPGnOcBLsHjSlGDRduL4sZg9a7riniR7CHoVn6wKpLAV4G3QsDEmB2kqFUln0lttWAJ4papstWNL7fQPm6PrS5atFHmhkOdAPnb/gYPRNbCHuCQ/GE6+33lzZmHc2FEGS6Jq1sNhGm9euW0AeddSZS+FHPzqDyDtVe7fa2zf3wLwyg8r8ytZ1ACY09rohwxaNz3z5g43lHvqUkXxkSOhlqZVpz1Zl5CFCYXcNsOaPFuzIAa81qjHfeNTAQa88ak+z22NAgx4rVGP+8anAgx441N9ntsaBRjwWqMe92UFWAFWgAGv6megSdPmGD9ximhPr5qTD6+5w7sITBUuUhRnTp8S/dZt2IKixYqLz65ZMugc3iQtxBzg1V8wzUHg2Dd/AXErZFoQpk7ReLJKr+WTj2nuHJrX8+WR290d+w8eEZfI57Z1i6YGbciWgg5iI5BIr9CXKl5Y28ZWgFdelXr61Ek0rK+p9FQTlgBel9SpkThRYjHsgsXLxGFqc+fMxNLFi8Q1AuQEzwlAfv70STs9VYjqR59+A9C9h+aAMxpj/FhDi4ldew/Cy8tbtJFDYjm8pYPhKgVo/HjlQZ6x3br3Epf0K14lmwtj1bny8U1BYGk+NYCXrCx+SWP8gAIvLy9ttfLOHdswZfJE/PPlC2JiHohp5ICXDjKTruvvWwLTVKGew1VTQa8f8h8qbt28gfJlS6l5VEy2kVfs53LLorU/sSbP1iyKAa816nHf+FSAAW98qs9zW6MAA15r1OO+8akAA974VJ/ntkYBBrzWqMd9WQFWgBVgwGvRMyB/bZtgZ91a1UEHjykFeaPOmD0PHz9+QOECmlf3qSqVqjUplDxFAypWxrwFiwVMlVsWpHJxQb/+gxR9dmmsevUbIihYU31LcJcgL8XWHXvg65tffPbyyIG3b3WtDggOE0CjSkmqkMzn7S4sEeQxeuwEtGjZWlzavHEDevUM1N62FeClCeTVtS2bNUZY2GFFnYuXKIl06dNrbQ0sAbzyAa9E3wJZNEiw0d3dA/sOhomDw/L5aA4nMxXUlzx8SdMXz5+LHwBIUykyZcosgDvllu775tV4xUohaUl9yvgV16lopTHJYiFduvTCLoLWI/9xYc68hahStboYamD/PlizeqXO2AsWLQU9WxRqvGzVAF5zepg7ZC1kxhzUql1H85xu2Ywe3TobDCk/NO3hwxiUKFrQoA1pQ7pL9hrVqwTg0qVIk8uj7yb1M/ZM+QdU0voHkzVHHnc37XjW5tmcbsbuM+CNrXLcL74VYMAb3xng+WOrAAPe2CrH/eJbAQa88Z0Bnj+2CjDgja1y3I8VYAVYAY0CbNFgwZNAlZCHQo8JOERBlbwrVyzD4YMHEB5+Afny5UexEiVQslRprR8rHYImAV75q/hUVTugXy9ERkbCz680GjVpBk/PPNrVyAGvBLqoQnPVimXYsH4trl69IqpLS5b0w6SgYKRP/6voWzmgHKKirorP06bPRu06dcXnC+fPoXtgZ7x+/QoV/CuCKh0vX76Enr37olfvfqLNmzdvhJdtRPhFAX0JKnfo1EXco7l98uTChw8ftGu0JeCVa0WAYNPG9ZgeEizAJ+WhfHl/1KlbXxyqRaCOIDBFbAAvVfIS1KTDvjxyuYpxBg0Zhk6dAxEaegitmjdR9ZRs27kX+fL5irbhFy8I2Ep2GQShZ89ZAJqHgqwwyBJDHvI80KFxPbt1ETYDZMExcdJUFChYSDSn3FKO5SGv0CVAPHhgP2zdsglJkiZFt249tT7Lnz59AlWj6gflOlUqF+3lg6HHkDJlSuE7XNZPU3FO8eLFc/HMqwlzgDd/gYLYvHWn9rukb01B1dQr12xAqlSpxHRjRo/AgnlzDKaWV9SS5rVqVDG7PMn/l76ba9eswqmTJ8T3I8NvGdGlazfhcy19x5XmtSbPZhdnpAED3tgqx/3iWwEGvPGdAZ4/tgow4I2tctwvvhVgwBvfGeD5Y6sAA97YKsf9WAFWgBXQKMCA18InoWq16pgcFIJkyZKp6nnzxnVUKOenbStVR5rrrAR45X3oH80ShJKuHz50AK1bNtM2o6pRshnQb0cN5JBRsnKQOhIkpEpTecg9Y6XrtgS8NMfSFatRtmx5c1JZDXjpQDc62C0iIhw1q1US8+3Zf1gA90ED+mL1qhVm10ANCMRv37lPHMwmhX6eqBK1QtlSOqCc2hJk3X/oiDjMzljQjwK1a1TRAnx5u+BpM1GnXn2jfWkdQwcPED9I6If8UDtTG50eMhVBkyeq0sIc4KVBJIguDUg/Ijx//heSJEmqBbt0j0A3+erqB9mHUOU1aUf7K12qmKKXr34/+QFvpjZDP4CQlYZ+WJNnVeIpNGLAG1vluF98K8CAN74zwPPHVgEGvLFVjvvFtwIMeOM7Azx/bBVgwBtb5bgfK8AKsAIaBRjwxuJJoMrZoOAZqFK1moBL+kH/oL137y6WLFqAZUsX69wm39tVqzcgbbp0OteparNHYGfMmb9IwOO7d26LV/UpkiRJgvETgxBQsZIiWJYqe0cMH2qwFqpGHDNuosE6g4MmY1qwxlOYYsrUEGH1oA+DydahdcumOHf2jMHYZBtAlcPGbAyat2gl5qbo2L4N9u7ZZTBG1PU7BvuVNyJrAToIzsXla4WpdJ+qSalqc+KEsdr1Va9RU+v9qmRXoJTuJctXoVy5Cjr+xZIXsrdnTlHZrDbIRmH7rr3IkOE3nS70TJw/dxYN6tVS9F4WX8bvvgMd5kc+zfp5oGrTmtUqQ8n/V5qIqlkDu/U0gPMEhjt1aIvQwwcVtzF8xGhtla+pfcr9nc3pQRW4O/ccEM2WL1uCYUMGKnapXaceRo0ZD/L01Q+qOJ4yaQLmz5ut2FduHyKv4ja3NjoM7/fhI5HNNbvijx/k90vfD1OH+1mTZ3PrU7rPgDc2qnGfhKAAA96EkAVeQ2wUYMAbG9W4T0JQgAFvQsgCryE2CjDgjY1q3IcVYAVYga8KMOC18mmgKkJ6fd7Lywfv3r0V3rl0qJrcf1V/CoJ31KdIkWL4+/3f2Ldnt0lwJ+9Pfrx5ffIhl7u7AKtRV68IGwBz81E1qodnHuGxGxkRrugdTFW7tK7ixUvi2bOnOBIWij/+eGilQnHTnUA6VYV6++TFs6dPEBkRIQ59S6hBkL5M2XLI7e6Bs2dO4+SJ4yZzJN8HPR8EeYsVLwGqAA8LPWzgn2xq3/QjQvnyAeJ5PLB/n+pnKz61JM9jsm3IlSs3Yh7GCMuES5ERqjWLzdrpu0vPk5tbDmTNlg0xDx7g9OlT4scVtWFNntXOQe0Y8FqiFrdNSAow4E1I2eC1WKIAA15L1OK2CUkBBrwJKRu8FksUYMBriVrclhVgBVgBQwUY8PJTwQqwAqxAAleAAW8CTxAvz6gCDHj54bBXBRjw2mvmeN0MePkZsFcFGPDaa+Z43awAK5BQFGDAm1AywetgBVgBVsCIAgx4+dGwVwUY8Npr5njdDHj5GbBXBRjw2mvmeN0MePkZYAVYAVbAOgUY8FqnH/dmBVgBVsDmCjDgtbnEPIGNFGDAayNheVibK8CA1+YS8wQ2UoABr42E5WFtrgADXptLzBOwAqyAgyvAgNfBE8zbYwVYAftXgAGv/efQWXfAgNdZM2//+2bAa/85dNYdMOB11szb/74Z8Np/DnkHrAArEL8KMOCNX/15dlaAFWAFzCrAgNesRNwggSrAgDeBJoaXZVYBBrxmJeIGCVQBBrwJNDG8LLMKMOA1KxE3YAVYAVbApAIMePkBYQVYAVYggSvAgDeBJ4iXZ1QBBrz8cNirAgx47TVzvG4GvPwM2KsCDHjtNXO8blaAFUgoCjDgTSiZ4HWwAqwAK2BEAQa8/GjYqwIMeO01c7xuBrz8DNirAgx47TVzvG4GvPwMsAKsACtgnQIMeK3Tj3uzAqwAK2BzBRjw2lxinsBGCjDgtZGwPKzNFWDAa3OJeQIbKcCA10bC8rA2V4ABr80l5glYAVbAwRVgwOvgCebtsQKsgP0rwIDX/nPorDtgwOusmbf/fTPgtf8cOusOGPA6a+btf98MeO0/h7wDVoAViF8FGPDGr/48OyvACrACZhVgwGtWIm6QQBVgwJtAE8PLMqsAA16zEnGDBKoAA94EmhhellkFGPCalYgbsAKsACtgUgEGvPyAsAKsACuQwBVgwJvAE8TLM6oAA15+OOxVAQa89po5XjcDXn4G7FUBBrz2mjleNyvACiQUBRjwJpRM8DpYAVaAFTCiAANefjTsVQEGvPaaOV43A15+BuxVAQa89po5XjcDXn4GWAFWgBWwTgEGvNbpx71ZAVaAFbC5Agx4bS4xT2AjBRjw2khYHtbmCjDgtbnEPIGNFGDAayNheVibK8CA1+YS8wSsACvg4Aow4I2jBCdJkgQfPnyIo9F4GEdRwCV1arx88SJW27Gmb4oUKfDp0yd8/vw5VnNb0ym266bvUMqUqfD48aNYTW/NnjNk+A0vXjwXmlkatN///v0Xr1+/trSr6vYMeFVLxQ0TmAIMeBNYQng5qhVgwKtaKm6YwBRgwJvAEsLLUa0AA17VUnFDVoAVYAUUFWDAG8sHo1DhIujdpz9cs2dHmjRp8eOPP4qRPn78iJcvX2Db1s2YNSMEb968ieUM1nfLnDkLUv/yC969e4fbt25aP6CTjFC3XgMMGjwMmzdtwLixo8Su5y1YjAIFCqFNq2a4dCnSpBITJgWhfAV/pE2bDt999x2+fPmCR4/+xOJFC7Bk0QKTfZs1b4mOnbuCgCM9UwRHnj17iqNHwtCnV3eTfX188mJyUAiyZM2KpEmTirYEHa9fi0b7dq3w6uVLVRns028AWrdpj5iYB6gcUE5Vn9js2dMzDzp16QY/v9JI8fPP+OGHH8RctGd6ZjesW4PRo4bjv//+M7qG2Ow5UaJE6NylG6pVr4GMmTKDwDLliYJyde/uHfTp3QOREeGK8/oHVEKbtu3h7ZMXyZIlw/fffy/a0Tr/+usZJo4fi40b1qnSTW0jBrxqleJ2CU0BBrwJLSO8HrUKMOBVqxS3S2gKMOBNaBnh9ahVgAGvWqW4HSvACrACygow4LXwyfjpp58wY9ZcVKpc1WxP+oftrp3b0bVzB7NtbdHg+KlzIMj7999/wzN3dltM4ZBjrl2/GcWKl8DUKZMQMi1I7PHmnRhQ7klH0lMpCPRt27kXBB2NxdIlizB82GDF28N+H4l2HToZ7RsdFYVqVfzxzz//GLQh6Dh/4RItbNRv8PbtWwFrCdqaCqpGPXbiLKgaln6c8PbMabK9NXuOvnFXC6KNTfLy5UsUKZhXsbI2tnvu1r0X+vYfaPbZHTdmFObNnaXTjsD76XPK4Ffe8MTxY2jSqJ7ZOdQ2YMCrVilul9AUYMCb0DLC61GrAANetUpxu4SmAAPehJYRXo9aBRjwqlWK27ECrAAroKwAA14LngyCWRcjo+Di4qLtdS06GpcuReDatWi4u3vAy9sHbm45QFWCFE+ePEbhAsaBnwXTW9yUAa/FkokOV6JvCcBZomhBPHwYI/K672CYsFrI5+NhdNAZs+ahRs1a4j5VoG7ZvBER4RfhV7osqteoqYWvPbt3FffkUblKNcydv0hcokrQXTt3ICz0kKgSrVO3Pn7++Wdx78D+vWjXpqVOX6oipTVLlaSnTp7A3r27kfLnlKhdtx5cXTVw/69nz1DA18tg/fkLFESjxk2RI0dO+OTNp61GVwN4rdmzBHjfv3+Pc+fO4MrlS/jxhx9RqUpV8cOEVFWrBEut2bMc8N68cR2RkRG4dfMmipUogUKFimihM4Ep//J+uHnjhlYzOeB9+vQJzp87i6tXrgjtSpcpKyrmpRgxfKjZim21TygDXrVKcbuEpgAD3oSWEV6PWgUY8KpVitslNAUY8Ca0jPB61CrAgFetUtyOFWAFWAFlBRjwWvBkTJoSjIaNmogeZMXQrWsn7N+3x2AEetU8KHgGataqDYJADHgtEDmemxKgC4+MAkFHj1yuYjWDh/wubBMOHz6I1i2aGl3hjdsPBNin1/zLlS6BBw/ua9tWrVYds+cuFH/fuH4N/uVL64yza+9BeHl5i2v6AJig4tETZ0QFMY2dM3tmYWMgRf+Bg9E1sIf4c8f2bQjs8rVinCDpsZNnBTClqFGtkoH1wIhRY9G6TTuDfakBvNbseePm7Th08ADmzpmpsx9aCEHnzVt3CshLPsK0Z3lYs+dateugUeNmGDJ4gKJ1yc49B+Dt7SOmmz93NsaOGamdOpWLCzZu2oZxY0fj8KEDBpqRvUX3Hr3Fdfrxp6J/mTh5ohnwxomMPEg8KMCANx5E5ynjRAEGvHEiIw8SDwow4I0H0XnKOFGAAW+cyMiDsAKsgBMrwIBXZfJds7sh9MgJbVVhQIXSuH7tmsneVPlZrUZNTJk0QbQLqFgZRYoUBb0uPy14imLfDh27IH369Lhy5bJBlSd1yOebH61atYWrmxtSp06N53/9hfv37wvPXwk40Wv2gYE90KhJMyRPnly80r90sQYuSrF1yyZcvnxJ+zfBQ/IlJW/h7G5u+PvdO1GZSJWmR46EKq61SdPmolqZQOaypYtRvkIA6tarL6pA3719h6NHQrFk8ULhP0uRNZsrWrdui4KFiyBNmjR4GBODTRvXY83qlSZ1bNCwMcqULQcPD08kSpwY9+7eBVWpzpgebNAvY8ZMwh+VYvnypbh/767wdi1dphwKFiqEjx8+YtXK5cIrVSnatOuA4SNGIzz8ImpVryya7N0fCg9PTwzs38foWsm3d+q0GaL9ls2b0LN7F4PhCbRmyZJVXPfN64kXz5+LzylTpkTklevi2frjj4coXqSAQV/5jwtDBvXHyhXLtG0uhF9BmrRpBSR1zZLBAJaWLOWHVWs2iPaUyxZNG+mMT3mTNKMbRYsVF5qZA7zW7Nlkwv938+SZC6B8UhTI56WTM2v3bGr+cuX9sWSZ5pk8d/YM6tWpoWa52jb3Yh6LXFIVdx53N4v6GmvMgDdOZORB4kEBBrzxIDpPGScKMOCNExl5kHhQgAFvPIjOU8aJAgx440RGHoQVYAWcWAEGvCqTv3DxMpDnJwWB1NYtm6ns+bXZlm27RGUivYJPIE4ppNfW7969gzKlimmbEDCiiseChQobnffVq1fI65UbxUuUxJp1m0yub/as6eIwKAryjF25ZoMAjUqxd88udO7YzuCwq3MXLyFduvTCk/bGjevw9c1v0J3u+ZUogvYdO6Fjp65aQC5vSD7FXTppoKw8fv01A9as24jsbjkU10WWA00a19MB7VQ1PX3mXNF+2JCBwjKDALH0uj9d79GtM7Zu2axp8/tINPhfVTb9TQdu0eFmlCMCdBRk10D9aS///vuvuLZpwzrQK/hSzJm3EFWqVhd/tm/bSrGye+LkqcIKgaJ/315Yt3a1+Ez2DTNnzxeft23dgu6Bhj688pzqVxLff/hE9CWQXrSQr6JWdx88EhYO5mwmqHPEpWjQjwTmAK81e1ZcpN5FORAnL2D5gYVxvWf51HIgfvLEcTRuWFfNcrVtJK3N6WfJoAx4LVGL2yYkBRjwJqRs8FosUYABryVqcduEpAAD3oSUDV6LJQow4LVELW7LCrACrIChAgx4VT4VVL0rgcYiBfPh8eNHKnt+bWYN4JXDNKrIpcOyCHBmyZoVadOmE/COrrtlywhPzzxYvW4TUqVKpQWbdFiVPKZMGi+qQNOkSQsCtZJ/K7W7fi0aqVK5IFfu3NrrSj6oEuCVj0uv0795/Vp4kUpj0j/w5YCVIONPiRKBfFSlqFihjPAxloIqiqmqNWnSpOISwcvIiHABXgsULIT06X8V18kCo1B+zev0FHLAqz+v1EYOeOXg3pKE6kP+TVt2aOE75UDpILRadeoiZPpsMc30kKkImjxRfO7StTsGDBoiPg8dPAArli9VXIoENanyulplf9GG8nch4or4fPRIGJo3bajY9/zFy0ibLp2wFsmdQ1NFbCzUAl5r9mxOa6ogvnbznoDt0nMt9bHFnuXrGTNuIpq3aCUuUS4oJ2qDKuDphxiKO7dvoWzpEmq7mmzHgDdOZORB4kEBBrzxIDpPGScKMOCNExl5kHhQgAFvPIjOU8aJAgx440RGHoQVYAWcWAEGvCqTf/XabWF3YKr61txQ1gDem3dihAfr69evUaRgXnz48EE7HYHSkaPHoYJ/ReTzdtdeV3PIGlX6UnUoxfp1a9CvT09tf7ITID9SqbKXoKLc1kEOeAkMd+/aCUePhon+BOGoAlMCtPSPfKpY/X3oIHz69Em0CZ42E3Xq1RefqaKWwKsUITPmgLxSKaZOmYSQaUE68s5bsBiVKlcV14b/PkRrQSEHvHSPPGt379qJQwf34e6dO8jj5S18XwkMU5B2qVNrDsb6JU0abNuxR1Tuli5ZVFzr2buvgH3Hjx0VFg1SvHjxXFT0SiH/ASBrpvSKj0KZMuWwbOUacW/jhnXo06u7+CwHil06tRMHrCmF9Oo/HfxGB8BRyIHizh3b0LXzV/9d+RgnTp9Hpkwa795smTVw3FioBbzW7NnkAgCMGDkGrf9ntaFvk2CLPUvroech/FK09pDEUsUL63gpm1v3wcNHkTNXbtFswrgxmDNbY9thbTDgtVZB7h9fCjDgjS/leV5rFWDAa62C3D++FGDAG1/K87zWKsCA11oFuT8rwAo4uwIMeFU8AVR9SnCNQrJBUNHNoElsAS+BXQK8FKZew9ef0BzgJTsCqpKkIEArh8PSWOQbvGCRpqL0/LmzqFtbY0NAIQFe8hSmV+jlB3/R/Rmz5qFGzVqirf7BYXTt559/xuWom+J++MULqFWjivhMlb937v8pqn4jIsJRs5rGGkMepMn1W/dFW4KvTRtrQLEc8EZHRaFRwzp4pVe9bCx37Tt2xtBhI3R8V6UDtwh8EwA3FpInrKkfAPLm88X2nXvFEPI1L1qyXMB5CrIDIFsApbh196GoaCXI75Mnl2gi98Fdu2YVBvTTHPClH3Lw6J4zm84PBPpt1QJea/ZsVEgAxYqXEBYjlH96pir5l9Wp7rbFnqX1SH7L9Lf+825qzXRv0JBh6NQ5UDSjHwm8PHIYfCfMjWHsPgPe2CrH/eJbAQa88Z0Bnj+2CjDgja1y3C++FWDAG98Z4PljqwAD3tgqx/1YAVaAFdAowIBXxZMgB6xki1DA10tFL8MmsQW8NFJ4ZJSwPaCgisaJE8aK/zUV5gAvgbS16zVetEuXLMLwYYMVh5N8gfXtECTAawwO9+jZB7379hdjGqtMlaCl3HNYDkKPHT0C8pxVioGDhopKy/v37wmfXwo54NU/jMxc0qRq5nFjRmHe3FmiOUHkxIkTwzN3dp2KXf2xIi5fg4uLi4GdgLxdnjxe2L3vkLgkB7zLV61F6dJlxXU60MtYXpUAb7PmLTF2/CTR15SdwL4DYXD38BDt4grwWrNnY7nImSsXdu89JKrVKeggPemQQqmPLfZMY8ttUKg6myrl6ccLNdG4STNMmKSpMiegVb9uTcU8pndT9kg2N8f718/w//5LgwyZNNYccR1v39zEX09PIGUGzaF2HKxAXCnw7sUjeP3fGxRN/dWSJ67GpnGi337EuQ//Dz+ld43LYXksVgCvXjzEO7dU+Mczi03U+OHqfaS4+xYpXX6zyfg8qPMq8P7pI+RIUQCZUnraRITrz07gj3/vIHlq5fNEbDIpD+oUCnx6dgsVciSHWzrb/DfD/qvPcPN9CiRLlTZWej65HR6rftyJFWAFWIFvpQADXpVK37j9QMBEfT9Qld1FM2sAL1kwtGrdVmc6qhZ98uSxsBwYNWKY1vpAamQO8NKhZ4OH/i6am/J+PX0uHBky/Aby182ZPbN2DeYAL71iT6/aU/z/9u4DzIlq/eP4a7mKIgoWkCsKKL33DiJNUbogKkrvSLtYEFFARKQXAQWkiaKodJQqvSu9dxC8Igh2LHD1/7wn/xlns8lmkgyE7H7P8/jIbmbOOfOZyWzyy8k5wQJeK0B1BrzNW7aWXr37uqZ1BszRBLw6mlhHFVtzLGfOklVWrdkQdHSzs4OWdVJTIDgX75o3d4480943ncLgoSOkwWOPm3/r4n06v2+gYi3epfM/ax+1aDCsAbG5vmZ8Il06dwi4r3PBsmBTSFg7uh3BG80xB+pk1nvvk0VLltvTI+jifm1aNU+06aU45uEjRkvdR+ubtvQ6f/ihynLwwAFX12DdevVl+EjfBwJaXnzhWZn2/tSA+0Ya8GplZ47v1vTYVZ8i2ejm9PfI9TfeHMmu7INAkgIa8l7Kkjpternq6msuZRPUnQIF/v7rL/n1B990TpeqpE6XQa666upLVT31plCBv/53UfSD4UtZCHcvpW7Krft/F/+U3346e8kA9H6r991ICwFvpHLshwACl0uAgNel9Lpvhlc+AAAgAElEQVSNm+Wuu3yj2wrmz+X6a//O6qMJeLUenau14eNP2qMbnXXrXLNvjhiWYK7aUAGvhqgapmpp27qFLPhsfkCNFavXS9as9yaafzhUwNukaXN59bX+ps5gAa81OtgZ8DrnX9XpCH75JelRlIcPHbIXFwsn4NXQM126W+1jTpMmjfm3tqlFp0PQOYQ1tNWv3FvlkepV5fixowms5n22WAoUKGh+FyxArVmrtowaM85sM+7tMdLvtT7m3zrKWUc7a+ncqb3Mnjkj4HmwFlnbt3evPFi1otlG50nW49CyeNECadXCtziYf9m0ebtZmM4/pA+0rduAN5pj9m9XRzfPmvuZHe76L2Ln3N7rYx7z9nh5pEYt04Q+j+rVfkR27Nge0NH/lzo/c99+b9iLCPbu1VMmTRjval82QgABBBBAAAEEEEAAAQQQQAABBLwQIOB1qehcjGz0qBEy8I3XXe75z2ZWwJvUKM9AgaezIZ2XtFLlqlK12oNSuHBRyZY9u1x77bX2Jg9WqWjPVxoq4NWweODgYWbfAf37yZjRIwMekzU9hH5tXacqsMqlCngfa/iEDBoy3DSjzurttoQT8Fqjst3WbW3nv9ic/n7SlPfMedHiPAfOup/v3kM6PNPZ/Mq5MJzzeMe+NVpe7/dqoi7dly27LFvhm5t37ZrV8uTjvtGmOgexjuzV4gx+/SuwjtU5f2+w43Yb8EZzzM62dWTzlKkf2NexcwG6QH306pj1ufTxjDlmoTot58+fl1o1HnQ9ctcZzOtzWhfNm/HJR+FeTmyPAAIIIIAAAggggAACCCCAAAIIRCVAwOuS78lGT0v/AYPN1jpNg87DG2rxLg2QSpQsJRs3rDf7Tf94lpQqXcb8O+s9Gc2IWP8SKuD1317b0OC4cJGi5qERw4fI0MG+OVmtr+X//vvvkjNb5kRt5cyVSxYvXWl+r/PcNmvcKNE2Oi2FLsSmodpXXx2X8mVK2NtcqoDXOUJzw/p10rBBXZdnKbw5eNPdequkuj6VqXv8xCmSP38BefutUTJ54gTzOw3INTyvUK6U/PnHH3YfdKE7/9LtuRekU2ffAmdaR/9+iaeY+HThUsmXL7/ZxhkSO8NbXRjuoWq++Xid5dnnu0vHTl3Nr94Z97b0fbWX/bA1zUWw0bnO+pMKga0K3Qa80Ryz1ZbOXavPK72Ok7Lz94j2mFOnTi2fLlgiOi2EFl08UYN5nf7CTRk+cozUrfeo2VSfx82bPi3Lg8wV7aY+tkEAAQQQQAABBBBAAAEEEEAAAQQiFSDgDUPOmqpAd9Gw89E6NUUXHgtUdJ7QN8eMld9//01KFPV9dV9HpepoTS3PdesiH03/IMGu1R6sLmPHT/SNyjx6RCqWL20eT5sunTz3/IsB59nVx+s3aChDhvlG32q4qyGvltnzFkjhwkXMv/PlzpZowSgN1XRkpy5opSFVofy57OkJrI7p188bN2lmfpz5ycfStcszdp8vVcCrDThH1zZ56glZsWJZQOcyZctJ+gwZ7GkNwhnB66xw195DolM0lCtdXE6c+Epy5coti5aukO/PnZNCBXyLkyVVdF+dw1dNz509az4AcAb4mTLdbQJ3Pbf6eOGCCRe+sCx1n4oVyiSYAkLr1CkW0qfPYKaL0P44P1xwLg7W/flu8sG09xJ0dfyEyaLXVrDrzv+43Aa80R6zc4oQPS6dB/q9qVNCUZvHoznmu+++R+YvWCJp06Y1delz+eEHK7taUE0Df51KwpqOQ0f91q9bU3bv3uWq32yEAAIIIIAAAggggAACCCCAAAIIeC1AwBuGqI6E/Hz5anu0oY7k1UBq2dIlsnXrZilUqIiULltWypW/3w6AdBE0K+B1fhVfR9W+8FxX2b59u1SocL88/uRTkidPXrs3zoA3e44csnTZajN/6vtTp8jHH31oAiUNm8qVqyADhwwz86tqqV6tkuzZs9v82znKcPOXX0inZ9rJjz/+IFWqPiiHDh6QnTt3SJf/PCtd//Oc2f6nn34yc9lu27rFhL4aKrdu2948pm0XyJtDfvvtN7uPlzLgdVpp+KdffR85YpgJPvU8VK5cVeo92kBy58ljwl8NgbVEEvDqSF4NNTWsy53DtxL7iy+9LG3bPSPLl38uTZ9+0tVVMmf+QilUqLDZduuWzaJh6759e0VD6DFvjRdtR4tOhaFTYjiL8zzoonFdOraXlSuXmyk4BgwcKkWLFTeb67nVc+wszhG6GhD36P6czJ41Q2648Ubp2LGLPc/yH3/8ITnuS7wauJ7rtGnT2VUuXb5abrnlFjPv8AMVfCPOtZw7d9aMXneWSI/ZOR+x1jd71kzZvj34yrTatnNu4miO2ZqPWNvVaUeGDB5ggvNgRRcxtOZcHv3WOKlRs7a96cgRQ80ifMHK3j27Zf26ta6uHzZCAAEEEEAAAQQQQAABBBBAAAEEIhEg4A1T7ZEaNWXQkBGiX/F2Uw4e2C9VKlWwN7VGR4baN1DA69xHAynra+3W7/0XptJRozrNgP92ur0zZLSmcrDq0ZBQR5o6i3POWOv3lzLg1TYmT50mDzxQORRV1AFvsxatRBd227Ztq9Su8ZBpb8HiZSZwf/GFZ2Xa+1ND9kE30CB+7vxFZmE2q/ifp5MnT0iVB8onCMp1Ww1ZF3++0ixmF6zohwJ1az1sB/jO7YYNHyX16jcIum9SI2Sdi9oldaAaZg4ZNCDBJpEes07N8MZA30hzNyXQNCORHrPb56DVL+dxu70mrX31QxSdjoOCAAIIIIAAAggggAACCCCAAAIIXCoBAt4IZHXk7JBhb8rDj9QwwZx/0TDt2LGjMmnCeJkyeWKCh3Xe2/enfSx3pE+f4Pc6CrDzM+3krXETTHh89Mhh81V9LTfccIP0HzBEqj34UMBg2RrZ27tXz0R90YXUXnt9QKJ+DhsySIYP880prGXw0BFmqgf/MPjnn3+WZk0ayRebNiaq2xoJGWwag6cbNzVta2nTqrksXPBpojr27D+S6HidG+nUAroQXLp0/4wwtR7X0aQ6UnbAG/3s/jlHhgaariDQ6Z707vtSqVKVBPMXW3Mh58+T3Yxsdlt0GoW5ny6UjBn/nWAXvSa+/GKTPFa/TsC5l3VjtdfF/HSeZv/zoCPBa9eoLoHm/7Ua0jlxn+nYJVE4r+Fo29Ytgs4R65wqIanjdM7v7NwukmN2jtB2YxtsHulIjtlaNNBNu7rNsKGDZPhQ33PFubCcm/2dHxq42Z5tEEAAAQQQQAABBBBAAAEEEEAAgXAFCHjDFfPbXhch06/P58tXQH755Wczd64uqhZoATVrVw3vdJ+SJUvLr+d/lUULPksyuHM2qfPxFixQSHLkymXmh92ze5eZBiBUezoaNXeevGaO3e3btgacO1hH7Wq/ypQpJ2fOnJaVK5bL11+fjFLIm901SC9YqLDkL1BQzpz+VrZv22bmTr1Si4b0FR+oJDlz5ZZNGzfIurVrkjxHzuPQ60ND3tJlyoqOAF+xfJmr+WGtOvRDhMqVq5nrccniRa6vrWgtoznmaNuO1TFH22/2RwABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiJEDAGyN4mkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBKIVIOCNVpD9EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBGAkQ8MYInmYRQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoBQh4oxVkfwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEYCBLwxgqdZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgWgEC3mgF2R8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIiRAAFvjOBpFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFaAgDdaQfZHAAEEEIhKIHXq1PLrr79GVQc7IxAvAtddd51cvHhR/vrrr3jpMv30UOCWW24x5597noeoVJXsBHhdEN+n9IYbbpDffvstvg+C3iOAAAJxKEDAG4cnjS4jgAACV4LA0mWrJG3adKYrJ058JXVrP+KqWzlz5ZL+bwyWHDlzyU033SRXXXWV/P333/Lnn3/Kr7/8Ivv27ZVp778r8+fNNb/Xcv3118ua9V/IVXJVwDYerVdLjh87GrT9SPvq6oBSyEaNmzSTTp3/Yx9tjxefl8WLFgQ9en2DvnL1BvvxZcuWyvPPdg26vV4Hy1eulZtuSmO2OXbsqNSvVyvB9rPnfiaZMt3tSvzi/y5KqeKF7W379ntDqldPfI3+ecF33W3btlWGDx0sX399MmD9M2fPl3vuyRzwsTdHDpMpkycGfCx9+gzSt19/yZkrt2TIcKfceOONZrsLFy7Izz/9JGvXrpFBA/snef3q9inlGo7mHM+et0Ay3ZVJTp48IXVqPZzkdfL+Bx9Lzpy55Pvvz0nVyvfb2/pft9YDej39+MOPcu7cWfnk4+ky45OPXF2HGugPGDhUipUoIXfemVH0Zy2///67fPPfr2XNmtXy8kvd7Xudf6WBrtu/xXe/PP3tt7J40UIZ+/boRB8YBDuOYJ3ev3+fNHqigatjCmcjZ/+13zUfflBOnfomaBWt2rSTNm3a24+/8Hw3+XzpYvNzOH8Hqj9cQ/q+1j9BO9q+up//9bycOXNa1q5ZLRPeGWsskyqBrkm9HnS/c+fOycED+2XqlEmyY8f2JOtx9qlP754yb+4cV5TRPCdCNRDIKal9PvjgPRkyaEDQTSK9T4X7umDUmHFSqlTpUIcX8PEJ74yTt8a8GdG+keyUOUtWmTFzrr3r/PlzpfcrL4V9zQXbYd26tdLpmbYS7b0rnOeXf1+ebtxUHq3/mGTOnEXSpksnV199tbmnnT9/Xv779Unz9/G9qVOC3ue0vnBfY0RyLtgHAQQQSO4CBLzJ/QxzfAgggMAlEKhUuapMmvJegpqrVCovBw8cSLK1t8a+Iw8/UtNVj44fPyYVypY026ZJk0Z27T0UdL/aNavLtq1bAj4eaV9ddTIFbbR2w5cJwtWdO3dIjepVgwrom7ztO/fZj+ubvSKF8sq5s2cD7tOmbQfp0fMV+7Eff/xRCuTNkWBbvQb0WnBbMmfKYG/68Yw5UqJkqZC7zprxiXTp3CHRdjv3HJSbb7454P6TJ02QXi/3SPRY+w6dpNtzL8i1114bst2vvjou5cuUSPHXcDTnePe+w+ZDo59//lny5c6WpPmXW3bKHenTm6A9W9ZM9rb+122wSnQEbs1HHpTDhw4GbadM2XIy7p3JIa/Z78+dM+Hq7t27EtXl5rrVY3i2W2eZPXNG2Mdh7XDm9GkpViR/yOs03A38+790ySJp0axx0Gqsc2ht8ErPF+0PT8L5O9C6TXt56eVeIburI+nXr1sr7dq0EL3nBCpur0k1HDJ4gHwwLeHfRqtOZ5/eeP011yGj2/atdpz3vVAAbp2sevRDvVYtmnp6n4rkdcGyFWvkvmzZQx1ewMf1A5puXTtFtG8kOw0bPkrq1f/nwxP9kCFntsAfFlr1h3PO9QOGKpUqmGDV+Tc33HtXOM8vq+677sokU6ZOk+w5coak0fvUa317y+SJ7wTcNtzXGCEbZAMEEEAgBQoQ8KbAk84hI4AAAtEKBAod5s6ZLR07tAla9YBBQ+XxJxrZj//000+yc8d22bhhvWTNeq/kzJ1b7r77HjsM+fbbU1KiaEGzvY7u7Nylm+gAXg3NdKSJvjEfMXyIeXziO+NE6wtUIulrtD7JbX99E7du4+YEh6WBbe4cWYN+DTPQm81P58+V9m1bBeTZtnOfpEvnGxGuJamAV9vev++f8DhQhTrC7pGHqtgPOa+DrVs2yx9//CHXXHONpE2bVu7KdLc9slZ3mPruZOnZ44UE1T7x5FOS4c47pX6DhuY61aJBjo5GXLJoYaJw7r1pH0n5Cv+MDNXr+csvNsn2bdskY8aMkr9AQcmWPYdp3yrBgpmUdA1bwUYk59jrgFdDXL1HabkxdWq57bbbRJ8LVtGgpmypYvLdd2cSXYI1a9UWHWVoFR3JtnHjevli40b517/+JcVLlDQfOFgjevV4dcS6XiPOEui6TXXDDXLrrbeaD1x0pJwW3b9Zk6dk+bKl5mfn80/7eexo8G846PZ79+wO+MFGtPcy/2tX79uF8ucKGKY+9XQT6dd/YIImnQFvOH8HnMGljso/8dVX5u+GPt/SpLlZbrv9dvN3xSqnT39rPlAM9LVy65rUvm/auMGYax0333Kz+RaLjpx0Fmefnb+PNuCN5DkR6vw5+6Qfvp0+fTrJXaZPn2b+3gYqkdynIn1d0PvVflK6dNlE3fj3XXfZH8R9881/zah7/zJ50jtBQ/hQXpE8HiisbdOquSxc8GnQ6sK5D65ft0Z69+qZ4Dkfyb0rnOeXdlxHXS9cvNy+B+nzY/OXX5h75qlTp6RQ4cKSO3ce0RHM1n1q/rw50qFd60THHclrjEjOBfsggAACyV2AgDe5n2GODwEEEPBYQEcj7j903IxK1DfFt99+h3nxrm8o8uS8N2Br+sZ6z/4jZh99k9q2dYugb240SOvRs5f89tt5O+B1Vrptx15Jd+utJqDLcZ8vaAtWIumrx1zJoro3Bg4RPS9a9u3dK7ly5zb/HjSgv4x6c3jAYwwU8OobQB2VqyMsnaVO3Xoy4s23EvwuqYD3l19+kby57gvL1hk+FC6YJ9FIYg0MmjVvaerUME7D60Bl0rvvS6VKvuA42Kj1BypVkcnvvm+20etdvw48oH+/gPXpV9Jf6P6SCf0CBbwp7Rq2go1IzrHXAe8XmzYmmiZEg4gly1bZod7ggW+ITtHhX3bsPiA6366WXbt2ymOP1k407+6tt90mc+YtsKf+0CCyTMmiCapK6rrVYHH6J7Mlf/4CZh/9sKFksULm387nX6DjCOvJE8XGgUK/2bNmSueO7RLVao2qdj4QLCwN9XcgVJiqdm3adZC27Z4xwa8WHUV/f7lSiaa7CHVNaljf/cWeUqz4PyPw9fj0OJ0lVJ+CMYdqP4rTI5H2yb/NSO5TXr4usPrz+huDpNFTvhHiLZs3kSWLF0bDE/W+Oor/g+m+kfXOv51bNn+Z5LRWkZzzUM95t/cu7Wuo55dus3rdJvvepWF6wwb1Ak41lDHjv2XC5KmSN28+CRbwRvIaI+qTQwUIIIBAMhQg4E2GJ5VDQgABBC6lQJOmzeXV/5/bcPSoEVKyZGn7jW2Tp56QFSuWJWq+XPkKonNeWm9yHqxaMWQXc+XKbebj9S9u3nhY+0TS15AdS4EbWGGVhuqVK5Yz8yFr0blOdQRjoOJ8s6lvZosU9W330fQP5LluXRLsoqOD9c2nfsU59U03mdG0lzvg1Q45A6biRQqYDzD8S6iAV0dBbd+13w73kgrBrbp16oeer/QJOEdxSruGIwk2LMfLEfBqW3XqPSojRo4xzQYKT5/v3kM6PNM55HPE6rdz+o8XX3hWpr0/1b7sQn0woR+u7Tt4zP5WQ9Z7Mpp9Q4U9l+s2ZvVfP9zRaXf02xq6yJxOoeEcLVu5SjWZONl33GqqoamWSxXwWsevX/NfsOhzO+TdunWL1KlZPQGP22ty5Ki3pXadumbfQCOyIw1T3bYfyTmNtE/+bUVyn/LydYHVnyst4NXXPXqcWvQDwTnzFpoPh/T5oNM0BJv/OZJz7uY5H+reZTmGep3VrEUr6d3nNbO5fhiXP0/2kAuH6nPj6quvkVkzP0l0qUbyGiOS6519EEAAgeQuQMCb3M8wx4cAAgh4LGDNfadvYHU0Zpmy5WXseN8CUxvWr5OGDXxvcJ3F+UbuuzNnpGjhfBH3KtQbD2fFkfQ14o4l0x11VNqMWfPM0VnzZ274YqvoqBwtupCZjt7xL843m7q4ygOVKpsQV+fh09G3GhZrKV2mrHz4kW+kmy7CpiNpYxXw6gJB1lyCumigBtP+JVTAW7defRk+crTZTb/yrKOFoykp7RqOJNiwfC9XwJsnT15ZsNj3QZbOwVupYrkEp9g5ejfYh17OHZo2byl9XvWN8NYFK8uVLm4/HCrg1Q1XrPZNc6OlYoUycvTI4Ssy4NW5d6252/We8NKLz9vHuWLVOsl6732i8xHrnNZduz1nHrvUAa+2oR8mfrpwqT1Xtn5opR9eWSWca9J5f/AP/yMNU8NpP9x7TaR98m8nkvuUl68LrP5cSQGvfth38MgJ8+0M63XPm6PHSq3adUx3dT7a8WMTfnMlkmvO2sdNwBvq3mXVFep11uatu+T2O+4wm+vf7ekfTgv30rO3j/Q1RsQNsiMCCCCQjAUIeJPxyeXQEEAAAa8FdGoEfeGvxVrYQ/994LBvfkMdmZX93rsTjeS44YYbzCgzq3R/vlvEc+CFeuNhtRFpX702i/f6Jk+dJg88UNkcRq0aD8n2bVvFOUJR56HV8+lf/APeDevX2nOSTpr4jr2K+KIlK8yUD9aI3b0HjsYs4LWuLT0Wnf7DCqGdxxYq4H3t9QGiK4prcTN6N6nrIyVew9GEWZcr4G34+JMycLBvWgb9xoKGuM5y7MQpM7/rDz/8IAXzhV58yNxPj5ww8/H6Tw/iJuC1RsBrPToyVqdAcRP2XI57k3MEr44u3rR5u2TIcKcZuajToOjfjIKFCsvc+b6v0vd65SVJe0vayxrwarufzJxrjxr2v6eFc03qlEWbt/kWy9NRmtaIav050jA1nPbDPaeR9snZTqT3KS9fF1j9uZICXp3WSKce0DJpwngzT272HDlk6bLV5ndHjx6RiuVLBzxlkZxzN8/5UPcuqzOhXmcdPva1+UAkqam53F6Lkb7GcFs/2yGAAAIpSYCANyWdbY4VAQQQiFLgpZ69pHXb9qYW58iqCZPelSpVH0z0e2dzny363MzBZhUNIXZs3yabN38ha1avMl/L1TfEoUqoNx7W/tH0NVQfUtLjVvDknDJB5xbVaQg0xAo0lYL6+Ae8Olpv6/Y9ovOOanCaK3sWuS9bNvvNrrWqvJuAV+vXYCipoteSfthglVBBmfMrxjoiWUcmByqhAl5nUPREw0dl3do1EV8uKfEadi5IFO45vhwBr06JsGX7HntBQP/FkpyLBTk/BAt1ETinB8ly953mK/5aQl23ztFvupiafu3b//nn5vly7OgRqfxA+VDdDPtx/4D3sYZPyKAhvnm7335rlPTv11dmz1sghQsXMV/11tH9Xbo+e9kD3mef7y4dO3U1/fKfHzXcsM36wFPr0jmRdW5kLZGGqdE8J0KdMGef9Jr73//+l+Qun3w8XV547j8JtonmPuXV6wKrQ1dSwGt9eKl9K1oon70Yo3P0q/P3TlTnOddvggQrI0YMlckT30n0nA80dUyoe5ezjaReZzk/xNBpV3RxwmhKpK8xommTfRFAAIHkKkDAm1zPLMeFAAIIXAIBK4TQ8Oy+LHfZgWyhwkXMYkFaDh08EDAo0K/0f7ZwqQn4AhV9c3nmzGmZOeNjGTVyeKKFuKx93Aa80fT1EtDFZZXO+fo+/OD9BG/sQ01nECjgdYaoI0cMlRIlSkmp0mXMqEVdoE+vAbcBrxtQ56JlzqBMQ7mzZ7+Tm2++RbJkzSq1ateVQoV8ga72oVmTp2T5sqUBmwgV8FojFHVnDbGd84y66bNzm5R4DQdacT4pN+c59jrg1YD2xe7PmZFqGtzmL1BQHn+ikaRKlcp0aeuWzVKn1sMJulezVm17pPqyZUulWeNGrk67M+h6+MHKsnu3bxRoUgFvi1ZtzAJ91iJhU9+dLD17vGD2C7TIYVId0fmvixXJ76qv4WzkH/DqvtYUFhpIV6tSUVat2WCqHDZkkAwfNjgmAa/zb5gutla+zD8LpoUb8FrTFegxPf1kQ1m1aoU5Pi8CXjf2gRZrDLafs09u6l68aIG0auH7hoJVorlPefW6wOrLlRLw6rzqep3rh6D+IahzQU+djqTXyz0S0bu9Dzr3dz7nI7l3OTuR1OusR2rUlDFv+0Ll1UAJ4OgAACAASURBVKtWylNPPubm0gm4TTSvMSJulB0RQACBZCxAwJuMTy6HhgACCHgp4PxqYaDRIdabdg3IChXILT98/32i5nUEySu9+0rNmrXt+dsC9VHf+Dd+6nHZuGF9oofdBLxe9NVLu3itS+elzJfPF/r4z0vpnDc0UJAVKODVeqwQTufi1eBM3wCPGT1SBvT3zUHqJuDVDxg+ne+bFzhY0dGfXTr5RptrcQZlwfbR+T8bPdHADtcCbRcq4HVO86Bfz3YzKj1QOyn1GraCjUjOsdcBb7DrRO9xb415075mnds5v5a9cMGnoh8muCnzFyyR/PkLmE0fq1/Hvvc5r9uffvrJXE/61XYr1LXq/vrrk1KmZFG7KefzT6eK0CAmqaKB0Ijhvq+Te1kCBbzt2neU7j16mmb0K9666JQ1ql+PLxYjeO+5J7OsXrfJ9Ml/8chwA96Fi5dL7jy+ubedczBHG/BG8pwIdS6dfdJrYN++fUnusuCzeQnuvV7cp7x4XWB1+koJeJ0jwq1vp1h9dI6A1b85+nrJv1jXnN5rrA97Ap2YcW+PljmzZ5mH3Hyok9S9y1l/Uq+znPe4JYsXSsvmTUJdZkEfj+Y1RsSNsiMCCCCQjAUIeJPxyeXQEEAAAS8FRo0ZJzo6TcuwoYNkxXLfIkNWebHHy2Y0ppaxb42W1/u9mmTz+makfPkKUrJUGSlcpKhkz54jQWihb/x1ETf/r2m7CXi97quXjvFSl4ZIGrZqAKvB0tONGiboui4co9MRaNH5NJ3TIfi/2XQuqNTlP89K1//4FlCy9rXm4tSf3QS81le5w7F0E/DqYlm6aFZSJVTA6xyJWbtmddm2dUs43bS3TanXcLhhmhPXCnjdXB/WqEP9oCFb1kx2NW5Cki+/2CSP1q0Z8Lzqgl2LlvpGbO7atVMeeaiKq/PvnEfXOfI71HWrgY0+v15+qbs9rYP/8y/QB3KuOuXBRoECXr2n7Nl/xMy1bRVrjlL9ORYBr/PbBTt37pAa1avafQv3mnQuslehXCk5fuyoqSvagNfNdR3uKYu0T1Y7Xt+nIn1dYPXnSgl4N365Te68M6Ppln5g4z+f++R3p9nTvDhH7FvHEe415/+cD3YdJHXvcu6T1OssZ6gf7Btbbq7DaF9juGmDbRBAAIGUJkDAm9LOOMeLAAIIRChgBW9udo/k6776pr/DM52l23MviI7o0dK5U3uZPXNGgibdBLyXuq9uDOJ9G52PUkchuS2dO7aT2bNm2psHG8Gr51YX3LNGIL7/3rvSo/s/ge/lCHirV6sk586dM319Z9K79shJDbLLlipqAu1gJVTAO+LNt6RO3Xpm96RWSQ/lmlKv4UiCDcvSmuM50AcO/t479xwU/Rq1/yJBzutWg76WzRqbXfPkzScTJ081H3hosaYT8K9XH9dF1rScPv2tFC/iG5UbqmjgqSNZ/fvuDHh1Pufff/9N9BsOBw8ekG1bt8rmLzeZebD9i5sFl0L1yYvHAwW8Wm+Pl16RNu06mCb0QzydosUKwWIR8I55e7w8UqOW6Y+OiOz0TFv78MO5JvX+duT4f811ouG7juK35lOONEwNp/1wz1mkfbLaudT3KbevC6z+XAkBb+YsWe1pR9ycj0ULP5PWLZsl2DSScx7tvcvZgVCvs6yFJHUtBV3YMZIS7WuMSNpkHwQQQCC5CxDwJvczzPEhgAACHghUqlxVJk15L6yaqlQqLwcPHAhrH9145uz5UrRYcbOf86v7VkWh3nhczr6GfXBxtMPaDV9Kpkz/LFIWquv+o96CBbxaT99+b0jjJs3M1831zaGGbP6BQaDF2yJ502vVG2wu0+uuu07Wbdgsd6RPbzY9ceIrM/+mFcr4H3eogLd5y9bSq3dfs1s4Izid7aTkaziac2wtaqTnThcqS6ocOnpSdBS6/9fxkwpGn27cVF57fYBd7TPtW8u8uXMSNWOFXtoPvZb0mkqqOBdK+/bbU1KiaEF781CLrAWr90oPePV5p6G2noOZn3wsXbs8Yx/K5Q54tS9fbNkpadOmNX3wH1EZzjWp8yK/0sv37ZW9e/bIQ9UesI8r0jA1nPZD3af9H4+0T1rP5bxPhXpdYB3XlRDwDhs+SurVb+D6VDgXR7R2iuSce3HvstoP9TrL+oBMt6/5cDXZsWO76+O1Noz2NUbYDbIDAgggkAIECHhTwEnmEBFAAIFoBfSr+MVL+FZK7tKpg1k0JFBp+PiTZhEiLXPnzJaOHdqYf2tQeH2qVCG//q7bvjFwiOgcb1pef+1VGfv26ARNhXrjEW1fo7VKDvvrglL6lXEteq71nAcrH34004zG1TBLp1qwFhVLKuDV7e+vWElOffPfRG8ML8cI3sIF84hzZXL9Ku2qtRvtUcXr162Vxx/zjcL1L6ECXrXTN67WSE9dkEgXJgpVypQtJzpCU0tKvoYjCTYsWx1hW7lKNfOjc+5Tf3vnglr+0xeECkadAZJ+QFG7xkOJruGp70+XCvdXNM26mR5h+cq1cu99vlFw/iPak2vAq8eaN28+uSvT3bJ2zaoEH/Jc7oDXuWDkqVPfSMlihRJcMm6vSQ08naO827dtmWC+2kjDVLfth7rHBHo80j55cZ/y8nWBdWxXQsDrnGdep2cIVgYOGirZc+Q0D+tc3Tpnt1UiOede3Lus9kO9zpry3gdSsWIls7n//N/BjlcX2E1/R3rZt2+vWbQy2tcYkVzv7IMAAggkdwEC3uR+hjk+BBBAIEoBXQjr4JETZtoE/ep6/jzZg9Z4yy23yPZd+0245fzqs/VVPF2Mq2vnZwIuwKaV6lem127YbP6vpVTxwvLNN/9N0F5Sbzy86GuUXMli9wGDhtpBfe9ePUXnxwxWnKHa4IFvyJsjh5lNkwp4k0KKRcCr/SlStJgZPW4Fs855g539DRXw6rbOkOH8+fPStPGTARcM1G015NDR8Tly5pLMmTKYheeifb7F80UYSbBhHa9zhK2OzL2/XKlEc3jr+dVFsHLl9i1s5Lxm/a/bYOHsrDmfmutFi46+03Y0GLRKultvlS3bdttTzQSbzkG31xHB2m8teq3o/dU573hyDniDXaeXK+DVr9KPHPWWFCpU2HRFP6TSOZP9F7UKdU3qNaXnsFef18zzV0uguU4jDVNDtR/N8z3SPnlxn/LydYFlEOuAVz+o+2C6b1op/cDuiYaPBj099Rs0lCHDRprHt27ZLHVqPWxvG8k5DxXwauWh7l1WB0IFvPoabfO23aKj37VoON2uTcugi4rq9Fv/efZ5s12Hdq3Fi9cY0Vz37IsAAggkVwEC3uR6ZjkuBBBAwCOBps1bSp9X+5naPvl4unTr2inJmpetWCP3ZfOFwE0bN5Lly5aKc641HfW2evVK2fzFF+b/u3ftlCxZs0rtOvWkSdMWctNNNwV8w6MrT2vIvHT5atEgWeeqLFvKF7LoXJemPQ/66hFbXFdjLRKk50oXT/Nf6M55cM6vlzu/7n4pA15dGOvtt0YlaXzxwkUZPmywvY2boExHoA8c7AuotfR65SWZPPEd82+95q6/PpUJhEqXKWt+p6N8Dx86JD/88L25Hq2igY9+0KH7WGXpkkUyd84sWbVqpWS6K5OUr1BRSpQqJfff/4AdBGrAm9KvYSvYiOQcq/WGL7ZKxoz/Nuw6F3if3j1l1coVJngoXaac9OrT15565Pvvv5dC+XMluI7chCQabunoswwZfNNA6GjwUiUKJ1hIqXef16RZi1Z23foV5gnvjDWLU157zbVSuUpVaduugz1yVzfUhdLenTIpQX/cXLeBngjO49D74/QPpyX5fDl29Ki5v3tdgs3Bm1Q7SQW8bv4OaN3O4HL58s9l+edLJVWqGyTjv/8t6dOnl/wFCso992S2u6Hhbt9Xe8mE8WMTdc26JvU5/tqrveSqq6+W2267zSyipSMR9dstVtClO+s0Gw9UKJNgVLJ/n/TDgw0b1gVl0OtVPxjQfkX7nEjK2ukUqk9az+pVK82HVV7cp7x4XeB/bLEOeKd9+ImULVfedCupbxHo4/p3QqeK0fuJnu+c2TLbf0cuVcAb6t7l9vml/XdOR6Q/67RKusDumjWr5Kuvjku5cuXNIrpVqlaz78nz580xAa8XrzG8vldRHwIIIJAcBAh4k8NZ5BgQQACBSyjgDGwrVigjR48cTrI15xyEmzZukAaP1jaLpz3fvYfrXmogUa50cTswSZMmjXmTG6zUqvGQbN+2Vbzoq+tOJtMNnYHt1q1bpE7N6iGP1Hozqhtao64vZcAbskP/v4EGplZxG5T16fu6NG3Wwuym4Yq+SV+5crk45xz0b3/SxHek9ysvJfi1rjQ+cfJ7CUKkpPqtgWa2rJlS/DXsvJbcnGfnOdbtdWTtjFnz7NA8WB16bps3fVqWfb4kwSZuAl7dQYOQ1es2yY033mj237d3rzxY1Tctg1X69R8ojZ5qbI8KT6ovw4cOTvCBRLjXrX/dzuNw4xjJwphu6vUy4HX7d0D75QwuQ/VTg6nOHdubDyMDFbfXpF5Teq9o1rhRwJGM4fRJ+5HjvnvM30C37Vt9939OJHX84fZJp5vRaWe8+Fsb7euCQMcVy4BXA1v99oXOK62j8XXKolBFpziyPjDs17ePjBs7xuxyqQLepO5d4Ty/rON68aWXzXPNWhg31PFOnjRB5s2dbe7RWqJ5jRGqLR5HAAEEUqIAAW9KPOscMwIIIOBSQEclHTj8lQko3AYAus/+Q8fNC34rtNLmHqr+iDRr3tIsoKZvgAIVfVM0ZtRI+2v+1ja6urwuyBOs6CIfOq+bV311yZMsNxs7fqI5V1o6d2wns2fNDHmcw0eMlrqP1jfb6XQOOq2Djl7VUTpapr47WXr2eCFkPbqBNUXDDz/8IAXz+eYntEo0QYfzjXShArnl+3PngvZn+sezpFTpMuZxvYaLFckvq9ZsTDAi17mzdcyBKmzVpp107tJN9M1zoKKjP2fPmiFDhww0YU5Kv4ajOceWr47gnTB5qpnjNVA5eGC/CXd1lJl/cV631gdUwS6UAgUKypz5C+1wI9A3HDRwfnvcBEmfPkOioFcDQR313qxJo6ALUoZz3Tr76TwON088/VCteJECbjYNaxur//otgPuy3OVqX+fITr1v6P1Di5u/A9ZiT84PGv0b1dGSv/zyi5kTXoP1FSuWJdmvYNeknj+9P5w9+50s/OxTGTZ0kBnFGKwk1adA++i3J3TUsBfPCa/6pF+x79ihrWf3qWheFwQ6JueUJ82aPJXoAxxXF2CEG9WuU1dGjnrb7L1o4WfSumWzkDU5F6rT+1KVShXMPtY5//nnn81CpG5KtPeuV3q+GPJ1VqDF1PR+O37iFMmdO489RYmzv/oc2bVzhxmRrh+AePUaw40J2yCAAAIpTYCAN6WdcY4XAQQQuAIEdI5KfTOQPXsOue7662Xvnt1mBK6+maEgkBwF9EOSfPnymxGm+hXvE199JZs2rueav4QnWxfz0wXVihQpJtdcc43s2L5Ntm7dHDNzDYTLlqsgf174U9auXmU+lKIggIBPgNcF8X8l6DksWbK0ZM16r5mXfP++vbJnz+74PzCOAAEEEIgTAQLeODlRdBMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAXIODlmkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIODlGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOJUgIA3Tk8c3UYAAQQQQAABBBBAAAEEEEAAAQQQQAABBAh4uQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE4FSDgjdMTR7cRQAABBBBAAAEEEEAAAQQQQAABBBBAAAECXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTgUIeOP0xNFtBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgJdrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFMBAt44PXF0GwEEEEAAAQQQSI4CzVq0kpat2gQ8tD//+EPO//abHD1yRMaPe0u2b9saFwSP1Kgpg4eONH39888/pWC+nHHRbzqJAAIIIIAAAgggEB8CBLzxcZ7oJQIIIIAAAgggkCIEhgwbKfUbNHR1rN+dOSONnmgg+/btdbV9rDZq0rS5vPpaf7v5zJkyxKortIsAAggggAACCCCQDAUIeJPhSeWQEEAAAQQQQACBeBUIJ+DVY9QRsQ8/VFkOHjhwxR4yAe8Ve2roGAIIIIAAAgggkCwECHiTxWnkIBBAAAEEEEAAgeQh4Ax49+zZLdWrVbIP7NbbbpNixUpI567dJF++/Pbvv/76pJQpWfSKBUiTJo0ULuzr32+//yZfbNp4xfaVjiGAAAIIIIAAAgjEnwABb/ydM3qMAAIIIIAAAggkW4GkAl7nQb837SMpX+F+86u///5bstx9Z1gmV199tfz1119h7ePc+Nprr5WLFy9GvL+bHaPto7MNL+ty03e2QQABBBBAAAEEELh8AgS8l8+alhBAAAEEEEAAAQRCCLgNeDNnySqr1mywa3usfh3ZuGF90Nrvvvseef2NQZIzVy657bbbRQNand7h7Nnv5POlS6RnjxdMUJxU0akWnm7cVO7JnEWuv/56s+n58+dl7ZpVcvzYMSlVpqz53eCBb8jyZUvtqnTk8dT3p5ufjx09Ih3atQ7aTMdOXaV2nbpyV6a75cYbbzQh9NnvvpMDB/bL8892lZMnTwTct2at2tK2fUfz2OxZM2T82LekS9dnRX9/9z2ZTX8vXLggp09/K71efkmWLF7ItYgAAggggAACCCCQTAQIeJPJieQwEEAAAQQQQACB5CDgNuDVgPbwsa/tQ27ZvEnQ0LJFqzbS8+XeoqNYg5VzZ8/K4w3ryf59+xJtcvPNN8vUaR9JoUKFXREPGzpIhg8dbG+rofLipSvNzz///LPky50tUT1p06WT6R/Nkly5cwdtQ0cMv/xSd5n2/tRE2/Tp+7o0bdbC/P7I4UNyU5o0kj598MXcxoweKQP693N1PGyEAAIIIIAAAgggcGULEPBe2eeH3iGAAAIIIIAAAilKwG3AW6x4CZkxa55tU7xIATM61b88372HdHims/3rX375RQ4e2C8//vSjZL4ns2S99z77sW+/PSUlihZMVMeK1esla9Z77d9bo2ov/u+ipEt3q6RKlSrBPpEEvFu37xEd6WsVDYK/PnlSbkl7i2TIcGeCcLpb107yyce+EcFWcQa8/gegI5U1EHcG3HoMRQrlle/PnUtR1xcHiwACCCCAAAIIJEcBAt7keFY5JgQQQAABBBBAIE4F3Aa8ny5cai+09uuvv0qenP8EsNaha2C6eesuO9ic+u5kMwLWORVD8RIl5YPpM+Rf//qX2e3VPq/IhPFjbT2dluHV1/rbP3++dLHoaGHn/L0lS5WWt8dOsAPacAPeZzp2kedeeNG0oX0bMmiAvDlymN1mxoz/ljnzF5igV4uGv/nzZE9wHP4Br9bz0fQPZPSokXL82FGzX+MmzcyxXHXVVeZn9dCpKSgIIIAAAggggAAC8S1AwBvf54/eI4AAAggggAACyUogVMCrc+kOGzFKNJi1yqAB/WXUm8MTOWhwW6ZsOfP7FSuWSZOnnghopXPVdu32nHlMR/dWqVTB3m7vgaNmLlwtq1etlKeefCxgHbPnfiaFixQ1j4Ub8B44/JU9p++HH7wvLzz3n0RtpE6dWnbsPmBG4moZPWqEDHzjdXs7Z8D73ZkzUrtm9YDz9c6a86kUKVrM7Ldp4wZp8GjtZHX9cDAIIIAAAggggEBKFCDgTYlnnWNGAAEEEEAAAQSuUAFnwKtzzn7zzX9NT1Ndn0pS33STHbZa3depCnTKgkBlz/4josGoloL5c8kP338fcDvdRrfV8uOPP0qBvDnMv9Pdeqts27HX/FtHxOr0DYGmgdDHIw14s+fIIUuXrTZt6KhgbVtH6AYqo8aMM4umadm1a6c88lAVezNnwLtq5Qp5ulHDgHXodBU6bYWWEye+knKli1+hVwLdQgABBBBAAAEEEHArQMDrVortEEAAAQQQQAABBC65gDPgTaqx8+fPS/OmT8n6dWsDbqbTEBw7ccp+7PjxY0n2PXPmLOZxDVmz3pPR/PuRGjVlzNvvmH/rXLWFCgRfAC3SgPexhk/IoCG+0cdnTp+WYkXyB+1nnXqPyoiRY8zjOkq3aOF89rZuA9669erL8JGjzX7B5hy+5CeZBhBAAAEEEEAAAQQ8FSDg9ZSTyhBAAAEEEEAAAQSiEfAPeJ1z3ToXCTt16hspXaJIgrlwne3mzZtPPlv0eURdyZwpg9nv5Vf6SMvWbc2//adu8K840oDXGczu27tXHqxaMWifncd04cIFyZY1k72t24C3UuWqMmnKe2Y/At6ILg92QgABBBBAAAEErjgBAt4r7pTQIQQQQAABBBBAIOUKJDUH7xsDh8gTTz5l42zdslnq1Ho4IFblKtVk4uSp9mMa0LopFy5elOrVKplNX3t9gDzduKn59949e+Shag8ErcI5t+2wIYNk+LDB9rY5c+WSxUtXmp91+oV8ubPZjw0fMVrqPlrf/Lx16xapU7N60DYyZ8kqq9ZsMI87RxrrzwS8bs4u2yCAAAIIIIAAAslTgIA3eZ5XjgoBBBBAAAEEEIhLgVCLrDmDVD3AYHPw+s+fm+XuO8P2aNq8pfR5tZ/ZT0cMlyxWKGgdkY7gbde+o3Tv0dPUe/LkCSlbyrcAWqDiHH3rHxQT8IZ9etkBAQQQQAABBBBINgIEvMnmVHIgCCCAAAIIIIBA/AuECnivvfZaWbdxs2TI8E9g+/prr8rYt33zyjrL4WNfi26vRUfl7tmzOyyg4iVKyicz55p9dMRsruxZ5I8//ghYR6QBb+kyZeXDj2aaOn///XfJmS1z0D7+59nnpXOXbubxo0ePSMXype1tCXjDOrVsjAACCCCAAAIIJCsBAt5kdTo5GAQQQAABBBBAIL4FQgW8enS3336HrN3wpaRKlco+2JbNm8iSxQsTHPwXW3ZI+vS++XSPHD4kD9xfNiTO9ddfb4e4N9xwg+w9cFR0wTYtE98ZJ316v5yojrvuyiSfLlgiOmpYy7Chg2T4UHdTNKROnVr27D9i1/n8s11l+ofTAvZz2469dhufL10szZs+bW9HwBvy1LIBAggggAACCCCQbAUIeJPtqeXAEEAAAQQQQACB+BNwE/DqURUoUFDmzF8o1sJrFy9elEceqiL79u21D7p+g4ai9Vll3tw50qVTe9Ft/Uv2HDlk2IjRcvPNN0uFsiXth9+ZOEWqVnvI/lmnhBg/9i05ceIrKV+hotSuU1eqP1zDDoHDDXh1+49nzJESJUuZNnTqhQerVJSvvz6ZoIsv9ewlrdu2N7/7+++/5f7ypeX4saP2NgS88Xet02MEEEAAAQQQQMArAQJerySpBwEEEEAAAQQQQCBqAbcBrzZUt159GT7yn6kZzp8/L2VLF5NzZ8/a/fh04VLJly+//bNus3zZUtmze7fcmPpGKV68pGTLll1uve02s40Gt+VKF7e3199v3rrLDpLdHGA4I3i1vjvvzCjrN22x27hw4YIZxauLyN122+1Su249yZs3n930ooWfSeuWzRJ0hYDXzZlhGwQQQAABBBBAIHkKEPAmz/PKUSGAAAIIIIAAAnEpEE7AqwfoHNmqP3/77SkpU7KoPUpXp3P4ZOYcyXrvfa48/ANe3UlHC3/w0Uy56aabAtahbeqoYJ2qQUu/vn1k3Ngx9rY5c+WSxUtXmp/9F0ezNmrWopX06t03wUjgQI3p3Ls1H65m6nEWAl5Xp5eNEEAAAQQQQACBZClAwJssTysHhQACCCCAAAIIxKfAwMHDpOHjT5rO79q100y7EKq8N+0jKV/hfnuz1atWylNPPpZgtycbPS09evaSNGnSBKxOR/auXrVCRo0cLjt2bE+0je7XsVNX0YXXsmTJKj/+9KMcPnRQVq5YLu9OmSRLl62S7Dlymv0aPdFA1qxeqFgrPQAAC0RJREFUZddxX7bssmzFGvPzjz/+KAXy5gjYB50m4oMPZ8gd6dMnelynZZg8aYL0fuWlgPu+/Eofadm6rXls2bKl0qxxo4DbVahQUaZOm24e++ab/0qp4oVD8fI4AggggAACCCCAwBUuQMB7hZ8guocAAggggAACCCDgncB1110nBQsVlkKFi8hVcpUcOnRQdmzfJt99dyaqRnbsPiC33HKLqSN/nuzy008/RVxf2nTp5P77K0q+fAVMILxq5fKAoXPEDbAjAggggAACCCCAQLISIOBNVqeTg0EAAQQQQAABBBC43AI1a9WWUWPGmWZ1/txsWX1TNVAQQAABBBBAAAEEELgcAgS8l0OZNhBAAAEEEEAAAQTiVmDF6vVy9rvvZPasGbJhwzo5dPCg6JQJujhaq9ZtpUWrNvbcuVPfnSw9e7wQt8dKxxFAAAEEEEAAAQTiT4CAN/7OGT1GAAEEEEAAAQQQuIwC+w8dl1SpUiVoUQPeq666KsHvdB7fvLnuk7/++usy9o6mEEAAAQQQQAABBFK6AAFvSr8COH4EEEAAAQQQQACBJAUCBbz+O+zbu1daNHtaTp48gSYCCCCAAAIIIIAAApdVgID3snLTGAIIIIAAAggggEC8CTxQqYo8VP1hKVCwkFlI7cYbU8vFCxfk1Len5Mjhw7Lgs/nmPwoCCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBAh4Y6FOmwgggAACCCCAAAIIIIAAAggggAACCCCAgAcCBLweIFIFAggggAACCCCAAAIIIIAAAggggAACCCAQCwEC3lio0yYCCCCAAAIIIIAAAggggAACCCCAAAIIIOCBAAGvB4hUgQACCCCAAAIIIIAAAggggAACCCCAAAIIxEKAgDcW6rSJAAIIIIAAAggggAACCCCAAAIIIIAAAgh4IEDA6wEiVSCAAAIIIIAAAggggAACCCCAAAIIIIAAArEQIOCNhTptIoAAAggggAACCCCAAAIIIIAAAggggAACHggQ8HqASBUIIIAAAggggAACCCCAAAIIIIAAAggggEAsBP4PEDnN3qu3FrEAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/markdown": [
-       "AI-generated follow-up questions:\n",
-       "\n",
-       "* - What are the total sales for each customer in the Asia region?\n",
-       "* - How many orders does each customer in the Americas region have?\n",
-       "* - Who are the top 5 customers with the highest total sales?\n",
-       "* - What is the total revenue for each customer in the Europe region?\n",
-       "* - Can you provide a breakdown of the number of customers in each country?\n",
-       "* - Which customers in the United States have the highest total sales?\n",
-       "* - What are the total sales for each customer in the Asia region?\n",
-       "* - What are the top 10 customers with the highest returned parts gross value in Africa?\n",
-       "* - What are the top 3 customers with the highest total sales overall?\n",
-       "* - Can you provide a list of the first 10 customers in the database?\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Markdown object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "vn.ask(\"Who are the top 2 biggest customers in each region?\")"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Run as a Web App\n",
-    "If you would like to use this functionality in a web app, you can deploy the Vanna Streamlit app and use your own secrets. See [this repo](https://github.com/vanna-ai/vanna-streamlit)."
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.11.2"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/docs/index.ipynb b/notebooks/index.ipynb
similarity index 100%
rename from docs/index.ipynb
rename to notebooks/index.ipynb
diff --git a/notebooks/streamlit.ipynb b/notebooks/streamlit.ipynb
new file mode 100644
index 00000000..5f6dc409
--- /dev/null
+++ b/notebooks/streamlit.ipynb
@@ -0,0 +1,30 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<iframe\n",
+    "  src=\"https://demo.vanna.ai/?embed=true\"\n",
+    "  height=\"450\"\n",
+    "  style=\"width:100%;border:none;\"\n",
+    "></iframe>"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "language_info": {
+   "name": "python"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

From 34f797d7722f06bbe332ed73aa7f6ee217a771a3 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 11:48:00 -0400
Subject: [PATCH 11/14] header bar

---
 docs/sidebar.py        | 37 ++++++++++++++++++++++++++++++++++++-
 docs/sidebar.yaml      |  1 +
 nb-theme/index.html.j2 |  1 +
 3 files changed, 38 insertions(+), 1 deletion(-)

diff --git a/docs/sidebar.py b/docs/sidebar.py
index 0f6d4301..8c64a5f8 100644
--- a/docs/sidebar.py
+++ b/docs/sidebar.py
@@ -41,6 +41,22 @@ def generate_html(sidebar_data, current_path: str):
     html += '</ul>'
     return html
 
+def generate_header(notebook_name: str) -> str:
+    return f"""
+<a href="https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/{notebook_name}.ipynb" target="_blank" class="text-white bg-indigo-700 hover:bg-indigo-800 focus:ring-4 focus:outline-none focus:ring-indigo-300 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center mr-2 dark:bg-indigo-600 dark:hover:bg-indigo-700 dark:focus:ring-indigo-800">
+  <svg class="w-3.5 h-3.5 mr-2" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 14 16">
+    <path d="M0 .984v14.032a1 1 0 0 0 1.506.845l12.006-7.016a.974.974 0 0 0 0-1.69L1.506.139A1 1 0 0 0 0 .984Z"/>
+  </svg>
+  Run Using Colab
+</a>
+<a href="https://github.com/vanna-ai/vanna-py/blob/main/notebooks/{notebook_name}.ipynb" target="_blank" class="text-white bg-[#24292F] hover:bg-[#24292F]/90 focus:ring-4 focus:outline-none focus:ring-[#24292F]/50 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-500 dark:hover:bg-[#050708]/30 mr-2 mb-2">
+  <svg class="w-4 h-4 mr-2" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
+    <path fill-rule="evenodd" d="M10 .333A9.911 9.911 0 0 0 6.866 19.65c.5.092.678-.215.678-.477 0-.237-.01-1.017-.014-1.845-2.757.6-3.338-1.169-3.338-1.169a2.627 2.627 0 0 0-1.1-1.451c-.9-.615.07-.6.07-.6a2.084 2.084 0 0 1 1.518 1.021 2.11 2.11 0 0 0 2.884.823c.044-.503.268-.973.63-1.325-2.2-.25-4.516-1.1-4.516-4.9A3.832 3.832 0 0 1 4.7 7.068a3.56 3.56 0 0 1 .095-2.623s.832-.266 2.726 1.016a9.409 9.409 0 0 1 4.962 0c1.89-1.282 2.717-1.016 2.717-1.016.366.83.402 1.768.1 2.623a3.827 3.827 0 0 1 1.02 2.659c0 3.807-2.319 4.644-4.525 4.889a2.366 2.366 0 0 1 .673 1.834c0 1.326-.012 2.394-.012 2.72 0 .263.18.572.681.475A9.911 9.911 0 0 0 10 .333Z" clip-rule="evenodd"/>
+  </svg>
+  Open in GitHub
+</a>
+"""    
+
 # Read YAML data from a file
 def read_yaml_file(file_path):
     with open(file_path, 'r') as file:
@@ -56,6 +72,20 @@ def read_yaml_file(file_path):
 import os
 notebook_files = [file for file in os.listdir(notebook_dir) if file.endswith('.ipynb')]
 
+def is_runnable(notebook_name: str, sidebar_data: dict) -> bool:
+    # Check if the notebook is runnable
+    for entry in sidebar_data:
+        if 'link' in entry:
+            if entry['link'] == f'{notebook_name}.html':
+                return entry.get('runnable', 'true') == 'true'
+            
+        if 'sub_entries' in entry:
+            for sub_entry in entry['sub_entries']:
+                if sub_entry['link'] == f'{notebook_name}.html':
+                    return sub_entry.get('runnable', 'true') == 'true'
+
+    return False
+
 for notebook_file in notebook_files:
     # Get just the file name without the extension
     notebook_name = os.path.splitext(notebook_file)[0]
@@ -75,5 +105,10 @@ def read_yaml_file(file_path):
 
     # Write body to file
     with open(os.path.join(output_dir, f'{notebook_name}.html'), 'w') as file:
-        file.write(body.replace('<!-- NAV HERE -->', html_code))
+        # From sidebar_data, see if there is a matching entry for the current notebook
+        if is_runnable(notebook_name, sidebar_data):
+            file.write(body.replace('<!-- NAV HERE -->', html_code).replace('<!-- HEADER HERE -->', generate_header(notebook_name)))
+        else:
+            file.write(body.replace('<!-- NAV HERE -->', html_code))
+
 
diff --git a/docs/sidebar.yaml b/docs/sidebar.yaml
index cc172714..2519a00c 100644
--- a/docs/sidebar.yaml
+++ b/docs/sidebar.yaml
@@ -1,5 +1,6 @@
 - title: How It Works
   link: index.html
+  runnable: false
   svg_text: |-
     <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" width="14" height="20" fill="none" viewBox="0 0 14 20">
     <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 7a3 3 0 0 1 3-3M5 19h4m0-3c0-4.1 4-4.9 4-9A6 6 0 1 0 1 7c0 4 4 5 4 9h4Z"/>
diff --git a/nb-theme/index.html.j2 b/nb-theme/index.html.j2
index 432cf76c..6e9551b1 100644
--- a/nb-theme/index.html.j2
+++ b/nb-theme/index.html.j2
@@ -119,6 +119,7 @@ a.anchor-link {
   </div>
 </aside>
 <div class="p-4 sm:ml-64 max-w-screen-xl">
+<!-- HEADER HERE -->
 {%- endblock body_header -%}
 
 

From e4d53682bb7e6f9bc203ca2e2cdea8e9b9510f66 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 12:28:13 -0400
Subject: [PATCH 12/14] link stubs

---
 docs/sidebar.yaml               |  16 +--
 notebooks/databases.ipynb       | 176 ++++++++++++++++++++++++++++++++
 notebooks/getting-started.ipynb | 128 +++++++++++++++++++++++
 notebooks/manual-train.ipynb    |  26 +++++
 notebooks/slack.ipynb           |  34 ++++++
 5 files changed, 372 insertions(+), 8 deletions(-)
 create mode 100644 notebooks/databases.ipynb
 create mode 100644 notebooks/getting-started.ipynb
 create mode 100644 notebooks/manual-train.ipynb
 create mode 100644 notebooks/slack.ipynb

diff --git a/docs/sidebar.yaml b/docs/sidebar.yaml
index 2519a00c..045a77c0 100644
--- a/docs/sidebar.yaml
+++ b/docs/sidebar.yaml
@@ -6,11 +6,11 @@
     <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 7a3 3 0 0 1 3-3M5 19h4m0-3c0-4.1 4-4.9 4-9A6 6 0 1 0 1 7c0 4 4 5 4 9h4Z"/>
     </svg>
 
-- title: Ask Vanna
-  link: vn-ask.html
+- title: Getting Started
+  link: getting-started.html
   svg_text: |-
-    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 20 18">
-    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M5 5h9M5 9h5m8-8H2a1 1 0 0 0-1 1v10a1 1 0 0 0 1 1h4l3.5 4 3.5-4h5a1 1 0 0 0 1-1V2a1 1 0 0 0-1-1Z"/>
+    <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 21 20">
+    <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="m8.806 5.614-4.251.362-2.244 2.243a1.058 1.058 0 0 0 .6 1.8l3.036.356m9.439 1.819-.362 4.25-2.243 2.245a1.059 1.059 0 0 1-1.795-.6l-.449-2.983m9.187-12.57a1.536 1.536 0 0 0-1.26-1.26c-1.818-.313-5.52-.7-7.179.96-1.88 1.88-5.863 9.016-7.1 11.275a1.05 1.05 0 0 0 .183 1.25l.932.939.937.936a1.049 1.049 0 0 0 1.25.183c2.259-1.24 9.394-5.222 11.275-7.1 1.66-1.663 1.275-5.365.962-7.183Zm-3.332 4.187a2.115 2.115 0 1 1-4.23 0 2.115 2.115 0 0 1 4.23 0Z"/>
     </svg>
 
 - title: Train Vanna
@@ -19,15 +19,15 @@
     <path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M11 16.5A2.493 2.493 0 0 1 6.51 18H6.5a2.468 2.468 0 0 1-2.4-3.154 2.98 2.98 0 0 1-.85-5.274 2.468 2.468 0 0 1 .921-3.182 2.477 2.477 0 0 1 1.875-3.344 2.5 2.5 0 0 1 3.41-1.856A2.5 2.5 0 0 1 11 3.5m0 13v-13m0 13a2.492 2.492 0 0 0 4.49 1.5h.01a2.467 2.467 0 0 0 2.403-3.154 2.98 2.98 0 0 0 .847-5.274 2.468 2.468 0 0 0-.921-3.182 2.479 2.479 0 0 0-1.875-3.344A2.5 2.5 0 0 0 13.5 1 2.5 2.5 0 0 0 11 3.5m-8 5a2.5 2.5 0 0 1 3.48-2.3m-.28 8.551a3 3 0 0 1-2.953-5.185M19 8.5a2.5 2.5 0 0 0-3.481-2.3m.28 8.551a3 3 0 0 0 2.954-5.185"/>
     </svg>
   sub_entries:
-    - title: Train 1
-      link: /services/train-1
+    - title: Snowflake
+      link: vn-train.html
       svg_text: |-
         <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
         <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
         </svg>
 
-    - title: Train 2
-      link: /services/train-2
+    - title: Other Databases
+      link: manual-train.html
       svg_text: |-
         <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
         <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
diff --git a/notebooks/databases.ipynb b/notebooks/databases.ipynb
new file mode 100644
index 00000000..3f0c8fcb
--- /dev/null
+++ b/notebooks/databases.ipynb
@@ -0,0 +1,176 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# How to use Vanna with various databases\n",
+    "\n",
+    "You can use Vanna with any database that you can connect to via Python. Here are some examples of how to connect to various databases.\n",
+    "\n",
+    "All you have to do is provide Vanna with a function that takes in a SQL query and returns a Pandas DataFrame. Here are some examples of how to do that."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import vanna as vn"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## **PostgreSQL**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import psycopg2\n",
+    "\n",
+    "conn_details = {...}  # fill this with your connection details\n",
+    "conn_postgres = psycopg2.connect(**conn_details)\n",
+    "\n",
+    "def run_sql_postgres(sql: str) -> pd.DataFrame:\n",
+    "    df = pd.read_sql_query(sql, conn_postgres)\n",
+    "    return df\n",
+    "\n",
+    "vn.run_sql = run_sql_postgres"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## **Snowflake**\n",
+    "\n",
+    "We have a built-in function for Snowflake, so you don't need to write your own.\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database')\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## **Google BigQuery**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from google.cloud import bigquery\n",
+    "import pandas as pd\n",
+    "\n",
+    "project_id = 'your-project-id'  # replace with your Project ID\n",
+    "client_bigquery = bigquery.Client(project=project_id)\n",
+    "\n",
+    "def run_sql_bigquery(sql: str) -> pd.DataFrame:\n",
+    "    df = client_bigquery.query(sql).to_dataframe()\n",
+    "    return df\n",
+    "\n",
+    "vn.run_sql = run_sql_bigquery"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## **Amazon Athena**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "from pyathena import connect\n",
+    "\n",
+    "conn_details = {...}  # fill this with your connection details\n",
+    "conn_athena = connect(**conn_details)\n",
+    "\n",
+    "def run_sql_athena(sql: str) -> pd.DataFrame:\n",
+    "    df = pd.read_sql(sql, conn_athena)\n",
+    "    return df\n",
+    "\n",
+    "vn.run_sql = run_sql_athena"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## **Amazon Redshift**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import psycopg2\n",
+    "\n",
+    "conn_details = {...}  # fill this with your connection details\n",
+    "conn_redshift = psycopg2.connect(**conn_details)\n",
+    "\n",
+    "def run_sql_redshift(sql: str) -> pd.DataFrame:\n",
+    "    df = pd.read_sql_query(sql, conn_redshift)\n",
+    "    return df\n",
+    "\n",
+    "vn.run_sql = run_sql_redshift"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# **Others**\n",
+    "\n",
+    "You can follow a similar pattern to the others for your database. You just have to provide a `vn.run_sql` function that takes in a SQL query and returns a Pandas DataFrame."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "language_info": {
+   "name": "python"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/getting-started.ipynb b/notebooks/getting-started.ipynb
new file mode 100644
index 00000000..bacd0078
--- /dev/null
+++ b/notebooks/getting-started.ipynb
@@ -0,0 +1,128 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Getting Started with Vanna\n",
+    "This notebook shows how to use Vanna to ask questions from a database using sample data"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Install and Import Vanna"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%pip install vanna"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import vanna as vn"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Log In to Vanna\n",
+    "Vanna provides a function to get an API key. You'll get a code sent to your e-mail.\n",
+    "You can save your API key for future usage so that you don't have to log in every time."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "api_key = vn.get_api_key('my-email@example.com') # Put your email here\n",
+    "vn.set_api_key(api_key)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set Model\n",
+    "`chinook` is a public model that refers to the [Chinook sample database](https://www.sqlitetutorial.net/sqlite-sample-database/)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.set_model('chinook')"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Connect to the Database\n",
+    "Here we're connecting to a SQLite database but you can connect to [any database that you have a Python driver for](databases.html)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<img alt=\"\" src=\"\">"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "base",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.9"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/manual-train.ipynb b/notebooks/manual-train.ipynb
new file mode 100644
index 00000000..93afca44
--- /dev/null
+++ b/notebooks/manual-train.ipynb
@@ -0,0 +1,26 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Manually Training Vanna"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "language_info": {
+   "name": "python"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/slack.ipynb b/notebooks/slack.ipynb
new file mode 100644
index 00000000..a4992629
--- /dev/null
+++ b/notebooks/slack.ipynb
@@ -0,0 +1,34 @@
+{
+ "cells": [
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Using Vanna with Slack"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<img alt=\"\" src=\"\">"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "language_info": {
+   "name": "python"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

From 0137f40effaf22f747dad9cd2d1e2b5d0bc9528c Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 12:32:59 -0400
Subject: [PATCH 13/14] runnable

---
 docs/sidebar.yaml | 2 ++
 1 file changed, 2 insertions(+)

diff --git a/docs/sidebar.yaml b/docs/sidebar.yaml
index 045a77c0..63673e7d 100644
--- a/docs/sidebar.yaml
+++ b/docs/sidebar.yaml
@@ -41,6 +41,7 @@
   sub_entries:
     - title: Streamlit
       link: streamlit.html
+      runnable: false
       svg_text: |-
         <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
         <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>
@@ -48,6 +49,7 @@
 
     - title: Slack
       link: slack.html
+      runnable: false
       svg_text: |-
         <svg class="w-6 h-6 text-gray-800 dark:text-white" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 20">
         <path d="m19.707 9.293-2-2-7-7a1 1 0 0 0-1.414 0l-7 7-2 2a1 1 0 0 0 1.414 1.414L2 10.414V18a2 2 0 0 0 2 2h3a1 1 0 0 0 1-1v-4a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1v4a1 1 0 0 0 1 1h3a2 2 0 0 0 2-2v-7.586l.293.293a1 1 0 0 0 1.414-1.414Z"/>

From eb62b2af7f2ee6a75041e8e7d7a65b90e49ba867 Mon Sep 17 00:00:00 2001
From: Zain Hoda <7146154+zainhoda@users.noreply.github.com>
Date: Wed, 2 Aug 2023 13:40:03 -0400
Subject: [PATCH 14/14] update notebooks

---
 docs/sidebar.py                 |   2 +-
 notebooks/getting-started.ipynb | 409 ++++++++++++++++++++++++++++++--
 notebooks/manual-train.ipynb    | 370 ++++++++++++++++++++++++++++-
 notebooks/vn-train.ipynb        |  67 ------
 src/vanna/__init__.py           |  32 +++
 5 files changed, 792 insertions(+), 88 deletions(-)

diff --git a/docs/sidebar.py b/docs/sidebar.py
index 8c64a5f8..257363f3 100644
--- a/docs/sidebar.py
+++ b/docs/sidebar.py
@@ -23,7 +23,7 @@ def generate_html(sidebar_data, current_path: str):
             html += f'<span class="flex-1 ml-3 text-left whitespace-nowrap">{entry["title"]}</span>\n'
             html += '<svg aria-hidden="true" class="w-6 h-6" fill="currentColor" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" d="M5.293 7.293a1 1 0 011.414 0L10 10.586l3.293-3.293a1 1 0 111.414 1.414l-4 4a1 1 0 01-1.414 0l-4-4a1 1 0 010-1.414z" clip-rule="evenodd"></path></svg>\n'
             html += '</button>\n'
-            html += f'<ul id="dropdown-{entry["title"]}" class="hidden py-2 space-y-2">\n'
+            html += f'<ul id="dropdown-{entry["title"]}" class="py-2 space-y-2">\n'
             for sub_entry in entry['sub_entries']:
                 html += f'<li>\n'
                 highlighted = 'bg-indigo-100 dark:bg-indigo-700' if sub_entry['link'] == current_path else ''
diff --git a/notebooks/getting-started.ipynb b/notebooks/getting-started.ipynb
index bacd0078..4fec05a3 100644
--- a/notebooks/getting-started.ipynb
+++ b/notebooks/getting-started.ipynb
@@ -28,7 +28,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -47,7 +47,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -66,7 +66,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -83,29 +83,411 @@
    ]
   },
   {
-   "attachments": {},
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 4,
    "metadata": {},
-   "source": []
+   "outputs": [],
+   "source": [
+    "vn.connect_to_sqlite('https://github.com/lerocha/chinook-database/raw/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite')"
+   ]
   },
   {
-   "attachments": {},
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "<img alt=\"\" src=\"\">"
+    "# Ask Questions\n",
+    "Now we're going to use `vn.ask` to ask questions and it'll generate SQL, run the SQL, show the table, and generate a chart"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "SELECT a.name,\n",
+      "       sum(il.quantity) as totalsales\n",
+      "FROM   artist a\n",
+      "    INNER JOIN album al\n",
+      "        ON a.artistid = al.artistid\n",
+      "    INNER JOIN track t\n",
+      "        ON al.albumid = t.albumid\n",
+      "    INNER JOIN invoiceline il\n",
+      "        ON t.trackid = il.trackid\n",
+      "GROUP BY a.name\n",
+      "ORDER BY totalsales desc limit 5;\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Name</th>\n",
+       "      <th>totalsales</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>Iron Maiden</td>\n",
+       "      <td>140</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>U2</td>\n",
+       "      <td>107</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>Metallica</td>\n",
+       "      <td>91</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Led Zeppelin</td>\n",
+       "      <td>87</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>Os Paralamas Do Sucesso</td>\n",
+       "      <td>45</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                      Name  totalsales\n",
+       "0              Iron Maiden         140\n",
+       "1                       U2         107\n",
+       "2                Metallica          91\n",
+       "3             Led Zeppelin          87\n",
+       "4  Os Paralamas Do Sucesso          45"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdC7h1V1kf+vcFuUi4REggXBSQgiGIgiAVBMSIRQpVERTr8QBVS70cpBdEaAH1gKhV2mKxaL1SpIUoSgHFEjWIYgkEL6gxagDhICkmXMKdgHnPM+JceWbWt/a35l63b665fvN5ePLtPeccc4zfO/b28b/HGjPDQYAAAQIECBAgQIAAAQIECBAgQIAAAQJ7KZB72WudJkCAAAECBAgQIECAAAECBAgQIECAAIEQ8JoEBAgQIECAAAECBAgQIECAAAECBAgQ2FMBAe+eFk63CRAgQIAAAQIECBAgQIAAAQIECBAgIOA1BwgQIECAAAECBAgQIECAAAECBAgQILCnAgLePS2cbhMgQIAAAQIECBAgQIAAAQIECBAgQEDAaw4QIECAAAECBAgQIECAAAECBAgQIEBgTwUEvHtaON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNccIECAAAECBAgQIECAAAECBAgQIECAwJ4KCHj3tHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQGvOUCAAAECBAgQIECAAAECBAgQIECAAIE9FRDw7mnhdJsAAQIECBAgQIAAAQIECBAgQIAAAQICXnOAAAECBAgQIECAAAECBAgQIECAAAECeyog4N3Twuk2AQIECBAgQIAAAQIECBAgQIAAAQIEBLzmAAECBAgQIECAAAECBAgQIECAAAECBPZUQMC7p4XTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4zQECBAgQIECAAAECBAgQIECAAAECBAjsqYCAd08Lp9sECBAgQIAAAQIECBAgQIAAAQIECBAQ8JoDBAgQIECAAAECBAgQIECAAAECBAgQ2FMBAe+eFk63CRAgQIAAAQIECBAgQIAAAQIECBAgIOA1BwgQIECAAAECBAgQIECAAAECBAgQILCnAgLePS2cbhMgQIAAAQIECBAgQIAAAQIECBAgQEDAaw4QIECAAAECBAgQIECAAAECBAgQIEBgTwUEvHtaON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNccIECAAAECBAgQIECAAAECBAgQIECAwJ4KCHj3tHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQGvOUCAAAECBAgQIECAAAECBAgQIECAAIE9FRDw7mnhdJsAAQIECBAgQIAAAQIECBAgQIAAAQICXnOAAAECBAgQIECAAAECBAgQIECAAAECeyog4N3Twuk2AQIECBAgQIAAAQIECBAgQIAAAQIEBLzmAAECBAgQIECAAAECBAgQIECAAAECBPZUQMC7p4XTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4zQECBAgQIECAAAECBAgQIECAAAECBAjsqYCAd08Lp9sECBAgQIAAAQIECBAgQIAAAQIECBAQ8JoDBAgQIECAAAECBAgQIECAAAECBAgQ2FMBAe+eFk63CRAgQIAAAQIECBAgQIAAAQIECBAgIOA1BwgQIECAAAECBAgQIECAAAECBAgQILCnAgLePS2cbhMgQIAAAQIECBAgQIAAAQIECBAgQEDAaw4QIECAAAECBAgQIECAAAECBAgQIEBgTwUEvHtaON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNccIECAAAECBAgQIECAAAECBAgQIECAwJ4KCHj3tHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQGvOUCAAAECBAgQIECAAAECBAgQIECAAIE9FRDw7mnhdJsAAQIECBAgQIAAAQIECBAgQIAAAQICXnOAAAECBAgQIECAAAECBAgQIECAAAECeyog4N3Twuk2AQIECBAgQIAAAQIECBAgQIAAAQIEBLzmAAECBAgQIECAAAECBAgQIECAAAECBPZUQMC7p4XTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4zQECBAgQIECAAAECBAgQIECAAAECBAjsqYCAd08Lp9sECBAgQIAAAQIECBAgQIAAAQIECBAQ8JoDBAgQIECAAAECBAgQIECAAAECBAgQ2FMBAe+eFk63CRAgQIAAAQIECBAgQIAAAQIECBAgIOA1BwgQIECAAAECBAgQIECAAAECBAgQILCnAgLePS2cbhMgQIAAAQIECBAgQIAAAQIECBAgQEDAaw4QIECAAAECBAgQIECAAAECBAgQIEBgTwUEvHtaON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNccIECAAAECBAgQIECAAAECBAgQIECAwJ4KCHj3tHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQGvOUCAAAECBAgQIECAAAECBAgQIECAAIE9FRDw7mnhdJsAAQIECBAgQIAAAQIECBAgQIAAAQICXnOAAAECBAgQIECAAAECBAgQIECAAAECeyog4N3Twuk2AQIECBAgQIAAAQIECBAgQIAAAQIEBLzmAAECBAgQIECAAAECBAgQIECAAAECBPZUQMC7p4XTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4zQECBAgQIECAAAECBAgQIECAAAECBAjsqYCAd08Lp9sECBAgQIAAAQIECBAgQIAAAQIECBAQ8JoDBAgQIECAAAECBAgQIECAAAECBAgQ2FMBAe+eFk63CRAgQIAAAQIECBAgQIAAAQIECBAgIOA1BwgQIECAAAECBAgQIECAAAECBAgQILCnAgLePS2cbhMgQIAAAQIECBAgQIAAAQIECBAgQEDAaw4QIECAAAECBAgQIECAAAECBAgQIEBgTwUEvHtaON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNccIECAAAECBAgQIECAAAECBAgQIECAwJ4KCHj3tHC6TeCQBarqPhHxeZ3BBzPz1w/Z41SMvaruFRHndM/+cGa+6lT0wzMJECBAgAABAgQIECBAgMChCwh4F8yAqrpeRHzBhifH1Zn51g23ObrmqupGEXH3FTv2icy8ZMV7l95WVbeNiNvMXfj2zPzQ0ptP0QVV9XUR8dm9x/9kZn7yFHVnNI+tqot78+zTmXmD0XRugx2pqjMj4ksj4ou6MPWsiPjbiHh7RFwaEX8REX+UmR/Y4GMHNVVVfxAR9+4ursxsvzcdBAgQIECAAAECBAgQIECAwI4FBLwLwKvqayLiFVuoxYMy8/e20O5omqyq746I56/aoczc2pysqssj4oy5vr0qM7961f4Ova/7o8ETI+L63T0XZGYLKU96VFULn2/Wu+i+mfmWZfetcr6q7hcRX9zd+5HMfNEq7ezinqkHvFV1t4j4uS7cHUJ6WUT8akQ8LzNb+Lv1Q8C7dWIPIECAAAECBAgQIECAAAECgwS2FqYNevpIL6qqr+3Ckk338MGZ+bubbnRM7VXVkyPiP63ap20FvFXVVhq2FYfzxycz88ar9nfofd3q4ff0rj8vMx+77P4dB7y/HxH3n/VpW7VYNuYh56cc8FZVC2rb76BVj8dk5stXvXnofQLeoVKuI0CAAAECBAgQIECAAAEC2xUQ8C7wFfCuPulGHPD+SkQ86oiRfWNmvmz1US+/U8C73Og4V0w14K2qV0fEIxZYXB0RH42IqyLiFhHxGSfxesIuVl8LeI8zY11LgAABAgQIECBAgAABAgS2JyDgXRzwthWd/3gJ+7dHxFf2rmlbOrx4yT1tO4BPba+cp77lBQHvL0fELwzsWVtN+5sDrz3WZVX18Yg4aqXumzLzHx6rwWNevEbA2+bZHXuPe3ZmfuyYjx90eVVZwTtIajsXVdUTIuLn51p/b0Q8KzP/a//73Xz68oh4YPeHi7Y37+wQ8G6nRFolQIAAAQIECBAgQIAAAQKjFBDwrliWqvqxiPg3vdufmZnPWbG5ydy2IOA95S4LVmS3EPnciJi9FKqtjjwtMz+xrUKsGvBuqz+L2hXw7lL7xGdV1Tsi4k69M+2Fg/fIzDY/T3pU1YMi4n9ExO0jQsC7DMx5AgQIECBAgAABAgQIECAwIQEB74rF3HTAW1Xt5VsPiIh/1K3YfFNE/PomXphUVTftPvbdVhz/bUT8z8y8cMWhLwua5vfgHUPA+78j4kt6HW9hWAvo+6t2n56ZP7wNk9bmLgPeqvqsbi/d+3YvaGtB4R9HxJ9k5iePGuMmAt6qulH3orb2sra28ri98OtP2v7HmXnlpnxPtkVDVd08Ih4ZEV8REW0F7Csys/08jfqoqprr4C0z8wPH6XRVPSMi/vvJfm908+MeEXGXrkbtxYPtjxvviog3t/8NDJXbntZtb+trpnhmzv5gsrTL3Z7Y7Xfd50fEpRHR9iZ/w8nm56JGdzXflg7IBQQIECBAgAABAgQIECBA4BQKCHhXxN9UwFtVd4uI1859DL/fq09HRNs/9p+eLHSpqjdGxP26Gz+WmTetqidGxI9ExOkLhtlWBf5EZn73igQLbxvbCt4uAGpbGszCpw9n5s2rqr3g7KW9QbwjMz93mcUi52vSraqHRsR3RsR9IuJ2EdEC+7YdR3vh3Pd07c7/vM0Heu2yj2fmabN+VNUFEfFl3ddXHfVCuKpq43t6RDwtIlqgf9TxNxHxixHxo5n5vq7vLfy9Z0QM6V+75d9nZnvOtUdVfU1E/HhEfM5Jnv3hiHhlRDw3My9eZn2y84sC3qr6roj4oS7Unr+9zfc25uv0uxt/+95zezecn5kPG9K/qmqGLVBvR/tZvfGQcHS+7QV/APh0Zt5gSB+GXlNVv9X9EWnZSwXbHwFeEhFPnc2RRc847h68VdXmRvtd137nHfV/e/6o/ZErMy9fUv+dzrehxq4jQIAAAQIECBAgQIAAAQKnQkDAu6L6JgLeLgz9D73w8WS9aSsRH5yZf3lE2NICs7v3zv353NdHtd0CxIeuEkod0Y9RreCtqraNRlutOztelJltr9MWyrYg64a9c3fIzBaAHnnMB4tdoPm/uoB00X3/PSK+6RjT7DrB3pAQrapaYPfOiLj1MZ7zusxse7g2h7bK9s7HuPcnM/M7ZtdX1W9ExKBAtLvnmpD9GM874dK5OrTzbZXy2QPabAHjw/vzvarO7Fb6zn4ftjD4Fpn5kSVzYf6PBG/NzC8c0IdF42l/EGgBcf94WGa2/m7kqKr2krabHKOx9vNx58y8bNE9Q+Zmb460PyQ9b8nL4WaXtz+MPDEzF+7dfSrm2zHMXEqAAAECBAgQIECAAAECBHYuIOBdkXzdgLeqntJWFC54fPuo9Icion1sev4jzy34uM2ij20vCLyOM7KfzcxvO84NR107whW8fxUR/6DX37vMPr5eVa+JiK/qnbtOcHlEqDUfpLeanGylZVst+83HsF0l4G3bbcxWb/cf1VbMtuNmC57fD3jfFhFLVy/32nhhZrbVyi0c/v6I+L4F7bdwsAWKbXXr/O+ZbQS8xyCO/5KZbbXvtUdVzRu21b5PPVmjC37mHpGZv36cjsz1oQXK167ejoiNvvzviIC3hcqtVm0O9//YMevae9ofMTLz7+bHNTTgrap/31vFPmum/dz8n4i4IiJu236vzc2T1q/bZmY736/TKZlvq9bUfQQIECBAgAABAgQIECBAYBcCAt4VldcJeLttA9p+pG2/0tnRXrB0/8xsK3WvObptBF48FyC+OjP/yYKwZT54nF3yurYHaUS8vNsy4FHditZ+kHRV+1h/ZrbQZa1jQcDbtkdowdVndA1/PCLeHRF/FhE/kJlt38+tHFXVQqMWIs2OyzKzbZ8w831gt/fn7Fvvz8xbnawzS4L0tuVCq19bBdxC1fbCq/bx/1+LiLMi4vd7bZ8fEf9iwbM+0V8xuSxEq6r5MbQa/j8R8bLZnre9/Z3/dUS0j7a3n/t+wNtC2LaNR5snX9Dr01Gh73tme6VWVXverLbt1rZNw3/MzL/uOZ8TEf8sIp7UzfltBry/042jbWvSgsuv7laO9kPu9v32Ur1rQ8uqai/da1sYzI4PZuZs64UTylRVbcVzW/k8eO4sm+TzeyB317f59IKI+M/r7mFcVe3nsK1Ofn1E/ExE/Eb/xYJV1eZ+m69t1Xv//zZ8U2a2F7hd51g2N9vF3c9gC4lnf6xqPyM/FRHfNbeKuv2stNXKba7Mjt/KzLb1ybXHqZpvy2rnPAECBAgQIECAAAECBAgQOJUCAt4V9dcMeH+uC7xmT39LZrYXYp1wVNWdIqJty9BfJXqP+T1MFwSPLXx6TGb+4XyjVdVWB7eVrf29eX8wM9sLmtY6FgS8y9pre27+i228BKuqWtjYQsXZ8SML9o5tq6X74d8XZ+ZFR3X6iIC3rZT99i5UPWGlY2tr1ZesLQvRqqpt8fGvev39tsz82ZP0v4Xe7fzbMrNtp3HtcdyXrHUvymov2podLTB8+Eme3eZw2xO6GbcX3a18HDHfH52ZbT5d5zhivn9/Zv7A3Pjbvq/tZ2N2PDIzWzh/wlFVv9R+vnon2h8r2urSlY+qaiFn+4PHUS8rayui2/m2Z3ILaV+5bEuRufFdf9FK3AVe858u+KnMbPN73nXpS9aq6g3dvr+zexeGxbOTVfX+3p7G7dtnzlbxnsr5tnJR3UiAAAECBAgQIECAAAECBHYgIOBdEXnNgLetmO0HtnfNzPYm+YVHVc0Hwv8rM/tbC7QAsb+Cd+kLmhbsTTvoJWPLuFYIeFuT7ePY987MP13W/nHOV1U/sGsrB281v71FVbV9Ph/fa/dVmdlWfR5Vi/mV0u1FbY9btvp5iwHvb0bEV/Q6+8zMfM5xnGbXrhDwtpXC/7n3rAsz80tWefZx71lhvrcQvIXhs+PSzLxr/7lV9ay2qrz3vT/KzHvP961bEd1Wos9+htv8bSvg28rgtY7uxYgvHLgvd3tWWyHf5kCr+1vXenh3c/cJg7ZVzOxY+AeoAX98aH+cap9MmB0XZGZbKX3k0Y2/rfCdHV+dma9qX1TVKZtvm3DVBgECBAgQIECAAAECBAgQ2JaAgHdF2VUD3qq6RUR8sPfYP87Mey0JPdoLqdo9s3qdEMauEHi1lzq1EGf28foPZWbr21pHVX1rRPx0RLQtKNpHs1vI2lbltVWJbZuC9r87LnhIC6rulJnt+rWPBav9LsnM/kvornlGVbX9edtq5tnxycxsLy1beBzXedbIFgPe9lH7Zj472jz5/OOs7Oz1sW0hcf/Z15l50t8PC7Y1aCH6l2Xm765dwCUNHLcOXSjbn+8nbMHQBZv97URaL243/5KxqvqeiGj7ys6O/5mZX7upMVfV3SKivbivBaTHOd7Uwv5lL4fr1bttEdMC+RZity0n2gri9qK+9nvgnr3fN+/MzBP6MiDgbS8z/PneANrL7doL+Y48FvycPDszW/Deflbnt9HY2Xw7ThFcS4AAAQIECBAgQIAAAQIEdi0g4F1RfI2A92Ft78veY1+UmS0IOelRVf2tBD6amTft33DcwKsLTNr+ni3QacfVmdlC360f3bYTbeXnI+ce9muZOf+9lfpTVb8aEf3Q7cmZ2bZsOOGoqsu64Hl27hsz82VHXHusldKzNrYY8P7jbo/f60yHiLikm2evjojfGfjR/OMGvC0Ib9sGzG8p0IL9tp9qm+etpi003eixgfm+cJV7Vb0yIvp7XJ/w87lgvnxuZvZXqm5krN3PSQuTW3/aH0ZO9jK/2TPbdiEtlF5oXlXtj0U/1P1sXLsf9ZIOrxrw/peI+I5e2387EGb2O6ld/orMbPuGt4D3lM23gf12GQECBAgQIECAAAECBAgQOCUCAt4V2dcIeNs+t8/uPfYZmfmDy7pRVe2lVbOVr5WZ1wnVVgy8/jwizu49u714qq2k3clRVedFxNf3HvY3mXmHTTy8qtpH6Psrcb+oe8ncoua/b24/1Tdn5v0WXbiKcxdO3bZb0Txr9rzMfOyysS5bJdm1PV/H+WbbSse2ivo1EdH2Wm7h7wnHcbdo6J7dgvr20fmTHS0EfmNb9ZqZLfhd+1ilDlXVxv15vYffeH5bhW717F/0rmkvvfvM2ddV9aUR8Xu98xdn5j3WHtCABroXlrWtWdqLx744Iu4y94K7WSvXhqL9Zquq7fN9QdtOYsDj+pesGvC2fYLX2mu5++PEQ3r+p2S+HdPL5QQIECBAgAABAgQIECBAYKcCAt4VudcIeNtHlvsrdtv+rS9e1o0F4dTpmdm2QbjmWDHw+rO5t9bfcn6P2mX9Wud8VbWQuu1fOpuHG1lFXFVfFxEvX6NvV0dEC7v7+5Cu7NzVZ5sBbwuyW5jWQr8hx89n5rfMX7hKwNuNra3UbC/hGvL7pL0E7dx159mK8/1P2vYVvXGfkZnvW+DQXmrY35+3vQTwv3ZjbeFuC3lnx6My8xVD0Dd9TbftRHuJYHtx3Q177Z/wc1RVrT6tTvM1auF/2xalrWJvK6/bf9vK/u/trcxeNeBtL3psWz+sc5ywb29V7Xy+rTMA9xIgQIAAAQIECBAgQIAAgW0LDAlktt2HvWx/jYD3+yOirRidHf8uM5+7DKGq2kfA+/tgXj8zWxB5zbFi4PXOiPicWRPzq4KX9WkT5+dehNaavGNmvmudtqvqf3d7i67TzNMz84fnG1jFuavP1gLe3hxoe6m2PrfVx6cvGfwLM/M7+9esGvB24zuzCxofHhG3WRL2/mVm9lfSHrtOq9ShqvqB4wmr4HuO3xwR/T+6XLPndVV9VkS0QHj2e/OEfXyPPZAN3LBgv+nW6p0zs636b78b2tYrbWV+PwT+VET8p4h4Wv/3SM+grbq+Sff1qgHvRRFxn94QW2h+7R+lBg697Q1+wsvrqmqn821gX11GgAABAgQIECBAgAABAgROiYCAd0X2NQLeR0RE2xd1dqyyB+/HMvO0ftdXDLzaPp2zdk5JWFVV/X2ArxNMrVKa7kVZLcya3xf2uM2d8CK7Lizb1B68L8/Mxyzr1JAtGha1UVUtnGsf52979H5lL8i/NsOLiBtlZgv6rjnWCXjn5mKzb6tc21xvz29bGMzX46sz81XLxn/U+RXne38f6w9nZtuPduFRVf2fjXZNG8N3RUQ/FP+hzPy3q45hk/dVVVt92/6IMDseNtsOo3vxYXsZ3+z4QJsPJ9sbuao2EfDOf1phK6udu08CbHW+bbJW2iJAgAABAgQIECBAgAABApsWEPCuKLpGwHuriLii99g/zsx7nawbVdX2zGzh1KxeJ6yoO27gVVXto9NtRePs+NPMvOeKHCvfVlUtYPyMroGFL746TuNV9W8i4sd69/xORHz3gDZaAPmWuSDyDpn5N/17j+s8u3fBS9YGvVBu1YB3frxV1ebYm+f2bH1gZr6h18djvWRtgOk1l1RVm/N/OvciuxNWEA9tr2vzWEF793KxD/Z+hv48M8856pndNgD9F4S1/Ysf3PuDSNta5GaLtvE4zjjm5lYL3E9YrTqkvQUvfrtHZjaj5j+/b+1TM/NHl/zO2UTA2/zadgqz46cys20VsdVjG/Ntqx3WOAECBAgQIECAAAECBAgQWFNAwLsi4KoBbxe49EPN9q27ZualR3Wlqtrqu2/tnf/tzPyK/vXHDR6r6rcj4st7bbw4Mx+3IsdKt1XVk7uPic/uf09m3n6lxrqbquqvIuIf9Np4cGb+7pA2q+rCbnuD2eU/mZn9kG+lrTC6mrePybdQcHZcmJlfsqxfmwp4uz68LiK+rPfMb8zMl82+rqq2ovaRvfNrb5fRa3s+eB+0gvkkPxPHDXjblgtt64XZ8cuZ2X/B33UetWA7hvmuDArol9W359P60mrxixHxxOMEx1V1i4hoq3Jnv8+vyswb9dpu7X5Dry/fmpk/d7K+bWgFbwvQ2z7fs6NtKdO2jlhrC5Yhpgv+0LPWfBvyTNcQIECAAAECBAgQIECAAIFTJSDgXVF+zYD3lyKi//H8N2dm2zf1hKOqWuDZ9t+9Qe/kfTOzrTa99jhOwFtV83uMtuDxrEUvnDoOT1W1MPSZEfGDmfkTJ7u3W0H8F3Pjemlm/tPjPHPOoO39+n963/tIZt5saHtV9U0R8ZLe9e/PzLb6dCXn+edWVVudOdsH9ZOZ2V6OdtJjWcBbVe2lZbeOiG/JzN9YYn5+RDy0d81XZeb/mn1dVW1V51N65384M59+VJtV1fb7bSH9Dyzar3jOrW1v8ILe934hM//ZsvGf5NmDA96qakFje8HabJuI9mKxu2Rm+7k68qiqtrr5AUdc8HmZ2V7GtpFjbu5dFRHPzsznLGu824rjbXOro6+zGr+qnhYRP9Rr6zWZ2bbOOOGoqjMi4lci4kG9kyvtwdvur6rWt8/ttdXMz1kWYFfVoyPiF9o2I7NV5qdyvi2rg/MECBAgQIAAAQIECBAgQOBUCgh4V9RfM+BtWy68fy7cbGHR/TLz2pcQVVXbQ/V/zr0c6YS3yndBSj/wat9qgVYL1H4xM9uetC1saSFyC3seNTfsH8vM71mR4trbqqoFUv+u+0bbw7QFNC10/J3Zfp/ddhPt5U7fMvcirtbHWy0Lfk7WxwUfRT92YFxVLVzrh+n/MDPfNHvucYL0+b5WVQufWwg9O36vBa6zj+VX1edHRNs79Xm95/1BRLSXp11TwvkX4VVVWyE522rgzyOi7Qn72lnNu7q3YLMFtf3AsIXNN5l7Ud+i4P+RsxC429/48RHxB5l5UVW1OraAtx1tBWl7geD/yMzL+2Ovqn8UEW11cP8lX/fOzBZOr3TM1aG18WtdKNpWYf891t+/XKzN6x+c23rjZZn5jcseXFUPjIhFq7/Xfkncgrkx/8eFdknbUqL9/P+3zGwr7q89quoOEfH/RkS779rVuhHRVsnec7Y9Q+fQXnTWXnjWP34qIv5l+3mrqjbf2ycC2iritop/tmXK7Pp1At67RcQlcz/rbe49IyKeP9sDuqtV+0RB+533f/UC64fP/nBxKufbsrniPAECBAgQIECAAAECBAgQOJUCAt4V9dcJeLvQ5dldyDHfgxxPpOMAACAASURBVBbqfDwibjkX3LTrWnhzu8xsLya7zrEg8Oqfb/e1Wi+qdwuaz+wHfSuStECtH/DON9OC0/b8fnjav+YxmfnyVZ/dmba9jfsrbq/dh3Rou1U1v8r11Zn5T2b3rxnwfl8Xgs53p62gbiFs+9919iEesIK3H/D22217qF7WzaGzFrifEOp3IVvb67m9oG1+/rQ5NAv+rtm6Yi5w61/fat2e3e5pq4uv80LAiHhrZn7h0Josuu4k871Ztj8utHB30ert1rfP6gfgJ+vHgr1t2+XX2dpinXH05tWigHfRz1BbfdyC8qN+dz8hM1+04PdD22+77bu9qM1+8L5oOCsHvN3PZf8PAfPtfyIi2pY1R620Pyrg3el820SNtUGAAAECBAgQIECAAAECBLYlIOBdUXbdgLcLPlog2lZcDqlDC96+sr+atN/1JQHvUaNsq3y/LDPb6su1jyUB71Htt3DnezPzP67Tgapqq1zbatfZcUVmnnncNrvVptduWxAR19lKYZ2At6v5+7rw/qiuHTfgbatgjxuW/lJm9vdkvbYvVTW/lcKifs4C3rZFw/ce0/idEdG2N1jpZWKzZ60439sfMx7UX926rO9V9ay2BUXvug9n5s2X3Xfc891L8NqL3FoYv8rRAv3vycwXLrq5qj4nItp2CfOrcxdd3n4fnH6ylzp2c/mkq8vnfj+1rT/aSuplYfJ8f87NzAu6552y+bZKQdxDgAABAgQIECBAgAABAgR2JTAkWNxVX/bqOVX13O5j77N+L30z/RHBy30jogU7be/LhZdExG+1l1+dLBRbEHi9MiIefsSK2RYG/eeT7a+6SjG6t9f/q4ho++i21YLL5lfbouBr1937twt/fjoivq3X7xdm5neuOI62ArS/6vTaF7VV1R9HxBd07X4qM48VWFVVCwfbHqfXeUler5+fyMzPnH1dVW+MiH/YfX11ZraVqdce3bYJ/zIi2v7Hd1wy3rbn8XfMArOjrq2qx0ZEewnX/Ere2S3X7s3bXdu2QfiiJfVuoeGzMrO/D+8q5bnmnvk6dOF+24LkqDnXQsK2GvRYwXJVta0Mntjr6Ea2MzmJ/Z26bVTaHrRH/U7o3962Nmn7XT9t2Sr8bt/rtmVK2zZh0dHaaj9H/zoi2lYxbSuZdlyamXedv2HZ3FxwfZv753Vz/2RB84cj4tcj4rmZ+da5+d7m5s7n28oT1Y0ECBAgQIAAAQIECBAgQGAHAssCuB10wSOaQFXdott/8iHtI+QR0fbkfW1E/P6y4Ka7/4SXTnUfub9Xt8KzBTTtmlf29/ndln631+6XRMTZXaDU9p5tH59vq/5+p9vHtX2E/yCPLuhtL/BqoWQLu94dEW9ac1/aFv628LmFre2/bU79VdsSoe3Bmplt24TBR/dysi9tLySLiLb9xaUR8duZ2VaTn3BU1T+IiLbfa1tR/NkR8f91e0H/YWa2fVi3elRVW7H9iK4Pt42Itlq6BYW/cdxgt/uZaltmtNBztsdtm683G7q9w7qD7X5+7x4R94iI9t/2srK24r2tvH9zV9NjBdbduFpNv7L72WzfanX93f4L99bt+7L7q6r9jmvzv/2OuF33+66tRm/ztNVt6XGq59vSDrqAAAECBAgQIECAAAECBAjsSEDAuyPobT9m3a0Dtt0/7RPYN4Gq+jcR8WO9freX1z1s38ahvwQIECBAgAABAgQIECBAgMC0BQS8E6mvgHcihTSM0QhU1eVz2yQc+6V9oxmMjhAgQIAAAQIECBAgQIAAAQKTFRDwTqS0At6JFNIwRiFQVW2rh1f3OrNwH9pRdFYnCBAgQIAAAQIECBAgQIAAgYMWEPBOpPwC3okU0jBGIbDgpYWPy8wXj6JzOkGAAAECBAgQIECAAAECBAgQ6AkIeCcyHQS8EymkYZxyge7lcn/W68hHMvNmp7xjOkCAAAECBAgQIECAAAECBAgQWCAg4J3ItKiq34iIL+uGc2VmnjWRoRkGgZ0KVNWzI+IpvYf+x8z8tzvthIcRIECAAAECBAgQIECAAAECBAYKCHgHQrmMAAECBAgQIECAAAECBAgQIECAAAECYxMQ8I6tIvpDgAABAgQIECBAgAABAgQIECBAgACBgQIC3oFQLiNAgAABAgQIECBAgAABAgQIECBAgMDYBAS8Y6uI/hAgQIAAAQIECBAgQIAAAQIECBAgQGCggIB3IJTLCBAgQIAAAQIECBAgQIAAAQIECBAgMDYBAe/YKqI/BAgQIECAAAECBAgQIECAAAECBAgQGCgg4B0I5TICBAgQIECAAAECBAgQIECAAAECBAiMTUDAO7aK6A8BAgQIECBAgAABAgQIECBAgAABAgQGCgh4B0K5jAABAgQIECBAgAABAgQIECBAgAABAmMTEPCOrSL6Q4AAAQIECBAgQIAAAQIECBAgQIAAgYECAt6BUC4jQIAAAQIECBAgQIAAAQIECBAgQIDA2AQEvGOriP4QIECAAAECBAgQIECAAAECBAgQIEBgoICAdyCUywgQIECAAAECBAgQIECAAAECBAgQIDA2AQHv2CqiPwQIECBAgAABAgQIECBAgAABAgQIEBgoIOAdCOUyAgQIECBAgAABAgQIECBAgAABAgQIjE1AwDu2iugPAQIECBAgQIAAAQIECBAgQIAAAQIEBgoIeAdCuYwAAQIECBAgQIAAAQIECBAgQIAAAQJjExDwjq0i+kOAAAECBAgQIECAAAECBAgQIECAAIGBAgLegVAuI0CAAAECBAgQIECAAAECBAgQIECAwNgEBLxjq4j+ECBAgAABAgQIECBAgAABAgQIECBAYKCAgHcglMsIECBAgAABAgQIECBAgAABAgQIECAwNgEB79gqoj8ECBAgQIAAAQIECBAgQIAAAQIECBAYKCDgHQjlMgIECBAgQIAAAQIECBAgQIAAAQIECIxNQMA7toroDwECBAgQIECAAAECBAgQIECAAAECBAYKCHgHQrmMAAECBAgQIECAAAECBAgQIECAAAECYxMQ8I6tIvpDgAABAgQIECBAgAABAgQIECBAgACBgQIC3oFQLiNAgAABAgQIECBAgAABAgQIECBAgMDYBAS8Y6uI/hAgQIAAAQIECBAgQIAAAQIECBAgQGCggIB3IJTLCBAgQIAAAQIECBAgQIAAAQIECBAgMDYBAe/YKqI/BAgQIECAAAECBAgQIECAAAECBAgQGCgg4B0I5TICBAgQIECAAAECBAgQIECAAAECBAiMTUDAO7aK6A8BAgQIECBAgAABAgQIECBAgAABAgQGCgh4B0K5jAABAgQIECBAgAABAgQIECBAgAABAmMTEPCOrSL6Q4AAAQIECBAgQIAAAQIECBAgQIAAgYECAt6BUC4jQIAAAQIECBAgQIAAAQIECBAgQIDA2AQEvGOriP4QIECAAAECBAgQIECAAAECBAgQIEBgoICAdyCUywgQIECAAAECBAgQIECAAAECBAgQIDA2AQHv2CqiPwQIECBAgAABAgQIECBAgAABAgQIEBgoIOAdCOUyAgQIECBAgAABAgQIECBAgAABAgQIjE1AwDu2iugPAQIECBAgQIAAAQIECBAgQIAAAQIEBgoIeAdCuYwAAQIECBAgQIAAAQIECBAgQIAAAQJjExDwjq0i+kOAAAECBAgQIECAAAECBAgQIECAAIGBAgLegVAuI0CAAAECBAgQIECAAAECBAgQIECAwNgEBLxjq4j+ECBAgAABAgQIECBAgAABAgQIECBAYKCAgHcglMsIECBAgAABAgQIECBAgAABAgQIECAwNgEB79gqoj8ECBAgQIAAAQIECBAgQIAAAQIECBAYKCDgHQjlMgIECBAgQIAAAQIECBAgQIAAAQIECIxNQMA7toroDwECBAgQIECAAAECBAgQIECAAAECBAYKCHgHQrmMAAECBAgQIECAAAECBAgQIECAAAECYxMQ8I6tIvpDgAABAgQIECBAgAABAgQIECBAgACBgQIC3oFQLiNAgAABAgQIECBAgAABAgQIECBAgMDYBAS8Y6uI/hAgQIAAAQIECBAgQIAAAQIECBAgQGCggIB3IJTLCBAgQIAAAQIECBAgQIAAAQIECBAgMDYBAe/YKqI/BAgQIECAAAECBAgQIECAAAECBAgQGCgg4B0I5TICBAgQIECAAAECBAgQIECAAAECBAiMTUDAO7aK6A8BAgQIECBAgAABAgQIECBAgAABAgQGCgh4B0K5jAABAgQIECBAgAABAgQIECBAgAABAmMTEPCOrSL6Q4AAAQIECBAgQIAAAQIECBAgQIAAgYECAt6BUC4jQIAAAQIECBAgQIAAAQIECBAgQIDA2AQEvGOriP4QIECAAAECBAgQIECAAAECBAgQIEBgoICAdyCUywgQIECAAAECBAgQIECAAAECBAgQIDA2AQHv2CqiPwQIECBAgAABAgQIECBAgAABAgQIEBgoIOAdCOUyAgQIECBAgAABAgQIECBAgAABAgQIjE1AwDu2iugPAQIECBAgQIAAAQIECBAgQIAAAQIEBgoIeAdCuYwAAQIECBAgQIAAAQIECBAgQIAAAQJjExDwjq0i+kOAAAECBAgQIECAAAECBAgQIECAAIGBAgLegVAuI0CAAAECBAgQIECAAAECBAgQIECAwNgEBLxjq4j+ECBAgAABAgQIECBAgAABAgQIECBAYKCAgHcglMsIECBAgAABAgQIECBAgAABAgQIECAwNgEB79gqoj8ECBAgQIAAAQIECBAgQIAAAQIECBAYKCDgHQjlMgIECBAgQIAAAQIECBAgQIAAAQIECIxNQMA7toroDwECBAgQIECAAAECBAgQIECAAAECBAYKCHgHQrmMAAECBAgQIECAAAECBAgQIECAAAECYxMQ8I6tIvpDgAABAgQIECBAgAABAgQIECBAgACBgQIC3oFQLiNAgAABAgQIECBAgAABAgQIECBAgMDYBAS8Y6uI/hAgQIAAAQIECBAgQIAAAQIECBAgQGCggIB3IJTLCBAgQIAAAQIECBAgQIAAAQIECBAgMDYBAe/YKqI/BAgQIECAAAECBAgQIECAAAECBAgQGCgg4B0I5TICBAgQIECAAAECBAgQIECAAAECBAiMTUDAO7aK6A8BAgQIECBAgAABAgQIECBAgAABAgQGCgh4B0K5jAABAgQIECBAgAABAgQIECBAgAABAmMTEPCOrSL6Q4AAAQIECBAgQIAAAQIECBAgQIAAgYECAt6BUC4jQIAAAQIECBAgQIAAAQIECBAgQIDA2AQEvGOriP4QIECAAAECBAgQIECAAAECBAgQIEBgoICAdyCUywgQIECAAAECBAgQIECAAAECBAgQIDA2AQHv2CqiPwQIECBAgAABAgQIECBAgAABAgQIEBgoIOAdCOUyAgQIECBAgAABAgQIECBAgAABAgQIjE1AwDu2iugPAQIECBAgQIAAAQIECBAgQIAAAQIEBgoIeAdCuYwAAQIECBAgQIAAAQIECBAgQIAAAQJjExDwjq0i+kOAAAECBAgQIECAAAECBAgQIECAAIGBAgLegVAuI0CAAAECBAgQIECAAAECBAgQIECAwNgEBLxjq4j+ECBAgAABAgQIECBAgAABAgQIECBAYKCAgHcglMsIECBAgAABAgQIECBAgAABAgQIECAwNgEB79gqoj8ECBAgQIAAAQIECBAgQIAAAQIECBAYKCDgHQjlMgIECBAgQIAAAQIECBAgQIAAAQIECIxNQMA7toroDwECBAgQIECAAAECBAgQIECAAAECBAYKCHgHQrmMAAECBAgQIECAAAECBAgQIECAAAECYxMQ8I6tIvpDgAABAgQIECBAgAABAgQIECBAgACBgQIC3oFQLiNAgAABAgQIECBAgAABAgQIECBAgMDYBAS8Y6uI/hAgQIAAAQIECBAgQIAAAQIECBAgQGCggIB3IJTLCBAgQIAAAQIECBAgQIAAAQIECBAgMDYBAe/YKqI/BAgQIECAAAECBAgQIECAAAECBAgQGCgg4B0I5TICBAgQIECAAAECBAgQIECAAAECBAiMTUDAO7aK6A8BAgQIECBAgAABAgQIECBAgAABAgQGCgh4B0K5jAABAgQIECBAgAABAgQIECBAgAABAmMTEPCOrSL6Q4AAAQIECBAgQIAAAQIECBAgQIAAgYECAt6BUC4jQIAAAQIECBAgQIAAAQIECBAgQIDA2AQEvGOriP4QIECAAAECBAgQIECAAAECBAgQIEBgoICAdyCUywgQIECAAAECBAgQIECAAAECBAgQIDA2AQHv2CqiPwQIECBAgAABAgQIECBAgAABAgQIEBgoIOAdCOWy4wlU1RmZecXx7nI1AQIECBAgQIAAAQIECBAgQIAAAQLHERDwHkdrz66tqgsi4j4R8bLM/OerdL+qXhwRX9nde25mXnxUO1X10xHxyIi4TUS0ufWpiHh3RDw/M5+/yvPdQ4AAAQIECBAgQIAAAQIECBAgQIDA0QIC3onOjqp6YES8vgtaL8jMc4871Kp6bkQ8vXffgzLz9+bbqarrR8SFXZh81GNekJlPOm4fXE+AAAECBAgQIECAAAECBAgQIECAgID3IOZAVT0+Ih7aBa1nd+FuG/uxA96q+r8j4r/NwR0V8L40Ih7bXfuRiGirft8UEQ+LiG+IiOt15x6Xme2cgwABAgQIECBAgAABAgQIECBAgACBDQhYwbsBxLE0UVVt+4S7L+jPsQLeqrp/RLSVurNgdtbkUQHvJyLiRt2WDGdn5ttnN1TV10fEed3XF2fmPcbipR8ECBAgQIAAAQIECBAgQIAAAQIE9l1AwLvvFez1v6qeFREP7n3rK7p/Dw54q+oOEXFpF9i24PZXIuKbunZOCHi7VcO/0J1/SWZ+8zxpVbXA987d92+dmZdPiN1QCBAgQIAAAQIECBAgQIAAAQIECJwyAQHvKaPf/oOrqo4T8FbVTSLiXRFxq4i4OiLaSt4W2M72zl0U8P5yRDy6e86jMvMVCwLen4mIb+2+/22Z+bPbH70nECBAgAABAgQIECBAgAABAgQIEJi+gIB3wjVeIeDtb/HwjZn5sqr68SUB7xsi4gEd4w0z81MLAt4WEs/23n1OZj5zwuyGRoAAAQIECBAgQIAAAQIECBAgQGBnAgLenVHv/kHHCXir6lUR8ciulz+Qmd/f/j0g4P2LiLhbuzYzF86nqvqqiHhN1/aLMvMJu9fwRAIECBAgQIAAAQIECBAgQIAAAQLTExDwTq+m145oaMBbVT8cEd/b3fjyzHzMrJEBAe97I+LWbUuHzLz+Is6qul9EXNid+63MfOjsurPve+5sG4mNVOLqq/8uPvHh92+kLY0Q2KRAXu/68Zk3u+Umm9QWAQIECBAgQIAAAQIEDlbgkot+W6Z1sNU38HkBPwwTnhNDAt65l6S9NTO/sE8yIOB9X0S01OrTmXmDIwLee0fEH+wi4P3YZX8Tp195ozj96tMnXFlD20eB937Ge+MTZ904PvPmbYtrBwECBAgQIECAAAECBAisIyDgXUfPvVMTEPBOraK98QwMeGcrcD8cEfeKiE/OkfxgRDy++943RMTvR8THMvMD7XtV9Y6IuFP7Z2Ze74iAt63YPb87d15mPnZb7Gfd4qzzHvzxB3/9OVeds61HaJfASgLn3+T8j//pDf70X1955ZU/uVIDbiJAgAABAgQIECBAgAABAgQILBAQ8E54Whwz4D2OxN9m5m26gPeiiLhP+/dJ9uBtge5Luwc8LzOfcpyHHedaAe9xtFy7SwEB7y61PYsAAQIECBAgQIAAAQIECByOgIB3wrXeUcD76oh4RMf4hZn51nnSqnpuRDy9+/6TM/PHt8Uu4N2WrHbXFRDwrivofgIECBAgQIAAAQIECBAgQGCRgIB3wvNiYMDbVuLe4iQMPxAR39idf1z3srQrM7Nt7dC2aHh2RDyjO/+jmfnUBQFv23+37cPbjvtm5lu2xS7g3ZasdtcVEPCuK+h+AgQIECBAgAABAgQIECBAQMB7YHNgSMC7jGTAS9ZuHhEfbDs0RMQVEXFWZv7drN2qavvzvi0i2v68V2Tmmcueuc55Ae86eu7dpoCAd5u62iZAgAABAgQIECBAgAABAocrYAXvhGpfVS1sPa03pPd0/35jRHzd7PuZednQYS8LeFs7VfWmiPjirs0LI+KJbauGqjo3Is6LiFt1534kM5829NmrXCfgXUXNPbsQEPDuQtkzCBAgQIAAAQIECBAgQIDA4QkIeCdU86q6OCLuPmBId83MSwdc18Lbtl/uk7prH5SZvzd/X1WdExFvjoib9M5Vt6p39q13RsQ5mfmxIc9d9RoB76py7tu2gIB328LaJ0CAAAECBAgQIECAAAEChykg4J1Q3avqz1qIOmBId8nMtw+4rgW8/ykintxd+4DM/N+L7quq23Yh7+3nzreg9w0R8ZD+1g1Dnr3KNQLeVdTcswsBAe8ulD2DAAECBAgQIECAAAECBAgcnoCA9/BqvtURV9VNI+LhEXHPiHh9RFywi2B3NigB71bLq/E1BAS8a+C5lQABAgQIECBAgAABAgQIEDhSQMBrckxKQMA7qXJOajAC3kmV02AIECBAgAABAgQIECBAgMBoBAS8oymFjmxCQMC7CUVtbENAwLsNVW0SIECAAAECBAgQIECAAAECAl5zYFICAt5JlXNSgxHwTqqcBkOAAAECBAgQIECAAAECBEYjIOAdTSl0ZBMCAt5NKGpjGwIC3m2oapMAAQIECBAgQIAAAQIECBAQ8JoDkxIQ8E6qnJMajIB3UuU0GAIECBAgQIAAAQIECBAgMBoBAe9oSqEjmxAQ8G5CURvbEBDwbkNVmwQIECBAgAABAgQIECBAgICA1xyYlICAd1LlnNRgBLyTKqfBECBAgAABAgQIECBAgACB0QgIeEdTCh3ZhICAdxOK2tiGgIB3G6raJECAAAECBAgQIECAAAECBAS85sCkBAS8kyrnpAYj4J1UOQ2GAAECBAgQIECAAAECBAiMRkDAO5pS6MgmBAS8m1DUxjYEBLzbUNUmAQIECBAgQIAAAQIECBAgIOA1ByYlIOCdVDknNRgB76TKaTAECBAgQIAAAQIECBAgQGA0AgLe0ZRCRzYhIODdhKI2tiEg4N2GqjYJECBAgAABAgQIECBAgAABAa85MCkBAe+kyjmpwQh4J1VOgyFAgAABAgQIECBAgAABAqMREPCOphQ6sgkBAe8mFLWxDQEB7zZUtUmAAAECBAgQIECAAAECBAgIeM2BSQkIeCdVzkkNRsA7qXIaDAECBAgQIECAAAECBAgQGI2AgHc0pdCRTQgIeDehqI1tCAh4t6GqTQIECBAgQIAAAQIECBAgQEDAaw5MSkDAO6lyTmowAt5JldNgCBAgQIAAAQIECBAgQIDAaAQEvKMphY5sQkDAuwlFbWxDQMC7DVVtEiBAgAABAgQIECBAgAABAgJec2BSAgLeSZVzUoMR8E6qnAZDgAABAgQIECBAgAABAgRGIyDgHU0pdGQTAgLeTShqYxsCAt5tqGqTAAECBAgQIECAAAECBAgQEPCaA5MSEPBOqpyTGoyAd1LlNBgCBAgQIECAAAECBAgQIDAaAQHvaEqhI5sQEPBuQlEb2xAQ8G5DVZsECBAgQIAAAQIECBAgQICAgNccmJSAgHdS5ZzUYAS8kyqnwRAgQIAAAQIECBAgQIAAgdEICHhHUwod2YSAgHcTitrYhoCAdxuq2iRAgAABAgQIECBAgAABAgQEvObApAQEvJMq56QGI+CdVDkNhgABAgQIECBAgAABAgQIjEZAwDuaUujIJgQEvJtQ1MY2BAS821DVJgECBAgQIECAAAECBAgQICDgNQcmJSDgnVQ5JzUYAe+kymkwBAgQIECAAAECBAgQIEBgNAIC3tGUQkc2ISDg3YSiNrYhIODdhqo2CRAgQIAAAQIECBAgQIAAAQGvOTApAQHvpMo5qcEIeCdVToMhQIAAAQIECBAgQIAAAQKjERDwjqYUOrIJAQHvJhS1sQ0BAe82VLVJgAABAgQIECBAgAABAgQICHjNgUkJCHgnVc5JDUbAO6lyGgwBAgQIECBAgAABAgQIEBiNgIB3NKXQkU0ICHg3oaiNbQgIeLehqk0CBAgQIECAAAECBAgQIEBAwGsOTEpAwDupck5qMALeSZXTYAgQIECAAAECBAgQIECAwGgEBLyjKYWObEJAwLsJRW1sQ0DAuw1VbRIgQIAAAQIECBAgQIAAAQICXnNgUgIC3kmVc1KDEfBOqpwGQ4AAAQIECBAgQIAAAQIERiMg4B1NKXRkEwIC3k0oamMbAgLebahqkwABAgQIECBAgAABAgQIEBDwmgOTEhDwTqqckxqMgHdS5TQYAgQIECBAgAABAgQIECAwGgEB72hKoSObEBDwbkJRG9sQEPBuQ1WbBAgQIECAAAECBAgQIECAgIDXHJiUgIB3UuWc1GAEvJMqp8EQIECAAAECBAgQIECAAIHRCAh4R1MKHdmEgIB3E4ra2IaAgHcbqtokQIAAAQIECBAgQIAAAQIEBLzmwKQEBLyTKuekBiPgnVQ5DYYAAQIECBAgQIAAAQIECIxGQMA7mlLoyCYEBLybUNTGNgQEvNtQ1SYBAgQIECBAgAABAgQIECAg4DUHJiUg4J1UOSc1GAHvpMppMAQIECBAgAABAgQIECBAYDQCAt7RlEJHNiEg4N2Eoja2ISDg3YaqNgkQIECAAAECBAgQIECAAAEBrzkwKQEB76TKOanBCHgnVU6DIUCAAAECBAgQIECAAAECoxEQ8I6mFDqyCQEB7yYUtbENAQHvNlS1SYAAAQIECBAgQIAAAQIECAh4zYFJCQh4J1XOSQ1GwDupchoMAQIECBAgQIAAAQIECBAY1kkZQgAAIABJREFUjYCAdzSl0JFNCAh4N6GojW0ICHi3oapNAgQIECBAgAABAgQIECBAQMBrDkxKQMA7qXJOajAC3kmV02AIECBAgAABAgQIECBAgMBoBAS8oymFjmxCQMC7CUVtbENAwLsNVW0SIECAAAECBAgQIECAAAECAl5zYFICAt5JlXNSgxHwTqqcBkOAAAECBAgQIECAAAECBEYjIOAdTSl0ZBMCAt5NKGpjGwIC3m2oapMAAQIECBAgQIAAAQIECBAQ8JoDkxIQ8E6qnJMajIB3UuU0GAIECBAgQIAAAQIECBAgMBoBAe9oSjGujlTVHSLiisz8xCo9q6ozMvOKVe5d5x4B7zp67t2mgIB3m7raJkCAAAECBAgQIECAAAEChysg4J1w7avqgoi4T0S8LDP/+VFDraobR8T3RsRjI+KOEfGZETGbG5+KiEsj4gmZ+aaTcVXVT0fEIyPiNt397d53R8TzM/P5u6AW8O5C2TNWERDwrqLmHgIECBAgQIAAAQIECBAgQGCZgIB3mdCenq+qB0bE67ug9YLMPPckAe8zIuLZA4b61Mz80fnrqur6EXFhFyYf1cwLMvNJA56x1iUC3rX43LxFAQHvFnE1TYAAAQIECBAgQIAAAQIEDlhAwDuh4lfV4yPioV3QenZvFe5xAt4/j4i2Urf9t4XCLSi+ScdUEfH5mXlxn62qXtqt/m3f/khEvLhr42ER8Q0Rcb3u+sdlZju3tUPAuzVaDa8pIOBdE9DtBAgQIECAAAECBAgQIECAwEIBAe+EJkZVteD17guGtCzg/aaIaFs4fEdmXjJ/f1W9JSK+qPv+8zLzKXMBb9un90YR0bZkODsz3z47X1VfHxHndV9fnJn32Ca5gHebutpeR0DAu46eewkQIECAAAECBAgQIECAAIGjBAS8E5obVfWsiHhwb0hf0f37pAHvMoKqekREvLq77g2Z2Vb1XnN0q4Z/ofvyJZn5zfPtVVULfO/cff/WmXn5smeuel7Au6qc+7YtIODdtrD2CRAgQIAAAQIECBAgQIDAYQoIeCdc96pqWyq0Y92At237cP6itqrqlyPi0d25R2XmKxYEvD8TEd/aff/bMvNnt8Uu4N2WrHbXFRDwrivofgIECBAgQIAAAQIECBAgQGCRgIB3wvNigwHvCyPi2zuqF2bmd87YquoNEfGA7usbZmbbpuE6R1W1Vb2zvXefk5nP3Ba7gHdbstpdV0DAu66g+wkQIECAAAECBAgQIECAAAEB74HNgU0EvFV104i4ottjtwneZW6P3b+IiLu1E5m58A8GVfVVEfGajv9FmfmEbZVCwLstWe2uKyDgXVfQ/QQIECBAgAABAgQIECBAgICA98DmwIYC3j+OiC/o6H4/M7+0z1hV742IW0fE1Zl5/UXEVXW/iLiwO/dbmdm2fLjmOPu+D3nIJsty5Tsu/b4HffgBDznnqnM22ay2CKwt8NqbnH/VX97sr3/ijM++6yvXbkwDBAgQIECAAAECBAgQOHCBSy563esOnMDwCVwrYIuGCU+GdQPeuf11PxoRt8vMD80FvO+LiFtGxKcz8wZHBLz3jog/WBzwnjvbJ3gjlfjoZe+O+19+rxDwboRTIxsUOP+034x33fbKOO30MzfYqqYIECBAgAABAgQIECBwmAKXXPTbMq3DLL1RLxDwwzDhabFOwFtVbc/ctnduO66KiHtn5sXzXFX1joi4U0RUZl7viIC3/5K28zLzsbPrzr7vl1+wyRJ8+N3vuseXvv8+Zwp4N6mqrU0IvPa0869+523ef+nNbnnWezbRnjYIECBAgAABAgQIECBwyAKXXHTBlx/y+I2dQF9AwDvh+bBqwFtVvxQRj+lo2kvTHpCZFx0R3rbv36edO8kevC3QfWl3//My8ynbYrcH77ZktbuugD141xV0PwECBAgQIECAAAECBAgQILBIQMA74Xlx3IC3qtoK3NdHxGyf3Y9FxBcvWrk7Y6uqV0fEI7qvvzAz3zpPWlXPjYind99/cmb++LbYBbzbktXuugIC3nUF3U+AAAECBAgQIECAAAECBAgIeA9sDhwn4K2qm3b75N61Y/pARNwzM//mZGxV9eyIeEZ3zY9m5lMXBLxt/922D2877puZb9lWKQS825LV7roCAt51Bd1PgAABAgQIECBAgAABAgQICHgPbA4MDXir6s4R0ULXz+qI2r6695p/odoivqq6eUR8sO3QEBFXRMRZmfl3s2urqu3P+7aIaKuDr8jMrb5hSsB7YJN8j4Yr4N2jYukqAQIECBAgQIAAAQIECBDYIwFbNOxRsZZ1tQtbT+tdN3uZ0xsj4utm38/My/ptVVW77rbd9z4aEc9sL007yfNenZmX9kLcN7WtHLqvL4yIJ7atGqrq3Ig4LyJu1Z37kcx82rJxrHNewLuOnnu3KSDg3aautgkQIECAAAECBAgQIECAwOEKCHgnVPuqujgi7j5gSHedC2jbyttZCDvg9nhOZrYQ+Jqjqs6JiDdHxE16N7eAuD+/3hkR52Rm29d3a4eAd2u0Gl5TQMC7JqDbCRAgQIAAAQIECBAgQIAAgYUCAt4JTYyq+rMWog4Y0l0y8+29gPbyiDhjwH2zS34gM7+/f31VtRXALeS9/Vw7Leh9Q0Q8pL91wzGedaxLBbzH4nLxDgUEvDvE9igCBAgQIECAAAECBAgQIHBAAgLeAyr2Lobavazt4e0FbRHx+oi4YBfB7mxsAt5dVNkzVhEQ8K6i5h4CBAgQIECAAAECBAgQIEBgmYCAd5mQ83slIODdq3IdVGcFvAdVboMlQIAAAQIECBAgQIAAAQI7ExDw7ozag3YhIODdhbJnrCIg4F1FzT0ECBAgQIAAAQIECBAgQIDAMgEB7zIh5/dKQMC7V+U6qM4KeA+q3AZLgAABAgQIECBAgAABAgR2JiDg3Rm1B+1CQMC7C2XPWEVAwLuKmnsIECBAgAABAgQIECBAgACBZQIC3mVCzu+VgIB3r8p1UJ0V8B5UuQ2WAAECBAgQIECAAAECBAjsTEDAuzNqD9qFgIB3F8qesYqAgHcVNfcQIECAAAECBAgQIECAAAECywQEvMuEnN8rAQHvXpXroDor4D2ochssAQIECBAgQIAAAQIECBDYmYCAd2fUHrQLAQHvLpQ9YxUBAe8qau4hQIAAAQIECBAgQIAAAQIElgkIeJcJOb9XAgLevSrXQXVWwHtQ5TZYAgQIECBAgAABAgQIECCwMwEB786oPWgXAgLeXSh7xioCAt5V1NxDgAABAgQIECBAgAABAgQILBMQ8C4Tcn6vBAS8e1Wug+qsgPegym2wBAgQIECAAAECBAgQIEBgZwIC3p1Re9AuBAS8u1D2jFUEBLyrqLmHAAECBAgQIECAAAECBAgQWCYg4F0m5PxeCQh496pcB9VZAe9BldtgCRAgQIAAAQIECBAgQIDAzgQEvDuj9qBdCAh4d6HsGasICHhXUXMPAQIECBAgQIAAAQIECBAgsExAwLtMyPm9EhDw7lW5DqqzAt6DKrfBEiBAgAABAgQIECBAgACBnQkIeHdG7UG7EBDw7kLZM1YREPCuouYeAgQIECBAgAABAgQIECBAYJmAgHeZkPN7JSDg3atyHVRnBbwHVW6DJUCAAAECBAgQIECAAAECOxMQ8O6M2oN2ISDg3YWyZ6wiIOBdRc09BAgQIECAAAECBAgQIECAwDIBAe8yIef3SkDAu1flOqjOCngPqtwGS4AAAQIECBAgQIAAAQIEdiYg4N0ZtQftQkDAuwtlz1hFQMC7ipp7CBAgQIAAAQIECBAgQIAAgWUCAt5lQs7vlYCAd6/KdVCdFfAeVLkNlgABAgQIECBAgAABAgQI7ExAwLszag/ahYCAdxfKnrGKgIB3FTX3ECBAgAABAgQIECBAgAABAssEBLzLhJzfKwEB716V66A6K+A9qHIbLAECBAgQIECAAAECBAgQ2JmAgHdn1B60CwEB7y6UPWMVAQHvKmruIUCAAAECBAgQIECAAAECBJYJCHiXCTm/VwIC3r0q10F1VsB7UOU2WAIECBAgQIAAAQIECBAgsDMBAe/OqD1oFwIC3l0oe8YqAgLeVdTcQ4AAAQIECBAgQIAAAQIECCwTEPAuE3J+rwQEvHtVroPqrID3oMptsAQIECBAgAABAgQIECBAYGcCAt6dUXvQLgQEvLtQ9oxVBAS8q6i5hwABAgQIECBAgAABAgQIEFgmIOBdJuT8XgkIePeqXAfVWQHvQZXbYAkQIECAAAECBAgQIECAwM4EBLw7o/agXQgIeHeh7BmrCAh4V1FzDwECBAgQIECAAAECBAgQILBMQMC7TMj5vRIQ8O5VuQ6qswLegyq3wRIgQIAAAQIECBAgQIAAgZ0JCHh3Ru1BuxAQ8O5C2TNWERDwrqLmHgIECBAgQIAAAQIECBAgQGCZgIB3mZDzeyUg4N2rch1UZwW8B1VugyVAgAABAgQIECBAgAABAjsTEPDujNqDdiEg4N2FsmesIiDgXUXNPQQIECBAgAABAgQIECBAgMAyAQHvMiHn90pAwLtX5Tqozgp4D6rcBkuAAAECBAgQIECAAAECBHYmIODdGbUH7UJAwLsLZc9YRUDAu4qaewgQIECAAAECBAgQIECAAIFlAgLeZULO75WAgHevynVQnRXwHlS5DZYAAQIECBAgQIAAAQIECOxMQMC7M2oP2oWAgHcXyp6xisAeBbzXj4gbrzJG9xDYssCnI+KTW36G5gkQIECAAAECBAgQILB3AgLevSuZDp9MQMBrfoxVYF8C3tve4ra/clVe9cixOurX4QrcoG5w2Sev98kHfeADH3jX4SoYOQECBAgQIECAAAECBE4UEPCaFZMSEPBOqpyTGsy+BLxnnX7WOx/zocd8zhlXnzEpf4PZf4EX3/zFH7w8Ln/4hz70oTfu/2iMgAABAgQIECBAgAABApsTEPBuzlJLIxAQ8I6gCLqwUEDAa2IQWE9AwLuen7sJECBAgAABAgQIEJiugIB3urU9yJEJeA+y7HsxaAHvXpRJJ0csIOAdcXF0jQABAgQIECBAgACBUyog4D2l/B6+aQEB76ZFtbcpAQHvpiS1c6gCAt5DrbxxEyBAgAABAgQIECCwTEDAu0zI+b0SEPDuVbkOqrMC3oMqt8FuQUDAuwVUTRIgQIAAAQIECBAgMAkBAe8kymgQMwEBr7kwVgEB71gro1/7IiDg3ZdK6ScBAgQIECBAgAABArsWEPDuWtzztiog4N0qr8bXEBDwroHnVgIRIeA1DQgQIECAAAECBAgQILBYQMBrZkxKQMA7qXJOajAC3kmV02BOgYCA9xSgeyQBAgQIECBAgAABAnshIODdizLp5FABAe9QKdftWkDAu2txz5uagIB3ahU1HgIECBAgQIAAAQIENiUg4N2UpHZGISDgHUUZdGKBgIDXtCCwnoCAdz0/dxMgQIAAAQIECBAgMF0BAe90a3uQIxPwHmTZ92LQAt69KJNOjlhAwDvi4ugaAQIECBAgQIAAAQKnVEDAe0r5PXzTAgLeTYtqb1MCAt5NSWrnUAUEvIdaeeMmQIAAAQIECBAgQGCZgIB3mZDzeyUg4N2rch1UZwW8B1Vug92CgIB3C6iaJECAAAECBAgQIEBgEgIC3kmU0SBmAgJec2GsAgLesVZGv/ZFQMC7L5XSTwIECBAgQIAAAQIEdi0g4N21uOdtVUDAu1Veja8hIOBdA8+tBCJCwGsaECBAgAABAgQIECBAYLGAgNfMWChQVTeIiJtk5pWrEFXVGZl5xSr3rnOPgHcdPfduU0DAu01dbR+CgID3EKpsjAQIECBAgAABAgQIrCIg4F1FbU/uqaoLIuI+EfGyzPzny7pdVbeIiF+NiHtHxOnd9R+LiLdHxHdk5u+drI2q+umIeGRE3CYi2tz6VES8OyKen5nPX/b8TZwX8G5CURvbEBDwbkNVm4ckIOA9pGobKwECBAgQIECAAAECxxEQ8B5Ha4+uraoHRsTru6D1gsw8d0k4e6eI+MNesDt/+dUR8Q2Z+fL5E1V1/Yi4sAuTj3rMCzLzSdsmFPBuW1j7qwoIeFeVcx+BvxcQ8JoJBAgQIECAAAECBAgQWCwg4J3QzKiqx0fEQ7ug9ewu3G0jHBLwtpW2t+843hER/y0iLo+Ir4uIWThcEXFmZr6vz1ZVL42Ix3bf+0j7/8Mj4k0R8bAWCkfE9bpzj8vMdm5rh4B3a7QaXlNAwLsmoNsPXkDAe/BTAAABAgQIECBAgAABAkcICHgnNDWq6uKIuPuCIZ004K2qz4+IP+nu+5uIuGNm/t2snar6hYho4XE72nYL/7L/jKr6RETcqNuS4ezMbFs6XHNU1ddHxHndlxdn5j22SS7g3aauttcREPCuo+deAlbwmgMECBAgQIAAAQIECBA4SkDAO6G5UVXPiogH94b0Fd2/lwW8r4yIf9Jd+9WZ+aq5ALetwG376bb/vj8zb9ULcFvw2wLgdrwkM795nrSqWuB75+77t87MtjJ4K4eAdyusGt2AgIB3A4iaOGgBK3gPuvwGT4AAAQIECBAgQIDASQQEvBOeHlXVtlRox7KA97KIOKstuI2IG/RX7854quptEfG53defMbumqn45Ih7dff9RmfmKedKq+pmI+Nbu+9+WmT+7LXYB77ZktbuugIB3XUH3H7qAgPfQZ4DxEyBAgAABAgQIECBwlICAd8Jz4xgBb9s397SI+EBm3nIRSVW14PZrunN3zcxL27+r6g0R8YDu+zfMzLbS9zpHVbVVvbO9d5+Tmc/cFruAd1uy2l1XQMC7rqD7D11AwHvoM8D4CRAgQIAAAQIECBAQ8B7gHDhGwNtC2c+IiMsy83ZHBLz9fXgfnpm/0QW8fxERd2v/zsyFfzCoqq+KiNd07b4oM5+wrXIIeLclq911BQS86wq6/9AFBLyHPgOMnwABAgQIECBAgAABAe8BzoEhAW9VtX11Zy9Ue3tm3uWIgPfHI+JJ3bknZeYLuoD3vRFx64i4OjOvf8S994uIC7tzv5WZD51dd/Z9v/yCTZbmw+9+1z2+9P33OfOcq87ZZLPaIrC2wGtPO//qd97m/Zfe7JZnvWftxrbYwJXv+Kv7P/oDX3ujM64+Y4tP0TSB4wv84i1e8ulP3+7mb73xaTf/0PHvdgcBAgQIECBAgMDUBC656IIvn9qYjIfAqgK2aFhVbg/uGxjw3igiPtEN5y8z8/OOCGn/Q0T8q+5cP+B9X0S0bR0+nZk3OOLee0fEH3Tn5gLec2f7BG9E9KOXvTvuf/m9QsC7EU6NbFDg/NN+M9512yvjtNPP3GCrm2/qyr/+y3j0+782BLybt9XiegIvPv0lUbf/rLjhZ950vYbcTYAAAQIECBAgMAmBSy76bZnWJCppEJsQ8MOwCcWRtjEk4G1dr6qr2w4LEfGuzLzjESFtezHat3TnHpOZL+/ufUdE3Kk1k5ltNfAJR1W1FbvndyfOy8zHzi46+74Pecgm+a58x6Xf96APP+AhAt5NqmprEwKvvcn5V/3lzf76J8747Lu+chPtbauND156yUsf86HH3EbAuy1h7a4q8OKb/+JHPvpZ8b2nn3mHi1dtw30ECBAgQIAAAQLTEbjkote9bjqjMRIC6wkIeNfzG/Xdxwh4Px4RN46I92bmWUeEtL8UEY/pzt07M/+o/buqLoqI+7R/n2QP3hbovrS793mZ+ZRtwdmDd1uy2l1XwB686wq6/9AF7MF76DPA+AkQIECAAAECBAgQOEpAwDvhuXGMgPfyiGgbbl6VmW3LhhOOqmpbLLStFtpxWmZ+rAt4Xx0Rj+i+/4WZ+db5m6vquRHx9O77T87Mtp/vVg4B71ZYNboBAQHvBhA1cdACAt6DLr/BEyBAgAABAgQIECBwEgEB74SnxzEC3rdExBctCWnbPr0t/P1UZt5wxlZVz46IZ3Rf/2hmPnVBwNsPh++bme15WzkEvFth1egGBAS8G0DUxEELCHgPuvwGT4AAAQIECBAgQICAgPcw58AxAt7+Fgqvycx/3Berqm+OiBd33/u1zHxkL+C9eUR8sNvD94qIOCsz/653vu3P+7aIaPvzXpGZW33DlID3MOf6PoxawLsPVdLHMQsIeMdcHX0jQIAAAQIECBAgQOBUCljBeyr1N/zsqmph62m9Zt/T/fuNEfF1s+9n5mXzj66q2T687dQLIqJtq/CBiGjh7891AW07d+3+u70Q900R8cXd1xdGxBPbVg1VdW5EnBcRt+rO/UhmPm3Dw75OcwLebepqex0BAe86eu4lECHgNQsIECBAgAABAgQIECCwWEDAO6GZUVXtzeJ3HzCku2bmpf3rqurxEfHz3Urco5r4pcz8hgXh8DkR8eaIuEnvXM219c6IOGe2d++APq50iYB3JTY37UBAwLsDZI+YtICAd9LlNTgCBAgQIECAAAECBNYQEPCugTe2W6vqz1qIOqBfd8nMty8Iav9RRPzqXFDbLrs6Itr+ukeuvq2q23Yh7+3n2m1B7xsi4iH9rRsG9HGlSwS8K7G5aQcCAt4dIHvEpAUEvJMur8ERIECAAAECBAgQILCGgIB3Dbyp3tqFtV8TEbeMiF/PzD8aOtaqumlEPDwi7hkRr4+IC3YR7M76J+AdWinX7VpAwLtrcc+bmoCAd2oVNR4CBAgQIECAAAECBDYlIODdlKR2RiEg4B1FGXRigYCA17QgsJ6AgHc9P3cTIECAAAECBAgQIDBdAQHvdGt7kCMT8B5k2fdi0ALevSiTTo5YQMA74uLoGgECBAgQIECAAAECp1RAwHtK+T180wIC3k2Lam9TAgLeTUlq51AFBLyHWnnjJkCAAAECBAgQIEBgmYCAd5mQ83slIODdq3IdVGcFvAdVboPdgoCAdwuomiRAgAABAgQIECBAYBICAt5JlNEgZgICXnNhrAIC3rFWRr/2RUDAuy+V0k8CBAgQIECAAAECBHYtIODdtbjnbVVAwLtVXo2vISDgXQPPrQQiQsBrGhAgQIAAAQIECBAgQGCxgIDXzJiUgIB3UuWc1GAEvJMqp8GcAgEB7ylA90gCBAgQIECAAAECBPZCQMC7F2XSyaECAt6hUq7btYCAd9finjc1AQHv1CpqPAQIECBAgAABAgQIbEpAwLspSe2MQkDAO4oy6MQCAQGvaUFgPQEB73p+7v7/2bsTeMuq8s77/wdkkJKi0GJSRNFoAAdQUF+nFpG0Gk2iAYeArSYaE/UVtWMcorbJ6xBtY9Jlm2ha09EgieIQY3xjIgrGIQmKmqhNcAJFEAklVDFZQFFPf1axLxwut+rce9dee++1nt/5fPKx6py9nrWe77Ptlr/HfRBAAAEEEEAAAQQQQKBdAQLedmcbsjMC3pBjr6JpAt4qxsQhJyxAwDvh4XA0BBBAAAEEEEAAAQQQGFUgRMDr7odKeqGkn5F0rqS/NLNvjirP5kUECHiLsFK0BwEC3h4QKRFagIA39PhpHgEEEEAAAQQQQAABBHYi0ETA6+6XSbpj1+frzOwNCz27+29K+hNJi3vdYGYv4e5oS4CAt615ttQNAW9L06SXMQQIeMdQZ08EEEAAAQQQQAABBBCoQaD6gNfdHynpcx32Vkl3MrMr09/d/S6SLpS0yw6G8drZMLiGgXHGnQsQ8HKHTFWAgHeqk+FctQgQ8NYyKc6JAAIIIIAAAggggAACQwu0EPCeLukpHdyfm9mvLSC6+7sk/cYM6gWStkg6vHvvWkl7m9m2oeHZr4wAAW8ZV6rmCxDw5htSIbYAAW/s+dM9AggggAACCCCAAAII7FighYD3a5KO6lo83MzOmwl4L5Z05+7v7zWzX01/dvcvSHp49/7TzeyD3CRtCBDwtjHHFrsg4G1xqvQ0pAAB75Da7IUAAggggAACCCCAAAI1CbQQ8F4i6UBJ28xs11l8d79x5vEMdzOz9LiGFPC+VNIfdte+xcxeWdPQOOuOBQh4uTumKkDAO9XJcK5aBAh4a5kU50QAAQQQQAABBBBAAIGhBVoIeDdLWivpSjPbZwHQ3R8g6avd3681szUzn91D0ve6v3/MzJ48NDz7lREg4C3jStV8AQLefEMqxBYg4I09f7pHAAEEEEAAAQQQQACBHQu0EPCmoDYFti5pNzNL39pN39J9u6QXda1/w8zuPxPwpkc6pEc7pNcnzeznuUnaECDgbWOOLXZBwNviVOlpSAEC3iG12QsBBBBAAAEEEEAAAQRqEmgh4P20pMd06E82s491Ae+V6QfUuvffaWYvmAl4XyHpzd3fN5jZS2oaGmfdsQABL3fHVAUIeKc6Gc5ViwABby2T4pwIIIAAAggggAACCCAwtEALAe+vSfqzDu46SR+W9AhJd5vBvI+ZnTsT8H5G0nHd33/VzN47NDz7lREg4C3jStV8AQLefEMqxBYg4I09f7pHAAEEEEAAAQQQQACBHQtUH/Cm1tz9x5IO2EGbPzSzQ2bC3YMlpR9bW+j9HmZ2ATdJGwIEvG3MscUuCHhbnCo9DSlAwDukNnshgAACCCCAAAIIIIBATQKtBLzp+bpfmHkkw8IMbpB0fzM7bybg/aykR3V/v8TM7lzTwDjrzgUIeLlDpipAwDvVyXCuWgQIeGuZFOdEAAEEEEAAAQQQQACBoQWaCHgTmruvlfR6SY+UtGf3I2ovNrONs6ju/gNJa7r33mhmfzQ0OvuVEyDgLWdL5TwBAt48P1YjUEvAu2bNmgN32223Hf2vihgkAqMJ3HDDDZdec8016X/1xgsBBBBAAAEEEECgMYFmAt7G5kI7qxQg4F0lHMuKCxDwFidmg8YFKgl4b3fQPgedv6fvuW/j46C9CgW22JYrLtl8yd0lbavw+BwZAQQQQAABBBBAYCcCBLzcHk0JEPA2Nc6mmiHgbWqcNDOCQCUB7x53XHfHa07ZdMquIxAqUNc4AAAgAElEQVSxJQI7FdiwbsO2KzZdsYekrVAhgAACCCCAAAIItCXQVMDr7uk/tD5X0gMkHS7pjpK+Z2ZPXBibu7+0ez+99Vdmdm5bI43dDQFv7PlPuXsC3ilPh7PVIEDAW8OUOOOUBQh4pzwdzoYAAggggAACCOQJNBPwuvuLJb25e/7urMpVZpaez7v95e7/Lumw7q+fMbPj8whZPSUBAt4pTYOzzAoQ8HI/IJAnQMCb58dqBAh4uQcQQAABBBBAAIF2BZoIeN39f0hKAe9Sr8UB7xGS/k934fVmlr71y6sRAQLeRgbZYBsEvA0OlZYGFSDgHZSbzRoUIOBtcKi0hAACCCCAAAIIdALVB7zunh7H8BVJC738JD16QdITJB0q6VYBb+rb3c/vPkt/fYyZnckd0YYAAW8bc2yxCwLeFqdKT0MKEPAOqc1eLQoQ8LY4VXpCAAEEEEAAAQRuEmgh4P2QpBO7gZ5pZo/pQtxPSnrcDgLeFAA/vVvzSjN7CzdEGwIEvG3MscUuCHhbnCo9DSlAwDukNnu1KEDA2+JU6QkBBBBAAAEEEGgn4F34Nm76ReC9zWzLMgLe50h6T3cTnGpmz+SGaEOAgLeNObbYBQFvi1OlpyEFCHiH1GavFgUIeFucKj0hgAACCCCAAALtBLw/7X5Y7UdmdpeFwbr7zr7Be4ykL3fXftLMfp4bog0BAt425thiFwS8LU6VnoYUIOAdUpu9WhQg4G1xqvSEAAIIIIAAAgi0E/Bemb65K+lCM7vbTMD7d5Iev4NHNMx+g/cPzOy3uSHaECDgbWOOLXZBwNviVOlpSAEC3iG12atFAQLeFqdKTwgggAACCCCAQDsB779Jur+k681sj5mAd2ff4P1E9yNs6fKnm9kHuSHaECDgbWOOLXZBwNviVOlpSAEC3iG12atFAQLeFqdKTwgggAACCCCAQDsB759LenY30Dea2WvSn3f0iAZ3P0LSN2d+YO7OZnYJN0QbAgS8bcyxxS4IeFucKj0NKUDAO6Q2e7UoQMDb4lTpCQEEEEAAAQQQaCfgTd/e/dcusHVJv2Vmf7RUwOvuT5P0PkkL3/T9ppndj5uhHQEC3nZm2VonBLytTZR+hhYg4B1anP1aEyDgbW2i9IMAAggggAACCNwiYC1guPt/lzT7HN3/kLSm+78U+p4t6R6S9p/pN73/M2Z2fgsG9HCTAAEvd8JUBQh4pzoZzlWLAAFvLZPinFMVIOCd6mQ4FwIIIIAAAgggkC/QRMCbGNz985IesUySFO6+1szeuMzruawSAQLeSgYV8JgEvAGHTsu9ChDw9spJsYACtQS8++6770mSDg04IlqeuMDWrVs/dNVVV3174sfkeAgggAACQQWaCXi7kPeXJaVn8q7dyTx/IOnnzezcoDNvum0C3qbHW3VzBLxVj4/DT0CAgHcCQ+AIVQvUEPDuvffeD1u3y7ozDr/u8L2qxubwzQlca9fqO7t/54eXbr70kOaaoyEEEEAAgSYEmgp4u5B3F0kPlPRwSUd3j2W4qHtMwz+aGf+taxO37tJNEPA2PNzKWyPgrXyAHH90AQLe0UfAASoXqCTgffgBdsAnnnHlM9ZVzs3xGxO4bNfL9OE7fPj7l26+lG+XNzZb2kEAAQRaEWgu4G1lMPSxOgEC3tW5saq8AAFveWN2aFuAgLft+dJdeQEC3vLG7NCuAAFvu7OlMwQQQKAVAQLeViZJH9sFCHi5EaYqQMA71clwrloECHhrmRTnnKoAAe9UJ8O5ahAg4K1hSpwRAQQQiC1AwBt7/s11T8Db3EibaYiAt5lR0shIAgS8I8GzbTMCBLzNjJJGRhAg4B0BnS0RQAABBFYkUE3A6+6/JemlK+pueRf/Z35wbXlQNVxFwFvDlGKekYA35tzpuj8BAt7+LKkUU4CAN+bc6bofAQLefhypggACCCBQTqCmgPdUSc8oQPEYMzuzQF1KjiBAwDsCOlsuS4CAd1lMXITADgUIeLk5EMgTIODN82N1bAEC3tjzp3sEEECgBgECXomAt4Y7dZlnJOBdJhSXDS5AwDs4ORs2JkDA29hAaWdwAQLewcnZsCEBAt6GhkkrCCCAQKMCNQW8h0h6QIE5/L2ZXVegLiVHECDgHQGdLZclQMC7LCYuQmCHAgS83BwI5AkQ8Ob5sTq2AAFv7PnTPQIIIFCDQDUBbw2YnHF8AQLe8WfACZYWIODlzkAgT4CAN8+P1QgQ8HIPILB6AQLe1duxEgEEEEBgGAEC3mGc2WUgAQLegaDZZsUCBLwrJmMBArcSIODlhkAgT4CAN8+P1bEFCHhjz5/uEUAAgRoECHhrmBJnXLYAAe+yqbhwYAEC3oHB2a45AQLe5kZKQwMLEPAODM52TQkQ8DY1TppBAAEEmhRoLuB19/WS/pOkPZY5sb82sy3LvJbLJi5AwDvxAQU+HgFv4OHTei8CBLy9MFIksAABb+Dh03q2AAFvNiEFEEAAAQQKCzQT8Lr7H0p6oaTdV2j2GDM7c4VruHyiAgS8Ex0MxxIBLzcBAnkCBLx5fqxGgICXewCB1QsQ8K7ejpUIIIAAAsMINBHwuvvfSnriKskIeFcJN8VlBLxTnApnSgIEvNwHCOQJEPDm+bEaAQJe7gEEVi9AwLt6O1YigAACCAwjUH3A6+6HSjp/hmubpGsk7d29d7mkTTOfp+sX+k7rnmBm5w3DXc8u7n6ApH3M7NurOXV6VIaZbVzN2pw1BLw5eqwtKUDAW1KX2hEECHgjTJkeSwoQ8JbUpXbrAgS8rU+Y/hBAAIH6BVoIeD8k6cRuFN+XdJik4yV9onvv2Wb2voVRuft7JD2n+/vrzOz/q3+M/XTg7sdJSj53k7TLTNWrJb1T0qvM7MYd7ebu7+6+SZ3C4XRv3SDpIkkbzGxDP6fceRUC3iGU2WM1AgS8q1FjDQK3CBDwcjcgkCdAwJvnx+rYAgS8sedP9wgggEANAi0EvN+QdN8O+4Fm9jV3T39P76fXq83sTTMB766SNktaI+l6Sbc3s/St39Avd3+XpN+Yg/BjSYeYWQpub365ezI9W9LRO1n/DjN7UWlkAt7SwtRfrQAB72rlWIfATQIEvNwJCOQJEPDm+bE6tgABb+z50z0CCCBQg0ALAe8lkg5M3xY1s+0/sObud5B0VTeAPzezX1sUSKZv9z6he+85Zva/axhWqTO6+y9L+khX/zpJ6Zu46Ru7P+l+uO75ktZ3n/+DmT1ukecHJD2tey992/dUSV+S9FhJT535NvAzzSx9VuxFwFuMlsKZAgS8mYAsDy9AwBv+FgAgU4CANxOQ5aEFCHhDj5/mEUAAgSoEWgh4r+yet7vFzG6/oO7u6Vu5qb8vmdlDFgWSL5H0R917f2lmJ1cxrUKHdPdzZr59e5yZnbXIa62k9Dzd3SRda2bp2883v9x9i6Q9ukcyHGZmNz8T2d2fIun07uJzzew+hdrYXpaAt6QutXMECHhz9FiLAN/g5R5AIFeAgDdXkPWRBQh4I0+f3hFAAIE6BFoIeC+VtL+kbWaWHhWw/eXu6cfV9pV0uZndaVEgORs6fsHMHlnHuMqc0t3ToxfSc3PTa52ZpUdY3Orl7ulZundJb5rZzfeNuz9L0nu7i08zs2cssTYFvunH7dJrfzO7rEwnBLylXKmbL0DAm29IhdgCfIM39vzpPl+AgDffkApxBQh4486ezhFAAIFaBFoIeL8t6V4d+HozS48VSAHvpyT9XPf+rR4NsOiH1j5jZulH2cK+FlmlH0RL33C+1cvd06Mb0iMwLjGzOy986O4flnRC9/cnm9nHllg7+8N2zzWzPyuFzTd4S8lSN1eAgDdXkPXRBQh4o98B9J8rQMCbK8j6yAIEvJGnT+8IIIBAHQItBLyfl/SIjvuVZvaW9Gd3f6Gkd3TvXyvpdZLSs2LTv6Zn8u7SffZGM3tNHeMqc8pFj1FIm/ytpJPMLD1PN1m+QtKbu93faWYvmAl4vyjpYd3fd1/8A2zd+vSt3oVn777BzF5bphO+wVvKlbr5AgS8+YZUiC1AwBt7/nSfL0DAm29IhbgCBLxxZ0/nCCCAQC0CLQS8b5X0sg78X83sAV2omH5oLT2+Ya+dDGOrpEPMLP1QW+iXu6cfmvvVGYT0DOPPSfqepOd0738thblmlp65u/3l7t+SdO/059lHN8xiunv6UbZPdu+9z8yeXQqbb/CWkqVurgABb64g66MLEPBGvwPoP1eAgDdXkPWRBQh4I0+f3hFAAIE6BFoIeB8s6eMd94Vmlv6+ED6mH1f75+7H1paayMvM7G11jKr8Kd39ryQ9fQc7fc3MHrj4M3df8hnIiwLeNJOzu/du9UiMw4459tg+O9t8wXdf98irHnbsEdcf0WdZaiGQLfCpvc64/tt7f/+P19/1Xgv/71V2zRIFNn33vA+ceOWJB6zftr5EeWoisGqBU9e+/+pr9tUr1u138LmrLlJ44XVbfrrb5ou+8/enbDpl4X8lVHhHyiOwfIEN6zb4vocc9nO7777HjctfNeyVmy774X33vmKX3z/5ypPTFzV4ITAZgZsC3o/8eN97HfYrkzkUB0EAAZ13zmc/CwMCCNwkUH3AO2+Q7v7Lkl4u6UhJe6YvnXbf7H2WmaXn9PK66Zu4fyrpeR3GP3bffD5m0T1ylqQnmll65MX2l7unZx7fUdJWM9ttKUx3T9+q/mr32aKA97g0j95e11xykR562VEi4O2NlEI9CZyx5tO68KDNWrNuv54qlimz+fvf1gmXP0kEvGV8qbp6gVPXnSa/y77a/fbTzX22bdumjed/Q6dsetHqG2UlAoUENqzboP3veaTMpvvfP1z306t0u4s36+RNJxVSoCwCqxNIAe9H131c+xy68NMvq6vDKgQQ6FfgvHPObD7T6leMai0LhPo3g7vvZ2aXtTzQ1fTm7unZxE/r1v6pmf1m+rO7p3+KfoOk9Dzj23WfX2pmBy7s4+4XSLp7utx28E8M7p5+xO6Mbs3pZrawlw475tEpNO7tddVFF97n4ZcfvR8Bb2+kFOpJ4FNrztj2gwMu/+7edzzwRz2VLFJm8wXfeegJVzxpDwLeIrwUzRB4/z6nbd1657Vf33PN2iszyhRd6jfeaJdd8M1HnbLplKL7UByB1QhsD3jvceQ/2i7W63+5vpqz7GjNlms2r93tR1ff/+TNJy38584+y1MLgVULbA949/nYln3uce9/WXURFiKAQO8C551z1qN7L0pBBCoVCBXwVjqjosd29z0k/bT7pu4NZrb74g3d/WBJ3+m+AZ0+fqaZbf/RNHc/R9LR6c87eQZvCnRTiJxebzOzhWcm994bz+DtnZSCPQnwDN6eICkTVoBn8IYdPY33JMAzeHuCpExIAZ7BG3LsNI0AAghUJRAi4HX3tV3+uLmq6QxwWHd/hKTPd1t91cy2h7WLX+7+IUkndu//LzP7jfRnd/+EpCd07x9pZl9fYu2bJL2qe//FZvb2Uq0R8JaSpW6uAAFvriDrowsQ8Ea/A+g/V4CAN1eQ9ZEFCHgjT5/eEUAAgToEqgt43f3hkh7U8W6T9Mdmdpsfi3D3vSS9Pz0zVtLCs2G3SPo3SSeY2cV1jKjsKTvPL3S7fHn2R+pmd3b39KiGV3fvnWpmz+wC3tdLek33/lvNLD3v+FYvd0/P303P4U2vY8zsK6W6IuAtJUvdXAEC3lxB1kcXIOCNfgfQf64AAW+uIOsjCxDwRp4+vSOAAAJ1CNQY8F4iaeEZsFsl3cHMrlsURqZfj7hI0kE7GMP1kn7JzP6+jjGVO6W7J6vkmO6F9K8Hm9mlS4S06XlTD+neTwH5R9Ofu29Hb+rWb0yzmQ3c3T09n/d7ktI+G82s6C9MEfCWu1eonCdAwJvnx2oECHi5BxDIEyDgzfNjdWwBAt7Y86d7BBBAoAaBqgJed0+B7ewPFP1PM7vNL5m4+7slPXfOANK3f9eb2RU1DKrkGRd9wzaFu8eZ2bldgLurpP8p6fndGa4xs1v9hLm7f2nmW9VnS3peelSDux8n6XRJd+rWvsXMXlmyFwLekrrUzhEg4M3RYy0CEgEvdwECeQIEvHl+rI4tQMAbe/50jwACCNQgUFvA+2ZJr+hg0+MW1prZDYuh3T39aNie3fvpW6kfkfTnXQj5OkkLv8z7MTN7cg2DKnlGd9+nC87TYy0WXpd3P762/8wjLlIo/uDFj1hw9yMkfVnS7Pr0C82z99cPJB1hZteW7IWAt6QutXMECHhz9FiLAAEv9wACuQIEvLmCrI8sQMAbefr0jgACCNQhUFvA+1lJj+pob/6hr1lqd08/+JV++Gvh9ftm9jsLf1n0zNkUQq4zsyvrGFe5U7p7+pbtaZIeu4NdUoD7VDP7/lKfd9+uTtfcZdHnyfiLko5d6lnJfXdEwNu3KPX6EiDg7UuSOlEF+AZv1MnTd18CBLx9SVInogABb8Sp0zMCCCBQl0BtAe+3JN27Iz7JzP5qMfeixzOkZ/OuWRwsunt6/MDh3drHmdk/1DW2cqd1930lPSz9GFqy676Z+7mlnsu7g6A3Pb7h8ZLuJ+lzks4aIthdOAsBb7l7g8p5AgS8eX6sRoCAl3sAgTwBAt48P1bHFiDgjT1/ukcAAQRqEKgt4E0/4rXwPNf0Y15L/RjY17twMfl/xcxSUHmrl7v/rqT0qIb0eo2ZvbGGYXHG+QIEvPONuGIcAQLecdzZtR0BAt52Zkkn4wgQ8I7jzq5tCBDwtjFHukAAAQRaFqgt4E3fyN1d0lYz222pwbj71d03T9PHO/oRtl+R9Jfd+g+a2dNbHnKk3gh4I027rl4JeOuaF6edngAB7/RmwonqEiDgrWtenHZaAgS805oHp0EAAQQQuK1AbQFv+mG1PSRdb2bpX2/1cvf0w2rpB9YWXr9oZn+7xHUndc+bTR99ysx29NxZ7pnKBAh4KxtYoOMS8AYaNq0WESDgLcJK0UACBLyBhk2rvQsQ8PZOSkEEEEAAgZ4Fagt4fyTpoM7gdks8W/eXJH1sxmhvM0vf6F0cBL9L0m90b/5vM3tOz66UG0mAgHckeLadK0DAO5eICxDYqQABLzcIAnkCBLx5fqyOLUDAG3v+dI8AAgjUIFBbwPsvkh7Swb7KzN48i+zu6du6T+zeu8bM0g9+3ebl7udIOrr74NVm9qYahsUZ5wsQ8M434opxBAh4x3Fn13YECHjbmSWdjCNAwDuOO7u2IUDA28Yc6QIBBBBoWaC2gPc1kl7fDeRaSfc2s4vT39397pK+J2mX7vO/N7PH7yDgvULSuu6zp5rZh1oecqTeCHgjTbuuXgl465oXp52eAAHv9GbCieoSIOCta16cdloCBLzTmgenQQABBBC4rUBtAW8Kb6+StFfXSvrRtTMkpXD3PpJm+/k5M/v04pbd/QRJH555/65mdhE3RxsCBLxtzLHFLgh4W5wqPQ0pQMA7pDZ7tShAwNviVOlpKAEC3qGk2QcBBBBAYLUCVQW8qUl3/y1JfzCn4a+Y2TFLXePuGyXdqfvsUjM7cLV4rJueAAHv9GbCiW4SIODlTkAgT4CAN8+P1QgQ8HIPILB6AQLe1duxEgEEEEBgGIHqAt4u5H2FpFs9f3eG6xJJh5vZ5sWE7v47kt448/6fmNkLh6FmlyEECHiHUGaP1QgQ8K5GjTUI3CJAwMvdgECeAAFvnh+rYwsQ8MaeP90jgAACNQhUGfB2Ie+jJP2/3Y+upUc2XCjpI2Y2G+Deagbu/gNJB8+8eTcez1DDbbr8MxLwLt+KK4cVIOAd1pvd2hMg4G1vpnQ0rAAB77De7NaWAAFvW/OkGwQQQKBFgWoD3haHQU/5AgS8+YZUKCNAwFvGlapxBAh448yaTssIEPCWcaVqDAEC3hhzpksEEECgZgEC3pqnx9lvI0DAy00xVQEC3qlOhnPVIkDAW8ukOOdUBQh4pzoZzlWDAAFvDVPijAgggEBsAQLe2PNvrnsC3uZG2kxDBLzNjJJGRhIg4B0Jnm2bESDgbWaUNDKCAAHvCOhsiQACCCCwIgEC3hVxcfHUBQh4pz6huOcj4I07ezrvR4CAtx9HqsQVIOCNO3s6zxcg4M03pAICCCCAQFkBAt6yvlQfWICAd2Bwtlu2AAHvsqm4EIElBQh4uTEQyBMg4M3zY3VsAQLe2POnewQQQKAGAQLeGqbEGZctQMC7bCouHFiAgHdgcLZrToCAt7mR0tDAAgS8A4OzXVMCBLxNjZNmEEAAgSYFCHibHGvcpgh4485+6p0T8E59Qpxv6gIEvFOfEOebugAB79QnxPmmLEDAO+XpcDYEEEAAgSRAwMt90JQAAW9T42yqGQLepsZJMyMIEPCOgM6WTQkQ8DY1TpoZWICAd2BwtkMAAQQQWLEAAe+KyVgwZQEC3ilPJ/bZCHhjz5/u8wUIePMNqRBbgIA39vzpPk+AgDfPj9UIIIAAAuUFCHjLG7PDgAIEvANis9WKBAh4V8TFxQjcRoCAl5sCgTwBAt48P1bHFiDgjT1/ukcAAQRqECDgrWFKnHHZAgS8y6biwoEFCHgHBme75gQIeJsbKQ0NLEDAOzA42zUlQMDb1DhpBgEEEGhSgIC3ybHGbYqAN+7sp945Ae/UJ8T5pi5AwDv1CXG+qQsQ8E59QpxvygIEvFOeDmdDAAEEEEgCBLzcB00JEPA2Nc6mmiHgbWqcNDOCAAHvCOhs2ZQAAW9T46SZgQUIeAcGZzsEEEAAgRULVBPwuvvdJT1wxR3OX/B3ZrZl/mVcUYMAAW8NU4p5RgLemHOn6/4ECHj7s6RSTAEC3phzp+t+BAh4+3GkCgIIIIBAOYGaAt5TJT2jAMVjzOzMAnUpOYIAAe8I6Gy5LAEC3mUxcRECOxQg4OXmQCBPgIA3z4/VsQUIeGPPn+4RQACBGgQIeCUC3hru1GWekYB3mVBcNrgAAe/g5GzYmAABb2MDpZ3BBQh4Bydnw4YECHgbGiatIIAAAo0K1BTwvlRS+r++X48zs3P7Lkq9cQQIeMdxZ9f5AgS88424AoGdCRDwcn8gkCdAwJvnx+rYAgS8sedP9wgggEANAtUEvDVgcsbxBQ68w4HvePSWR7/wZ7f+7PiH4QQIzAh8YY8vXPOlPb70m1deeeX7pwxz4LoDf3DilScesn7b+ikfk7MFFCDgDTh0Wu5VgIC3V06KBRMg4A02cNpFAAEEKhQg4K1waBx5xwJ8g5e7Y6oCfIN3qpPhXLUIEPDWMinOOVUBAt6pToZz1SBAwFvDlDgjAgggEFuAgDf2/JvrnoC3uZE20xABbzOjpJGRBAh4R4Jn22YECHibGSWNjCBAwDsCOlsigAACCKxIgIB3RVxcPHUBAt6pTyju+Qh4486ezvsRIODtx5EqcQUIeOPOns7zBQh48w2pgAACCCBQVqCZgNfd7yTplZIeIukeknZdJt1j+JG1ZUpVcBkBbwVDCnpEAt6gg6ft3gQIeHujpFBQAQLeoIOn7V4ECHh7YaQIAggggEBBgSYCXndPoe6ZkvZahVUKeNNaXg0IEPA2MMRGWyDgbXSwtDWYAAHvYNRs1KgAAW+jg6WtQQQIeAdhZhMEEEAAgQyBVgLea1YZ7iY6At6MG2hqSwl4pzYRzrMgQMDLvYBAngABb54fqxEg4OUeQGD1AgS8q7djJQIIIIDAMALVB7zu/kJJ7+i4XNL7JV0t6fnde2+R9KkZzr+StH/39+dK+gszu2EYbnYpLUDAW1qY+qsVIOBdrRzrELhJgICXOwGBPAEC3jw/VscWIOCNPX+6RwABBGoQaCHg/ZfuubvJ+7Vm9gZ3f4Skz3cDeLGZvX1hGO7+UEn/1P39m2Z2vxoGxRmXJ0DAuzwnrhpegIB3eHN2bEuAgLetedLN8AIEvMObs2M7AgS87cySThBAAIFWBVoIeM+XdKik9O3dvcxsi7sfLOmH3dDeYmbpx9dufrn71yUtBLv3NLNUg1cDAgS8DQyx0RYIeBsdLG0NJkDAOxg1GzUqQMDb6GBpaxABAt5BmNkEAQQQQCBDoIWA93JJ+0q6zsz2TBbuvoukGzuXT5rZzy8KeP9Y0gu69zaY2UsyDFk6IQEC3gkNg6PcSoCAlxsCgTwBAt48P1YjQMDLPYDA6gUIeFdvx0oEEEAAgWEEWgh4N0taK+l6M9tjgc3dr5e0m6Tvmtm9FgW8J0j68I4C4GHo2aWEAAFvCVVq9iFAwNuHIjUiCxDwRp4+vfchQMDbhyI1ogoQ8EadPH0jgAAC9Qi0EPBeKOmuHfmuZrYt/dndz5P0s5LS3w8ws40z4e/sD7OdbWb/Tz0j46Q7EyDg5f6YqgAB71Qnw7lqESDgrWVSnHOqAgS8U50M56pBgIC3hilxRgQQQCC2QAsB779Jun83xmPN7B+7gPdPJD2/e/9TZvbY7v30rd4U/t6j++xUM3tm7Nugne4JeNuZZWudEPC2NlH6GVqAgHdocfZrTYCAt7WJ0s+QAgS8Q2qzFwIIIIDAagRaCHg/JOnErvkPmtnTuyD3wZLOnkG5StK/S3qgpNvNvP9UM0s1eDUgQMDbwBAbbYGAt9HB0tZgAgS8g1GzUaMCBLyNDpa2BhEg4B2EmU0QQAABBDIEWgh4nyfpTzuDjWa234KHu58u6Sk78TnPzA7P8GPpxAQIeCc2EI5zswABLzcDAnkCBLx5fqxGgICXewCB1QsQ8K7ejpUIIIAAAsMItBDw3kHSL3ZcPzGzf5ilc/dzJS0V4n5b0n8ys0uHoWaXIQQIeIdQZo/VCBDwrkaNNQjcIkDAy92AQJ4AAW+eH6tjCxDwxp4/3SOAAAI1CFQf8C4H2d0PlfRrko6V9H1Jf2dmf7WctVxTlwABb13zinRaAt5I06bXEgIEvCVUqRlJgIA30rTptW8BAt6+RamHAAIIINC3QIiAt2806k1XgIB3urOJfjIC3uh3AP3nCoHQpaEAACAASURBVBDw5gqyProAAW/0O4D+cwQIeHP0WIsAAgggMIRA9QGvu79O0n/tsO5qZlfOg3P39O3dn++uO8rMLpi3hs/rECDgrWNOEU9JwBtx6vTcpwABb5+a1IooQMAbcer03JcAAW9fktRBAAEEECgl0ELAe6qkZ3RA+5vZZfOw3P2tkl7WXfcSM9swbw2f1yFAwFvHnCKekoA34tTpuU8BAt4+NakVUYCAN+LU6bkvAQLeviSpgwACCCBQSiBqwPtLkj7Wob7LzJ5fCpi6wwoQ8A7rzW7LFyDgXb4VVyKwlAABL/cFAnkCBLx5fqyOLUDAG3v+dI8AAgjUIBA14P11Sf+rG9DpZva0GobFGecLEPDON+KKcQQIeMdxZ9d2BAh425klnYwjQMA7jju7tiFAwNvGHOkCAQQQaFkgXMDr7rtI+qakw7vBvtHMXtPykCP1RsAbadp19UrAW9e8OO30BAh4pzcTTlSXAAFvXfPitNMSIOCd1jw4DQIIIIDAbQWqC3jd/e2SDplp5SGSDuz+foaka5cYdOpzd0lrJR0laa+Za44zs7O4OdoQIOBtY44tdkHA2+JU6WlIAQLeIbXZq0UBAt4Wp0pPQwkQ8A4lzT4IIIAAAqsVqDHgvWZRQLva3tO675rZvXIKsHZaAgS805oHp7lFgICXuwGBPAEC3jw/ViNAwMs9gMDqBQh4V2/HSgQQQACBYQQiB7xfk/QLZnbxMNTsMoQAAe8QyuyxGgEC3tWosQaBWwQIeLkbEMgTIODN82N1bAEC3tjzp3sEEECgBoEaA97flXTXGdzHSLpb9/cPSkrf8N3R6ypJ35D0RTM7r4YBTeGM7p4ebbHNzK5e7nncfb2ZbVzu9X1dR8DblyR1+hYg4O1blHrRBAh4o02cfvsWIODtW5R6kQQIeCNNm14RQACBOgWqC3gXM7v7qZKe0b2/v5ldVucopnNqdz9O0gskPUDSwd3zi9MBrzKzFPYu+XL3d0t6oqQDJKV76wZJF0naYGYbhuiQgHcIZfZYjQAB72rUWIPALQIEvNwNCOQJEPDm+bE6tgABb+z50z0CCCBQg0ALAe9+ko6QdKOZfaEG9Cmf0d3/UNJLd3DGrWa22xIh+66SzpZ09E56e4eZvah07wS8pYWpv1oBAt7VyrEOgZsECHi5ExDIEyDgzfNjdWwBAt7Y86d7BBBAoAaB6gPeGpBrOKO77yLpy5Ie2J3XJX1V0jmSvifp8PSZmR21RMD7AUlP695Pj3FI36r+kqTHSnqqpFQ7vZ5pZumzYi8C3mK0FM4UIODNBGR5eAEC3vC3AACZAgS8mYAsDy1AwBt6/DSPAAIIVCHQXMDr7r8g6bmSfkbSQZL2kJRCx/SogPTc3d8zs29XMZ0BD+nur5H0+m7LKyQ9zsxSSDv35e5bOuf0SIbDzOz8hUXu/hRJp3d/P9fM7jO3YMYFBLwZeCwtKkDAW5SX4gEECHgDDJkWiwoQ8BblpXjjAgS8jQ+Y9hBAAIEGBJoJeN09PabhQ93jGnY2mvTN1I933ya9soEZZrfQfXs3WaxJP6aWfrTOzFIgPvfl7s+S9N7uwtPMbOF5yDevdfcU+B7avVH0OckEvHNHxgUjCRDwjgTPts0IEPA2M0oaGUmAgHckeLZtQoCAt4kx0gQCCCDQtEATAa+7px8D+0r3w17LHdhGSQea2Y3LXdDqde7+aklv6Pr7AzP77eX26u4flnRCd/2Tzexji9e6+3skPad7/7lm9mfLrb/S6wh4VyrG9UMJEPAOJc0+rQoQ8LY6WfoaSoCAdyhp9mlRgIC3xanSEwIIINCWQPUBr7vvJekSSWtnRvMNSX8j6d8lbZJ0sKT7SjpZ0h1nrvsbM3tSWyNdeTfu/q+SjuxWph+tu6ukR3bfhr5e0r9J+gszS49guNXL3b8o6WHdm7vv4Jr0rd6FZ+++wcxeu/JTLm8FAe/ynLhqeAEC3uHN2bEtAQLetuZJN8MLEPAOb86O7QgQ8LYzSzpBAAEEWhVoIeCdfXZsCiAfYmZf29HA3P13JL1x5vN7zj4zttVB76wvd/+xpAO6ay6d+fPsshT0vsXM/tvsm+7+LUn3Tu+Z2ZL3k7s/TtInu3XvM7Nnl3Im4C0lS91cAQLeXEHWRxcg4I1+B9B/rgABb64g6yMLEPBGnj69I4AAAnUItBDwph8Ce1DHfYKZfXQevbunZ/CmH2NLrxeb2dvnrWn585kfSZttM4Xl6f9uv+jRFy83s7cuXOjuKRDePz2718x2XcrJ3R8s6ezus8+Y2fEL1x12zKPP6tP2qosuvM/DLz96vyOuT49k5oXAdAQ+teaMbT844PLv7n3HA380nVPd9iSbL/jOQ0+44kl7rN+2fsrH5GwBBd6/z2lbt9557df3XLN2ss/P9xtvtMsu+OajTtl0SsAJ0fLUBTas26D973HkP9ouln6PYpKvLddsXrvbj66+/8mbT7rdJA/IocIKpID3o/t8bMs+97j3v4RFoHEEJihw3jlnPXqCx+JICIwi0ELAe3X342A3mNnuy1F090dJ+mx37YfM7KnLWdfqNe6+8B/0t0p6t6RXm9kVqV93v4Okd3WPt1gguIeZXdB9/pPusRdbzWy3pYy6ZyR/tftsUcB7XK//kHHNJRfpoZcdJQLeVu/Wevs6Y82ndeFBm7VmXXoKynRfm7//bZ1w+ZNEwDvdGUU92anrTpPfZV/tfvv0/y1N87Vt2zZtPP8bOmXTi6Z5QE4VWmB7wHvPI2W2y2QdrvvpVbrdxZt18qaTJntGDhZTYHvAu+7j2ufQe8UEoGsEJipw3jlnVp9pTZSWY1UoUP2/Gdz9p5L2TM/aNbN9lzMDd7+TpPQja+n1ZTNL3zAN+XL3PSRt6Zo/z8wOXwrC3VMgnoLx9PqvZvZH6Q/unoLeu6c/2g7+icHd0zd2z+jWnm5mT1vY47Bjjj22T/jNF3z3dY+86mHHEvD2qUqtPgQ+tdcZ13977+//8fq73iv9Lwgm+9r03fM+cOKVJx5AwDvZEYU92Klr33/1NfvqFev2O/jcqSJct+Wnu22+6Dt/f8qmU6aboE0Vj3MVF9iwboPve8hhP7f77ntM9geGN132w/vufcUuv3/ylSdP97/JKT4pNpiiwE2PaPjIj/e912G/MsXzcSYEogqcd85nF764F5WAvhG4WaCFgPd8SYfuLGBcPG93T/8f819273/czH4p8j3h7un5uunbt/9hZgvP4r0VibvP/lDa35rZL3YB7zmSjk5/3skzeFOg+4Gu4NvM7GWlvHkGbylZ6uYK8AzeXEHWRxfgGbzR7wD6zxXgGby5gqyPLMAzeCNPn94RQACBOgRaCHj/RtL2sFHSe8zs13dG7+7pWzUXSrpLd93JZrYQ9tYxtZ5POfMja9ebWfpG721e7v5wSV/oPvgnM0t/T9/g/YSkJ3TvH2lmX1+82N3fJOlV3ftFn3lMwNvzzUG53gQIeHujpFBQAQLeoIOn7d4ECHh7o6RQQAEC3oBDp2UEEECgMoEWAt7Zb4duD3klvdTM0rN5b/Vy9/tK+qCkhV/gSs9/vb2ZXVfZ3Ho9rrt/RdIDu6I3P193dhN3f56kP+3ee5eZPb8LeF8v6TXd+281s5cv4Z6ev/uA7v1jzCztV+RFwFuElaI9CBDw9oBIidACBLyhx0/zPQgQ8PaASImwAgS8YUdP4wgggEA1AtUHvF3I+GlJj5lR3yYpPbrh4vRsXkkHdd/YXfjW7sKlrzKzN1czrUIHdffflvTfu/Lnmtl9lghpFx6FkT56opn9/5392s443UvpucYHmtnNz3Zz9/R83u9JSt+c3mhmRX9hioC30E1C2WwBAt5sQgoEFyDgDX4D0H62AAFvNiEFAgsQ8AYePq0jgAAClQi0EvCmxwqkH/tKQe5yX+GfvTsL5e4/mvE7U9KJZnaFu6+X9NeSHtFdf4GZ3WPR2i9JelD33tmSnpce1eDux0k6XVL6Ubv0eouZvXK5A1rNdQS8q1FjzRACBLxDKLNHywIEvC1Pl96GECDgHUKZPVoVIOBtdbL0hQACCLQj0ETAuzAOd/8dSf9N0pLPke2uu1TSs8zsH9oZY34n7v5QSV9Mv5U2U22rpNvN/D39GNu9zCw9w/jml7unR158WdJes28vqvWD9GgMM7s2/7Q7rkDAW1KX2jkCBLw5eqxFQCLg5S5AIE+AgDfPj9WxBQh4Y8+f7hFAAIEaBJoKeBO4u6dw95GSjpF0lKR1ki6S9K+S/rnk819rGPjOzuju95eUfjTtrktcl8LfX0jf6l2qhrunb0+nkHfxYzDSc47T2mNnH91QyoqAt5QsdXMFCHhzBVkfXYCAN/odQP+5AgS8uYKsjyxAwBt5+vSOAAII1CFQVcDr7o+W9KiO9p1mlr6Ny6tnAXdPIW16vMK9JZ0j6TNL/WjdDoLeO0h6vKT7SfqcpLOGCHYXzkLA2/PNQLneBAh4e6OkUFABAt6gg6ft3gQIeHujpFBAAQLegEOnZQQQQKAygdoC3tkfU3u6mX2wMm+OW1iAgLcwMOVXLUDAu2o6FiKwXYCAlxsBgTwBAt48P1bHFiDgjT1/ukcAAQRqECDgrWFKnHHZAgS8y6biwoEFCHgHBme75gQIeJsbKQ0NLEDAOzA42zUlQMDb1DhpBgEEEGhSgIC3ybHGbYqAN+7sp945Ae/UJ8T5pi5AwDv1CXG+qQsQ8E59QpxvygIEvFOeDmdDAAEEEEgCBLzcB00JEPA2Nc6mmiHgbWqcNDOCAAHvCOhs2ZQAAW9T46SZgQUIeAcGZzsEEEAAgRULEPCumIwFUxYg4J3ydGKfjYA39vzpPl+AgDffkAqxBQh4Y8+f7vMECHjz/FiNAAIIIFBegIC3vDE7DChAwDsgNlutSICAd0VcXIzAbQQIeLkpEMgTIODN82N1bAEC3tjzp3sEEECgBoGaA94XSPpoLrKZXZpbg/XTESDgnc4sOMmtBQh4uSMQyBMg4M3zYzUCBLzcAwisXoCAd/V2rEQAAQQQGEag5oC3L6HjzOysvopRZ1wBAt5x/dl9xwIEvNwdCOQJEPDm+bEaAQJe7gEEVi9AwLt6O1YigAACCAwjQMArPcbMzhyGm11KCxDwlham/moFCHhXK8c6BG4SIODlTkAgT4CAN8+P1bEFCHhjz5/uEUAAgRoECHilR5rZF2oYFmecL0DAO9+IK8YRIOAdx51d2xEg4G1nlnQyjgAB7zju7NqGAAFvG3OkCwQQQKBlgZoD3qeb2QdbHg69rVyAgHflZqwYRoCAdxhndmlXgIC33dnS2TACBLzDOLNLmwIEvG3Ola4QQACBlgQIeFuaJr2IgJebYKoCBLxTnQznqkWAgLeWSXHOqQoQ8E51MpyrBgEC3hqmxBkRQACB2AIEvLHn31z3BLzNjbSZhgh4mxkljYwkQMA7EjzbNiNAwNvMKGlkBAEC3hHQ2RIBBBBAYEUCBLwr4uLiqQsQ8E59QnHPR8Abd/Z03o8AAW8/jlSJK0DAG3f2dJ4vQMCbb0gFBBBAAIGyAgS8ZX2pPrAAAe/A4Gy3bAEC3mVTcSECSwoQ8HJjIJAnQMCb58fq2AIEvLHnT/cIIIBADQIEvDVMiTMuW4CAd9lUXDiwAAHvwOBs15wAAW9zI6WhgQUIeAcGZ7umBAh4mxonzSCAAAJNChDwNjnWuE0R8Mad/dQ7J+Cd+oQ439QFCHinPiHON3UBAt6pT4jzTVmAgHfK0+FsCCCAAAJJoLaA9yhJR3ej+6iZXcEYEZgVIODlfpiqAAHvVCfDuWoRIOCtZVKcc6oCBLxTnQznqkGAgLeGKXFGBBBAILZAVQFv7FHR/XIECHiXo8Q1YwgQ8I6hzp4tCRDwtjRNehlDgIB3DHX2bEWAgLeVSdIHAggg0K4AAW+7sw3ZGQFvyLFX0TQBbxVj4pATFiDgnfBwOFoVAgS8VYyJQ05UgIB3ooPhWAgggAACNwsQ8HIzNCVAwNvUOJtqhoC3qXHSzAgCBLwjoLNlUwIEvE2Nk2YGFiDgHRic7RBAAAEEVixAwLtiMhZMWYCAd8rTiX02At7Y86f7fAEC3nxDKsQWIOCNPX+6zxMg4M3zYzUCCCCAQHkBAt7yxuwwoAAB74DYbLUiAQLeFXFxMQK3ESDg5aZAIE+AgDfPj9WxBQh4Y8+f7hFAAIEaBAh4a5gSZ1y2AAHvsqm4cGABAt6BwdmuOQEC3uZGSkMDCxDwDgzOdk0JEPA2NU6aQQABBJoUIOBtcqxxmyLgjTv7qXdOwDv1CXG+qQsQ8E59Qpxv6gIEvFOfEOebsgAB75Snw9kQQAABBJIAAS/3QVMCBLxNjbOpZgh4mxonzYwgQMA7AjpbNiVAwNvUOGlmYAEC3oHB2Q4BBBBAYMUCBLwrJmPBlAUIeKc8ndhnI+CNPX+6zxcg4M03pEJsAQLe2POn+zwBAt48P1YjgAACCJQXIOAtb8wOAwoQ8A6IzVYrEiDgXREXFyNwGwECXm4KBPIECHjz/FgdW4CAN/b86R4BBBCoQYCAt4YpccZlCxDwLpuKCwcWIOAdGJztmhMg4G1upDQ0sAAB78DgbNeUAAFvU+OkGQQQQKBJAQLeJscatykC3rizn3rnBLxTnxDnm7oAAe/UJ8T5pi5AwDv1CXG+KQsQ8E55OpwNAQQQQCAJEPByHzQlQMDb1DibaoaAt6lx0swIAgS8I6CzZVMCBLxNjZNmBhYg4B0YnO0QQAABBFYsQMC7YjIWTFmAgHfK04l9NgLe2POn+3wBAt58QyrEFiDgjT1/us8TIODN82M1AggggEB5AQLe8sbsMKAAAe+A2Gy1IgEC3hVxcTECtxEg4OWmQCBPgIA3z4/VsQUIeGPPn+4RQACBGgQIeGuYEmdctgAB77KpuHBgAQLegcHZrjkBAt7mRkpDAwsQ8A4MznZNCRDwNjVOmkEAAQSaFCDgbXKscZsi4I07+6l3TsA79QlxvqkLEPBOfUKcb+oCBLxTnxDnm7IAAe+Up8PZEEAAAQSSAAEv90FTAgS8TY2zqWYIeJsaJ82MIEDAOwI6WzYlQMDb1DhpZmABAt6BwdkOAQQQQGDFAgS8KyZjwZQFCHinPJ3YZyPgjT1/us8XIODNN6RCbAEC3tjzp/s8AQLePD9WI4AAAgiUFyDgLW/MDgMKEPAOiM1WKxIg4F0RFxcjcBsBAl5uCgTyBAh48/xYHVuAgDf2/OkeAQQQqEGAgLeGKXHGZQsQ8C6bigsHFiDgHRic7ZoTIOBtbqQ0NLAAAe/A4GzXlAABb1PjpBkEEECgSQEC3ibHGrcpAt64s5965wS8U58Q55u6AAHv1CfE+aYuQMA79QlxvikLEPBOeTqcDQEEEEAgCRDwch80JUDA29Q4m2qGgLepcdLMCAIEvCOgs2VTAgS8TY2TZgYWIOAdGJztEEAAAQRWLEDAu2IyFkxZgIB3ytOJfTYC3tjzp/t8AQLefEMqxBYg4I09f7rPEyDgzfNjNQIIIIBAeQEC3vLG7DCgAAHvgNhstSIBAt4VcXExArcRIODlpkAgT4CAN8+P1bEFCHhjz5/uEUAAgRoECHhrmBJnXLYAAe+yqbhwYAEC3oHB2a45AQLe5kZKQwMLEPAODM52TQkQ8DY1TppBAAEEmhQg4G1yrHGbIuCNO/upd07AO/UJcb6pCxDwTn1CnG/qAgS8U58Q55uyAAHvlKfD2RBAAAEEkgABL/dBUwIEvE2Ns6lmCHibGifNjCBAwDsCOls2JUDA29Q4aWZggVoC3rVr1z5od9v9czfucuOeAxOxHQI7FXB37bl1zxf8+OofvxMqBBAoI0DAW8aVqiMJEPCOBM+2cwUIeOcScQECOxUg4OUGQSBPgIA3z4/VsQVqCXj33XffF95ny33+4PifHk/AG/uWnVz339z9m/r87T//gUs3X/orkzscB0KgEQEC3kYGSRs3CRDwcidMVYCAd6qT4Vy1CBDw1jIpzjlVAQLeqU6Gc9UgQMBbw5Q445QFCHinPB3O1ooAAW8rk6QPAl7ugUkLEPBOejwcrgIBAt4KhsQRJy1AwDvp8XC4iQsQ8E58QBxv8gIEvJMfEQdsQICAt4Eh0sItAnyDl7thqgIEvFOdDOeqRYCAt5ZJcc6pChDwTnUynKsGAQLeGqbEGacsQMA75elwtlYECHhbmSR9bBcg4OVGmKoAAe9UJ8O5ahEg4K1lUpxzqgIEvFOdDOeqQYCAt4YpccYpCxDwTnk6nK0VAQLeViZJHwS83AOTFiDgnfR4OFwFAgS8FQyJI05agIB30uPhcBMXIOCd+IA43uQFCHgnPyIO2IAAAW8DQ6SFWwT4Bi93w1QFCHinOhnOVYsAAW8tk+KcUxUg4J3qZDhXDQIEvDVMiTNOWYCAd8rT4WytCBDwtjLJifXh7uvNbOPQxyLgHVqc/ZYrQMC7XCmuQ2BpAQJe7gwE8gQIePP8WB1bgIA39vzpPl+AgDffkAoIzBMg4J0nFPxzdz9V0s91DMeZ2bk7InH3d0t6oqQDJKV76wZJF0naYGYbhqAk4B1CmT1WI0DAuxo11iBwiwABL3cDAnkCBLx5fqyOLUDAG3v+dJ8vQMCbb0gFBOYJEPDOEwr8ubu/SdKrZggeaWZfWEzi7rtKOlvS0TvheoeZvag0JwFvaWHqr1aAgHe1cqxD4CYBAl7uBATyBAh48/xYHVuAgDf2/Ok+X4CAN9+QCgjMEyDgnScU9HN3/y+S/mJR+zsKeD8g6WndtVenfw6X9CVJj5X0VEm7dJ8908zSZ8VeBLzFaCmcKUDAmwnI8vACBLzhbwEAMgUIeDMBWR5agIA39PhpvgcBAt4eECmBwBwBAl5ukdsIuPtDJaVv6i4EswvX7Cjg3SJpj+6RDIeZ2fkLC9z9KZJO7/5+rpndpyQ5AW9JXWrnCBDw5uixFgG+wcs9gECuAAFvriDrIwsQ8EaePr33IUDA24ciNRDYuQABL3fIrQTc/WBJ3+0C2xTcflTSSd1Ftwl43f1Zkt7bfX6amT1jMam7p8D30O79/c3sslLsBLylZKmbK0DAmyvI+ugCfIM3+h1A/7kCBLy5gqyPLEDAG3n69N6HAAFvH4rUQICAl3tgmQLuvpekCyXdSdI2SembvCmwXXh27lIB74clndBt8WQz+9gSAe97JD2ne/+5ZvZnyzzSii8j4F0xGQsGEiDgHQiabZoVIOBtdrQ0NpAAAe9A0GzTpAABb5NjpakBBQh4B8Rmq7ACfIM37Ohv27i7nyvp8O6Tp5vZB9397XMC3i9Keli3Znczu2GJgDeFxAvP3n2Dmb22FDsBbylZ6uYKEPDmCrI+ugABb/Q7gP5zBQh4cwVZH1mAgDfy9Om9DwEC3j4UqYHAzgUIeLlDtgu4+99KemLH8Xtm9rvd+/MC3m9June61syWvJ/c/XGSPtnVfp+ZPbsUOwFvKVnq5goQ8OYKsj66AAFv9DuA/nMFCHhzBVkfWYCAN/L06b0PAQLePhSpgQABL/fAHAF3f7OkV3SXfcTMTlxYsoxv8F4qaf/0SAcz23Wprdz9wZLO7j77jJkdX2ooBLylZKmbK0DAmyvI+ugCBLzR7wD6zxUg4M0VZH1kAQLeyNOn9z4ECHj7UKQGAgS83AM7EVj0I2lfN7MjZy9fRsD7E0l3lLTVzHbbQcD7AElfXSrgPeyY47zPAV1zyUV66GVH6Yjrj+izLLUQyBY4Y82ndeFBm7Vm3X7ZtUoW2Pz9b+uEy5+k9dvWl9yG2gisWODUdafJ77Kvdr/9HVa8dqgF27Zt08bzv6FTNi08un6ondkHgfkCG9Zt0P73PFJmu8y/eKQrrvvpVbrdxZt18qaF3/cd6SBsi8AigRTwfnTdx7XPofeatM21my/TIRfvo+OvLfZ9mkn3z+GmK5AC3rP3+7rWHJR+072/13nnnMn/Kr0/TipVLsC/GSofYO7x3X3hG7hXSTpK0nWLar5R0rO6954q6Z8kXWtmV6T33P0CSXdPf7Qd/BODu6f/hHFGV+N0M3vawh4EvLkTZH0tAgS8tUyKc05VgIB3qpPhXLUIEPDWMinOOUUBAt4pToUz1SRAwFvTtDhrrQIEvLVOrqdzzwS8K6n4H2Z2QBfwniPp6PTnnTyDNwW6H+g2eJuZvWwlm63kWh7RsBItrh1SgEc0DKnNXi0K8IiGFqdKT0MK8IiGIbXZqzUBHtHQ2kTpZ2gBHtEwtDj7RRQg4I049Zmeewh4PyHpCV3JI83s64tJ3f1Nkl7Vvf9iM0s/3FbkRcBbhJWiPQgQ8PaASInQAgS8ocdP8z0IEPD2gEiJsAIEvGFHT+M9CRDw9gRJGQR2IkDAG/z2cPf0Tdx9dsLwe5Ke3n3+zO7H0jabWXq0Q3pEw+slvab7/K1m9vIlAt70/N30HN70OsbMvlKKnYC3lCx1cwUIeHMFWR9dgIA3+h1A/7kCBLy5gqyPLEDAG3n69N6HAAFvH4rUQGDnAgS83CE7FVjGj6ytlbQpPaFB0kZJB5rZjQtF3T09n/d7ktIvemw0s6K/MEXAyw09VQEC3qlOhnPVIkDAW8ukOOdUBQh4pzoZzlWDAAFvDVPijFMWIOCd8nQ4WysCBLytTLJQH/MC3rStu39J0oO6I5wt6XnpUQ3ufpyk0yXdqfvsLWb2ykJH3V6WgLekLrVzBAh4c/RYi4BEwMtdgECeAAFvnh+rYwsQ8MaeP93nCxDw5htSAYF5AgS884SCf77MgPcISV+WtNcMl3ff6l146weSjjCza0uSEvCW1KV2jgABb44eaxEg4OUeQCBXgIA3V5D1kQUIeCNPn977ECDg7UORGgjsXICAlztkpwLu/j8kvbi76GFm9s9LLXD3g7qQ9y6LPk9B7xclHTv76IZS7AS8pWSpmytAwJsryProAnyDN/odQP+5AgS8uYKsO3pCoAAAIABJREFUjyxAwBt5+vTehwABbx+K1ECAgJd7YEABd7+DpMdLup+kz0k6a4hgd6FFAt4Bh81WKxIg4F0RFxcjcBsBAl5uCgTyBAh48/xYHVuAgDf2/Ok+X4CAN9+QCgjME+AbvPOE+LwqAQLeqsYV6rAEvKHGTbMFBAh4C6BSMpQAAW+ocdNszwIEvD2DUi6cAAFvuJHT8AgCBLwjoLNlOQEC3nK2VM4TIODN82M1AgS83AMI5AkQ8Ob5sTq2AAFv7PnTfb4AAW++IRUQmCdAwDtPiM+rEiDgrWpcoQ5LwBtq3DRbQICAtwAqJUMJEPCGGjfN9ixAwNszKOXCCRDwhhs5DY8gQMA7AjpblhMg4C1nS+U8AQLePD9WI0DAyz2AQJ4AAW+eH6tjCxDwxp4/3ecLEPDmG1IBgXkCBLzzhPi8KgEC3qrGFeqwBLyhxk2zBQQIeAugUjKUAAFvqHHTbM8CBLw9g1IunAABb7iR0/AIAgS8I6CzZTkBAt5ytlTOEyDgzfNjNQIEvNwDCOQJEPDm+bE6tgABb+z5032+AAFvviEVEJgnQMA7T4jPqxIg4K1qXKEOS8Abatw0W0CAgLcAKiVDCRDwhho3zfYsQMDbMyjlwgkQ8IYbOQ2PIEDAOwI6W5YTIOAtZ0vlPAEC3jw/ViNAwMs9gECeAAFvnh+rYwsQ8MaeP93nCxDw5htSAYF5AgS884T4vCoBAt6qxhXqsAS8ocZNswUECHgLoFIylAABb6hx02zPAgS8PYNSLpwAAW+4kdPwCAIEvCOgs2U5AQLecrZUzhMg4M3zYzUCBLzcAwjkCRDw5vmxOrYAAW/s+dN9vgABb74hFRCYJ0DAO0+Iz6sSIOCtalyhDkvAG2rcNFtAgIC3AColQwkQ8IYaN832LEDA2zMo5cIJEPCGGzkNjyBAwDsCOluWEyDgLWdL5TwBAt48P1YjQMDLPYBAngABb54fq2MLEPDGnj/d5wsQ8OYbUgGBeQIEvPOE+LwqAQLeqsYV6rAEvKHGTbMFBAh4C6BSMpQAAW+ocdNszwIEvD2DUi6cAAFvuJHT8AgCBLwjoLNlOQEC3nK2VM4TIODN82M1AgS83AMI5AkQ8Ob5sTq2AAFv7PnTfb4AAW++IRUQmCdAwDtPiM+rEiDgrWpcoQ5LwBtq3DRbQICAtwAqJUMJEPCGGjfN9ixAwNszKOXCCRDwhhs5DY8gQMA7AjpblhMg4C1nS+U8AQLePD9WI0DAyz2AQJ4AAW+eH6tjCxDwxp4/3ecLEPDmG1IBgXkCBLzzhPi8KgEC3qrGFeqwBLyhxk2zBQQIeAugUjKUAAFvqHHTbM8CBLw9g1IunAABb7iR0/AIAgS8I6CzZTkBAt5ytlTOEyDgzfNjNQIEvNwDCOQJEPDm+bE6tgABb+z5032+AAFvviEVEJgnQMA7T4jPqxIg4K1qXKEOS8Abatw0W0CAgLcAKiVDCRDwhho3zfYsQMDbMyjlwgkQ8IYbOQ2PIEDAOwI6W5YTIOAtZ0vlPAEC3jw/ViNAwMs9gECeAAFvnh+rYwsQ8MaeP93nCxDw5htSAYF5AgS884T4vCoBAt6qxhXqsAS8ocZNswUECHgLoFIylAABb6hx02zPAgS8PYNSLpwAAW+4kdPwCAIEvCOgs2U5AQLecrZUzhMg4M3zYzUCBLzcAwjkCRDw5vmxOrYAAW/s+dN9vgABb74hFRCYJ0DAO0+Iz6sSIOCtalyhDkvAG2rcNFtAgIC3AColQwkQ8IYaN832LEDA2zMo5cIJEPCGGzkNjyBAwDsCOluWEyDgLWdL5TwBAt48P1YjQMDLPYBAngABb54fq2MLEPDGnj/d5wsQ8OYbUgGBeQIEvPOE+LwqAQLeqsYV6rAEvKHGTbMFBAh4C6BSMpQAAW+ocdNszwIEvD2DUi6cAAFvuJHT8AgCBLwjoLNlOQEC3nK2VM4TIODN82M1AgS83AMI5AkQ8Ob5sTq2AAFv7PnTfb4AAW++IRUQmCdAwDtPiM+rEiDgrWpcoQ5LwBtq3DRbQICAtwAqJUMJEPCGGjfN9ixAwNszKOXCCRDwhhs5DY8gQMA7AjpblhMg4C1nS+U8AQLePD9WI0DAyz2AQJ4AAW+eH6tjCxDwxp4/3ecLEPDmG1IBgXkCBLzzhPi8KgEC3qrGFeqwBLyhxk2zBQQIeAugUjKUAAFvqHHTbM8CBLw9g1IunAABb7iR0/AIAgS8I6CzZTkBAt5ytlTOEyDgzfNjNQIEvNwDCOQJEPDm+bE6tgABb+z5032+AAFvviEVEJgnQMA7T4jPqxIg4K1qXKEOS8Abatw0W0CAgLcAKiVDCRDwhho3zfYsQMDbMyjlwgkQ8IYbOQ2PIEDAOwI6W5YTIOAtZ0vlPAEC3jw/ViNAwMs9gECeAAFvnh+rYwsQ8MaeP93nCxDw5htSAYF5AgS884T4vCoBAt6qxhXqsAS8ocZNswUECHgLoFIylAABb6hx02zPAgS8PYNSLpwAAW+4kdPwCAIEvCOgs2U5AQLecrZUzhMg4M3zYzUCBLzcAwjkCRDw5vmxOrYAAW/s+dN9vgABb74hFRCYJ0DAO0+Iz6sSIOCtalyhDkvAG2rcNFtAgIC3AColQwkQ8IYaN832LEDA2zMo5cIJEPCGGzkNjyBAwDsCOluWEyDgLWdL5TwBAt48P1YjQMDLPYBAngABb54fq2MLEPDGnj/d5wsQ8OYbUgGBeQIEvPOE+LwqAQLeqsYV6rAEvKHGTbMFBAh4C6BSMpQAAW+ocdNszwIEvD2DUi6cAAFvuJHT8AgCBLwjoLNlOQEC3nK2VM4TIODN82M1AgS83AMI5AkQ8Ob5sTq2AAFv7PnTfb4AAW++IRUQmCdAwDtPiM+rEiDgrWpcoQ5LwBtq3DRbQICAtwAqJUMJEPCGGjfN9ixAwNszKOXCCRDwhhs5DY8gQMA7AjpblhMg4C1nS+U8AQLePD9WI0DAyz2AQJ4AAW+eH6tjCxDwxp4/3ecLEPDmG1IBgXkCBLzzhPi8KgEC3qrGFeqwBLyhxk2zBQQIeAugUjKUAAFvqHHTbM8CBLw9g1IunAABb7iR0/AIAgS8I6CzZTkBAt5ytlTOEyDgzfNjNQIEvNwDCOQJEPDm+bE6tgABb+z5032+AAFvviEVEJgnQMA7T4jPqxIg4K1qXKEOS8Abatw0W0CAgLcAKiVDCRDwhho3zfYsQMDbMyjlwgkQ8IYbOQ2PIEDAOwI6W5YTIOAtZ0vlPAEC3jw/ViNAwMs9gECeAAFvnh+rYwsQ8MaeP93nCxDw5htSAYF5AgS884T4vCoBAt6qxhXqsAS8ocZNswUECHgLoFIylAABb6hx02zPAgS8PYNSLpwAAW+4kdPwCAIEvCOgs2U5AQLecrZUzhMg4M3zYzUCBLzcAwjkCRDw5vmxOrYAAW/s+dN9vgABb74hFRCYJ0DAO0+Iz6sSIOCtalyhDkvAG2rcNFtAgIC3AColQwkQ8IYaN832LEDA2zMo5cIJEPCGGzkNjyBAwDsCOluWEyDgLWdL5TwBAt48P1YjQMDLPYBAngABb54fq2MLEPDGnj/d5wsQ8OYbUgGBeQIEvPOE+LwqAQLeqsYV6rAEvKHGTbMFBAh4C6BSMpQAAW+ocdNszwIEvD2DUi6cAAFvuJHT8AgCBLwjoLNlOQEC3nK2VM4TIODN82M1AgS83AMI5AkQ8Ob5sTq2AAFv7PnTfb4AAW++IRUQmCdAwDtPiM+rEiDgrWpcoQ5LwBtq3DRbQICAtwAqJUMJEPCGGjfN9ixAwNszKOXCCRDwhhs5DY8gQMA7AjpblhMg4C1nS+U8AQLePD9WI0DAyz2AQJ4AAW+eH6tjCxDwxp4/3ecLEPDmG1IBgXkCBLzzhPi8KgEC3qrGFeqwBLyhxk2zBQQIeAugUjKUAAFvqHHTbM8CBLw9g1IunAABb7iR0/AIAgS8I6CzZTkBAt5ytlTOEyDgzfNjNQIEvNwDCOQJEPDm+bE6tgABb+z5032+AAFvviEVEJgnQMA7Tyjo5+5+sKSNZrZlNQTuvt7MNq5mbc4aAt4cPdaWFCDgLalL7QgCBLwRpkyPJQUIeEvqUrt1AQLe1idMf6UFCHhLC1MfAYmAl7tA7r6npFdIepqku0m6vW65N26Q9F1JzzazL+2My93fLemJkg7o1qe1F0naYGYbhqAm4B1CmT1WI0DAuxo11iBwiwABL3cDAnkCBLx5fqyOLUDAG3v+dJ8vQMCbb0gFBOYJEPDOEwrwubu/RtLrl9Hqy83srYuvc/ddJZ0t6eid1HiHmb1oGXtkXULAm8XH4oICBLwFcSkdQoCAN8SYabKgAAFvQVxKNy9AwNv8iGmwsAABb2FgyiMw8y1NMAILLAp4/11S+qZu+tfjJD1C0l4dj0u6r5mdO8vl7h/ovv2b3r5a0qldjcdKeqqkXbrrn2lm6bNiLwLeYrQUzhQg4M0EZHl4AQLe8LcAAJkCBLyZgCwPLUDAG3r8NN+DAAFvD4iUQGCOAN/g5RZJj2g4SdKvS3q+mZ23mMTdvyLpgd37bzOzly0KeNNzeveQlB7JcJiZnb/wubs/RdLp3d/PNbP7lCQn4C2pS+0cAQLeHD3WIiAR8HIXIJAnQMCb58fq2AIEvLHnT/f5AgS8+YZUQGCeAAHvPCE+TwHwEyR9oqP4opmlb/Vuf7n7syS9t/vraWb2jMVk7p4C30O79/c3s8tKsRLwlpKlbq4AAW+uIOujCxDwRr8D6D9XgIA3V5D1kQUIeCNPn977ECDg7UORGgjsXICAlztkroC7Hy/pjO7Cs8wsPbphIeD9sKQTur8+2cw+tkTA+x5Jz+nef66Z/dncTVd5AQHvKuFYVlyAgLc4MRs0LkDA2/iAaa+4AAFvcWI2aFiAgLfh4dLaIAIEvIMws0lwAQLe4DfActp393dK+s3u2nea2QtmAt4vSnpY9/fdzSw9puFWL3dP3+pdePbuG8zstcvZdzXXEPCuRo01QwgQ8A6hzB4tCxDwtjxdehtCgIB3CGX2aFWAgLfVydLXUAIEvENJs09kAQLeyNNfRu/ufgdJG7tn7KYV91z0jN1vSbp3+sDMlryf3P1xkj7Zbfc+M3v2MrZe1SUEvKtiY9EAAgS8AyCzRdMCBLxNj5fmBhAg4B0AmS2aFSDgbXa0NDaQAAHvQNBsE1qAgDf0+Oc37+7/Jun+3ZX/ZGYPn13l7pdK2l/SNjPbdamK7v5gSWd3n33GzNIjH7a/DjvmuN+df4rlX3Hlhec/5RGbHnzEEdcfsfxFXInAAAJn7HXG1u+t//E/rNv/bucMsN2qt9j0vW+95MTNT95n/bb1q67BQgRKCJy69v1brj9wr9PWrF1/UYn6fdS88catu/7kgm+++pRNp/Cfr/oApUavAhvWbfD1h97/Dbvuuuu2Xgv3WOyazZfddY9Lt5z0jCtP3rPHspRCIFsgBbwfXfvXm/a552EbsosVLLD5sh8+6J7/ccB/Pv6nx9+u4DaURmDFAing/ed1X/nm3occ+pEVL97JgvPOObPXPKHPs1ELgaEF+AeQocUr2s/dZ5+ve42kO5vZlbMtuPtPJN1R0lYz222p9tz9AZK+2n22OOD1PkmuueQiPfSyo0TA26cqtfoQOGPNp3XhQZu1Zt1+fZQrVmPz97+tEy5/kgh4ixFTeJUCp647TX6XfbX77dP/sGSar23btmnj+d/QKZteNM0DcqrQAhvWbdD+9zxSZrtM1uG6n16l2128WSdvOmmyZ+RgMQW2B7zrPq59Dr3XpAGu3XyZDrl4Hx1/7c3fp5n0eTlcHIEU8J6939e15qCDe236vHPOJNPqVZRiNQvwb4aap1fw7O6enpmbnp2bXtdLeoCZnbt4S3e/QNLdJbnt4J8YFv1I2+lm9rSFOnyDt+AQKT0pAb7BO6lxcJgKBfgGb4VD48iTEuAbvJMaB4epTIBv8FY2MI47OQG+wTu5kXCgBgUIeBscam5L7v4hSSd2ddKPpj3MzJb8n5W7e3r/6HTtTp7BmwLdD3T13mZmL8s9447W8wzeUrLUzRXgGby5gqyPLsAzeKPfAfSfK8AzeHMFWR9ZgGfwRp4+vfchwDN4+1CkBgI7FyDg5Q65WcDd0/9m73OSFp6ze62kBy31zd2FRe7+CUlP6P5+pJl9fTGpu79J0qu6919sZm8vxU7AW0qWurkCBLy5gqyPLkDAG/0OoP9cAQLeXEHWRxYg4I08fXrvQ4CAtw9FaiBAwMs9sAwBd08PNUzPyV14sNQVku5nZhfvbLm7v17Sa7pr3mpmL18i4E1103N40+sYM/vKMo60qksIeFfFxqIBBAh4B0Bmi6YFCHibHi/NDSBAwDsAMls0K0DA2+xoaWwgAQLegaDZJrQA3+ANPf6bmnf3QyWl0HXfjiM9V/eoxT+othSVu6+VtCk9oUHSRkkHmtmNC9e6e3o+7/ckpW8HbzSzor8wRcDLDT1VAQLeqU6Gc9UiQMBby6Q451QFCHinOhnOVYMAAW8NU+KMUxYg4J3ydDhbKwIEvK1MMqMPd/+RpIO6EtdIem3KfXdS8hNm9t2ZEPdL6VEO3d/PlvS89KgGdz9O0umS7tR99hYze2XGUecuJeCdS8QFIwkQ8I4Ez7bNCBDwNjNKGhlJgIB3JHi2bUKAgLeJMdLEiAIEvCPis3UYAQLeMKPecaPunr55uxDCLkfkDWaWQuDtL3c/QtKXJe01szgFxLP31w8kHWFm6bm+xV4EvMVoKZwpQMCbCcjy8AIEvOFvAQAyBQh4MwFZHlqAgDf0+Gm+BwEC3h4QKYHAHAECXm6RFNBeJmn9Cih+z8x+d/Z6d0/fAE4h710W1UlB7xclHTv76IYV7LWiSwl4V8TFxQMKEPAOiM1WTQoQ8DY5VpoaUICAd0BstmpOgIC3uZHS0MACBLwDg7NdSAEC3pBjL9d092Ntj08/0Cbpc5LOGiLYXeiIgLfcbKmcJ0DAm+fHagQIeLkHEMgTIODN82N1bAEC3tjzp/t8AQLefEMqIDBPgIB3nhCfVyVAwFvVuEIdloA31LhptoAAAW8BVEqGEiDgDTVumu1ZgIC3Z1DKhRMg4A03choeQYCAdwR0tiwnQMBbzpbKeQIEvHl+rEaAgJd7AIE8AQLePD9WxxYg4I09f7rPFyDgzTekAgLzBAh45wnxeVUCBLxVjSvUYQl4Q42bZgsIEPAWQKVkKAEC3lDjptmeBQh4ewalXDgBAt5wI6fhEQQIeEdAZ8tyAgS85WypnCdAwJvnx2oECHi5BxDIEyDgzfNjdWwBAt7Y86f7fAEC3nxDKiAwT4CAd54Qn1clQMBb1bhCHZaAN9S4abaAAAFvAVRKhhIg4A01bprtWYCAt2dQyoUTIOANN3IaHkGAgHcEdLYsJ0DAW86WynkCBLx5fqxGgICXewCBPAEC3jw/VscWIOCNPX+6zxcg4M03pAIC8wQIeOcJ8XlVAgS8VY0r1GEJeEONm2YLCBDwFkClZCgBAt5Q46bZngUIeHsGpVw4AQLecCOn4REECHhHQGfLcgIEvOVsqZwnQMCb58dqBAh4uQcQyBMg4M3zY3VsAQLe2POn+3wBAt58QyogME+AgHeeEJ9XJUDAW9W4Qh2WgDfUuGm2gAABbwFUSoYSIOANNW6a7VmAgLdnUMqFEyDgDTdyGh5BgIB3BHS2LCdAwFvOlsp5AgS8eX6sRoCAl3sAgTwBAt48P1bHFiDgjT1/us8XIODNN6QCAvMECHjnCfF5VQIEvFWNK9RhCXhDjZtmCwgQ8BZApWQoAQLeUOOm2Z4FCHh7BqVcOAEC3nAjp+ERBAh4R0Bny3ICBLzlbKmcJ0DAm+fHagQIeLkHEMgTIODN82N1bAEC3tjzp/t8AQLefEMqIDBPgIB3nhCfVyVAwFvVuEIdloA31LhptoAAAW8BVEqGEiDgDTVumu1ZgIC3Z1DKhRMg4A03choeQYCAdwR0tiwnQMBbzpbKeQIEvHl+rEaAgJd7AIE8AQLePD9WxxYg4I09f7rPFyDgzTekAgLzBAh45wnxeVUCBLxVjSvUYQl4Q42bZgsIEPAWQKVkKAEC3lDjptmeBQh4ewalXDgBAt5wI6fhEQQIeEdAZ8tyAgS85WypnCdAwJvnx2oECHi5BxDIEyDgzfNjdWwBAt7Y86f7fAEC3nxDKiAwT4CAd54Qn1clQMBb1bhCHZaAN9S4abaAAAFvAVRKhhIg4A01bprtWYCAt2dQyoUTIOANN3IaHkGAgHcEdLYsJ0DAW86WynkCBLx5fqxGgICXewCBPAEC3jw/VscWIOCNPX+6zxcg4M03pAIC8wQIeOcJ8XlVAgS8VY0r1GEJeEONm2YLCBDwFkClZCgBAt5Q46bZngUIeHsGpVw4AQLecCOn4REECHhHQGfLcgIEvOVsqZwnQMCb58dqBAh4uQcQyBMg4M3zY3VsAQLe2POn+3wBAt58QyogME+AgHeeEJ9XJUDAW9W4Qh2WgDfUuGm2gAABbwFUSoYSIOANNW6a7VmAgLdnUMqFEyDgDTdyGh5BgIB3BHS2LCdAwFvOlsp5AgS8eX6sRoCAl3sAgTwBAt48P1bHFiDgjT1/us8XIODNN6QCAvMECHjnCfF5VQIEvFWNK9RhCXhDjZtmCwgQ8BZApWQoAQLeUOOm2Z4FCHh7BqVcOAEC3nAjp+ERBAh4R0Bny3ICBLzlbKmcJ0DAm+fHagQIeLkHEMgTIODN82N1bAEC3tjzp/t8AQLefEMqIDBPgIB3nhCfVyVAwFvVuEIdloA31LhptoAAAW8BVEqGEiDgDTVumu1ZgIC3Z1DKhRMg4A03choeQYCAdwR0tiwnQMBbzpbKeQIEvHl+rEaAgJd7AIE8AQLePD9WxxYg4I09f7rPFyDgzTekAgLzBAh45wnxeVUCBLxVjSvUYQl4Q42bZgsIEPAWQKVkKAEC3lDjptmeBQh4ewalXDgBAt5wI6fhEQQIeEdAZ8tyAgS85WypnCdAwJvnx2oECHi5BxDIEyDgzfNjdWwBAt7Y86f7fAEC3nxDKiAwT4CAd54Qn1clQMBb1bhCHZaAN9S4abaAAAFvAVRKhhIg4A01bprtWYCAt2dQyoUTIOANN3IaHkGAgHcEdLYsJ0DAW86WynkCBLx5fqxGgICXewCBPAEC3jw/VscWIOCNPX+6zxcg4M03pAIC8wQIeOcJ8XlVAgS8VY0r1GEJeEONm2YLCBDwFkClZCgBAt5Q46bZngUIeHsGpVw4AQLecCOn4REECHhHQGfLcgIEvOVsqZwnQMCb58dqBAh4uQcQyBMg4M3zY3VsAQLe2POn+3wBAt58QyogME+AgHeeEJ9XJUDAW9W4Qh2WgDfUuGm2gAABbwFUSoYSIOANNW6a7VmAgLdnUMqFEyDgDTdyGh5BgIB3BHS2LCdAwFvOlsp5AgS8eX6sRoCAl3sAgTwBAt48P1bHFiDgjT1/us8XIODNN6QCAvMECHjnCfF5VQIEvFWNK9RhCXhDjZtmCwgQ8BZApWQoAQLeUOOm2Z4FCHh7BqVcOAEC3nAjp+ERBAh4R0Bny3ICBLzlbKmcJ0DAm+fHagQIeLkHEMgTIODN82N1bAEC3tjzp/t8AQLefEMqIDBPgIB3nhCfVyVAwFvVuEIdloA31LhptoAAAW8BVEqGEiDgDTVumu1ZgIC3Z1DKhRMg4A03choeQYCAdwR0tiwnQMBbzpbKeQIEvHl+rEaAgJd7AIE8AQLePD9WxxYg4I09f7rPFyDgzTekAgLzBAh45wnxeVUCBLxVjSvUYQl4Q42bZgsIEPAWQKVkKAEC3lDjptmeBQh4ewalXDgBAt5wI6fhEQQIeEdAZ8tyAgS85WypnCdAwJvnx2oECHi5BxDIEyDgzfNjdWwBAt7Y86f7fAEC3nxDKiAwT4CAd54Qn1clQMBb1bhCHZaAN9S4abaAAAFvAVRKhhIg4A01bprtWYCAt2dQyoUTIOANN3IaHkGAgHcEdLYsJ0DAW86WynkCBLx5fqxGgICXewCBPAEC3jw/VscWIOCNPX+6zxcg4M03pAIC8wQIeOcJ8XlVAgS8VY0r1GEJeEONm2YLCBDwFkClZCgBAt5Q46bZngUIeHsGpVw4AQLecCOn4REECHhHQGfLcgIEvOVsqZwnQMCb58dqBAh4uQcQyBMg4M3zY3VsAQLe2POn+3wBAt58QyogME+AgHeeEJ9XJUDAW9W4Qh2WgDfUuGm2gAABbwFUSoYSIOANNW6a7VmAgLdnUMqFEyDgDTdyGh5BgIB3BHS2LCdAwFvOlsp5AgS8eX6sRoCAl3sAgTwBAt48P1bHFiDgjT1/us8XIODNN6QCAvMECHjnCfF5VQIEvFWNK9RhCXhDjZtmCwgQ8BZApWQoAQLeUOOm2Z4FCHh7BqVcOAEC3nAjp+ERBAh4R0Bny3ICBLzlbKmcJ0DAm+fHagQIeLkHEMgTIODN82N1bAEC3tjzp/t8AQLefEMqIDBPgIB3nhCfVyVAwFvVuEIdloA31LhptoAAAW8BVEqGEiDgDTVumu1ZgIC3Z1DKhRMg4A03choeQYCAdwR0tiwnQMBbzpbKeQIEvHl+rEaAgJd7AIE8AQLePD9WxxYg4I09f7rPFyDgzTekAgLzBAh45wnxeVUCBLxVjSvUYQl4Q42bZgsIEPAWQKVkKAEC3lDjptmeBQh4ewalXDgBAt5wI6fhEQQIeEdAZ8tyAgS85WypnCdAwJvnx2oECHi5BxDIEyDgzfNjdWwBAt7Y86f7fAEC3nxDKiAwT4CAd54Qn1clQMBb1bhCHZaAN9S4abaAAAFvAVRKhhIg4A01bprtWYCAt2dQyoUTIOANN3IaHkGAgHcE9Ahbuvt6M9s4dK8EvEOLs9//Ze9N4PWbyvf/66KkQchMP1GpGrY7AAAgAElEQVSSlCSiVJJ8o5GSBk0qSVJUmhOVimhAKd8imgdFGlF8SwNKCQmJIomQVBqU6/+6Tvc+/32ez3M+5zxnfIbrfr169Tl7r732Wu/9bHute93ruqdLIA7e6ZJKuRDoTiAO3vwyQmB2BOLgnR2/XD3aBOLgHe3nn97PnkAcvLNnmBpCYCoCcfBORSjnp01A0kcBPAnAGgD827oNwO8AHEHyiGlXNIuCcfDOAl4unVcCcfDOK95UPgIE4uAdgYecLs4rgTh45xVvKh9yAnHwDvkDTvfmnUAcvPOOODcIgTEnXCwEZkVA0rIAzgGw+VIq+iDJV8zqRtO4OA7eaUBKkUUhEAfvomDPTYeIQBy8Q/Qw05VFIRAH76Jgz02HhEAcvEPyINONRSMQB++ioc+NR4hAHLwj9LDnq6uSPgfgmVX/XwF8EsC5AHYA8AwAy9S555P0uXmzOHjnDW0qniWBOHhnCTCXjzyBOHhH/icQALMkEAfvLAHm8pEmEAfvSD/+dH4OCMTBOwcQU0UITEEgDt78RGZNQNI/ANypJBk2InlFU6mkXQF8of6+mOQDZn3DpVQQB+980k3dsyEQB+9s6OXaEADi4M2vIARmRyAO3tnxy9WjTSAO3tF+/un97AnEwTt7hqkhBKYiEAfvVIRyfqkEJL0AwPFV6NMkn9t5gSQ7fNev46uT/ON8YY2Dd77Ipt7ZEoiDd7YEc/2oE4iDd9R/Aen/bAnEwTtbgrl+lAnEwTvKTz99nwsCcfDOBcXUEQJLJxAHb34hsyIg6UQAu1QlTyV5chcH78cAvLiO70Hy2FnddCkXx8E7X2RT72wJxME7W4K5ftQJxME76r+A9H+2BOLgnS3BXD/KBOLgHeWnn77PBYE4eOeCYuoIgTh48xuYRwKSfgBg67rFciRv6+LgdVRvo717MMkD5qtJcfDOF9nUO1sCcfDOlmCuH3UCcfCO+i8g/Z8tgTh4Z0sw148ygTh4R/npp+9zQSAO3rmgmDpCIA7e/AbmkYCkSwFs6FuQ7BoRLmlHAN+sZpxAcvf5alIcvPNFNvXOlkAcvLMlmOtHnUAcvKP+C0j/Z0sgDt7ZEsz1o0wgDt5Rfvrp+1wQiIN3LiimjhCIgze/gXkkIOk6AKsDuJ3kst1uJWlLAOfUue+Q3L4pt9EW22kum/e3a3+Hh//xwdj4XxvPZbWpKwRmTeD0u34bV631Z9x1pdVmXdd8VvDn31yGXW7aGavevup83iZ1h0DPBD650qehdVbGcne+W8/XLtQFt99+O2644kK88uZXLNQtc58QmDaBI1Y6AqvfZ1OQy0z7moUu+M+//wV3uObPeM7Nuy30rXO/EFgqATt4v7zSKVhx/fv2Nalb//xHrHvNitj+1vHpVl+3N40bHQJ28J6z2gW461r3nNNOX/KTMyI7OqdEU9kgE8jLMMhPrw/aLulGAPcA8G+Sd+zWJEmbAfhpnZtXB+9ff3811vjz3bH6f+xzjoVA/xC44o5X4tY17tj3Dt4/XXkJ7nfrBrir7to/8NKSEABw0fK/wB3XWbPvHbx/vOICPOwfW+WZhUDfETh7+bMHwsH7n2uuwwP+8YC+45cGjTaBvy3zN1y6/K+x8r3v19cg7OC9y7W3Yf1/N/mt+7q5adwIEbhu2etw/Yq34G5rrzunvY6Dd05xprIBJxAH74A/wMVuvqQrAawHQJwkJESSl5BPr7Z+geQzm3bPdQTvYvPI/UMgBEIgBEIgBEIgBEIgBEIgBEIgBOafQBy88884dxgcAnHwDs6z6suWSvoJgM3duKVo8Nqh+7nqwHtJ7h8Hb18+zjQqBEIgBEIgBEIgBEIgBEIgBEIgBAaCQBy8A/GY0sgFIhAH7wKBHtbbSPoagCdW/zYleUFnXyW9C8Ab6/i+JI8cVh7pVwiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAgsJIE4eBeS9hDeS9I7ALylunYYydd1cfBaf9c6vLYtSJ43hCjSpRAIgRAIgRAIgRAIgRAIgRAIgRAIgRAIgRBYcAJx8C448uG6oaS7A7jZCg0AbgCwJsn/NL2UZH3eXwNwyuYbSK42XATSmxAIgRAIgRAIgRAIgRAIgRAIgRAIgRAIgRBYPAJx8C4e+6G5s6RzATy0OnQOgD0t1SBpOwBfALBKnTuU5BuGpuPpSAiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAgsMoE4eBf5AQzD7SVtDODHAO7S6o8qqrc59FsAG5O8dRj6nD6EQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQD8QiIO3H57CELRB0lrl5F2nozt29P4AwLZt6YYh6HK6EAIhEAIhEAIhEAIhEAIhEAIhEAIhEAIhEAKLTiAO3kV/BMPVAEl3A/B4AJsA+B6AM+PYHa5nnN6EQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAj0D4E4ePvnWaQlIRACIRACIRACIRACIRACIRACIRACIRACIRACIdATgTh4e8KVwiEwugQkLQPgegCXAng6yWtHl0Z6HgIzIyDpY3Xly0jeNrNaclUIjC4BSW8HcB3JD40uhfQ8BGZOQNLnARxF8vszryVXhkAIhEAIhEAI9BuBOHj77YmkPSHQpwQkPQ/AJ6p5twP4KICXR4KjTx9YmtV3BCoh5UWVgPJakmv3XSPToBDoYwKS1gXwm3qHrgawK8lz+rjJaVoI9BUBSXsCOKYaZSfvK/uqgWlMCIRACIRACITAjAnEwTtjdLkwBEaPgKQX1MTgTtX7vwHYl+Sxo0cjPQ6B3ghIuhjA/euq95Lcv7caUjoERpuApHMBPLRF4WySDx9tKul9CEyPgKQ7ArgZwF3qih1Jnjq9q1MqBELABCrfzOvrW7QmgD9URPzXQygEQiAEFptAHLyL/QRy/xAYIAKSlq/JQePgbVr/FZI7D1BX0tQQWFACknYF8IW66S0AVibpSPhYCITANAhI2gHAtzqKfo3kk6dxeYqEwMgTkOSdV3sUiPNIbjHyUAIgBHogIOm1AA4GsFyXy24FcAqA52Z3Yw9QUzQEQmBOCcTBO6c4U1kIDDcBSZ8F8Kzq5c8A/BXAowDsTPIrw9379C4EZkag9KtvBLBS1fAsktZAjIVACEyTgKTrAKxexa1f7WjEY0k2Dqtp1pRiITB6BCStA+AqAM6nIAD3Jmm5k1gIhMAUBCr6/TIA63UU9TzoDgAcANPYNQAeTPKGgA2BEAiBhSYQB+9CE8/9QmBACUi6N4DLS/vQkYdrk7zOmogkPWmIhUAIdCEg6T0AHPVh+yXJjacCJemBJK3XGwuBkScg6U0A3lkgHMW7bU2o30HyrSMPKABCYAoCkn4IoJEzOYHk7oEWAiEwPQKSzgLwyFbpkwDsRvIfPibpwQCOA7BZlbGE3ZYkLc0VC4EQCIEFIxAH74Khzo1CYLAJSDofwKbVi6NJvnywe5TWh8D8E5C0SumzOcLDUVN23C51wC9pewCnA7gUwNOmKj//vcgdQmDxCJTeoSPgvSX23xXF68goRyK+jORHurWu3j07f99K8s+L14PcOQQWl4CkxwA4o1phh9RKJP+5uK3K3UNgMAhIsiTDm6u1/gZtR9IO3yWsQwblYpIPGIxeppUhEALDQiAO3mF5kulHCMwjAUnWOLSulM3bkTw5+M883jJVh8BQEJB0GoD/qc5MS6takhN2rFHX7E3yw0MBI50IgRkQkHQigF3q0kPssAXwr/r7iSS/0VmtpGcC+EQ5hS3n8B6Sb5nB7XNJCAw8AUnXAnAyKJsT4x458J1KB0JgAQhIehCAn7du9UKSxy/t1pLOrF0mLvYQkpa0i4VACITAghCIg3dBMOcmITDYBCQ5euoe1YvdSZ4w2D1K60Ng/glI2hzAT+pOdjLdg6QXSCY1Sc7MbCeW7WqS685/S3OHEOhPApI2AuCId49X/0TyHpI2APCravED2hHupZPorbNP7NKjHUme2p89TatCYH4ISHoNgMOr9mtI3nN+7pRaQ2D4CEjyAuLjq2cnkXzaVL2U5OSFP65yZ5B87FTX5HwIhEAIzBWBOHjnimTqCYEhJSDp7QAOqO5dTvK+3boqyckHfgfgmST/OKQ40q0QmDYBSXZM3b8uOJCk36VJTdJd7MRqZWfemuSPmgtKB9ta2Gcmgn7ajyEFB5iApAsta1Jd2IXklyXtAMA6vLYVmkUTSVvV8SaZYbvnl5Bs3sUBJpKmh8D0CUhy4qebAdyprnoUye9Pv4aUDIHRJSBpWQCWNLHElnOP+Htz63SISLIEimWFLiTpKOBYCIRACCwIgTh4FwRzbhICg0lA0t0BWOvQ2cptXbcaSXoZgKOrzP+RtN5bLARGlkA5Y39dAG4kuepUMCR9HsAzqpyduNu1r5F0ZSuD8+8BvN//i7N3KrI5P4gEJFmWwfIMtotIbuJ/SNoTwDH+J0nr8PqYt5zvU5G+1rr+KIAX1cTcRSZE+g4ij7Q5BHolIOmzAJ5V151Fcpte60j5EBhVAh3R798m2chtTYlEkndt2TF8Ackmf8mU16VACIRACMyWQBy8syWY60NgiAlIsu6u9Xdt3yLZbFMa73VtiXWEiKMPbc507gm2o3iPm2pL+hDjS9dGmICkkwHsVAj2JGmH06QmaUMAl5SDypEia7Yj4SW9GMDHulRgLVLLpngiHwuBoSEgydHsjsb192Qjkt4lYmfuOwBYT9cTaL831jtcrzp+PQBH+B4K4HF17BSSzbs4NHzSkRCY4pvi3R6Xt74pa5O8LtRCIASmR0CSJX2a78gWJM+bzpW1G+tvVfbnJB88netSJgRCIATmgkAcvHNBMXWEwBASkORtsd4eaxvLXE7SE+4JJuk4AC+cBIEn5hfZ0UXS0YexEBgJApI8uPeix19IOhJ+qSbpAgBjEYoAjiL5yvYFkhwBbO1ET9qfAGBXAO16P0LSkfSxEBh4ApLeDeAN1ZETSfr3PmaSPu5FjfrT3yZHSdk+Wcc369C+XpXkLQMPJR0IgR4ISHJip8axdDTJl0/3ckn+xhwF4P/VDi5vS3d9+5FsdOWnW13KhcBAEuhIkrssSS++T2mSDgOwfxX8NMnnTnlRCoRACITAHBGIg3eOQKaaEBgGApIcrevETudLurSio9y1Q0i+sbOPkuxwuqoiRBxN5QnA3wF4O1JbB/FXJB1pFQuBkSAgye+B9Q/PJWlt0ElN0s4AnBjK9he/O9OZSEiy0+tTLc3eJ5J0QpBYCAwsAUkrA3Akrh23jlBfua17KMn6u47SbczvjBcRHclrB7ClUbwQYjuI5NsGFkYaHgIzIFBjOe/Asjmxp78p/5lOVZKs+/6wpZQ9nORrp1NXyoTAIBOQ9G0AYwnSSE7bZyLpz60F+PVJ/maQOaTtIRACg0Vg2v+xGqxupbUhEAK9EpDkJByWWrBTytGETVKAsczl3eqTdDaAxnn1KpIfaMpJ2hjA12vrbBxPvT6QlB9oAi0H75QJNiTdZCdWdfh5JO20nZZJcoTWT2uR5fck15nWhSkUAn1KoMOB+2aS72o3VZK3yT6kjnkLrZ27Tmhj5651d4+tc9PSvu5TDGlWCMyYgCTnTlilKtiDZPNOLLVOSacD2L4KuY63AvgxgOcDeDaARkv+cyT9dywEhpaApC8DeGp18LEkz5iqs5L2BdDMhcaDW0q2wXkTvDjpxUvLpxxM0k7kWAiEQAjMGYE4eOcMZSoKgcEmIGldAHbYrtXRk6eT/FJn7yR5EuDJgG1Sx5Ik64MeL+luAN4EYEsAToxjp9S7Sd442OTS+hBYkoAkR2zcq/RDV+kmb+KrJFmbd4+qYUaR7q1o+3+RbLKl57GEwMARqIVGRxx6Anw9yTW6fHu8+Gg96veSdGLCMauM546cumsdehJJLzKOWy08OpHh/b1bBcBXSJ41cKDS4BCYhICkHQF8s3XackH7eBy2NGiSDgJwYJXxO3gPkt6Z1bxfHrf9H4BH1XdtXZK/y4MIgWElIGkjAL+s/v2YpOcvk1pJ2/285jgu98Ka/zhRtXeWWPKk06yLvT1Jy9nFQiAEQmDWBOLgnTXCVBACw0VA0qvseAXQOIqsu+sIEK9kj5ukPwBoJt/bLG2SLMlaVE6+tlwHLWv0Wjt07+GimN6MOoGOSbbfoc07dag7yljbbROSF/fKTpIXSRxlL5KehMdCYGAJ1GLjFxw9SPK06XZE0ocB7FXlf0ayifK189cLl05E+Ogu9XmC/VSS3poeC4GBJyBpOwCfdrLOVmeuAOAFe0tpLWGSLHXihfjGLJPyfJKOkh8zSd7h5XJegDmGZPO+DTyzdCAEJnkv2jtGJpUnKWkhO3Gb3Vhnkdym3pujATQ5Erxo8hUAj2gF1Hj893KSH8lTCIEQCIHZEoiDd7YEc30IDCGBGsR7S5+34Pm/E1eSbDQNPch/vXV5q+s/IPnIyTBI8lYlb1lqzNvRvZ22HSnsqBBvf5pWAoMhRJ4uDSGBjq3mHtQ7IeHhlbTQ79BL6/1y7/cmaQdVT9aRzOMKkvfpqYIUDoEhIFAOXEcTeoHDC4f3aRZUauLtiPomKaF1fa0x729aE+3razzB7vkdHAJ86cKQEpBkrdyDOxbX7bB9dntXSSVVa6LdnVfB+RWaxUJLNNgx7OMe/zULiseTnCzB7qREJW1g5xbJE4YUe7o1RAQqKtdO3iZAxZIKzyXphcExk+SkuB7bOVLX5sWRezYR8JK8uLJ+nXPSz7Gdi5KeCeAzrXdtl85gmiFCma6EQAgsEIE4eBcIdG4TAoNIQJInwJ+r7X3n1oDkLgAckejBjh2yHsRc261/knYCcHKdc1nr9B5Z9Xiy7YHSQ+v8G0geOoic0uYQmIyAJEfDv2EKQqeQ9LvSk0nyNvUXty56WSJAekKYwkNCQJJlFpqFxvGs5ZLspLJjqtGm9mTaUYljCackecutHV5OCmon73qNI6uNRtJ6pU1vWYgkbRuS380odKO0P724aGmSZt7375I4Gfs2dWjv3rfyMVj+xJHAY0UAfALAm0vaxPX8L0kvUvZkkpzjYZPSIN1ousnferpJCofAHBKoXSWWlWt0rf0+2MFrKZO1AXhe1JgXEO/XTqzWkbR66/Zukcqj4PmVncPXkWxH3c9hL1JVCITAqBCIg3dUnnT6GQJzRECSt87uWtVZXqHZdrTEHVqJpnzOk+pPdhaS9FsA1v9NQpw5ekappr8ISLJm4WGlP93+7t4K4DW9OGVLo9SSJvvVe9N09gySY9meYyEwSgTq/fpe9dm7Q1Yi+Q//LckJ2t7Y4nGU3532bpHSh/fOEk+wTyVpDdMJJuknllmpg88g+cVRYpy+Dj6Bipx1PoUmga479Q6Sb5Xk5FGPAfAPknduelsLIB7zWU9+7JVqOYk3JWln7X9PSE+opGxNpOKZjmok6XenKfM0AE1Oh+w4Gfyf1cj0oHY2fqNkfiaTwrL2taPjrQU/bpI8XnOCNZs1sb3DpB0B/HIAH7SMQy/jwZGBn46GQAj0RCAO3p5wpXAIhIAkD1wcfetByoqTRV9IeokjPIpY10lzTQocEeIthLbl2kk9QjsEhomApBUBvADA6gAuAfD5qX7vFYHoKCpPjO14ciRh57f7U643EifD9GtJX6ZLQNI1FUXlS15NsplI2+n0RwCrdtRlDVFLovi9GTNJ36loxd+S9DvmY47K8vvq7bXfqqJXk/SCZCwEBpJA7axyRK/1dL0YcpukUwA82fJBJJtt5uP9k7RnOaiaSMVrSFrGwe+JczHYsbXZJEDs0PWiyO2SvJDSaJRuQdJb32MhMDAEapH9FbV7ajUA/k1b8sea8V31res9cRLrraqjnj9t2c65IOlNJL0g2ZPV4ox3pDwrSat7QpfCITC0BOLgHdpHm46FwPwQqMHNRwGc1p4gd95N0mUAvNXPZhkHT8KXMEnjDl6SE/6bVBls7STeLdma5+d5ptb+IiDJ28yfUtG+9wfgCUS3b7W3AVq72rInPSdm669epzUhMDMCHZFR15L0dtkxq+jDc+pPO2j9vry9paXob9SujkKU5HKWa/gNybEIREneou5t7e2oxUeS/MHMWpurQqB/CFh2pNlG3h6H1TfFuRMmmCQ7fq1Rbd1da5B+VtKyAKx93WwrtxSXnV12BHshpPl2fRfAD1vR9B4/7tA/NNKSEJhbApIOBPDxlna13xUn8mxk6ZyXYaulOYWnapGk7QGcXuUsu+L39vVZ7J+KXM6HwHATiIN3uJ9vehcCi0agJc9wIcn2lsDOSUOzNRBdHLwXAnhgaf2u300bcdE6mBuHwBwT6HBIddZuh64jCb9vLUSS1hyNhcBIEygHr+VP7gBgW5J2JI2ZJOuLWgPbto3fmYrKPd5Jo1rOJzt/H1eJbr5Lctu63hrxbdkTR11ZW7HrYuVIP4h0fuAJtHZn2fHkpLddvzGWNCFp7VG/Y140eXR1/up6B/2d8jnv9PKW9kc0r2S9c3ZErd5O8jbw8NKBEGgRKM1eJ/a8gOSD23AkfaUW8X3YMl1jUfQzASjpDwAcQd+2WwA4WZu/X7EQCIERJBAH7wg+9HQ5BBaCgCRrIN7JSdZIPrXbPSu7ubPJ+r9FndFXuwA4sa7zhMDb/Kx7ZYfwsTMdEC1E33OPEJgJAUmeEDRah67iJADeOv71dsKOmdSda0JgWAnUd+Q5JK1hOG6S9qqIQx97QMd22A3r++JkT20bcwT7QIc2b1PGEYpObrhPvkHD+osazX5Jcm4FR617POaodSckfNdkO0SqvPV5bV78WLNx/Ha8h+28DT51KMmpEo+O5kNIr4eCgCQnl24S576UZCNXN9a/VqJB/zmjBNOSXg/gkAJ2fTmLx+SFyo4j2U7COxRs04kQCIGpCcTBOzWjlAiBEJgBgVYE79kkH96tCknOXu7IKdub2/pTkv5Umc27XepJ9mdIPm8GTcslIdCXBGpLuCfZzbfZiyTebndkXzY4jQqBPiYgqb1I6MRqR3Q2V9LOAKxHal3QCRnMJX0ZQLM4aW3FB7TkHezQehrJ0/oYQZoWAj0RqISF/k1bn7cxa4x68dEJDB/Xit79FYANqtD4wkiXd8wRjI026c0kGw3entqWwiEwKAQsf1JSJctVmw8i+bam/ZKeXQsoPuSAlT166VvtRPEcqal/a5I/qkVNjxcbHe1JA2x6uV/KhkAIDBaBOHgH63mltSEwMARa25DsjN2kMwqkI7rKE4cVmogoSd5W20R4XF7aid7ut01L680sxrfTDgyYNDQElkJAUrfIQm8JdwINyzPEQiAEpkGgEhQ6KejdKsJwVZJeNFnCJDnR51kkvejoCKuNAVxUiy3ejr4SgDsDsLyDEx56/DwhKngaTUqREOh7ApKs+/5ZAI+pXVNNm8fltiStU9q7Pnc5ySbfQrd3q+0IfjpJ78bqySQ9j+Qne7oohUNgEQlI8vtj+Z/GCevvyTEAnNDQurke69leTNKLjNO2lj68r/k/kr7XmFXSw18AWKUOOYeJ3+dYCITAiBCIg3dEHnS6GQILTaClQeX/zlhfysnUvE3Jzlz/fzv6docmEqq223q7kTUVl9BqqyRU1pay/INtM5LnL3T/cr8QmE8CkuxE8lbwdrSTt447KdR183nv1B0Cw0KgYyHxZgAPJ3nJVP2T5Amynby257edS5X88/Ek318Tam9r/zGAo0laUzEWAgNPoKIEXwlgO2tPly6vF9ztRPL47RPVyVc370JnpyW9oBZFfOpiko6C78kk7VmOMUcsvoikt7/HQqDvCUhaC8DZlXCwW3v9LfJCoQNhpmUVBODrPLfydZZG+WP7YkmOrPfCim3SXZTTumEKhUAIDByBOHgH7pGlwSEwOAQkWYPKOrp21k5m7yD51uakJK94N9mVDyH5xs4LJb0WwHvq+IEknRk9FgJDR0DSuwD49968Qx7QOwrkFST/M3QdTodCYI4JSDoawMta1Xq7uaMB/W3yYsnf2tqhHdqiU0Un7gPgqKrb7+ZXAbw8idjm+CGmur4iIOlwAK+pRnWVZ5C0LAAvqjiC3pq+G09ncaXLeM/yDu1EVU6+60jgy/oKShoTApMQkOSFEu9KXLMlweXcCk/qFVqHfu9RJF33EibpL/Xu/YWkd0DGQiAERoRAHLwj8qDTzRBYLAKSHgjAWWPv3dEGR+k+m6STpo2ZpM0A/LT+/BPJe0wycGk7ePcn+d7F6l/uGwLzTaCi2p3wZsfWvSZous13G1J/CAwyAUnPLKduo03Y7s52JM+sb5ATeTrxpyUZbEvdISLJCaS8kNlswx2rBsBbSVr2YalWkZBfSuTvVKRyvp8IdETGH07SY7IJJskLH14AsZ1E0rtSZmQl27V/a6HT75gXaHbPuzMjpLlokQjU7kbrvXs3Y09WmvFOvmuzA3elbtG/lSD0lnImTzqX6unmKRwCITAwBOLgHZhHlYaGwGATkGQH7/bW2i2tw3O7TAjaWm27kHSSmyVMkiM3Gs23+5C8olc6khwlfBnJK3u9NuVDYDEI1AKIHUqOAvHAPhG8i/Egcs+BJCDJiaPeBOClAFavTpxD8mFNhyS1I3JPJdleVJm035IcYehdJY9t6ZaeSdLb27uapC0BnAPgX6XD+KmBBJtGjxyBis61nrV3ljhy3RrxX2y9R2sA+H29C/59r9KOkp8JsEkWOl23F1MOnUmduSYEBomAJC8+NoEvlrB7W7eFREnW3H1W9e3zJJt/D1J309YQCIEZEoiDd4bgclkIhMDcEpC0O4CPV60Xkdyk2x0k2UnsBAU2O2itDdeTSbJ+r7cO+v8dGbnHZMl3eqo4hUNgAQg4OmO2k+UFaGZuEQJ9S6AcVE7a6W/NuH6hpN+WXqKdVmuQvKGXTlR01vcA3KuumzTSXpKlIppyTyL59V7ulbIhsJgEJH0AwL6tNvhd8Y4s///jAaxf5wYUwxIAACAASURBVN5C8p1z1dbWQqd1Rhuz1MpzSTo/QywEho5AJQJ1LpNOuwnAEQD8PjoR6EcBPLlVaAuS5w0dkHQoBEJgUgJx8ObHEQIhsOgEarLtbOd3nUqrTdK1FcHodm9L8ru9dkCS9Ref27ru+yQf1Ws9KR8CIRACITA8BCR526zlFn5FsslyPqGDlcDm+QC28CJjJVcb1wOtBcQ/lMzDTSSbbObj9bQSR/nY+SQtTxQLgYEiIMn5Ew5sRa13tv96ko7mnXOrBG4fLJ3Rpn5HxFuf93dzfsNUGAKLREDSigC8ENlIDFlT/i0A1pmiSeM5SiT5O+TI3mNJOjFoLARCYEgJxME7pA823QqBQSIg6aCaJLjZJ5LctVv7JVmD7bA69yOSW/faT0mOKvl1K9GBqziNZJPYrdcqUz4EQiAEQmAICEj6OwBLOVjfcPXOnR2VLMeRUp3j578C+ByAVzm6XtJ3AFie4XaSTjY1bpI8SfcOkrvUguYGbZmh0q33wuVrSR43BFjThSEmUAv0L6qoQW8b37n1fuxI8tT56n7d+0cAHtq6xxkkLZUSC4GhICDpawCeWJ0ZT84mabdy9N6/o6O3AnAC60Oa45Ic3d68Fz7/YQBvnokW8FBATSdCYIgJxME7xA83XQuBQSFQg3Qn5LBO1D27Jc0o/cRGVsHbZ9edSaZySd6q9JAONp8k6YisWAiEQAiEwIgSkHQ8gBdU9731de8m2knSRgAubjmv7NR1xK81EZvxtL9NTv7kybh3pCwRwSvJW2j3qHt8huRz2rglXQKgkR7amqQdWLEQ6HsCktZz9Htp855H0lHuc26S7gng7QCeUe9Zc48Zjw3nvJGpMATmgEDpu/+sqroNwGokveNx3CQ5kte7Ev3N+XklNfS70C7j99K5UJxItDE7ep82n4swc4AgVYRACPRIIA7eHoGleAiEwOIQkOToKGdCt/0vSSfK6ckkPQFAo3PoLbWeJDiK6lCSb+ipshQOgRAIgRAYKgIVXXua5X9aHRvbZi7J21rtULJ9y05cZzCv7bMHl9PW0b9tO4bkXs2BmohfVZNsO4edLNHJqsZM0rNLF95/XkrSTuVYCAwMgdoK7nwKryRpnek5MUl2THlrunV/myS7Td12Zv3Q0Ywzke2akwamkhCYBwIdSaXfSdLSDDM2SU9zcjYAD2xVckC3ZG0zvkkuDIEQWFQCcfAuKv7cPARCYDoESvPQDln/N+tvAFYk+Z/pXNsuI8kaVqvWsU0BeFXck4Z9SR45WX3Odk7y3F7vl/IhEAIhEAKDR0CSt5y/A8DaAF5N8v2SrgTgCMV/kXSCzglWDqhDAVhKyObt6pZ5+FNTUJKjcR9Wf+9P8r2tc/4WeZfKCnVsE5IXtc6v2mvSt8EjnxaHwBLv1eb1LjrBbqNB2hS6GsAxAN6bRLn55QwbgdJzt5605y1d9dxn2mdJjwPwlZIkEoCHk7SGdSwEQmDACcTBO+APMM0PgVEgIOl8AHbI2vYk6S2uPVklA/Gqtc1RvE8B0DiJdyH55c4KK9rqzIoW8eR+12Sj7Ql7CodACITAwBKQtAbJ69wBSV4QfHA5blcheUuXb0ZbK/EQkm9sykiyJq+1eW3XkrTzeNwkWdvX0Ym2U0ju1Lr27gBuAOCIyGeQ9DcxFgJDSUDS3QB4V5WlTDqTtDni/asA3krSciaxEBhqApKcyPAckt45Mm2T5OTR3nVyHwDWdf8YyRtb35WNAXgR0f6g5CKZNtkUDIH+JhAHb38/n7QuBELgvxPrYwG8EMBvSTpJWk9WkwXrKTr6Y0zDqqKkHP1h26LTcSvpJc6OXlpy7fvtQNJbeGMhEAIhEAIjQqAm2U4IavO3YyuS17Ymyw8q/UMf+hNJa/OOmySXXbMObEfSi4djJskRWnYkO4rX3yhH6447kCWdDKBx+F5OsnOL+og8hXRzmAlIerITPwHYsiORoSMMLyg5rc8OM4P0LQTmgoAkB608tUtdfwBweLN7RJJ3mKwE4AqSdgTHQiAEBpxAHLwD/gDT/BAYFQKS7Ni9I0lLNfRkkk6qzM6+7mCSB9TK9veqIk+mx1a1JVmT1xG+bQ3G5n7ePuvIrQnJC3pqTAqHQAiEQAgMHIGSYPB22bVajb+i9HidrMZJbhoH7oRdIZIs23BYXfcjklu3AUhyZK8jfG1vI9k4kscOVPTvp6v+R5L8wcABTINDYBICko4AYFkUR+62zeMyJz609ui41ElAhkAITE5AkneCeEdIY9cDuHNL/sfHLXdnrex9qtCpJHdsLqjv3f8BOLC9GBnuIRAC/U8gDt7+f0ZpYQiEwCwISGpvQRrXsJLkTOmeOIDk2H8LJVnjzZFSzkRru7DkGZrEOd4a+8VZNCeXhkAIhEAIDCiB0kT8BoDHdEQYtnt0EclNWhNlfz+8OGjdXi8Orkvymtb5rQCcXX/fSLLRiR875MVNkpYI8r/t3P3+gOJLs0NgCQKSdgPgxYvGrF3t6HYnfupZE1SS5Uze5wh7AI6i96KMoxkdtdhz7oY8shAYNAKS/H1pJIBeR3JscVHShvVuPL52i7S7tg3Js1rfJb9Dr6q/9yb54UHjkPaGwKgSiIN3VJ98+h0CI0JA0sUA7l/d3Zmkkwp4oONMtE6i48mEJ97HAbDT1+ZJ+JtKyuE1deyXJO0sjoVACIRACIwwAUmO4nXEoTV5bU+v//dW8o3aO00kfQ7AM+v8/5J8aRudJOvq3quOPYmkd5CMWWuB8lIAjgr29ywWAkNDoJW8sOmTd1w9l6Sj4nsySY58t8TDHbpcaO3eJ5P8dk+VpnAIDBgBSZ7D2MdzIUlLB00wSasA+CaAh9YJy985gWjz3emUDLo3AO9uvCrJDAfsx5DmjiSBOHhH8rGn0yEwGgQkeVLtybXtApJNojZPnD8CwBNtD4S8fanZWvvb2ir7ZwDWqvJEwZP2B2ZyPRq/m/QyBEIgBKZLoOQT7DTymPpEkru2JsobALCskM95S+zKJK2x20yk9wLQREadT3Kz9n07FiifQ/Iz021XyoXAIBCQtCIA6+o6qrCxf9XW8EOm2wdJTsr27irvcZ1lT34J4H+86FLvoMdyryD5oenWm3IhMGgEJHkxw4ErExy3Hd+WP1rrvY5ZT/7c1nepLRk04TIAv/J7RnJsB2QsBEKg/wjEwdt/zyQtCoEQmAMCpR9lzTZv1/OgfkOSl7cGMKc4mqN1K5c5kuR+PibpdACWbLCdRPJpc9CsVBECIRACITBkBCTZgeSknI7AHY88lHQ+gGZhcU+SH219g5z009INjozy92cDktb0HbOOBcrLSN5vyLClOyEwTkCSo+EtgeVFkcacePD5UyW2reRsHtPZ/glg4453ydGJPy6HlhdYViDpcrEQGDoCkixt4kSFtq85B0lbnqS1g9Hnv0Oymev4u+PrGmkUf5f8PbO/yN+pttnJ652OsRAIgT4jEAdvnz2QNCcEQmBuCEiy5pQT29i+QLLZIjt2QJI1D63RZnMijx1Inlfn2gMcR5I4sdpfm5ZJ8nalzaPHOzfPKrWEQAiEwLARkLRTabq7a78h6USh4ybpYwBeXAc+Q/I5rW/MMgCaBUof3pTkBcPGKP0JgU4ClR/hgx0J1xxduCvJq7oRk2Sd3XVa575aMg+3tN4pO3m9gOK5r5O2WaYrFgJDR6AWHP298CKizRHtPwNwRkX2vqzOWaJuLZI3tN6TrpJBJRdkCRTLEfkd2oTkRZKcXPTMtq780AFNh0JgwAjEwTtgDyzNDYEQmJpAJcKxQ9byCnbQelvsBD03SR7gOImAk6p566sHQGPWoQnnRB8Ht+/a2jbrSBBr+u5D0pEmsRAIgRAIgRDwd+S02h5uGg8l+ZPWN+ae1jOsibIjCVdqaxt2LFB+jWR7t4nrXhnA7pYOKokhR2FFWzS/u6EgIGlZAB8AsHcrGZSjCb0t/KUdMifOjfCL6rjHe8vVvz0+exdJO6WasZ0X85147QSSfn/GzQv37ajfoQCZTowsgQpE8TdhwsJiB5D3k3x16/3YE8Ax9fcSkkE1P9oOwFO821HSowB8r8r7e/Zmkp8aWejpeAj0CYE4ePvkQaQZIRACc0tA0ksAvB/A25oMstO5Q133v1X2BpKrdUwCrJH40466PPHwhOGF07lHyoRACIRACAw/AUnOQv4Aknt0fEd+BOBhdWx/ku9tTbKdAKfRf7eTajWS1oS3Y9eOL0+gn9ElC7ojfvcl+cnhJ5sejgIBSWsA+DyAR7f6a31Rv1NjciaSvuDo3jr/WC/oA3B0/Ep1zE5dJ9D9FgBf64X/49vjtUrOdiAAJzh8VnvH1ihwTh+Hl4Akz1l2A3BfANa73rZ66+h2B7+MBbdIWqpkUDdCkrxouXnHOUcDP769oDm8dNOzEOhPAnHw9udzSatCIAQWgUANcDxJvmvd3oMUTwommKS7AXgqAK92P6KisFzm2tpK6+QFXU3Ssz2JIDm+dXARuppbhkAIhEAILAKBSsrmJDZj3wySa7eb0aH/fjDJA5rzkrzN1lqljTn61xNzSzo09kmSz1+EruWWITAvBCR5nGVHr2UYbiZpJ+6YSXIEoSMJ/0ly+dZxJ2h7TTl0fdjJdFev808l6d1bvt55GuyU8ntkZ9e6LtuOEp6XTqXSEFhgApK8a9GLjjYvZPidat4j68M3C5ETJIOW1szSzrZMw4tqcWXstQLw1s7dj+16arHSSa1PArBfWyN4gbHkdiEwdATi4B26R5oOhUAIzJSAJG9NstPWdh7JLaaqS5KjrZzcY+sqO2kynNKwugiAda88+Jl2huip2pHzIRACIRAC/U9AkhcC16yWbkvyu61Jtr85TgZlu4mkvy9jJumbAHasP+3YfYmjdSuhqBccj6ukoi7yMZLexRILgaEhIGkf6+iS/EbrvfC/Hw/gNpKNPEPzztgR/FnnWGhB+CvJFVrXdybcbU45AeKpdhJHX3RofkIj35HSht+tnZdEkhdOLLHghcIlJIOmC02SZU88j2rew65BMvU9+1BJsPjPo0i+crr3SbkQCIGlE4iDN7+QEAiBEPjv5Lk9wPHqs/XYnGygmSjcCYAzzXqL08ldNH3b2wSfTvJLnWAl/V9rq+H3STrqJBYCIRACITAiBCS9uxKAnkvSkYnjJsnbzhvNRGc+t8a7v09taSBHGd6f5GUd19qZZS3Ster4I0n+YESwppsjSkDSR6zLW93fjuSZXcZefn9O9LgOwKEk31DvlTWsL2yGeeXcsnOqHRFvWYetkuRwRH9gI9BtSZNKBnXrfun7PgaAdXrHklM3JmkDABdXRPzvSbaTH44VK+mV39d71jVPyghgTxdDYN4IxME7b2hTcQiEwCARkPRDAA+vNk/Y4irp06Vh1e7S1ZWg7Q129kqy49cRH7YjSe7bZZJhaYdPAHgigPVIOpIrFgIhEAIhMEIEKkkaSFoSqJn0OuK20X+/gOSmrXNNlKIP7U3yw91w1cT7cgB/r8Rtt9WxzUl+cYQQp6sjQqDGXpZYsLau/3+DRrO6yxhsZ++4aumOXgLgflXOUY2O9rUDyuXe5YWUOjch6ndE0KabI0CgdhY2SQqXkAxqI5DkHSant/StfdoLINbidb6TsUSfks4AYAfwElH1db6RVfGfTszmdy0WAiEwRwTi4J0jkKkmBEJgcAlI8kDEA5JmsOKM5t6m5IHKYRVtNVkHLbfg6F1H5zaT8wm6iVXPfj5fzuBlmgnG4FJLy0MgBEIgBOaCQOkROpGa9d+9g2RDknbUNonV7LC1RugtJL2YOKlJ+jgARwePOYElOZrKjionbHNE8D4kr5uLdqeOEOgHApIsd/X6asvfADyb5FeneE+cD+EzVeZSkht1lu9IIrUDydP6ob9pQwjMJYFKLu1Enzt1i4Cv74i/O466vctS7m1NXeteHwnA2vL/IHnndnlJjwRwVh2z1rUTKcZCIATmkEAcvHMIM1WFQAgMJgFJ7eQCzkLuwcmYSbKjt9GTGnPcStoQwBs9iQBg6YYJ45fKTDuW9bzq2KW2B3orkqNElpBvGExyaXUIhEAIhMBsCUhar6KgrLn7eZLPan0/2tvIjyG513Tv1yHtMF4lgBNIvnC69aRcCPQ7AUmOAvS4rDGP3bzwbk1r//t9jbRW6VZ7x1WjxbsJSedHmDiYk6x5be1r2xEkvVAfC4GRIyDp8HLeuu9eIHQ0rxNKex7kxZUlFkgAfJXkU9qwJP2ukiX6cBZNRu6XlA4vBIE4eBeCcu4RAiHQ9wQkPbm2vjpZx5h1RPYukVW2oq4OrMFN4wQ+m2Qj9dDU4224K1W1m5E8v++BpIEhEAIhEAILSkDS/gA+SNLbXpvvhzV5rc1rey1JT7SnbZIsDeQkbE4gas3fZuxviaBNSXqSHguBgScg6QkALKnVjLeaPt1IctXWO/UBAI2MliUbdurW+ZJqOKnO7U/SUY7Ne/nycnLt1ez4GniA6UAITEJA0q8sfwLAGvArdMlD8uBKsLZlq4oJCyeSnEjtiDr/Y5LtsmEfAiEwRwTi4J0jkKkmBEJg+Ah0RD+9g+RbO3spyRG8jgRZvrbWrkvSK9TNJKC9dfBbJMcdyNMlVkkLHkHyhOlek3IhEAIhEAKDT0CSo3qtLWr7FMnnzbRXVdcpALauOi4j2WiQzrTaXBcCfUWgFuydSM3SJHb2euv5mGSDJDt6HYHoRGqWLVmV5C3dOiCpnTz3iSSthe06PN7zuM/jvxtIrtZXANKYEJhjApKcjNC7SZaQXWjNd5xAdCyBIYCvk3xS61znXMl5SK6a42amuhAIgdYqfmCEQAiEQAh0EJBkram/tDK9Pozkz9rFSu9w9zp2HMkXtwY0zmp+fSX/sFbv6u2kOtMFLukCAJsAsCbjRiT/M91rUy4EQiAEQmCwCUhyBK8jeS3zc9+pJsa18Lg9AOsmntwl2qrtuHp6ZIMG+/eR1k+fgKTvANiurnBiqIO6XV1OXI//nLztVpLWxx4zSU7G1siouIxlIOwktvTJydNvTUqGwGAQkPQpAM+p1p5E8mkdc6H2fMcLJ6u1kx1KcoLpZnHy+E6JoErMtiYAS+ZZDsWRwrEQCIEZEEgE7wyg5ZIQCIHRISDpWAAvasb1NZD/GIAfAFgXgCM6/N/SW5us5a1JwLesMVV/H0KyrQ/nSYK3Ezoq2BN325kADifpjLTNRMKDqEaz9wqS9xkd+ulpCIRACISApEeXnqhhWE/0OZM5ZSV5i/puHdSutqPX0VWV6NOOX0cg2o4k2WxXD+wQGFoCkrYCcHarg86JYGftEibpVACPqxMfIfky/1vSvWuxfbI5tBdhnk/y80MLMh0bOQKS/M2wnI+TfdosPfdlAJ4jObGhc5f4O2WbkGi6NOa9SOl3xvJD44ms651qa137kMs4afWr4ugduZ9aOjwHBOLgnQOIqSIEQmC4CXQ4eSfr7N5N1vIasGwG4KfNQIjkPZoLJTlrrBN3uEw3s0P3GR7YSLrJSduq0BYkzxtu2uldCIRACIRAJwFJ1vw8qrX7zpNq6yLa4fsL7x6RdBgA6/hOZt5J4uhdJ5/yBNo2YTIe8iEwrAQk/QbAvVr9c5SgnbwTnLGSXgvgPVXOzqY1m2hESd7FZb1R24kALqkEU46Yb2v/7knS0YixEBgKApI2ruCWTo3rdv9uImlZoXGT5KCVzevAK0h+sOP8EwG8qXYqNokPXcQ7IB/bLQHiUABNJ0JgngjEwTtPYFNtCITAcBGoFeh3AnBSAA9A/D9LONiuItmeNDjK49cAHOlh24WkV7p9fFkA1uj1ViSbJxiXVl2OCG7+u/xdAD9sZYU+jWQTDTxccNObEAiBEAiBKQlIcgJPJ33yImHbHNH7GUl29jYJP8cct5I2rO+Is51bB7Ft8gJieyvtlI1IgRAYQAKS9gLw4Wq6Za88Blu9/ra+6GcAXOmoQQCO9B0bsgF4FEnv2PL4zcl4rWFt+y3J9Sa8TJJ3ZL2tjkWbdwB/J2ny1AQkOWHnC1uLJWu1rtqZ5FeavyW1o3OvJul5zqRWya3f11pE8RzJydounrplKRECIWACcfDmdxACIRACMyDQ0kT01dbmPac1oLEm78fr7wtJPqh1zpFTzTYmb5vdluRYhnRJdy/JB2c6HztU/52esX7vDLqWS0IgBEIgBPqYQDl69wbgiCo7knaoifEZ1ezPkGz0Ev/7Mfnv4uKBAF7fcgKfTdJO41gIDC0BSd5WbkkSL8p7XLVB/b8jC8d3V3UAsGPplSQ/1Bq/OdlhE524FclzO6FJ8ljQgQC2+zTju6GFm46NNAFJljGxnIntApKbtoFIckLDZiHlkc1iyVTQJDmfiSPg7avKYslUwHI+BFoE4uDNzyEEQiAEZkBAklehvT3P25G8Qj1mNYn+MwAn5PBEwknRLqtzu9b2WP/p7bXe9vfXLhOEdgIcnz6UZJOZdgatzSUhEAIhEALDTEBSWxboHSQdTTjBKvmaHV3L1/dpXZLeURILgaElIMl5E5oEuOOLH+X49WL8U2pX1thQDYCdtLu23w1JbwdwQEH6DklLMixhko4GMKbXGwfv0P6k0rEWAUmvqXwim5N0Mugxk/RmSwDVn98luW3rnBMdvqUWKS2DcjoAa12Py9BJsoN3j7rGSaqtARwLgRCYgkAcvPmJhEAIhMAcEugY3J9I0k7dZrBjvURHjti2IXlWt1tLsr6bdd5sN5NsNHjnsKWpKgRCIARCYFgISHJ04l8ALAPAiZ68s6T5jjTfIDuzvMPEdpx1e4el/+lHCExGQJIX2e9betVO8GSH0gST5LHZct22gtfuKkfvOhLYO6rWIum/lzBJ7V1adyD5nzyZEBg1ApLuBuDG2i3iaHgHtIw5aCW9pKUB34nGC5CHALCe/OsAvLsK7EDytFHjmP6GwEwIxME7E2q5JgRCIAS6D+yti/j71gTb2oa31oBmndLe9Z+Xk/Rko6tJajuCnz5ZtvQ8hBAIgRAIgRBoCHQkBHUk4o8BOHrRGqLedfKN2vLq75IdXbeFXgiMAoGKJvwDyWN77a8k6+5af9f2fpKv7lZHObW8g8uLLH8hadmtcZPkRFI7A/B40M4vv5dvIel/x0JgaAhI8g7HXapDHyT5Cv+7dpF45+Id6pwTH54P4IGtABif8jfKiyl+h+wgXr79vZLk9+gTAPYjedzQgEtHQmAOCMTBOwcQU0UIhEAI1MDFK9aWV3i8k9qQ9Cr0mEl6Xg1G/OerSb5/kgnCCwAcX+cuJvmAznKSrAG3dWnK/bhbNEqeSAiEQAiEwOgR6HDyTgZgb5JNwqnRg5Qeh8A0CUiy48lJ2GyOjL8zSTucljBJ7Qj5w0m+tsZ/TwDwuZYMRPtaL8QcRNISEJOapPUB3J+kF2liIdDXBCR596IXF73Y4cXEsUj2knM4vBp/Oklr+I6ZpHsCOBLATnVdc+oHJB854aWRvCjS6Gffi+RVfQ0kjQuBBSQQB+8Cws6tQiAERoOApHt3JtaQ5AGNdapsXeUZSr/X25PsKPagf2OSl7QGP87s/FkAHui3zZpVu5O8aDQIp5chEAIhEAKTEZC0HoB3VrKnFcqxZAkH21Uk7xV6IRACUxOQdCmADVsl30ty/84rJe0A4Ft13JGHK3oHlySP237YcljZWeykVF6k36KV8PAkkk9byjttuZVGvmuLyZzMU/coJUJgYQhIsnPXztcrW/OYth72PUle0+VdWhWAk7P5es+FNuzQ9rWur/V9bT5/fe1M+QWAY0h+fmF6mLuEQH8SiIO3P59LWhUCITBkBCTtBaCJmBqP7Gh3U9JRAPapYxMG+x0OYhfx1lrrwTXmiJIXkPzUkKFLd0IgBEIgBGZBQNIVrYVBa/M6iVQsBEJgKQQk7Qbg01XE0bvL1b+/DWC3lqaoda3/tzUm28NSEJLsqLIDq7nuWW3nUyV5s2avnb22bUl+t7NJkiwPYZkI229JegEnFgIDR0CSk3++rRr+BpKHdvm9fwjA3nX8CySf2ZSRtCIAa/m25z+dVXgxJIsgA/frSIPnikAcvHNFMvWEQAiEwNInCssCcGIP607ZGeuB/hdbg5ZO/d5VSFqnytuWPLjx9j6b63iJHbml9+YkOY7Uumud7zpByMMJgRAIgRAYTQKSrL9rTcSbSO44mhTS6xCYPoGKPvSOKkfA2yyXZWevo2gbc6I1Rxk2W8V9/HiSL6yxm8dt484pAL8E4LwKF7dbIulP3sbu5LokH9LZSkm+j6W5bFuRPHf6PUnJEOgfApKcNLp5bxx9ewwAO3qtXe35zqS5TOr81wA8sXr0mVpYuTMAy+A5An75Onc2yYf3T8/TkhBYOAJx8C4c69wpBEJgxAlI+gCAfTsmB2fUYMe6vY30gpNu2Gnrwc5qlbitSUiwRPRvDZh+WxORS0luNOKo0/0QCIEQCIEQCIEQmBGBjvHaKSR3Kqevt38/vUullmU4lORbmnOS/l4OJy/qe87t/9mp9RU7pFqL+JZ2sMTDEtG5kqzNe0DV+R2S27fqfwSAlwLYM7kYZvSYc9EiEJDkeZDzkLT9UNbQ9UKH5YO82GF7HcnDWr/3RqLEh24B4ETW43rYFTF/mY87kIakA2tiITByBOLgHblHng6HQAgsJoHannRgRwKBdpOuJ+kV7DGTdDSAl3W02Vv+nknSGZibcq7zIF9C0hElsRAIgRAIgRAIgRAIgR4IdEQZWg5rVZJ2KDXjLSeDenU5Zf8CwHkQ3tREIdbYzUmmnHTXdiyA91UU/f3rmOt9O8mDJdkpdV8AvyE5nmNB0t0rAMDb0e1AXoukox+bdvwOwDoA/gngMSR/1EM3UzQEFo2ApO1Ktq6tb91uz3Uk12wfaL0nPjxB7qT1TrQTHVrWxBH4dhj/HMBhndHziwYgNw6BeSQQB+88wk3VIRACIdCNQCVTexEAGx3YLQAAIABJREFU66p50L5zayV7R5JOwNEM4L1tyYN86799AoCvaxy41mqzo/e6WhF3hPASDl5JLwDgLLSX54mEQAiEQAiEQAiEQAh0J1CRuh5PvbycsI1m6LSRSXIitib68AGNY6kkt6zX63Gd7caW/MLnSD67Nf6zg8rjRNv7Sdqp3IwNLbvy65L9WsIJPe2GpmAILCKBWsR4dCWXdgK2JhnoY0l6h2Pze7cEg+dAtl+S3LhbsyVZ/qRZROlWxAnfHkrS710sBIaSQBy8Q/lY06kQCIFBIVDZzn9Vg/TzSDqrcjOgsTyDs8PavkJyZ0mO1rCW4sPquLcnfaSSdHj70r9I3qlVx1oAHOXh/96/r1v250FhlXaGQAiEQAiEQAiEwEIQcEKndlRuL/eU5PwIdljZHkLSiZ+asZ0X6Z1car8a+zWn1if5G/8h6YEALqwTS2xHrzLeim6d3zNJHtJL+1I2BPqJQCUcvAiAI3rPIdnMcfwu+H1p9LAtcfLAbpG4ktoSDo6st0avc5lsU9rZTWI2n1upLe/QTyzSlhCYLYE4eGdLMNeHQAiEwCwJSHLyDG8remUzuK/Bu5MFWMPN9g6Szj7bTBAeU4OXCVuYAHyT5BNa5b4PwDptNid1OwnAVW15h1k2P5eHQAiEQAiEQAiEQAj8/2O0RwH4Xv35EZKdUlt2XHnsZwetdXV/TnI8gZukS8vZ5SombEeX5J1crn8vkpZniIXAUBCQ5Aj2s0g6MKWZ7xwJ4BX158kkn9qtsx3Ru88haQdvU8eKAM4HsF4dehVJR+nHQmDoCMTBO3SPNB0KgRAYJgKSvFptm7B1rzVo8TbAgwE0UbubkrzA5yW1JxidWDwp+HZldP7HMDFLX0IgBEIgBEIgBEJgMQlIuqKS53qn1ZYkrdW7hEnyzq0bWtG7uwH4dBW8hOT4lvOKdHQ0o7ey30TSTuJYCAwlgUo0/YeSprNU3SpNcsJ2hyW1Na8vJ2lN6wkmaUtHB9fBT5J8/lBCS6dGnkAcvCP/EwiAEAiBfiYgqUmiYa3e1Uk6y2znoMWRvsdXRllnYh4zSU7Gtnb9eXUl4vDfjcaVT90EYCOSf+xnDmlbCIRACIRACIRACAwKAUnePeVdVDY7eQ+oRE/WzO1qHdvRXWZcv7fGdccBeGFd/CmS1iaNhcBQEujQsj7ASQk7O1rvjDV1nUzNthlJR+tOMEm7125JH3fCtdcNJbR0auQJxME78j+BAAiBEOhnApVp9jvVRuvxOjnAVVO1WZK13d5f5Tr1rBwt8jUAa9T5MX3fqerM+RAIgRAIgRAIgRAIgekRkPTEksZq9D/t6LUe75mVYO0bza4r1yjJ28b3rdpPIblTcydJTqxmjV7P373zyjqi4xINSag7vWeSUoNFoOZBbyD5uG4tl/QeAK+tcxNk6trlJV0GoInsvW878bSkzQGcDsDzrQO7afwOFrW0dpQJxME7yk8/fQ+BEBgIApLaERuO5HVm2feSPG2SwY4jer2Fz7INlnhYt61nVZMITzb+BmDs/0nebSBgpJEhEAIhEAIhEAIhMCAEyjFrSazObeMen927Jc2wKoDraju6o3xXJekEa2MmydvLvc3cth/JI1rnklB3QH4PaebcEZDkRIMOfrkDAM+P/M78ufMOkp4M4JQ6PkH2pN6tRk6ludQJDl9CspF0mLtGp6YQmGcCcfDOM+BUHwIhEAJzQUDSngA+XAP/pkoPZhy98QmSe7cG+p8C8Jz6+ziSzua8hEm6wXpWzjJLcoW5aGfqCIEQCIEQCIEQCIEQmEhA0sYA3u2dWLWDyjqg3jY+ZpIcPbhd/XkQybe1zjl68dT6+/ck12nXLikJdfODGzkCkvxONJG97yb5pinmOz69FclzO96fT1TiwntVhHxz+miSLx85sOnwQBOIg3egH18aHwIhMEoEJN27ZBeeUKvV7r63+61N0lEfniCsD+DXNUC5tbbwLaH3JsmZZK8sfr8iueEosUxfQyAEQiAEQiAEQqAfCEjaCsDZ1ZYbSTqad9wkOdFUI6u1DcmzmpNJqNsPTzBtWGgCkvw++L2w/YnkPbq1QdJBll2oc2eQfOxkbZXk3YxvB2Cn7nJV7tsk/2eh+5f7hcBMCcTBO1NyuS4EQiAEFomApGUBPKZWra8g+ZHWQP+nTjBQf+9N0lG/S5gkbxdsBjkvJmkZiFgIhEAIhEAIhEAIhMACEpBkbV1HD9qeRPLrrXHdGyry14e+T/JR7aYloe4CPqjcqq8ISLJG9cdKTuHkzsZJujsA71a0HJ0DYtYg6b+XapJWBPATABtUwT1IHjvVdTkfAv1AIA7efngKaUMIhEAIzAEBSY7sbSYFV5FsJgsTapf04Ery4eM3k7SGVSwEQiAEQiAEQiAEQmABCUiyE8kJoDwv/xnJhzS3l3QXRydWNKEdVPckeW3rfBLqLuCzyq0Gi4Ak6+5af9f2fpKv9j8k2eHrhIaWRFkNwCUAPgvg4yS9+9FlnM/kL7VjcomFlcEikdaOEoE4eEfpaaevIRACQ01A0h+dYKA6+bDJkgN0ZJJ9BskvDjWYdC4EQiAEQiAEQiAE+pRAJWJz/oTdSTrh05hJ+gKAXevPj5B8WetcEur26fNMsxafgKQHAnCyNJsdtSuRvL12QV5lebsurXTiw+8B2IvkJZL+CuCulrQjaZm8WAj0PYE4ePv+EaWBIRACITA9ApIOAfAaAGeRbBJ1TLhY0vOclK0O/pKkk37EQiAEQiAEQiAEQiAE+oSAJOdGcGSh5+t/A7Aiyf80zZOUhLp98qzSjP4jIOliAPevlu1G0hG6XjSxpEOTfNpR8V/zu+XkawC8aNKY372N6o9JE1b3X8/TolEnEAfvqP8C0v8QCIGhIiDJcgu3k/xzZ8dq1fpmAE4i4FXqB5L0ACgWAiEQAiEQAiEQAiHQJwQk/QDA1tWcCbkSklC3Tx5SmtG3BCQ9F8DRAH5PsnHU2sF7C4AVAPwbgHc7ntd0QtKLABwMYK2Ojt2b5Fhi6krE9g1fW9q+/wLwXQBvbNfVt2DSsKEnEAfv0D/idDAEQiAE/ktA0lEA9ikeJ5F8WtiEQAiEQAiEQAiEQAj0FwFJ1ga1RIMTQ03YbSUpCXX763GlNX1IQNIyFfluHetmLuQoeB8/m+TDuzVb0okAdqlzZ7Z3RUqyhMr6k3T3SwAsfefI4FgILAqBOHgXBXtuGgIhEAILS6AmCn+oQY1Xm1chaW2pWAiEQAiEQAiEQAiEwAAQSELdAXhIaWLfEpBkuRMnL7Qur+dCt7Ub2yWx4ZoknePEgTK7OxFblff1rwdwPwAvsMZvHb8awIYk/9G3ENKwoSYQB+9QP950LgRCIAT+S0CSk3R8rhy8B5D0FqRYCIRACIRACIRACITAgBBIQt0BeVBpZl8SkOS50DOrcdcBeDbJM5vGSnLi6afX30eS3Ld17vhy5vqQEyKeUHOsZZ3/BEATEXwRyU36EkAaNfQE4uAd+kecDoZACITAfwlIsqbU20m+JExCIARCIARCIARCIAQGi0AS6g7W80pr+4uApLsDcP6RdVotc7TtZaWpa71e+8gcobtSW25B0tsBHFDXnUHyse3eSfoOACe5tr7vytkp2V/PflRaEwfvqDzp9DMEQiAEQiAEQiAEQiAEQiAEQmCgCSSh7kA/vjR+kQlU0umPAngOgOUmac7zSH6qw4HrJNU3tq45jOTrmjIl7+DzHyK5f6/dlLQqyRt6vS7lQ6BNIA7e/B5CIARCIARCIARCIARCIARCIARCYMAJJKHugD/ANH9BCUh6EAD/b2sAL6ubX0bS2rpLmKTtAZxWUb4+/wWSjeSDd0s+GMAFvSZak/RsAJ8GcAqA5yb6d0F/BkN1szh4h+pxpjMhEAIhEAIhEAIhEAIhEAIhEAKjRiAJdUftiae/c0VA0ssBfADAHQBsSvIC1y3pTQBWJ7lfcy9JjwPw9Srrw6eQ3GmmbZG0DICbAaxQdTjx28EkLQkRC4GeCMTB2xOuFA6BEAiBEAiBEAiBEAiBEAiBEAiB/iKQhLr99TzSmsEiIGkVADuRPK6cu40kwx0B3IfklS0nr6N+f1K6vT48nnSt115Leh+AV3W5zkng3J5zeq0z5UeXQBy8o/vs0/MQCIEQCIEQCIEQCIEQCIEQCIEhIZCEukPyINONRSdQCyZfqIZcDWAjkre2nLxPA/Cl+vtCknb69mTW3QVwbUUDC8BLAbwNgBNjN3Y0SUcYx0JgSgJx8E6JKAVCIARCIARCIARCIARCIARCIARCIARCIARGhYCkrwB4SvX3JgCbkbzKf1dStb/VuctJ3rdXLpK+DeCxdd2XSD696n4HgDe3tH5PJ2lpiFgILJVAHLz5gYRACIRACIRACIRACIRACIRACIRACIRACIRAi0CHk9dRttbnPcnJ0ABsUEWPIblXL+AkbQmgkV/4F4BV2snVJG0M4PsAVq5630nyLb3cI2VHj0AcvKP3zNPjEAiBEAiBEAiBEAiBEAiBEAiBEAiBEAiBKQhIsvP2qFZitfYVPwewFcl/9gJS0m8A3KuueQvJd3ZeL+meAH4NYLk65/uc28t9Una0CMTBO1rPO70NgRAIgRAIgRAIgRAIgRAIgRAIgRAIgRCYJgFJywOwdMLOpZHrqNuTSb5omlWMF5O0J4Bj6sD1JNeYrA5JlmY4tc6fQbKRdOj1tik/AgTi4B2Bh5wuhkAIhEAIhEAIhEAIhEAIhEAIhEAIhEAILB4BSXcEcDOAu1QrdiTZOHC7NkySE7GtCeBfJO+0eK3PnfudQBy8/f6E0r4QCIEQCIEQCIEQCIEQCIEQCIEQCIEQCIGBJiDpowD2qE6cR3KLqTok6ZsAdqxyy5K8faprcn40CcTBO5rPPb0OgRAIgRAIgRAIgRAIgRAIgRAIgRAIgRBYAAKS1gFwFYBlADhh271JWot3qSbpqwCeVIX+H8nfTXVNzo8mgTh4R/O5p9chEAIhEAIhEAIhEAIhEAIhEAIhEAIhEAILQEDSjwA8rG51Asndp3PbVkI2kbRzOBYCXQnEwZsfRgiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAjMAwFJjwFwRlX9DwArkfznVLeStD6AK6rczSRXnuqanB9dAnHwju6zT89DIARCIARCIARCIARCIARCIARCIARCIATmkUArUZrvsi/JI6dzO0nfAbBdlf04yRdN57qUGU0CcfCO5nNPr0MgBEIgBEIgBEIgBEIgBEIgBEIgBEIgBOaRgKT9ARxWt3CCtK1I/mSqW0raBcCJVc6avauRvNF/S7oTgA8D2B7APQDcAuB7AF5D8pqp6s754SQQB+9wPtf0KgRCIARCIARCIARCIARCIARCIARCIARCYBEJSHoygE8BuHurGZZr2IPkld2aJslRu6cCuEOdP4rkK8u5+0wAxwG4S5dr7Qh2vT4fGzECcfCO2ANPd0MgBEIgBEIgBEIgBEIgBEIgBEIgBEIgBBaGgCQnR3uP5RlaTlvf/Jw6bimGWwG8EMBLAWwGoPHXXULy/uXc3QqAk7U1534P4HQADwKwKYAmCdtBJN+2ML3LXfqFQBy8/fIk0o4QCIEQCIEQCIEQCIEQCIEQCIEQCIEQCIGhJCBpFQDHA3hCyxnb9NXRt50+urMBbEPyNkkrArD8wl3rgg+SfMX4xdJaAC4AsCqAfwNYgaQTusVGhEAcvCPyoNPNEAiBEAiBEAiBEAiBEAiBEAiBEAiBEAiBxSUgaWUARwB4FoA7dmnNzQDeSfLwlgP3cwAsz2A7k2STfG38ckkbAri0DhxG8nWL29PcfSEJxMG7kLRzrxAIgRAIgRAIgRAIgRAIgRAIgRAIgRAIgZEnIMnO3S0BPBLARgB+Xc7bH3TCkeRoXCdX+yeAFUn6/5cwSTcAcKTwaSR3GHnIIwQgDt4RetjpagiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEwOAQkPSCknZwo48lucdkrZf0dwDLA/gmSUtBxEaEQBy8I/Kg080QCIEQCIEQCIEQCIEQCIEQCIEQCIEQCIHBIiDpYABvrlavSfK6bj2QtDmAn9S5z5O0BERsRAjEwTsiDzrdDIEQCIEQCIEQCIEQCIEQCIEQCIEQCIEQGCwCkg4B8Hq3muSkfjxJTsq2VfXuISR/1ktPJa0P4AQAdhQvB+CvAH4D4F0kv9hLXSm78ATi4F145rljCIRACIRACIRACIRACIRACIRACIRACIRACExJQNJ+AN5fBbcl+d3OiyQ5AZsTsdmuJbn2lBW3Ckh6BICz7EOe5LobATyB5Lm91JuyC0cgDt6FY507hUAIhEAIhEAIhEAIhEAIhEAIhEAIhEAIhMC0CUhaFsCtFVV7jROykXR07ZhJ2hjA+QCctM22G8nPTvsG/63jLwDuVtfcZA1fAPcA8KjWcQE4lOQbe6k7ZReGQBy8C8M5dwmBEAiBEAiBEAiBEAiBEAiBEAiBEAiBEAiBnglIeg+A19aFdsZ+GsA3ADwJwEtakbcnkNy9lxtI2gXAiXXNDQDWJnlbU4ektwB4e+se3ydpx2+sjwjEwdtHDyNNCYEQCIEQCIEQCIEQCIEQCIEQCIEQCIEQCIFOApIOAnDgUsicRXKbXslJeh+AV9V1nyb53C733h7A1yuK2KdPJvnUXu+V8vNHIA7e+WObmkMgBEIgBEIgBEIgBEIgBEIgBEIgBEIgBEJgTghIehyAD1imoRVRez2Al5I8eSY3keTo3APq2i+RfHq3eiStB+CylhTEY0meMZN75pq5JxAH79wzTY0hEAIhEAIhEAIhEAIhEAIhEAIhEAIhEAIhMG8EJK0F4DqSt8/mJlWPtX3tI7TO7lNJfmUSJ68jfR3xewPJ1WZz31w7twTi4J1bnqktBEIgBEIgBEIgBEIgBEIgBEIgBEIgBEIgBAaGgKQvAmgid+3k3ZvkRyZx8v7Skg4kvzUwHRyBhsbBOwIPOV0MgRAIgRAIgRAIgRAIgRAIgRAIgRAIgRAIgckISPopgM1a548guV+IDQaBOHgH4zmllSEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEwKwKS7g7gr53SDpKWBfBtANu2bnAKyZ1mdcNcvCAE4uBdEMy5SQiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAgsLgFJPwNwHsk9urVE0lEA9mmdO4Hk7pOUdeK13Ui+a3F7lbvHwZvfQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAgMOQFJTwZwSiVTuw/JKydx3O4L4AOtczuSPLWzrKSfANjcSdcArE/yr0OOsG+7Fwdv3z6aNCwEQiAEQiAEQiAEQiAEQiAEQiAEQiAEQiAE5oZAyyHrCi8k+aDJapb0NQBPrPM/I/mQdllJOwBoEq1dTXLduWllapkJgTh4Z0It14RACIRACIRACIRACIRACIRACIRACIRACITAABGQdE8AlwO4UzX7dACOzr29sxuSNgbwizp+Lcm1Oxy81wFYvY49kuQPBgjF0DU1Dt6he6TpUAiEQAiEQAiEQAiEQAiEQAiEQAiEQAiEQAgsSUDSFgDOAbBMnbXDd3OSt3Q4cPcHcFgdu4zk/Zrzkt4M4OD6+7sk24nZxquRtArJG/Mc5p9AHLzzzzh3CIEQCIEQCIEQCIEQCIEQCIEQCIEQCIEQCIG+ICDp4QCsqbtCNeifAI4F8G6Sv5O0C4DPArhjnd+P5BH+t6S7AbDTdjkAjvxdm6SjeSeYJDuQbwZgx/GzSH6/Lzo/pI2Ig3dIH2y6FQIhEAIhEAIhEAIhEAIhEAIhEAIhEAIhEALdCEhaHsA3ADym0zcLoO0v/DHJLZsykr4M4Kn19wdJvmKS+p2kzcnabCeTbK7JA5kHAnHwzgPUVBkCIRACIRACIRACIRACIRACIRACIRACIRAC/U5A0nYA/r/27gZYt6usD/j/AQKZqCSQFIIiBIN8pAlfBsJXRUZUEGpBEBSM7RQsKEGo0jbT0gKVDxlhFBBBFGQmIUAFBRRTKkWmEBNSAkpIAIEAgRECiaEJCQkfeTrrdr/py7nn3vue5Nx79jn3t2Yc8757vXs/67cOM3f+s+bZL0xy0ppgd5zOHT16f3rRo7e775bkwmne15McUVXfWbvG7j4qyTjVO07xfivJUWtbQMzdZbvVJ+DdbjumXgIECBAgQIAAAQIECBAgQIAAAQKbKNDdhyd5ZJJjknw1yWlVdc3yI7p7BL4Pm777N1X1h+uV0N3vXToZ/Lyqev4mlupW6wgIeP1ZECBAgAABAgQIECBAgAABAgQIECCwR4HuvkWSq6dTuZdV1Tilu9vo7nES+Jzpwm7zuvtWSf5VkuOTfCXJ/6yq96C/cQIC3hvn59cECBAgQIAAAQIECBAgQIAAAQIEdrRAd985yaemRf63qnrCHgLezyW543TtUVX1rvHf3X3TJKcnefwUEi///PLRr7eqTtvRiPtxcQLe/Yjr1gQIECBAgAABAgQIECBAgAABAgS2u0B3H5fkgmkdf1NVD1q7pu5+WpJXT99/pKrus5jT3R9Jcq+l31yb5JA1Ye9oC/FL291qK+oX8G6FumcSIECAAAECBAgQIECAAAECBAgQ2EYC3X1Fku+bSj4jyS9X1WjbME7ojrD2a0kOGx+THFtVn52unZnk4dPvRrA7fndad4+XsD0myeuT3HK6/kdV9cvbiGUWpQp4Z7ENiiBAgAABAgQIECBAgAABAgQIECAwX4HufuLUZmGRJ44g9wtJLktyuyRHT9W/sap+cQp3753kw9P31yW5e1X9/fIqp76843TwuMcYD66qs+YrMb/KBLzz2xMVESBAgAABAgQIECBAgAABAgQIEJidQHc/eAp5F31219Y4TugeUVXXTAHvXyZ5xDTpV6tq0cLhu37X3T+U5NNJvjH9/luzW/yMCxLwznhzlEaAAAECBAgQIECAAAECBAgQIEBgbgLdfVSSn00yXp72vCS3mWr89ar6nSncHddGYDvaN1xRVYfvbR3d/cdJzl0Ogbv7TklGL9/PJPloVY1TwMYaAQGvPwkCBAgQIECAAAECBAgQIECAAAECBG6QQHeP8HWcwP1SVX3/4ibdfXyS86fPf1BV4yVsK43u/o0kz0/yPUs/+HaSv0hyclV9faUbHSSTBLwHyUZbJgECBAgQIECAAAECBAgQIECAAIH9IdDdI7z9u6o6eyngHadvL5o+/7uqeukqz+7u86ZTu4vp30xy86Xfjpe9PaCqLlzlfgfDHAHvwbDL1kiAAAECBAgQIECAAAECBAgQIEDgAAp095FJLp0eeXpVnbyvx3f3OKH7yGne55M8rqo+1N13SDJO9T4jycgzR+h7+KLX777uu9OvC3h3+g5bHwECBAgQIECAAAECBAgQIECAAIEtEOjucYJ3nOQdgewPV9XFeyqju5+Y5I1L13+iqt6zPL+775fknCnk/f2qevoWLGt2jxTwzm5LFESAAAECBAgQIECAAAECBAgQIEBg+wt090OSvG9aybVJnlRVb1tvZd39ySR3WXPtrCQ/V1VfWnzf3R9MMoLez1XVCI8P+iHgPej/BAAQIECAAAECBAgQIECAAAECBAgQ2D8C3T1O2b5yOnU7HnJVkk8lGYHvBVX15O7+gSRfnCoY176S5EHT5+uSvDbJKVX1ne5+b5KHCnj//34JePfP3667EiBAgAABAgQIECBAgAABAgQIECCQpLsfkOTPktx2Dcg40XtGd/+HJL81XTu5qk7v7n+W5C1Jbjd9P4LhZyZ5VZJbJDm/qu4xrnX3YUl+J8lPJblZkk8necHaFg87dTMEvDt1Z62LAAECBAgQIECAAAECBAgQIECAwIwEpqD3V5McN17AVlUjkB0B7SnTKd/x8diqGr17d43uftYU/o5Qd3k8pape192HJPlMkh9cZ6mXJHlYVX1sRgybXoqAd9NJ3ZAAAQIECBAgQIAAAQIECBAgQIAAgVUF1rxg7TFV9fbl33b3oUn+KMl4EdvIM6+tqvHdCIB/P8mvTPO/leQdU3uHxcnf0eLh6VX1mlXr2W7zBLzbbcfUS4AAAQIECBAgQIAAAQIECBAgQGAHCXT3kVPf3Zsk+XxVHbPe8rp7vFRtvKTtrVX1oingHad9Fy9bO6qqLpu+f0KSM5KMe47x2Kr60x3Edv1SBLw7cVetiQABAgQIECBAgAABAgQIECBAgMA2EujuVyd52lTy+5P8eFWNE7l7Hd39ySR3mSY9sKrOXvygu++V5Nwko43DJVV19L7utx2vC3i3466pmQABAgQIECBAgAABAgQIECBAgMAOEph66Z6f5K7Tsr4+TuomeUlVfWJPS5169I4XrI0xXsQ2eviO3ru7Rnc/PcnvjTYOO7VNg4B3B/0PwVIIECBAgAABAgQIECBAgAABAgQIbGeB7n7j1Gt3eRnfTDJO8z6hqt61dn3dfU6Sk5ZC3vtV1YVLIe9/XLR0mELfw5P8ZJIrk3ygqkaYvG2HgHfbbp3CCRAgQIAAAQIECBAgQIAAAQIECOw8ge5+WJLfSnKf6aVqY5FfrqpdL07r7ucm+eOqunj6fNMkozXDfSeNEQafVFUfWScMfvMIipe+7yQfTPLMqhrtHLbdEPBuuy1TMAECBAgQIECAAAECBAgQIECAAIGdL9Ddt0zyiCQj8H1DVZ3V3XdI8rkkH62q0WP3+tHd70jyM9MXVyc5YrmPb3f/dpJnrwl3F/noCHpfVFXP2W6yAt7ttmPqJUCAAAECBAgQIECAAAECBAgQIHCQCnT325P8i2n5T62q164JeT+a5ITpu1Or6iWL6909evQeluS6JKM37xuSPCPJf01y6DTvbVX1uO3EK+DdTrulVgIECBAgQIAAAQIECBAgQIAAAQIHsUB3H5Pkk0luPjE8r6qevxTi/kKSM6bPr6uqpyxdG8HS8TddAAAUOElEQVTuyEMvqaqjl76/bZK/TbL47rlVNULfbTEEvNtimxRJgAABAgQIECBAgAABAgQIECBAgMAQ6O6HJvnvSyHvx5L8QZJ3JvmrJHeZpJ5cVa9fCnIvTXLk9Pnkqjp96do4wXvZdML331fVaOewLYaAd1tskyIJECBAgAABAgQIECBAgAABAgQIEFgKZMcL185JMnryrjc+keSfVtU4tbtrdPe/nNoyjI/j+8dW1Wj5sLj+2CSvrKrv307SAt7ttFtqJUCAAAECBAgQIECAAAECBAgQIEDgeoHu/rUkp07tFRZZ57uq6lFTqHurqrp8KcT93STPXGS6Sf5tVb186fpNq+o7S5/vNs0ffX2/luSvk/zu8pyt3g4B71bvgOcTIECAAAECBAgQIECAAAECBAgQIHCjBbp7nOYd/XWvncLd0Vv34iT3rqoLl0Lb5yT5zaUH/lJVnbZcQHffIslo7zB6+q7NUL+ZZPzmLTe66E24gYB3ExDdggABAgQIECBAgAABAgQIECBAgACBeQl09/uSPCTJRVV17JoAd5ziHad5xxiB8GFr2jlckOS4pd/8w9Sf94il755fVc/b6lULeLd6BzyfAAECBAgQIECAAAECBAgQIECAAIFNF+juDyX5kenGb6uqx60JeT+Q5EHTdw+uqrPGf3f3HyZ5yvT9lUkesXRttGz4myS3mq4fW1UXbXrxG7ihgHcDWKYSIECAAAECBAgQIECAAAECBAgQILA9BLr70CRfTHLkVPHfJfmJqvrqFOR+eLRvmK6dVFXndvc9kox5Y3w7yQ9X1eeWV9zdt0wy+vreJMmZVfXTWyki4N1Kfc8mQIAAAQIECBAgQIAAAQIECBAgQGC/CXT34Unen2S8JG0xRl/eK5IcP31xRVWNeeP07plJHj59/9Sqeu16xXX32UnuP4Leqrr1flvACjcW8K6AZAoBAgQIECBAgAABAgQIECBAgAABAttXoLtfmuTXkhyyZhX/OL2E7eLuHteuTnKzJF+rqkUbht0WvhTwXlZVR22ljIB3K/U9mwABAgQIECBAgAABAgQIECBAgACBAyIwBbjj5Wo/muQ2Sc5P8syqGqHuOL175ySfmop5WVU9e0+Fdff/STJaNXylqm57QBawh4cIeLdS37MJECBAgAABAgQIECBAgAABAgQIEJiFQHcfl+SCqZgnVdUZ6xXW3U9I8ubp2p9U1eO3cgEC3q3U92wCBAgQIECAAAECBAgQIECAAAECBGYhsOYE73Oq6oVrC+vumya5ZOnFbcdW1UVbuQAB71bqezYBAgQIECBAgAABAgQIECBAgAABArMR6O4R3o72DZcluX1VXbNcXHf/ZZJHTN+dX1X32OriBbxbvQOeT4AAAQIECBAgQIAAAQIECBAgQIDALAS6+5Qkr5yKuTTJ+PzWJLdL8hdJ7jldG31771BVIwje0iHg3VJ+DydAgAABAgQIECBAgAABAgQIECBAYE4C3f3SJL+xVFMnWc5Rr0vykKr6wBzqFvDOYRfUQIAAAQIECBAgQIAAAQIECBAgQIDAbAS6++Qkr0hyxJqiPpzkMVV18VyKFfDOZSfUQYAAAQIECBAgQIAAAQIECBAgQIDArAS6+6QkD0xyVZL3bPUL1dbDEfDO6k9GMQQIECBAgAABAgQIECBAgAABAgQIEFhdQMC7upWZBAgQIECAAAECBAgQIECAAAECBAgQmJWAgHdW26EYAgQIECBAgAABAgQIECBAgAABAgQIrC4g4F3dykwCBAgQIECAAAECBAgQIECAAAECBAjMSkDAO6vtUAwBAgQIECBAgAABAgQIECBAgAABAgRWFxDwrm5lJgECBAgQIECAAAECBAgQIECAAAECBGYlIOCd1XYohgABAgQIECBAgAABAgQIECBAgAABAqsLCHhXtzKTAAECBAgQIECAAAECBAgQIECAAAECsxIQ8M5qOxRDgAABAgQIECBAgAABAgQIECBAgACB1QUEvKtbmUmAAAECBAgQIECAAAECBAgQIECAAIFZCQh4Z7UdiiFAgAABAgQIECBAgAABAgQIECBAgMDqAgLe1a3MJECAAAECBAgQIECAAAECBAgQIECAwKwEBLyz2g7FECBAgAABAgQIECBAgAABAgQIECBAYHUBAe/qVmYSIECAAAECBAgQIECAAAECBAgQIEBgVgIC3llth2IIECBAgAABAgQIECBAgAABAgQIECCwuoCAd3UrMwkQIECAAAECBAgQIECAAAECBAgQIDArAQHvrLZDMQQIECBAgAABAgQIECBAgAABAgQIEFhdQMC7upWZBAgQIECAAAECBAgQIECAAAECBAgQmJWAgHdW26EYAgQIECBAgAABAgQIECBAgAABAgQIrC4g4F3dykwCBAgQIECAAAECBAgQIECAAAECBAjMSkDAO6vtUAwBAgQIECBAgAABAgQIECBAgAABAgRWFxDwrm5lJgECBAgQIECAAAECBAgQIECAAAECBGYlIOCd1XYohgABAgQIECBAgAABAgQIECBAgAABAqsLCHhXtzKTAAECBAgQIECAAAECBAgQIECAAAECsxIQ8M5qOxRDgAABAgQIECBAgAABAgQIECBAgACB1QUEvKtbmUmAAAECBAgQIECAAAECBAgQIECAAIFZCQh4Z7UdiiFAgAABAgQIECBAgAABAgQIECBAgMDqAgLe1a3MJECAAAECBAgQIECAAAECBAgQIECAwKwEBLyz2g7FECBAgAABAgQIECBAgAABAgQIECBAYHUBAe/qVmYSIECAAAECBAgQIECAAAECBAgQIEBgVgIC3llth2IIECBAgAABAgQIECBAgAABAgQIECCwuoCAd3UrMwkQIECAAAECBAgQIECAAAECBAgQIDArAQHvrLZDMQQIECBAgAABAgQIECBAgAABAgQIEFhdQMC7upWZBAgQIECAAAECBAgQIECAAAECBAgQmJWAgHdW26EYAgQIECBAgMC8BLr7kUletVTVlVV1wlZW2d0/l+QNUw3XVtWtt7IezyZAgAABAgQIECCwlQIC3q3U92wCBAgQIECAwMwFuvvcJPddU+YTq+pNm1l6d98+yReme44Q+ZZ7un93n5LklYvrVbVp/6bt7iuTfO9076Or6pLNXKd7ESBAgAABAgQIENhsgU37x/BmF+Z+BAgQIECAAAECWyvQ3YcmuSrJTdZUcl5VnbiZ1XX3nZJcNN3z6qr6ni0KeL+RZKx7jB+sqi9u5jrdiwABAgQIECBAgMBmCwh4N1vU/QgQIECAAAECO0Sgu09N8uJ1ltNJDquqazZrqRsMeMfp3vtPz/5GVb1/E+sQ8G4WpvsQIECAAAECBAgcEAEB7wFh9hACBAgQIECAwPYT6O5xonacrB3j95I8Nckh0+f/VFUv2qxVbSTg3axnrnef7hbw7k9g9yZAgAABAgQIENh0AQHvppO6IQECBAgQIEBg+wt09w8kWW5PcHSSNyb58Wl1n6uqRfi724KnnrrvnC58vKqeNP67ux+a5NFJTpqu/XWSuyW5e5K7Tt+NE8J/u47iI6vqS939T5K8e7r+6ap6/Nq53X2LJC9J8jNJbjNOHCf5TpKvJxl9dd+a5GVVdflU13+Z6rpXksW/kT+eZO0p5RdX1Z9s/x22AgIECBAgQIAAgZ0iIODdKTtpHQQIECBAgACBTRTo7lcnedp0y4uq6tjufliSv1p6zB571Hb3CHDPmeaOEPWBSc5McsyaMr+c5PuS7LHn7tL8E6vqvO4+Psn50/e7vZCtux+Q5H1Jbr4Pkq6qXf2Fu/vspbYPe/vZy6vqWZtI7VYECBAgQIAAAQIEbpSAgPdG8fkxAQIECBAgQGBnCnT3Pya51bS6U6tqnIYdQeg4AbsIY19bVaNtw25jTcC766dLJ2OX54+Ad1y77ZqXuX17ndueUFWf2FvA292j5nHyeJzYXYzxoriLkxyZ5Kjl51TVrn8Pd/efJ3l4kpst/e66JOP/lsfzq+oFO3PXrYoAAQIECBAgQGA7Cgh4t+OuqZkAAQIECBAgsB8Fuvt+ST44PeK7XqjW3W9O8oTp2uVVdev1Slkn4N2Voyb5TJJxWvbCJHdMclVVPXsjPXj3EfA+N8nzppquTnLPqvr0co3dPep/+QiVFwHv4roevPvxD8utCRAgQIAAAQIE9ouAgHe/sLopAQIECBAgQGD7CkynWR81reDDVfUjSwHocUkuWFrd/atqEQZf//U6Ae84QTt66H5sD4Hw6Oc7Xuo2xtVVtceWDfsIeEdP3x+b7vPuqhqnctcd3f2TVfU/li8KeLfv363KCRAgQIAAAQIHq4CA92DdeesmQIAAAQIECOw5+BwvFhsvKRvj5Ko6fU0IOl5SNl5cNsa7qmoRBl8/bU3Ae0VVHb438E08wTt6BI9ewWOMdYw+wZeuutkC3lWlzCNAgAABAgQIEJiLgIB3LjuhDgIECBAgQIDADASm9gWjDcMY36qq3V5U1t2vSPKMac43q2oRBl+/grUvWdtTK4fFDzYx4H12kt9eohxtIf53kj9N8udVNVpD7HEIeGfwR6gEAgQIECBAgACBDQkIeDfEZTIBAgQIECBAYGcLdPe5Se47rXK8aG30ql07xovKFgHvuPbEqnrT8qStCnhHDd39pSRH72Gnxsvbzk/ygqoaoe93DQHvzv77tjoCBAgQIECAwE4UEPDuxF21JgIECBAgQIDADRDo7kNH/9skG/034nlVdeKMAt6xjrckGa0jbrIXirdU1c+vqfsbScbvxxjtHb54Ayj9hAABAgQIECBAgMABE9joP94PWGEeRIAAAQIECBAgcGAFuvvUJC++AU8dbRC+t6pGOLxrbOUJ3qUaDknys+Plbknul+SHkozvlsejq+odS79ZDnjvWFXj5XAGAQIECBAgQIAAgdkKCHhnuzUKI0CAAAECBAgcWIHu/mySY6anfiTJ9cHnHip57tJp3+dU1QuXgtKTkpwzfb58gz14r62qxSna3R7d3cdPbRbGtSur6parSnX3LyQZL41bnOx9R1U9eg8B792r6hOr3ts8AgQIECBAgAABAlshIODdCnXPJECAAAECBAjMTKC7b5/kC0tlnVBVH9tbmd394ST3nuZ8vqoW4fANOcF7WJKrpntdN07aVtX4/7uNvQW83X27qho9ePc4uvu9SR46TTi7qh64mNzdo+/wrabPD6+qd89sq5RDgAABAgQIECBA4LsEBLz+IAgQIECAAAECBEYg+5okT50oLquq8SK1vY7u/tdJXrc06fqetRtt0TDu0d3fSnKz6X5PrqrXr1fAPgLeT00B7dOravTh3W1090eTnDBdeHtVPWYxqbvHid27Tp/fVVWjj69BgAABAgQIECBAYLYCAt7Zbo3CCBAgQIAAAQIHTmDNydXXVNWv7Ovp3T3aHFy7FMq+tqp2hcQ3MOD9fJI7TM8dfX3fnmT0wL1tkh9N8uCq+uwKAe+dp3t8Ocm5Sd6f5KvTqd1xnzstre0+VTXaUewa3X1akl9cun5WknH95kl+LMmrquoV+7JxnQABAgQIECBAgMCBEhDwHihpzyFAgAABAgQIzFRgTRg7qrz+JO6+Su7u9yV5yDTv+l67NzDgfXiSM/fyzBOr6rwNBLz7Kv/lVfWs5UndPfr5XrrOy9gW03b7zb4e4joBAgQIECBAgACB/Skg4N2fuu5NgAABAgQIENgGAt39piQ/P5X6hapanKLdZ/Xd/c+TvHNp4l2r6u+7e/TmHT16x1ip5cOY2N2nJHnZdGJ27fN39QXu7rsl+fh08WtVteiZuzg5/JvTadtD9rCAf0jy63tp4fDgJH+WZL02FS+oqv+8TxgTCBAgQIAAAQIECBwgAQHvAYL2GAIECBAgQIAAgdUEptYP90xy/+kXn0nyv6rqmtXu8P9mTS+OOzHJuNdo+TBeGvehqhptH/Y5unu0chhh762TjPYRH6iqcbrXIECAAAECBAgQIDAbAQHvbLZCIQQIECBAgAABAgQIECBAgAABAgQIENiYgIB3Y15mEyBAgAABAgQIECBAgAABAgQIECBAYDYCAt7ZbIVCCBAgQIAAAQIECBAgQIAAAQIECBAgsDEBAe/GvMwmQIAAAQIECBAgQIAAAQIECBAgQIDAbAQEvLPZCoUQIECAAAECBAgQIECAAAECBAgQIEBgYwIC3o15mU2AAAECBAgQIECAAAECBAgQIECAAIHZCAh4Z7MVCiFAgAABAgQIECBAgAABAgQIECBAgMDGBAS8G/MymwABAgQIECBAgAABAgQIECBAgAABArMREPDOZisUQoAAAQIECBAgQIAAAQIECBAgQIAAgY0JCHg35mU2AQIECBAgQIAAAQIECBAgQIAAAQIEZiMg4J3NViiEAAECBAgQIECAAAECBAgQIECAAAECGxMQ8G7My2wCBAgQIECAAAECBAgQIECAAAECBAjMRkDAO5utUAgBAgQIECBAgAABAgQIECBAgAABAgQ2JiDg3ZiX2QQIECBAgAABAgQIECBAgAABAgQIEJiNgIB3NluhEAIECBAgQIAAAQIECBAgQIAAAQIECGxMQMC7MS+zCRAgQIAAAQIECBAgQIAAAQIECBAgMBsBAe9stkIhBAgQIECAAAECBAgQIECAAAECBAgQ2JiAgHdjXmYTIECAAAECBAgQIECAAAECBAgQIEBgNgIC3tlshUIIECBAgAABAgQIECBAgAABAgQIECCwMQEB78a8zCZAgAABAgQIECBAgAABAgQIECBAgMBsBAS8s9kKhRAgQIAAAQIECBAgQIAAAQIECBAgQGBjAgLejXmZTYAAAQIECBAgQIAAAQIECBAgQIAAgdkICHhnsxUKIUCAAAECBAgQIECAAAECBAgQIECAwMYE/i+/XtiHNCgW7gAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/markdown": [
+       "AI-generated follow-up questions:\n",
+       "\n",
+       "* What is the total sales for each artist?\n",
+       "* What are the top-selling albums for each artist?\n",
+       "* Which genre has the highest sales?\n",
+       "* What is the total sales for each genre?\n",
+       "* What are the sales trends over the years?\n",
+       "* How many albums are there in the database?\n",
+       "* Who are the top-selling artists in each genre?\n",
+       "* What are the top-selling tracks?\n",
+       "* What is the average sales per artist?\n",
+       "* How does the sales distribution vary across different genres?\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Markdown object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vn.ask(\"What are the top 5 artists by sales?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "SELECT strftime('%Y', invoicedate) as year,\n",
+      "       sum(total) as total_sales\n",
+      "FROM   invoice\n",
+      "GROUP BY year;\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>year</th>\n",
+       "      <th>total_sales</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>2009</td>\n",
+       "      <td>449.46</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2010</td>\n",
+       "      <td>481.45</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2011</td>\n",
+       "      <td>469.58</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>2012</td>\n",
+       "      <td>477.53</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2013</td>\n",
+       "      <td>450.58</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   year  total_sales\n",
+       "0  2009       449.46\n",
+       "1  2010       481.45\n",
+       "2  2011       469.58\n",
+       "3  2012       477.53\n",
+       "4  2013       450.58"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdB7gdRfk44CF/IPyCgLQAQmghCSWFjlJCCIQiVenSUamCCApIU1BEkI70LiiiIFKkhtCRooQaQif0IoQmIEH4P7t4D/cmt5xzcibnzO67z+PzhHtmZ2febz7v7pfNnOlmn332z4ODAAECBAgQIECAAAECBAgQIECAAAECBJITmE6BN7mYGTABAgQIECBAgAABAgQIECBAgAABAgRyAQVeC4EAAQIECBAgQIAAAQIECBAgQIAAAQKJCijwJho4wyZAgAABAgQIECBAgAABAgQIECBAgIACrzVAgAABAgQIECBAgAABAgQIECBAgACBRAUUeBMNnGETIECAAAECBAgQIECAAAECBAgQIEBAgdcaIECAAAECBAgQIECAAAECBAgQIECAQKICCryJBs6wCRAgQIAAAQIECBAgQIAAAQIECBAgoMBrDRAgQIAAAQIECBAgQIAAAQIECBAgQCBRAQXeRANn2AQIECBAgAABAgQIECBAgAABAgQIEFDgtQYIECBAgAABAgQIECBAgAABAgQIECCQqIACb6KBM2wCBAgQIECAAAECBAgQIECAAAECBAgo8FoDBAgQIECAAAECBAgQIECAAAECBAgQSFRAgTfRwBk2AQIECBAgQIAAAQIECBAgQIAAAQIEFHitAQIECBAgQIAAAQIECBAgQIAAAQIECCQqoMCbaOAMmwABAgQIECBAgAABAgQIECBAgAABAgq81gABAgQIECBAgAABAgQIECBAgAABAgQSFVDgTTRwhk2AAAECBAgQIECAAAECBAgQIECAAAEFXmuAAAECBAgQIECAAAECBAgQIECAAAECiQoo8CYaOMMmQIAAAQIECBAgQIAAAQIECBAgQICAAq81QIAAAQIECBAgQIAAAQIECBAgQIAAgUQFFHgTDZxhEyBAgAABAgQIECBAgAABAgQIECBAQIHXGiBAgAABAgQIECBAgAABAgQIECBAgECiAgq8iQbOsAkQIECAAAECBAgQIECAAAECBAgQIKDAaw0QIECAAAECBAgQIECAAAECBAgQIEAgUQEF3kQDZ9gECBAgQIAAAQIECBAgQIAAAQIECBBQ4LUGCBAgQIAAAQIECBAgQIAAAQIECBAgkKiAAm+igTNsAgQIECBAgAABAgQIECBAgAABAgQIKPBaAwQIECBAgAABAgQIECBAgAABAgQIEEhUQIE30cAZNgECBAgQIECAAAECBAgQIECAAAECBBR4rQECBAgQIECAAAECBAgQIECAAAECBAgkKqDAm2jgDJsAAQIECBAgQIAAAQIECBAgQIAAAQIKvNYAAQIECBAgQIAAAQIECBAgQIAAAQIEEhVQ4E00cIZNgAABAgQIECBAgAABAgQIECBAgAABBV5rgAABAgQIECBAgAABAgQIECBAgAABAokKKPAmGjjDJkCAAAECBAgQIECAAAECBAgQIECAgAKvNUCAAAECBAgQIECAAAECBAgQIECAAIFEBRR4Ew2cYRMgQIAAAQIECBAgQIAAAQIECBAgQECB1xogQIAAAQIECBAgQIAAAQIECBAgQIBAogIKvIkGzrAJECBAgAABAgQIECBAgAABAgQIECCgwGsNECBAgAABAgQIECBAgAABAgQIECBAIFEBBd5EA2fYBAgQIECAAAECBAgQIECAAAECBAgQUOC1BggQIECAAAECBAgQIECAAAECBAgQIJCogAJvooEzbAIECBAgQIAAAQIECBAgQIAAAQIECCjwWgMECBAgQIAAAQIECBAgQIAAAQIECBBIVECBN9HAGTYBAgQIECBAgAABAgQIECBAgAABAgQUeK0BAgQIECBAgAABAgQIECBAgAABAgQIJCqgwJto4AybAAECBAgQIECAAAECBAgQIECAAAECCrzWAAECBAgQIECAAAECBAgQIECAAAECBBIVUOBNNHCGTYAAAQIECBAgQIAAAQIECBAgQIAAAQVea4AAAQIECBAgQIAAAQIECBAgQIAAAQKJCijwJho4wyZAgAABAgQIECBAgAABAgQIECBAgIACrzVAgAABAgQIECBAgAABAgQIECBAgACBRAUUeBMNnGETIECAAAECBAgQIECAAAECBAgQIEBAgdcaIECAAAECBAgQIECAAAECBAgQIECAQKICCryJBs6wCRAgQIAAAQIECBAgQIAAAQIECBAgoMBrDRAgQIAAAQIECBAgQIAAAQIECBAgQCBRAQXeRANn2AQIECBAgAABAgQIECBAgAABAgQIEFDgtQYIECBAgAABAgQIECBAgAABAgQIECCQqIACb6KBM2wCBAgQIECAAAECBAgQIECAAAECBAgo8FoDBAgQIECAAAECBAgQIECAAAECBAgQSFRAgTfRwBk2AQIECBAgQIAAAQIECBAgQIAAAQIEFHitAQIECBAgQIAAAQIECBAgQIAAAQIECCQqoMCbaOAMmwABAgQIECBAgAABAgQIECBAgAABAgq81gABAgQIECBAgAABAgQIECBAgAABAgQSFVDgTTRwhk2AAAECBAgQIECAAAECBAgQIECAAAEFXmuAAAECBAgQIECAAAECBAgQIECAAAECiQoo8CYaOMMmQIAAAQIECBAgQIAAAQIECBAgQICAAq81QIAAAQIECBAgQIAAAQIECBAgQIAAgUQFFHgTDZxhEyBAgAABAgQIECBAgAABAgQIECBAQIHXGiBAgAABAgQIECBAgAABAgQIECBAgECiAgq8iQbOsAkQIECAAAECBAgQIECAAAECBAgQIKDAaw0QIECAAAECBAgQIECAAAECBAgQIEAgUQEF3kQD16rDXnLJpcLAQYPy4b3//gfh5tE3tupQo41r+PARYY4558j7f/7558ODYx+Idq1mdzxkyNDQf7HF8mG8++574ZYxo5s9JNcnQIAAAQIECBAgQIAAAQIECJRKQIG3k3BPN910YYkllmzoQvjss8/C+PGPN7TPVuzsb9ePDoMHD8mH9vnnn4eF+80bZZhzzDlnWH75FcPgIUPCgAEDw9xz9w1vvfWv8MKECWHChOfDM888HcY99mh49913o1y/u06ffOaF0Lt377zJiy++EFb9xgrTfAzT6oKjx9weBgz8oqD/6aefhv4Lzz+tLt3Q62Tx6t//i0J1dnzwwQfhhRcm1HSNGWecMSy22IDKORMnTgyvvvpKTX1oTIAAAQIECBAgQIAAAQIECBCoVUCBtxOxUWuvG84578JaLXtsv9m3Nwr333dvj+3qaTBs6WXCsGFL56f++9//Dpdf9qd6upnqc2IXeBdZtH/4zbEnhBVWXKmqsb7++mvhhuuvC2efeXrNBbuqLtBJIwXeeuWad96IESPDhRdfUhlA9pcT64waEZ4YP77qQV30+0vD8NVHVNo//PBDYcNvrl31+RoSIECAAAECBAgQIECAAAECBOoRUODtRG3tddYLZ597QT2e3Z4Ts8D7l79eE5Zb/ss3RRdaYJ6Gj7+aDmMWeM865/ywzrrfrGYYnbbZbZfvhuuuvabu86s9UYG3WqnWanftDTeHpZYaXBlU9gbvaiuvWNUgV/r6N8KfLvtrpW32xv7wVVbK3+B2ECBAgAABAgQIECBAgAABAgRiCijwKvA2dH3FKvCef+HFYeSao6YYa1ZIy95Y/nTSpDDLrLOG6aefvsv57LvPXtPkzWYF3oYuqWnW2XzzfS3cfe8/Q69evSrX/PnPDgnnn3t2j2MY+9C4kG0b0nacd85Z4fCfH9rjeRoQIECAAAECBAgQIECAAAECBKZWQIG3E8FsP841Rq7Vre02227f4Z9j33D9teEvl1/W7Tmjb7oh36c0xlHkN3g323zLcNwJJ3dge/ONN8Lxxx0T/vD7izr8vG/fecLKq6wSll9hpbDOuuuF7L/bDgXexq+8ouzB2yZz6GGHh+/tslsF6pNPPgnLDlsyvP/++13iHXTwYWHX3fesfP72W2+FZYY1dg/vxkdOjwQIECBAgAABAgQIECBAgEBRBBR464zkwYf8LOyy2x6Vs4895tfhlJNPqLO3qT+tyAXeO/9+f+jXb8EK0tNPPRnWGjk8/xK3no5sr95TTj0jZG9nKvD2pFX750Ur8GYCDz4yPsw+++wVjFtuuTnsuN13OsXp7K3fmFux1B4hZxAgQIAAAQIECBAgQIAAAQJFF1DgrTPCjS7wZv8sPNtDN/uSpgXm7xcefPCBcMuYm6v+YrCpLfDONttsYeCgxcOCCy4UFligX5h9jjnCf/7zcXjl5ZfDQw89GB56cGxVBdUYWzRMeOn1DlEautTA8O6779YUub32/lG48q9/6dazUQZTs0VDtgfs8NXXCIMGLR6ef/65cN9994R/3H9fyN4kreWYccYZQ/bFe0OHLR0WmH+BMOGFCeGJ8Y+Hxx59JLz33nu1dNVt2+4KvLPMMktYc61RYeVVVgv/+teb+ZfdZeuo1Y9VVxsefn/JnzsMc9NvbZjHYfKj/XrPPhtz801hpx22rXqKjYh3o9Zt1YPWkAABAgQIECBAgAABAgQIEGgpAQXeOsPRqALvIov2Dxf/4dK8qNrZkW3pcN21fwt77blrpwXW62+8JSy+xBJhuumm63B6V2+3nn7aKeHoo46stP3DHy/LC8szzTRTtxL/+c9/wl+vuDz86sgjwjsTJ3bZttEF3myLhfsfeLhyvcyj/8Lz1xm1zk9rtEGtBd75518gXPT7P4ZF+y82RRzbRvzYY4+Gbb+zRcj++X93x6i11w2H/+LIkPXZ1ZFtNzD6phvDqb89MTz15JNTZdlZgXf7HXYK+x94cMgKvJMf2Z7JZ5z+2w5rsK3NHnvuHfY/8KDKKbfffmvYfputqhpf9tbtV7/61bxttkYGLNqvqr+Q6KrzSy69PKy8yqqVj7MtQZZfdkiH5htv8q1w8m/PqPwsy5FhgweFjz76qNsxNyrejV63f73q2rD0MsvmY//www/DkoMWzf+cFby3237HMGTosDDPPPOG//f//l+YNGlSOPxnh4SLL7qwqvhoRIAAAQIECBAgQIAAAQIECMQTUOCt07YRBd6dvvv9cNjPjujwpU5dDScrMG2+2SbhuWef6dDkjrvvy9+6rfa46HcXhEMOOqDS/PEnnwt9+vSp9vSQFbFW/cYK4Y03Or5V29ZBowu82ZvNz73waofxbfedLUNW/GvU0WiDWgq8O+78vZDt+9rdl8O1zTMrqh24/37hsj9f2unUL7z4kjBixMiqWbJC7+AlFqu6fWcN2xd4s8+z7TMWGzCwxz5vu+2WsMO2W3cowmZfUvbAg49VitxZMTgbX/Ylet0dG260cfjtaWd9uabHjQvrrr1Gj2PorkH2Vuw/H3wszDDDDJVmJ514XDj+2GPy/87ekM6KyjPPPHPl85/st0/406WXdHvdRsa70et28mL9N1ZcNlz0+0vzv0Dq7Mi2pMm2pnEQIECAAAECBAgQIECAAAECzRVQ4K3Tf2oLvLvsukc4+NCfTXH1jz/+OHzw/vshK3Zlxc32R1bgW27ppTpsT3D7XfeGhRZauOpZVFPgzd6AzAq5WXErK2RNfrz22qshK/5kBbjJj0YXeLP+xz3xbIdC2tixD4RNNlyv6jn31LCzQtnUGFRb4P3pwYeG3Xb/wRQxzornEydODH379g1zz923w1u92biyN0knvv12h/P22ffH4Uf7/mSKqWZxzN7GzN5unfwt7xgF3p6s23/+uwvPD4cefGCHU/569XVhmf+9RZp9kL3te9SRv+i228mLzDtuv024ZczoWobSadvsjeIDfnpw5bPMfoXlhuZvUWdv7mZv8LYd4x9/PKwzakS312xkvLMLNXrdTu6Y/f9N+wL35JNT4J3qJaYDAgQIECBAgAABAgQIECDQEAEF3joZp6bAmxVNH3386dC7d+/K1V94YUL41kbr53uVth3Zm4knnHRqhyLLzaNvDDvvuF2lTfam4ayzzhbOPvfCsMSSS1Z+nr1l29nx+uuvddjPNSueZoXa+++7J1zyh9+H224dkxd3246vzj572GOPvfIvlGtfINz7B7uFK/96xRSXiFHgnXx/4eyi2RvNF15wXrjwgnOnek/ZRhtUU+Cda665860n2or42ZYa2T93zwqe7bfXmHfe+fLtG7L9kduOO++4PWyz9eYd7J95/uUObwGff+7Z4ZyzzwwvvfRipd2AgQPD5ptvFbK3SLO1F7PAe8/f7w433HBduOG6a/P1NGrtdcLBh/68w7YN2c8XH7Bwh78oyLZFyLZHaDuyvZazPZe7OrIv38u+hK/tyArjSw/50qrO9K6cdve9/+yw3UW2D28Wo2tvuLnDm8ZZvr388ktdXq7R8c4u1Oh1O3mBt/1ksjX55ptvhNdeey18ZeaZwzzzzheOPuqXeQ46CBAgQIAAAQIECBAgQIAAgeYKKPDW6T81Bd7fHHdi2GLLrStXfvjhh8KG31y705Fke/PeesffOxR51xq52hR7p9b7JWtZgbGzN3EnH8zkbxxnxciDf7r/FGOOUeDNipx/v++BLreyyP4J/ysvvxTGjRuXF6pvuvGGkL1lXO3RaINqCryXX3F1WH6FFStD7Kpg3tbgoUefqOwxm/1s6aFLVN7izb6oKys4th233HJz2HG773Q5/Ww7iJ8edGj+JWybfXujapk6bTd5UXDChOfDbt/fOYwb99gU7bMv7rvtjntC9pcSbccJx/0mnHjCsR3ajn1oXP4Ge9uRfWlZ9uVlnR2nnXF2WH+DL+dwwvG/CSce37G/qZng5LZZX1lhuv1fzpx5+qn53tTdHY2Md9t1Gr1uOyvwZn8JcMhB+4errvxrVf8/MTXWziVAgAABAgQIECBAgAABAgTqE1Dgrc8tTE2B9+nnXupQsB2+6tfDhOef63IkkxeEb711TL5/afuj3gJvtdPP3jp+6tkv3wbtqigdo8CbjfE722wXjjzqmKr2K87aZ9sS3HXn7fkeoePHP17tNLttV61BTwXerGh/1z3/qFzr7rvuDFtvuWm3187mf9TRXxYus7e4s7e5s2OHHXcOR/zyqMr5Yx/4Z9hko282ZM49ddLZl6x1d853v79rvu902/Hcc8+GEat9o8MpP9xnv7Dvj7/8y4PsC+a+uc6aU3SbFTgz67ZtBLItFJYYuEiHN9R7Gn81n09eRG5/zr/efDMst8zgbrtpdLyrGXP7NtWu28kLvNkb+vvu84P8S+scBAgQIECAAAECBAgQIECAQOsKKPDWGZt6C7yzzjpreGTcU5WrZm86rrd291+MNcsss+TntG2RkG3nsNrKX779mXXWqAJvVgxaZtnlwlKDh4QF+y0Y5pl33pD98/JZZpk1/7KltjFk//R/la8vP4VerAJvdqFFFu2fb1eQ/bP8Wo5sz95tttqsxy/rautzag16KvButvmW4bgTTq5MISvWZ0X77o6+fefJt3RoO9p/4dfk2xpk/5x+8003Dvffd28tTHW1rbXAmxVls78oaPtSuc62YMj8s/1l23/x3ArLDp3ii/123W3PcNAhh1XGfeMN14Xvf3fHuubR3UnZ27oPP/ZkmGmmmaZotum3NgzZtg3dHY2Od1fXmtp1W2ssGw6tQwIECBAgQIAAAQIECBAgQKAuAQXeuthC3W/wrr76GuF3v/9j5aqX/fnSsN+P9u5xFNmevVmhNzuyLQmWHLRoh3OmpsCb9bv/gQeHtddZN2TbIVRzNKPA2zau7I3IXXffM6y51qiQFT67+yKotnOyf2q+0vLDuizyNtKgpwLvL391dNhu+y8LkdlboNUcc809d6XZDddfG3b53k75f2cFyPFPPT/F283ZNhV33H5bvq/ymJtHV13grmYsbW3qKQr+c+yjoW0u2duh/Reef4pLnnv+78Jao9bpNk+ygncW/7Yj2wf3xRdfqGX4VbedvEibnVhtQbnR8W4/6Eau23piWTWghgQIECBAgAABAgQIECBAgEA0AQXeOmnrfYN3r71/FH68/4GVq/7m6KPCb085scdRZP+kPytsZkf2hubC/ebtcE69Bd6hQ4eFS/70l/CVr3ylxzG0b9DMAu/kA83eMF59xBphtdVWD0OHDQsLLbxIh7c/29q3L4q276PRBj0VeP98+ZVhxZW+XpP35I2zLzHbcvNvVX58+C9+FXbc6bvd9pn9xUC2fUO2Z+ztt986VddvO7meouCYW+8M/RcbULn+gEX7TbGtQva29q23311p8/HHH4dBiy1U+e9s/+JsX9u248knxodRa67ekDl11ck9948N8833tcrH2Rvs7b/ErqvzYsQ7u1aj1209sYwKrnMCBAgQIECAAAECBAgQIECgKgEF3qqYpmxUb4H32ONPCptvsVWlw3323jNc8ZfLehzF5EWxIUsOCO+9917lvHoKvNtut0PI3i5s23ahrbOsgPzWv/4V3njzjfzLyt58443wr3+9GXbfY6/KW6KtVOCdHC/bBmDHnb+Xf5FY9s/W247sy+QWWbDjG8oxDHoq8N5x931hwQW/LFb2GPxOGnS2b28Wy2w+k8ezs/6zfW233uLbIdsiYWqOeoqCN9x0a77dR9sxbMji4Z2JE6cYRlbgzQq9bcdPD/hx+MPvL8r/87K/XBVWWHGlymfZ1gzZG7Uxj8nH/fUVlgmvvvpKj5eMEe8Y67aeWPY4eQ0IECBAgAABAgQIECBAgACB6AIKvHUS11vg3WffH4cf7fuTylWP+fWvwqm/PanHUdz59/s77D2bvcGbFWLbjloLvFkR9ImnJ3QogE6aNCmce86Z4de/+mWHvtuuke2L2qdPn/w/W7nA2zbepZYaHK694eYOtu3fuoxl0FOB9+prb8zfvmw7si/Ze//9L4v1PS6GEMIH77/f6ZeJzTHnnHlhe8QaI8Pcc/ftttj77DNPhzVWX6Way3XZpp6iYPuCZ2dvo7ddbJNvbxpOOvm0yrXb9p6ebbbZwkOPPlGZW2f7+E7VpLo4ud4Cb6PjHWvd1hPLGM76JECAAAECBAgQIECAAAECBGoTUOCtzavSut4C78g1R4XzL7y40k89e/B++OGHYYmBi3QYea0F3i23+k445tgTKn288847YeWVlu12n9bUCrzZ5O7750Nhnnm+3M5iu+9sWdmeIJZBTwXeyd/ijvX2afYmb7aVwcg11wojR44KAwcNmmKf3p133C7cPPrGOrMghHqKgu33k872Rh68xGJdXn/cE8+GmWeeufL5WiNXC9vvsHPYfocv9h/OjuwvSLK/KIl91FvgbXS8Y63bemIZ21z/BAgQIECAAAECBAgQIECAQM8CCrw9G3Xaot4C71dnnz089Mj4Sp/jxj0W1lt7ZLejyApcj41/pvLGYmdvz9Za4J18z9Zf/fKIcOYZp3Y7jmYVeLNtFj755JO6IjX5F3FlBcKnnnwy7yuWQU8F3uwL1rLtFNqOiy+6MBz80/3rml8tJ2Vr76abb+vwxWQX/e6CcMhBB9TSTYe2tRYFsy8Fe2TcU5W1/NSTT4S1Rg7v8vqTf0HZmDGjw0orfaNS9M2+pC37wsH//Oc/dc+h2hPrLfA2Ot6x1m2tsazWTTsCBAgQIECAAAECBAgQIEAgroACb52+9RZ4s8s98/zLHb4ELPsn+hOef67LkRz9m+PDVltvU/n8rjvvCN/ZarMO7c+74KKw5lprV3628krLhZdffqnLPn972llhw402rnz+k/32CX+69JJuNZpR4F1/gw3DqaefHa64/LJw4AH71VTIm3XWWcPDjz1ZKSZmReLsC73ajlgGPRV4BwwcGEaPuaMyjmxv4FW/sUK38apzmU5x2vd33T0ccujPKz+/9m9Xh913/V7d3ddaFDzxpFPDtzb9cu3+7Zqrwh67fb/L60++HcPkDcfcfFPYaYdt6x5/LSfWW+BtdLxjrdtaY1mLnbYECBAgQIAAAQIECBAgQIBAPAEF3jptp6bAe9oZZ4f1N9iocuUHHxwbNt5g3U5HMu+884Vs/90ZZpih8vkG640KjzzycIf2Bx18WNh19z0rPzvt1JPD0Ucd2eXs9thz73DATw+ufJ69GbnT9l8WkdufOPscc4Szzj4/rLjS1ys/nlZ78G7yrW+Hk045Pb9uVqA9+cTjwyknf7m1RFcT/L//+79w+133dnhbdfzjj4d1Ro2onBLLoKcCbzaAbGwLLbRwZSzZ/rJrrbFajwXs9b65Qcj+yf8O220d/nH/ffn5WRx3/u4u4aQTjgtZ3Ls7sq0NfnHkrytN/vynP4Yf7/vDOrOgti0askLnjaNvq2wTke2/u9rKK4YXX3yh2+tffsXV+VYTnR0jhq8cnnv2mbrHX8uJ9RZ4Gx3vWOtWgbeW1aAtAQIECBAgQIAAAQIECBBoHQEF3jpjMTUF3mzLhexLotoXbbMvvNp4w/XCe+99+WVbI0aMDGefd2GHL0K7+647w9ZbbjrFqCf/Qqrsn67vvMO24bbbbsnbZtscbLb5luHRRx4ODz/8UBgyZGi45rqbOvSTbRVwxM8PzYuM008/fVh11eHhmxtsGDbdbIsObxxnJzWjwNs22OxLtW668fpw+WV/CplH+2O++b4W9v3x/mHjTb4devfuXfkoe0t27bVWr2zPkH0Qy6CaAu8ii/YPt9x2V4cvQcvcjz3m1+G8c88KWfyyI/tCrZVXWTWsvvoaIYtx377z5D/fYdutw623jsn//LOf/yLs/L1d8j9neymfcPxvwlVXXhHefuutDjbDh48I515wUYf1lG0Pkm0TUu/RviiY9ZG9UXvSiceHB8c+UOkym8Nuu/8g/OSAn3bYA/iqK/8a9tpz1x4vvcKKK4XL/nLVFO0a8SVxPV68XYOpKfA2Mt6x1q0Cby2rQVsCBAgQIECAAAECBAgQINA6Agq8dcZiagq82SX3+8kBYe8f7jvF1bPi5ccffxS++tXZOxQos4ZZkXKFZYeGf/3rzXYHrbMAACAASURBVCnOy4po2T69ffr06fBZdk72v6xgmx3t91y94+77woILLjRFX9mbsllBuLujmQXeyceVjTd7GzQbc/bFYp0d++6zV14QnvyIYVBNgTcbR/vC7OTj+vjjj8OkSZNCtmdtZ0dXBd72bTOXN954PY//nHPO1eHLyrJ2j48bF9Zde406M+CL0yYv8LZ1lhWo//3vf+cF3c7mkI1t6FIDw0cffVTV9SffSzk76Qd77BKuvurKqs5vRKOpKfA2Mt5ZXzHWrQJvI1aJPggQIECAAAECBAgQIECAwLQXUOCt03xqC7zZZX+8/4HhB3vt02VRsv3Qsjd7t/3OFuGhB8d2OeLJ//l9Zw3bF3jnn3+BfKuAtuJvdxTZm6HZfqhtBdRpVeBdcsmlwoUXX9Jhq4VaQpYVGY868oi8sN3ZEcOg2gJvNp5ddt0jf7O1p4L65GPfaotvh7/ffVf+42yLhuyf7ddyZPFbY/jKdX95Xdu1uirwdjeWiRMnhs033ajD29Q9jf2H++yXv5nddrz//vth8BKL9XRaQz+f2gJvo+Kd9RNj3SrwNnS56IwAAQIECBAgQIAAAQIECEwzAQXeOqn3P/CgsOcPvty79Fe/PCKcecapNfc2dOiwcOFFl4Q55pyz03OzN1PvvOP2sPOO21ZVjMu+OO2YY0+c4k3ets4n35u3X78Fw+8uviQs2r/zYtmHH34Y/viHi8MRhx8WHn386fCVr3wl7+q5554NI1b7xhRj/utV14Zlll0u/3n25ugiC85Xs0lnJyywQL+w+557hW9+c4Murdqfl437dxeeF379q1/mb/d2dzTaoP2X0XXl1H482Ruuvz39rHxLjO6K7VlR85YxN4dTTzkxjB//eIcpZXHfZbc9820nunqLOTshK9Qff+zR4cILzmtIXK6/8ZawxJJL5n1lbxxnW4AsvcyyXY4h21Ij2z84e4O3luNXv/5N2Gbb7SunnHn6qeFXRx5RSxdT3fZv148OgwcPqfSz3NKDO32bvqcLNSLe2TUavW4nj+ViiyzQ01R8ToAAAQIECBAgQIAAAQIECLSAgAJvCwQhG8Kss84aVh+xRljp6yuH2Wb7anjuuWfCHbffln+RVk8Fys6mkH2h1fLLrxgWXGihMPHtieH5558Lf7/7zpAVCTs7si+xWnW14aF//wH5xxMmPBfuv/feyh6+LcKUDyP7Z//Z/AYOHBT6LzYgLLTgwmHSp5PyoufDDz2Y/6/WAmLWbysYZG9JL7f8imGZZZcN88wzb3ju2WfDuMceDQ89/GB4Z+LEqsKw0MKLhKFDh4YlllwqfG2++cMrr74cnhj/eHj00UfDM08/VVUfU9Mo+8uKkSPXCkOGDgt9+/YN2Ru7WWH6tlvH1BWXrGD9xNMTKluWZH9xsOSgRave3mFq5hL73EbEuxXWbWwn/RMgQIAAAQIECBAgQIAAAQJdCyjwWh0ECLS0wPd33T0ccujPK2PMvjhw+222aukxGxwBAgQIECBAgAABAgQIECBAYFoJKPBOK2nXIUCgLoGxD43rsC3HWiNXq2n/3rou6iQCBAgQIECAAAECBAgQIECAQCICCryJBMowCZRRYOSao8L5F15cmXo1exqX0cmcCRAgQIAAAQIECBAgQIAAgfIKKPCWN/ZmTqDlBUaPuT0MGDioMs599t4zXPGXy1p+3AZIgAABAgQIECBAgAABAgQIEJhWAgq800radQgQqEkg+yK90WPuqJzzwQcfhKUW719THxoTIECAAAECBAgQIECAAAECBIouoMBb9AibH4FEBfb7yQFhl133qIz+3HPODMf8+leJzsawCRAgQIAAAQIECBAgQIAAAQJxBBR447jqlQABAgQIECBAgAABAgQIECBAgAABAtEFFHijE7sAAQIECBAgQIAAAQIECBAgQIAAAQIE4ggo8MZx1SsBAgQIECBAgAABAgQIECBAgAABAgSiCyjwRid2AQIECBAgQIAAAQIECBAgQIAAAQIECMQRUOCN46pXAgQIECBAgAABAgQIECBAgAABAgQIRBdQ4I1O7AIECBAgQIAAAQIECBAgQIAAAQIECBCII6DAG8dVrwQIECBAgAABAgQIECBAgAABAgQIEIguoMAbndgFCBAgQIAAAQIECBAgQIAAAQIECBAgEEdAgTeOq14JECBAgAABAgQIECBAgAABAgQIECAQXUCBNzqxCxAgQIAAAQIECBAgQIAAAQIECBAgQCCOgAJvHFe9EiBAgAABAgQIECBAgAABAgQIECBAILqAAm90YhcgQIAAAQIECBAgQIAAAQIECBAgQIBAHAEF3jiueiVAgAABAgQIECBAgAABAgQIECBAgEB0AQXe6MQuQIAAAQIECBAgQIAAAQIECBAgQIAAgTgCCrxxXPVKgAABAgQIECBAgAABAgQIECBAgACB6AIKvNGJXYAAAQIECBAgQIAAAQIECBAgQIAAAQJxBBR447jqlQABAgQIECBAgAABAgQIECBAgAABAtEFFHijE7sAAQIECBAgQIAAAQIECBAgQIAAAQIE4ggo8MZx1SsBAgQIECBAgAABAgQIECBAgAABAgSiCyjwRid2AQIECBAgQIAAAQIECBAgQIAAAQIECMQRUOCN46pXAgQIECBAgAABAgQIECBAgAABAgQIRBdQ4I1O7AIECBAgQIAAAQIECBAgQIAAAQIECBCII6DAG8dVrwQIECBAgAABAgQIECBAgAABAgQIEIguoMAbndgFCBAgQIAAAQIECBAgQIAAAQIECBAgEEdAgTeOq14JECBAgAABAgQIECBAgAABAgQIECAQXUCBNzqxCxAgQIAAAQIECBAgQIAAAQIECBAgQCCOgAJvHFe9EiBAgAABAgQIECBAgAABAgQIECBAILqAAm90YhcgQIAAAQIECBAgQIAAAQIECBAgQIBAHAEF3jiueiVAgAABAgQIECBAgAABAgQIECBAgEB0AQXe6MQuQIAAAQIECBAgQIAAAQIECBAgQIAAgTgCCrxxXPVKgAABAgQIECBAgAABAgQIECBAgACB6AIKvNGJXYAAAQIECBAgQIAAAQIECBAgQIAAAQJxBBR447jqlQABAgQIECBAgAABAgQIECBAgAABAtEFFHijE7sAAQIECBAgQIAAAQIECBAgQIAAAQIE4ggo8MZx1SsBAgQIECBAgAABAgQIECBAgAABAgSiCyjwRid2AQIECBAgQIAAAQIECBAgQIAAAQIECMQRUOCN46pXAgQIECBAgAABAgQIECBAgAABAgQIRBdQ4I1O7AIECBAgQIAAAQIECBAgQIAAAQIECBCII6DAG8dVrwQIECBAgAABAgQIECBAgAABAgQIEIguoMAbndgFCBAgQIAAAQIECBAgQIAAAQIECBAgEEdAgTeOq14JECBAgAABAgQIECBAgAABAgQIECAQXUCBNzqxCxAgQIAAAQIECBAgQIAAAQIECBAgQCCOgAJvHFe9EiBAgAABAgQIECBAgAABAgQIECBAILqAAm90YhcgQIAAAQIECBAgQIAAAQIECBAgQIBAHAEF3jiueiVAgAABAgQIECBAgAABAgQIECBAgEB0AQXe6MQuQIAAAQIECBAgQIAAAQIECBAgQIAAgTgCCrxxXPVKgAABAgQIECBAgAABAgQIECBAgACB6AIKvNGJXYAAAQIECBAgQIAAAQIECBAgQIAAAQJxBBR447jqlQABAgQIECBAgAABAgQIECBAgAABAtEFFHijE7sAAQIECBAgQIAAAQIECBAgQIAAAQIE4ggo8MZx1SsBAgQIECBAgAABAgQIECBAgAABAgSiCyjwRid2AQIECBAgQIAAAQIECBAgQIAAAQIECMQRUOCN46pXAgQIECBAgAABAgQIECBAgAABAgQIRBdQ4I1O7AIECBAgQIAAAQIECBAgQIAAAQIECBCII6DAG8dVrwQIECBAgAABAgQIECBAgAABAgQIEIguoMAbndgFCBAgQIAAAQIECBAgQIAAAQIECBAgEEdAgTeOq14JECBAgAABAgQIECBAgAABAgQIECAQXUCBNzqxCxAgQIAAAQIECBAgQIAAAQIECBAgQCCOgAJvHFe9EiBAgAABAgQIECBAgAABAgQIECBAILqAAm90YhcgQIAAAQIECBAgQIAAAQIECBAgQIBAHAEF3jiueiVAgAABAgQIECBAgAABAgQIECBAgEB0AQXe6MQuQIAAAQIECBAgQIAAAQIECBAgQIAAgTgCCrxxXPVKgAABAgQIECBAgAABAgQIECBAgACB6AIKvNGJXYAAAQIECBAgQIAAAQIECBAgQIAAAQJxBBR447jqlQABAgQIECBAgAABAgQIECBAgAABAtEFFHijE7sAAQIECBAgQIAAAQIECBAgQIAAAQIE4ggo8MZx1SsBAgQIECBAgAABAgQIECBAgAABAgSiCyjwRid2AQIECBAgQIAAAQIECBAgQIAAAQIECMQRUOCN46pXAgQIECBAgAABAgQIECBAgAABAgQIRBdQ4I1O7AIECBAgQIAAAQIECBAgQIAAAQIECBCII6DAG8dVrwQIECBAgAABAgQIECBAgAABAgQIEIguoMAbndgFCBAgQIAAAQIECBAgQIAAAQIECBAgEEdAgTeOq14JECBAgAABAgQIECBAgAABAgQIECAQXUCBNzqxCxAgQIAAAQIECBAgQIAAAQIECBAgQCCOgAJvHFe9EiBAgAABAgQIECBAgAABAgQIECBAILqAAm90YhcgQIAAAQIECBAgQIAAAQIECBAgQIBAHAEF3jiueiVAgAABAgQIECBAgAABAgQIECBAgEB0AQXe6MQuQIAAAQIECBAgQIAAAQIECBAgQIAAgTgCCrxxXPVKgAABAgQIECBAgAABAgQIECBAgACB6AIKvNGJXYAAAQIECBAgQIAAAQIECBAgQIAAAQJxBBR447jqlQABAgQIECBAgAABAgQIECBAgAABAtEFFHijE7sAAQIECBAgQIAAAQIECBAgQIAAAQIE4ggo8MZx1SsBAgQIECBAgAABAgQIECBAgAABAgSiCyjwRid2AQIECBAgQIAAAQIECBAgQIAAAQIECMQRUOCN46pXAgQIECBAgAABAgQIECBAgAABAgQIRBdQ4I1O7AIECBAgQIAAAQIECBAgQIAAAQIECBCII6DAG8dVrwQIECBAgAABAgQIECBAgAABAgQIEIguoMAbndgFCBAgQIAAAQIECBAgQIAAAQIECBAgEEdAgTeOq14JECBAgAABAgQIECBAgAABAgQIECAQXUCBNzqxCxAgQIAAAQIECBAgQIAAAQIECBAgQCCOgAJvHFe9EiBAgAABAgQIECBAgAABAgQIECBAILqAAm904jQvMP3004c+ffqE9957r64JzD7HHGHi22/Xda6TCBAgQIAAAQIECBAgQIAAAQIECBCoTkCBtzqnJFrddc8/Qu8Ze/c41tffeD2sv+5aU7SbddZZw5lnnx+WGjwkzDbbbPnnH374YXhhwoRwyMEHhPvvu7fbvn99zHFhzbVGhbnn7humm266MGnSpPDqq6+E8849O5x/7tk9jksDAgQIECBAgAABAgQIECBAgAABAgRqE1Dgrc2rpVs//+JreWG1p+Pjjz8OgxZbqEOzBRboF6694eZKYXfyPj777LOwx27fD9dde80U3ffq1Stcec31YejQYV1e+oLzzw0/O/SgnobmcwIECBAgQIAAAQIECBAgQIAAAQIEahBQ4K0Bq9WbthV4//Of/4Snn36qy+G+9uorYecdt+vw+T33jw3zzfe1/GcvvDAhXH7Zn8Lbb70V1l1v/bDKqqvlP//888/D0kOXCO9MnNjh3FNOPTNstPEm+c8++OCDcMVfLgsPjn0gDF99jbDhRhuHrACcHfvsvWf+mYMAAQIECBAgQIAAAQIECBAgQIAAgcYIKPA2xrElemkr8D766COdbsHQ1SAHLb54uHH0bfnH2ZYKK6+0XMje2G07jjvh5LDZ5lvm/3neOWeFw39+aIeunnzmhdC7d+98S4aRq6+SF4jbjvU32DCcdsY5+X8++cT4MGrN1VvCyiAIECBAgAABAgQIECBAgAABAgQIFEFAgbcIUfzfHOot8J57/u/CWqPWyXvJ3uy9efSNHVSybR+enfBK/ibuxIkTw9JDFq98vulmW4TjTzwl/+8r/nJ52GfvPaYQvePu+8KCC36xJcQyw5bM3wx2ECBAgAABAgQIECBAgAABAgQIECAw9QIKvFNv2DI91Fvgvf+Bh0PfvvPkWzAsutDXOry92za52++6Nyy00ML5fy6y4HyVNqefeU745vob5j///nd3DDfecN0UHkf/5viw1dbb5D/f/8c/Cpf+8Q8tY2YgBAgQIECAAAECBAgQIECAAAECBFIWUOBNOXqTjb2twPvUk0+EPffYJfSesXd45513OmyZ0Nl0xz3xbJh55pnztsMGD+pU5OxzLwhrr7Ne/tnwVb8eJjz/XP7ny6+4Oiy/wor5n/svPH/49NNPpzh/k29vGk46+bT85yefdHw47jdHF0jdVAgQIECAAAECBAgQIECAAAECBAg0T0CBt3n2Db9yW4G3s45feunFcPKJx3f69uwzz78cpp9++vD666+FFZcb1um42u/Du8O2W4dbbx2Tt7vltrvCov0Xy/+80ALzdHruiBEjw4UXX5J/dtmfLw37/Wjvhs9dhwQIECBAgAABAgQIECBAgAABAgTKKKDAW6Cod1fgbZvmVVf+Ney1566VWWf762bnZceECc+H4aus1KnIz484Muy08/fyzw475KfhwgvOy//8z7GPhrnmnjvfsiHbuqGzY9jSy4Srrrk+/+jOO24P22y9eaXZzLPPW6AImAoBAgQIECBAgAABAgQIECBQRoF/T/yituIg0AwBBd5mqEe65m9POys899wz4emnngyvvfZamHXW2cKAAQPD1ttsW/mSs+zSh//80HDeOWflo5hxxhnDU8++mP/52WeeDmusvkqnozv0sMPD93bZLf+sfYH3wUfGh9lnnz3fmiHboqGzY6mlBodrb7g5/2jyAu88/ZeJpKFbAgQIECBAgAABAgQIECBAgMC0EXj9mbHT5kKuQqATAQXekiyLXxz567D9Djvls3183Liw7tprVGbe9ubvyy+/FFZeablORY459oSw5VbfyT/bbZfvhuuuveaLgu3f7w/9+i2Yf0Hbwv06fxt31dWGh99f8ue8/dVXXRl+sMculWt4g7ckC9A0CRAgQIAAAQIECBAgQIBAgQW8wVvg4CYwNQXeBILUqCE+98KroVevXuHf//53WHLQopVun3h6QphpppnCm2+8EZZfdkinlzvtjLPD+htslH+23tojw7hxj31RsL32xjB06Bf79na1B++GG20csreLs+OsM04LR/7y8EZNST8ECBAgQIAAAQIECBAgQIAAAQIESi2gwFui8D/6+NNhlllmmWI7hbEPjQtzzDln+OSTT8KARft1KvK360eHwYO/KP4uPmDh8NFHH+V/Pv/Ci8PINUflf15nrRFh/PjHpzh//wMPCnv+4If5z3922MHhgvPOKZG6qRIgQIAAAQIECBAgQIAAAQIECBCIJ6DAG8+2pXrO3tx9dsIrIftStYlvvx2WHrpEZXzXXHdTGDJkaLdF2iefeSH07t07TJo0KSy2yAKVc/f7yQFh7x/um//3Gaf/Nhx15C+mmHf74vAG640KjzzycEvZGAwBAgQIECBAgAABAgQIECBAgACBVAUUeFON3GTj3na7HcJdd90Znnv2mU5ndNwJJ4fNNt8y/+z+++4Nm337i+0WsqP9FgpjxowOO22/TYc+Nvn2puGkk0/Lfzbm5pvCTjtsW/k8eyP4kXFP5YXjt996Kyy3zODw2WefVT5fYIF+4Y6778u3hsg+X2bYkgURNw0CBAgQIECAAAECBAgQIECAAAECzRdQ4G1+DBoygnvuHxvmm+9r4bHHHg2X/fnScM/dd4Unn3wiLDV4SDjsZ0eE5VdYMb9O9mVoo9YcHp568skO123bhzf74QXnnxtOPeWk8O6774QNNtw4HHv8SXmBNjva77/b1sGV11wfll56mfw/xz7wz3Dg/vvlWzWsvMqq4bTTzw6zzzFH/tlpp54cjj7qyIbMVycECBAgQIAAAQIECBAgQIAAAQIECISgwFuQVdBW4O1pOl1to7DpZluE7C3f7E3cro5rrr4y7Ln7LlN8PGDgwHDVNTeEPn36VD7LCsnt+3rppRfDWmusVtm7t6dx+pwAAQIECBAgQIAAAQIECBAgQIAAgZ4FFHh7NkqixV57/yjssOPOYe6+fTsd7zvvvBP23nO3cNttt3Q5n+HDR4Qzzzm/Q6E2a5xtuZAVhrt7+7Zv33nCVX+7Pn+LuP2RFXr/cf99YYvNNumwdUMSqAZJgAABAgQIECBAgAABAgQIECBAoMUFFHhbPEC1Di/bDmHI4KFh0cUWC3PNNVd4Yvzj+d682f631R5ZsXbtddYNs8321XDLmNFh3LjHqj01zDzzzGHEGiPDoMWXCPfde0+4+647FXar1tOQAAECBAgQIECAAAECBAgQIECAQG0CCry1eWlNgAABAgQIECBAgAABAgQIECBAgACBlhFQ4G2ZUBgIAQIECBAgQIAAAQIECBAgQIAAAQIEahNQ4K3NS2sCBAgQIECAAAECBAgQIECAAAECBAi0jIACb8uEwkAIECBAgAABAgQIECBAgAABAgQIECBQm4ACb21eWhMgQIAAAQIECBAgQIAAAQIECBAgQKBlBBR4WyYUBkKAAAECBAgQIECAAAECBAgQIECAAIHaBBR4a/PSmgABAgQIECBAgAABAgQIECBAgAABAi0joMDbMqEwEAIECBAgQIAAAQIECBAgQIAAAQIECNQmoMBbm5fWBAgQIECAAAECBAgQIECAAAECBAgQaBkBBd6WCYWBECBAgAABAgQIECBAgAABAgQIECBAoDYBBd7avLQmQIAAAQIECBAgQIAAAQIECBAgQIBAywgo8LZMKAyEAAECBAgQIECAAAECBAgQIECAAAECtQko8NbmpTUBAgQIECBAgAABAgQIECBAgAABAgRaRkCBt2VCYSAECBAgQIAAAQIECBAgQIAAAQIECBCoTUCBtzYvrQkQIFBqgel6zRj6D9o5TD/DzKV2MPk0BCZ98n54/qnfhf/+9+M0BmyUBAgQIECAAAECBAgQqENAgbcONKcQIECgrAK9/t9MYZ1N7gv/12eeshKYd0ICH/77lXDTVauE/376YUKjNlQCBAgQIECAAAECBAjUJqDAW5uX1gQIECi1gAJvqcOf3OQVeJMLmQETIECAAAECBAgQIFCHgAJvHWhOIUCAQFkFFHjLGvk0563Am2bcjJoAAQIECBAgQIAAgdoEFHhr89KaAAECpRZQ4C11+JObvAJvciEzYALRBD7//PO87+mmmy7aNXRMoJECn332WejVq1cju9QXAQIECBRYQIG3wME1NQIECDRaQIG30aL6iymgwBtTV98E0hLo1WvGMGCpH4QZZpglrYEbbSkFPvnk3fDM42f4ktBSRt+kCRAgUJ+AAm99bs4iQIBAKQUUeEsZ9mQnrcCbbOgMnEDDBfz+ajipDiMK+P0VEVfXBAgQKKiAAm9BA2taBAgQiCHgATmGqj5jCXhAjiWrXwLpCfj9lV7Myjxiv7/KHH1zJ0CAQH0CCrz1uTmLAAECpRTwgFzKsCc7aQ/IyYbOwAk0XMDvr4aT6jCigN9fEXF1TYAAgYIKKPAWNLCmRYAAgRgCHpBjqOozloAH5Fiy+iWQnoDfX+nFrMwj9vurzNE3dwIECNQnoMBbn5uzCBAgUEoBD8ilDHuyk/aAnGzoDJxAwwX8/mo4qQ4jCvj9FRFX1wQIECiogAJvQQNrWgQIEIgh4AE5hqo+Ywl4QI4lq18C6Qn4/ZVezMo8Yr+/yhx9cydAgEB9Agq89bk5iwABAqUU8IBcyrAnO2kPyMmGzsAJNFzA76+Gk+owooDfXxFxdU2AAIGCCijwFjSwpkWAAIEYAh6QY6jqM5aAB+RYsvolkJ6A31/pxazMI/b7q8zRN3cCBAjUJ6DAW5+bswgQIFBKAQ/IpQx7spP2gJxs6AycQMMF/P5qOKkOIwr4/RURV9cECBAoqIACb0EDa1oECBCIIeABOYaqPmMJpPaAPF2vGUP/QTuH6WeYORaJfgk0TGDSJ++H55/6Xfjvfz9uWJ8xO/L7K6auvhstkNrvr0bPX38ECBAgULuAAm/tZs4gQIBAaQU8IJc29ElOPLUHZPmV5DIr7aDlV2lDb+LTQCC1/JoGJC5BgAABAj0IKPBaIgQIECBQtYACVNVUGraAQGoPyPKrBRaNIVQtIL+qptKQQM0CqeVXzRN0AgECBAg0XECBt+GkOiRAgEBxBRSgihvbIs4stQdk+VXEVVjcOcmv4sbWzJovkFp+NV/MCAgQIEBAgdcaIECAAIGqBRSgqqbSsAUEUntAll8tsGgMoWoB+VU1lYYEahZILb9qnqATCBAgQKDhAgq8DSfVIQECBIoroABV3NgWcWapPSDLryKuwuLOSX4VN7Zm1nyB1PKr+WJGQIAAAQIKvNYAAQIECFQtoABVNZWGLSCQ2gOy/GqBRWMIVQvIr6qpNCRQs0Bq+VXzBJ1AgAABAg0XUOBtOKkOCRAgUFwBBajixraIM0vtAVl+FXEVFndO8qu4sTWz5gukll/NFzMCAgQIEFDgtQYIECBAoGoBBaiqqTRsAYHUHpDlVwssGkOoWkB+VU2lIYGaBVLLr5on6AQCBAgQaLiAAm/DSXVIgACB4gooQBU3tkWcWWoPyPKriKuwuHOSX8WNrZk1XyC1/Gq+mBEQIECAgAKvNUCAAAECVQsoQFVNpWELCKT2gCy/WmDR5w3ChgAAIABJREFUGELVAvKraioNCdQskFp+1TxBJxAgQIBAwwUUeBtOqkMCBAgUV0ABqrixLeLMUntAll9FXIXFnZP8Km5szaz5AqnlV/PFjIAAAQIEFHitAQIECBCoWkABqmoqDVtAILUHZPnVAovGEKoWkF9VU2lIoGaB1PKr5gk6gQABAgQaLqDA23BSHRIgQKC4AgpQxY1tEWeW2gOy/CriKizunORXcWNrZs0XSC2/mi9mBAQIECCgwGsNECBAgEDVAgpQVVNp2AICqT0gy68WWDSGULWA/KqaSkMCNQukll81T9AJBAgQINBwAQXehpPqkAABAsUVUIAqbmyLOLPUHpDlVxFXYXHnJL+KG1sza75AavnVfDEjIECAAAEFXmuAAAECBKoWUICqmkrDFhBI7QFZfrXAojGEqgXkV9VUGhKoWSC1/Kp5gk4gQIAAgYYLKPA2nFSHBAgQKK6AAlRxY1vEmaX2gCy/irgKizsn+VXc2JpZ8wVSy6/mixkBAQIECCjwWgMECBAgULWAAlTVVBq2gEBqD8jyqwUWjSFULSC/qqbSkEDNAqnlV80TdAIBAgQINFxAgbfhpDokQIBAcQUUoIob2yLOLLUHZPlVxFVY3DnJr+LG1syaL5BafjVfzAgIECBAQIHXGiBAgACBqgUUoKqm0rAFBFJ7QJZfLbBoDKFqAflVNZWGBGoWSC2/ap6gEwgQIECg4QIKvA0n1SEBAgSKK6AAVdzYFnFmqT0gy68irsLizkl+FTe2ZtZ8gdTyq/liRkCAAAECCrzWAAECBAhULaAAVTWVhi0gkNoDsvxqgUVjCFULyK+qqTQkULNAavlV8wSdQIAAAQINF1DgbTipDgkQIFBcAQWo4sa2iDNL7QFZfhVxFRZ3TvKruLE1s+YLpJZfn3/+eZhuuumaD2cEBAgQKLGAAm+Jg1/UqWc3GA4CqQmkclOsAJXayir3eFN7QJZf5V6vqc1efqUWMeNNSSC1/Jqu14xh4JJ7hBlm+EpKzMZaUoFPPnkvPDP+rPDf/35cUgHTLqqAAm9RI1vieU0/wywhfP5ZCP4WucSrIKWpZ38h0St8Oun9JAatAJVEmAzyfwKpPSDLL0s3JQH5lVK0jDU1AfmVWsSMNyWB1PIrJVtjba6AAm9z/V09goAH5AiouowmkNoNhvyKthR0HEFAfkVA1SUBf4FiDRCILuD3V3RiFyixQGr5VeJQmXqNAgq8NYJp3voCClCtHyMj/FIgtRsM+WX1piQgv1KKlrGmJiC/UouY8aYkIL9SipaxpiaQWn6l5mu8zRNQ4G2evStHElCAigSr2ygCqd1gyK8oy0CnkQTkVyRY3RIIIcgvy4BAPAH5Fc9WzwRSyy8RI1CtgAJvtVLaJSOgAJVMqAzUA7I1QCCqQGo38H5/RV0OOm+wgPxqMKjuCLQTkF+WA4F4AqnlVzwJPRdNQIG3aBE1n+AB2SJISSC1Gwz5ldLqMlb5ZQ0QiCcgv+LZ6pmA/LIGCMQTSC2/4knouWgCCrxFi6j5KPBaA0kJpHaDocCb1PIq/WDlV+mXAICIAvIrIq6uSy8gv0q/BABEFEgtvyJS6LpgAgq8BQuo6QQFXosgKYHUbjAUeJNaXqUfrPwq/RIAEFFAfkXE1XXpBeRX6ZcAgIgCqeVXRApdF0xAgbdgATUdBV5rIC2B1G4wFHjTWl9lH638KvsKMP+YAvIrpq6+yy4gv8q+Asw/pkBq+RXTQt/FElDgLVY8zSYo8FoEaQmkdoOhwJvW+ir7aOVX2VeA+ccUkF8xdfVddgH5VfYVYP4xBVLLr5gW+i6WgAJvseJpNgq81kBiAqndYCjwJrbASj5c+VXyBWD6UQXkV1RenZdcQH6VfAGYflSB1PIrKobOCyWgwFuocJpMJqAAZR2kJJDaDYb8Sml1Gav8sgYIxBOQX/Fs9UxAflkDBOIJpJZf8ST0XDQBBd6iRdR8FHitgaQEUrvBUOBNanmVfrDyq/RLAEBEAfkVEVfXpReQX6VfAgAiCqSWXxEpdF0wAQXeggXUdLzBaw2kJZDaDYYCb1rrq+yjlV9lXwHmH1NAfsXU1XfZBeRX2VeA+ccUSC2/Ylrou1gCCrzFiqfZ2KLBGkhMILUbDAXexBZYyYcrv0q+AEw/qoD8isqr85ILyK+SLwDTjyqQWn5FxdB5oQQUeAsVTpPJBBSgrIOUBFK7wZBfKa0uY5Vf1gCBeALyK56tngnIL2uAQDyB1PIrnoSeiyagwFu0iJqPAq81kJRAajcYCrxJLa/SD1Z+lX4JAIgoIL8i4uq69ALyq/RLAEBEgdTyKyKFrgsmoMBbsICajjd4rYG0BFK7wVDgTWt9lX208qvsK8D8YwrIr5i6+i67gPwq+wow/5gCqeVXTAt9F0tAgbdY8TQbWzRYA4kJpHaDocCb2AIr+XDlV8kXgOlHFZBfUXl1XnIB+VXyBWD6UQVSy6+oGDovlIACb6HCaTKZgAKUdZCSQGo3GPIrpdVlrPLLGiAQT0B+xbPVMwH5ZQ0QiCeQWn7Fk9Bz0QQUeIsWUfNR4LUGkhJI7QZDgTep5VX6wcqv0i8BABEF5FdEXF2XXkB+lX4JAIgokFp+RaTQdcEEFHgLFlDT8QavNZCWQGo3GAq8aa2vso9WfpV9BZh/TAH5FVNX32UXkF9lXwHmH1MgtfyKaaHvYgko8BYrnmZjiwZrIDGB1G4wFHgTW2AlH678KvkCMP2oAvIrKq/OSy4gv0q+AEw/qkBq+RUVQ+eFElDgLVQ4TSYTUICyDlISSO0GQ36ltLqMVX5ZAwTiCciveLZ6JiC/rAEC8QRSy694EnoumoACb9Eiaj4KvNZAUgKp3WAo8Ca1vEo/WPlV+iUAIKKA/IqIq+vSC8iv0i8BABEFUsuviBS6LpiAAm/BAmo63uC1BtISSO0GQ4E3rfVV9tHKr7KvAPOPKSC/Yurqu+wC8qvsK8D8Ywqkll8xLfRdLAEF3mLF02xs0WANJCaQ2g2GAm9iC6zkw5VfJV8Aph9VQH5F5dV5yQXkV8kXgOlHFUgtv6Ji6LxQAgq8hQqnyWQCClDWQUoCqd1gyK+UVpexyi9rgEA8AfkVz1bPBOSXNUAgnkBq+RVPQs9FE1DgLVpEzUeB1xpISiC1GwwF3qSWV+kHK79KvwQARBSQXxFxdV16AflV+iUAIKJAavkVkULXBRNQ4C1YQE3HG7zWQFoCqd1gKPCmtb7KPlr5VfYVYP4xBeRXTF19l11AfpV9BZh/TIHU8iumhb6LJaDAW6x4mo0tGqyBxARSu8FQ4E1sgZV8uPKr5AvA9KMKyK+ovDovuYD8KvkCMP2oAqnlV1QMnRdKQIG3UOE0mUxAAco6SEkgtRsM+ZXS6jJW+WUNEIgnIL/i2eqZgPyyBgjEE0gtv+JJ6LloAgq8RYuo+SjwWgNJCaR2g6HAm9TyKv1g5VfplwCAiALyKyKurksvIL9KvwQARBRILb8iUui6YAIKvAULqOl4g9caSEsgtRsMBd601lfZRyu/yr4CzD+mgPyKqavvsgvIr7KvAPOPKZBafsW00HexBBR4ixVPs7FFgzWQmEBqNxgKvIktsJIPV36VfAGYflQB+RWVV+clF5BfJV8Aph9VILX8ioqh80IJKPAWKpwmkwkoQFkHKQmkdoMhv1JaXcYqv6wBAvEE5Fc8Wz0TkF/WAIF4AqnlVzwJPRdNQIG3aBE1HwVeayApgdRuMBR4k1pepR+s/Cr9EgAQUUB+RcTVdekF5FfplwCAiAKp5VdECl0XTECBt2ABNR1v8FoDaQmkdoOhwJvW+ir7aOVX2VeA+ccUkF8xdfVddgH5VfYVYP4xBVLLr5gW+i6WgAJvseJpNrZosAYSE0jtBkOBN7EFVvLhyq+SLwDTjyogv6Ly6rzkAvKr5AvA9KMKpJZfUTF0XigBBd5ChdNkMgEFKOsgJYHUbjDkV0qry1jllzVAIJ6A/Ipnq2cC8ssaIBBPILX8iieh56IJKPAWLaLmo8BrDSQlkNoNhgJvUsur9IOVX6VfAgAiCsiviLi6Lr2A/Cr9EgAQUSC1/IpIoeuCCSjwFiygpuMNXmsgLYHUbjAUeNNaX2Ufrfwq+wow/5gC8iumrr7LLiC/yr4CzD+mQGr5FdNC38USUOAtVjzNxhYN1kBiAqndYCjwJrbASj5c+VXyBWD6UQXkV1RenZdcQH6VfAGYflSB1PIrKobOCyWgwFuocJpMJqAAZR2kJJDaDYb8Sml1Gav8sgYIxBOQX/Fs9UxAflkDBOIJpJZf8ST0XDQBBd6iRdR8FHitgaQEUrvBUOBNanmVfrDyq/RLAEBEAfkVEVfXpReQX6VfAgAiCqSWXxEpdF0wAQXeggXUdLzBaw2kJZDaDYYCb1rrq+yjlV9lXwHmH1NAfsXU1XfZBeRX2VeA+ccUSC2/Ylrou1gCCrzFiqfZ2KLBGkhMILUbDAXexBZYyYf74b9fDqOvWjV8+umHSUjIryTCZJD/E/D7y1IgEE9AfsWz1TOB1PJLxAhUK6DAW62UdskIeEBOJlQGGkJI7QZDflm2KQko8KYULWNNTcDvr9QiZrwpCcivlKJlrKkJpJZfqfkab/MEFHibZ+/KkQQUoCLB6jaKQGo3GPIryjLQaSQBBd5IsLol4C8orQECUQXcH0bl1XnJBVLLr5KHy/RrEFDgrQFL0zQEFKDSiJNRfiGQ2g2G/LJyUxJQ4E0pWsaamoDfX6lFzHhTEpBfKUXLWFMTSC2/UvM13uYJKPA2z96VIwkoQEWC1W0UgdRuMORXlGWg00gCCryRYHVLwF9QWgMEogr4/RWVV+clF0jt+avk4TL9GgQUeGvA0jQNAQWoNOJklF8IpHaDIb+s3JQEPCCnFC1jTU3A76/UIma8KQn4/ZVStIw1NYHUfn+l5mu8zRNQ4G2efUtfefrppw99+vQJ7733Xl3jnH2OOcLEt9+u69ypPUkBamoFnT8tBVK7wZBf03J1uNbUCnhAnlpB5xPoWsDvL6uDQDwBv7/i2eqZQGq/v0SMQLUCCrzVSiXabsYZZwxXXnN9mHuuucP7778X1lh9lS5nMuuss4Yzzz4/LDV4SJhtttnydh9++GF4YcKEcMjBB4T777u3W4VfH3NcWHOtUWHuufuG6aabLkyaNCm8+uor4bxzzw7nn3v2NBNUgJpm1C7UAIHUbjDkVwOCrotpJuABeZpRu1AJBfz+KmHQTXmaCfj9Nc2oXaiEAqn9/iphiEy5TgEF3jrhUjntb9ePDoMHD8mH++mnn4b+C8/f6dAXWKBfuPaGmyuF3ckbffbZZ2GP3b4frrv2minO79WrV15EHjp0WJcsF5x/bvjZoQdNEzYFqGnC7CINEkjtBkN+NSjwupkmAh6Qpwmzi5RUwO+vkgbetKeJgN9f04TZRUoqkNrvr5KGybTrEFDgrQMtlVNOOfXMsNHGm1SG212B9577x4b55vta3vaFFyaEyy/7U3j7rbfCuuutH1ZZdbX8559//nlYeugS4Z2JEzsQtL/OBx98EK74y2XhwbEPhOGrrxE23GjjkBWAs2OfvffMP4t9KEDFFtZ/IwVSu8GQX42Mvr5iC3hAji2s/zIL+P1V5uibe2wBv79iC+u/zAKp/f4qc6zMvTYBBd7avJJpvdfePwo/3v/ADuPtqsA7aPHFw42jb8vbZlsqrLzSciF7Y7ftOO6Ek8Nmm2+Z/+d555wVDv/5oR36ffKZF0Lv3r3zLRlGrr5KXiBuO9bfYMNw2hnn5P/55BPjw6g1V49uqAAVndgFGiiQ2g2G/Gpg8HUVXcADcnRiFyixgN9fJQ6+qUcX8PsrOrELlFggtd9fJQ6VqdcooMBbI1gKzdsXVZ995um8WLvYgIFdbtFw7vm/C2uNWief2s47bhduHn1jh2lm++k+O+GV/E3ciRMnhqWHLF75fNPNtgjHn3hK/t9X/OXysM/ee0xBdMfd94UFF1wo//kyw5bM3wyOeShAxdTVd6MFUrvBkF+NXgH6iyngATmmrr7LLuD3V9lXgPnHFPD7K6auvssukNrvr7LHy/yrF1Dgrd4qiZZLLTU4XHPdTXkx9p133gkrr7RsuPLq68KAgYO6LPDe/8DDoW/fefItGBZd6Gsd3t5tm/Ttd90bFlpo4fw/F1lwvkqb0888J3xz/Q3zn3//uzuGG2+4bgqno39zfNhq623yn+//4x+FS//4h6iWClBReXXeYIHUbjDkV4MXgO6iCnhAjsqr85IL+P1V8gVg+lEF/P6Kyqvzkguk9vur5OEy/RoEFHhrwGr1pnPNNXfI3pbt06dP+OSTT8Iaw1cOL730Yhg95vZuC7zjnng2zDzzzHlBeNjgQZ1O8+xzLwhrr7Ne/tnwVb8eJjz/XP7ny6+4Oiy/wor5n7MvcMu2gZj82OTbm4aTTj4t//HJJx0fjvvN0VEpFaCi8uq8wQKp3WDIrwYvAN1FFfCAHJVX5yUX8Pur5AvA9KMK+P0VlVfnJRdI7fdXycNl+jUIKPDWgNXKTWecccZw9z3/DHP37Zu/ibv5phuH+++7Nx9yTwXeZ55/OUw//fTh9ddfCysuN6zTabbfh3eHbbcOt946Jm93y213hUX7L5b/eaEF5un03BEjRoYLL74k/+yyP18a9vvR3lEpFaCi8uq8wQKp3WDIrwYvAN1FFfCAHJVX5yUX8Pur5AvA9KMK+P0VlVfnJRdI7fdXycNl+jUIKPDWgNXKTa+94eaQbc+QHT/Zb5/wp0u/KKhmR3cF3mx/3edffC1vN2HC82H4Kit1Os2fH3Fk2Gnn7+WfHXbIT8OFF5yX//mfYx8Nc809d75lQ7Z1Q2fHsKWXCVddc33+0Z133B622XrzSrMZ/+8rDWf97yf/DWtvcm/4vz6dF5wbfkEdEpgKgewGY/RVq4ZeM0w3Fb1Mu1Pl17SzdqWpF8gfkK9eLfSaXn5NvaYeCHQUkF9WBIF4AvIrnq2eCcR8/vrkow8AE2iagAJv0+gbd+FTTz8rbLDhxnmHZ55+avjVkUd06Ly7Am/25u9Tz76Yt8++kG2N1VfpdGCHHnZ4+N4uu+WftS/wPvjI+DD77LN3ub9v1j4rPGcF6OyYvMA7T/9lGgfxv57eeuHJMGqjvyvwNlxWhzEEshuMm68ZHubo98Wb8K1+yK9Wj5DxtRfIHpBvvmZEmKNf/yRg5FcSYTLI/wnIL0uBQDwB+RXPVs8EYj5/vf7MWMAEmiagwNs0+sZdeMJLr+edPfDPf4Tdd/3iLdv2x58u/2v+BWnZW7bfWHHZ/KN3330nfPTRR/mfszd4szd5X375pbDySst1OrBjjj0hbLnVd/LPdtvlu+G6a6/J/3zn3+8P/fotmG8LsXC/eTs9d9XVhoffX/Ln/LOrr7oy/GCPXSrtZv9a44ta773xSlh743sUeBu3xPQUUSD/G+RrVguzzNV5/kS8dF1dy6+62JzUJIEvHpBXD1+ZK41/0SG/mrRQXLYuAflVF5uTCFQlIL+qYtKIQF0CMZ+/Jr7ydF1jchKBRggo8DZCscl9tBV4axnGTTdeH7638w75KU88PSHMNNNM4c033gjLLzuk025OO+PssP4GG+Wfrbf2yDBu3GP5n6++9sYwdOgX+/Z2tQfvhhttHH572ll5m7POOC0c+cvDaxlqzW3tEVozmROaKJDaHlDyq4mLxaVrFrCHYc1kTiBQtYD8qppKQwI1C8ivmsmcQKBqgdSev6qemIalF1DgLcASqKfAO/qmG8J3d9o+n/3Yh8aFOeacM3zyySdhwKL9OhX52/Wjw+DBXxR/Fx+wcOXt3/MvvDiMXHNU/vN11hoRxo9/fIrz9z/woLDnD36Y//xnhx0cLjjvnKjqClBReXXeYIHUbjDkV4MXgO6iCnhAjsqr85ILyK+SLwDTjyogv6Ly6rzkAqk9f5U8XKZfg4ACbw1Yrdo02yJh+hlm6HJ4F/3+j/k2CtkWDSNHrJq3e+tfb4b33nsv//M1190UhgwZ2m2R9slnXgi9e/cOkyZNCostskDlWvv95ICw9w/3zf/7jNN/G4468hdTjKN9cXiD9UaFRx55OCqlAlRUXp03WCC1Gwz51eAFoLuoAh6Qo/LqvOQC8qvkC8D0owrIr6i8Oi+5QGrPXyUPl+nXIKDAWwNWqk27+5K1bE7tt1AYM2Z02Gn7bTpMdZNvbxpOOvm0/Gdjbr4p7LTDtpXPZ5lllvDIuKfyPXzffuutsNwyg/NCctuxwAL9wh133xd69eqVf77MsCWjMypARSd2gQYKpHaDIb8aGHxdRRfwgByd2AVKLCC/Shx8U48uIL+iE7tAiQVSe/4qcahMvUYBBd4awVJs3lOBN5tT2z682Z8vOP/ccOopJ+VfxLbBhhuHY48/KS/QZkf7/XfbLK685vqw9NLL5P859oF/hgP33y/fqmHlVVYNp51+dph9jjnyz0479eRw9FFHRidUgIpO7AINFEjtBkN+NTD4uoou4AE5OrELlFhAfpU4+KYeXUB+RSd2gRILpPb8VeJQmXqNAgq8NYKl2LyaAu+mm20Rjjvh5PxN3K6Oa66+Muy5+y5TfDxg4MBw1TU3hD59+lQ++/zzzzv09dJLL4a11litsndvTEcFqJi6+m60QGo3GPKr0StAfzEFPCDH1NV32QXkV9lXgPnHFJBfMXX1XXaB1J6/yh4v869eQIG3eqtkW950821h4KDFw6effhr6Lzx/l/MYPnxEOPOc8zsUarPG2ZYL2f663b1927fvPOGqv10f5pvvax36zwq9/7j/vrDFZpt02LohJqYCVExdfTdaILUbDPnV6BWgv5gCHpBj6uq77ALyq+wrwPxjCsivmLr6LrtAas9fZY+X+VcvoMBbvVVpWmbF2rXXWTfMNttXwy1jRodx4x6reu4zzzxzGLHGyDBo8SXCfffeE+6+685pVthtG6QCVNXh0rAFBFK7wZBfLbBoDKFqAQ/IVVNpSKBmAflVM5kTCFQtIL+qptKQQM0CqT1/1TxBJ5RWQIG3tKEv7sQVoIob2yLOLLUbDPlVxFVY3Dl5QC5ubM2s+QLyq/kxMILiCsiv4sbWzJovkNrzV/PFjCAVAQXeVCJlnFULKEBVTaVhCwikdoMhv1pg0RhC1QIekKum0pBAzQLyq2YyJxCoWkB+VU2lIYGaBVJ7/qp5gk4orYACb2lDX9yJK0AVN7ZFnFlqNxjyq4irsLhz8oBc3NiaWfMF5FfzY2AExRWQX8WNrZk1XyC156/mixlBKgIKvKlEyjirFlCAqppKwxYQSO0GQ361wKIxhKoFPCBXTaUhgZoF5FfNZE4gULWA/KqaSkMCNQuk9vxV8wSdUFoBBd7Shr64E1eAKm5siziz1G4w5FcRV2Fx5+QBubixNbPmC8iv5sfACIorIL+KG1sza75Aas9fzRczglQEFHhTiZRxVi2gAFU1lYYtIJDaDYb8aoFFYwhVC3hArppKQwI1C8ivmsmcQKBqAflVNZWGBGoWSO35q+YJOqG0Agq8pQ19cSeuAFXc2BZxZqndYMivIq7C4s7JA3JxY2tmzReQX82PgREUV0B+FTe2ZtZ8gdSev5ovZgSpCCjwphIp46xaQAGqaioNW0AgtRsM+dUCi8YQqhbwgFw1lYYEahaQXzWTOYFA1QLyq2oqDQnULJDa81fNE3RCaQUUeEsb+uJOXAGquLEt4sxSu8GQX0VchcWdkwfk4sbWzJovIL+aHwMjKK6A/CpubM2s+QKpPX81X8wIUhFQ4E0lUsZZtYACVNVUGraAQGo3GPKrBRaNIVQt4AG5aioNCdQsIL9qJnMCgaoF5FfVVBoSqFkgteevmifohNIKKPCWNvTFnbgCVHFjW8SZpXaDIb+KuAqLOycPyMWNrZk1X0B+NT8GRlBcAflV3NiaWfMFUnv+ar6YEaQioMCbSqSMs2oBBaiqqTRsAYHUbjDkVwssGkOoWsADctVUGhKoWUB+1UzmBAJVC8ivqqk0JFCzQGrPXzVP0AmlFVDgLW3oiztxBajixraIM0vtBkN+FXEVFndOHpCLG1sza76A/Gp+DIyguALyq7ixNbPmC6SWX80XM4JUBBR4U4mUcVYtoABVNZWGLSCgwNsCQTCEwgqkdgPv91dhl2IhJya/ChlWk2oRAfnVIoEwjEIKpJZfhQyCSUURUOCNwqrTZgp4QG6mvmvXKpDaDYb8qjXC2jdTQH41U9+1iy4gv4oeYfNrpoD8aqa+axddILX8Kno8zK9xAgq8jbPUU4sIKEC1SCAMoyqB1G4w5FdVYdWoRQTkV4sEwjAKKSC/ChlWk2oRAfnVIoEwjEIKpJZfhQyCSUURUOCNwqrTZgooQDVT37VrFUjtBkN+1Rph7ZspIL+aqe/aRReQX0WPsPk1U0B+NVPftYsukFp+FT0e5tc4AQXexlnqqUUEFKBaJBCGUZVAajcY8quqsGrUIgLyq0UCYRiFFJBfhQyrSbWIgPxqkUAYRiEFUsuvQgbBpKIIKPBGYdVpMwUUoJqp79q1CqR2gyG/ao2w9s0UkF/N1HftogvIr6JH2PyaKSC/mqnv2kUXSC2/ih4P82ucgAJv4yz11CICClAtEgjDqEogtRsM+VVVWDVqEQH51SKBMIxCCsivQobVpFpEQH61SCAMo5ACqeVXIYNgUlEEFHijsOq0mQIKUM3Ud+1aBVK7wZBftUZY+2YKyK9m6rt20QXkV9EjbH7NFJBfzdR37aILpJZfRY+H+TVOQIG3cZZ6ahEBBagWCYRhVCWQ2g2G/KoqrBq1iID8apFAGEYhBeRXIcNqUi0iIL9aJBCGUUiB1PKrkEEwqSgCCrxRWHXaTAEFqGbqu3atAqndYMivWiOsfTMF5Fcz9V276ALyq+gRNr9mCsivZuq7dtEFUsuvosfD/BonoMDbOEs9tYiAAlSLBMIwqhJI7QbVXDCtAAAgAElEQVRDflUVVo1aREB+tUggDKOQAvKrkGE1qRYRkF8tEgjDKKRAavlVyCCYVBQBBd4orDptpoACVDP1XbtWgdRuMORXrRHWvpkC8quZ+q5ddAH5VfQIm18zBeRXM/Vdu+gCqeVX0eNhfo0TUOBtnKWeWkRAAapFAmEYVQmkdoMhv6oKq0YtIiC/WiQQhlFIAflVyLCaVIsIyK8WCYRhFFIgtfwqZBBMKoqAAm8UVp02U0ABqpn6rl2rQGo3GPKr1ghr30wB+dVMfdcuuoD8KnqEza+ZAvKrmfquXXSB1PKr6PEwv8YJKPA2zlJPLSKgANUigTCMqgRSu8GQX1WFVaMWEZBfLRIIwyikgPwqZFhNqkUE5FeLBMIwCimQWn4VMggmFUVAgTcKq06bKaAA1Ux9165VILUbDPlVa4S1b6aA/GqmvmsXXUB+FT3C5tdMAfnVTH3XLrpAavlV9HiYX+MEFHgbZ6mnFhFQgGqRQBhGVQKp3WDIr6rCqlGLCMivFgmEYRRSQH4VMqwm1SIC8qtFAmEYhRRILb8KGQSTiiKgwBuFVafNFFCAaqa+a9cqkNoNhvyqNcLaN1NAfjVT37WLLiC/ih5h82umgPxqpr5rF10gtfwqejzMr3ECCryNs9RTiwgoQLVIIAyjKoHUbjDkV1Vh1ahFBORXiwTCMAopIL8KGVaTahEB+dUigTCMQgqkll+FDIJJRRFQ4I3CqtNmCihANVPftWsVSO0GQ37VGmHtmykgv5qp79pFF5BfRY+w+TVTQH41U9+1iy6QWn4VPR7m1zgBBd7GWeqpRQQUoFokEIZRlUBqNxjyq6qwatQiAvKrRQJhGIUUkF+FDKtJtYiA/GqRQBhGIQVSy69CBsGkoggo8EZh1WkzBRSgmqnv2rUKpHaDIb9qjbD2zRSQX83Ud+2iC8ivokfY/JopIL+aqe/aRRdILb+KHg/za5yAAm/jLPXUIgIKUC0SCMOoSiC1Gwz5VVVYNWoRAfnVIoEwjEIKyK9ChtWkWkRAfrVIIAyjkAKp5Vchg2BSUQQUeKOw6rSZAgpQzdR37VoFUrvBkF+1Rlj7ZgrIr2bqu3bRBeRX0SNsfs0UkF/N1Hftogukll9Fj4f5NU5AgbdxlnpqEQEFqBYJhGFUJZDaDYb8qiqsGrWIgPxqkUAYRiEF5Fchw2pSLSIgv1okEIZRSIHU8quQQTCpKAIKvFFYddpMAQWoZuq7dq0Cqd1gyK9aI6x9MwXkVzP1XbvoAvKr6BE2v2YKyK9m6rt20QVSy6+ix8P8GiegwNs4Sz21iIACVIsEwjCqEkjtBkN+VRVWjVpEQH61SCAMo5AC8quQYTWpFhGQXy0SCMMopEBq+VXIIJhUFAEF3iisOm2mgAJUM/Vdu1aB1G4w5FetEda+mQLyq5n6rl10AflV9AibXzMF5Fcz9V276AKp5VfR42F+jRNQ4G2cpZ5aREABqkUCYRhVCaR2gyG/qgqrRi0iIL9aJBCGUUgB+VXIsJpUiwjIrxYJhGEUUiC1/CpkEEwqioACbxRWnTZTQAGqmfquXatAajcY8qvWCGvfTAH51Ux91y66gPwqeoTNr5kC8quZ+q5ddIHU8qvo8TC/xgko8DbOUk8tIqAA1SKBMIyqBFK7wZBfVYVVoxYRkF8tEgjDKKSA/CpkWE2qRQTkV4sEwjAKKZBafhUyCCYVRUCBNwqrTpspoADVTH3XrlUgtRsM+VVrhLVvpoD8aqa+axddQH4VPcLm9//ZOxNwncq1j98cUWhQGpQpQ6mMaTrJGJXKUDRongeVofk0d5o7GigiRJ06p06ikCREoeQrlUIK0UhfJFHh6LvW2u3329hYa1v3Xut+nt97Xec6+93vs+5137/7/l/vs/5Wa6dJAH2lSZ9zu07Amr5c7wf1JUcAgzc5lkTKCAEMqIw0gjQiEbC2wUBfkdrKoowQQF8ZaQRpOEkAfTnZVorKCAH0lZFGkIaTBKzpy8kmUJQKAQxeFawETZMABlSa9Dl3XALWNhjoK26HWZ8mAfSVJn3O7ToB9OV6h6kvTQLoK036nNt1Atb05Xo/qC85Ahi8ybEkUkYIYEBlpBGkEYmAtQ0G+orUVhZlhAD6ykgjSMNJAujLybZSVEYIoK+MNII0nCRgTV9ONoGiVAhg8KpgJWiaBDCg0qTPueMSsLbBQF9xO8z6NAmgrzTpc27XCaAv1ztMfWkSQF9p0ufcrhOwpi/X+0F9yRHA4E2OJZEyQgADKiONII1IBKxtMNBXpLayKCME0FdGGkEaThJAX062laIyQgB9ZaQRpOEkAWv6crIJFKVCAINXBStB0ySAAZUmfc4dl4C1DQb6itth1qdJAH2lSZ9zu04AfbneYepLkwD6SpM+53adgDV9ud4P6kuOAAZvciyJlBECGFAZaQRpRCJgbYOBviK1lUUZIYC+MtII0nCSAPpysq0UlREC6CsjjSANJwlY05eTTaAoFQIYvCpYCZomAQyoNOlz7rgErG0w0FfcDrM+TQLoK036nNt1AujL9Q5TX5oE0Fea9Dm36wSs6cv1flBfcgQweJNjSaSMEMCAykgjSCMSAWsbDPQVqa0syggB9JWRRpCGkwTQl5NtpaiMEEBfGWkEaThJwJq+nGwCRakQwOBVwUrQNAlgQKVJn3PHJWBtg4G+4naY9WkSQF9p0ufcrhNAX653mPrSJIC+0qTPuV0nYE1frveD+pIjgMGbHEsiZYQABlRGGkEakQhY22Cgr0htZVFGCKCvjDSCNJwkgL6cbCtFZYQA+spII0jDSQLW9OVkEyhKhQAGrwpWgqZJAAMqTfqcOy4BaxsM9BW3w6xPkwD6SpM+53adAPpyvcPUlyYB9JUmfc7tOgFr+nK9H9SXHAEM3uRYEikjBDCgMtII0ohEwNoGA31FaiuLMkIAfWWkEaThJAH05WRbKSojBNBXRhpBGk4SsKYvJ5tAUSoEMHhVsBI0TQIYUGnS59xxCVjbYKCvuB1mfZoE0Fea9Dm36wTQl+sdpr40CaCvNOlzbtcJWNOX6/2gvuQIYPAmx5JIGSGAAZWRRpBGJALWNhjoK1JbWZQRAnn6airr1q3KSEZbTgN9mWgTSf5JgO8vRgECegTQlx5bIkPAmr7oGASiEsDgjUqKdWYIcIFsplUkKiLWNhjoi7G1RACD11K3yNUaAb6/rHWMfC0RQF+WukWu1ghY05c1vuSbHgEM3vTYc2YlAhhQSmAJq0LA2gYDfamMAUGVCGDwKoElLAT4B0pmAAKqBNgfquIluOcErOnL83ZRfgwCGLwxYLHUBgEMKBt9Iss8AtY2GOiLybVEAIPXUrfI1RoBvr+sdYx8LRFAX5a6Ra7WCFjTlzW+5JseAQze9NhzZiUCGFBKYAmrQsDaBgN9qYwBQZUIYPAqgSUsBPgHSmYAAqoE2B+q4iW45wSs6cvzdlF+DAIYvDFgsdQGAQwoG30iyzwC1jYY6IvJtUQAg9dSt8jVGgG+v6x1jHwtEeD7y1K3yNUaAWvfX9b4km96BDB402PPmZUIYEApgSWsCgFrGwz0pTIGBFUiwAWyEljCQoB/oGQGIKBKgO8vVbwE95yAtesvz9tF+TEIYPDGgMVSGwQwoGz0iSzzCFjbYKAvJtcSAS6QLXWLXK0R4PvLWsfI1xIBvr8sdYtcrRGw9v1ljS/5pkcAgzc99pxZiQAGlBJYwqoQsLbBQF8qY0BQJQJcICuBJSwE+AdKZgACqgT4/lLFS3DPCVi7/vK8XZQfgwAGbwxYLLVBAAPKRp/IMo+AtQ0G+mJyLRHgAtlSt8jVGgG+v6x1jHwtEeD7y1K3yNUaAWvfX9b4km96BDB402PPmZUIYEApgSWsCgFrGwz0pTIGBFUiwAWyEljCQoB/oGQGIKBKgO8vVbwE95yAtesvz9tF+TEIYPDGgMVSGwQwoGz0iSzzCFjbYKAvJtcSAS6QLXWLXK0R4PvLWsfI1xIBvr8sdYtcrRGw9v1ljS/5pkcAgzc99pxZiQAGlBJYwqoQsLbBQF8qY0BQJQJcICuBJSwE+AdKZgACqgT4/lLFS3DPCVi7/vK8XZQfgwAGbwxYLLVBAAPKRp/IMo+AtQ0G+mJyLRHgAtlSt8jVGgG+v6x1jHwtEeD7y1K3yNUaAWvfX9b4km96BDB402PPmZUIYEApgSWsCgFrGwz0pTIGBFUiwAWyEljCQoB/oGQGIKBKgO8vVbwE95yAtesvz9tF+TEIYPDGgMVSGwQwoGz0iSzzCFjbYKAvJtcSAS6QLXWLXK0RQF/WOka+lgigL0vdIldrBKxdf1njS77pEcDgTY89Z1YigAGlBJawKgSsbTDQl8oYEFSJABfISmAJC4HcP1A2lXXrVpngwfeXiTaR5J8E+P5iFCCgR8Da9ZceCSK7RgCD17WOUo+wgWcILBGwtsFAX5ami1y5QGYGIKBHAH3psSUyBNAXMwABPQLWrr/0SBDZNQIYvK51lHoweJkBUwSsbTAweE2Nl/fJcoHs/QgAQJEA+lKES2jvCaAv70cAAIoErF1/KaIgtGMEMHgdayjlCAYvQ2CKgLUNBgavqfHyPlkukL0fAQAoEkBfinAJ7T0B9OX9CABAkYC16y9FFIR2jAAGr2MNpRwMXmbAFgFrGwwMXlvz5Xu2XCD7PgHUr0kAfWnSJbbvBNCX7xNA/ZoErF1/abIgtlsEMHjd6ifVCAYvQ2CLgLUNBgavrfnyPVsukH2fAOrXJIC+NOkS23cC6Mv3CaB+TQLWrr80WRDbLQIYvG71k2oweJkBYwSsbTAweI0NmOfpcoHs+QBQvioB9KWKl+CeE0Bfng8A5asSsHb9pQqD4E4RwOB1qp0UExDAgGIOLBGwtsFAX5ami1y5QGYGIKBHAH3psSUyBNAXMwABPQLWrr/0SBDZNQIYvK51lHoweJkBUwSsbTAweE2Nl/fJcoHs/QgAQJEA+lKES2jvCaAv70cAAIoErF1/KaIgtGMEMHgdayjlcAcvM2CLgLUNBgavrfnyPVsukH2fAOrXJIC+NOkS23cC6Mv3CaB+TQLWrr80WRDbLQIYvG71k2p4RAMzYIyAtQ0GBq+xAfM8XS6QPR8AylclgL5U8RLccwLoy/MBoHxVAtauv1RhENwpAhi8TrWTYgICGFDMgSUC1jYY6MvSdJErF8jMAAT0CKAvPbZEhgD6YgYgoEfA2vWXHgkiu0YAg9e1jlIPBi8zYIqAtQ0GBq+p8fI+WS6QvR8BACgSQF+KcAntPQH05f0IAECRgLXrL0UUhHaMAAavYw2lHO7gZQZsEbC2wcDgtTVfvmfLBbLvE0D9mgTQlyZdYvtOAH35PgHUr0nA2vWXJgtiu0UAg9etflINj2hgBowRsLbBwOA1NmCep8sFsucDQPmqBNCXKl6Ce04AfXk+AJSvSsDa9ZcqDII7RQCD16l2UkxAAAOKObBEwNoGA31Zmi5y5QKZGYCAHgH0pceWyBBAX8wABPQIWLv+0iNBZNcIYPC61lHqweBlBkwRsLbBwOA1NV7eJ8sFsvcjAABFAuhLES6hvSeAvrwfAQAoErB2/aWIgtCOEcDgdayhlMMdvMyALQLWNhgYvLbmy/dsuUD2fQKoX5MA+tKkS2zfCaAv3yeA+jUJWLv+0mRBbLcIYPC61U+q4RENzIAxAtY2GBi8xgbM83S5QPZ8AChflQD6UsVLcM8JoC/PB4DyVQlYu/5ShUFwpwhg8DrVTooJCGBAMQeWCFjbYKAvS9NFrlwgMwMQ0COAvvTYEhkC6IsZgIAeAWvXX3okiOwaAQxe1zpKPRi8zIApAtY2GBi8psbL+2S5QPZ+BACgSAB9KcIltPcE0Jf3IwAARQLWrr8UURDaMQIYvI41lHK4g5cZsEXA2gYDg9fWfPmeLRfIvk8A9WsSQF+adIntOwH05fsEUL8mAWvXX5osiO0WAQxet/pJNTyigRkwRsDaBgOD19iAeZ4uF8ieDwDlqxJAX6p4Ce45AfTl+QBQvioBa9dfqjAI7hQBDF6n2kkxAQEMKObAEgFrGwz0ZWm6yJULZGYAAnoE0JceWyJDAH0xAxDQI2BNX3okiOwaAQxe1zpKPRi8zIApAtY2GBi8psbL+2TRl/cjAABFAuhLES6hvSeAvrwfAQAoErCmL0UUhHaMAAavYw2lHO7gZQZsEbC2wcDgtTVfvmeLvnyfAOrXJIC+NOkS23cC6Mv3CaB+TQLW9KXJgthuEXDC4L30siukRs2aYWdeHvGSvDNtaq5L5cqVk779B0qTJk2ldOnS8vvvv8tnn82Vc8/uIst+/NGtblJNSAADikGwRMDaBgN9WZouckVfzAAE9AigLz22RIYA+mIGIKBHwJq+9EgQ2TUC5g3eHXfcUWbN/lxKlCgR9uaiC86VN8aNzfVp4qQpUrNW7U36tnr1ajn+uNaycMF813rqfT0YUN6PgCkA1jYY6MvUeHmfLPryfgQAoEgAfSnCJbT3BNCX9yMAAEUC1vSliILQjhEwb/B273GNXH3t9WFbvv76K2lyxCG5FnXoeJL0ebz/Zls2c+YH0rFdW8daSjkYUMyAJQLWNhjoy9J0kSv6YgYgoEcAfemxJTIE0BczAAE9Atb0pUeCyK4RMG/wPv+f4fLXI5uEfbmy6yUyauQruR69PHKMNDq4cfh++bJl0vXyi+WXlSvlhWEvS9myZcPft2h2JHfxOjbVGFCONdTxcqxtMNCX4wPpWHnoy7GGUk6mCKCvTLWDZBwjgL4cayjlZIqANX1lCh7JZJqAeYN30tvvyL771ggh16ldXX799dcc8NmfLZDgGbwbm7933XO/nHPu+eHv777rDhk44IlMN4nk4hHAgIrHi9XpErC2wUBf6c4LZ49HAH3F48VqCMQhgL7i0GItBOIRQF/xeLEaAnEIWNNXnNpY6zcB8wbvx5/Ok5133lmCZ+oesN++uW7utNNO4bN5g9f69eulRrW95Y8//gjft2zVWoY+81z48wvP/0uuv7an31PgWPUYUI411PFyrG0w0JfjA+lYeejLsYZSTqYIoK9MtYNkHCOAvhxrKOVkioA1fWUKHslkmoB5g/f9mZ9Ixd13l99//132q1k1B7vjyZ2kd59+4fulS5fIoQfXz31WYddd5cOP54Tv335rspx1xqmZblJRk6tcuYqs/nW1LPvxx9ghSpUqFT7G4ueff459bHBAwDh4LEYaLwyoNKhzzqISsLbBQF9F7TTHpUEAfaVBnXP6QgB9+dJp6kyDAPpKgzrn9IWANX350hfq3HYC5g3eV8eOl7p164Ukjji0kXz33bfhz6PGjJP69RuEP0+aNFHOPatLjtYJJ7aTfv0Hhe9HvDRMenS/YttJphxhxx13lK5XdpO2x58olSrtLdtvv30uo+DO5YUL5svDDz24wTOKN045uOt5wMAhclDdeuFd0cEruDN68aJFcsvNN8iM96Zvscr7H3xIjm7dRnbffQ8pUaKErF27NuzHU4MHypDBA4uNEAZUsaHmRAkQsLbBQF8JNJ0QxUYAfRUbak7kIQH05WHTKbnYCKCvYkPNiTwkYE1fHraIkotIwLzB+9AjfaTzKaeF5b8xbqxcdMG54SMYhjz9bGgyBq+b/3a9PPvPp3OI7r73ATn7nPPC9w/cd4/069uniPiyc1hBDlvKqu/jveXB++/dZElwt++Y1yfkjN2NFwSPueh62cXy2pjRmxxbsmRJeWX02JyhXtj5hw4ZLLffelOxAMOAKhbMnCQhAtY2GOgrocYTplgIoK9iwcxJPCWAvjxtPGUXCwH0VSyYOYmnBKzpy9M2UXYRCJg3ePfYY0957/2PcmZuYEQGhmP+a926dVK7RpXwObz5r/zHOgTvzznzdJk8+c0ioMvWIfkGb3C37pw5s2XWxx/Jp5/Mkl12qSAdTzpZatSslUu4daum8vm8eRsU8O6MmeGdv8Fr8eJF8tKw/4SPdjiu7QnS5Kim4e+D2A3rHyA/LV++wbGP9R0g7Tt0DH/3yy+/yIjhw+TDmR9Is+YtpV37Drl+9Oh2RfiZ9gsDSpsw8ZMkYG2Dgb6S7D6xtAmgL23CxPeZAPryufvUrk0AfWkTJr7PBKzpy+deUXs8AuYN3qDc4NEAXc44q9DKhzw1SO647ebcZ+eed4H8/e77wveFmb/x8GVnddcruknjQw6Rm/92g3z//XebJPbSiFFyyKGHhb/v/ehD8nCvB3Nr9q9TR8aNnxy+Dx6pcOThjTcwxAveHfzUoCflzjtu3SD+vPmLpUyZMuEjGVo1bxIaxPmvgo/DmPfZXGlzdHN1aBhQ6og5QYIErG0w0FeCzSeUOgH0pY6YE3hMAH153HxKVyeAvtQRcwKPCVjTl8etovSYBJwweIOae1x9rVx5VQ/ZbrvtQgTB3abB83V79rhyAySfzp0v5cuXD383dcrbcsbpnWMis7m8oLH98ojh0v2qy3OFDB7yjLRuc2z4/oLzzpYJ48dtUGTwqIsFi74N78Rdvny5NKxXJ/d5p86nysOPPha+HzH8JenRresmgN6e9p5UrVot/H2jBgcW6Y++xaGOARWHFmvTJmBtg4G+0p4Yzh+HAPqKQ4u1EIhHAH3F48VqCMQhgL7i0GItBOIRsKaveNWx2mcCzhi8+U2sWau2lCtbVj75ZNYGd6Hmfx48rqB06TLh28Dg/eabr73o/xMDBsnxJ7QLa/3bDdfKv577Z67uGR98LMGjLgJTvEa1vQvl9tbU6VKtWvXwmH2rVsqtKRj34gvPk3Gvv7YJzwf+8bCc3uXM8PfXX9tTXnj+X6rMMaBU8RI8YQLWNhjoK+EBIJwqAfSlipfgnhNAX54PAOWrEkBfqngJ7jkBa/ryvF2UH4OAcwZvjNq9WNqw0cFy5lnnyKmndQnr/d8ffpDGjepuUPvszxZIuXLl5KeffpIGdfcvlMvAwUPlmGPbhp81O+oIWfTlwvDngo9+qFl9n/CxFxu/Op7cSXr36Rf+uk/vh+Whfzygyh4DShUvwRMmYG2Dgb4SHgDCqRJAX6p4Ce45AfTl+QBQvioB9KWKl+CeE7CmL8/bRfkxCDhr8FasuLtUrVZNVqxYIfO/+DwGEjeWTpw0RapWq557ZEVQ1dw5c+S8c84In7Nb8DX/y2+kVKlSsmTJ93JY4waFAij4HN5zz+oikyZNDNe9OXlq7g+4Vau8Z6HHtmjRSp5+9t/hZ8NefEGu6dlNFTIGlCpegidMwNoGA30lPACEUyWAvlTxEtxzAujL8wGgfFUC6EsVL8E9J2BNX563i/JjEHDG4A2eE3vjTbfI6V3Okp122il8XmzwWrlypdQ9oFYOybTp78tuu1UM3z/W+xF5/LFHY+Cys3Th4u9yDIKsA6P7ib6PyRP98p6Xm/8KuH351ffh20WLvpRmTQ4vtMg7/n6PnH/BReFnt93yN3l66FPhz+/P/EQq7r57+MiG4NENhb0aNGwkI0ePDT+a8vZbcmaXU3LLKuz9/71Jiu7PS7+VYzq8KzuULdxwTuo8xIFAEgSCDcaE0c2lfEUb84q+kug6MYqLAPoqLtKcx0cC6MvHrlNzcRFAX8VFmvP4SEBTX8u//cJHpNScEQJOGLy199tPXhoxWnbeeedNsG5s8AZ/jK3n1deF64Ln7x55eOOMtCLZNHo/9oTsscceUrFiRalVe7+c2RvczdyqxVG5k5UuXVo+X/BV+H7B/C+kZfMmhSZy6213ykWXXBZ+VtDg/XDWXKlQoUL4aIbgEQ2FvQ46qK6MeX1C+NHGBu+eNRslW7iI/Lh4nrRp/w4Gb+JkCahBINxgvNpCdq1cUyN84jHRV+JICahIAH0pwiW09wTQl/cjAABFAuhLES6hvSegqa8l82d6zxcA6RFwwuDN/yNh+RgDszG4gzf438YGb3DH6tzPv5Ttt98+XH7owfVl6dIl6XWgGM4cmLhjx02U4A/QBa9BT/aXu/5+e+7MwR28AZctGd4P9npETjv9jPCYyy65UF4bMzr8eco7M6RKlarhH2irXmWvQqs5qmkzee7fL4afjRr5ilzZ9ZLcutI7lE+cwH/X/FeO6TgdgzdxsgTUIBD+J0KjmknJUhrRk4+JvpJnSkQ9AuhLjy2RIYC+mAEI6BFAX3psiQwBTX2t+fUXAEMgNQLmDd7uPa6Rq6+9PgS4Zs2a8O7Sf//rWRn6z39Jy5ZHb2LwBuuGDR8phx6W9yiCq3tcJS8N+09qDSiuE++xx54SGOHBa+M7dT/7YlFoeP+wdKkccnC9QlPq13+gnHBi+/Cztse0ktmzPw1/HjVmnNSvn/fc3s09g7dd+w7yeL8nwzVP9u8n99x9p2rZPCNUFS/BEyZg7RlQ6CvhASCcKgH0pYqX4J4TQF+eDwDlqxJAX6p4Ce45AWv68rxdlB+DgHmD9+WRY6TRwXmPWbjognPljXF5z3rdksF7w99ulq5X5P2hr43vZo3BztzS/Ofyrlq1Sg7cv0Yu/5kfzZZdd9stNMhr16hSaF2vjh0vdevmmb91aleXX3/9Nfx5yNPPSquj24Q/H9u6hcydO2eT46+/8Sa54sru4e9vv+1mGfrUIFV2GFCqeAmeMAFrGwz0lfAAEE6VAPpSxUtwzwmgL88HgPJVCaAvVbwE95yANX153i7Kj0HAvMH78afzwmfv/vzzz1LvwLxHEASvLRm8fz2yiTz/n+Hhugnjx8kF550dA5nNpeXKlZPZny0Ik1+y5Hs5rHHeXbfBa/Rrb0i9evXDnzdn0s6bv1jKlCkja9eulVr7Vs4de811N0i37leH7/s/8bjcd89dmwAqaA6f2LaNzJqVdyex1gsDSosscTUIWNtgoC+NKSCmFgH0pUWWuBAQQV9MAQT0CKAvPbZEhoA1fdExCEQlYN7gzTceFy5cIC2a/jVX95YM3ubNW8ozzz0frh0x/CXp0a1rVF6ZXTqo2WAAACAASURBVHf7HXfJgP795Pvvvys0x4GDh8oxx7YNP3tr8iQ5+8zTcusKPkJh4sTxcv45Z24Qo+PJnaR3n37h7yZOeEPOP/es3Oc77rijzJr9efgM32U//iiNG9WV9evX5z6vXLmKvD3tvfB5yMHnjRocqM4QA0odMSdIkIC1DQb6SrD5hFIngL7UEXMCjwmgL4+bT+nqBNCXOmJO4DEBa/ryuFWUHpOAeYP33RkzpVKlvWX58uXSsF6dXPlbMnh7XH2t9Lz6unDt3++8TQYPHBATW/aWB38oLXj9z4z3ZNTIl2XatCmy6MsvpfEhh8rNt96Ru0M3+GNo7U84Vj7++KMNish/Dm/wy6FDBkvfx3rLihU/yYntOkivh3uHBm3wKvj83fwAr4weKw0bNgrfzvzgfbnx+mvCRzUc2eQo6ffEQKmw667hZ/369pEH7rtHHR4GlDpiTpAgAWsbDPSVYPMJpU4Afakj5gQeE0BfHjef0tUJoC91xJzAYwLW9OVxqyg9JgHzBu8/n3tBmjVvIYFx2bJ5E1m4YH6IYEsG74ez5kqFChXCdR3atZUPZ34QE1v2lgcGb3AX7dZem3uMQqfOp8pDj/TZYozRo16RKy6/ZJNT1N5vPxk5+nUpW7Zs7rOgHwXz+frrr6R1y6a5Z/duLc9t+RwDalvocWxxE7C2wUBfxT0hnG9bCKCvbaHHsRDYMgH0xYRAQI8A+tJjS2QIWNMXHYNAVALmDd5LL7tCbrrltrDer75aHD6mYd26dZs1eHs/9oR0POnkcH3wPNngD4YF662/7r73gfBu23zjeuN6gscj9Ox+pUyaNHGzpTZr1kIGDBqygVEbLA4euRAYw1u6+3aPPfaUka+ODe+mLvgKjN7gruJTO3fc4NENmrwxoDTpEjtpAtY2GOgr6QkgniYB9KVJl9i+E0Bfvk8A9WsSQF+adIntOwFr+vK9X9QfnYB5gzcodfr/fCh77VUprHrFihVy5+23yEknd5amzZrLypUrwztHmxzVVK674W8bGJC9HrxfHuvzSHRaBlbutNNOcsCBB4X/q1ixonw2d47MeO+9zT6bt7CSArP2mGOPk5133kXenDheZs/+NHLlwR9za9Gylexf5wB5b/q7Mm3qlGIzdvOTxICK3C4WZoCAtQ0G+srA0JBCZALoKzIqFkIgNgH0FRsZB0AgMgH0FRkVCyEQm4A1fcUukAO8JeCEwbtvjZoycdKU3HNio3RzyZLv5bDGDaIsZY0xAhhQxhrmebrWNhjoy/OBNVY++jLWMNI1RQB9mWoXyRojgL6MNYx0TRGwpi9TcEk2VQJOGLwBwQYNG8kTAwbJPvtU3irQd6ZNlUsuOk9+/vnnra5lgT0CGFD2euZzxtY2GOjL52m1Vzv6stczMrZDAH3Z6RWZ2iOAvuz1jIztELCmLztkyTRtAs4YvPkgL7joEjnjjLNkz70qyY477hj+oa/gGbIrfvpJvvn2G3n04V7yxrixaXPn/IoEMKAU4RI6cQLWNhjoK/ERIKAiAfSlCJfQ3hNAX96PAAAUCaAvRbiE9p6ANX153zAARCbgnMG7ceWlS5eWNWvWRAbCQvsEMKDs99CnCqxtMNCXT9Npv1b0Zb+HVJBdAugru70hM/sE0Jf9HlJBdglY01d2SZJZ1gg4b/BmDTj56BPAgNJnzBmSI2Btg4G+kus9kfQJoC99xpzBXwLoy9/eU7k+AfSlz5gz+EvAmr787RSVxyWAwRuXGOszTwADKvMtIsECBKxtMNAX42uJAPqy1C1ytUYAfVnrGPlaIoC+LHWLXK0RsKYva3zJNz0CZgzeVke3kZNO7pw4qbvuvE2WLl2SeFwCpkcAAyo99pw5PgFrGwz0Fb/HHJEeAfSVHnvO7D4B9OV+j6kwPQLoKz32nNl9Atb05X5HqDApAmYM3kd795WTOiVv8HY5rZNMmzolKZ7EyQABDKgMNIEUIhOwtsFAX5Fby8IMEEBfGWgCKThLAH0521oKywAB9JWBJpCCswSs6cvZRlBY4gQweDF4Ex+qtANiQKXdAc4fh4C1DQb6itNd1qZNAH2l3QHO7zIB9OVyd6ktbQLoK+0OcH6XCVjTl8u9oLZkCZgxeFu2ai0dT+qUbPUics9dd/CIhsSpphsQAypd/pw9HgFrGwz0Fa+/rE6XAPpKlz9nd5sA+nK7v1SXLgH0lS5/zu42AWv6crsbVJckATMGb5JFE8ttAhhQbvfXteqsbTDQl2sT6HY96Mvt/lJdugTQV7r8ObvbBNCX2/2lunQJWNNXurQ4uyUCGLyWukWukQhgQEXCxKKMELC2wUBfGRkc0ohEAH1FwsQiCBSJAPoqEjYOgkAkAugrEiYWQaBIBKzpq0hFcpCXBDB4vWy720VjQLndX9eqs7bBQF+uTaDb9aAvt/tLdekSQF/p8ufsbhNAX273l+rSJWBNX+nS4uyWCGDwWuoWuUYigAEVCROLMkLA2gYDfWVkcEgjEgH0FQkTiyBQJALoq0jYOAgCkQigr0iYWASBIhGwpq8iFclBXhJwxuDdpUIF6dr1Kml0cGOpUrWq/OUvf4nU0DNO7yyfz5sXaS2LbBDAgLLRJ7LMI2Btg4G+mFxLBNCXpW6RqzUC6Mtax8jXEgH0Zalb5GqNgDV9WeNLvukRcMLgbdjoYPn3Cy9J2bJlY5PsclonmTZ1SuzjOCC7BDCgstsbMtuUgLUNBvpiii0RQF+WukWu1gigL2sdI19LBNCXpW6RqzUC1vRljS/5pkfACYN3zryFRTJ3A+wYvOkNn9aZMaC0yBJXg4C1DQb60pgCYmoRQF9aZIkLAf4LFGYAApoE+P7SpEts3wlY05fv/aL+6ATMG7znnHu+3HXP/WHFf/zxh4x4aZisWr1Kzj7nvPB3/fr2kbffmpwj8tjj/aXi7ruH76+/tqe8NOw/sm7duujEWJl5AhhQmW8RCRYgYG2Dgb4YX0sEVq/6Wt4Y2VT+u261ibTRl4k2keSfBPj+YhQgoEcAfemxJTIErOmLjkEgKgHzBu/LI8eEz90NXr0evF8e6/OIHHrY4TJs+Mjwd7ffdrMMfWpQjsfBjQ+REa+8Gr6fO2eOHNumRVRWrDNCgAtkI40izZCAtQ0G+mJwLRHA4LXULXK1RoDvL2sdI19LBNCXpW6RqzUC1vRljS/5pkfAvMH79rT3pGrVauHdu/vXqia///67VKq0t7w7Y2ZINbiD94H77tmA8OtvTJI6BxwQ/q7pkYfJ4sWL0usAZ06cAAZU4kgJqEjA2gYDfSkOA6ETJ4DBmzhSAkIgR4DvL4YBAnoE0JceWyJDwJq+6BgEohIwb/B+9Mlnsssuu4TG7n41q4Z1lyhRQr786vvw54kTx8v555y5AY/gkQ7Box2C11ODnpQ777g1Ki/WGSCAAWWgSaTIBTIzAIFiIIDBWwyQOYW3BKxdILM/9HZUTRaOvky2jaSNELCmLyNYSTMDBMwbvLNmfy477bSTrFmzRmrXqJJD+sXCr2W77baThQsXSIumf90AddvjT5T+Tw7erAGcgb6QwjYQYAO/DfA4tNgJWNtgoK9iHxFOuA0EMHi3AR6HQmArBPj+YkQgoEcAfemxJTIErOmLjkEgKgHzBu+06e/LPvtUDuutXmWv8FENwWvipClSs1ZtWb9+vRzc8CBZvmxZjknBP8w284P3pWP746PyYp0BAhhQBppEijkC1jYY6IvhtUQAg9dSt8jVGgG+v6x1jHwtEeD7y1K3yNUaAWvfX9b4km96BMwbvGPHvSkHHHhgSPDUzh1l+rvvhD/ffe8DcvY554U/T578ppxz5unhz6VKlZKJk6dKtWrVw/fDh70oPXtcmV4HOHPiBDCgEkdKQEUC1jYY6EtxGAidOAEukBNHSkAI5Ajw/cUwQECPAN9femyJDAFr3190DAJRCZg3ePv1HygnnNg+rHfkKy/LVVdcGv7coGEjGTl6bI7DypUr5YsvPpd69eqHJm/+q+tlF8mro0dF5cU6AwQwoAw0iRS5QGYGIFAMBLhALgbInMJbAtYukNkfejuqJgvn+8tk20jaCAFr319GsJJmBgiYN3jPOPNsue+BXiHKZT/+KI0a5N3NG7z6PvGknNiuw2Yxf/H5PDm6ZdMMtIEUkiTABj5JmsTSJmBtg4G+tCeC+EkS4AI5SZrEgsCGBPj+YiIgoEeA7y89tkSGgLXvLzoGgagEzBu85cqVkzbHHBvWu3zZ8vBxDAVf4ye+JbX3238THgvmfyGndOoo//u/P0RlxTojBDCgjDSKNEMC1jYY6IvBtUSAC2RL3SJXawT4/rLWMfK1RIDvL0vdIldrBKx9f1njS77pETBv8EZBV6VKVTn19C7y1782ka+/+krefHO8vPLyiCiHssYgAQwog03zOGVrGwz05fGwGiydC2SDTSNlMwT4/jLTKhI1SIDvL4NNI2UzBKx9f5kBS6KpE/DC4E2dMgkUKwEMqGLFzcm2kYC1DQb62saGc3ixEuACuVhxczLPCPD95VnDKbdYCfD9Vay4OZlnBKx9f3nWHsrdBgLeGLwHHniQ1KxVS2bPni3zv/h8G5BxaNYJYEBlvUPkV5CAtQ0G+mJ+LRHgAtlSt8jVGgG+v6x1jHwtEeD7y1K3yNUaAWvfX9b4km96BJwweJ957nmpXn3fkGL/fo/Lv577Z45ovXr15Z/PvSAVdt0197vffvtNLr3ofJk0aWJ65DmzGgEMKDW0BFYgYG2Dgb4UhoCQagS4QFZDS2AI8Ax5ZgACigT4/lKES2jvCVi7/vK+YQCITMC8wRs8X3fKOzNyBbdqcVTuDt0yZcrI+x9+KjvuuOMmQP744w+58PxzZML4cZFhsdAGAQwoG30iyzwC1jYY6IvJtUSAC2RL3SJXawT4/rLWMfK1RIDvL0vdIldrBKx9f1njS77pETBv8N597wNy9jnnhQRnvDddOp/cPkfzyqt6yHU3/C33fv369fLf//5Xtttuu/B33333rRxxaKP06HNmFQIYUCpYCapEwNoGA30pDQJhVQhwgayClaAQCAmgLwYBAnoE0JceWyJDwNr1Fx2DQFQC5g3el0eOkUYHNw7rDczdwOTNf705earUqFkrfPvxxx/JSe2Pl8DkDe743WefyoUeExUc67JLAAMqu70hs00JWNtgoC+m2BIBLpAtdYtcrRFAX9Y6Rr6WCKAvS90iV2sErF1/WeNLvukRMG/wTpv+fmjWBo9c2LdqpfD/81+fL/hKSpcuHb7t0K6tfDjzg/Dna667Qbp1vzr8+eFeD0rvRx9KrwOcOXECGFCJIyWgIgFrGwz0pTgMhE6cABfIiSMlIARyBNAXwwABPQLoS48tkSFg7fqLjkEgKgHzBu8nc74In7G7cuVKqXtA3t26wSswfQPzN3itXbtWau2bd8du8GrQsJGMHD02/PmVl0dItysvi8qLdQYIYEAZaBIpFrhA/kbGj2wq69atMkEFfZloE0n+SYALZEYBAnoE0JceWyJDAH0xAxDQI4DBq8eWyOkSMG/wvjtjplSqtLesW7dOalbfJ0fz0suukJtuuS18v3jxIml65GG5zwqav29NniRnn3laul3g7IkSwIBKFCfBlAlY22CgL+WBIHyiBLhAThQnwSCwAQH0xUBAQI8A+tJjS2QIWLv+omMQiErAvMH70ohRcsiheebt8cceLZ9++kn4c/6jG4KfN75L94wzz5b7HugVrnvu2Wfkphuvi8qLdQYIYEAZaBIp5ghY22CgL4bXEgEukC11i1ytEUBf1jpGvpYIoC9L3SJXawSsXX9Z40u+6REwb/Bef+NNcsWV3UOCX3/9lVx3TQ855ZTT5eTOp+SonnfOmfLmxPG594/1HSDtO3QM399+280y9KlB6XWAMydOAAMqcaQEVCRgbYOBvhSHgdCJE+ACOXGkBIRAjgD6YhggoEcAfemxJTIErF1/0TEIRCVg3uAtVaqUzP5sgZQpU6bQmn/55Rc5qE7N3GfBH10Lntubv77d8cfIxx9/FJUX6wwQwIAy0CRSLHCBzDN4GQcIaBHgAlmLLHEhIIK+mAII6BFAX3psiQwBDF5mwFUC5g3eoDGnntZFHuz1iJQoUWKTPl3Z9RIZNfKV3O/vf/Ah6XLGWeH7jc1fV5vsW10YvL513Ha91jYY6Mv2vPmWPRfIvnWceouTAPoqTtqcyzcC6Mu3jlNvcRKwdv1VnGw4l20CThi8QQuC5/De/0AvqVK1mpQsWVJ++GGp3HPXHfLq6FEbdOiLhV/LdtttF/5u+LAXpWePK213kOw3IYABxVBYImBtg4G+LE0XuXKBzAxAQI8A+tJjS2QIoC9mAAJ6BKxdf+mRILJrBJwxeF1rDPUUnQAGVNHZcWTxE7C2wUBfxT8jnLHoBLhALjo7joTA1gigr60R4nMIFJ0A+io6O46EwNYIWLv+2lo9fA6BfAIYvH+SmDhpitSoWUt6dr9SRgwfxoQYJoABZbh5HqZubYOBvjwcUsMlc4FsuHmknnkC6CvzLSJBwwTQl+HmkXrmCVi7/so8UBLMDAEM3j9b8e6MmVKp0t5yy003yD+fGZqZBpFIfAIYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWvXX1HrYh0EMHgxeJ1TAQaUcy11uiBrGwz05fQ4OlccF8jOtZSCMkQAfWWoGaTiHAH05VxLKShDBKxdf2UIHalknAAGLwZvxkc0fnoYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWvXX1HrYh0EMHgxeJ1TAQaUcy11uiBrGwz05fQ4OlccF8jOtZSCMkQAfWWoGaTiHAH05VxLKShDBKxdf2UIHalknAAGLwZvxkc0fnoYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWvXX1HrYh0EMHgxeJ1TAQaUcy11uiBrGwz05fQ4OlccF8jOtZSCMkQAfWWoGaTiHAH05VxLKShDBKxdf2UIHalknAAGLwZvxkc0fnoYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWvXX1HrYh0EMHgxeJ1TAQaUcy11uiBrGwz05fQ4OlccF8jOtZSCMkQAfWWoGaTiHAH05VxLKShDBKxdf2UIHalknAAGLwZvxkc0fnoYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWvXX1HrYh0EMHgxeJ1TAQaUcy11uiBrGwz05fQ4OlccF8jOtZSCMkQAfWWoGaTiHAH05VxLKShDBKxdf2UIHalknAAGLwZvxkc0fnoYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWvXX1HrYh0EMHgxeJ1TAQaUcy11uiBrGwz05fQ4OlccF8jOtZSCMkQAfWWoGaTiHAH05VxLKShDBKxdf2UIHalknAAGLwZvxkc0fnoYUPGZcUR6BKxtMNBXerPCmeMT4AI5PjOOgEBUAugrKinWQSA+AfQVnxlHQCAqAWv6iloX6yCAwYvB65wKMKCca6nTBWHwOt1eikuZgLUNPN9fKQ8Mp49FAH3FwsViCMQigL5i4WIxBGIRsKavWMWx2GsCGLwYvM4JgAtk51rqdEHWNhjoy+lxdK449OVcSykoQwTQV4aaQSrOEUBfzrWUgjJEwJq+MoSOVDJOAIMXgzfjIxo/PQyo+Mw4Ij0C1jYY6Cu9WeHM8Qmgr/jMOAICUQmgr6ikWAeB+ATQV3xmHAGBqASs6StqXayDAAYvBq9zKsCAcq6lThdkbYOBvpweR+eKQ1/OtZSCMkQAfWWoGaTiHAH05VxLKShDBKzpK0PoSCXjBDB4/2zQcW1PkH33rSEvj3hJvvvu24y3jfS2RAADivmwRMDaBgN9WZouckVfzAAE9AigLz22RIYA+mIGIKBHwJq+9EgQ2TUCGLyudZR6BAOKIbBEwNoGA31Zmi5yRV/MAAT0CKAvPbZEhgD6YgYgoEfAmr70SBDZNQJmDN5WR7eRk07unDj/u+68TZYuXZJ4XAKmRwADKj32nDk+AWsbDPQVv8cckR4B9JUee87sPgH05X6PqTA9AugrPfac2X0C1vTlfkeoMCkCZgzeR3v3lZM6JW/wdjmtk0ybOiUpnsTJAAEMqAw0gRQiE7C2wUBfkVvLwgwQQF8ZaAIpOEsAfTnbWgrLAAH0lYEmkIKzBKzpy9lGUFjiBDB4MXgTH6q0A2JApd0Bzh+HgLUNBvqK013Wpk0AfaXdAc7vMgH05XJ3qS1tAugr7Q5wfpcJWNOXy72gtmQJmDF4W7ZqLR1P6pRs9SJyz1138IiGxKmmGxADKl3+nD0eAWsbDPQVr7+sTpcA+kqXP2d3mwD6cru/VJcuAfSVLn/O7jYBa/pyuxtUlyQBMwZvkkUTy20CGFBu99e16qxtMNCXaxPodj3oy+3+Ul26BKzpa4eylaX5cWOkbLk90wXH2SEQgUCgr8mvd5RfV30VYXX6S9gfpt8DMohOwNr3V/TKWOk7AQxe3yfAwfrZYDjYVIdLsrbBQF8OD6ODpaEvB5tKSZkhgL4y0woScZAA+nKwqZSUGQLW9JUZcCSSeQIYvJlvEQnGJYABFZcY69MkYG2Dgb7SnBbOHZcA+opLjPUQiE4AfUVnxUoIxCWAvuISYz0EohOwpq/olbHSdwIYvL5PgIP1Y0A52FSHS7K2wUBfDg+jg6WhLwebSkmZIYC+MtMKEnGQAPpysKmUlBkC1vSVGXAkknkCzhi8zZq1kJtvvUP2qVxZypcvLyVKlIgEv/PJ7WXGe9MjrWWRDQIYUDb6RJZ5BKxtMNAXk2uJAPqy1C1ytUYAfVnrGPlaIoC+LHWLXK0RsKYva3zJNz0CThi8l152hfzt5lsjm7oFcXc5rZNMmzolvQ5w5sQJYEAljpSAigSsbTDQl+IwEDpxAtb0tf0O+0iLtsEfgdorcRYEhEDSBFav/kbeGttBVvNHoJJGSzwIcAMAMwABRQLW9oeKKAjtGAHzBm+5cuXkkzlfSMmSJTfbmvXr1+c+K7gu+P1JHU6QD2d+4Fhb/S4HA8rv/lur3toGA31ZmzC/80Vffvef6nUJoC9dvkT3mwD68rv/VK9LwJq+dGkQ3SUC5g3e2++4Sy646JKwJ7/99ptcdsmFUr58OXm835Ph767seomMGvlKrmcjXnlVDm58SPj+/HPPkokT3nCpn9QiIhhQjIElAtY2GOjL0nSRK/piBiCgRwB96bElMgTQFzMAAT0C1vSlR4LIrhEwb/C+Ona81K1bL+zLxReeJ+Nef03q128go8aMC3939113yMABT+T6VrHi7jLjg4/DO36XL1smDesf4FpPva8HA8r7ETAFwNoGA32ZGi/vk0Vf3o8AABQJoC9FuIT2ngD68n4EAKBIwJq+FFEQ2jEC5g3eadPfl332qSzB4xb2rVopbE+FXXeVDz+eE/48dMhguf3WmzZo27DhI+XQww4Pf3f6qSfLO9OmOtZWv8vBgPK7/9aqt7bBQF/WJszvfNGX3/2nel0C6EuXL9H9JoC+/O4/1esSsKYvXRpEd4mAeYN31uzPZaeddgofz7B/rWq53iz6ekn4c2DeBiZuwdc1190g3bpfHf7qhef/Jddf29OlnnpfCwaU9yNgCoC1DQb6MjVe3ieLvrwfAQAoEkBfinAJ7T0B9OX9CABAkYA1fSmiILRjBMwbvB/OmisVKlSQdevWSc3q++TaM2feQilbtqx89923csShjTZo2zHHtpWBg4eGv5s65W054/TOjrXV73IwoPzuv7XqrW0w0Je1CfM7X/Tld/+pXpcA+tLlS3S/CaAvv/tP9boErOlLlwbRXSJg3uB9e9p7UrVq3p27tWtUkTVr1oQ/vzzqNWnU6ODw5xPbtpFZsz7O9a1Hz2ul5zXXhe9nvDddOp/c3qWeel8LBpT3I2AKgLUNBvoyNV7eJ4u+vB8BACgSQF+KcAntPQH05f0IAECRgDV9KaIgtGMEzBu8r4weKw0b5t2h2/2qy+XlEcPDn3tcfa30vDrPxP3mm6/llJM7hP9/ZJOjZODgp6V8+fLhZ888PURuvflGx9rqdzkYUH7331r11jYY6MvahPmdL/ryu/9Ur0sAfenyJbrfBNCX3/2nel0C1vSlS4PoLhEwb/A+8I+H5fQuZ4Y9Kfi4heAPr01993+kRIkSuX6tXr06fGxDwVe744+Rjz/+yKWeel8LBpT3I2AKgLUNBvoyNV7eJ4u+vB8BACgSQF+KcAntPQH05f0IAECRgDV9KaIgtGMEzBu8x7U9QQYMfCpsy/Lly6VhvTq5Fp173gXy97vv22zLxrw6Si6/9CLHWko5GFDMgCUC1jYY6MvSdJEr+mIGIKBHAH3psSUyBNAXMwABPQLW9KVHgsiuETBv8G6tIXff+4B06nzqBnfu/vHHH/LsP5+WW266YWuH87lBAhhQBpvmccrWNhjoy+NhNVg6+jLYNFI2QwB9mWkViRokgL4MNo2UzRCwpi8zYEk0dQLOG7z5hPetUVOOOeY4+fzzeTJ1ylvy+++/pw6fBHQIYEDpcCWqDgFrGwz0pTMHRNUhgL50uBIVAgEB9MUcQECPgDV9bb/DPtKi7WtSttyeelCIDIGECKxe/Y1MHttBfl31VUIRCQOBbBAwb/CWLFlSypUrJ+vXr5dVq1ZFolq6dGkpU6ZMuHblypWRjmGRHQLbld5NWrebJDuU3cNO0mTqLYHVv3wtb77WVn7/bakJBhi8JtpEkn8SsHaBjL4YXUsE0JelbpGrNQLoy1rHyNcSAWv6ssSWXNMlYN7g7fVwH2BNPQAAIABJREFUbznl1NNDig3q1ZGfli/fKtFhw0fKoYcdHq5rf+Jx8tGHM7d6DAvsEOAC2U6vyJQ7oJgBCGgSsLaB5/tLcxqInTQB9JU0UeJB4P8JoC+mAQJ6BKzpS48EkV0jYN7gfbR3XzmpU+ewL40aHCjLfvxxqz26vOtVcuNNt4Trej14vzzW55GtHsMCOwS4QLbTKzLF4GUGIKBJwNoGnu8vzWkgdtIE0FfSRIkHAQxeZgACxUHA2vdXcTDhHG4Q8NLgbdmqtQx95rmwgy88/y+5/tqebnSTKkICXCAzCJYIWNtgoC9L00Wu6IsZgIAeAfSlx5bIEEBfzAAE9AhY05ceCSK7RsBLg/fiSy+XW269I+zlyyOGS/erLnetr17XgwHldfvNFW9tg4G+zI2Y1wmjL6/bT/HKBNCXMmDCe00AfXndfopXJmBNX8o4CO8QAe8M3mrV95VXX3tDdtxxx7CN9979dxnQv69DLaUUDChmwBIBaxsM9GVpusgVfTEDENAjgL702BIZAuiLGYCAHgFr+tIjQWTXCJgzeEe/9obstedeuT7svMsuUrp06fD98mXLZN26dZv0qESJEvKXv/xFSpcpI+XKldvg89atmsrn8+a51lev68GA8rr95oq3tsFAX+ZGzOuE0ZfX7ad4ZQLoSxkw4b0mgL68bj/FKxOwpi9lHIR3iIA5g3fOvIVStmzZRFowYfw4ueC8sxOJRZDsEMCAyk4vyGTrBKxtMNDX1nvKiuwQQF/Z6QWZuEcAfbnXUyrKDgH0lZ1ekIl7BKzpy70OUJEWAS8N3t9++00GPvmE9Hrwfi2uxE2RAAZUivA5dWwC1jYY6Ct2izkgRQLoK0X4nNp5AujL+RZTYIoE0FeK8Dm18wSs6cv5hlBgYgTMGbz16tWX4LEM+a+ruvWUI/56ZPj2yq6XyPLlyzcLZ8VPP8mcObMLfYxDYkQJlDoBDKjUW0ACMQhY22CgrxjNZWnqBNBX6i0gAYcJoC+Hm0tpqRNAX6m3gAQcJmBNXw63gtISJmDO4N24/jvuvFvOPf9CWb9+vRzc4EBZsWJFwogIZ40ABpS1jvmdr7UNBvrye16tVY++rHWMfC0RQF+WukWu1gigL2sdI19LBKzpyxJbck2XgHmDN118nD2LBDCgstgVctocAWsbDPTFLFsigL4sdYtcrRFAX9Y6Rr6WCKAvS90iV2sErOnLGl/yTY+A0wZvuXLlpOLue8hXixeFd/jy8oMABpQffXalSmsbDPTlyuT5UQf68qPPVJkOAfSVDnfO6gcB9OVHn6kyHQLW9JUOJc5qkYBTBm+ZMmXk/gcekmbNW4TP6d1uu+1yPQn+sNqPP/6vDB70pAweOMBir8g5IgEMqIigWJYJAtY2GOgrE2NDEhEJoK+IoFgGgSIQQF9FgMYhEIhIAH1FBMUyCBSBgDV9FaFEDvGUgDMG78WXXi7X33CTlC5dequt/GHpUrmi6yUy/d13trqWBfYIYEDZ65nPGVvbYKAvn6fVXu3oy17PyNgOAfRlp1dkao8A+rLXMzK2Q8CavuyQJdO0CThh8J52+hnyYK9HCmX5xx9/SIkSJTb5bO3atXLk4Y1l6dIlafeA8ydMAAMqYaCEUyVgbYOBvlTHgeAJE0BfCQMlHAQKEEBfjAME9AigLz22RIaANX3RMQhEJWDe4K1Spaq8NXW6lCxZMqw5eBTD00MGy3PP/VMWL/pSAoM3uKv3gAMPkmuuu0GaNWuRM3wXLlwgLZr+NSor1hkhgAFlpFGkGRKwtsFAXwyuJQLoy1K3yNUaAfRlrWPka4kA+rLULXK1RsCavqzxJd/0CJg3eO+861457/wLQ4L/+8MPcvihDWXdunWbJVqvXn0ZNWZczuTt0K6tfDjzg/Q6wJkTJ4ABlThSAioSsLbBQF+Kw0DoxAmgr8SREhACOQLoi2GAgB4B9KXHlsgQsKYvOgaBqATMG7xvTp4qNWrWCuttdtQRsujLhVut/Ya/3Sxdr+gWrnu414PS+9GHtnoMC+wQwICy0ysy5Q5eZgACmgSsbeD5/tKcBmInTQB9JU2UeBD4fwLoi2mAgB4Ba/rSI0Fk1wiYN3g/+2KRbL/99uGjGfavVS1Sf2rvt5+Mn/h2uHbSpIly7lldIh3HIhsEuEC20SeyzCNgbYOBvphcSwTQl6Vukas1AujLWsfI1xIB9GWpW+RqjYA1fVnjS77pETBv8H46d76UL19efvnlFzmoTs1IJPfZp7JMm/5+uHbmzA+kY7u2kY5jkQ0CGFA2+kSWGLzMAAS0CVjbwPP9pT0RxE+SAPpKkiaxILAhAfTFREBAj4A1femRILJrBMwbvG9MmCz77V8n7EvdA2rJypUrt9qjCy++VG67/e/huhf/87xce3X3rR5jbUHwR+cqVdpbvv32m/APzcV9lSpVSsqWLSs///xz3EPD9RV23VWWL1tWpGO39SAukLeVIMcXJwFrGwz0VZzTwbm2lQD62laCHA+BzRNAX0wHBPQIoC89tkSGgDV90TEIRCVg3uB9tE8/OenkTmG9s2d/Km2PabXF2vfYY0+Z8s4MKVOmTLiuy2mdZNrUKVF5ZXZdYOZ273mNtGjZSnbbraKULl06l2vw+Ip3350mPbtfKct+/HGzNey0004yYOAQOahuPdl5553DdatXr5bFixbJLTffIDPem77F+u9/8CE5unUb2X33PcI/Yrd27Vr57rtv5anBA2XI4IHFxg4DqthQc6IECFjbYKCvBJpOiGIjgL6KDTUn8pAA+vKw6ZRcbATQV7Gh5kQeErCmLw9bRMlFJGDe4D3ooLry6tjxoaEYvBYuXCB33n6rvDlx/AZIgjtae1x9rVx8yeXhnan55uUB++1bRHTZOuzlkWOk0cGNt5jU+vXr5cS2beTTTz/ZZF3lylVkzOsTcsbuxguCY7tedrG8Nmb0JscGbF8ZPVbq12+w2fMPHTJYbr/1pmKBhgFVLJg5SUIErG0w0FdCjSdMsRBAX8WCmZN4SgB9edp4yi4WAuirWDBzEk8JWNOXp22i7CIQMG/wBjVfc90N0q371RuUHxiSq1atkt9+/VXKlS8vO+ywQ84EDhYGjy0I7t59Z9rUImDL3iH5Bm9Q98wP3g9N3KVLlsixbY+XAw44UIJHLgSvFStWSP2D9tukgHdnzAwf6RC8Fi9eJC8N+094t+9xbU+QJkc1DX8fMGtY/wD5afnyDY5/rO8Aad+hY/i74FnII4YPkw9nfiDNmreUdu07SGAAB68e3a4IP9N+YUBpEyZ+kgSsbTDQV5LdJ5Y2AfSlTZj4PhNAXz53n9q1CaAvbcLE95mANX353Ctqj0fACYM3KLlf/4FywontI1UfPDrgnrvvLNbHBkRKbBsW3Xv/P2S77baTu+68bZPn5pYrV05mfDBLgv8PXsFjLILHWeS/9q9TR8aNnxy+DR6pcOThjSUwivNfDz3SRzqfclr49qlBT8qdd9y6Qabz5i8OH3kRcG3VvEloEOe/TjixnfTrPyh8O++zudLm6ObbUGW0QzGgonFiVTYIWNtgoK9szA1ZRCOAvqJxYhUEikIAfRWFGsdAIBoB9BWNE6sgUBQC1vRVlBo5xk8Czhi8Qftq77efPN73Sdlv//1zd40WbGtgQE6c8IZc07NbpD/G5tJIPNq7r5zUqXNY0v333i1P9HssV97gIc9I6zbHhu8vOO9smTB+3AalB4+/WLDo25Dp8uXLpWG9vD9qF7w6dT5VHn40L9aI4S9Jj25dN8H29rT3pGrVauHvGzU4cIvPAU6COQZUEhSJUVwErG0w0FdxTQbnSYIA+kqCIjEgUDgB9MVkQECPAPrSY0tkCFjTFx2DQFQCThm8BYuuWHF3OeTQw2TvffaRuXNmy0cfzgwf2eDr68Fej8hpp58Rlh/cgRvciZv/mvHBxxL88bngEQw1qu29wd27+WvemjpdqlWrHr7dt2ql3JonBgyS409oF/7+4gvPk3Gvv7YJ4gf+8bCc3uXM8PfXX9tTXnj+X6ptwIBSxUvwhAlY22Cgr4QHgHCqBNCXKl6Ce04AfXk+AJSvSgB9qeIluOcErOnL83ZRfgwC5g3e4K7S4NED+c/cjVJ76dKlw0cKBK+VK1dGOcT8mjcnT5UaNWuFdXQ6qZ38z4z3cjXN/mxByPCnn36SBnX3L7TWgYOHyjHHtg0/a3bUEbLoy4Xhzy+NGBUa6cGrZvV9ZN26dZsc3/HkTtK7T7/w9316PywP/eMBVZ4YUKp4CZ4wAWsbDPSV8AAQTpUA+lLFS3DPCaAvzweA8lUJoC9VvAT3nIA1fXneLsqPQcC8wdvr4d5yyqmnhyU3qFdnkz8AVhiLYcNHyqGHHR5+1P7E48K7e11+BbUGNQev4I+gHVSn5gblzv/ym/CPsC1Z8r0c1rhBoSgKPof33LO6yKRJE8N1BY3japX3LPTYFi1aydPP/jv8bNiLL4SPyNB8YUBp0iV20gSsbTDQV9ITQDxNAuhLky6xfSeAvnyfAOrXJIC+NOkS23cC1vTle7+oPzoB8wZvwWfLRn2+6+Vdr5Ibb7olpNTrwfvlsT6PRCdmbOXOO+8s7874UMqWLRtm/uD990rfx3vnqgier/vlV9+H7xct+lKaNckzvjd+3fH3e+T8Cy4Kf33bLX+Tp4c+Ff78/sxPpOLuu4d3UAePbijs1aBhIxk5emz40ZS335Izu5ySW1auwl6JE/1t5c9yTId3ZYeyhRvOiZ+QgBDYBgLBBmP8qOZSpnz5bYhSfIeir+JjzZm2nQD62naGRIDA5gigL2YDAnoE0JceWyJDQFNfq5bneSu8IJAGAS8N3patWsvQZ54LeQfPgw2eC+viK3gMxeQp70qlSnuH5X3yySw54bjWG5QaPK7i8wVfhb9bMP8Ladm8SaEobr3tTrnoksvCzwoavB/OmisVKlQIH80QPKKhsNdBB9WVMa9PCD/a2ODds2ajxNH/uHietGn/DgZv4mQJqEEg2GBMGN1Sdq2y4Z31GudKIib6SoIiMYqLAPoqLtKcx0cC6MvHrlNzcRFAX8VFmvP4SEBTX0vmu/1fh/s4L5Zq9tLgvfjSy+WWW+8I+/TyiOHS/arLLfUsUq7BIxfefGuaVK1aLVz/3XffSvOjjpDff/99k+ODO3iDO3m/+eZrOfLwxoXGL/hH2i675EJ5bczoPMP2nRlSpUrV8A+0Va9S+N24RzVtJs/9+8Vw/aiRr8iVXS/JnYM7eCO1k0UOE9D8F2QNbNzBq0GVmFoE0JcWWeJCQAR9MQUQ0COAvvTYEhkCmvriDl7mK00C3hm81arvK6++9obsuOOOIfd77/67DOjfN80eJH7u4A+mjZswWSpXrhLGDp6t27LZkbJq1apCz/XZF4tk++23lx+WLpVDDq5X6Jp+/QfKCSe2Dz9re0wrmT370zzDdsw4qV8/77m9m3sGb7v2HeTxfk+Ga57s30/uufvOxGsuGJBnhKriJXjCBKw9Awp9JTwAhFMlgL5U8RLccwLoy/MBoHxVAuhLFS/BPSdgTV+et4vyYxAwZ/COfu0N2WvP/79TdOdddpHgMQPBa/myZeGjAjZ+BXen/uUvf5HSZcpIYH4WfLVu1VQ+nzcvBrJsL61YcXcZP/EtqbDrrmGiCxfMl2PbtCz0zt38SmZ+NFt23W03WbNmjdSukWcKb/x6dex4qVs3z/ytU7u6/Prrr+HPQ55+Vlod3Sb8+djWLWTu3DmbHHv9jTfJFVd2D39/+203y9CnBqlCxIBSxUvwhAlY22Cgr4QHgHCqBNCXKl6Ce04AfXk+AJSvSgB9qeIluOcErOnL83ZRfgwC5gzeOfMW5v5gWIw6C106Yfw4ueC8s7c1TGaOP/DAg+Sll0fn+Myc+YGc1P748PEJW3oFpnm9evW3aNLOm79Ygmf6rl27VmrtWzkX7prrbpBu3a8O3/d/4nG57567NjlVQXP4xLZtZNasj1WZYUCp4iV4wgSsbTDQV8IDQDhVAuhLFS/BPSeAvjwfAMpXJYC+VPES3HMC1vTlebsoPwYBLw3e3377TQY++YT0evD+GKiyvfS4tifIEwMGScmSJcNEN37W7ZayL/gIhYkTx8v555y5wfKOJ3eS3n36hb+bOOENOf/cs3KfB4+6mDX78/AZvst+/FEaN6or69evz30ePCbi7WnvhXkFnzdqcKA6SAwodcScIEEC1jYY6CvB5hNKnQD6UkfMCTwmgL48bj6lqxNAX+qIOYHHBKzpy+NWUXpMAuYM3uBO0+CxDPmvq7r1lCP+emT4NvjjXcuXL98sghU//SRz5swu9DEOMbllbvmir5fkcgqej/vif57fbI7BHb3P/fPp8JEM+a/85/AG74cOGSx9H+stK1b8JCe26yC9Hu6dM44LPn83/9hXRo+Vhg0bhW9nfvC+3Hj9NeGjGo5scpT0e2Jg7nER/fr2kQfuu0edHQaUOmJOkCABaxsM9JVg8wmlTgB9qSPmBB4TQF8eN5/S1QmgL3XEnMBjAtb05XGrKD0mAXMG78b13XHn3XLu+ReGd40e3OBAWbFiRUwEbiwvaPBGqajZUUfIoi8X5pZ26nyqPPRIn/BO3M29Ro96Ra64/JJNPq69334ycvTrGzw6IzCRC8b6+uuvpHXLprln90bJsahrMKCKSo7j0iBgbYOBvtKYEs5ZVALoq6jkOA4CWyeAvrbOiBUQKCoB9FVUchwHga0TsKavrVfECgjkETBv8NLIPAJxDd6j/nqofPXV4g3wNWvWQgYMGrLJM44D8zx4vu6W7r7dY489ZeSrY6VSpb03iBkYvf8z4z05tXPHDR7doNk3DChNusROmoC1DQb6SnoCiKdJAH1p0iW27wTQl+8TQP2aBNCXJl1i+07Amr587xf1RyeAwRudlTcrA7P2mGOPk5133kXenDhegkc+RH2VK1dOWrRsJfvXOUDem/6uTJs6pdiM3fwcMaCidot1WSBgbYOBvrIwNeQQlQD6ikqKdRCITwB9xWfGERCISgB9RSXFOgjEJ2BNX/Er5AhfCWDw+tp5h+vGgHK4uQ6WZm2Dgb4cHEKHS0JfDjeX0lIngL5SbwEJOEwAfTncXEpLnYA1faUOjATMEMDgNdMqEo1KAAMqKinWZYGAtQ0G+srC1JBDVALoKyop1kEgPgH0FZ8ZR0AgKgH0FZUU6yAQn4A1fcWvkCN8JYDB62vnHa4bA8rh5jpYmrUNBvpycAgdLgl9OdxcSkudAPpKvQUk4DAB9OVwcyktdQLW9JU6MBIwQwCD10yrSDQqAQyoqKRYlwUC1jYY6CsLU0MOUQmgr6ikWAeB+ATQV3xmHAGBqATQV1RSrINAfALW9BW/Qo7wlQAGr6+dd7huDCiHm+tgadY2GOjLwSF0uCT05XBzKS11Augr9RaQgMME0JfDzaW01AlY01fqwEjADAEMXjOtItGoBDCgopJiXRYIWNtgoK8sTA05RCWAvqKSYh0E4hNAX/GZcQQEohJAX1FJsQ4C8QlY01f8CjnCVwIYvL523uG6MaAcbq6DpVnbYKAvB4fQ4ZLQl8PNpbTUCaCv1FtAAg4TQF8ON5fSUidgTV+pAyMBMwQweM20ikSjEsCAikqKdVkgYG2Dgb6yMDXkEJUA+opKinUQiE8AfcVnxhEQiEoAfUUlxToIxCdgTV/xK+QIXwlg8PraeYfrxoByuLkOlmZtg4G+HBxCh0tCXw43l9JSJ4C+Um8BCThMAH053FxKS52ANX2lDowEzBDA4DXTKhKNSgADKiop1mWBgLUNBvrKwtSQQ1QC6CsqKdZBID4B9BWfGUdAICoB9BWVFOsgEJ+ANX3Fr5AjfCWAwetr5x2uGwPK4eY6WJq1DQb6cnAIHS4JfTncXEpLnQD6Sr0FJOAwAfTlcHMpLXUC1vSVOjASMEMAg9dMq0g0KgEMqKikWJcFAtY2GOgrC1NDDlEJoK+opFgHgfgE0Fd8ZhwBgagE0FdUUqyDQHwC1vQVv0KO8JUABq+vnXe4bgwoh5vrYGnWNhjoy8EhdLgk9OVwcyktdQLoK/UWkIDDBNCXw82ltNQJWNNX6sBIwAwBDF4zrSLRqAQwoKKSYl0WCFjbYKCvLEwNOUQlgL6ikmIdBOITQF/xmXEEBKISQF9RSbEOAvEJWNNX/Ao5wlcCGLy+dt7hujGgHG6ug6VZ22CgLweH0OGS0JfDzaW01Amgr9RbQAIOE0BfDjeX0lInYE1fqQMjATMEMHjNtIpEoxLAgIpKinVZIGBtg4G+sjA15BCVAPqKSop1EIhPAH3FZ8YREIhKAH1FJcU6CMQnYE1f8SvkCF8JYPD62nmH68aAcri5DpZmbYOBvhwcQodLQl8ON5fSUieAvlJvAQk4TAB9OdxcSkudgDV9pQ6MBMwQwOA10yoSjUoAAyoqKdZlgYC1DQb6ysLUkENUAugrKinWQSA+AfQVnxlHQCAqAfQVlRTrIBCfgDV9xa+QI3wlgMHra+cdrhsDyuHmOliatQ0G+nJwCB0uCX053FxKS50A+kq9BSTgMAH05XBzKS11Atb0lTowEjBDAIPXTKtINCoBDKiopFiXBQLWNhjoKwtTQw5RCaCvqKRYB4H4BNBXfGYcAYGoBNBXVFKsg0B8Atb0Fb9CjvCVAAavr513uG4MKIeb62Bp1jYY6MvBIXS4JPTlcHMpLXUC6Cv1FpCAwwTQl8PNpbTUCVjTV+rASMAMAQxeM60i0agEMKCikmJdFghY22CgryxMDTlEJYC+opJiHQTiE0Bf8ZlxBASiEkBfUUmxDgLxCVjTV/wKOcJXAhi8vnbe4boxoBxuroOlWdtgoC8Hh9DhktCXw82ltNQJoK/UW0ACDhNAXw43l9JSJ2BNX6kDIwEzBDB4zbSKRKMSwICKSop1WSBgbYOBvrIwNeQQlQD6ikqKdRCITwB9xWfGERCISgB9RSXFOgjEJ2BNX/Er5AhfCWDw+tp5h+vGgHK4uQ6WZm2Dgb4cHEKHS1q96hsZP7KprFu3ykSV6MtEm0jyTwJ8fzEKENAjgL702BIZAtb0RccgEJUABm9UUqwzQ4ALZDOtIlERsbbBQF+MrSUCGLyWukWu1gjw/WWtY+RriQD6stQtcrVGwJq+rPEl3/QIYPCmx54zKxHAgFICS1gVAtY2GOhLZQwIqkQAg1cJLGEhwD9QMgMQUCXA/lAVL8E9J2BNX563i/JjEMDgjQGLpTYIYEDZ6BNZ5hGwtsFAX0yuJQIYvJa6Ra7WCPD9Za1j5GuJAN9flrpFrtYIWPv+ssaXfNMjgMGbHnvOrEQAA0oJLGFVCFjbYKAvlTEgqBIBLpCVwBIWAvwDJTMAAVUCfH+p4iW45wSsXX953i7Kj0EAgzcGLJbaIIABZaNPZJlHwNoGA30xuZYIcIFsqVvkao0A31/WOka+lgjw/WWpW+RqjYC17y9rfMk3PQIYvOmx58xKBDCglMASVoWAtQ0G+lIZA4IqEeACWQksYSHAP1AyAxBQJcD3lypegntOwNr1l+ftovwYBDB4Y8BiqQ0CGFA2+kSWeQSsbTDQF5NriQAXyJa6Ra7WCPD9Za1j5GuJAN9flrpFrtYIWPv+ssaXfNMjgMGbHnvOrEQAA0oJLGFVCFjbYKAvlTEgqBIBLpCVwBIWAuE/UH4j40c2lXXrVpngwfeXiTaR5J8E0BejAAE9Atauv/RIENk1Ahi8rnWUeoQNPENgiYC1DQb6sjRd5MoFMjMAAT0C6EuPLZEhgL6YAQjoEbB2/aVHgsiuEcDgda2j1IPBywyYImBtg4HBa2q8vE+WC2TvRwAAigTQlyJcQntPAH15PwIAUCRg7fpLEQWhHSOAwetYQylHMHgZAlMErG0wMHhNjZf3yXKB7P0IAECRAPpShEto7wmgL+9HAACKBKxdfymiILRjBDB4HWso5WDwMgO2CFjbYGDw2pov37PlAtn3CaB+TQLoS5MusX0ngL58nwDq1yRg7fpLkwWx3SKAwetWP6lGMHgZAlsErG0wMHhtzZfv2XKB7PsEUL8mAfSlSZfYvhNAX75PAPVrErB2/aXJgthuEcDgdaufVIPBywwYI2Btg4HBa2zAPE+XC2TPB4DyVQmgL1W8BPecAPryfAAoX5WAtesvVRgEd4oABq9T7aSYgAAGFHNgiYC1DQb6sjRd5MoFMjMAAT0C6EuPLZEhgL6YAQjoEbB2/aVHgsiuEcDgda2j1IPBywyYImBtg4HBa2q8vE+WC2TvRwAAigTQlyJcQntPAH15PwIAUCRg7fpLEQWhHSOAwetYQymHO3iZAVsErG0wMHhtzZfv2XKB7PsEUL8mAfSlSZfYvhNAX75PAPVrErB2/aXJgthuEcDgdaufVMMjGpgBYwSsbTAweI0NmOfpcoHs+QBQvioB9KWKl+CeE0Bfng8A5asSsHb9pQqD4E4RwOB1qp0UExDAgGIOLBGwtsFAX5ami1y5QGYGIKBHAH3psSUyBNAXMwABPQLWrr/0SBDZNQIYvK51lHoweJkBUwTYwJtqF8kaI4C+jDWMdE0RQF+m2kWyxgigL2MNI11TBKzpyxRckk2VAAZvqvg5uQYB7jDUoEpMLQLWNhjoS2sSiKtBAH1pUCUmBPIIoC8mAQJ6BNCXHlsiQ8CavugYBKISwOCNSop1ZghgQJlpFYlygcwMQECVgLUNPN9fquNA8IQJoK+EgRIOAgUIoC/GAQJ6BKzpS48EkV0jgMHrWkeph0c0MAOmCFjbYGBAmRov75NFX96PAAAUCaAvRbiE9p4A+vJ+BACgSMCavhRRENoxAhi8jjWUcvgja8yALQLWNhgYvLbmy/ds0ZfvE0D9mgTQlyZdYvtOAH35PgHUr0nAmr40WRDbLQIYvG71k2oEg5chsEXA2gYDg9fWfPmeLfryfQKoX5MA+tKkS2zfCaAv3yeA+jUJWNOFeVSPAAAgAElEQVSXJgtiu0UAg9etflINBi8zYIyAtQ0GBq+xAfM8XfTl+QBQvioB9KWKl+CeE0Bfng8A5asSsKYvVRgEd4oABq9T7aSYgAAGFHNgiYC1DQb6sjRd5Iq+mAEI6BFAX3psiQwB9MUMQECPgDV96ZEgsmsEMHhd6yj1YPAyA6YIWNtgYPCaGi/vk0Vf3o8AABQJoC9FuIT2ngD68n4EAKBIwJq+FFEQ2jECGLyONZRyuIOXGbBFwNoGA4PX1nz5ni368n0CqF+TAPrSpEts3wmgL98ngPo1CVjTlyYLYrtFAIPXrX5SDY9oYAaMEbC2wcDgNTZgnqeLvjwfAMpXJYC+VPES3HMC6MvzAaB8VQLW9KUKg+BOEcDgdaqdFBMQwIBiDiwRsLbBQF+Wpotc0RczAAE9AuhLjy2RIYC+mAEI6BGwpi89EkR2jQAGr2sdpR4MXmbAFAFrGwwMXlPj5X2y6Mv7EQCAIgH0pQiX0N4TQF/ejwAAFAlY05ciCkI7RgCD17GGUg538DIDtghY22Bg8NqaL9+zRV++TwD1axJAX5p0ie07AfTl+wRQvyYBa/rSZEFstwhg8LrVT6rhEQ3MgDEC1jYYGLzGBszzdNGX5wNA+aoE0JcqXoJ7TgB9eT4AlK9KwJq+VGEQ3CkCGLxOtZNiAgIYUMyBJQLWNhjoy9J0kSv6YgYgoEcAfemxJTIE0BczAAE9Atb0pUeCyK4RwOB1raPUg8HLDJgiYG2DgcFrary8TxZ9eT8CAFAkgL4U4RLaewLoy/sRAIAiAWv6UkRBaMcIYPA61lDK4Q5eZsAWAWsbDAxeW/Ple7boy/cJoH5NAuhLky6xfSeAvnyfAOrXJGBNX5osiO0WAQxet/pJNTyigRkwRsDaBgOD19iAeZ4u+vJ8AChflQD6UsVLcM8JoC/PB4DyVQlY05cqDII7RQCD16l2UkxAAAOKObBEwNoGA31Zmi5yRV/MAAT0CKAvPbZEhgD6YgYgoEfAmr70SBDZNQIYvK51lHoweJkBUwSsbTAweE2Nl/fJoi/vRwAAigTQlyJcQntPAH15PwIAUCRgTV+KKAjtGAEMXscaSjncwcsM2CJgbYOBwWtrvnzPFn35PgHUr0kAfWnSJbbvBNCX7xNA/ZoErOlLkwWx3SKAwetWP6mGRzQwA8YIWNtgYPAaGzDP00Vfng8A5asSQF+qeAnuOQH05fkAUL4qAWv6UoVBcKcIYPA61U6KCQhgQDEHlghY22CgL0vTRa7oixmAgB4B9KXHlsgQQF/MAAT0CFjTlx4JIrtGAIPXtY5SDwYvM2CKgLUNBgavqfHyPln05f0IAECRAPpShEto7wmgL+9HAACKBKzpSxEFoR0jgMHrWEMphzt4mQFbBKxtMDB4bc2X79miL98ngPo1CaAvTbrE9p0A+vJ9Aqhfk4A1fWmyILZbBDB43eon1fCIBmbAGAFrGwwMXmMD5nm66MvzAaB8VQLoSxUvwT0ngL48HwDKVyVgTV+qMAjuFAEMXqfaSTEBAQwo5sASAWsbDPRlabrIFX0xAxDQI4C+9NgSGQLoixmAgB4Ba/rSI0Fk1whg8LrWUerB4GUGTBGwtsHA4DU1Xt4ni768HwEAKBJAX4pwCe09AfTl/QgAQJGANX0poiC0YwQweB1rKOVwBy8zYIuAtQ0GBq+t+fI9W/Tl+wRQvyYB9KVJl9i+E0Bfvk8A9WsSsKYvTRbEdosABq9b/aQaHtHADBgjYG2DgcFrbMA8Txd9eT4AlK9KAH2p4iW45wTQl+cDQPmqBKzpSxUGwZ0igMHrVDspJiCAAcUcWCJgbYOBvixNF7miL2YAAnoE0JceWyJDAH0xAxDQI2BNX3okiOwaAQxe1zpKPRi8zIApAtY2GBi8psbL+2TRl/cjAABFAuhLES6hvSeAvrwfAQAoErCmL0UUhHaMAAavYw2lHO7gZQZsEbC2wcDgtTVfvmeLvnyfAOrXJIC+NOkS23cC6Mv3CaB+TQLW9KXJgthuEcDgdaufVMMjGpgBYwSsbTAweI0NmOfpoi/PB4DyVQmgL1W8BPecAPryfAAoX5WANX2pwiC4UwQweJ1qJ8UEBDCgmANLBKxtMNCXpekiV/TFDEBAjwD60mNLZAigL2YAAnoErOlLjwSRXSOAwetaR6kHg5cZMEXA2gYDg9fUeHmfLPryfgQAoEgAfSnCJbT3BNCX9yMAAEUC1vSliILQjhHA4HWsoZTDHbzMgC0C1jYYGLy25sv3bNGX7xNA/ZoE0JcmXWL7TgB9+T4B1K9JwJq+NFkQ2y0CGLxu9ZNqeEQDM2CMgLUNBgavsQHzPF305fkAUL4qAfSlipfgnhNAX54PAOWrErCmL1UYBHeKAAavU+2kmIAABhRzYImAtQ0G+rI0XeSKvpgBCOgRQF96bIkMAfTFDEBAj4A1femRILJrBDB4Xeso9WDwMgOmCFjbYGDwmhov75NFX96PAAAUCaAvRbiE9p4A+vJ+BACgSMCavhRRENoxAhi8jjWUcriDlxmwRcDaBgOD19Z8+Z4t+vJ9AqhfkwD60qRLbN8JoC/fJ4D6NQlY05cmC2K7RQCD161+Ug2PaGAGjBGwtsHA4DU2YJ6ni748HwDKVyWAvlTxEtxzAujL8wGgfFUC1vSlCoPgThHA4HWqnRQTEMCAYg4sEbC2wUBflqaLXNEXMwABPQLoS48tkSGAvpgBCOgRsKYvPRJEdo0ABq9rHaUeDF5mwBQBaxsMDF5T4+V9sujL+xEAgCIB9KUIl9DeE0Bf3o8AABQJWNOXIgpCO0YAg9exhlIOd/AyA7YIWNtgYPDami/fs0Vfvk8A9WsSQF+adIntOwH05fsEUL8mAWv60mRBbLcIYPC61U+q4RENzIAxAtY2GBi8xgbM83TRl+cDQPmqBNCXKl6Ce04AfXk+AJSvSsCavlRhENwpAhi8TrWTYgICGFDMgSUC1jYY6MvSdJEr+mIGIKBHAH3psSUyBNAXMwABPQLW9KVHgsiuEcDgda2j1IPBywyYImBtg4HBa2q8vE8WfXk/AgBQJIC+FOES2nsC6Mv7EQCAIgFr+lJEQWjHCGDwOtZQyuEOXmbAFgFrGwwMXlvz5Xu26Mv3CaB+TQLoS5MusX0ngL58nwDq1yRgTV+aLIjtFgEMXrf6STU8ooEZMEbA2gYDg9fYgHmeLvryfAAoX5UA+lLFS3DPCaAvzweA8lUJWNOXKgyCO0UAg9epdlJMQAADijmwRMDaBgN9WZouckVfzAAE9AigLz22RIYA+mIGIKBHwJq+9EgQ2TUCGLyudZR6MHiZAVMErG0wMHhNjZf3yaIv70cAAIoE0JciXEJ7TwB9eT8CAFAkYE1fiigI7RgBDF7HGko53MHLDNgiYG2DgcFra758zxZ9+T4B1K9JAH1p0iW27wTQl+8TQP2aBKzpS5MFsd0igMHrVj+phkc0MAPGCFjbYGDwGhswz9NFX54PAOWrEkBfqngJ7jkB9OX5AFC+KgFr+lKFQXCnCGDwOtVOigkIYEAxB5YIWNtgoC9L00Wu6IsZgIAeAfSlx5bIEEBfzAAE9AhY05ceCSK7RgCD17WOUg8GLzNgioC1DQYGr6nx8j5Z9OX9CABAkQD6UoRLaO8JoC/vRwAAigSs6UsRBaEdI4DB61hDKYc7eJkBWwSsbTAweG3Nl+/Zoi/fJ4D6NQmgL026xPadAPryfQKoX5OANX1psiC2WwQweN3qJ9XwiAZmwBgBaxsMDF5jA+Z5uujL8wGgfFUC6EsVL8E9J4C+PB8AylclYE1fqjAI7hQBDF6n2kkxAQEMKObAEgFrGwz0ZWm6yBV9MQMQ0COAvvTYEhkC6IsZgIAeAWv60iNBZNcIYPC61lHqweBlBkwRsLbBwOA1NV7eJ4u+vB8BACgSQF+KcAntPQH05f0IAECRgDV9KaIgtGMEMHgdayjlcAcvM2CLgLUNBgavrfnyPVv05fsEUL8mAfSlSZfYvhNAX75PAPVrErCmL00WxHaLAAavW/1MrJpSpUpJ2bJl5eeffy5SzAq77irLly0r0rHbehAG1LYS5PjiJGBtg4G+inM6ONe2EkBf20qQ4yGweQLoi+mAgB4B9KXHlsgQsKYvOgaBqAQweKOSMrju+f8Ml7r16svoUa/Ijddfs9UKdtppJxkwcIgcVLee7LzzzuH61atXy+JFi+SWm2+QGe9N32KM+x98SI5u3UZ2330PKVGihKxdu1a+++5beWrwQBkyeOBWz5/UAgyopEgSpzgIWNtgoK/imArOkRQB9JUUSeJAYFMC6IupgIAeAfSlx5bIELCmLzoGgagEMHijkjK27tDDDpcXX3olNFqnTZ0iXU7rtMUKKleuImNen5AzdjdevH79eul62cXy2pjRm8QpWbKkvDJ6rNSv32Cz5xg6ZLDcfutNxUIRA6pYMHOShAhY22Cgr4QaT5hiIYC+igUzJ/GUAPrytPGUXSwE0FexYOYknhKwpi9P20TZRSCAwVsEaFk9pFPnU6Vp0+ZSt149qVV7v9DcDV5RDN53Z8yUSpX2DtcvXrxIXhr2H1n2449yXNsTpMlRTcPf//HHH9Kw/gHy0/LlGyB4rO8Aad+hY/i7X375RUYMHyYfzvxAmjVvKe3ad5DAAA5ePbpdEX6m/cKA0iZM/CQJWNtgoK8ku08sbQJ5+jpK1q1brX2qROKjr0QwEqSYCPD9VUygOY2XBNCXl22n6GIiYE1fxYSF0zhAAIPXgSbmlzB+4ltSe7/9N6loawbv/nXqyLjxk8PjgkcqHHl4Ywnu2M1/PfRIH+l8ymnh26cGPSl33nHrBueYN3+xlClTJnwkQ6vmTUKDOP91wontpF//QeHbeZ/NlTZHN1cnzgWyOmJOkCABaxsM9JVg8wmlTgCDVx0xJ/CYAN9fHjef0tUJoC91xJzAYwLW9OVxqyg9JgEM3pjAsry8e49r5LDDj8ileFTTZuHPWzN4Bw95Rlq3OTZce8F5Z8uE8eM2KDO4E3jBom/DO3GXL18uDevVyX0e3DX88KOPhe9HDH9JenTrugmit6e9J1WrVgt/36jBgeGdwZovDChNusROmoC1DQb6SnoCiKdJAINXky6xfSfA95fvE0D9mgTQlyZdYvtOwJq+fO8X9UcngMEbnZW5lYu+XhLmvDWDd8YHH8see+wZPoKhRrW9N7h7N7/ot6ZOl2rVqodv961aKbfmiQGD5PgT2oW/v/jC82Tc669twumBfzwsp3c5M/z99df2lBee/5cqSwwoVbwET5iAtQ0G+kp4AAinSgCDVxUvwT0nwPeX5wNA+aoE+P5SxUtwzwlY+/7yvF2UH4MABm8MWNaWRjV4Z3+2QMqVKyc//fSTNKi76SMegroHDh4qxxzbNkTQ7KgjZNGXC8OfXxoxSg459LDw55rV95F169ZtgqnjyZ2kd59+4e/79H5YHvrHA6ooMaBU8RI8YQLWNhjoK+EBIJwqAS6QVfES3HMCfH95PgCUr0qA7y9VvAT3nIC17y/P20X5MQhg8MaAZW1pVIN3/pffSKlSpWTJku/lsMYNCi2z4HN4zz2ri0yaNDFc9+bkqVKjZq3w52qV9yz02BYtWsnTz/47/GzYiy/INT27qaLEgFLFS/CECVjbYKCvhAeAcKoEuEBWxUtwzwnw/eX5AFC+KgG+v1TxEtxzAta+vzxvF+XHIIDBGwOWtaVRDN7g+bpffvV9WNqiRV9KsyaHF1rmHX+/R86/4KLws9tu+Zs8PfSp8Of3Z34iFXffPXxkQ/DohsJeDRo2kpGjx4YfTXn7LTmzyym5ZaV3KJ841v+u+a8c03G67FC2cMM58RMSEALbQCDcYIxqJiVLbUOQYjwUfRUjbE61zQTy9NVUSpYqsc2xiiMA+ioOypwjKQJ8fyVFkjgQ2JQA319MBQT0CGh+f6359Re9xIkMga0QwOB1eESiGLylS5eWzxd8FVJYMP8Ladm8SaFEbr3tTrnoksvCzwoavB/OmisVKlQIH80QPKKhsNdBB9WVMa9PCD/a2ODds2ajxDvw4+J50qb9Oxi8iZMloAaBYIMx4dUWsmvlmhrhE4+JvhJHSkBFAqG+RreQXaugL0XMhPaUAN9fnjaesouFAN9fxYKZk3hKQPP7a8n8mZ5SpewsEMDgzUIXlHKIYvAGpw7u4A3u5P3mm6/lyMMbF5rNg70ekdNOPyP87LJLLpTXxozOM2zfmSFVqlQN/0Bb9Sp7FXrsUU2byXP/fjH8bNTIV+TKrpfk1lXYO+/xDkm+fl76rRzT4V0M3iShEkuNQN4GvrmUr2jjjnP0pTYKBFYggL4UoBISAn8SQF+MAgT0CKAvPbZEhoCmvpZ/+wWAIZAaAQze1NDrnziqwfvZF4tk++23lx+WLpVDDq5XaGL9+g+UE05sH37W9phWMnv2p+HPo8aMk/r1857bu7ln8LZr30Ee7/dkuObJ/v3knrvvVC2eZ4Sq4iV4wgSsPQMKfSU8AIRTJcAzDFXxEtxzAujL8wGgfFUC6EsVL8E9J2Dt+svzdlF+DAIYvDFgWVsa1eCd+dFs2XW33WTNmjVSu0aVQst8dex4qVs3z/ytU7u6/Prrr+HPQ55+Vlod3Sb8+djWLWTu3DmbHH/9jTfJFVd2D39/+203y9CnBqmixIBSxUvwhAlY22Cgr4QHgHCqBLhAVsVLcM8JoC/PB4DyVQmgL1W8BPecgLXrL8/bRfkxCGDwxoBlbWlUg3f0a29IvXr1t2jSzpu/WMqUKSNr166VWvtWzqG45robpFv3q8P3/Z94XO67565NMBU0h09s20ZmzfpYFSUGlCre/2vvPqAsqaqGYR9YgDD8iAMDisIAwgw5jCQlRxEkCSggKOZARqIogiQJgoAwZDGgiAoIDDCkIfMiOecMSlBABUEdfvhW1axpu+memVOXvl11Tj13rXc5dJ+qu/ezz3677u7bdZ18kAVSu8DQX4O8AZyuqwJeIHeV18lbLqC/Wr4BpN9VAf3VVV4nb7lAaq+/Wl4u6VcQMOCtgJXa0tgBb+9bKEyYcGX48he37ZPqZptvEY47fmz5tQlXXRG+vP12Pd+fbbbZwr0PPFrew/eVl18Oy41ZMrz99ts935933vnC9TfdEqaffvry+2OWWbzrjAZQXSf2BIMokNoFhv4axOI7VdcFvEDuOrEnaLGA/mpx8aXedQH91XViT9BigdRef7W4VFKvKGDAWxGsycuLYessswzrCfHWOya9U/aO228L3/z6V3q+/tJLL/ZLY/J9eItv/PzMM8KJPz0u/OMffw8bbbxp+PExx5UD2uLR+/67k09ywbjxYdllx5T/eecdt4d9996jvFXDyqusGsaedFoYPscc5ffGnnh8OOJHh3ad0ACq68SeYBAFUrvA0F+DWHyn6rqAF8hdJ/YELRbQXy0uvtS7LqC/uk7sCVoskNrrrxaXSuoVBQx4K4I1efmVE64Lo0YvMs0QV1/14+Hpp57ss26LLT8Xjv7J8eU7caf0GHfRBWHHb3+j37dHjR4dLhx3WRg27H/D5XfeeafPuZ577tmw7lqr9dy7d5pBvocFBlDvAc+hQy6Q2gWG/hryLeIJ34OAF8jvAc+hBKYhoL9sEQLdE9Bf3bN1ZgKpvf5SMQKxAga8sVIJrLviqmvD6EUWnWakq628Ynjmmaf7rVt99TXDKaef2WdQWywqbrlQ3F93au++nXvuD4YLLx4f5pnnw33OWwx6b7v1lvC5LTfrc+uGaQb5HhYYQL0HPIcOuUBqFxj6a8i3iCd8DwJeIL8HPIcSMOC1BwjUJuDnV230nrgFAqm9/mpBSaQ4SAIGvIMEmdNpimHtJ9f/VJh99g+EqydcGR544P7o9Gadddaw5lprh0UWXSzc8qebw0033jBkg93JQRpARZfLwgYIpHaBob8asGmEEC3gBXI0lYUEKgvor8pkDiAQLaC/oqksJFBZILXXX5UTdEBrBQx4W1v6fBM3gMq3tjlmltoFhv7KcRfmm5MXyPnWVmb1C+iv+msggnwF9Fe+tZVZ/QKpvf6qX0wEqQgY8KZSKXFGCxhARVNZ2ACB1C4w9FcDNo0QogW8QI6mspBAZQH9VZnMAQSiBfRXNJWFBCoLpPb6q3KCDmitgAFva0ufb+IGUPnWNsfMUrvA0F857sJ8c/ICOd/ayqx+Af1Vfw1EkK+A/sq3tjKrXyC111/1i4kgFQED3lQqJc5oAQOoaCoLGyCQ2gWG/mrAphFCtIAXyNFUFhKoLKC/KpM5gEC0gP6KprKQQGWB1PqrcoIOaK2AAW9rS59v4gZQ+dY2x8xSu8DQXznuwnxz0l/51lZm9Qvor/prIIJ8BfRXvrWVWf0CqfVX/WIiSEXAgDeVSokzWsAAKprKwgYIpHaBob8asGmEEC2gv6KpLCRQWUB/VSZzAIFoAf0VTWUhgcoCqfVX5QQd0FoBA97Wlj7fxA2g8q1tjpmldoGhv3LchfnmpL/yra3M6hfQX/XXQAT5CuivfGsrs/oFUuuv+sVEkIqAAW8qlRJntIABVDSVhQ0QSO0CQ381YNMIIVpAf0VTWUigsoD+qkzmAALRAvormspCApUFUuuvygk6oLUCBrytLX2+iRtA5VvbHDNL7QJDf+W4C/PNSX/lW1uZ1S+gv+qvgQjyFdBf+dZWZvULpNZf9YuJIBUBA95UKiXOaAEDqGgqCxsgkNoFhv5qwKYRQrSA/oqmspBAZQH9VZnMAQSiBfRXNJWFBCoLpNZflRN0QGsFDHhbW/p8EzeAyre2OWaW2gWG/spxF+abk/7Kt7Yyq19Af9VfAxHkK6C/8q2tzOoXSK2/6hcTQSoCBrypVEqc0QIGUNFUFjZAILULDP3VgE0jhGgB/RVNZSGBygL6qzKZAwhEC+ivaCoLCVQWSK2/KifogNYKGPC2tvT5Jm4AlW9tc8wstQsM/ZXjLsw3J/2Vb21lVr+A/qq/BiLIV0B/5VtbmdUvkFp/1S8mglQEDHhTqZQ4owUMoKKpLGyAQGoXGPqrAZtGCNEC+iuaykIClQX0V2UyBxCIFtBf0VQWEqgskFp/VU7QAa0VMOBtbenzTdwAKt/a5phZahcY+ivHXZhvTvor39rKrH4B/VV/DUSQr4D+yre2MqtfILX+ql9MBKkIGPCmUilxRgsYQEVTWdgAgdQuMPRXAzaNEKIF9Fc0lYUEKgvor8pkDiAQLaC/oqksJFBZILX+qpygA1orYMDb2tLnm7gBVL61zTGz1C4w9FeOuzDfnPRXvrWVWf0C+qv+GoggXwH9lW9tZVa/QGr9Vb+YCFIRMOBNpVLijBYwgIqmsrABAqldYOivBmwaIUQL6K9oKgsJVBbQX5XJHEAgWkB/RVNZSKCyQGr9VTlBB7RWwIC3taXPN3EDqHxrm2NmqV1g6K8cd2G+OemvfGsrs/oF9Ff9NRBBvgL6K9/ayqx+gdT6q34xEaQiYMCbSqXEGS1gABVNZWEDBFK7wNBfDdg0QogW0F/RVBYSqCygvyqTOYBAtID+iqaykEBlgdT6q3KCDmitgAFva0ufb+IGUPnWNsfMUrvA0F857sJ8c9Jf+dZWZvUL6K/6ayCCfAX0V761lVn9Aqn1V/1iIkhFwIA3lUqJM1rAACqaysIGCKR2gaG/GrBphBAtoL+iqSwkUFlAf1UmcwCBaAH9FU1lIYHKAqn1V+UEHdBaAQPe1pY+38QNoPKtbY6ZpXaBob9y3IX55qS/8q2tzOoX0F/110AE+Qror3xrK7P6BVLrr/rFRJCKgAFvKpUSZ7SAAVQ0lYUNEEjtAkN/NWDTCCFaQH9FU1lIoLKA/qpM5gAC0QL6K5rKQgKVBVLrr8oJOqC1Aga8rS19vokbQOVb2xwzS+0CQ3/luAvzzUl/5VtbmdUvoL/qr4EI8hXQX/nWVmb1C6TWX/WLiSAVAQPeVColzmgBA6hoKgsbIJDaBYb+asCmEUK0gP6KprKQQGUB/VWZzAEEogX0VzSVhQQqC6TWX5UTdEBrBQx4W1v6fBM3gMq3tjlmltoFhv7KcRfmm5P+yre2MqtfQH/VXwMR5Cugv/KtrczqF0itv+oXE0EqAga8qVRKnNECBlDRVBY2QCC1Cwz91YBNI4RoAf0VTWUhgcoC+qsymQMIRAvor2gqCwlUFkitvyon6IDWChjwtrb0+SZuAJVvbXPMLLULDP2V4y7MNyf9lW9tZVa/gP6qvwYiyFdAf+VbW5nVL5Baf9UvJoJUBAx4U6mUOKMFDKCiqSxsgEBqFxj6qwGbRgjRAvormspCApUF9FdlMgcQiBbQX9FUFhKoLJBaf1VO0AGtFTDgbW3p803cACrf2uaYWWoXGPorx12Yb076K9/ayqx+Af1Vfw1EkK+A/sq3tjKrXyC1/qpfTASpCBjwplIpcUYLGEBFU1nYAIHULjD0VwM2jRCiBfRXNJWFBCoL6K/KZA4gEC2gv6KpLCRQWSC1/qqcoANaK2DA29rS55u4AVS+tc0xs9QuMPRXjrsw35z0V761lVn9Avqr/hqIIF8B/ZVvbWVWv0Bq/VW/mAhSETDgTaVS4owWMICKprKwAQKpXWDorwZsGiFEC+ivaCoLCVQW0F+VyRxAIFpAf0VTWUigskBq/VU5QQe0VsCAt7WlzzdxA6h8a5tjZqldYOivHHdhvjnpr3xrK7P6BfRX/TUQQb4C+ivf2sqsfoHU+qt+MRGkImDAm0qlxBktYAAVTWVhAwRSu8DQXw3YNEKIFtBf0VQWEqgsoL8qkzmAQLSA/oqmspBAZYHU+qtygg5orYABb2tLn2/iBlD51jbHzFK7wNBfOe7CfHPSX/nWVmb1C+iv+msggnwF9Fe+tZVZ/QKp9Vf9YiJIRcCAN5VKiTNawAAqmsrCBgikdoGhvxqwaYQQLaC/oqksJFBZQH9VJnMAgWgB/cOBvooAACAASURBVBVNZSGBygKp9VflBB3QWgED3taWPt/EDaDyrW2OmaV2gaG/ctyF+eakv/KtrczqF9Bf9ddABPkK6K98ayuz+gVS66/6xUSQioABbyqVEme0gAFUNJWFDRBI7QJDfzVg0wghWkB/RVNZSKCygP6qTOYAAtEC+iuaykIClQVS66/KCTqgtQIGvK0tfb6JG0DlW9scM0vtAkN/5bgL881Jf+VbW5nVL6C/6q+BCPIV0F/51lZm9Quk1l/1i4kgFQED3lQqJc5oAQOoaCoLGyCQ2gWG/mrAphFCtID+iqaykEBlAf1VmcwBBKIF9Fc0lYUEKguk1l+VE3RAawUMeFtb+nwTN4DKt7Y5ZpbaBYb+ynEX5puT/sq3tjKrX0B/1V8DEeQroL/yra3M6hdIrb/qFxNBKgIGvKlUSpzRAgZQ0VQWNkAgtQsM/dWATSOEaAH9FU1lIYHKAvqrMpkDCEQL6K9oKgsJVBZIrb8qJ+iA1goY8La29PkmbgCVb21zzCy1Cwz9leMuzDcn/ZVvbWVWv4D+qr8GIshXQH/lW1uZ1S+QWn/VLyaCVAQMeFOplDijBQygoqksbIBAahcY+qsBm0YI0QL6K5rKQgKVBfRXZTIHEIgW0F/RVBYSqCyQWn9VTtABrRUw4G1t6fNN3AAq39rmmFlqFxj6K8ddmG9O+ivf2sqsfgH9VX8NRJCvgP7Kt7Yyq18gtf6qX0wEqQgY8KZSKXFGCxhARVNZ2ACB1C4w9FcDNo0QogX0VzSVhQQqC+ivymQOIBAtoL+iqSwkUFkgtf6qnKADWitgwNva0uebuAFUvrXNMbPULjD0V467MN+c9Fe+tZVZ/QL6q/4aiCBfAf2Vb21lVr9Aav1Vv5gIUhEw4E2lUuKMFjCAiqaysAECqV1g6K8GbBohRAvor2gqCwlUFtBflckcQCBaQH9FU1lIoLJAav1VOUEHtFbAgLe1pc83cQOofGubY2apXWDorxx3Yb456a98ayuz+gX0V/01EEG+Avor39rKrH6B1PqrfjERpCJgwJtKpcQZLWAAFU1lYQMEUrvA0F8N2DRCiBbQX9FUFhKoLKC/KpM5gEC0gP6KprKQQGWB1PqrcoIOaK2AAW9rS59v4gZQ+dY2x8xSu8DQXznuwnxz0l/51lZm9Qvor/prIIJ8BfRXvrWVWf0CqfVX/WIiSEXAgDeVSokzWsAAKprKwgYIpHaBob8asGmEEC2gv6KpLCRQWUB/VSZzAIFoAf0VTWUhgcoCqfVX5QQd0FoBA97Wlj7fxA2g8q1tjpmldoGhv3LchfnmpL/yra3M6hfQX/XXQAT5CuivfGsrs/oFUuuv+sVEkIqAAW8qlRJntIABVDSVhQ0QSO0CQ381YNMIIVpAf0VTWUigsoD+qkzmAALRAvormspCApUFUuuvygk6oLUCBrytLX2+iRtA5VvbHDNL7QJDf+W4C/PNSX/lW1uZ1S+gv+qvgQjyFdBf+dZWZvULpNZf9YuJIBUBA95UKiXOaAEDqGgqCxsgkNoFhv5qwKYRQrSA/oqmspBAZQH9VZnMAQSiBfRXNJWFBCoLpNZflRN0QGsFDHhbW/p8EzeAyre2OWaW2gWG/spxF+abk/7Kt7Yyq19Af9VfAxHkK6C/8q2tzOoXSK2/6hcTQSoCBrypVEqc0QIGUNFUFjZAILULDP3VgE0jhGgB/RVNZSGBygL6qzKZAwhEC+ivaCoLCVQWSK2/KifogNYKGPC2tvT5Jm4AlW9tc8wstQsM/ZXjLsw3J/2Vb21lVr+A/qq/BiLIV0B/5VtbmdUvkFp/1S8mglQEDHhTqZQ4owUMoKKpLGyAQGoXGPqrAZtGCNEC+iuaykIClQX0V2UyBxCIFtBf0VQWEqgskFp/VU7QAa0VMOBtbenzTdwAKt/a5phZahcY+ivHXZhvTvor39rKrH4B/VV/DUSQr4D+yre2MqtfILX+ql9MBKkIGPCmUilxRgsYQEVTWdgAgdQuMPRXAzaNEKIF9Fc0lYUEKgvor8pkDiAQLaC/oqksJFBZILX+qpygA1orYMDb2tLnm7gBVL61zTGz1C4w9FeOuzDfnPRXvrWVWf0C+qv+GoggXwH9lW9tZVa/QGr9Vb+YCFIRMOBNpVLijBYwgIqmsrABAqldYOivBmwaIUQL6K9oKgsJVBbQX5XJHEAgWkB/RVNZSKCyQGr9VTlBB7RWwIC3taXPN3EDqHxrm2NmqV1g6K8cd2G+OemvfGsrs/oF9Ff9NRBBvgL6K9/ayqx+gdT6q34xEaQiYMCbSqXEGS1gABVNZWEDBFK7wNBfDdg0QogW0F/RVBYSqCygvyqTOYBAtID+iqaykEBlgdT6q3KCDmitgAFva0ufb+IGUPnWNsfMUrvA0F857sJ8c9Jf+dZWZvUL6K/6ayCCfAX0V761lVn9Aqn1V/1iIkhFwIA3lUqJM1rAACqaysIGCKR2gaG/GrBphBAt8Ma//hKuuHCV8P+/9Ub0MXUu1F916nvuqgJ+flUVs55AvID+ireykkBVgdT6q2p+1rdXwIC3vbXPNnMvkLMtbZaJpXaBob+y3IbZJmXAm21pJdYAAT+/GlAEIWQroL+yLa3EGiCQWn81gEwIiQgY8CZSKGHGCxhAxVtZWb9AahcY+qv+PSOCeAED3ngrKwlUFfDzq6qY9QTiBfz8ireykkBVgdR+flXNz/r2Chjwtrf22WZuAJVtabNMLLULDP2V5TbMNikvkLMtrcQaIODnVwOKIIRsBfz8yra0EmuAQGo/vxpAJoREBAx4EymUMOMFDKDiraysXyC1Cwz9Vf+eEUG8gBfI8VZWEqgq4OdXVTHrCcQL+PkVb2UlgaoCqf38qpqf9e0VMOBtb+2zzdwAKtvSZplYahcY+ivLbZhtUl4gZ1taiTVAwM+vBhRBCNkK+PmVbWkl1gCB1H5+NYBMCIkIGPAmUihhxgsYQMVbWVm/QGoXGPqr/j0jgngBL5DjrawkUFXAz6+qYtYTiBfw8yveykoCVQVS+/lVNT/r2ytgwNve2mebuQFUtqXNMrHULjD0V5bbMNukvEDOtrQSa4CA/mpAEYSQrYD+yra0EmuAQGqvvxpAJoREBAx4EymUMOMFDKDiraysXyC1Cwz9Vf+eEUG8gBfI8VZWEqgqoL+qillPIF5Af8VbWUmgqkBqr7+q5md9ewUMeNtb+2wzN4DKtrRZJpbaBYb+ynIbZpuUF8jZllZiDRDQXw0oghCyFdBf2ZZWYg0QSO31VwPIhJCIgAFvIoUSZryAAVS8lZX1C6R2gaG/6t8zIogX8AI53spKAlUF9FdVMesJxAvor3grKwlUFUjt9VfV/Kxvr4ABb3trn23mBlDZljbLxFK7wNBfWW7DbJPyAjnb0kqsAQL6qwFFEEK2Avor29JKrAECqb3+agCZEBIRMOBNpFDCjBcwgIq3srJ+gdQuMPRX/XtGBPECXiDHW1lJoKqA/qoqZj2BeAH9FW9lJYGqAqm9/qqan/XtFTDgbW/ts83cACrb0maZWGoXGPory22YbVJeIGdbWok1QEB/NaAIQshWQH9lW1qJNUAgtddfDSATQiICBryJFEqY8QIGUPFWVtYvkNoFhv6qf8+IIF7AC+R4KysJVBXQX1XFrCcQL6C/4q2sJFBVILXXX1Xzs769Aga87a19tpkbQGVb2iwTS+0CQ39luQ2zTcoL5GxLK7EGCOivBhRBCNkK6K9sSyuxBgik9vqrAWRCSETAgDeRQgkzXsAAKt7KyvoFUrvA0F/17xkRxAt4gRxvZSWBqgL6q6qY9QTiBfRXvJWVBKoKpPb6q2p+1rdXwIC3vbXPNnMDqGxLm2ViqV1g6K8st2G2SXmBnG1pJdYAAf3VgCIIIVsB/ZVtaSXWAIHUXn81gEwIiQgY8CZSKGHGCxhAxVtZWb9AahcY+qv+PSOCeAEvkOOtrCRQVUB/VRWznkC8gP6Kt7KSQFWB1F5/Vc3P+vYKGPC2t/bZZm4AlW1ps0wstQsM/ZXlNsw2KS+Qsy2txBogoL8aUAQhZCugv7ItrcQaIJBafzWATAiJCBjwJlIoYcYLGEDFW1lZv0BqFxj6q/49I4J4Af0Vb2UlgaoC+quqmPUE4gX0V7yVlQSqCqTWX1Xzs769Aga87a19tpkbQGVb2iwTS+0CQ39luQ2zTUp/ZVtaiTVAQH81oAhCyFZAf2VbWok1QCC1/moAmRASETDgTaRQwowXMICKt7KyfoHULjD0V/17RgTxAvor3spKAlUF9FdVMesJxAvor3grKwlUFUitv6rmZ317BQx421v7bDM3gMq2tFkmltoFhv7Kchtmm5T+yra0EmuAgP5qQBGEkK2A/sq2tBJrgEBq/dUAMiEkImDAm0ihhBkvYAAVb2Vl/QKpXWDor/r3jAjiBfRXvJWVBKoK6K+qYtYTiBfQX/FWVhKoKpBaf1XNz/r2Chjwtrf22WZuAJVtabNMLLULDP2V5TbMNin9lW1pJdYAAf3VgCIIIVsB/ZVtaSXWAIHU+qsBZEJIRMCAN5FCCTNewAAq3srK+gVSu8DQX/XvGRHEC+iveCsrCVQV0F9VxawnEC+gv+KtrCRQVSC1/qqan/XtFTDgbW/ts83cACrb0maZWGoXGPory22YbVL6K9vSSqwBAvqrAUUQQrYC+ivb0kqsAQKp9VcDyISQiIABbyKFEma8gAFUvJWV9QukdoGhv+rfMyKIF9Bf8VZWEqgqoL+qillPIF5Af8VbWUmgqkBq/VU1P+vbK2DA297aZ5u5AVS2pc0ysdQuMPRXltsw26T0V7allVgDBPRXA4oghGwF9Fe2pZVYAwRS668GkAkhEQED3kQKJcx4AQOoeCsr6xdI7QJDf9W/Z0QQL6C/4q2sJFBVQH9VFbOeQLyA/oq3spJAVYHU+qtqfta3V8CAt721zzZzA6hsS5tlYqldYOivLLdhtknpr2xLK7EGCOivBhRBCNkK6K9sSyuxBgik1l8NIBNCIgIGvIkUSpjxAgZQ8VZW1i+Q2gWG/qp/z4ggXkB/xVtZSaCqgP6qKmY9gXgB/RVvZSWBqgKp9VfV/Kxvr4ABb3trn23mBlDZljbLxFK7wNBfWW7DbJPSX9mWVmINENBfDSiCELIV0F/ZllZiDRBIrb8aQCaERAQMeBMplDDjBQyg4q2srF8gtQsM/VX/nhFBvID+ireykkBVAf1VVcx6AvEC+iveykoCVQVS66+q+VnfXgED3vbWPtvMDaCyLW2WiaV2gaG/styG2Salv7ItrcQaIKC/GlAEIWQroL+yLa3EGiCQWn81gEwIiQgY8CZSKGHGCxhAxVtZWb9AahcY+qv+PSOCeAH9FW9lJYGqAvqrqpj1BOIF9Fe8lZUEqgqk1l9V87O+vQIGvO2tfVczHz7HHOHVV17p6nNM6eQGULWwe9IOBVK7wNBfHRbaYbUI6K9a2D1pSwT0V0sKLc1aBPRXLeyetCUCqfVXS8oizUEQMOAdBESnmCRw+JFHh3XWXS/MNdfcYbrppgsTJ04Mzz//l/CzM04LZ55x2pAxGUANGbUnGgSB1C4w9NcgFN0phkxAfw0ZtSdqoYD+amHRpTxkAvpryKg9UQsFUuuvFpZIyh0KGPB2COew/wlMP/304YJx48PSSy8zRZafn3lGOGD//YaEzQBqSJg9ySAJpHaBob8GqfBOMyQC+mtImD1JSwX0V0sLL+0hEdBfQ8LsSVoqkFp/tbRM0u5AwIC3AzSH9BX46YmnhE023az84uuvvx7OP+8P4a477wirr7FW2HiTTUMxAC4eu+2yY/m9bj8MoLot7PyDKZDaBYb+GszqO1e3BfRXt4Wdv80C+qvN1Zd7twX0V7eFnb/NAqn1V5trJfdqAga81bysHkDgkcefCe973/vKWzKsvcYq4Zlnnu5Z9emNNg5jTz69/O9HHn4orLfOGl03NIDqOrEnGESB1C4w9NcgFt+pui6gv7pO7AlaLKC/Wlx8qXddQH91ndgTtFggtf5qcamkXlHAgLcimOV9BbbY8nPhmGN/Wn7x/PPODbvtskM/outvuiWMHDl/+fUxyyweXnn55a4yGkB1ldfJB1kgtQsM/TXIG8Dpuiqgv7rK6+QtF9BfLd8A0u+qgP7qKq+Tt1wgtf5qebmkX0HAgLcClqX9BU465fSw4ac3Lr/x9a9+KVx+2aX9Fh1x1DFh6222Lb++9567h3N++5uuUhpAdZXXyQdZILULDP01yBvA6boqoL+6yuvkLRfQXy3fANLvqoD+6iqvk7dcILX+anm5pF9BwIC3Apal/QXOPf+isPwKK5bfWGiBj4S33nqr36LNNt8iHHf82PLrxx93TDj6qCO6SmkA1VVeJx9kgdQuMPTXIG8Ap+uqgP7qKq+Tt1xAf7V8A0i/qwL6q6u8Tt5ygdT6q+Xlkn4FAQPeCliW9he4+tobw0cXWrj8xvzzfnBAojXXXDv84qyzy+/94ffnhD1236WrlAZQXeV18kEWSO0CQ38N8gZwuq4K6K+u8jp5ywX0V8s3gPS7KqC/usrr5C0XSK2/Wl4u6VcQMOCtgGVpf4Hb77wvjJhrrvD222+HBUfOMyDRMsuOCReOG19+74brrwvbbvPZnnUfXGjMoLO+/MwjYb1N/i/MMmzggfOgP6ETEngPAsUFxlXjVg9zzDfpFyVNf+ivpldIfL0F9Jf9QKB7Avqre7bOTEB/2QMEuifQzf568fE7uxe4MxOYhoABry3yngTuuvehMHz48PLWDMUtGgZ6LLHEkuGSy64qvzUUA96/Pf1gWHDUl8OMM/5/7yk3BxMYCoGJE18LTz32yzDnyEWG4une83Por/dM6ARDKKC/hhDbU7VOQH+1ruQSHkIB/TWE2J6qdQLd7C8D3tZtp0YlbMDbqHKkF8wN/3drmG++keGdd94JC8z3oQETWHW11cOvz/59+b2LLrwg7LTDN3rWdeMdvOkpipgAAQIECBAgQIAAAQIECBBIWcCAN+XqpR+7AW/6Naw1g4suuTwsvfQyZQxTugfvxptsGk4Ye2q55tSTx4ZDD/mhAW+tVfPkBAgQIECAAAECBAgQIECAwGAKGPAOpqZzVRUw4K0qZn0fgTN/cVZYe531yq+tv+6a4aGHHuwntPe++4Udd9q1/PoBP/he+PnPTqdIgAABAgQIECBAgAABAgQIECBAgMAgCBjwDgJim0+xx177hF12/U5JcPJJJ4QfHXpwP46Lx18ZllxyqfLrG22wXrj33nvaTCZ3AgQIECBAgAABAgQIECBAgAABAoMmYMA7aJTtPNFss80W7n3g0TDddNOFV15+OSw3Zsnw9ttv92DMO+984fqbbgnTTz99+f0xyyzeTihZEyBAgAABAgQIECBAgAABAgQIEOiCgAFvF1DbdsoLxo0Pyy47pkz7zjtuD/vuvUd5q4aVV1k1jD3ptDB8jjnK74098fhwxI8ObRuPfAkQIECAAAECBAgQIECAAAECBAh0TcCAt2u07TnxqNGjw4XjLgvDhg3rSfqdd94p39U7+fHcc8+GdddaLbz55pvtgZEpAQIECBAgQIAAAQIECBAgQIAAgS4LGPB2Gbgtp5977g+GCy8eH+aZ58N9Ui4Gvbfdekv43Jab9bl1Q1tchjrPwv+VV14O//nPfzp66uLd1q++8sqQHzvHnHOWz1vsFw8CTRWos7/ei0lxK53i/yf897//fS+ncSyBrgqk2l9dRXFyAoMkkGJ/Fbd3K+L+y1/+7PpwkPaB03RHIMX+KiSKWym+8eYb5W0UPQgQyEPAgDePOjYmi1lnnTWsudbaYZFFFwu3/OnmcNONNxjsdqk673vf+8K3d9g5bLTxJuEj884XZplllp53TU+cODE89eQTYY/v7BruvuvOqUZw+JFHh3XWXS/MNdfc5fHFsc8//5fwszNOC2eecdpUj93uC9uHb357x/ICfMYZZywvwP/615fCdddeE/bYfZepHrvN57cL39lz7zBixFzlPZqLY19//fVw5eWXhT332DW89dZbXZJzWgLTFmhCf02OsujLW2+/J8w8yyxhn712DxePu2iaCSy99DLhqKOPCyPnn7/nryv+8Y9/hIcfejB8/WtfCn9/9dVpnsMCAt0SSL2/erv89nfnhSWXWjqMu+iC8hZVHgTqFki1v4pryV1336N8HTHnnCPCTDPN1EP573//O9x8801h9113Moyqe4O1/PlT7a/il/077LRL2GDDjcrXbTPPPHNPJYvXYE8+8Xg45ugjw0UXXtDyCkufQNoCBrxp10/0LRbYeZfdw5577ztNgcMOOSiccvKJ/dYVQ9Xi/snFIGhKj5+feUY4YP/9Bvz2/j/4YfjaN741xWMffOCBsNGG6/Ub1BbDqosuuTwstdTSUzy2GPSuv+6aobi1hweBOgTq7q/eORe/CNl1t0mDowMP+P40f/Gy3ic/FU49/czyFycDPV577bWwwSfXDs8++0wdtJ6TQEi5v3qXb4UVVwq/P/eC8pejxS+0t9lqC9UlULtAqv31xwsvCWM+ttxU/YoPct5og/XC/fffV7uzANopkGp/Hf2T48OWn91qmkU78YTjwpGHHzbNdRYQINBMAQPeZtZFVASmKdD7AuPRRx4Od999V3js0UfDJ1ZZJaywwko979orfiu73jqrh0cfeaTPOX964ilhk003K79WDFTPP+8P4a477wirr7FW2HiTTXuGQ7vtsmP5vd6P4re/J596Rvml4mK7eEfhNVdfFZZaepmw+RafDe9///vL711x+fjwta9s3+fYY48fGz6z+aQXwcU7Mk49ZWy44/bbw8KjRoUdd9o1DB8+vPzeQw8+GNZfb81pOlhAoBsCdfZXkc8ee+0TFl54VPlit/etb6Y14C3+iuK+Bx/r6d//u+nGMH78JWH2988ePrPFlmHBBT9acv3tr38Ny41Zsht0zklgmgKp9leR2BZbfi6sttoaYcmllgoLjxrd85czBrzTLLsFQySQan9NHvAW15XFhzYXQ9yXXnwxrL/BhmGxxRYPM8wwQylY/DXK0kuMHiJNT0Ogr0Cq/TV5wFu8LnzwwQfCvffcHe6/797wgQ8MD5t9ZvPw0YUW7kl03bVX6/e60T4gQCANAQPeNOokSgL9BIofxltvs1343n77hMcfe7Tf98ddekXPu2RPPXlsOPSQH/ZZ88jjz4Tiz4yKWzKsvcYq4Zlnnu75/qc32jiMPfn08r8fefihsN46a/Q59uLxV4Yll1yq/Nq7B8DFMOq6G/9U/mldce5RH52v595p8y+wYLjuhpvL44r7gS637BLhn//8Z8+5i3dB3XHX/aG4J2/x2HWXHcIfzztX9QkMuUCd/VUk+9iTz5W3PXn3Y1oD3r333a/8RUnxKP7MbqcdvtGnv66/6ZYw33wjy69tstGnpnkLlyGH94StEEi1v4riXDnhujBq9CL96mTA24qtm0SSqfbXYYcfVf7cO/iHP+hzbVigF7+8vPWOe8v/LR7FX6E88MD9SdRDkHkJpNpfO+y4S1hu+eXD9767T3jhhef7FeXc8y8Ky6+wYvn14449Ohzz4yPzKpxsCLREwIC3JYWWZvsE1l5nvXDmL84qE7/1lj+FLTffpAeheAfSMcf+tPzv8887N+y2yw79gIpB0MiR85dfH7PM4j33PJt99tnD3fc9XL5r6c9/fi6svFL/P6c78sc/CVtt/fny2O99d+9w1q9+Uf67GDwVA6jicfqpJ4eDDzqg3/OuvMqq4exzJg11n3j8sbDWGqu0r3gybrxAt/prcuLFO+znmGOO8j8/8pGPhAU/ulD572kNeG+/874wYq65yl+qLDhynn4fTLPqaquHX5/9+/Jc1157dfjitls33lqA7RNoan8VlShul7LiSh/vKUrRU8XDgLd9+zTVjJvcX1MzPfa4E8u/RCkehx92SDhp7KTrWA8CTRJItb+2/9JXwkGH/Kik/OP554Vdd/52k1jFQoBApIABbySUZQRSE+g9yHn3C8+TTjk9bPjpjcuUvv7VL4XLL7u0X3pHHHVM2Hqbbcuv773n7uGc3/6m/Hdx+4YTxp5a/vuCP54fdtmp/314ew9pJ0y4Mnz5i5PO88tf/zasscZa5b+/vP12YcJVVwzI+ugTz/a8A3jhBedNjV68LRDoVn8NRFf8sqT4pUnxmNaA9+nnXizXFR+U+PEVxgxYiSefeb68hcOrr7wSll16sRZUS4qpCTS1vwZynNxzBryp7bL2xptSf/WuUu83D/zwwP3Dz06fdC3qQaBJAqn2V+/Xht/dZ8/wm1//qkmsYiFAIFLAgDcSyjICqQkcctgR4Qtf/FIZ9q9++fPw/f326Umh95/hLLTAR/p9EFqxcLPNtwjHHT+2POb4444JRx91RPnv4k989vnu98p/F+cszj21F7333ntP+YEYxeMXZ50d1lxz7fLf3/rGV8Oll4wb8NjJ70Isvjn/vB9MjV68LRDoVn8NRBc74B0xYq5w+12TPnjmumuvCV/YduAP07jtjnvDXHPPXd4De5GFJ71L34NAkwSa2F9T8jHgbdLOEUuMQEr91Tufq6+9sec+oVt8ZuNw2623xKRrDYEhFUitv5Yd87Gw7XZfDJ/bapvSyWc0DOl28WQEBl3AgHfQSZ2QQP0CxT3K7rznwfIeu8VjtZVX7HOP3d4XyVMaoBaD2GIgWzz+8Ptzwh6771L+u/eFyw7f+lr5AWsDPZ569oXyNg7PPfdsWOXjy5dLdtp5t7DXPt8t//27c84Oe+2x24DHTrjmhrDQwqPK7y21+Kh+92KrX1gEbRboZn8N5Bo74F1hxZXCH867sDzFuIsuCDt++3/33+193htvvi3MO++ke2MvMN+H2lxKuTdQoKn9NSUqA94GbiIhTVEgtf6anEjvn2/FBwMvseik2xZ5EGiSQEr9VbzWSLq/ygAAIABJREFUGjn/An0+76H4gOsvffHz5V+BeRAgkKaAAW+adRM1gakKjL/86rDY4ouXa4p3OBTvdOj9mPwO2eKTiov7dA70WGbZMeHCcePLb91w/XVh220+W/77jDN/GdZdb/3y39tstUV538GBHpM/JKr3px0vuuhi4bIrrymXF8Ol4vYQV1w+6TkmP4o1v/39+WH48OHll4oPaSs+kM2DQFMEutlfA+UYO+DtfW/t357967DPXt8ZkKz3h0QtOmqB8OabbzaFVhwEQlP7a0qlMeC1aVMSSK2/Ctvisx9uvvWuMGzYsJL6yMMPCyeecFxK7GJtiUBK/TX5dl2TS1O8XjvpxJ+6t3VL9qo08xUw4M23tjJrqUDveyj961//Cistv0x47bXX+mjcde9D5QD1rbfeCsUtGgZ6LLHEkuGSy64qv9V7wNv7PrrFB7cVH+A20GOgAW+xrvjgt+IDCCY/ig9q+/Nzz4Vhs84aPjzPh8Mcc87Z872pDaBbWl5p1yzQ7f4aKL3YAe92X9g+HPqjSZ96/O7bsvQ+72VXXBMWXWzSvXcNeGveUJ6+j0CT+2tKpTLgtYlTEUixv4q/RLv2hpvDPPN8uGS+7757w6c/tW4q5OJskUBq/XXcT08Kc889dxgxYkRYeNTo8rMZisfjjz0a1l5z1RZVTqoE8hIw4M2rnrJpuUDvTxgu3vW64afWCY8+8kg/lRv+79Yw33wjp/on2r0/JOCiCy8IO+0w6c+9f3zMceGzn9u6/PfUPiht8m+GX3jh+bDS8sv2ieGCcePDsssO/AFQxTt7i1s7FI9//vOf5S0aPAg0QWAo+mugPGMHvMUHGBa/gCke55/7h7DbrjsOyHb9TbeEkSMn3XvXPa6bsLPEUAg0vb+mVCUDXvs3BYEU+2uGGWYIV193U8/Pq+LPxtdY9ePhP//5TwrkYmyRQIr91bs8M800Uxh/+YSe2+OdfurJ4eCDDmhRBaVKIB8BA958aimTlguMPfm08OmNNikVJk6cGDbf9NPhnnvuHlDloksuD0svvcxUBzwbb7JpOGHspE8oPvXkseHQQ35Y/vs7e+4ddt1tj/Lfu+6yQ/jjeecO+ByTX/QW93Naf701+60p7qe28667l+/aLd69+9KLL4aHH34o/OToo8LNt95ZDnmffPKJsOZqn2h5ZaXfBIGh6q+Bco0d8BZD22J4Wzwuv+zS8hYoAz1uuf3u8MEPfqi89UlxCxQPAnULpNBfUzIy4K1793j+aQmk2F/FvUwvv+ra8n7xxePFF18Ia62+cij+Ms2DQJMEUuyvgfzmnvuD4dY77im/9cTjj4W11lilScxiIUAgUsCANxLKMgJNFSgGob8/94JQDEyLxxtvvBE22Wj9Ad+5OzmH3rdJWH/dNcNDDz3YL729990v7LjTruXXD/jB98LPf3Z6+e/iU1aPOvrY8t+nnHRiOOzQg/odW3xAWnHz/uJx4w3Xh89vvWU0X+8Pd+v9zuHoE1hIYBAFhrq/Bgo9dsBb/Hld8c754jGlX6wU33vk8WfKD2DsfX/sQSRzKgLRAin115SSMuCNLreFQyyQan+NGDFXKO4VP3yOOUqxJ594PKy/3lreuTvE+8fTTV0g1f6aWlaT//qy+EXK4ot81BYgQCBBAQPeBIsmZAKTBYp3OFx86RVhwY9O+jThv//976EY2Ba3RZjaY4+99gm77DrpA5hOPumE8KNDD+63/OLxV4Yll1yq/PpGG6wX7r130m91ew9vH3zggfCpT67V79g999437LzL7uXXq/6ZT/Hb4+K3yMWtGpYfs1T429/+quAEahGoo78GSjR2wFsc+/BjT4eZZ555iu/O7d2/UxsC1wLuSVslkGJ/DVQgA95Wbdtkkk21vxZffIlw7h/H9Xyg2p133hE+s8mG5TWhB4GmCKTaX1PzK3J64OEnyiXFO+ZXXG7SX3p6ECCQloABb1r1Ei2BHoHiHrrjLr0ifOADHyi/9swzT4cN11+n3weqDUQ222yzhXsfeLS8DcIrL78clhuzZCg+0Gzyo/iTuOJPvYt3BBbfH7PM4n1OM3kIWxyz5uorh6eferLn+8U5iz8BnzykXXbpxcLfX311mpUrjjth7Clho403LddedeXl4Stf+sI0j7OAQDcE6uyvd+dTZcDb+0M+9t17j3D2b87qc7rTzvh5+OT6G5Rf22uP3cLvzjm7G3zOSWCqAqn210BJGfDa7E0TSLW/PrXBp0PxM2zyhz35K66m7SzxFAKp9tcBBx4cTjl57BTfBNT7+vC6a68JX9h2KwUnQCBBAQPeBIsmZAKFwOT7aBb/Lv6U5ugfHzHVdzhcdeUVfQaxvT/o7M47bg/FMKi4VcPKq6waxp50Ws+fxo098fhwxI8O7YO+23f2DLt/Z6/ya6+++mrYbecdwrXXXh0WHjUqHHHkMWG55Vcov/fAA/eHDT65dr+CFe8gvnrCVeGeu+8KCy28cPjEyquGnXfeLYyYa65ybXFv0E+s+DHv3rXVaxOos7+KpD8wfHiYacaZyvw/s/mWYb/v/6D890+OOSr85qxfTeqTif/t98uT3u/QLX4Bs9++e4U/nn9umGXYsLLHvvK1SR+WWHxIzeiFRtbm64nbLZBqfxVVK35BOsssw3oKOPmehXfcflv45te/0vP1l156sd1Fln1tAqn21+Rflky+fvz97yZ9aOhAj+Idvb/+1S/K60UPAkMpkGp/PfXsCyXTbbfeEi668I/hpptuCE8/9VT5mu17+x8Yllpq6fL7RW9t8un1p/g5LkNp7bkIEKguYMBb3cwRBBohcNc9D/YMYWMCOv64Y8LRRx3Rs3TU6NHhwnGX9fwZ3OQf6sU7aSc/nnvu2bDuWquFN998s89TFJ+2Wnz4xYILTvn+TP/+97/LP6srhrzvfjz6xLOhOMdAj+I5N91oA8PdmKJa0zWBOvurSOqxJ58LM84441TzK3pskYXn77fmJ8eeEDbf8rNTPLa4eP/+fvuEs371i675OTGBqQmk3F/FvUFHjV5kmgVefdWP9/ml6jQPsIDAIAmk2l+9B7wxFHosRsmawRZItb+KAW/v13hTcpnSrfsG29H5CBDojoABb3dcnZVA1wXuvPuBMMecc0Y/T/HOv2OP+XGf9cVtFC68eHyYZ54P9/l6MQAqfsP7uS0363Prht6LiouEs885N3z8Eyv3u2Ao7t1UDGmff/4vA8b37gFv8XzFBz5NuPKKsPtuO0XnZCGBbgnU3V/vZcBbmBTvkt9p5916/tR1slMxFP7WN74arp5wZbfonJfANAVS7q8rrro2jF5k0WnmuNrKK5a3TvIgMNQCqfZX1QHvqp9YITz77DNDzev5Wi6Qan8dctgR5W3whg8fPmAFi1vy7b7rTuGaaya0vMLSJ5C2gAFv2vUTPYFBEShurL/mWmuHRRZdLNzyp5vDTTfeMMXB7rufsBj0FkPeT6y8Snj0kYfDNVdPmOZ9gJdfYcWw3HIrlO/ivfnmm8Ltt90a/XyDkrCTEBhCgffSX+81zEUWXTSss84nw+uvvxauuPyyKf7S5b0+j+MJ1CVQZ3/VlbPnJTBUAvprqKQ9TxsF6uiv97///WGxxZco/2/EiBHh4YceDLfecss0P6C7jfWRM4EUBQx4U6yamAkQIECAAAECBAgQIECAAAECBAgQIBBCMOC1DQgQIECAAAECBAgQIECAAAECBAgQIJCogAFvooUTNgECBAgQIECAAAECBAgQIECAAAECBAx47QECBAgQIECAAAECBAgQIECAAAECBAgkKmDAm2jhhE2AAAECBAgQIECAAAECBAgQIECAAAEDXnuAAAECBAgQIECAAAECBAgQIECAAAECiQoY8CZaOGETIECAAAECBAgQIECAAAECBAgQIEDAgNceIECAAAECBAgQIECAAAECBAgQIECAQKICBryJFk7YBAgQIECAAAECBAgQIECAAAECBAgQMOC1BwgQIECAAAECBAgQIECAAAECBAgQIJCogAFvooUTNgECBAgQIECAAAECBAgQIECAAAECBAx47QECBAgQIECAAAECBAgQIECAAAECBAgkKmDAm2jhhE2AAAECBAgQIECAAAECBAgQIECAAAEDXnuAAAECBAgQIECAAAECBAgQIECAAAECiQoY8CZaOGETIECAAAECBAgQIECAAAECBAgQIEDAgNceIECAAAECBAgQIECAAAECBAgQIECAQKICBryJFk7YBAgQIECAAAECBAgQIECAAAECBAgQMOC1BwgQIECAAAECBAgQIECAAAECBAgQIJCogAFvooUTNgECBAgQIECAAAECBAgQIECAAAECBAx47QECBAgQIECAAAECBAgQIECAAAECBAgkKmDAm2jhhE2AAAECBAgQIECAAAECBAgQIECAAAEDXnuAAAECBAgQIECAAAECBAgQIECAAAECiQoY8CZaOGETIECAAAECBAgQIECAAAECBAgQIEDAgNceIECAAAECBAgQIECAAAECBAgQIECAQKICBryJFk7YBAgQIECAAAECBAgQIECAAAECBAgQMOC1BwgQIECAAAECBAgQIECAAAECBAgQIJCogAFvooUTNgECBAgQIECAAAECBAgQIECAAAECBAx47QECBAgQIECAAAECBAgQIECAAAECBAgkKmDAm2jhhE2AAAECBAgQIECAAAECBAgQIECAAAEDXnuAAAECBAgQIECAAAECBAgQIECAAAECiQoY8CZaOGETIECAAAECBAgQIECAAAECBAgQIEDAgNceIECAAAECBAgQIECAAAECBAgQIECAQKICBryJFk7YBAgQIECAAAECBAgQIECAAAECBAgQMOC1BwgQIECAAAECBAgQIECAAAECBAgQIJCogAFvooUTNgECBAgQIECAAAECBAgQIECAAAECBAx47QECBAgQIECAAAECBAgQIECAAAECBAgkKmDAm2jhhE2AAAECBAgQINBXYPrppw9vv/02FgIECBAgQIAAAQKtEjDgbVW5JUuAAAECBAgQqEdgpY9/IvzgwIPLJ3/9tdfCVp/9zFQDWWHFlcKBBx1arnnpxRfCl7ffrt/6+eYbGQ47/KiwyKKLhjnnHBFmmGGG8N///je8/PLfwlVXXhG+v98+4Z133ul33Oyzzx72+/4BYdllPxY++KEPhWHDhoWZZpopTDfddOGtt94Kr7/+erjpxuvDIQcdGP785+cGjPN73z8grLzqauX3Dth/v3DbrbeE4XPMETbeeNOw+hprhg/N8+Hw2j//GX6w/3fDo488Ug+6ZyVAgAABAgQIEGiFgAFvK8osSQIECBAgQIBAvQIjRswVbrvz3nKIWjz22H2X8IffnzPFoC4YNz4su+yY8vt33nF72GyTDfus/erXvxm+v/+BoXjX7pQer7z8cth6q83Dww891GfJx5ZbPpx/wcVRIAf98AfhjNNO6bf2qquvDwuPGl1+vRgkf/gjHwnf+vZO/eLZZadvhQv+eH7Uc1lEgAABAgQIECBAoBMBA95O1BxDgAABAgQIECBQWWDcpVeEpZZaujzuySefCGuu9okBzzHHnHOGO+66v2cYvOXmm4Rbb/lTz9q9990v7LjTrj3/Xbzj9tFHHg7/+Oc/wvwj5w8LfnShnu+9+OILYcXllunzPO8e8L7xxhvhtdf+GSZOnBhmn/0DYbbZZutZX7wDePPNNgp33H5bn3P0HvAWt4WY0qDZgLfyNnEAAQIECBAgQIBARQED3opglhMgQIAAAQIECHQmsPrqa4Zf/eZ/79pdc/WVw5NPPN7vZEccdUzYeptty6+/9NKLYYWPTRoKF49i+Hv7nff1DFR/9cufh/2/t2+fWzEUt3c4+5xzw4wzzlge8+534Ra3djjl9DPDJeMuCmed9Yvw91df7RPDEkssGc6/8JLwvve9r/z65ZddGr7+1S/1WdN7wDv5G8Wg+YH77ws333xTGc9iiy0ejjziMLdo6Gy7OIoAAQIECBAgQCBSwIA3EsoyAgQIECBAgACB9y5w1z0PlveqLR5XXD4+fO0r2/c76cOPPR1mnnnm8uuHHHxgOO2Uk3rWFIPblVdZtfzva66ZELbfbpsBg9pt9z3D7nvsVX6veHfvumuvXin4r3/z2+UtIIrH008/FVZfZaU+x/ce8BbD3OI2DgcfdECl57CYAAECBAgQIECAwGAIGPAOhqJzECBAgAABAgQIRAns9p09w+7fmTR4LT7QbJGF5y//d/Jjq60/H4788U/K/yw+MG30QiP7vDv3gYefCLPOOmv5/WWWWrTfu28nn6dYU6wtHv/4xz/C0ktMul/ulB7F0Hn06EXCAgssGOb58IfDqFGjw0Ybb1ouL96Zu8Si/7vtQ/G13gPeHx64f/jZ6adG5W8RAQIECBAgQIAAgcEWMOAdbFHnI0CAAAECBAgQmKLATDPNFB585MkwwwwzlGuOPPywcOIJx/Wsv/6mW8LIkfOX/33+uX8Iu+26Y8/3ig9oe+rZF3r+u3hn7dQe88+/QPnt4h65C46cp9/S7b6wfdjuC18KC48a1XM7h4HO969//SssvshH+3zr3R+yVtwqwoMAAQIECBAgQIBAHQIGvHWoe04CBAgQIECAQIsFzvzFWWHtddYrBf760kth+Y8tVf571OjR4coJ15f/Lm57UHw4WnEP3smP4t64l1x2VUdy88/7wZ7jinvr/vZ354Xiw9ZiHga8MUrWECBAgAABAgQI1CVgwFuXvOclQIAAAQIECLRUoPcgtyDY4jMbh9tuvSX8/Fe/CWuttU6pcs89d4eNN/xkH6F11v1k+NnPf9XzteLeujGPiW+9FTb45No9S2+8+bYw77zz9fz3v//97/KD0YoPSLv7rrvCU08+UX6I26WXTyjXGPDGKFtDgAABAgQIECBQl4ABb13ynpcAAQIECBAg0GKBa67/v7DggpNue3DrLX8K227z2fDQo0+Vg9Xisc1WW4Sbbryhj1Bxn9ziQ9qKR/EO3wXm+1Blwd7nKA7+3Tlnh+/us2ef+wAXX//IR+YNN/3p9vL8BryVmR1AgAABAgQIECAwhAIGvEOI7akIECBAgAABAgQmCWz52a3C0T85vmdYe+YZp4WvfO0b5X//7a9/DcuNWXJAqsef+nPP/XuLd+U+8MD9lUi/8c0dwvf2P6A85o033giLjV5wwOMNeCuxWkyAAAECBAgQIFCjgAFvjfiemgABAgQIECDQZoHiw9aGDRvWj+CIHx0axp44afj77setd9wT5p570v10n3j8sbDWGqtMk7C45+5//vOfct1Jp5weNvz0xuW///zn58LKKy034PHFB70VH/hWPLyDd5rEFhAgQIAAAQIECNQoYMBbI76nJkCAAAECBAi0WeDQHx0ZtvvC9n0IJk6cGEYvNDK8/fbbA9L0fudvseCiCy8Iu+2yQ79bLBTfK+71+5PjTgzvf//7w+qrrFSeb+dddg977r1vz7lXW3nF8MwzT/d5rk03+0w4/MhjeobPBrxt3qVyJ0CAAAECBAg0X8CAt/k1EiEBAgQIECBAIEuBDwwfXt5Td7rppuvJ78IL/hh23vGbU8334vFXhiWXXKpnTXGrhasnXBkeuP/+MGzWYWGFFVYKCy88Kswx55zlmmeffSas+okVyn+/+wPeinf2jr/0kvDiC8+HJZdaOiy22OKhuE9v74cBb5bbT1IECBAgQIAAgWwEDHizKaVECBAgQIAAAQLpCZx/wcXhY8st3xP4x1cYE55//i9TTWTEiLnCH867ICz40YWiEu494C0OOPb4seEzm28x1WOLdxBP/sA3A94oZosIECBAgAABAgRqEjDgrQne0xIgQIAAAQIECITwy1//Nqyxxlolxf333xc2XH+daJbPb/uFsN/3DwizzTbbgMcU7+y9/rprwgnHHxvuuefunjXFO4YPP/LosNXWn+/z7uFiQTHYve66a8IhBx0QrpxwfXnMa6+9FpZcbOE+z3HZFdeERRdbrPza3nvuHs757W+i47aQAAECBAgQIECAwGAKGPAOpqZzESBAgAABAgQIRAvMOuus4b4HH+t5p+z2220TrrlmQvTxkxfONNNMYZllx4Rlx3wsTBemC4899mi45+67wt/+9tepnutDH5onrL3OumH06EXCG2++ER555OFwybiLwn//+9/KMTiAAAECBAgQIECAQF0CBrx1yXteAgQIECBAgEDLBQ4+9PDwxe2/XCq8+sorYdmlJ70j1oMAAQIECBAgQIAAgXgBA954KysJECBAgAABAgQGSaC4TcJDjz4VZp555vKMx/z4yHDcsUcP0tmdhgABAgQIECBAgEB7BAx421NrmRIgQIAAAQIEGiPwla99Ixxw4MFlPBMnTgyLjlogvPXWW42JTyAECBAgQIAAAQIEUhEw4E2lUuIkQIAAAQIECGQkcNsd94a55p67zGj8pReHb379KxllJxUCBAgQIECAAAECQydgwDt01p6JAAECBAgQIEAghFB8KNrFl14Rits0FI8vfXHb8Nxzz7IhQIAAAQIECBAgQKADAQPeDtAcQoAAAQIECBAgQIAAAQIECBAgQIAAgSYIGPA2oQpiIECAAAECBAgQIECAAAECBAgQIECAQAcCBrwdoDmEAAECBAgQIECAAAECBAgQIECAAAECTRAw4G1CFcRAgAABAgQIECBAgAABAgQIECBAgACBDgQMeDtAcwgBAgQIECBAgAABAgQIECBAgAABAgSaIGDA24QqiIEAAQIECBAgQIAAAQIECBAgQIAAAQIdCBjwdoDmEAIECBAgQIAAAQIECBAgQIAAAQIECDRBwIC3CVUQAwECBAgQIECAAAECBAgQIECAAAECBDoQMODtAM0hBAgQIECAAAECBAgQIECAAAECBAgQaIKAAW8TqiAGAgQIECBAgAABAgQIECBAgAABAgQIdCBgwNsBmkMIECBAgAABAgQIECBAgAABAgQIECDQBAED3iZUQQwECBAgQIAAAQIECBAgQIAAAQIECBDoQMCAtwM0hxAgQIAAAQIECBAgQIAAAQIECBAgQKAJAga8TaiCGAgQIECAAAECBAgQIECAAAECBAgQINCBgAFvB2gOIUCAAAECBAgQIECAAAECBAgQIECAQBMEDHibUAUxECBAgAABAgQIECBAgAABAgQIECBAoAMBA94O0BxCgAABAgQIECBAgAABAgQIECBAgACBJggY8DahCmIgQIAAAQIECBAgQIAAAQIECBAgQIBABwIGvB2gOYQAAQIECBAgQIAAAQIECBAgQIAAAQJNEDDgbUIVxECAAAECBAgQIECAAAECBAgQIECAAIEOBAx4O0BzCAECBAgQIECAAAECBAgQIECAAAECBJogYMDbhCqIgQABAgQIECBAgAABAgQIECBAgAABAh0IGPB2gOYQAgQIECBAgAABAgQIECBAgAABAgQINEHAgLcJVRADAQIECBAgQIAAAQIECBAgQIAAAQIEOhAw4O0AzSEECBAgQIAAAQIECBAgQIAAAQIECBBogoABbxOqIAYCBAgQIECAAAECBAgQIECAAAECBAh0IGDA2wGaQwgQIECAAAECBAgQIECAAAECBAgQINAEAQPeJlRBDAQIECBAgAABAgQIECBAgAABAgQIEOhAwIC3AzSHECBAgAABAgQIECBAgAABAgQIECBAoAkCBrxNqIIYCBAgQIAAAQIECBAgQIAAAQIECBAg0IGAAW8HaA4hQIAAAQIECBAgQIAAAQIECBAgQIBAEwQMeJtQBTEQIECAAAECBAgQIECAAAECBAgQIECgAwED3g7QHEKAAAECBAgQIECAAAECBAgQIECAAIEmCBjwNqEKYiBAgAABAgQIECBAgAABAgQIECBAgEAHAga8HaA5hAABAgQIECBAgAABAgQIECBAgAABAk0QMOBtQhXEQIAAAQIECBAgQIAAAQIECBAgQIAAgQ4EDHg7QHMIAQIECBAgQIAAAQIECBAgQIAAAQIEmiBgwNuEKoiBAAECBAgQIECAAAECBAgQIECAAAECHQgY8HaA5hACBAgQIECAAAECBAgQIECAAAECBAg0QcCAtwlVEAMBAgQIECBAgAABAgQIECBAgAABAgQ6EDDg7QDNIQQIECBAgAABAgQIECBAgAABAgQIEGiCgAFvE6ogBgIECBAgQIAAAQIECBAgQIAAAQIECHQgYMDbAZpDCBAgQIAAAQIECBAgQIAAAQIECBAg0AQBA94mVEEMBAgQIECAAAECBAgQIECAAAECBAgQ6EDAgLcDNIcQIECAAAECBAgQIECAAAECBAgQIECgCQIGvE2oghgIECBAgAABAgQIECBAgAABAgQIECDQgYABbwdoDiFAgAABAgQIECBAgAABAgQIECBAgEATBAx4m1AFMRAgQIAAAQIECBAgQIAAAQIECBAgQKADAQPeDtAcQoAAAQIECBAgQIAAAQIECBAgQIAAgSYIGPA2oQpiIECAAAECBAgQIECAAAECBAgQIECAQAcCBrwdoDmEAAECBAgQIECAAAECBAgQIECAAAECTRAw4G1CFcRAgAABAgQIECBAgAABAgQIECBAgACBDgQMeDtAcwgBAgQIECBAgAABAgQIECBAgAABAgSaIGDA24QqiIEAAQIECBAgQIAAAQIECBAgQIAAAQIdCBjwdoDmEAIECBAgQIAAAQIECBAgQIAAAQIECDRBwIC3CVUQAwECBAgQIECAAAECBAgQIECAAAECBDoQMODtAM0hBAgQIECAAAECBAgQIECAAAECBAgQaIKAAW8TqiAGAgQIECBAgAABAgQIECBAgAABAgQIdCBgwNsBmkMIECBAgAABAgQIECBAgAABAgQIECDQBAED3iZUQQwECBAgQIAAAQIECBAgQIAAAQIECBDoQMCAtwM0hxAgQIAAAQIECBAgQIDDdWZRAAABkklEQVQAAQIECBAgQKAJAga8TaiCGAgQIECAAAECBAgQIECAAAECBAgQINCBgAFvB2gOIUCAAAECBAgQIECAAAECBAgQIECAQBMEDHibUAUxECBAgAABAgQIECBAgAABAgQIECBAoAMBA94O0BxCgAABAgQIECBAgAABAgQIECBAgACBJggY8DahCmIgQIAAAQIECBAgQIAAAQIECBAgQIBABwIGvB2gOYQAAQIECBAgQIAAAQIECBAgQIAAAQJNEDDgbUIVxECAAAECBAgQIECAAAECBAgQIECAAIEOBAx4O0BzCAECBAgQIECAAAECBAgQIECAAAECBJogYMDbhCqIgQABAgQIECBAgAABAgQIECBAgAABAh0IGPB2gOYQAgQIECBAgAABAgQIECBAgAABAgQINEHAgLcJVRADAQIECBAgQIAAAQIECBAgQIAAAQIEOhAw4O0AzSEECBAgQIAAAQIECBAgQIAAAQIECBBogoABbxOqIAYCBAgQIECAAAECBAgQIECAAAECBAh0IPD/AGsUZnvnyvwGAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/markdown": [
+       "AI-generated follow-up questions:\n",
+       "\n",
+       "* - What were the total sales by genre?\n",
+       "* - Who were the top selling artists?\n",
+       "* - What were the top selling albums?\n",
+       "* - What were the total sales by country?\n",
+       "* - What were the total sales by customer?\n",
+       "* - What were the total sales by employee?\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Markdown object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vn.ask(\"What were the total sales by year?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "SELECT g.name,\n",
+      "       sum(il.quantity) as total_sales\n",
+      "FROM   genre g\n",
+      "    INNER JOIN track t\n",
+      "        ON g.genreid = t.genreid\n",
+      "    INNER JOIN invoiceline il\n",
+      "        ON t.trackid = il.trackid\n",
+      "GROUP BY g.name\n",
+      "ORDER BY total_sales desc limit 5;\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Name</th>\n",
+       "      <th>total_sales</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>Rock</td>\n",
+       "      <td>835</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Latin</td>\n",
+       "      <td>386</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>Metal</td>\n",
+       "      <td>264</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Alternative &amp; Punk</td>\n",
+       "      <td>244</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>Jazz</td>\n",
+       "      <td>80</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                 Name  total_sales\n",
+       "0                Rock          835\n",
+       "1               Latin          386\n",
+       "2               Metal          264\n",
+       "3  Alternative & Punk          244\n",
+       "4                Jazz           80"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAgAElEQVR4XuzdBZhc1f0//g98KVAoXqy4BAiSENwCCQTX4hTX4lq8OJTiECC4BG2RYMFDcEuAICEkQIBQKFYI7n/4P+fy28l6dnfu3sxMXud5+jzZnXuPvM7Z4el7zpw7yQwzzPBrKAQIECBAgAABAgQIECBAgAABAgQIECBQdQKTCHirbs50mAABAgQIECBAgAABAgQIECBAgAABApmAgNdCIECAAAECBAgQIECAAAECBAgQIECAQJUKCHirdOJ0mwABAgQIECBAgAABAgQIECBAgAABAgJea4AAAQIECBAgQIAAAQIECBAgQIAAAQJVKiDgrdKJ020CBAgQIECAAAECBAgQIECAAAECBAgIeK0BAgQIECBAgAABAgQIECBAgAABAgQIVKmAgLdKJ063CRAgQIAAAQIECBAgQIAAAQIECBAgIOC1BggQIECAAAECBAgQIECAAAECBAgQIFClAgLeKp043SZAgAABAgQIECBAgAABAgQIECBAgICA1xogQIAAAQIECBAgQIAAAQIECBAgQIBAlQoIeKt04nSbAAECBAgQIECAAAECBAgQIECAAAECAl5rgAABAgQIECBAgAABAgQIECBAgAABAlUqIOCt0onTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4rQECBAgQIECAAAECBAgQIECAAAECBAhUqYCAt0onTrcJECBAgAABAgQIECBAgAABAgQIECAg4LUGCBAgQIAAAQIECBAgQIAAAQIECBAgUKUCAt4qnTjdJkCAAAECBAgQIECAAAECBAgQIECAgIDXGiBAgAABAgQIECBAgAABAgQIECBAgECVCgh4q3TidJsAAQIECBAgQIAAAQIECBAgQIAAAQICXmuAAAECBAgQIECAAAECBAgQIECAAAECVSog4K3SidNtAgQIECBAgAABAgQIECBAgAABAgQICHitAQIECBAgQIAAAQIECBAgQIAAAQIECFSpgIC3SidOtwkQIECAAAECBAgQIECAAAECBAgQICDgtQYIECBAgAABAgQIECBAgAABAgQIECBQpQIC3iqdON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNcaIECAAAECBAgQIECAAAECBAgQIECAQJUKCHirdOJ0mwABAgQIECBAgAABAgQIECBAgAABAgJea4AAAQIECBAgQIAAAQIECBAgQIAAAQJVKiDgrdKJ020CBAgQIECAAAECBAgQIECAAAECBAgIeK0BAgQIECBAgAABAgQIECBAgAABAgQIVKmAgLdKJ063CRAgQIAAAQIECBAgQIAAAQIECBAgIOC1BggQIECAAAECBAgQIECAAAECBAgQIFClAgLeKp043SZAgAABAgQIECBAgAABAgQIECBAgICA1xogQIAAAQIECBAgQIAAAQIECBAgQIBAlQoIeKt04nSbAAECBAgQIECAAAECBAgQIECAAAECAl5rgAABAgQIECBAgAABAgQIECBAgAABAlUqIOCt0onTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4rQECBAgQIECAAAECBAgQIECAAAECBAhUqYCAt0onTrcJECBAgAABAgQIECBAgAABAgQIECAg4LUGCBAgQIAAAQIECBAgQIAAAQIECBAgUKUCAt4qnTjdJkCAAAECBAgQIECAAAECBAgQIECAgIDXGiBAgAABAgQIECBAgAABAgQIECBAgECVCgh4q3TidJsAAQIECBAgQIAAAQIECBAgQIAAAQICXmuAAAECBAgQIECAAAECBAgQIECAAAECVSog4K3SidNtAgQIECBAgAABAgQIECBAgAABAgQICHitAQIECBAgQIAAAQIECBAgQIAAAQIECFSpgIC3SidOtwkQIECAAAECBAgQIECAAAECBAgQICDgtQYIECBAgAABAgQIECBAgAABAgQIECBQpQIC3iqdON0mQIAAAQIECBAgQIAAAQIECBAgQICAgNcaIECAAAECBAgQIECAAAECBAgQIECAQJUKCHirdOJ0mwABAgQIECBAgAABAgQIECBAgAABAgJea4AAAQIECBAgQIAAAQIECBAgQIAAAQJVKiDgrdKJ020CBAgQIECAAAECBAgQIECAAAECBAgIeK0BAgQIECBAgAABAgQIECBAgAABAgQIVKmAgLdKJ063CRAgQIAAAQIECBAgQIAAAQIECBAgIOC1BggQIECAAAECBAgQIECAAAECBAgQIFClAgLeKp043SZAgAABAgQIECBAgAABAgQIECBAgICA1xogQIAAAQIECBAgQIAAAQIECBAgQIBAlQoIeKt04nSbAAECBAgQIECAAAECBAgQIECAAAECAl5rgAABAgQIECBAgAABAgQIECBAgAABAlUqIOCt0onTbQIECBAgQIAAAQIECBAgQIAAAQIECAh4rQECBAgQIECAAAECBAgQIECAAAECBAhUqYCAt0onTrcJECBAgAABAgQIECBAgAABAgQIECAg4LUGCBAgQIAAAQIECBAgQIAAAQIECBAgUKUCAt4qnTjdJkCAAAECBAgQIECAAAECBAgQIECAgIDXGiBAgAABAgQIECBAgAABAgQIECBAgECVCgh4q3TidJsAAQIECBAgQIAAAQIECBAgQIAAAQICXmuAAAECBAgQIECAAAECBAgQIECAAAECVSog4K3SidNtAgQIECBAgAABAgQIECBAgAABAgQICHitAQIECBAgQIAAAQIECBAgQIAAAQIECFSpgIC3SidOtwkQIECAAAECBAgQIECAAAECBAgQICDgtQYIECBAgAABAgQIECBAgAABAgQIECBQpQIC3iqdON0mQKBtArPNNnussOKKpYsH3nVn/Pzzz2272VU1IbDooovFQgsvnI3lq6++jocGPVAT42rPIBi0R8u1BAgQIECAAAECBAgQqC4BAW8z8zXJJJNE166L5jqTv/zyS4wc+VqudVZiZZNPPnksuGCXDnXthx9/jNFvvtGhe9t602STTRZrrrVOLL/CivHHP84cM800U6T5fu+9/8Rbo0fHqFEj49Xhr8SHH37Q1ipdV+ECx59wcuy86+6lXv554/Xjheefq/BeN+2e96WOT9nd9w2KxRdfIqvg119/jXnnmq3jlbVy54wzzRTLLLNcLL7EEtGly0Ix88yzxKef/i/eHTMmxox5J0aPfjNGvDo8vvjii05pv7VKizIofGAaJECAAAECBAgQIECAAIEQ8DazCFIAePmV/XNfHptvulEMHfJs7vVWUoU77bJbnHDiKR3u0jxzztrhe1u7cf0NNowjjjom5ppr7izQHV/57NNP447bB0TfvudE+rdSvQK1EvBW4/tS2j291trrlBbP7bfdGl9++WXhi6mzw8355l8gzjjznFh2ueXbNLaPPvow7r/v3rjskovi3XfHtOmeci/qbINy++d+AgQIECBAgAABAgQIEOi4gIC3Gbu11l43Lrvi6o6rtnDnxBDwpp2SKVDraMk74E3By79vHhCzztrxHXtvv/1WHHrIgTUfznd0zir9vloJeKvxfWmffQ+Iw444qrRE9txj17j3noGFL5nODDcvvfyqWHud9To8pqJMOtOgw4N3IwECBAgQIECAAAECBAjkIiDgFfDmspDqKqmkgHfDjTaOc/v2i3QsQ3Plxx9/jLFjP4vJJ58ipp566kjHS7RULr/04jjpxONytVJZMQIC3tadO/ODp1oPeK/qf12svsaaTYDTkTzffPNN/PzTTzHNtNO2+B6Ubjz4wP3i1ltu6vQ/BgFvpxNrgAABAgQIECBAgAABAhNMQMDbDP0UU0wRvVfv0+qkbLvdDrHqar1K19x/3z0x4NZbWr1n0IP31/zDnRoHvHcPvDNuublt4cWPP/4QTzz+WC5/DOmr0jffekeT4xjSWbun//OUeOyxR2PsZ581aCsFwVtutU1ss+322Xmdk046ael1AW8u0zJBKqmVgLca35dqOeDdfIut4qxz+jZY0598/HGcfdbpccP11zb4/SyzzBorrbxyLLPs8rH2OutG+rmuCHgnyNuCRgkQIECAAAECBAgQIFBTAgLeDk7n0X8/LvbYc+/S3Wee/s84v+85Haytdm5rHPBOCJfpZ5ghhjz3UqRArK6kByv1v/rKOO6YcV8Xb009PYDt/AsvjpVWXiW7TMBbvWu0VgLetsxApb0v1XLA+8TTQ7MzvevKm2+8Hn1WXzV7iNv4SvoAKr2/zD77n+zgHR+W1wkQIECAAAECBAgQIEBgvAIC3vESNX9B3kFK2i269DLLZruC55xjrnjxxRfi4cEP5fIAnnT8wOpr9IlVeq6WPdH9gfvvixeHvdDBkbd+WyUEvJdcdmWss+76DTq65eabxLPPPN3uMa/Sc9W45LKr4orLL4mzzzy9TfcvttjisepqvWPhhReJd955O4YMeSaeGzok0pEQ5ZR55p0v1llnvejaddEYNWpkPPXUE/HySy+2KVAqp93G984551zZOl1q6WWyXdDPP/9cPP3UE/HFF1+0q5n0sLtk1GOppWPBBbvEp59+GiNHvhYjXh0eH374Qbvqau3i1gLe9HfXs+dq0Xv1NWKy3/0uBj80KB579OGq3Wlfae9L5Qa80003XSy08CIx99zzRFp3M8w4Y/zww/fx3/ffj5deejFeenFYm9Z/ZxxPMOa9jxosu26LLdTuv4H99j8oe5hjaw9aqwSDvN7T0jE43ZfsEd26LxlzzjFnjHl3TIwa+Vq8OvyVCfLwvdzeZFREgAABAgQIECBAgACBCSwg4O3gBOQVpKSHgF13w7+z8KK58vPPP8e999wd++3z11aDjNvvvCeW7LFUVsW3334biy48f/xl2+3jiKOOiRQQNC7pjMi0o/X4Y4/uoEDzt03ogDft3h320ogGxysMHjwodt5h21zH2biyOeaYM669/l8x/wILNjkWou7aV18dHtv9Zcv47NNPm+1Ll4UWigcfGndERb8L+2ah8tnnXhDrrb9B/O53v2tyXzrnc4/ddmr1aIvm1kaqKIXX2++wUyzRrXv2ELr/+7//i59++ilOOO7vcd21/Ru0lY6vSA+TWq3X6i2eJ5rC3t123TELs1sraZynn3FOFuymkLe5kvoxdMizcclFF8Yjjwwua+6aC3hTsHtBv0uyHZTNldR2+lAg/Z3UL+nvNO3crCtpzD26L9qm/l1/482x8io9S9fustP2MfihB9t0b1svqpT3peOOPynSe0Fz89vcDtfhw1+JDdYdd5btDf+6JfvAa8opp2x16D/88EPcftut8Y9TTozPx45t8dq8A950xMLQF14utZfepxeYd462TlObrpvQBnm8p9UNdM211okTTjolUp0tla+++ioGPfhAXHjBufHG66+3ychFBAgQIECAAAECBAgQIPCbgIC3gyshjyAlBSDHHndigzCype6ksx232HyTePut0c1eMmjwY9FloYVLr73x+qgGP7dU71NPPhF/2XrzNu2CawvVhA54Dzzob3HQIYc2CF56dOvaqbvDdtpltzjm2BNafZBSXYdScHnEYYfELTf/uwlnt27d4657Hij9PoVe8803f/YAuPGVVOeNN1w33rWRgqgVl1sqrr3+37FI167NXp+OGklHa9SVZZZdLq7qf31MO+204+tG9nrqR+pPc2XX3f+arfn2lCUW7VLW/DUOeEe+9lqLY6/fr48++jDWWWv1JoH8iy+/lu0krSu77bJjPPjAfa0OKdm9/OrrpcAzBZMLLzhPbn93dY1XyvvSGWedm51n3dby1ug3o/dqK5cuf+31t2OqqaZq6+2RPFdZcdn4+OOGu2rrKsg74E0fELz9bsNd5tv/Zat47LFH2tzn8V04IQ3yek9LY+x/3Y3Rq9fq4xtu6fUU9C7edcE2X+9CAgQIECBAgAABAgQIEBDwdngNlBuk7PHXvePoY45r0v73338fX3/1Vcw400xNgt8UDi695GLNfg24ccDbnoH968br4/BDD27PLS1eO6ED3hSQpqC0ruQ5tuYGfeTRx8See+3b4KU0TyloGjt2bMwyyywx88yzNNjJmELWZZZaoslD3hoHvO2ZkK+//joLRZrbHdl4baT+NbcbuK69+gFvOiv0lgF3NuhK2tX66f/+Fx99/FFMP/302e7fxvX9dfdd4r57725wXwqKU12Nd3Wm+tLuy2mmnbbZfuUd8LbHdfSbb8TqvX47h7muNP4Q4bURI2KdtXq3Wu3xJ54SO++yW+maAbfcHAcd2HDdtKdfLV1bKe9Lp51xdmy9Tdt3zTd2bi7cTH83KchNay191b9xScd6pA8vGu+6TtflHfCmOkeMeqvBhy/Dhr0Qm2y4bh7TmNUxoQzyfE878OC/xUEHj/vArQ4nzWP6pkl6/2j8fiDgzW0JqYgAAQIECBAgQIAAgYlIwA7eDk52OUFKCieGv/Zmg4eApTMY/7zR+vG//31S6tGGG20c55x3YYPQ66FBD0T6anfj0lLA+/RTT8b9998b991zd/b1+3XWXS+O+vtxDYKJdDZs14Xmy+Xc0cYBb/o/8d9+803832STZV3+/vvv4sMPPojXXx8V551zVrz//nsdnIHmb2scuhyw315x+20Dcm2jrrL0ILb0Ne20my+VFK6mow2OOfqIBkHrbLPNnh3fkM4SrStPPP5YbLvNFg361VLAm+bn7oF3xf333RNp/uebf/7Ydbe/xlZb/6XB/aedekqkYx3aujbq+vzJJx/Hhx9+GH+YeuqYdbbZ47RTT86O70hlyPMvZQFuXUnHL+y6yw4Nvg6fjm9I63SjjTcpXff5559H98XH7ShPLzz86JPZERZ1Ja3Nf5x8Qrz88kul3yWrtddZN9LZpDPPMkv2+84KeNNu+LvuuiMeuO/eePPNN7LjJ/526OFNdr6nowNeeWXc1/HT328K39K468ryyyzZ6rnB6e99mmmmKa2TZXos0eBvPa8FWinvS+kBh+kYg1132yM7qqGunHD8MfHg/U13O3/xxecNdmmnv+MU1A4d8kzceMP18egjg7Nwt66ko1j23nu/7EGX9QPC/ffdM+64/bYmnJ0R8A64fWB2jET9kr5pkf52+l99RVm7zlOdE8Ig7/e00e+83+Dv5KorLovLL7sk3nvvPyW2dGTLFltsHWnXcFo3At683g3UQ4AAAQIECBAgQIDAxCQg4O3gbJcTpDT++nIKuDZcb61me5LO/Hzk8acbhLx9Vu/Z5IzCxgHvmDHvxF577Brp3NfGJX29/NHHn2lwNm/jr+V3kCULc9JX4ttaUv+OPPxv2cOS8ijpa9N1gWuqb+UVlmkQJuTRRl0dt952V6RdqXWlpXCp7vWXho/KdqzVlSW7dW2wi7e5gHfQg/fH/vvuFems3cbln6efFdv8ZbvSrx9++KHYafuGoW96sbnwP4Uofz/qsLjzjtub3fGY7tt7n/3j8CPHndF81513xL5779Ei4XU33BQ9V12t9Prfjzo8rr3m6tLPb779Xmkdp7Nr0/hbK5tvsVUccNAh0ad3zwbhXnvnsPERDWm389FHHRa3D7i12apuu+Pu7AFydaW5nZlXXn1trNFn3N/sbbfeEgcesE+z9aUPai7od2nptRdfHBYbb7BOe4fRpusr7X2pow9ZS3/Dze3EbYzQ+JsQ6QOWo488rIlVZwS86cOIp4e80OIRO+lv9r/vvxcjRozIguoHH7i/XQ8PnBAGeb6npQez3XP/Q+N9f6q7IH1gcuRRx2QPYdt8043atN5dRIAAAQIECBAgQIAAAQK/CQh4O7gSyglS6gddqflVV1khxrzzdos9aRwIp4dO7bhdw/Mt64d4bXngz+5/3Sv+fszxpTbTDuKeK40LKzvI0u6AN7WT+rveOmvEqJEjO9ps6b76T7ZPO2rnnWvc7tOyK69XQQren3zmudJv0lnG22y1WatNpIfenXramaVr0k7stCO3rjQOeFs7yzbd07gPb77xeqzRe9xDvOrqbRzwph2OBx+473h3bNffDf3FF19kO3KbOwKirp30wUE6n7au3Dbg1jhw/72zH3//+9/HyDfeKb2WdnanXeNFlOYesvbC8+PmrnEf0oPXnhk67gOHFDTON/fsDS5bYMEuMfiRJ0q/S7tLF1pg7maH09h/6y03jbR7uTNKpb0vdTTgbatN2k39xlvjdoO29GFZZwS8qY/pb/qUU09v0znq6fq07p984rHsjOuRI8f9rbR1vM1dl5dB3u9pO+60S5x48qmlLg974fnYZKP1yhmqewkQIECAAAECBAgQIECgBQEBbweXRkeDlPSwpVdGvFFqdcSIV2PdtVp/AE36ane6p+6ryM2Fse0NeNPusBSM1H3N/Msvv8y+Cl9uSccGpPM3U30fffhBfPbZZ/H552OzACSdRZu+dp+ChMYlBR8rr7hMkwdatac/6WFkKZSsK+logy7zN22rfp3piIVpp51uvM2ce/aZcVG/80vXpd2lZ50z7jiEFLin4L21kr6yntqrK+ede1acfebppZ8bB7zX9L8qO+6htZLmsO480pZ2xbZ3baT20rpIX6+uK+mhcIcctP94neqHwo3Dtsa7qxuPf7yVd/CC9ga8qZm0az494K6uLLrw/E12UTe+pvGO5XTvXHPNHU88PbRUT/oKfzp/ubNKpb0v5RXwpjXeY6mlY7HFl4i555o7Zp1ttkjHCUwzzbTZA/Pq3hvTV//Trv3GpbMC3tTOfPMvkB3Bkua6PSXtDN92682b3Z3fXD2dbZD3e9pKK68SN/573C759OHQFpttHEOHPNseJtcSIECAAAECBAgQIECAQBsEBLxtQGruko4GKaut1juuuf5fpSrbGpzVP8MzffU3BU71S0dCvOeHDY8/zjxzVk1zuxQ7SDPe21LAe+LJ/2jwFfd00+CHHoyddxx35MB4K2rmgvo7eLPwZe7ZW/2qd+MzIltqs3HYevI/Tovtd9ipdPn/Phl3dnJr/a7zTtekM3X32G3n0uUdCXhfHTk6/vCHP2R1pF223RZbqEnzHVkb6eiJ9HXtupLC8i+/+GK8U1J/fI3DzLTjuXG4n46KePaZp+KRhwe3+yvs4+3M/7ugIwHv5Vf2jzXXGneMwmZ/3jDS+cP1y2abbxlnnzsu9G8uXLzokstjvfU3LN32z3+c3OCDgraOoa3XVdr7UjkBb/pg67Ajjo611l4n0nEIbSkTIuCt61da23/da59Yo8+a2fnDrT3IsO6etP6XX6Z7iyFvkQZ5v6el83TTrv36R+akcaeH4T3+2KPZucqDHxrU5oC7LfPvGgIECBAgQIAAAQIECEysAgLeDs58R4OU9PCovx02blfmGaedGhecf+54e1E/HGvu6IGOhHgPPfx4LNhlXCC4SJd547vvvhtvX/K64MKLLo0NNty4VN0HH/w3Vli2R1nVNw5s09nG9R/i1bjyjga8N996Ryy3/Apl9fWZp5+Krbb4c6mOjgS86UiEdDRCKnkGvI3PNu3IQBs/LGmVnqvG9Tfe3GpVKUge/eabcd21V8cN11/bpnNYx9e3jgS8J53yz9hhx3HhezonOvWncWn8UL+1+qxWOmokBVuvj363FPSlsS284Dy5jKmlMVfa+1JHA970t3DjTQNKH16Mb47rXp+QAW/jPqYdxqv16h09e64W3bp3j3nmna/BA8fqrm/8QU/d74s26Iz3tBNO+kfstPOurU5f+sAyHd9wyUUXxmOPPdLWqXYdAQIECBAgQIAAAQIECNQTEPB2cDl0NEg58+zzYostty61euD++8RtA24Zby/SeZ/p3M+6ko5TSMcg1JWOBLwPPvRoLLTwIqU60u7PFBIWVdLXqtPX9uu+Xp3HLuLGgdtxxx4dV195eYtDOv7EU7KvejcuXboslH31u6403sH7+FNDYu655ymLqvG5vR0JeIe9NCJmnGmmrB95BryNz33uyECbO/ZjrbXXjRTs1x0r0Vq9n3/+eWy3zRbxyivjjrXoSD86EvAec+wJsdsee5aaO+H4Y+LKy8c9KK3uhXT+6nbb71i6rv752HvtvV8ccdTfS6+ls4/Tg/g6s1Ta+1JHAt7kmXaT1r0v1HmlD7Y+/d//4uNPPs52gaYd4v/73yeRnOt2iVZSwNt4nlMfd9plt+xBYvXXf3PvexPCoDPe05JBmss0nsbz2dzfQXro5jZbblrof4c68+9R3QQIECBAgAABAgQIEChKQMDbQemOBikHHvy3OOjgQ0utnv7Pf8SFF5w33l6kczzrn/GYHh5W/4FXHQl4n3r2+ZhjjjmztjvzgWStDa5+QJmuW2n5peP9998br0dLF9wx8L5Ycslxu4AfffTh2GHbcYF6WytOxy+kYKKuNA5477rngUiBbF1JD8r76qtxgXtb2vn6q68i7eqsK5UU8B78t8PigAMPKfXtnLPOiGuuuaotwypd89OPP0baxdu4pPN9d9x519huux1i7nnmbXZXY909yWep7os2W09bO9ORgLdxwL3bLjvGgw/c16TJ6WeYIXuwXP0PKdIu3dTvdN5y+qp+XVl+mSWzYLIzS6W9L7U34E0h6Kg3xzQIQH/66ae44vJLIh1v0dxD/l57/e2YaqqpMtZKDnjr5n2xxRaPe+5/qMEySOcGp76nMqEMOuM9rW6Q6UOoFGz36r16dhZ7a2HvW6PfjN6rrdyZfybqJkCAAAECBAgQIECAQM0JCHg7OKUdDVJWX2PNuKr/daVWO3IGb3ogWdeF5mvQ844EvPV3u7a0+7ODPG2+rf45wOmm+kFHmyupd+G++x0Yhx5+ZINb1+7Tq91PrB9fwNt4J/buu+4UD9x/b0e6XLqnkgLexmdFd+bu0y4LLRR9+qydhT/pQVrp7M765bYBt8aB++/dYduOBLz/umlArLjSuJCp+xKLxOdjxzbbhwG3D4yll1m29Fp6eFw6Y/SWAXeWfjd8+Cux/jp9Op96BLcAACAASURBVDyGtt5Yae9LjQPefffeI+66844Wh5Me0nj6meeUXk+7uFdafqlWz2mttoA3DW7I8y/FrLPOVhrn9n/ZqnQ8wYQy6Iz3tOYmOoW76Yzv1dfoE6uvvmYstPDCTc7p3WWn7eOhQQ+0ddm7jgABAgQIECBAgAABAhO9gIC3g0ugo0FK2vH30isjS62OGPFqrLvW6q32Yuqpp470MK3WnhTf3oA37QZOu4LrysjXXou11+zVQY2O31b/DNyff/45Fph3jo5XFpGdR5t2BdffIfb2229Fr54rtqve8QW8jV+/7tr+cfSRh7WrjcYXV1LAm9Zc+gCgrrz91ujotepKZY2vLTenebv62huiV69xfxPl7ujrSMBbf/dt2kG64Hy/7XRvriy73PINwtyxn30Wo0e/mYVYdaV+gNcWh45eU2nvS40D3kMPOTBu+veNLQ6v8Zmt/zj5xLjk4gtb5ZhQAW86ZqH+Dvz2zFnj3d19Vu8Zb7z+elbFhDLojPe0tpik/yam44Lq73a/9pqr4+9HHd6W211DgAABAgQIECBAgAABAhEh4O3gMuhokJKaa/xgr/T1/jHvvN1iT0474+zYepttS68/+cTj8ZetN29wfXsD3hv/fWustPIqpToG3HJzHHTgvh3U6NhtO++6e6Twra6kr6+nr7GXWy6/sn+sudY6Dao55+wz4tyzz2xz1eMLeNOu00GDHy/Vl87RXGXFZcs6XqKSAt40sDfe+k+Dr8offOB+cestN7XZsPGFKbxt7iv2ja9LQU8KwOrKxx9/FMsu1a3D7bY34F2jz1px5dXjHqj20UcfxnJLjzuOo7mOPPfCKzHzLLM028fPPv00enRftMP9b8+Nlfa+tPkWW8VZ5/QtDeHsM0+PtMO5pXJBv0tjw43GPXhxfIFwqmdCBLzrb7BhXHjRZXHbrbfEEYcfEj/88EObp2naaaeNl199vfQhVAqJu8w/V+n+CWXQGe9pbUXZ/a97xd+POb50+T133xV7/XW3tt7uOgIECBAgQIAAAQIECEz0AgLeDi6BcoKUfhdfFutvsFGp5RdfHBYbb9AwkKx7cbbZZs922v7ud78rXb/Bums2efBUewLeTTbdLM7r269UX9o5u3SPxVv8CnpbiVIout8BB8UFfc+NdGZtayXtIH74sacajCuvYwDSeY9DnnupQd2pL2mX8rbbbJE9mGl8ZXwBb7r/sSefjXnmmbdU1bvvjok+vXuON+xZd70NIn0desftt4nnhg4p3V9pAW/jDxZSELVGr1UijbO1koKiq/pfH4MeuD+OP+63h4wtvMgicd8DD0ea4yMPPyS+++67FquYbrrpsgCsrvznP+9m4XlHS3sC3rRz+dHHn2kQ1h5z9BHjXc9777N/HH7k0c128czT/xnn9x137EBHx9GW+yrtfWmRRbrG/YMeKXU9PURrvbXXaHEojR0HDx4UO+8w7sOt+jem3fqXXnZVLLf8CqVfF3UG7yZ/3jTOO/+irN30d9H33LPbNMe///3vs/eN+rtVG397YkIa5Pmelv4edtl1jzjvnLOi34XjQv7mJn+HHXeOk075Z+mlm2/6V/zt4APasuRdQ4AAAQIECBAgQIAAAQJ28HZ8DZQTpKQQ6aXhoxoEkOlr6BtvuG58+eW4B3Wlr6lfdmX/Brson3ryidhmq82adLx+wJteTKFB/6uviNsG3FIK07ov2SP23me/WGfd9Rvcf8lFF8Y/Tjmx4xj/786/HXZE7Lf/QdlPX3/9daTzhR995OF49pmnSmdoprEfe/xJkc6ZrH+MQjpXeMklFhlvONrWTvZevU921nHjh/mkMPtfN14fTz35eDz55BMNQu0Uvqy9zrqx+RZbR/ra/ZRTTllqrvFD1tIL882/QDz86JMN2kg7+VKgd+UVl0ZqK5X00KS0Wzqda5vC9bpwZ8fttolHHhlcaqPSAt5k9+IrI2P66acv9THtwL19wK1x7DFHNliriy66WKTzpTfcaJNYpGvX7Pr650svsUS3GHjvg9nv05EH111zdVx7bf8Y/eYbDaY0Bf83D7gjZp/9T6Xfp3DotFNPaevUN7muccD7xuujsl2kA++6s8GO4vT31u+SyyOt0brywQf/jRWWHffQvpY6kR4cN/KNd5p8qJDGukiXeUtrocODaOONlfa+lNb+2+82fLBc3/POjrPOGPcAw/S3+oc/TJ2dzVt/ndQNOR1/cuLxx2TvDcl5lVVWjfU22DA223zLJg/omxABb10/0znm6UF8aZd7ep+uX9J6Tg8u3HiTTRucMZ12/q/VZ7XS8QzpnglpkOd72nHHnxS77LZHxpDOUk7forjzjtsi7WivX1ZdtVdccfW1Df47l44tSscXKQQIECBAgAABAgQIECDQNgE7eNvm1OSqcoKUVNkhhx4e+x9wcJN6U0jw/fffxfTTz9DkYVMpDEhfVW9uB2rjgLd+xem+FNY19+TysWPHRo9uXdv01fnxUdUPeBtfm3a5pfbr70Suf82ee+wa994zcHxNtOv19PXwU049vUFQ27iCFMCl/6Vwt7UnuzcX8Ka66ocYjev+/vvvs7qnmWaaZvtd6QFv6vTyK6wYN91ye7P9T2NLwXwaXwryGpeWAt7GazOt52+++SZb8zPMMEODapLhUt0XbfUhW+NbFI0D3rrrU1id2k1BfNo13Nz8b7n5JvHsM0+Pr4ns9Usuu7LJhyd3D7wz9t5z9zbdn8dFlfa+lMZ0+133Ro8eSzUYXrJP7imwTe71z1l+/KkhMffc8zThSO8h6dzb1sqEDHibe89L40x9bum9paVjTyakQV7vaS3Vk+YxHbuS/rs000x/bPCBSjJ8bcSIWGet3nn8OaiDAAECBAgQIECAAAECE42AgLeDU11ukJKaTYHovvsd2GqwWNe9tLN3u79sGS+9OKzZHrcW8LY0xLTLd8vNN44UKudRWgt4W6o/hYSn/uOkuOKyS/LoQpM6pphiijj9zHNj403+3Cbn5kKaJ554LE4+8fgmu03rrt3jr3vHoYcfOd7wqXHdW2+5aTz91JOlX1faDt66jq3Sc9W44MJLsgfYtadcf901cdQRh2a3NP6qflvqSTs211+3T4PdjW25r/E1LQW8rdWVwsdDDtovbr9tQJubTKFkCubql5WWX7qsc5nb3Pj/u7DS3pdSt9Ku7OTS2gco9QPeOeaYMzvGIIW/4ytpZ2j9cL6ogDftWO9/3Y0NjloYX1/rv54+WDj1lBMjPUysuTKhDfJ4T0tHNKTjJtpT0vz1XnWlDj+8rj1tuZYAAQIECBAgQIAAAQK1JCDg7eBsHnbEUZGeEF9X2vK09+aaSqFe/2tvjHRubHMl7QB74vHHYpedtmv1//Q2DnjTV4V79V6j2R2zKVxIxzeU87X35vqanoa+2+5/jY02/nO2A6+1QCfdP3TIs7HbrjuWffZvW6Zwnnnni74XXBRduizUZMdY4/vTDrPXXx8Vl116UXYcQVtK2sV6wUWXZl8fby2Y+uqrr+LhwQ/FheefGyNHvtag6sYh6OWXXhwnnXhcq82nh5HVHfmQdmOnYy4al3T2bddFf3vIVwrUF5xvzrYMqck1dWdq1j+6ovFFqf50rvBll14cDw16oMHL6avnBx1yaPRctVerYXiqIx2jcdIJx+ZyZMeRRx8Te+417gGC6ViMlVfu2eJu8nQswxabbhzp7N/2lBVXWjn+ddO4QLjx2artqauj11ba+1LdONK5zFdfc0PMOee4h4nVH2Pjc8hTKHzNdTfG/Ass2CxF2jn+rxuuixNPODaGv/Zm/OEPf8iue/vtt6JXzxWb3HP7nfdEj6WWzn6fdo7ON/fsHSVucF8az1777BfrrbdBi+/h9W9I/b6m/5Xxz3+cPN5vTUxogzze09ID8/bYc5/s2InW/nuQgvqzzzwt+l99ZS7zohICBAgQIECAAAECBAhMbAIC3gqZ8fRk9dV69Y7lV1gppptu+nj77dHx+GOPZmFZCnnHV5p7yFr62vxiiy0eXRddLOabf/54fdSoLHSrf87v+Ort6OvpHNMUqCywwILZWbV//OPM8f/9f/9fDB/+cjz79FPZQ+LaMq6Ott/afSlo6Np10Vhm2eVi8SW6xZRT/j5GvjYihg17Pl4c9kKrDwBrS3/SjsKll1kueiy1VMw662zx9ltvxYhXh8dLL79YSJjdlj6Wc036ynk6z3mZZZbL1tWHH36Qfa36lZdfirQDry0lrYdu3ZeMtBMy1fHVl1/GqFEj49Xhr8Tw4a9kIVxnlhTC91lz7ei+5JIx//wLZGdGp6MYHnjgvg7P0d33DYrFF1+i1O2dd9wuBj/027nD1VrKfV9qPO700Mhll1sue0/69ptvs93NaRd7WkPNlfQ3mnaQL7BAl+zlMWPejqHPPhuPPvpwxZGm99sUZC+00MKxwIJdYp65542ffv4p+yDn5ZdezP6XPjxqb6kEgzze09KHbN26dcvm/k+zzxH//eD9GDXytRg+fHiL345or5XrCRAgQIAAAQIECBAgMLEKCHhrZOabC3hrZGiGQaDiBdJuyyeeHlrqZ0u7qSt+IDpIgAABAgQIECBAgAABAgQIVJ2AgLfqpqz5Dgt4a2QiDaMqBa68+tpYo89apb6fd+5ZcfaZp1flWHSaAAECBAgQIECAAAECBAgQqC4BAW91zVeLvRXw1shEGkbVCaTjSNI5sOkr+qmkB7R1XWi+Dn0dv+oGr8MECBAgQIAAAQIECBAgQIDABBcQ8E7wKcinAwLefBzVQqC9AsefeErsvMtupdvSAw5322XH9lbjegIECBAgQIAAAQIECBAgQIBAhwQEvB1iq7ybBLyVNyd6NHEIvPb62zHVVFOVBttzpeXi3XfHTByDN0oCBAgQIECAAAECBAgQIEBgggsIeCf4FOTTgf7X3RgrrLBSVtlXX34Zyyy1RD4Vq4UAgRYFunXrHjcPuLP0+vBXXo7N/rwhMQIECBAgQIAAAQIECBAgQIBAYQIC3sKoNUSAAAECBAgQIECAAAECBAgQIECAAIF8BQS8+XqqjQABAgQIECBAgAABAgQIECBAgAABAoUJCHgLo9YQAQIECBAgQIAAAQIECBAgQIAAAQIE8hUQ8ObrqTYCBAgQIECAAAECBAgQIECAAAECBAgUJiDgLYxaQwQIECBAgAABAgQIECBAgAABAgQIEMhXQMCbr6faCBAgQIAAAQIECBAgQIAAAQIECBAgUJiAgLcwag0RIECAAAECBAgQIECAAAECBAgQIEAgXwEBb76eaiNAgAABAgQIECBAgAABAgQIECBAgEBhAgLewqg1RIAAAQIECBAgQIAAAQIECBAgQIAAgXwFBLz5eqqNAAECBAgQIECAAAECBAgQIECAAAEChQkIeAuj1hABAgQIECBAgAABAgQIECBAgAABAgTyFRDw5uupNgIECBAgQIAAAQIECBAgQIAAAQIECBQmIOAtjFpDBAgQIECAAAECBAgQIECAAAECBAgQyFdAwJuvp9oIECBAgAABAgQIECBAgAABAgQIECBQmICAtzBqDREgQIAAAQIECBAgQIAAAQIECBAgQCBfAQFvvp5qI0CAAAECBAgQIECAAAECBAgQIECAQGECAt7CqDVEgAABAgQIECBAgAABAgQIECBAgACBfAUEvPl6qo0AAQIECBAgQIAAAQIECBAgQIAAAQKFCQh4C6PWEAECBAgQIECAAAECBAgQIECAAAECBPIVEPDm66k2AgQIECBAgAABAgQIECBAgAABAgQIFCYg4C2MWkMECBAgQIAAAQIECBAgQIAAAQIECBDIV0DAm6+n2ggQIECAAAECBAgQIECAAAECBAgQIFCYgIC3MGoNESBAgAABAgQIECBAgAABAgQIECBAIF8BAW++nmojQIAAAQIECBAgQIAAAQIECBAgQIBAYQIC3sKoNUSAAAECBAgQIECAAAECBAgQIECAAIF8BQS8+XqqjQABAgQIECBAgAABAgQIECBAgAABAoUJCHgLo9YQAQIECBAgQIAAAQIECBAgQIAAAQIE8hUQ8ObrqTYCBAgQIECAAAECBAgQIECAAAECBAgUJiDgLYxaQwQIECBAgAABAgQIECBAgAABAgQIEMhXQMCbr6faCBAgQIAAAQIECBAgQIAAAQIECBAgUJiAgLcwag0RIECAAAECBAgQIECAAAECBAgQIEAgXwEBb76eaiNAgAABAgQIECBAgAABAgQIECBAgEBhAgLewqg1RIAAAQIECBAgQIAAAQIECBAgQIAAgXwFBLz5eqqNAAECBAgQIECAAAECBAgQIECAAAEChQkIeAuj1hABAgQIECBAgAABAgQIECBAgAABAgTyFRDw5uupNgIECBAgQIAAAQIECBAgQIAAAQIECBQmIOAtjFpDBAgQIECAAAECBAgQIECAAAECBAgQyFdAwJuvp9oIECBAgAABAgQIECBAgAABAgQIECBQmICAtzBqDREgQIAAAQIECBAgQIAAAQIECBAgQCBfAQFvvp5qI0CAAAECBAgQIECAAAECBAgQIECAQGECAt7CqDVEgAABAgQIECBAgAABAgQIECBAgACBfAUEvPl6qo0AAQIECBAgQIAAAQIECBAgQIAAAQKFCQh4C6PWEAECBAgQIECAAAECBAgQIECAAAECBPIVEPDm66k2AgQIECBAgAABAgQIECBAgAABAgQIFCYg4C2MWkMECBAgQIAAAQIECBAgQIAAAQIECBDIV0DAm6+n2ggQIECAAAECBAgQIECAAAECBAgQIFCYgIC3MGoNESBAgAABAgQIECBAgAABAgQIECBAIF8BAW++nmojQIAAAQIECBAgQIAAAQIECBAgQIBAYQIC3sKoNUSAAAECBAgQIECAAAECBAgQIECAAIF8BQS8+XqqjQABAgQIECBAgAABAgQIECBAgAABAoUJCHgLo9YQAQIECBAgQIAAAQIECBAgQIAAAQIE8hUQ8ObrqTYCBAgQIECAAAECBAgQIECAAAECBAgUJiDgLYxaQwQIECBAgAABAgQIECBAgAABAgQIEMhXQMCbr6faCBAgQIAAAQIECBAgQIAAAQIECBAgUJiAgLcwag0RIECAAAECBAgQIECAAAECBAgQIEAgXwEBb76eaiNAgAABAgQIECBAgAABAgQIECBAgEBhAgLewqg1RIAAAQIECBAgQIAAAQIECBAgQIAAgXwFBLz5eqqNAAECBAgQIECAAAECBAgQIECAAAEChQkIeAuj1hABAgQIECBAgAABAgQIECBAgAABAgTyFRDw5uupNgIECBAgQIAAAQIECBAgQIAAAQIECBQmIOAtjFpDBAgQIECAAAECBAgQIECAAAECBAgQyFdAwJuvp9oIECBAgAABAgQIECBAgAABAgQIECBQmICAtzBqDREgQIAAAQIECBAgQIAAAQIECBAgQCBfAQFvvp5qI0CAAAECBAgQIECAAAECBAgQIECAQGECAt7CqDVEgAABAgQIECBAgAABAgQIECBAgACBfAUEvPl6qo0AAQIECBAgQIAAAQIECBAgQIAAAQKFCQh4C6PWEAECBAgQIECAAAECBAgQIECAAAECBPIVEPDm66k2AgQIECBAgAABAgQIECBAgAABAgQIFCYg4C2MWkMECBAgQIAAAQIECBAgQIAAAQIECBDIV0DAm6+n2ggQIECAAAECBAgQIECAAAECBAgQIFCYgIC3MGoNESBAgAABAgQIECBAgAABAgQIECBAIF8BAW++nmojQIAAAQIECBAgQIAAAQIECBAgQIBAYQIC3sKoNUSAAAECBAgQIECAAAECBAgQIECAAIF8BQS8+XqqjQABAgQIECBAgAABAgQIECBAgAABAoUJCHgLo9YQAQIECBAgQIAAAQIECBAgQIAAAQIE8hUQ8ObrqTYCBAgQIECAAAECBAgQIECAAAECBAgUJiDgLYxaQwQIECBAgAABAgQIECBAgAABAgQIEMhXQMCbr6faCBAgQIAAAQIECBAgQIAAAQIECBAgUJiAgLcwag0RIECAAAECBAgQIECAAAECBAgQIEAgXwEBb76eaiNAgAABAgQIECBAgAABAgQIECBAgEBhAgLewqg1RIAAAQIECBAgQIAAAQIECBAgQIAAgXwFBLz5eqqNAAECBAgQIECAAAECBAgQIECAAAEChQkIeAuj1hABAgQIECBAgAABAgQIECBAgAABAgTyFRDw5uupNgIECBAgQIAAAQIECBAgQIAAAQIECBQmIOAtjFpDBAgQIECAAAECBAgQIECAAAECBAgQyFdAwJuvp9oIECBAgAABAgQIECBAgAABAgQIECBQmICAtzBqDREgQIAAAQIECBAgQIAAAQIECBAgQCBfAQFvvp5qI0CAAAECBAgQIECAAAECBAgQIECAQGECAt7CqDVEgAABAgQIECBAgAABAgQIECBAgACBfAUEvPl6qo0AAQIECBAgQIAAAQIECBAgQIAAAQKFCQh4C6PWEAECBAgQIECAAAECBAgQIECAAAECBPIVEPDm66k2AgQIECBAgAABAgQIECBAgAABAgQIFCYg4C2MWkMECBAgQIAAAQIECBAgQIAAAQIECBDIV0DAm6+n2ggQIECAAAECBAgQIECAAAECBAgQIFCYgIC3MGoNESBAgAABAgQIECBAgAABAgQIECBAIF8BAW++nmojQIAAAQIECBAgQIAAAQIECBAgQIBAYQIC3sKoNUSAAAECBAgQIECAAAECBAgQIECAAIF8BQS8+XqqjQABAgQIECBAgAABAgQIECBAgAABAoUJCHgLo9YQAQIECBAgQIAAAQIECBAgQIAAAQIE8hUQ8ObrqTYCBAgQIECAAAECBAgQIECAAAECBAgUJiDgLYxaQwQIECBAgAABAgQIECBAgAABAgQIEMhXQMCbr6faCBAgQIAAAQIECBAgQIAAAQIECBAgUJiAgLcwag0RIECAAAECBAgQIECAAAECBAgQIEAgXwEBb76eaiNAgAABAgQIECBAgAABAgQIECBAgEBhAgLewqg1RIAAAQIECBAgQIAAAQIECBAgQIAAgXwFBLz5eqqNAAECBAgQIECAAAECBAgQIECAAAEChQkIeAuj1hABAgQIECBAgAABAgQIECBAgAABAgTyFRDw5uupNgIECBAgQIAAAQIECBAgQIAAAQIECBQmIOAtjFpDBAgQIECAAAECBAgQIECAAAECBAgQyFdAwJuvp9oIECBAgAABAgQIECBAgAABAgQIECBQmICAtzBqDREgQIAAAQIECBAgQIAAAQIECBAgQCBfAQFvvp5qI0CAAAECBAgQIECAAAECBAgQIECAQGECAt7CqDVEgAABAgQIECBAgAABAgQIECBAgACBfAUEvPl6qo0AAQIECBAgQIAAAQIECBAgQIAAAQKFCQh4C6PWEAECBAgQIECAAAECBAgQIECAAAECBPIVEPDm66k2AgQIECBAgAABAgQIECBAgAABAgQIFCYg4C2MWkMECBAgQIAAAQIECBAgQIAAAQIECBDIV0DAm6+n2ggQIECAAAECBAgQIECAAAECBAgQIFCYgIC3MGoNESBAgAABAgQIECBAgAABAgQIECBAIF8BAW++nmojQIAAAQIECBAgQIAAAQIECBAgQIBAYQIC3sKoNUSAAAECBAgQIECAAAECBAgQIECAAIF8BQS8+XqqjQABAgQIECBAgAABAgQIECBAgAABAoUJCHgLo9YQAQIECBAgQIAAAQIECBAgQIAAAQIE8hUQ8ObrqTYCBAgQIECAAAECBAgQIECAAAECBAgUJiDgLYxaQwQIECBAgAABAgQIECBAgAABAgQIEMhXQMCbr6faKkDgl//7v/ihW7eIySevgN7oAoHxCPzwQ0w5fHhM8vPPqAgQIECAAAECBAgQIECAAAEC7RYQ8LabzA2VLvDLZJPFlzvtFL9OPXWld1X/CMQkX30V0117bUzy0080CBAgQIAAAQIECBAgQIAAAQLtFhDwtpvMDZUuIOCt9BnSv/oCAl7rgQABAgQIECBAgAABAgQIEChHQMBbjp57K1JAwFuR06JTLQgIeC0NAgQIECBAgAABAgQIECBAoBwBAW85eu6tSAEBb0VOi04JeK0BAgQIECBAgAABAgQIECBAoBMEBLydgKrKCSsg4J2w/lpvn4AdvO3zcjUBAgQIECBAgAABAgQIECDQUEDAa0XUnICAt+amtKYHJOCt6ek1OAIECBAgQIAAAQIECBAg0OkCAt5OJ9ZA0QIC3qLFtVeOgIC3HD33EiBAgAABAgQIECBAgAABAgJea6DmBAS8NTelNT0gAW9NT6/BESBAgAABAgQIECBAgACBThcQ8HY6sQaKFhDwFi2uvXIEBLzl6LmXAAECBAgQIECAAAECBAgQEPBaAzUnIOCtuSmt6QEJeGt6eg2OAAECBAgQIECAAAECBAh0uoCAt9OJNVC0gIC3aHHtlSMg4C1Hz70ECBAgQIAAAQIECBAgQICAgNcaqDkBAW/NTWlND0jAW9PTa3AECBAgQIAAAQIECBAgQKDTBQS8nU6sgaIFBLxFi2uvHAEBbzl67iVAgAABAgQIECBAgAABAgQEvNZAzQkIeGtuSmt6QALemp5egyNAgAABAgQIECBAgAABAp0uIODtdOIJ18A8884X3337bXz88Uft7sRkk00WU001VXz55ZftvjfdMMOMM8bYzz7r0L3l3iTgLVfQ/UUKCHiL1NYWAQIECBAgQIAAAQIECBCoPQEBb43N6S677RH7H3BwTD/99DHJJJNko/v111/jk08+jlNOPiFuH3BriyOedtpp45LLrorFFl8ipptuuuy6b7/9Nt4dMyb+fvThMXTIs61q/fP0s2KNPmvGzDPPkrX9008/xQcf/DeuvOKyuOqKywqTFvAWRq2hu2aSiwAAIABJREFUHAQEvDkgqoIAAQIECBAgQIAAAQIECEzEAgLeGpn8FKg++NCj0WWhhVsd0aAH749dd96hyTVzzjlX3HP/Q6Vgt/EFv/zyS+y95+5x7z0Dm9w76aSTxh0D74tu3bq32PbVV10Rxx1zVCHaAt5CmDWSk4CANydI1RAgQIAAAQIECBAgQIAAgYlUQMBbIxN/bt9+8edNN8tG88nHH0cKVK+//pqYdZZZY6dddovNNt8yJp988uz1o488LK67tn+DkT8zdFjMPvufst+9++6YuPWWm+KzTz+NddZdP1ZepWf2+7QTeMluXePzsWMb3Hv+hZfERhtvkv3u66+/jtsG3BIvDnshVl2td2y40caRAuBUDtx/n+y1zi4C3s4WVn+eAgLePDXVRYAAAQIECBAgQIAAAQIEJj4BAW+NzPmoN8fElFNOmR2L0H3xheObb75pMLLlV1gxbrrl9ux3w154PjbZaL3S6wsvskg8MOjR7Od0pMJKyy8dacduXTnrnL6x+RZbZT9eefmlccLxxzSo+/XR78YUU0yRtb36aitnAXFdWX+DDaPfxZdnP74+amSsucZqnS4u4O10Yg3kKCDgzRFTVQQIECBAgAABAgQIECBAYCIUEPDWyKSPee+3B6l98cUX0W2xhZod1Tv/+TA7G/ejjz6M5ZYed5zCFVddE33WXDu7Z5edto+HBj3Q4P50z1tj/pvtxB07dmwsucQipdfTzuCzzz0/+/m2AbfGgfvv3aTtx58aEnPPPU/2+x7dF812BndmEfB2pq668xYQ8OYtqj4CBAgQIECAAAECBAgQIDBxCQh4a2S+Xxo+KnuwWip/3nj9eOH55xqMrP4u3YF33RH77LVH6fWhL7wcs8wya3YEw/zz/KnB7t26ix578tmYZ555sx/nm3v20jUXXXJ5rLf+htnvd991p3jg/nubiJ52xtmx9TbbZr8/7G8Hxb//dUOnqgt4O5VX5TkLCHhzBlUdAQIECBAgQIAAAQIECBCYyAQEvDUy4RdedGlssOHG2WhSUHvWGafF+X3PKY3ulgF3xrLLLZ/9vNmfN4znhg4pvTZi1Fsx9dRTx+eff54d79BcueyKq2OttdfNXlp1lRVizDtvZ/++9ba7Yplll8v+vcC8c8TPP//c5PZNNt0szuvbL/t93/POzvrWmUXA25m66s5bQMCbt6j6CBAgQIAAAQIECBAgQIDAxCUg4K2R+Z5mmmnilgF3xSJdu5ZG9P3338f9990bc8wxRymEvfaaq+PvRx3eYNSj33k/JptssiZHN9S/qP45vDtut0088sjg7OWHH30y5l9gwezf88w5a7OavXqtHv2vuzF77Zab/x2HHLR/p6oLeDuVV+U5Cwh4cwZVHQECBAgQIECAAAECBAgQmMgEBLw1NuHPDB0Ws8/+p2ZHdc5ZZ8S555zZ4LV0vm46mzeVMWPeiVVX/m2Xb+Ny/ImnxM677Jb9+ti/Hxn9r74y+/fzw4bHH2eeOTuyIR3d0FzpvmSPuHPgfdlLTzz+WGy7zRaly6aeYbbcZ+Drrz+NL3bcMX6deurc61YhgbwFUsA7/XXXxdRTz5h31eojQIAAAQIECBAgQIAAgYIEvhn7W7aiEJgQAgLeCaHeCW2mIxZuue2uWHTRxbIjGu684/bosdRSpYebpSbT7y/qd36cduoppR5MPvnk8cZb/8l+fmv0m9F7tZWb7d0xx54Qu+2xZ/Za/YD3xVdGxgwzzJAdzZCOaGiuLLbY4nHP/Q9lLzUOeGddoEfuGh/959X4fIcdBLy5y6qwMwRSwDvD9TfELHOO233fGe2okwABAgQIECBAgAABAgQ6T+Cj0cM6r3I1ExiPgIC3RpZI3c7dFOLus9fucffAu7KRzTnnXHHyqadF795rlEZ6/333xB677Vz6Oe3gTTt533//vVhp+aWbFTn9zHNiq63/kr225x67xr33DMz+/cTTQ2OuuebOwuN552p+N+4qPVeN62+8Obv+rjvviH33HveANzt4a2QBGkaHBezg7TCdGwkQIECAAAECBAgQIFAxAnbwVsxUTJQdEfDWwLSnh5+lh6ClMvK112LtNXs1GdXqa6wZV/W/rvT7RbrMG999913286g3x8SUU04Zn3z8cSyz1BLNivS7+LJYf4ONstfWXWv1GDHi1d8C23seiG7dumf/bukM3g032jgu6Hdpds2lF/eLU04+oVPVncHbqbwqz1nAGbw5g6qOAAECBAgQIECAAAECBAhMZAIC3hqY8JP/cVpsv8NO2Uj6nnd2nHXGac2OasjzL8Wss/62y3bLzTeJZ595Ovv3sJdGxIwzzRQ//vhjdJl/rmbvvfu+QbH44r+Fv/XD4RQap/A4lbX79IqRI19rcv9hRxwV++x7QPb74449Oq6+8vJOVRfwdiqvynMWEPDmDKo6AgQIECBAgAABAgQIECAwkQkIeGtgwusHvOecfUace3bDB6nVDbF+SLvTDtvGw4MHZS8NvPfBWGKJbq2GtK+PfjemmGKK+Omnn2LB+eYsqR1y6OGx/wEHZz9ffNEFceopJzURrd/uBuuuGa+88nKnqgt4O5VX5TkLCHhzBlUdAQIECBAgQIAAAQIECBCYyAQEvDUw4WuutU5cfmX/bCQtnaM72WSTxcuvvh7pYWzpvNyFF5wnfvjhh+ye+kcoDB48KHbeYdsGKptsulmc17df9rvBDz0YO++4Xen1aaaZJl4Z8UZ2hu9nn34aS/dYPH755ZfS6+kM4MefGhKTTjpp9nqP7ot2uriAt9OJNZCjgIA3R0xVESBAgAABAgQIECBAgACBiVBAwFsDkz755JPHS8NHxVRTTZWNZuiQZ2PnHbeNr776Kvt5hhlnjOtuuKl0xMLzzw2NTTfZoMHI687hTb+8+qor4sLzz4svvvg8Nthw4zjz7POygDaV+ufv1lVwx8D7Yskle2Q/Dnvh+TjisEOyoxpWWnmV6HfRZVn7qfS7sG+cduopnS4u4O10Yg3kKCDgzRFTVQQIECBAgAABAgQIECBAYCIUEPDWyKQvv8KK8e+bb8t20qaSdtH+73+fxKSTTBoz/fGPpd+PHTs2VlyuR+kBa3XD32zzLeOsc/qWrmuOZeBdd8Q+e+3R5KUuCy0Udw68vxQwpwvSLuG6vqSf33vvP9Gnd88m7XYGv4C3M1TV2VkCAt7OklUvAQIECBAgQIAAAQIECBCYOAQEvDU0z+kc3b4XXBTzL7Bgk1GlwPX22wbE4YceVDqaofFFq67aKy65/KoGQW1dWJzO121t9+0ss8wad959X8w++58aVJvafW7okOyhbvWPbuhMdgFvZ+qqO28BAW/eouojQIAAAQIECBAgQIAAAQITl4CAtwbne4455oxlll02Fl1s8fju2+/iheefi+efHxrffPNNm0abwtq11l4npptu+uxBbCNGvNqm+9JF6YzfXr1Xj4UX6RpDnn0mnnryicKC3bpOCnjbPF0urAABAW8FTIIuECBAgAABAgQIECBAgACBKhYQ8Fbx5Ol68wICXiujmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzokdlCgh4ywR0e6ECAt5CuTVGgAABAgQIECBAgAABAgRqTkDAW3NTakACXmugmgQEvNU0W/pKgAABAgQIECBAgAABAgQqT0DAW3lzUhE9mmyyyWKqqaaKL7/8skP9mWHGGWPsZ5916N5ybxLwlivo/iIFBLxFamuLAAECBAgQIECAAAECBAjUnoCAtwbmdMaZZooHHnykXSPZbNONYsw7bze4Z9ppp41LLrsqFlt8iZhuuumy17799tt4d8yY+PvRh8fQIc+22sY/Tz8r1uizZsw88ywxySSTxE8//RQffPDfuPKKy+KqKy5rV//KuVjAW46ee4sWEPAWLa49AgQIECBAgAABAgQIECBQWwIC3hqYz7nnnicef2pIu0ay8YbrxovDXijdM+ecc8U99z9UCnYbV/bLL7/E3nvuHvfeM7BJO5NOOmncMfC+6Nate4t9uPqqK+K4Y45qVx87erGAt6Ny7psQAgLeCaGuTQIECBAgQIAAAQIECBAgUDsCAt4amMu02/bGmwaMdyTzzDNv/OEPf8iuaxzwPjN0WMw++5+y1959d0zcestN8dmnn8Y6664fK6/SM/v9r7/+Gkt26xqfjx3boK3zL7wkNtp4k+x3X3/9ddw24JYsPF51td6x4UYbRwqAUzlw/32y1zq7CHg7W1j9eQoIePPUVBcBAgQIECBAgAABAgQIEJj4BAS8E9GcD3/tzZhmmmki7cZdcolF4osvvshGv/Aii8QDgx7N/p2OVFhp+aWza+rKWef0jc232Cr78crLL40Tjj+mgdrro9+NKaaYIjuSYfXVVs4C4rqy/gYbRr+LL89+fH3UyFhzjdU6XVzA2+nEGshRQMCbI6aqCBAgQIAAAQIECBAgQIDARCgg4J1IJv3gvx0WBxx4SDbam2/6V/zt4ANKI7/iqmuiz5prZz/vstP28dCgBxqopPN03xrz32wn7tixY7NwuK5stvmWcfa552c/3jbg1jhw/72biKbjI9IxEqn06L5otjO4M4uAtzN11Z23gIA3b1H1ESBAgAABAgQIECBAgACBiUtAwDsRzHfaXZt2704++eTx448/xuJdF4wffvihNPKhL7wcs8wya3YEw/zz/KnB7t26ix578tlIRzykMt/cs5euueiSy2O99TfMfr/7rjvFA/ff20T0tDPOjq232Tb7/WF/Oyj+/a8bOlVdwNupvCrPWUDAmzOo6ggQIECAAAECBAgQIECAwEQmIOCdCCa8/hELF190QZx6ykkNRj1i1Fsx9dRTx+effx7dF1+4WZHLrrg61lp73ey1VVdZIca883b271tvuyuWWXa57N8LzDtH/Pzzz03u32TTzeK8vv2y3/c97+w464zTOlVdwNupvCrPWUDAmzOo6ggQIECAAAECBAgQIECAwEQmIOCt8Qn/4x9njrRDNx2v8O2338ZiiyzQZIfu6Hfej8kmmyw++ujDWG7p7s2K1A+Jd9xum3jkkcHZdQ8/+mTMv8CC2b/nmXPWZu/t1Wv16H/djdlrt9z87zjkoP07VV3A26m8Ks9ZQMCbM6jqCBAgQIAAAQIECBAgQIDARCYg4K3xCb/uhpui56q/PdjslJNOiEsv+W0nbV1J5+u+858Psx/HjHknVl15+WZFjj/xlNh5l92y1479+5HR/+ors38/P2x4/HHmmbPQOB3d0FzpvmSPuHPgfdlLTzz+WGy7zRaly2b402/hcJ7ls0/ejS923CF+nXrqPKtVF4FOEUgB7/TXXx8zzDRXp9SvUgIECBAgQIAAAQIECBDofIGx/32z8xvRAoEWBAS8Nbw0uiy0UAwa/Hg2wsYPR6sbdjqX9423/pP9+NboN6P3ais3K3LMsSfEbnvsmb1WP+B98ZWRMcMMM2RHM6QjGporiy22eNxz/0PZS40D3lkX6JH7DHz0n1fj8x0EvLnDqrBTBFLAO8P1N8Qsc3btlPpVSoAAAQIECBAgQIAAAQKdL/DR6GGd34gWCLQgIOCt4aVx3wMPR9dFF81GeOD++8RtA25pdrRpB2/ayfv+++/FSssv3ew1p595Tmy19V+y1/bcY9e4956BvwW2Tw+NueaaO3tA27xzzdbsvav0XDWuv/Hm7LW77rwj9t17j9J1k//+D7nPwA8/fR9f7LSTHby5y6qwMwR+O6Lhuphissk7o3p1EiBAgAABAgQIECBAgEABAj9+93UBrWiCQPMCAt4aXRn1Q9UPPvhvrLBsyztlR705Jqaccsr45OOPY5mllmhWpN/Fl8X6G2yUvbbuWqvHiBGv/hbY3vNAdOv227m9LZ3Bu+FGG8cF/S7Nrrn04n5xyskndKq6M3g7lVflOQs4gzdnUNURIECAAAECBAgQIECAAIGJTEDAW6MT/szQYTH77H/KRrfDtlvHo48+3OJIh700Imacaab48ccfo8v8zZ8Devd9g2LxxX8LfxfpMm9899132b+v6n9drL7Gmtm/1+7TK0aOfK1JO4cdcVTss+8B2e+PO/bouPrKyztVXcDbqbwqz1lAwJszqOoIECBAgAABAgQIECBAgMBEJiDgrcEJT0cppCMVUnnzjddjjd49Wx3lwHsfjCWW6NZqSPv66HdjiimmiJ9++ikWnG/OUn2HHHp47H/AwdnPF190QZx6yklN2qofDm+w7prxyisvd6q6gLdTeVWes4CAN2dQ1REgQIAAAQIECBAgQIAAgYlMQMBbYxOeztJ9ZcQbMc0002Qj23C9teLll19qdZT1j1AYPHhQ7LzDtg2u32TTzeK8vv2y3w1+6MHYecftSq+ndlJ7qd3PPv00lu6xePzyyy+l1+ecc654/KkhMemkk2av9+j+25nAnVkEvJ2pq+68BQS8eYuqjwABAgQIECBAgAABAgQITFwCAt4am+/6O2qHvfB8bLLRem0aYd05vOniq6+6Ii48/7z44ovPY4MNN44zzz4vC2hTqX/+bl3Fdwy8L5Zc8rczflObRxx2SHZUw0orrxL9LrosZphxxuy1fhf2jdNOPaVN/SnnIgFvOXruLVpAwFu0uPYIECBAgAABAgQIECBAgEBtCQh4a2g+0xEKw197MyaffPL49ddfY7WeK8aYd95u0wg323zLOOucvtlO3JbKwLvuiH322qPJy10WWijuHHh/TDXVVKXXUvv163rvvf9En949S2f3tqlTHbxIwNtBOLdNEAEB7wRh1ygBAgQIECBAgAABAgQIEKgZAQFvzUxlxEmn/DN22HHnbESPPDI4dtxum3aNbtVVe8Ull1/VIKhNFaQjF9L5uq3tvp1lllnjzrvvKz3Yra7hFPQ+N3RIbLn5Jg2ObmhXx9p5sYC3nWAun6ACAt4Jyq9xAgQIECBAgAABAgQIECBQ9QIC3qqfwvwHkMLatdZeJ6abbvp4ePCgGDHi1TY3MvXUU0ev3qvHwot0jSHPPhNPPflEYcFuXScFvG2eLhdWgICAtwImQRcIECBAgAABAgQIECBAgEAVCwh4q3jydL15AQGvlVFNAgLeapotfSVAgAABAgQIECBAgAABApUnIOCtvDnRozIFBLxlArq9UAEBb6HcGiNAgAABAgQIECBAgAABAjUnIOCtuSk1IAGvNVBNAgLeapotfSVAgAABAgQIECBAgAABApUnIOCtvDnRozIFBLxlArq9UAEBb6HcGiNAgAABAgQIECBAgAABAjUnIOCtuSk1IAGvNVBNAgLeapotfSVAgAABAgQIECBAgAABApUnIOCtvDnRozIFBLxlArq9UAEBb6HcGiNAgAABAgQIECBAgAABAjUnIOCtuSk1IAGvNVBNAgLeapotfSVAgAABAgQIECBAgAABApUnIOCtvDnRozIFBLxlArq9UAEBb6HcGiNAgAABAgQIECBAgAABAjUnIOCtuSk1IAGvNVBNAgLeapotfSVAgAABAgQIECBAgAABApUnIOCtvDnRozIFBLxlArq9UAEBb6HcGiNAgAABAgQIECBAgAABAjUnIOCtuSk1IAGvNVBNAgLeapotfSVAgAABAgQIECBAgAABAv8/e/cBXUW19n/8gYuA5FKCEEQJIBAIELqA0jsiVUEBQbqogAjiRa5KsSBFegm9ih1BIHQIHSUIKCX0EooUpQsK4SX/NTv/nJuQEwg5M5Mp31nrXffkzMze+/k8w7rr/ta8+1hPgIDXej1hRT4KEPD6CMjtpgoQ8JrKzWQIIIAAAggggAACCCCAAAIIOE6AgNdxLaUgAl6eATsJEPDaqVusFQEEEEAAAQQQQAABBBBAAAHrCRDwWq8nrMhHAQJeHwG53VQBAl5TuZkMAQQQQAABBBBAAAEEEEAAAccJEPA6rqUURMDLM2AnAQJeO3WLtSKAAAIIIIAAAggggAACCCBgPQECXuv1hBX5KEDA6yMgt5sqQMBrKjeTIYAAAggggAACCCCAAAIIIOA4AQJex7WUggh4eQbsJEDAa6dusVYEEEAAAQQQQAABBBBAAAEErCdAwGu9nrAiHwUIeH0E5HZTBQh4TeVmMgQQQAABBBBAAAEEEEAAAQQcJ0DA67iWUhABL8+AnQQIeO3ULdaKAAIIIIAAAggggAACCCCAgPUECHit1xNW5KMAAa+PgNxuqgABr6ncTIYAAggggAACCCCAAAIIIICA4wQIeB3XUgoi4OUZsJMAAa+dusVaEUAAAQQQQAABBBBAAAEEELCeAAGv9XrCinwUIOD1EZDbTRUg4DWVm8kQQAABBBBAAAEEEEAAAQQQcJwAAa/jWkpBBLw8A3YSIOC1U7dYKwIIIIAAAggggAACCCCAAALWEyDgtV5PWJGPAgS8PgJyu6kCBLymcjMZAggggAACCCCAAAIIIIAAAo4TIOB1XEsvpsIEAAAgAElEQVQpiICXZ8BOAgS8duoWa0UAAQQQQAABBBBAAAEEEEDAegIEvNbrCSvyUYCA10dAbjdVgIDXVG4mQwABBBBAAAEEEEAAAQQQQMBxAgS8jmspBRHw8gzYSYCA107dYq0IIIAAAggggAACCCCAAAIIWE+AgNd6PWFFPgoQ8PoIyO2mChDwmsrNZAgggAACCCCAAAIIIIAAAgg4ToCA13EtpSACXp4BOwkQ8NqpW6wVAQQQQAABBBBAAAEEEEAAAesJEPBaryesyEcBAl4fAbndVAECXlO5mQwBBBBAAAEEEEAAAQQQQAABxwkQ8DqupRREwMszYCcBAl47dYu1IoAAAggggAACCCCAAAIIIGA9AQJe6/WEFfkoQMDrIyC3mypAwGsqN5MhgAACCCCAAAIIIIAAAggg4DgBAl7HtZSCCHh5BuwkQMBrp26xVgQQQAABBBBAAAEEEEAAAQSsJ0DAa72esCIfBQh4fQTkdlMFCHhN5WYyBBBAAAEEEEAAAQQQQAABBBwnQMDruJZSEAEvz4CdBAh47dQt1ooAAggggAACCCCAAAIIIICA9QQIeK3XE1bkowABr4+A3G6qAAGvqdxMhgACCCCAAAIIIIAAAggggIDjBAh4HddSCiLg5RmwkwABr526xVoRQAABBBBAAAEEEEAAAQQQsJ4AAa/1esKKfBQg4PURkNtNFSDgNZWbyRBAAAEEEEAAAQQQQAABBBBwnAABr+NaSkEEvDwDdhIg4LVTt1grAggggAACCCCAAAIIIIAAAtYTIOC1Xk9YkY8CBLw+AnK7qQIEvKZyMxkCCCCAAAIIIIAAAggggAACjhMg4HVcSymIgJdnwE4CBLx26hZrRQABBBBAAAEEEEAAAQQQQMB6AgS81usJK/JRgIDXR0BuN1WAgNdUbiZDAAEEEEAAAQQQQAABBBBAwHECBLyOaykFEfDyDNhJgIDXTt1irQgggAACCCCAAAIIIIAAAghYT4CA13o9YUU+ChDw+gjI7aYKEPCays1kCCCAAAIIIIAAAggggAACCDhOgIDXcS2lIAJengE7CRDw2qlbrBUBBBBAAAEEEEAAAQQQQAAB6wkQ8FqvJ6zIRwECXh8Bud1UAQJeU7mZDAEEEEAAAQQQQAABBBBAAAHHCRDwOq6lFETAyzNgJwECXjt1i7UigAACCCCAAAIIIIAAAgggYD0BAl7r9YQV+ShAwOsjILebKkDAayo3kyGAAAIIIIAAAggggAACCCDgOAECXse1lIIIeHkG7CRAwGunbrFWBBBAAAEEEEAAAQQQQAABBKwnQMBrvZ6wIh8FCHh9BOR2UwUIeE3lZjIEEEAAAQQQQAABBBBAAAEEHCdAwOu4llIQAS/PgJ0ECHjt1C3WigACCCCAAAIIIIAAAggggID1BAh4rdcTVuSjAAGvj4DcbqoAAa+p3EyGAAIIIIAAAggggAACCCCAgOMECHgd11IKIuDlGbCTAAGvnbrFWhFAAAEEEEAAAQQQQAABBBCwngABr/V6YsiKsvn7y80bN+T27dvJGj9dunSSKVMmuXbtWrKuv/ci/+zZ5fKlSym619ebCHh9FeR+MwUIeM3UZi4EEEAAAQQQQAABBBBAAAEEnCdAwOu8nqqK2r7aXuo/97wUCQ6WnDkDJG3atOr7X7ZHSPMXGnutOkuWLDJl2iwpHlJCsmbNqq65efOmnIyKkg8/eE+2R2y7r9bQ4SOldp26ar40adJIdHS0nD37u8ycMU1mzZhmmjQBr2nUTKSDAAGvDogMgQACCCCAAAIIIIAAAggggICLBQh4Hdb8DBkyyDffLZCy5Z72Wtmxo0ekZvXKic7lyRMoy1au9QS7915w9+5d6fbGa7J8WViie7XweFHYCilZslSSmrNnzZCB/d83RZuA1xRmJtFJgIBXJ0iGQQABBBBAAAEEEEAAAQQQQMClAgS8Dmp8YGBeCVu+WrJly6aq0t6g1d663b37V7l29ZqULVdObt78W97q/nqiqn/evkty535CfX/yZJT8MP87uXTxojzXoKFUrlJVfR8TEyOlSxaVK5cvJ7h//MQp0qRpM/XdX3/9JQsXzJdfd+2UatVrSuMmTT1vD/fq2V2dM/og4DVamPH1FCDg1VOTsRBAAAEEEEAAAQQQQAABBBBwnwABr4N6/uPiZVKmbDlV0b59e6VN65eStQ+uto3DqjUb1H3algqVKpYT7Y3duGPk6HHS4qWW6s+Z06fKR4P6J1A7dPSkaG8Oa4FyreqVVUAcdzRs1FhCJ09Xfx46eEDq1q5uuDgBr+HETKCjAAGvjpgMhQACCCCAAAIIIIAAAggggIALBQh4HdL0oMKFZU34JlXNHxcuyNNlSyS7shmz5kqduvXV9Z06vCpr16xKcK+2n+6xqN/Vm7iXL1+W0iWCPeebt3hZRo0Zr/5euOAH6dWzW6J5N22NkLx586nvy5Qqpt4MNvIg4DVSl7H1FiDg1VuU8RBAAAEEEEAAAQQQQAABBBBwlwABr0P6vXDRUs++u00aPSe//bor2ZVt37lbAgJyqS0YCuR7IsHbu3GDbNyyTfLly6/+fCpvbs81k6ZMl+cbxv5o22udO8iqlcsTzTvs81HSqnUb9X3fd3vLt998ley1peRCAt6UqHFPagkQ8KaWPPMigAACCCCAAAIIIIAAAggg4AwBAl5n9FEOHzsl6dOnl+vXr0uJYkFStWp1KVGylOTLn18uXvxTtkdESPja1V6rjTx4TPz8/OTKlStSKqSI12umzZgt9eo3UOeqVXlGok4cV59/WLhEni5fQX0umP9JuXPnTqL7m73YXMaOC1Xfjxs7SkZ+PsxQdQJeQ3kZXGcBAl6dQRkOAQQQQAABBBBAAAEEEEAAAZcJEPA6oOHaFgonTp1TlWj74P7f//2fZMyYMVFl2vYKfXr3TLQFw9ETZyRdunRy/vw5qVCulFeR+Pvwtm/bWtavD1fXrduwRQoULKQ+58uTy+u9NWrUkjnzvlbn5n//rVqDkQcBr5G6jK23AAGv3qKMhwACCCCAAAIIIIAAAggggIC7BAh4HdDvgoWCJHz95kSV3Lp1S32n/QBa3KH9eFrTRs/J7t2/qa/ih8NRUSekWuWKXkUGfTxYOnbqos4N+PC/Mmf2TPV5x669kiNnTrVlg7Z1g7ejVOkysjhshTq1edNG9eNvcUeugmV078D5U/vkSrt2EuPnp/vYDIiA3gJawOv/5VcSkKeo3kMzHgIIIIAAAggggAACCCCAgEkC548mf6tMk5bENC4SIOB1QLMbN2kqE0KnqkquXr0qY8eMlFkzpnn2ydV+4Gzm7C8kqHDs9gvaNg4hRWPfutW2ddC2d9COY0ePSM3qlb2K9B/wkXTp+oY6Fz/g/XXPAfH391dbM2hbNHg7ihcPkWUr16pTBLwOeOAoQVeBtNevS7avvpaAJ//344W6TsBgCCCAAAIIIIAAAggggAAChgsQ8BpOzAT3ESDgdcDj0fqVtjJ0+EhVyexZM2Rg//cTVaUFub/s2itZs2ZV50qXLCqXL11Sn7XtHbQ3ec+cOS2VKpbzKjJ8xGhp2eoVde6Nrp1l+bIw9XnzT9slMDCv+oG2/IGPe723StVq8uXX36tzSxYvkh7duhqqzhYNhvIyuM4CWsCb5YsvJE10tM4jMxwCCCCAAAIIIIAAAggggAACCLhBgIDXAV2O/4bs6lUrpEun9l6riv9Dae/0ekt+mP+duu7gkSi1Z+8fFy7I02VLeL03dPI0adioiTrXoF4tiYzcFxvYLlslJUvG7tub1B688d8wnjo5VAZ/+pGh6gS8hvIyuM4CBLw6gzIcAggggAACCCCAAAIIIIAAAi4TIOB1QMPTpk0rx0+eVZUc2L9f6tet4bWqwUOGS9tXY8PfYUMGS+jEcerzrt8iJftjj8nt27clqECg13uXrlgjISGx4W9wUH75+++/1edZc+ZJrdp11ef6dWrIgQP7E93ft9/70r3H2+r7gQM+kNkzpxuqTsBrKC+D6yxAwKszKMMhgAACCCCAAAIIIIAAAggg4DIBAl6HNDzuLdwbN25IsSIFvFY1Z97XUqNGLXWuxYtNZHvENvU5bPlqKVGi5H1D2kNHT6ofa4uOjpZCT+XxjN/nP+9Jz7ffUX9PnjRBhgz+JNHc8cPhRg3qyp49uw1VJ+A1lJfBdRYg4NUZlOEQQAABBBBAAAEEEEAAAQQQcJkAAa9DGj5/wWIpX6Giqmbm9Kny0aD+CSrLkiWL7PwtUh555BG1X+5TeXOr/9SO+FsohIevkY7t2iS4t9mLzWXsuFD1Xfja1dKxfVvP+cyZM8ueyMNqD99LFy9KuTIhnh930y7KkydQNm2NEO0tY+18mVLFDBcn4DWcmAl0FCDg1RGToRBAAAEEEEAAAQQQQAABBBBwoQABr0OaniNHTtm+c7cKUrXgVtvrduiQT1XYqr2dO2vOl5IzIEBV++03X0nfd3snqDzuDWDtS+2H2iaOHytXr16RRo2byohRY9W42hF//924ARaFrZDSpcuoP3ft3CH9+vZRWzVUqlxFQidNE//s2dU5bUsIbWsIow8CXqOFGV9PAQJePTUZCwEEEEAAAQQQQAABBBBAAAH3CRDwOqjn7/btJ2/1TBjcagFvXDirlXrq1Emp8mz5RFU3b/GyjBw9Tr2Jm9QRtmSRdH+za6LTQYULy+KwlZIpUybPOS1kjj/W6dOnpE7Nqp69e41kJ+A1Upex9RYg4NVblPEQQAABBBBAAAEEEEAAAQQQcJcAAa/D+t3shRdlyLCRCcJWrUQtcP1i7mzp/0G/JCuuVq2GTJk+K9G9Wkis7a97v7dvAwJyyeKlKyR37icSjK/N+8v2CHm5RbMEWzcYyU7Aa6QuY+stQMCrtyjjIYAAAggggAACCCCAAAIIIOAuAQJeh/Zbe6u2cpVqkvnfmeXnn7fKjl+2Jztg1cLaevWfk6xZs8m68DUSGbkv2Up+fn5So2YtKRJcVCK2/Sxbt2xO9rzJnuQBFxLw6iXJOGYIEPCaocwcCCCAAAIIIIAAAggggAACCDhXgIDXub11bWUEvK5tvS0LJ+C1ZdtYNAIIIIAAAggggAACCCCAAAKWESDgtUwrWIheAgS8ekkyjhkCBLxmKDMHAggggAACCCCAAAIIIIAAAs4VIOB1bm9dWxkBr2tbb8vCCXht2TYWjQACCCCAAAIIIIAAAggggIBlBAh4LdMKFqKXAAGvXpKMY4YAAa8ZysyBAAIIIIAAAggggAACCCCAgHMFCHid21vXVkbA69rW27JwAl5bto1FI4AAAggggAACCCCAAAIIIGAZAQJey7SCheglQMCrlyTjmCFAwGuGMnMggAACCCCAAAIIIIAAAggg4FwBAl7n9ta1lRHwurb1tiycgNeWbWPRCCCAAAIIIIAAAggggAACCFhGgIDXMq1gIXoJEPDqJck4ZggQ8JqhzBwIIIAAAggggAACCCCAAAIIOFeAgNe5vXVtZQS8rm29LQsn4LVl21g0AggggAACCCCAAAIIIIAAApYRIOC1TCtYiF4CBLx6STKOGQIEvGYoMwcCCCCAAAIIIIAAAggggAACzhUg4HVub11bGQGva1tvy8IJeG3ZNhaNAAIIIIAAAggggAACCCCAgGUECHgt0woWopcAAa9ekoxjhgABrxnKzIEAAggggAACCCCAAAIIIICAcwUIeJ3bW9dWRsDr2tbbsnACXlu2jUUjgAACCCCAAAIIIIAAAgggYBkBAl7LtIKF6CVAwKuXJOOYIUDAa4YycyCAAAIIIIAAAggggAACCCDgXAECXuf21rWVEfC6tvW2LJyA15ZtY9EIIIAAAggggAACCCCAAAIIWEaAgNcyrWAhegkQ8OolyThmCBDwmqHMHAgggAACCCCAAAIIIIAAAgg4V4CA17m9dW1lBLyubb0tCyfgtWXbWDQCCCCAAAIIIIAAAggggAAClhEg4LVMK1iIXgIEvHpJMo4ZAgS8ZigzBwIIIIAAAggggAACCCCAAALOFSDgdW5vXVsZAa9rW2/Lwgl4bdk2Fo0AAggggAACCCCAAAIIIICAZQQIeC3TChailwABr16SjGOGAAGvGcrMgQACCCCAAAIIIIAAAggggIBzBQh4ndtb11ZGwOva1tuycAJeW7aNRSOAAAIIIIAAAggggAACCCBgGQECXsu0goXoJUDAq5ck45ghQMBrhjJzIIAAAggggAACCCCAAAIIIOBcAQJe5/bWtZUR8Lq29bYsnIDXlm1j0QgggAACCCCAAAIIIIAAAghYRoCA1zKtYCF6CRDw6iXJOGYIEPCaocwcCCCAAAIIIIAAAggggAACCDhXgIDXub11bWUEvK5tvS0LJ+C1ZdtYNAIIIIAAAggggAACCCCAAAKWESDgtUwrWIheAgS8ekkyjhkCBLxmKDMHAggggAACCCCAAAIIIIAAAs4VIOB1bm9dWxkBr2tbb8vCCXht2TYWjQACCCCAAAIIIIAAAggggIBlBAh4LdMKFqKXAAGvXpKMY4YAAa8ZysyBAAIIIIAAAggggAACCCCAgHMFCHid21vXVkbA69rW27JwAl5bto1FI4AAAggggAACCCCAAAIIIGAZAQJey7SCheglQMCrlyTjmCFAwGuGMnMggAACCCCAAAIIIIAAAggg4FwBVwS8gYF5pV37jpL/qafk8OFDsujHBXLwwAHndtXllRHwuvwBsFn5BLw2axjLRQABBBBAAAEEEEAAAQQQQMBiAo4IeHf9FinZ/P0V7agRw2X8uNEe5ravtpdPPxsmadKkSUA/c/pU+WhQf4u1g+XoIUDAq4ciY5glQMBrljTzIIAAAggggAACCCCAAAIIIOBMAdsHvOUrVJT5Cxar7ty5c0dKlwiW69evq78ffzy3/BSxU9KmTeu1eyOGD00QBjuzxe6rioDXfT23c8UEvHbuHmtHAAEEEEAAAQQQQAABBBBAIPUFbB/wTpw0VRo1bqokv/v2a/lPn14e1cFDhov2Bm/ccfJklNz65x8JKlxEfXXz5k0pVqSAxMTEpH4nWIFuAgS8ulEykAkCBLwmIDMFAggggAACCCCAAAIIIIAAAg4WsH3Au2zlWilePES1qFaNKnL0yGFPu7b98qt6i1c7vv/uG3n3nbfVZ+2NX+3NX+3o0a2rLFm8yMEtdl9pBLzu67mdKybgtXP3WDsCCCCAAAIIIIAAAggggAACqS9g+4B3+87dEhCQS+7evStP5Y0Nc+OO4yfPerZnqFSxnJw5c1qd6vza6zJg4Mfqc+jEcTJsyODU7wQr0E2AgFc3SgYyQYCA1wRkpkAAAQQQQAABBBBAAAEEEEDAwQK2D3j3RB6WLFmyyLVr16REsSBPq7S3erW3e7VD24qhaOGnPOfy5s0nm7ZGqL9XrlgmXbt0dHCL3VcaAa/7em7nigl47dw91o4AAggggAACCCCAAAIIIIBA6gvYPuDduGWb5MuXX+2jWyDfE+pNXu0Y9PFg6dipi/p8YP9+qV+3hke7WLHisnxVuPo7PHyNdGzXJvU7wQp0EyDg1Y2SgUwQIOA1AZkpEEAAAQQQQAABBBBAAAEEEHCwgO0D3i+//l6qVK2mWvRa5w6yauVy9Xnv/iOSOXNm9fmLubPlw/ff87TxzW5vSb/3P1R/z5w+VT4a1N/BLXZfaQS87uu5nSsm4LVz91g7AggggAACCCCAAAIIIIAAAqkvYPuA9+WWreXzkWOU5K1bt2TZ0jApX6GC5MkT6NGtU6uqHD50yPP3V9/Ml8pVqqq/+/TuKfO//zb1O8EKdBMg4NWNkoFMECDgNQGZKRBAAAEEEEAAAQQQQAABBBBwsIDtA16tN7/s3CM5AwK8tkn7YTXtB9bijty5n5CfInZKmjRp1FdVni0vp06ddHCL3VcaAa/7em7nigl47dw91o4AAggggAACCCCAAAIIIIBA6gs4IuANDi4q8xcu8WzJEMcaHR0t9evWlKNHDnukv/1+oTzzbCX19/nz56RCuVKp3wVWoKsAAa+unAxmsAABr8HADI8AAggggAACCCCAAAIIIICAwwUcEfBqPdL22+3z7ntSvuIzkiF9etm3b58MGviBXL50KUELt27bIZkezaS+Gz9+jMyYNsXhLXZfeQS87uu5nSsm4LVz91g7AggggAACCCCAAAIIIIAAAqkv4JiAN/UpWYFVBAh4rdIJ1pEcAQLe5ChxDQIIIIAAAggggAACCCCAAAIIJCVAwMuz4TgBAl7HtdTRBRHwOrq9FIcAAggggAACCCCAAAIIIICA4QKOCnjTp08vrVq3keIhJaRQoSDJli2bnDwZJR3bt/VAdn7tdfW9dixetFAOHzpkODITmCtAwGuuN7P5JkDA65sfdyOAAAIIIIAAAggggAACCCDgdgHHBLwdO78m/f77oWTMmDFBT69fvy4hRQt5vlu7bpMUCiqs/t68aaO0af2S258Bx9VPwOu4ljq6IAJeR7eX4hBAAAEEEEAAAQQQQAABBBAwXMARAe/AQZ9Ipy5dvWLdG/AGFS4sa8I3qWtv374tQQUCDUdmAnMFCHjN9WY23wQIeH3z424EEEAAAQQQQAABBBBAAAEE3C5g+4C3ePEQWbpijaRJk0b18vKlS7Jo0UKpVbuO5M2bT+4NeLVrNm2NUOe0o3XL5rJ1y2a3PweOqp+A11HtdHwxBLyObzEFIoAAAggggAACCCCAAAIIIGCogO0D3tDJ06RhoyYKacvmTfJKqxbq8+wvvpKaNWt7DXjHTZgsTZu9oK4b+tmnMil0vKHIDG6uAAGvud7M5psAAa9vftyNAAIIIIAAAggggAACCCCAgNsFbB/wxr2Ne+fOHSlWpIDcunXrgQFvy1avyPARo9V1C+Z/L7179XD7c+Co+gl4HdVOxxdDwOv4FlMgAggggAACCCCAAAIIIIAAAoYK2D7gPXgkSv2w2rlzZ6Xi06U9WPd7g7dkyVKyZNkqdW14+Brp2K6NocgMbq4AAa+53szmmwABr29+3I0AAggggAACCCCAAAIIIICA2wVsH/Du3X9EMmfOLGfOnJZKFct5+jlr7pdSq1Ydr1s0xH+Dd8qkifLZ4I/d/hwkqj9dunSSKVMmuXbtWops/LNnV/shp8ZBwJsa6syZUgEC3pTKcR8CCCCAAAIIIIAAAggggAACCGgCtg94V6xaJ0WLFZPbt29LUIFAT1fv9wbvrDnzpFbtuuraHt26ypLFixzxNGz5+RfJkD7DA2s5f+G8NHyuTqLrsmTJIlOmzZLiISUka9as6vzNmzflZFSUfPjBe7I9Ytt9xx46fKTUrlNXcuYMUD96Fx0dLWfP/i4zZ0yTWTOmPXBdel1AwKuXJOOYIUDAa4YycyCAAAIIIIAAAggggAACCCDgXAHbB7wjRo2Vl15upTo0ftxoGTF8qPqcVMAbVLiwrF67UQWQ2lG+bEm5cOG8Izp84tQ5T133K+iff/6RIoXyJbgkT55AWbZyrSfYvff+u3fvSrc3XpPly8ISDZ02bVpZFLZCtK0vkjpmz5ohA/u/b4ozAa8pzEyikwABr06QDIMAAggggAACCCCAAAIIIICASwVsH/AGBxeVFavXqWAzJiZGPvl4oMyYNsVrwNu4SVMZOXq8ZMgQ+5brgf37pX7dGo5pfVzAq/3Q3JEjh5Os69zZ36VTh1cTnP95+y7JnfsJ9d3Jk1Hyw/zv5NLFi/Jcg4ZSuUpV9b3mW7pkUbly+XKCe8dPnCJNmjZT3/3111+ycMF8+XXXTqlWvaZo5loArB29enZX54w+CHiNFmZ8PQUIePXUZCwEEEAAAQQQQAABBBBAAAEE3Cdg+4BXa9l/P+gvb7zZw9O9P//4Qx7NlEn8/PxUKLlr5w7Jmzef5MiZ03ON9n21yhVVmOmUIy7g3bt3j9ctGJKqs0hwsKxas0Gd1rZU0PYy1t7YjTtGjh4nLV5qqf6cOX2qfDSof4KhDh09qUJzbUuGWtUrJzBt2KixhE6erq4/dPCA1K1d3XBuAl7DiZlARwECXh0xGQoBBBBAAAEEEEAAAQQQQAABFwo4IuDV+jZ/wWIpX6FislqohbvaVg4Txo9J1vV2uSilAe+MWXOlTt36qkztzd61a1YlKFl7O/pY1O/qTdzLly9L6RLBnvPNW7wso8aMV38vXPCD9OrZLRHXpq0RKmDXjjKliqk3g408CHiN1GVsvQUIePUWZTwEEEAAAQQQQAABBBBAAAEE3CXgmIBXa5u2ncDnI8eI9mNhSR2nT5+SDu1ekcOHDjmu0ykNeLfv3C0BAbnU284F8j2R4O3dOKSNW7ZJvnz51Z9P5c3tuWbSlOnyfMPG6vvXOneQVSuXJ3Id9vkoadW6jfq+77u95dtvvjLUnoDXUF4G11mAgFdnUIZDAAEEEEAAAQQQQAABBBBAwGUCjgp4td5pb5uWKFFSypWvICVLlJLsOR6Tc2fPqj1hf/75Jzl+7KhjWxwX8B4+dFC6d+sqGdJnkCtXrjxwG4rIg8fUdhbataVCinj1mTZjttSr30Cdq1blGYk6cVx9/mHhEnm6fAX1uWD+J+XOnTuJ7m/2YnMZOy5UfT9u7CgZ+fkwQ3tAwGsoL4PrLEDAqzMowyGAAAIIIIAAAggggAACCCDgMgHHBbwu61+CcuMCXm8G2pvL48aM8vr27NETZyRdunRy/vw5qVCulFfC+Pvwtm/bWtavD1fXrduwRQoULKQ+58uTy+u9NWrUkjnzvlbn5n//rfTp3dPQNhHwGsrL4DoLEPDqDMpwCCCAAAIIIIAAAggggAACCLhMgIDXQQ2/X8AbV+biRT/KW91f91StvfGs3acdUVEn1A/PeTsGfTxYOnbqok4N+PC/Mmf2TPV5x6696sfrtB9l07Zu8HaUKl1GFoetUKc2b9oobVq/ZKg6Aa+hvAyuszZ4MYYAACAASURBVAABr86gDIcAAggggAACCCCAAAIIIICAywQIeB3U8AmhU+X48aNy5PAhOXfunGTJklWCggpL6zZtPT9yppX70aD+MnP6VFV5+vTp5fCxU+rzsaNHpGb1yl5F+g/4SLp0fUOdix/w/rrngPj7+6utGbQtGrwdxYuHyLKVa9WpewPeXAXL6N6B86f2yZV27STGz0/3sRkQAb0FtIA321dfS8CT//vxQr3nYDwEEEAAAQQQQAABBBBAAAFjBc4f3WXsBIyOwH0EbBPwvvb6m9K5S1fdm/lqm5aO/MG1e6E+GTxU2rXvqL7eHxkpz9Wr6bkk7s3fM2dOS6WK5bwaDx8xWlq2ekWde6NrZ1m+LEx93vzTdgkMzKt+oC1/4ONe761StZp8+fX36tySxYukR7f/9ZGAV/dHmgFtJkDAa7OGsVwEEEAAAQQQQAABBBBAwIsAAS+PRWoK2CbgHTN2orzQvIXuVq1bNpetWzbrPq4VBzx+8qykTZtWbty4IcWKFPAs8eCRKMmYMaP8ceGCPF22hNelh06eJg0bNVHnGtSrJZGR+2ID22WrpGTJ2H17k9qDt3GTpqK9XawdUyeHyuBPPzKUhy0aDOVlcJ0F2KJBZ1CGQwABBBBAAAEEEEAAAQQQQMBlAgS8Lgp49+4/IpkzZ060ncKu3yIl+2OPye3btyWoQKDXfwJLV6yRkJDY8Dc4KL/8/fff6vOsOfOkVu266nP9OjXkwIH9ie7v2+996d7jbfX9wAEfyOyZ0w39Z0bAaygvg+ssQMCrMyjDIYAAAggggAACCCCAAAIIIOAyAdsEvE8+mUeKFQ/RvT0b1oerYNPph/bm7rGo30X7UbXLly5J6ZJFPSWHLV8tJUqUvG9Ie+joScmQIYNER0dLoafyeO7t85/3pOfb76i/J0+aIEMGf5KIMn443KhBXdmzZ7eh3AS8hvIyuM4CBLw6gzIcAggggAACCCCAAAIIIIAAAi4TsE3A67K+PHS5bV9tL1u2bJbjx456vXfk6HHS4qWW6tz2iG3S4sXY7Ra0I/4WCuHha6RjuzYJxmj2YnMZOy5UfRe+drV0bN/Wc157I3hP5GEVHF+6eFHKlQmRu3fves7nyRMom7ZGqK0htPNlShV76Noe9gYC3ocV4/rUFCDgTU195kYAAQQQQAABBBBAAAEEEEDA/gIEvPbvoarg5+27JHfuJ2Tfvr0y//tv5eetW+TQoYNSPKSEDBj4sTxdvoK6TvsxtLq1qyX6Ybm4fXi1a2bPmiETx4+Vq1evSKPGTWXEqLEqoNWO+PvvxtEtClshpUuXUX/u2rlD+vXto7ZqqFS5ioROmib+2bOrc6ETx8mwIYMNFyfgNZyYCXQUIODVEZOhEEAAAQQQQAABBBBAAAEEEHChAAGvQ5oeF/A+qJyktlFo3uJl0d7y1d7ETeoIW7JIur/ZNdHpoMKFZXHYSsmUKZPnnBYkxx/r9OlTUqdmVc/evQ9apy/nCXh90eNeswUIeM0WZz4EEEAAAQQQQAABBBBAAAEEnCXguIBXe1u0YsVnJUOG9Mnq1Irly+TWrVvJutbKF73Vs7e079BJcgYEeF3mlStXpGf3N2TDhnVJllGtWg2ZMn1WgqBWu1jbckELhu/39m1AQC5ZvHSFeos4/qEFvb9sj5CXWzRLsHWDkZYEvEbqMrbeAgS8eosyHgIIIIAAAggggAACCCCAAALuEnBMwNt/wEfSrkMnSZ8+ecFuXJtbt2wuW7dsdkzXtYC7REhJKVCokOTIkUMOHtiv9ubV9r9N7qGFtfXqPydZs2aTdeFrJDJyX3JvFT8/P6lRs5YUCS4qEdt+Vrbx9+RN9kA+XEjA6wMet5ouQMBrOjkTIoAAAggggAACCCCAAAIIIOAoAUcEvDNnfyG169RLUWOcFvCmCMFhNxHwOqyhDi+HgNfhDaY8BBBAAAEEEEAAAQQQQAABBAwWsH3AGxiYVzb/tN3DpL0teuPGDcmcObP67vLly3Lt2lXP+bx583n2ho2KOiEd27eVo0cOG8zM8GYKEPCaqc1cvgoQ8PoqyP0IIIAAAggggAACCCCAAAIIuFvA9gFv6ORp0rBRE9XFU6dOSq3qlaVK1eoya8489d07vd6SH+Z/5+nysM9HSavWbdTfo0YMl7FjRrr7CXBg9QS8Dmyqg0si4HVwcykNAQQQQAABBBBAAAEEEEAAARMEbB/wrly9XoKLFlVUz9evLfv27ZUiwcGyas0G9d3woZ/JxAljPZRp06aVvfuPqL1ib9++LYUL5hXth8A4nCNAwOucXrqhEi3gzTx3rqS9c8cN5VIjAggggAACCCCAAAIIIIAAAgjoLGD7gHf7zt2i/ShYdHS0FHoqj+LRwtvIg8fU5+++/Vr+06dXAjbt7d5ateuq77Rz2jUczhEg4HVOL91QCQGvG7pMjQgggAACCCCAAAIIIIAAAggYJ2D7gFd7G1fbb/eff/6RIoXyeaROnDqn9trdtWunNGvcIIFgpy5dZeCgT9R3Py5cIG+/9aZxwoxsugABr+nkTOiDAAGvD3jcigACCCCAAAIIIIAAAggggAACYvuAd8euvZIjZ07Rflztqby5PS39be9ByZYtm/qRtdIlghO0umGjxhI6ebr6bnvENmnxYuwevhzOECDgdUYf3VIFAa9bOk2dCCCAAAIIIIAAAggggAACCBgjYPuAd/3GrfJUgYJKp1SJYLly+bL6/MWX30q16jXU5149u8vCBfM9gvF/aG3zpo3SpvVLxugyaqoIEPCmCjuTplCAgDeFcNyGAAIIIIAAAggggAACCCCAAAJKwPYB7/wFi6V8hYqqmKGffSqTQserz+3ad5RPBg9Vn2/evCmjR34uSxb/KG/37iMtW70i2o+tacf4caNlxPDY6zicIUDA64w+uqUKAl63dJo6EUAAAQQQQAABBBBAAAEEEDBGwPYB7/sfDJDX3+yudPbt2yvP16+tPms/tPbLrr2SKVOmJOXu3Lkjz1YoKxcunDdGl1FTRYCAN1XYmTSFAgS8KYTjNgQQQAABBBBAAAEEEEAAAQQQUAK2D3hLlS4jM2bOVcWc+f2MNG30nKe1pcuUlR8XL1M/tubt+PSTQTJtyiQeBYcJEPA6rKEOL4eA1+ENpjwEEEAAAQQQQAABBBBAAAEEDBawfcD7IJ/nGjSUN97sLkWLFZeMGTNKTEyM/PHHBenTq6ds3Lj+Qbdz3oYCBLw2bJqLl0zA6+LmUzoCCCCAAAIIIIAAAggggAACOgg4PuCNb5T9scfk0sWLOrAxhJUFCHit3B3Wdq8AAS/PBAIIIIAAAggggAACCCCAAAII+CLgqoDXFyjutY8AAa99esVKRQh4eQoQQAABBBBAAAEEEEAAAQQQQMAXAVcEvJkzZ1b78F67ds0XK+61iQABr00axTKVAAEvDwICCCCAAAIIIIAAAggggAACCPgiYLuA9+nyFaRkqdKq5rt378rc2TPVf957PProozJm3ESpXaeePPLII+r0P//8I/sj98kbXTvLuXNnfXHjXgsLEPBauDksLZEAAS8PBQIIIIAAAggggAACCCCAAAII+CJgu4B3+87dEhCQS9V8584dKVr4Kbl9+3YCA+1t3W2//Cq5cj3u1Ua7/rVO7WX9+nBf7LjXogIEvBZtDMvyKkDAy4OBAAIIIIAAAggggAACCCCAAAK+CNgq4NWCXS3gjTtmzZwugwZ8kKj+ocNHSutX2t7XRXvrt3SJYLl69aovftxrQQECXgs2hSUlKUDAy8OBAAIIIIAAAggggAACCCCAAAK+CNgq4H3vvx9It+49Vb3adgvFgwuqt3jvPQ4eiZKMGTOqr7Xzy5aGyfzvvlFbO/R6511Jly6dOrdyxTLp2qWjL37ca0EBAl4LNoUlEfDyDCCAAAIIIIAAAggggAACCCCAgCECtgp4v/1+oTzzbCUF8eW8ufJ+v/8kQqlVu67MmjPP8/3ECWNl+NDPPH9re/j+sHCJ+jsmJkZKFAuS69evG4LLoKkjQMCbOu7MmjIB3uBNmRt3IYAAAggggAACCCCAAAIIIIBArICtAt51G7ZIgYKF1MJ79nhDFv24MFEf42/PcOvWLQkOyp/oR9jWhG+UoMJF1L3t2rSSDRvW8Tw4SICA10HNdEEpBLwuaDIlIoAAAggggAACCCCAAAIIIGCggK0C3l937xf/7NkVR7nSIfLnn38kolm5er0EFy2qvt+9+zdp/Hy9RNdo2zT0fif27d/Phw2RCePHGEjM0GYLEPCaLc58vggQ8Pqix70IIIAAAggggAACCCCAAAIIIGCrgPfwsVOSPn16ta9uwfxPeu1e5MFj4ufnp84l9SNsTZu9IOMmTFbXLF70o7zV/XWeBAcJEPA6qJkuKIWA1wVNpkQEEEAAAQQQQAABBBBAAAEEDBSwVcB76OhJyZAhg9y+fVuCCgQmYtHOadfEHZ06vCpr16xKdF2zF16UseMnqe+17Rm0bRo4nCNAwOucXrqhEgJeN3SZGhFAAAEEEEAAAQQQQAABBBAwTsBWAW/Ejt8kV67HlcZTeXMn2lu3br3nZPrMOR6tYkUKyI0bNxLpDR4yXNq+2l59/+03X0nfd3sbJ8zIpgsQ8JpOzoQ+CBDw+oDHrQgggAACCCCAAAIIIIAAAgggYK8fWftx8TIpU7acatuwIYMldOK4BC2cOfsLqV0nds9dLdjVAl5vx5Jlq6RkyVLq1PChn8nECWN5FBwkQMDroGa6oBQCXhc0mRIRQAABBBBAAAEEEEAAAQQQMFDAVm/wvtWzt7zbt5/iuHnzptSsVknOnTur/s6TJ1A2bY2QtGnTqr/XrVsrHV59xSvd7n2HJGvWrOpctze6yNKwJQYSM7TZAgS8Zoszny8CBLy+6HEvAggggAACCCCAAAIIIIAAAgjYKuBNkyaNaD+ililTJtW5W7duyeZNG+TJJwOlSHCwaOfjjjatX5LNmzYm6nCD5xvJ5KkzPN8/U76MnD37O0+CgwQIeB3UTBeUQsDrgiZTIgIIIIAAAggggAACCCCAAAIGCtgq4NUcXnv9Tfmw/6D7kuze/Zs0fj52q4Z7j1937xf/7NnV139cuCBPly1hIC9Dp4YAAW9qqDNnSgUIeFMqx30IIIAAAggggAACCCCAAAIIIKAJ2C7g1Rb9Zre3pN/7H3rt4Pnz56ROzapy7dq1ROe793hb+vZ73/P93DmzpP8HsVs+cDhHgIDXOb10QyUEvG7oMjUigAACCCCAAAIIIIAAAgggYJyALQNejaPiM89K+w6dpHSZspLp0Uxy5vczsnxpmEwYPyZJra3bdkju3E94zleqWI7tGYx7tlJtZALeVKNn4hQIEPCmAI1bEEAAAQQQQAABBBBAAAEEEEDAI2DbgJceIpCUAAEvz4adBAh47dQt1ooAAggggAACCCCAAAIIIICA9QQIeK3XE1bkowABr4+A3G6qAAGvqdxMhgACCCCAAAIIIIAAAggggIDjBAh4HddSCiLg5RmwkwABr526xVoRQAABBBBAAAEEEEAAAQQQsJ4AAa/1esKKfBQg4PURkNtNFSDgNZWbyRBAAAEEEEAAAQQQQAABBBBwnAABr+NaSkEEvDwDdhIg4LVTt1grAggggAACCCCAAAIIIIAAAtYTIOC1Xk9YkY8CBLw+AnK7qQIEvKZyMxkCCCCAAAIIIIAAAggggAACjhMg4HVcSymIgJdnwE4CBLx26hZrRQABBBBAAAEEEEAAAQQQQMB6AgS81usJK/JRgIDXR0BuN1WAgNdUbiZDAAEEEEAAAQQQQAABBBBAwHECBLyOaykFEfDyDNhJgIDXTt1irQgggAACCCCAAAIIIIAAAghYT4CA13o9YUU+ChDw+gjI7aYKEPCays1kCCCAAAIIIIAAAggggAACCDhOgIDXcS2lIAJengE7CRDw2qlbrBUBBBBAAAEEEEAAAQQQQAAB6wkQ8FqvJ6zIRwECXh8Bud1UAQJeU7mZDAEEEEAAAQQQQAABBBBAAAHHCRDwOq6lFETAyzNgJwECXjt1i7UigAACCCCAAAIIIIAAAgggYD0B2wS8efIESkiJkroLrgtfI7du3dJ9XAZMPQEC3tSzZ+aHFyDgfXgz7kAAAQQQQAABBBBAAAEEEEAAgf8J2CbgHTN2orzQvIXuvWvdsrls3bJZ93EZMPUECHhTz56ZH16AgPfhzbgDAQQQQAABBBBAAAEEEEAAAQQIeD0CBLzO++dAwOu8njq5IgJeJ3eX2hBAAAEEEEAAAQQQQAABBBAwXsA2b/B2fu116dylq+4i7V9tLYcPHdJ9XAZMPQEC3tSzZ+aHFyDgfXgz7kAAAQQQQAABBBBAAAEEEEAAgf8J2CbgpWkIJFeAgDe5UlxnBQECXit0gTUggAACCCCAAAIIIIAAAgggYF8BAl779o6VJyFAwMujYScBAl47dYu1IoAAAggggAACCCCAAAIIIGA9AQJe6/WEFfkoQMDrIyC3mypAwGsqN5MhgAACCCCAAAIIIIAAAggg4DgBAl7HtZSCCHh5BuwkQMBrp26xVgQQQAABBBBAAAEEEEAAAQSsJ+CYgDebv7906/aWlClbTgLz5pV//etfydJ+pVULfmQtWVL2uYiA1z69YqUiBLw8BQgggAACCCCAAAIIIIAAAggg4IuAIwLe0mXKytff/iCZMmV6aIvWLZvL1i2bH/o+p9+QLl065Xnt2rUUleqfPbtcvnQpRff6ehMBr6+C3G+mAAGvmdrMhQACCCCAAAIIIIAAAggggIDzBBwR8O4/dDxF4a7WTqcHvOnTp5dFYSskZ46ccv36NalZvXKST3GWLFlkyrRZUjykhGTNmlVdd/PmTTkZFSUffvCebI/Ydt9/AUOHj5TadepKzpwBkiZNGomOjpazZ3+XmTOmyawZ00z710PAaxo1E+kgQMCrAyJDIIAAAggggAACCCCAAAIIIOBiAdsHvO3ad5RPBg9VLYyJiZGFP8yXGzdvyKvtOqjvQieOk00bN3haPH7CZMmRM6f6u++7veWH+d/JnTt3HPsILF2xRkJCSqj6tDoL5n/Sa6158gTKspVrPcHuvRfdvXtXur3xmixfFpbo/rRp06oQuWTJUkk6zp41Qwb2f98UZwJeU5iZRCcBAl6dIBkGAQQQQAABBBBAAAEEEEAAAZcK2D7g/XHxMrXvrnaMGD5Uxo8bLeUrVJT5Cxar7wYO+EBmz5zuaW/Zck/LwkVL1d8H9u+X+nVrOLb14ydOkSZNm3nqu1/A+/P2XZI79xPq2pMno1TwfeniRXmuQUOpXKWq+l4L0EuXLCpXLl9OYBZ/nr/++ksWLpgvv+7aKdWq15TGTZqKFgBrR6+e3dU5ow8CXqOFGV9PAQJePTUZCwEEEEAAAQQQQAABBBBAAAH3Cdg+4N20NULy5s2nwscihfLJrVu3VFCpBZbaob3BO2zI4ASdXbl6vQQXLaq+q1qpggo0nXa81bO3vNu3X4Kykgp4iwQHy6o1sW85a1sqVKpYTrQ3duOOkaPHSYuXWqo/Z06fKh8N6p9g3ENHT0qGDBnUlgy1qldO4NmwUWMJnRwbsB86eEDq1q5uODUBr+HETKCjAAGvjpgMhQACCCCAAAIIIIAAAggggIALBWwf8P6296Bky5ZNBbuFC+ZVLdT2fz1x6pz6HB6+Rjq2a5OgtdqWDtrWDkkFlnZ/DuKHqseOHlFhbaGgwklu0TBj1lypU7e+KrtTh1dl7ZpVCQg0z2NRv6s3cS9fviylSwR7zjdv8bKMGjNe/b1wwQ/Sq2e3RHxxIbx2okypYurNYCMPAl4jdRlbbwECXr1FGQ8BBBBAAAEEEEAAAQQQQAABdwnYPuDdE3lYtB8Hu337tgQVCPR078jx0/LII4/I8ePHpEbVZxN0tcHzjWTy1BnqO28BsJ0fgeLFQyRs+WoVxl65ckUqVSwri5Ysl6DCRZIMeLfv3C0BAbnUW9AF8j2R4O3dOIuNW7ZJvnz51Z9P5c3tuWbSlOnyfMPG6vvXOneQVSuXJ+Ib9vkoadU6NmTX9j3+9puvDCUm4DWUl8F1FiDg1RmU4RBAAAEEEEAAAQQQQAABBBBwmYDtA96t23bIk0/mUW3LH/i4Cim1I3z9ZilYKEgFkWVLF5fLly55Whv/h9l27dwhzZo874i258iRU7S3ZTNlyqQC75rVKsnp06dkTfjG+wa8kQePiZ+fnwqES4UU8WoxbcZsqVe/gTpXrcozEnXiuPr8w8Il8nT5Cuqz9gNu3n6wrtmLzWXsuFB1zbixo2Tk58MM9SbgNZSXwXUWIODVGZThEEAAAQQQQAABBBBAAAEEEHCZgO0D3hWr1knRYsVU215u0Uy2/fyT+vzpZ8Pk1XYd1OcNG9ZJuzat1Od06dJJ+IYtnrdRF8z/Xnr36mH7tqdPn162/rxDcgYEqJD7peZNZXvENlXXgwLeoyfOKJfz589JhXKlvFrE34e3fdvWsn59uLpu3YYtUqBgIfU5X55cXu+tUaOWzJn3tTo3//tvpU/vnoZ6E/AaysvgOgsQ8OoMynAIIIAAAggggAACCCCAAAIIuEzA9gFv6ORp0rBRE9W2xYt+lLe6v64+lypdRhaHrfC08/r163LkyGEpUaKkCjPjjm5vdJGlYUts3/ZlK9eKtj2DdvynTy/57tvYQFU77hfwxt+vOCrqhFSrXNGrxaCPB0vHTl3UuQEf/lfmzJ6pPu/YtVdy5Myp3pTWtm7wdsTvxeZNG6VN65c8l6V/9N+629+K/keuduggMX5+uo/NgAjoLaAFvFm++EIypMug99CMhwACCCCAAAIIIIAAAgggYJLA7b//MmkmpkEgsYDtA95X2rwqQ4aNUJVpP96l/YhX3DFx0lRp1Lhpkn0/cviQ1K5Z1fbPRfw6p0yaKJ8N/jhBTfcLeLU3fw8fO6Wu136QrWb1yl49+g/4SLp0fUOdix/w/rrngPj7+ye5v692vRY8awG0dtwb8OYqWEZ3//On9smVdu0IeHWXZUAjBLSAN+uXX0muPEWNGJ4xEUAAAQQQQAABBBBAAAEETBA4f3SXCbMwBQLeBWwf8Gp7x9atV19Vd/nSZbUdQ/wjLty8t3wtzHypeTP5888/bP9sRJ0+r2rYueMXefP12Lds4x/f/fCj2pJCe8v22Qpl1amrV6/I33//rT6fOHVOtDd5z5w5LZUqlvPqMXzEaGnZ6hV17o2unWX5sjD1efNP2yUwMK/aFkLbA9nbUaVqNfny6+/VqSWLF0mPbl09l/k/Ebu9g57HpT9OytX2BLx6mjKWcQLqDd55X0r2HP/7kUjjZmNkBBBAAAEEEEAAAQQQQAABIwQu/37EiGEZE4FkCdg+4E1OlVoA+XKr1vLss5Xl9KlTsm7dGln048Lk3GqLa+IC3odZ7OpVK6RLp/bqloNHoiRjxozyx4UL8nTZEl6Hib8VRoN6tSQycp+6bsmyVVKyZOy+vUntwdu4SVOZEDpVXTN1cqgM/vSjh1nqQ1/LHrwPTcYNqSjAHrypiM/UCCCAAAIIIIAAAggggAACCDhAwBUBrwP6dN8SUhLwrlm9Ujp3bKfG3fVbpGR/7DG5ffu2BBXw/hbh0hVrJCQkNvwNDsrveft31px5Uqt2XfV9/To15MCB/YnW2rff+9K9x9vq+4EDPpDZM6cb2hICXkN5GVxnAQJenUEZDgEEEEAAAQQQQAABBBBAAAGXCdg+4O3V+13p/FrsD6tVqlhWtB9Te9AxbsJkqVmrtrrs+fq15dSpkw+6xdLntTeU0z3ySJJr/OLLb9Q2CtoWDbVqVFHXXfzzD7l27Zr6HLZ8tfrxOe1IKqQ9dPSkZMiQQaKjo6XQU3k8c/X5z3vS8+131N+TJ02QIYM/SbSO+OFwowZ1Zc+e3YZ6EvAaysvgOgsQ8OoMynAIIIAAAggggAACCCCAAAIIuEzA9gHvmLET5YXmLVTbtB9Y035o7UHH+x8MkNff7K4uGzTwQ5k1Y9qDbrH1+fv9yJpWWPwtFMLD10jHdm0S1NvsxeYydlyo+i587Wrp2L6t53zmzJllT+RhtYevZl+uTIgKkuOOPHkCZdPWCEmbNm2iH8EzCpWA1yhZxjVCgIDXCFXGRAABBBBAAAEEEEAAAQQQQMA9Aq4MeOvWe06mz5yjuvzF3Nny4fvvObrjDwp4teLj9uHVPs+eNUMmjh+rfoitUeOmMmLUWBXQakf8/Xfj0BaFrZDSpcuoP3ft3CH9+vZRWzVUqlxFQidNE//s2dW50InjZNiQwYZbE/AaTswEOgoQ8OqIyVAIIIAAAggggAACCCCAAAIIuFDAlQFv61faytDhI1W7lyxeJD26dXV065MT8DZv8bKMHD1OvYmb1BG2ZJF0fzOxVVDhwrI4bKVkypTJc2tMTEyCsU6fPiV1alb17N1rJDgBr5G6jK23AAGv3qKMhwACCCCAAAIIIIAAAggggIC7BFwX8GoB5uq1GySocBHV6fHjRsuI4UMd3XWt3sJFguXOnTtSMP+TSdZarVoNmTJ9VoKgVrtY23JB21/3fm/fBgTkksVLV0ju3E8kGF8Len/ZHiEvt2iWYOsGI8EJeI3UZWy9BQh49RZlPAQQQAABBBBAAAEEEEAAAQTcJWC7gHfQx4PlySf/F1KWLlNWtHBROzZuWC///PN3og5qoa72I2SZ/51ZihUPSRBgtnr5Rflp6xZ3df0B1Wqe9eo/J1mzZpN14WskMnJfsn38/PykRs1aUiS4qERs+1m2btlsWrAbt0gC3mS3iwstIEDAa4EmsAQEEEAAAQQQQAABBBBAAAEEbCxgu4B3/6Hjid4wTan/8ePHpEbVZ1N6O/dZVICA16KNYVleBewW8Gpv9N9vKxfajICVBLT/LxLtiNtH3kprYy0IIIAAAggggAACCCCAgF4Crg149+7dIgvPIgAAIABJREFUI507vCrnzp3Vy5JxLCJAwGuRRrCMZAnYLuD917/kVvnyEpM+fbLq4yIEUlXgn3/k0R07JM3//V+qLoPJEUAAAQQQQAABBBBAAAEjBWwX8PZ651154on/bdFQuUpVyZMnUBktXvSj/P33zSS9bvz1lxw4sF9++WW7HD1y2EhXxk5FAQLeVMRn6ocWsF3Amy6dXOvQQWL8/B66Vm5AwGyBNNevS9a5cyXNnTtmT818CCCAAAIIIIAAAggggIBpArYLeO+VGTN2orzQvIX6ukypYnLp4kXT8JjImgIEvNbsC6vyLkDAy5OBgHECBLzG2TIyAggggAACCCCAAAIIWEfA9gFv9scek6CgwuqHvLZHbLOOLCtJNQEC3lSjZ+IUCBDwpgCNWxBIpgABbzKhuAwBBBBAAAEEEEAAAQRsLWD7gNfW+izeEAECXkNYGdQgAQJeg2AZFgERIeDlMUAAAQQQQAABBBBAAAE3CDgu4K1dp560fqWN5MuXXwJyPS7p06eXmzduyNlzZ+XokSMyZvQIOX7sqBt669oaCXhd23pbFk7Aa8u2sWibCBDw2qRRLBMBBBBAAAEEEEAAAQR8EnBMwBtUuLCETpomhYsE3xckJiZGVq9aIe/0ekuuX7/uEx43W1OAgNeafWFV3gUIeHkyEDBOgIDXOFtGRgABBBBAAAEEEEAAAesIOCLgLV48RJauWCNp0qRJtqz2Y2zlyoSovXs5nCVAwOusfjq9GgJep3eY+lJTgIA3NfWZGwEEEEAAAQQQQAABBMwSsH3A++ijj0rEjt2SJUsWj9mB/ftl1arlcvTIYbl69Zrkzp1bvdnb7IXm4u/v77lu1crl8lrnDmZZM49JAgS8JkEzjS4CBLy6MDIIAl4FCHh5MBBAAAEEEEAAAQQQQMANArYPeN/q2Vve7dtP9So6OlqaNnpO9u3bm2Tvuvd4W/r2e99zvmqlCnLyZJQbeu2aGgl4XdNqRxRKwOuINlKERQUIeC3aGJaFAAIIIIAAAggggAACugrYPuBdFLZCSpcuo1Bef62TrFi+9IFAM2bNlTp166vrBg74QGbPnP7Ae7jAPgIEvPbpFSsVIeDlKUDAOAECXuNsGRkBBBBAAAEEEEAAAQSsI2D7gDfy4DHx8/NTb+8WeipPsmQrPvOsfDf/R3Vt2JJF0v3Nrsm6j4vsIUDAa48+scpYAQJengQEjBMg4DXOlpERQAABBBBAAAEEEEDAOgK2D3gPHomSjBkzytWrV6Vk8cLJks3m7y+/7Tmgrv31111qWwcO5wgQ8Dqnl26ohIDXDV2mxtQSIOBNLXnmRQABBBBAAAEEEEAAATMFbB/wbtoaIXnz5pOYmBjJH/h4suyaNntBxk2YrK5dvWqFdOnUPln3cZE9BAh47dEnVhkrQMDLk4CAcQIEvMbZMjICCCCAAAIIIIAAAghYR8D2Ae/0mXOkbr3YN3C//mqe9Ovb5766adKkkZ8idkru3E+o695+6035ceEC63SElfgsQMDrMyEDmChAwGsiNlO5ToCA13Utp2AEEEAAAQQQQAABBFwpYPuAt3GTpjIhdKqneVrI+8lHA+TGjRuJGlokOFgmTJwihYsEq3PaW7+FC+aV27dvu7L5Ti2agNepnXVmXQS8zuwrVVlDgIDXGn1gFQgggAACCCCAAAIIIGCsgO0DXo3ny6+/lypVq3mk7t69K1FRJ+T8uXNy7dpVyRmQSx5//HHPW7txFw4bMlhCJ44zVpjRTRcg4DWdnAl9ECDg9QGPWxF4gAABL48IAggggAACCCCAAAIIuEHAEQFv+vTpZfNP2yVXruTtwas1lr13nft4E/A6t7dOrIyA14ldpSarCBDwWqUTrAMBBBBAAAEEEEAAAQSMFHBEwBsH1L3H2/J27z6SIUOGJM3+uHBB+vTuKRs2rDPSlbFTUYCANxXxmfqhBQh4H5qMGxBItgABb7KpuBABBBBAAAEEEEAAAQRsLOCogFfrg/Y2b4WKz0jJkqWlaLHikiVrFjl39qxE7tsrO3f8Inv27LZxu1h6cgQIeJOjxDVWESDgtUonWIcTBQh4ndhVakIAAQQQQAABBBBAAIF7BWwV8D5bqbJUfOZZVcO8uXPkzz//oKMIJBIg4OWhsJMAAa+dusVa7SZAwGu3jrFeBBBAAAEEEEAAAQQQSImArQLe+D+m1qNbV1myeFFKauYehwsQ8Dq8wQ4rj4DXYQ2lHEsJEPBaqh0sBgEEEEAAAQQQQAABBAwSIOA1CJZhU0+AgDf17Jn54QUIeB/ejDsQSK4AAW9ypbgOAQQQQAABBBBAAAEE7CxAwGvn7rF2rwIEvDwYdhIg4LVTt1ir3QQIeO3WMdaLAAIIIIAAAggggAACKREg4E2JGvdYWoCA19LtYXH3CBDw8kggYJwAAa9xtoyMAAIIIIAAAggggAAC1hEg4LVOL1iJTgIEvDpBMowpAgS8pjAziUsFCHhd2njKRgABBBBAAAEEEEDAZQIEvC5ruBvKJeB1Q5edUyMBr3N6SSXWEyDgtV5PWBECCCCAAAIIIIAAAgjoL2DbgPfD99+T5cuW+izy559/+DwGA1hLgIDXWv1gNfcXIODlCUHAOAECXuNsGRkBBBBAAAEEEEAAAQSsI2DbgFcvwlYvvyg/bd2i13CMYwEBAl4LNIElJFuAgDfZVFyIwEMLEPA+NBk3IIAAAggggAACCCCAgA0FXB/wtm7ZXLZu2WzD1rHkpAQIeHk27CRAwGunbrFWuwkQ8NqtY6wXAQQQQAABBBBAAAEEUiLg+oC3xYtNZHvEtpTYcY9FBQh4LdoYluVVgICXBwMB4wQIeI2zZWQEEEAAAQQQQAABBBCwjoBtA94e3brKksWLrCPJSiwjQMBrmVawkGQIEPAmA4lLEEihAAFvCuG4DQEEEEAAAQQQQAABBGwlQMBrq3ax2OQIEPAmR4lrrCJAwGuVTrAOJwoQ8Dqxq9SEAAIIIIAAAggggAAC9woQ8PJMOE6AgNdxLXV0QQS8jm4vxaWyAAFvKjeA6RFAAAEEEEAAAQQQQMAUAQJeU5iZxEwBAl4ztZnLVwECXl8FuR+BpAUIeHk6EEAAAQQQQAABBBBAwA0CBLxu6LLLaiTgdVnDbV4uAa/NG8jyLS1AwGvp9rA4BBBAAAEEEEAAAQQQ0EmAgFcnSIaxjgABr3V6wUoeLEDA+2AjrkAgpQIEvCmV4z4EEEAAAQQQQAABBBCwkwABr526xVqTJUDAmywmLrKIAAGvRRrBMhwpQMDryLZSFAIIIIAAAggggAACCNwjYKuAt1ix4lKiZClVworlS+Xq1as0FIFEAgS8PBR2EiDgtVO3WKvdBAh47dYx1osAAggggAACCCCAAAIpEbBVwJuSArnHfQIEvO7ruZ0rJuC1c/dYu9UFCHit3iHWhwACCCCAAAIIIIAAAnoIEPDqocgYlhIg4LVUO1jMAwQIeHlEEDBOgIDXOFtGRgABBBBAAAEEEEAAAesIEPBapxesRCcBAl6dIBnGFAECXlOYmcSlAgS8Lm08ZSOAAAIIIIAAAggg4DIBAl6XNdwN5RLwuqHLzqmRgNc5vaQS6wkQ8FqvJ6wIAQQQQAABBBBAAAEE9Bcg4NXflBFTWYCAN5UbwPQPJUDA+1BcXIzAQwkQ8D4UFxcjgAACCCCAAAIIIICATQUIeG3aOJadtAABL0+HnQQIeO3ULdZqNwECXrt1jPUigAACCCCAAAIIIIBASgQIeFOixj2WFiDgtXR7WNw9AgS8PBIIGCdAwGucLSMjgAACCCCAAAIIIICAdQQIeK3TC1aikwABr06QDGOKAAGvKcxM4lIBAl6XNp6yEUAAAQQQQAABBBBwmQABr8sa7oZyCXjd0GXn1EjA65xeUon1BAh4rdcTVoQAAggggAACCCCAAAL6CxDw6m/KiKksQMCbyg1g+ocSIOB9KC4uRuChBAh4H4qLixFAAAEEEEAAAQQQQMCmAgS8Nm0cy05agICXp8NOAgS8duoWa7WbAAGv3TrGehFAAAEEEEAAAQQQQCAlAgS8KVHjHksLEPBauj0s7h4BAl4eCQSMEyDgNc6WkRFAAAEEEEAAAQQQQMA6AgS81ukFK9FJgIBXJ0iGMUWAgNcUZiZxqQABr0sbT9kIIIAAAggggAACCLhMgIDXwQ3PkydQbv59Uy5dvPjQVaZLl04yZcok165de+h7tRv8s2eXy5cupeheX28i4PVVkPvNFCDgNVObudwmQMDrto5TLwIIIIAAAggggAAC7hQg4HVI3zNnzizdevSUBs83kty5n5CMGTN6KouJiZHjx47KqJHDZcniRUlWnCVLFpkybZYUDykhWbNmVdfdvHlTTkZFyYcfvCfbI7bdV2vo8JFSu05dyZkzQNKkSSPR0dFy9uzvMnPGNJk1Y5pp0gS8plEzkQ4CBLw6IDIEAkkIEPDyaCCAAAIIIIAAAggggIAbBAh4HdLlkaPHSYuXWj6wmokTxsrwoZ8luk5723fZyrWeYPfeC+7evSvd3nhNli8LS3Rv2rRpZVHYCilZslSS88+eNUMG9n//gevT4wICXj0UGcMsAQJes6SZx40CBLxu7Do1I4AAAggggAACCCDgPgECXof0PC7g1d7W3b8/Uvbs/k327d0j2bL5S7MXXpQCBQt5Kq1Tq6ocPnQoQeU/b9+l3vzVjpMno+SH+d+prR2ea9BQKlepqr7Xxi5dsqhcuXw5wb3jJ06RJk2bqe/++usvWbhgvvy6a6dUq15TGjdpKloArB29enZX54w+CHiNFmZ8PQUIePXUZCwEEgoQ8PJEIIAAAggggAACCCCAgBsECHgd0uVu3XtKuaeflg/++56cO3c2UVU/LFwiT5evoL4fO2akjBox3HNNkeBgWbVmg/pb21KhUsVyor2xG3fEfzt45vSp8tGg/gnGP3T0pGTIkEFtyVCremUVEMcdDRs1ltDJ09Wfhw4ekLq1qxsuTsBrODET6ChAwKsjJkMhcI8AAS+PBAIIIIAAAggggAACCLhBgIDXDV0WkfYdOsnHnw5R1f64cIG8/dabnspnzJorderWV3936vCqrF2zKoGKtp/usajf1Zu4ly9fltIlgj3nm7d4WUaNGa/+XrjgB+nVs1si0U1bIyRv3nzq+zKliqXoR98epk0EvA+jxbWpLUDAm9odYH4nCxDwOrm71IYAAggggAACCCCAAAJxAgS8LnkWJk2ZLs83bKyq/e9778pXX37hqXz7zt0SEJBLbcFQIN8TCd7ejbto45Ztki9ffvXnU3lze66JP+5rnTvIqpXLE4kO+3yUtGrdRn3f993e8u03XxmqTsBrKC+D6yxAwKszKMMhEE+AgJfHAQEEEEAAAQQQQAABBNwgQMDr8C6XLlNW2rRtJy+3bK0q/fOPP6RcmZAEVUcePCZ+fn5y5coVKRVSxKvItBmzpV79BupctSrPSNSJ4+pz/K0fCuZ/Uu7cuZPo/mYvNpex40LV9+PGjpKRnw8zVJ2A11BeBtdZgIBXZ1CGQ4CAl2cAAQQQQAABBBBAAAEEXCZAwOvQhoev3yx58+WXRx55xFPhgf37pUO7V9Q+u/GPoyfOSLp06eT8+XNSoVwpryLx9+Ft37a1rF8frq5bt2GL5wfc8uXJ5fXeGjVqyZx5X6tz87//Vvr07mmoOgGvobwMrrMAAa/OoAyHAAEvzwACCCCAAAIIIIAAAgi4TICA16ENP37yrNozN+64evWqTJo4XiaFxu6XG3do++ueOHVO/RkVdUKqVa7oVWTQx4OlY6cu6tyAD/8rc2bPVJ937NorOXLmVFs2aFs3eDtKlS4ji8NWqFObN22UNq1f8lzm5/+47h3466+LcrV9e4nx89N9bAZEQG8BLeDNMm+e/Nsvu95DGzIe/74MYWVQgwTUFg1fzJN//9se/74MYmBYBBBAAAEEEEAAARMEblyOzVY4EEgNAQLe1FA3Yc6x4ydJQECA5MiRQwoFFfaEvUePHJZaNap4VpA+fXo5fOyU+vvY0SNSs3plr6vrP+Aj6dL1DXUufsD7654D4u/vr7Zm0LZo8HYULx4iy1auVafuDXhzFSyju8b5U/vkSrt2BLy6yzKgEQJawJvtq68l4Mn//XihEfPoNSb/vvSSZBwzBLSAN9u8LyVXYDEzpmMOBBBAAAEEEEAAARcLnD+6y8XVU3pqCxDwpnYHTJhfC3FXrAqXgoWC1GzTp06WTz4e6JlZe4NXe5P3zJnTUqliOa8rGj5itLRs9Yo690bXzrJ8WZj6vPmn7RIYmFf9QFv+QO9v41apWk2+/Pp7df2SxYukR7eunjl4g9eEB4ApLC2gBbxZ530pfn7+ll5n3OJ4g9cWbWKR/1+AN3h5FBBAAAEEEEAAAQTMEuANXrOkmcebAAGvS56LgIBcsn3nblXtvW/qHjwSJRkzZpQ/LlyQp8uW8CoSOnmaNGzURJ1rUK+WREbuiw1sl62SkiVj9+1Nag/exk2ayoTQqeqaqZNDZfCnHxmqzh68hvIyuM4CaouGL76QNNHROo9szHD8+zLGlVGNEVAB79y5ksbLD4AaMyOjIoAAAggggAACCCCAAALmCxDwmm+eajPG7ct748YNKVakgGcdu36LlOyPPSa3b9+WoAKBXte3dMUaCQmJDX+Dg/LL33//rT7PmjNPatWuqz7Xr1NDDhzYn+j+vv3el+493lbfDxzwgcyeOd1QAwIoQ3kZXGcBAl6dQRkOgXgCBLw8DggggAACCCCAAAIIIOAGAQJeN3RZRPz8/CTy4DFV7fnz56RCudi3brUjbPlqKVGipPqcVEh76OhJyZAhg0RHR0uhp/J47u3zn/ek59vvqL8nT5ogQwZ/kkg0fjjcqEFd2bMn9k1iow4CXqNkGdcIAQJeI1QZE4FYAQJengQEEEAAAQQQQAABBBBwgwABr0O6PHDQJzJlcqicO3fWa0XTZsyWevUbqHMbN6yXV9u09FwXfwuF8PA10rFdmwRjNHuxuYwdF6q+C1+7Wjq2b+s5nzlzZtkTeVjt4Xvp4kUpVyZE7t696zmfJ0+gbNoaoX7kTTtfppTxP3RDwOuQh9olZRDwuqTRlJkqAgS8qcLOpAgggAACCCCAAAIIIGCyAAGvyeBGTaf9UJp2/LI9QpYs/lG2bt0sUSdOSLmny8sH/Qd53tDVfgytScP6snv3bwmWErcPr/bl7FkzZOL4sXL16hVp1LipjBg1VgW02hF//924ARaFrZDSpcuoP3ft3CH9+vZRWzVUqlxFQidNE//s2dW50InjZNiQwUYReMYl4DWcmAl0FCDg1RGToRC4R4CAl0cCAQQQQAABBBBAAAEE3CBAwOuQLmsBr/YW7YOOpLZRaN7iZRk5etx9xwhbski6v9k10RRBhQvL4rCVkilTJs85LUiOv57Tp09JnZpVPXv3Pmidvpwn4PVFj3vNFiDgNVuc+dwkQMDrpm5TKwIIIIAAAggggAAC7hUg4HVI7z/9bJh629bf399rRdr2CL3f7iHr14cnWXG1ajVkyvRZCYJa7WJtywUtGL7f27cBAblk8dIVkjv3EwnG14Je7a3il1s0S7B1g5HsBLxG6jK23gIEvHqLMh4C/xMg4OVpQAABBBBAAAEEEEAAATcIEPA6rMtZsmSRosWKq//LkSOHHDywX7ZHRCS5N6+38rWwtl795yRr1myyLnyNREbuS7aS9mNuNWrWkiLBRSVi28+ydctm04LduEUS8Ca7XVxoAQECXgs0gSU4VoCA17GtpTAEEEAAAQQQQAABBBCIJ0DAy+PgOAECXse11NEFEfA6ur0Ul8oCBLyp3ACmRwABBBBAAAEEEEAAAVMECHhNYWYSMwUIeM3UZi5fBQh4fRXkfgSSFiDg5elAAAEEEEAAAQQQQAABNwgQ8Lqhyy6rkYDXZQ23ebkEvDZvIMu3tAABr6Xbw+IQQAABBBBAAAEEEEBAJwECXp0gGcY6AgS81ukFK3mwAAHvg424AoGUChDwplSO+xBAAAEEEEAAAQQQQMBOAgS8duoWa02WAAFvspi4yCICBLwWaQTLcKQAAa8j20pRCCCAAAIIIIAAAgggcI8AAS+PhOMECHgd11JHF0TA6+j2UlwqCxDwpnIDmB4BBBBAAAEEEEAAAQRMESDgNYWZScwUIOA1U5u5fBUg4PVVkPsRSFqAgJenAwEEEEAAAQQQQAABBNwgQMDrhi67rEYCXpc13OblEvDavIEs39ICBLyWbg+LQwABBBBAAAEEEEAAAZ0ECHh1gmQY6wgQ8FqnF6zkwQIEvA824goEUipAwJtSOe5DAAEEEEAAAQQQQAABOwkQ8NqpW6w1WQIEvMli4iKLCBDwWqQRLMORAgS8jmwrRSGAAAIIIIAAAggggMA9AgS8PBKOEyDgdVxLHV0QAa+j20txqSxAwJvKDWB6BBBAAAEEEEAAAQQQMEWAgNcUZiYxU4CA10xt5vJVgIDXV0HuRyBpAQJeng4EEEAAAQQQQAABBBBwgwABrxu67LIaCXhd1nCbl0vAa/MGsnxLCxDwWro9LA4BBBBAAAEEEEAAAQR0EiDg1QmSYawjQMBrnV6wkgcLEPA+2IgrEEipAAFvSuW4DwEEEEAAAQQQQAABBOwkQMBrp26x1mQJEPAmi4mLLCJAwGuRRrAMRwoQ8DqyrRSFAAIIIIAAAggggAAC9wgQ8PJIOE6AgNdxLXV0QQS8jm4vxaWyAAFvKjeA6RFAAAEEEEAAAQQQQMAUAQJeU5iZxEwBAl4ztZnLVwECXl8FuR+BpAXsFvDeTZ9eJE0aWoqALQRiYmJEYmLkX9HRtlgvi0QAAQQQQAABBJwsQMDr5O66tDYCXpc23qZlE/DatHEs2xYCdgt4/+9f/5K/69WTmIwZbeHLIl0ucPOm/HvtWklz547LISgfAQQQQAABBBBIfQEC3tTvASvQWYCAV2dQhjNUgIDXUF4Gd7mA3QJe/vvL5Q+szcq3278vm/GyXAQQQAABBBBA4KEECHgfiouL7SDA/0C2Q5dYY5wAAS/PAgLGCdgtgOK/v4x7Fv4fe+cBJUW1/OHCp4IgIqggBhARRDKSVHIWAROYc45P9JkTRp45oSBJQQWzIoiKiIigqKCgooAEEYxgABUj/OF/6q4zb3Z3dndmt+/MVPd3z/HI7nRX1/2qam/f39y+jeXgCVirr+AJYBECEIAABCAAAQjkDgEE3tyJBZ4ERIAJckAgMZMRAgi8GcHMRSJKwJoAxfgV0UQ12m1r9WUUM25DAAIQgAAEIACBlAgg8KaEiYMsEWCCbCla+IrASw5AwB8BawIU45e/XMBy8ASs1VfwBLAIAQhAAAIQgAAEcocAAm/uxAJPAiLABDkgkJjJCAEE3oxg5iIRJWBNgGL8imiiGu22tfoyihm3IQABCEAAAhCAQEoEEHhTwsRBlggwQbYULXxF4CUHIOCPgDUBivHLXy5gOXgC1uoreAJYhAAEIAABCEAAArlDAIE3d2KBJwERYIIcEEjMZIQAAm9GMHORiBKwJkAxfkU0UY1221p9GcWM2xCAAAQgAAEIQCAlAgi8KWHiIEsEmCBbiha+IvCSAxDwR8CaAMX45S8XsBw8AWv1FTwBLEIAAhCAAAQgAIHcIYDAmzuxwJOACDBBDggkZjJCAIE3I5i5SEQJWBOgGL8imqhGu22tvoxixm0IQAACEIAABCCQEgEE3pQwcZAlAkyQLUULXxF4yQEI+CNgTYBi/PKXC1gOnoC1+gqeABYhAAEIQAACEIBA7hBA4M2dWOBJQASYIAcEEjMZIYDAmxHMXCSiBKwJUIxfEU1Uo922Vl9GMeM2BCAAAQhAAAIQSIkAAm9KmDjIEgEmyJaiha8IvOQABPwRsCZAMX75ywUsB0/AWn0FTwCLEIAABCAAAQhAIHcIIPDmTizwJCACTJADAomZjBBA4M0IZi4SUQLWBCjGr4gmqtFuW6svxbx582ajtHE7igTKlSsXxW7TZwhAAAIQKCUBBN5SguO03CXABDl3Y4NnhQkg8JIVEPBHwJoAxfjlLxewHDwBa/X1fxUqSLmtthJBNAs+GbAYOIHNmzZJuY0bZYs//wzcNgYhAAEIQCCcBBB4wxnXSPeKCXKkw2+u8wi85kKGw4YIWBOgGL8MJReuCvVFEkDAHwFr9eWPBJYhAAEIQCBVAgi8qZLiODMEmCCbCRWOiggCL2kAAX8ErE2QGb/85QKWgydAfQXPFIsQiBGwVl9EDgIQgAAEsk8AgTf7McCDgAkwQQ4YKOa8EkDg9YoX4xEnYG2CzPgV8YQ11n3qy1jAcNcUAWv1ZQouzkIAAhAIKQEE3pAGNsrdYoIc5ejb6zsCr72Y4bEdAtYmyIxfdnILT4UtGkgCCHgkYG388ogC0xCAAAQgkCIBBN4UQXGYHQJMkO3ECk/ZooEcgIBPAtYmyIxfPrMB20EToL6CJoo9CPyPgLX6InYQgAAEIJB9Agi82Y8BHgRMgAlywEAx55UAK3i94sV4xAlYmyAzfkU8YY11n/oyFjDcNUXAWn2ZgouzEIAABEJKAIE3pIGNcreYIEc5+vb6jsBrL2Z4bIeAtQky45ed3MJTtmggByDgk4C18csnC2xDAAIQgEBqBBB4U+PEUYYIMEE2FCxcFQRekgAC/ghYmyAzfvnLBSwHT4D6Cp4pFiEQI2CtvogcBCAAAQhknwACb/ZjgAcBE2CCHDBQzHklgMDrFS/GI07A2gSZ8SviCWus+9SXsYDhrikC1urLFFychQAEIBBSAgi8IQ1slLvFBDnK0bfXdwReezHDYzsErE2QGb/s5BaeskUDOQABnwSsjV8+WWAbAhCAAARSI4DAmxonjjJEgAmyoWDhKls0kAMQ8EjA2gSZ8ctjMmA6cALUV+BIMQiBOAFr9UXoIAABCEAg+wQQeLMfAzwImABh4yj4AAAgAElEQVQT5ICBYs4rAVbwesWL8YgTsDZBZvyKeMIa6z71ZSxguGuKgLX6MgUXZyEAAQiElAACb0gDG+VuMUGOcvTt9R2B117M8NgOAWsTZMYvO7mFp2zRQA5AwCcBa+OXTxbYhgAEIACB1Agg8KbGiaMMEWCCbChYuMoWDeQABDwSsDZBZvzymAyYDpwA9RU4UgxCIE7AWn0ROghAAAIQyD4BBN7sxwAPAibABDlgoJjzSoAVvF7xYjziBKxNkBm/Ip6wxrpPfRkLGO6aImCtvkzBxVkIQAACISWAwBvSwEa5W0yQoxx9e31H4LUXMzy2Q8DaBJnxy05u4SlbNJADEPBJwNr45ZMFtiEAAQhAIDUCCLypceIoQwSYIBsKFq6yRQM5AAGPBKxNkBm/PCYDpgMnQH0FjhSDEIgTsFZfhA4CEIAABLJPAIE3+zHAg4AJMEEOGCjmvBJgBa9XvBiPOAFrE2TGr4gnrLHuU1/GAoa7pghYqy9TcHEWAhCAQEgJIPCGNLBR7hYT5ChH317fEXjtxQyP7RCwNkFm/LKTW3jKFg3kAAR8ErA2fvlkgW0IQAACEEiNAAJvapw4yhABJsiGgoWrbNFADkDAIwFrE2TGL4/JgOnACVBfgSPFIATiBKzVF6GDAAQgAIHsE0DgzX4M8CBgAkyQAwaKOa8EWMHrFS/GI07A2gSZ8SviCWus+9SXsYDhrikC1urLFFychQAEIBBSAgi8IQ3sFltsITVr7iLffPO1bN68Oe1ebrnlllKxYkX55Zdf0j5XT6harZqs/emnUp1b1pOYIJeVIOdnkgACbyZpc62oEbA2QWb8ilqG2u4v9WU7fnif2wSs1Vdu08Q7CEAAAtEggMAbkjirmDvwooulc5eussMOO8rWW28d79mff/4p7747Wy4aeL789OOPRfZ4u+22kxGjxkijxk2kSpUq7rjff/9dVq1cKddcfbnMnfNesbRuvf0u6da9h+y0U3UpV66cbNiwQb799ht5+KFRMuahURkjzQQ5Y6i5UAAEEHgDgIgJCBRBwNoEmfGLVLZEgPqyFC18tUbAWn1Z44u/EIAABMJIAIE3JFF9YdLL0mLflsX2ZtOmTdK3dw/59NNPCh232267y8uvvh4XdgseoOeee/YZ8srLkwudq6uFJ06eIk2bNivy+mPHPCTXXXtVRmgzQc4IZi4SEAEE3oBAYgYCSQhYmyAzfpHGlghQX5aiha/WCFirL2t88RcCEIBAGAkg8IYkqjGBV4XY+fM+cCLumtWrpVfvg2SffRqKbrmg7eeff5amjeoX6vW7c+e7LR20rVq1Up579mm32vfA3n2kXfsO7ve61UPzpvvIurVr851//9ARcvAhh7rfrV+/XiY8/6x8OH+edOzURfodfIioAKztwgvOc5/5bkyQfRPGfpAEEHiDpIktCOQnYG2CzPhFBlsiQH1Ziha+WiNgrb6s8cVfCEAAAmEkgMAbkqj+99Y7ZKuttpKbbhhUaN/cSpUqydx5C0T/r613z66ycOGn8Z7v3aCBTJ32pvtZt1Q4oG1LUaE41u66Z4gMOOIo9+PDo0fKDddfm4/akuWrpHz58m5Lhq6d2jmBONb69O0nw4aPdj8u+Wyx9OjWyTtxJsjeEXOBAAkg8AYIE1MQKEDA2gSZ8YsUtkSA+rIULXy1RsBafVnji78QgAAEwkgAgTeMUU3Sp3vvGyqH9R/gPrn1vzfLg8Pujx/10JhHpXuPXu7nU08+QV6fNjWfBd1P9/OV37iVuGvXrpXmTRrEP+8/4Ei5+948WxOef04uvODcQlefNXuO1KpV2/2+RbOGxe4DHEQ4mCAHQREbmSKAwJsp0lwnigSsTZAZv6KYpXb7TH3ZjR2e5z4Ba/WV+0TxEAIQgED4CSDwhj/Groe333mPHHX0se7fugJXV+LG2tx5H0v16jXcFgx71t4l3+rd2DEz335Patfew/1Yp1bN+DEPjhgtB/Xp535/xmkny9RXXylE9LY77pajjznO/f6ySy6Sp5583Ct1Jshe8WI8YAIIvAEDxRwEEghYmyAzfpG+lghQX5aiha/WCFirL2t88RcCEIBAGAkg8IYxqkn69Mabb8uedfdyn/Q/rJ+8P3dO/KiFn33utm9Yt26dNGu8d1Iiox4aKz179XafdWy/n6z8YoX793MTXpRWrdu4f9fdY1fZuHFjofMPPby/3DdkmPv9kPvulrvuuM0rdSbIXvFiPGACCLwBA8UcBBIIWJsgM36RvpYIUF+WooWv1ghYqy9rfPEXAhCAQBgJIPCGMaoF+tS6TVt59vlJ7rf6ErRGDermO2L5F1+7l7CtXv2dtGnZLCmRxH14Tzr+GJkxY7o7LlE4rr1bjaTndu7cVR4Z94T77NlnnpKLL7rAK3UmyF7xYjxgAgi8AQPFHAQQeMkBCGSEgDUBivvDjKQFFwmIgLX6CqjbmIEABCAAgTIQQOAtAzwLp1apUkXenfuhVKxY0bl7+63/laEP3Bd3XffX/eLL79zPK1d+IR3btU3aretvHCynnHq6+2zQNVfKI2Mfdv/+YP4nsuNOO7ktG3TrhmStWfMWMmnyFPfRW7NmynHHHBE/rFLVnQPHuH79j/LzSSfJ5n9eKhf4BTAIgQAJqMBbZdx4qVSpaoBW/ZmivvyxxXLwBNwE+bFxsu221YI37sEi9eUBKia9EaC+vKHFMATEWn0RMghAII/Ab2vztBUaBLJBAIE3G9QzdM3y5cvLm2+9KzVr7uKu+MknC6TPgd3zXX3rrbeWpZ9/6X73+fJl0qVTu6TeXTvoBjn9zLPdZ4kC74cLFkvVqlXd1gy6RUOy1qhRY3n51dfdRwUF3hp1WwROY/WXn8q6E09E4A2cLAZ9EFCBd/vHn5Dqu/7v5YU+rhOUTeorKJLYyQQBnSBvP2681Ni9YSYuV+ZrUF9lRoiBDBKgvjIIm0tFjoC1+opcgOgwBIogsHr5fNhAIGsEEHizht7vhXXLhTdmzpZatWq7C3377TfSqf1+8tdffxW6sK7g1ZW8X3/9lRzQtmVSxxJf0nb2mafJKy9PzhNs35kru+9ey72gbY/dk6/Gbd+ho4x/4hl3/IuTJsr5554ZvwYreP3mAdZznwAreHM/Rnhol4C1FVCs4LWba1H0nPqKYtTpc6YIWKuvTHHhOhDIdQKs4M31CIXbPwTeEMZXX5g29fU3Zbfddne90711u3Q8QH777bekvf1s2UqpUKGCfL9mjbTat0nSY4YNHyV9+h7sPuvds6ssXPhpnmD78lRp2jRv396i9uDtd/Ah8sCwke6YkcOHyeCbb/BKnT3WvOLFeMAE2IM3YKCYg0ACAWt7GDJ+kb6WCFBflqKFr9YIWKsva3zxFwIQgEAYCSDwhiyqO+64k0ybPlOqVsvbb3DF58ulV48uSVfuxro+/6OFUm2HHeTvv/+WenvmicIF20tTpknjxnnib4N6e8gff/zh/j3mkXHStVsP9+9e3TvL4sWLCp172RVXyXnnD3S/v27Q1TL24dFeqTNB9ooX4wETQOANGCjmIJBAwNoEmfGL9LVEgPqyFC18tUbAWn1Z44u/EIAABMJIAIE3RFFt2LCRPPfC5PgL1ebPnyeHHXyQ2z6huDb5ldekSZOmxYq0S5avEt3Td8OGDbJXnd3i5i6+9HK5YOB/3M/DH3xAbhl8U6FLJYrDfXv3kAULPvZKnQmyV7wYD5gAAm/AQDEHAQRecgACGSFgTYDi/jAjacFFAiJgrb4C6jZmIAABCECgDAQQeMsAL5dOPbB3H3lwxGjZYostnFsF97otztfELRSmT58mp5x4XL7DDz28v9w3ZJj73fTXX5NTTjo+/nnlypVlwcKlbg/fn378UVq2aCybNm2Kf67bRMyaPcf5pZ+3aOb/RTfcwOdSZuJLSQQQeEsixOcQKD0BaxNkxq/Sx5ozM0+A+so8c64YHQLW6is6kaGnEIAABHKXAAJv7sYmLc9WfrU6frzuj/vM008Web6u6B3/2CNuS4ZYi+3Dqz+PHfOQDL3/Pvn553XSt98hcufd98WF48T9d2PnTpw8RZo3b+F+nD/vA7nisovdVg0HtGsvwx4cFd8uYtjQIXLbLYPT6ldpDmaCXBpqnJMtAgi82SLPdaNAwNoEmfErClkZnj5SX+GJJT3JPQLW6iv3COIRBCAAgegRQOANScwTBd5UutSx/X6y8osV8UP7DzhS7rpniFuJW1Sb/OJEOe+cMwt9XK9+fZk0+dX41hB6gIrIiba++upL6d6lQ3zv3lR8LO0xTJBLS47zskEAgTcb1LlmVAhYmyAzfkUlM8PRT+orHHGkF7lJwFp95SZFvIIABCAQLQIIvCGJd7oCb/v9W8uXX67K1/uOHTvLiNFj8gm1eoBuuaD76xa3+rZ69Roy6aUpUrPmLvlsqtD7/tw5cuSAQ/Nt3eATOxNkn3SxHTQBBN6giWIPAv8jYG2CzPhF9loiQH1Ziha+WiNgrb6s8cVfCEAAAmEkgMAbxqiWsU8q1vbsdaBUqbK9vDF9muiWD6m2SpUqSecuXWXvBvvInPfeldlvv5UxYTfmIxPkVKPFcblAAIE3F6KAD2ElYG2CzPgV1kwMZ7+or3DGlV7lBgFr9ZUb1PACAhCAQLQJIPBGO/6h7D0T5FCGNbSdQuANbWjpWA4QsDZBZvzKgaTBhZQJUF8po+JACKRNwFp9pd1BToAABCAAgcAJIPAGjhSD2SbABDnbEeD66RBA4E2HFsdCID0C1ibIjF/pxZejs0uA+souf64ebgLW6ivc0aB3EIAABGwQQOC1ESe8TIMAE+Q0YHFo1gm4G/jHHpNyGzZk3ZdUHKC+UqHEMblCwNoEmfrKlczBj1QIUF+pUOIYCJSOgLX6Kl0vOQsCEIAABIIkgMAbJE1s5QQBJsg5EQacSJEAAm+KoDgMAqUgYG2CzPhViiBzStYIUF9ZQ8+FI0DAWn1FICR0EQIQgEDOE0DgzfkQ4WC6BJggp0uM47NJAIE3m/S5dtgJWJsgM36FPSPD1T/qK1zxpDe5RcBafeUWPbyBAAQgEE0CCLzRjHuoe80EOdThDV3nEHhDF1I6lEMErE2QGb9yKHlwpUQC1FeJiDgAAqUmYK2+St1RToQABCAAgcAIIPAGhhJDuUKACXKuRAI/UiGAwJsKJY6BQOkIWJsgM36VLs6clR0C1Fd2uHPVaBCwVl/RiAq9hAAEIJDbBBB4czs+eFcKAkyQSwGNU7JGAIE3a+i5cAQIWJsgM35FIClD1EXqK0TBpCs5R8BafeUcQByCAAQgEEECCLwRDHrYu8wEOewRDlf/EHjDFU96k1sErE2QGb9yK3/wpngC1BcZAgF/BKzVlz8SWIYABCAAgVQJIPCmSorjzBBggmwmVDgqIgi8pAEE/BGwNkFm/PKXC1gOngD1FTxTLEIgRsBafRE5CEAAAhDIPgEE3uzHAA8CJsAEOWCgmPNKAIHXK16MR5yAtQky41fEE9ZY96kvYwHDXVMErNWXKbg4CwEIQCCkBBB4QxrYKHeLCXKUo2+v7wi89mKGx3YIWJsgM37ZyS08/ecJlEcflXIbN5rAQX2ZCBNO/kPA2vhF4CAAAQhAIPsEEHizHwM8CJgAN/ABA8WcVwIIvF7xYjziBKxNkBm/Ip6wxrpPfRkLGO6aImCtvkzBxVkIQAACISWAwBvSwEa5W0yQoxx9e31H4LUXMzy2Q8DaBJnxy05u4SkreMkBCPgkYG388skC2xCAAAQgkBoBBN7UOHGUIQJMkA0FC1d5yRo5AAGPBKxNkBm/PCYDpgMnQH0FjhSDEIgTsFZfhA4CEIAABLJPAIE3+zHAg4AJMEEOGCjmvBJgBa9XvBiPOAFrE2TGr4gnrLHuU1/GAoa7pghYqy9TcHEWAhCAQEgJIPCGNLBR7hYT5ChH317fEXjtxQyP7RCwNkFm/LKTW3jKFg3kAAR8ErA2fvlkgW0IQAACEEiNAAJvapw4yhABJsiGgoWrbNFADkDAIwFrE2TGL4/JgOnACVBfgSPFIATiBKzVF6GDAAQgAIHsE0DgzX4M8CBgAkyQAwaKOa8EWMHrFS/GI07A2gSZ8SviCWus+9SXsYDhrikC1urLFFychQAEIBBSAgi8IQ1slLvFBDnK0bfXdwReezHDYzsErE2QGb/s5BaeskUDOQABnwSsjV8+WWAbAhCAAARSI4DAmxonjjJEgAmyoWDhKls0kAMQ8EjA2gSZ8ctjMmA6cALUV+BIMQiBOAFr9UXoIAABCEAg+wQQeLMfAzwImAAT5ICBYs4rAVbwesWL8YgTsDZBZvyKeMIa6z71ZSxguGuKgLX6MgUXZyEAAQiElAACb0gDG+VuMUGOcvTt9R2B117M8NgOAWsTZMYvO7mFp2zRQA5AwCcBa+OXTxbYhgAEIACB1Agg8KbGiaMMEWCCbChYuMoWDeQABDwSsDZBZvzymAyYDpwA9RU4UgxCIE7AWn0ROghAAAIQyD4BBN7sxwAPAibABDlgoJjzSoAVvF7xYjziBKxNkBm/Ip6wxrpPfRkLGO6aImCtvkzBxVkIQAACISWAwBvSwEa5W0yQoxx9e31H4LUXMzy2Q8DaBJnxy05u4SlbNJADEPBJwNr45ZMFtiEAAQhAIDUCCLypceIoQwSYIBsKFq6yRQM5AAGPBKxNkBm/PCYDpgMnQH0FjhSDEIgTsFZfhA4CEIAABLJPAIE3+zHAg4AJMEEOGCjmvBJgBa9XvBiPOAFrE2TGr4gnrLHuU1/GAoa7pghYqy9TcHEWAhCAQEgJIPCGNLBR7hYT5ChH317fEXjtxQyP7RCwNkFm/LKTW3jKFg3kAAR8ErA2fvlkgW0IQAACEEiNAAJvapw4yhABJsiGgoWrbNFADkDAIwFrE2TGL4/JgOnACVBfgSPFIATiBKzVF6GDAAQgAIHsE0DgzX4M8CBgAkyQAwaKOa8EWMHrFS/GI07A2gSZ8SviCWus+9SXsYDhrikC1urLFFychQAEIBBSAgi8IQ1slLvFBDnK0bfXdwReezHDYzsErE2QGb/s5BaeskUDOQABnwSsjV8+WWAbAhCAAARSI4DAmxonjjJEgAmyoWDhKls0kAMQ8EjA2gSZ8ctjMmA6cALUV+BIMQiBOAFr9UXoIAABCEAg+wQQeLMfAzwImAAT5ICBYs4rAVbwesWL8YgTsDZBZvyKeMIa6z71ZSxguGuKgLX6MgUXZyEAAQiElAACb0gDG+VuMUGOcvTt9R2B117M8NgOAWsTZMYvO7mFp2zRQA5AwCcBa+OXTxbYhgAEIACB1Agg8KbGiaMMEWCCbChYuMoWDeQABDwSsDZBZvzymAyYDpwA9RU4UgxCIE7AWn0ROghAAAIQyD4BBN7sxwAPAibABDlgoJjzSoAVvF7xYjziBKxNkBm/Ip6wxrpPfRkLGO6aImCtvkzBxVkIQAACISWAwBvSwEa5W0yQoxx9e31H4LUXMzy2Q8DaBJnxy05u4SlbNJADEPBJwNr45ZMFtiEAAQhAIDUCCLypceIoQwSYIBsKFq6yRQM5AAGPBKxNkBm/PCYDpgMnQH0FjhSDEIgTsFZfhA4CEIAABLJPAIE3+zHAg4AJMEEOGCjmvBJgBa9XvBiPOAFrE2TGr4gnrLHuU1/GAoa7pghYqy9TcHEWAhCAQEgJIPCGNLBR7hYT5ChH317fEXjtxQyP7RCwNkFm/LKTW3jKFg3kAAR8ErA2fvlkgW0IQAACEEiNAAJvapw4yhABJsiGgoWrbNFADkDAIwFrE2TGL4/JgOnACVBfgSPFIATiBKzVF6GDAAQgAIHsE0DgzX4M8CBgAkyQAwaKOa8EWMHrFS/GI07A2gSZ8SviCWus+9SXsYDhrikC1urLFFychQAEIBBSAgi8IQ1slLvFBDnK0bfXdwReezHDYzsErE2QGb/s5BaeskUDOQABnwSsjV8+WWAbAhCAAARSI4DAmxonjjJEgAmyoWDhKls0kAMQ8EjA2gSZ8ctjMmA6cALUV+BIMQiBOAFr9UXoIAABCEAg+wQQeLMfAzwImAAT5ICBYs4rAVbwesWL8YgTsDZBZvyKeMIa6z71ZSxguGuKgLX6MgUXZyEAAQiElAACb0gDG+VuMUGOcvTt9R2B117M8NgOAWsTZMYvO7mFp2zRQA5AwCcBa+OXTxbYhgAEIACB1Agg8KbGiaMMEWCCbChYuMoWDeQABDwSsDZBZvzymAyYDpwA9RU4UgxCIE7AWn0ROghAAAIQyD4BBN7sxwAPAibABDlgoJjzSoAVvF7xYjziBKxNkBm/Ip6wxrpPfRkLGO6aImCtvkzBxVkIQAACISWAwBvSwEa5W0yQoxx9e31H4LUXMzy2Q8DaBJnxy05u4SlbNJADEPBJwNr45ZMFtiEAAQhAIDUCCLypceIoQwSYIBsKFq6yRQM5AAGPBKxNkBm/PCYDpgMnQH0FjhSDEIgTsFZfhA4CEIAABLJPAIE3+zHAg4AJMEEOGCjmvBJgBa9XvBiPOAFrE2TGr4gnrLHuU1/GAoa7pghYqy9TcHEWAhCAQEgJIPCGNLBR7hYT5ChH317fEXjtxQyP7RCwNkFm/LKTW3jKFg3kAAR8ErA2fvlkgW0IQAACEEiNAAJvapwid9SWW24pFStWlF9++aVUfa9arZqs/emnUp1b1pOYIJeVIOdnkgACbyZpc62oEbA2QWb8ilqG2u4v9WU7fnif2wSs1Vdu08Q7CEAAAtEggMAb4jg/+fTz0rhJU5n84kS54rKLS+zpdtttJyNGjZFGjZtIlSpV3PG///67rFq5Uq65+nKZO+e9Ym3cevtd0q17D9lpp+pSrlw52bBhg3z77Tfy8EOjZMxDo0q8flAHMEEOiiR2MkEAgTcTlLlGVAlYmyAzfkU1U232m/qyGTe8tkHAWn3ZoIqXEIAABMJNAIE3pPFt3aatPPPcRCe0zn77LTnmqP7F9nS33XaXl199PS7sFjx406ZNcu7ZZ8grL08uZGeLLbaQiZOnSNOmzYq8xtgxD8l1116VEdpMkDOCmYsERACBNyCQmIFAEgLWJsiMX6SxJQLUl6Vo4as1Atbqyxpf/IUABCAQRgIIvCGKav8BR0qHDp2kcZMmsle9+k7c1ZaKwPvu3PlSs+Yu7vhVq1bKc88+LT/9+KMc2LuPtGvfwf1+8+bN0rzpPrJu7dp81O4fOkIOPuRQ97v169fLhOeflQ/nz5OOnbpIv4MPERWAtV14wXnuM9+NCbJvwtgPkgACb5A0sQWB/ASsTZAZv8hgSwSoL0vRwldrBKzVlzW++AsBCEAgjAQQeEMU1WnTZ0q9+nsX6lFJAu/eDRrI1GlvuvN0S4UD2rYUXbEba3fdM0QGHHGU+/Hh0SPlhuuvzXeNJctXSfny5d2WDF07tXMCcaz16dtPhg0f7X5c8tli6dGtk3fiTJC9I+YCARJA4A0QJqYgUICAtQky4xcpbIkA9WUpWvhqjYC1+rLGF38hAAEIhJEAAm+IojrwwoulTdv94j1q36Gj+3dJAu9DYx6V7j16uWNPPfkEeX3a1HxUdCXw5yu/cStx165dK82bNIh/rquG7773fvfzhOefkwsvOLcQ0Vmz50itWrXd71s0a+hWBvtsTJB90sV20AQQeIMmij0I/I+AtQky4xfZa4kA9WUpWvhqjYC1+rLGF38hAAEIhJEAAm8Yo/pPn1Z+tdr9qySBd+68j6V69RpuC4Y9a++Sb/VuDM/Mt9+T2rX3cD/WqVUzfsyDI0bLQX36ud+fcdrJMvXVVwoRve2Ou+XoY45zv7/skovkqScf90qdCbJXvBgPmAACb8BAMQeBBALWJsiMX6SvJQLUl6Vo4as1Atbqyxpf/IUABCAQRgIIvGGMapoC78LPPpdKlSrJunXrpFnjwls8qLlRD42Vnr16O8sd2+8nK79Y4f793IQXpVXrNu7fdffYVTZu3FiI6KGH95f7hgxzvx9y391y1x23eaXOBNkrXowHTACBN2CgmIMAAi85AIGMELAmQHF/mJG04CIBEbBWXwF1GzMQgAAEIFAGAgi8ZYCX66emuoJ3+Rdfy5ZbbimrV38nbVo2S9qtxH14Tzr+GJkxY7o77o0335Y96+7l/l17txpJz+3cuas8Mu4J99mzzzwlF190gVd03MB7xYvxgAkg8AYMFHMQQOAlByCQEQLWBCjuDzOSFlwkIALW6iugbmMGAhCAAATKQACBtwzwcv3UVARe3V/3iy+/c11ZufIL6diubdJuXX/jYDnl1NPdZ4OuuVIeGfuw+/cH8z+RHXfayW3ZoFs3JGvNmreQSZOnuI/emjVTjjvmiPhhVXfJE4eDbD99v0p+PulE2VypUpBmsQUBLwT0Bn778eOl6g67e7EftFHqK2ii2PNJwNXXuHFSdcdaPi8TmG3qKzCUGMoAAeorA5C5RGQJWKuvyAaKjkOgAIG13yyDCQSyRgCBN2vo/V84FYF36623lqWff+mc+Xz5MunSqV1Sx64ddIOcfubZ7rNEgffDBYulatWqbmsG3aIhWWvUqLG8/Orr7qOCAm+Nui0CB7H6y09l3YkIvIGDxaAXAnoDX3X841J9t3282A/aKPUVNFHs+SSQN0EeLzV2b+jzMoHZpr4CQ4mhDBCgvjIAmUtEloC1+opsoOg4BAoQWL18PkwgkDUCCLxZQ+//wqkIvOqFruDVlbxff/2VHNC2ZVLHbr/zHjnq6GPdZ2efeZq88vLkPMH2nbmy++613Ava9th956Tntu/QUcY/8Yz77MVJE+X8c8+MH7f1NtsGDuKvDX/KzyefzArewMli0AeBvC0axkn5Lbf2YT5wm9RX4Egx6JFAbAuU8luW93iV4ExTX8GxxJJ/AtSXf8ZcIboErNVXdCNFzyGQn8Dff6wHCQSyRgCBN2vo/V84VYH3s2UrpdyDJJIAACAASURBVEKFCvL9mjXSat8mSR0bNnyU9Ol7sPusd8+usnDhp3mC7ctTpWnTvH17i9qDt9/Bh8gDw0a6Y0YOHyaDb77Ba+fZY80rXowHTIA9eAMGijkIJBCwtoch4xfpa4kA9WUpWvhqjYC1+rLGF38hAAEIhJEAAm8Yo/pPn1IVeOd/tFCq7bCD/P3331Jvz+T7gL40ZZo0bpwn/jaot4f88ccf7t9jHhknXbv1cP/u1b2zLF68qBDRy664Ss47f6D7/XWDrpaxD4/2Sp0Jsle8GA+YAAJvwEAxBwEEXnIAAhkhYE2A4v4wI2nBRQIiYK2+Auo2ZiAAAQhAoAwEEHjLAC/XT01V4J38ymvSpEnTYkXaJctXSfny5WXDhg2yV53d4l2/+NLL5YKB/3E/D3/wAbll8E2FsCSKw31795AFCz72io4beK94MR4wAQTegIFiDgIIvOQABDJCwJoAxf1hRtKCiwREwFp9BdRtzEAAAhCAQBkIIPCWAV6un5qqwJu4hcL06dPklBOPy9e1Qw/vL/cNGeZ+N/311+SUk46Pf165cmVZsHCp28P3px9/lJYtGsumTZvin++22+4ya/Yc2WKLLdznLZr5f9ENN/C5npn4l0gAgZd8gIA/AtYmyIxf/nIBy8EToL6CZ4pFCMQIWKsvIgcBCEAAAtkngMCb/RgE5oGKrdtsUzFub+68vJWy8z54X84649T479esWV3omrF9ePWDsWMekqH33yc//7xO+vY7RO68+z4n0GpL3H83ZmTi5CnSvHkL9+P8eR/IFZdd7LZqOKBdexn24CipWq2a+2zY0CFy2y2DA+tvUYaYIHtHzAUCJIDAGyBMTEGgAAFrE2TGL1LYEgHqy1K08NUaAWv1ZY0v/kIAAhAIIwEE3hBFddr0mVKv/t4l9qhj+/1k5Rcr8h3Xf8CRctc9Q9xK3KLa5BcnynnnnFno43r168ukya9KxYr/E5c3b96cz9ZXX30p3bt0iO/dW6KTZTiACXIZ4HFqxgkg8GYcOReMEAFrE2TGrwglZwi6Sn2FIIh0IWcJWKuvnAWJYxCAAAQiRACBN0TBfu31N6X+3g1K7FGHA9rIqlUrCx3XsWNnGTF6TD6hVg/SLRd0f93iVt9Wr15DJr00RWrW3CWfXRV63587R44ccGi+rRtKdLIMBzBBLgM8Ts04AQTejCPnghEiYG2CzPgVoeQMQVeprxAEkS7kLAFr9ZWzIHEMAhCAQIQIIPBGKNipdlXF2p69DpQqVbaXN6ZPk4ULP031VKlUqZJ07tJV9m6wj8x5712Z/fZbGRN2Y04yQU45XByYAwQQeHMgCLgQWgLWJsiMX6FNxVB2jPoKZVjpVI4QsFZfOYINNyAAAQhEmgACb6TDH87OM0EOZ1zD2isE3rBGln7lAgFrE2TGr1zIGnxIlQD1lSopjoNA+gSs1Vf6PeQMCEAAAhAImgACb9BEsZd1AkyQsx4CHEiDAAJvGrA4FAJpErA2QWb8SjPAHJ5VAtRXVvFz8ZATsFZfIQ8H3YMABCBgggACr4kw4WQ6BJggp0OLY7NNAIE32xHg+mEmYG2CzPgV5mwMX9+or/DFlB7lDgFr9ZU75PAEAhCAQHQJIPBGN/ah7TkT5NCGNpQdQ+ANZVjpVI4QsDZBZvzKkcTBjZQIUF8pYeIgCJSKgLX6KlUnOQkCEIAABAIlgMAbKE6M5QIBJsi5EAV8SJUAAm+qpDgOAukTsDZBZvxKP8ackT0C1Ff22HPl8BMwV19bbSXlypUT0f9oEMhxAps3bxbN1HJ//53jnuIeBNIjgMCbHi+ONkCACbKBIOFinAACL8kAAX8EzE2Qt9xSfjn5ZNlcqZI/KFiGQEAEqK+AQGIGAkkImKuvf/1Lfj/oINlcoQLxhEDuE/j9d9n21Vel3MaNue8rHkIgDQIIvGnA4lAbBBB4bcQJL/MIIPCSCRDwR8DcBBmB118yYDlwAtRX4EgxCIE4AeqLZICAPwLW6ssfCSyHjQACb9giSn8EgZcksEQAgddStPDVGgFrN/CMX9YyLNr+Ul/Rjj+990uA+vLLF+vRJmCtvqIdLXqfDgEE3nRocawJAkyQTYQJJ/8hgMBLKkDAHwFrN/CMX/5yAcvBE6C+gmeKRQjECFBf5AIE/BGwVl/+SGA5bAQQeMMWUfrDCl5ywBQBBF5T4cJZYwSs3cAj8BpLsIi7S31FPAHovlcC1JdXvBiPOAFr9RXxcNH9NAgg8KYBi0NtEGCCbCNOeJlHAIGXTICAPwLWbuAZv/zlApaDJ0B9Bc8UixCIEaC+yAUI+CNgrb78kcBy2Agg8IYtovSHFbzkgCkCCLymwoWzxghYu4FH4DWWYBF3l/qKeALQfa8EqC+veDEecQLW6ivi4aL7aRBA4E0DFofaIMAE2Uac8DKPAAIvmQABfwSs3cAzfvnLBSwHT4D6Cp4pFiEQI0B9kQsQ8EfAWn35I4HlsBFA4A1bROkPK3jJAVMEEHhNhQtnjRGwdgOPwGsswSLuLvUV8QSg+14JUF9e8WI84gSs1VfEw0X30yCAwJsGLA61QYAJso044WUeAQReMgEC/ghYu4Fn/PKXC1gOngD1FTxTLEIgRoD6Ihcg4I+AtfryRwLLYSOAwBu2iNIfVvCSA6YIIPCaChfOGiNg7QYegddYgkXcXeor4glA970SoL684sV4xAlYq6+Ih4vup0EAgTcNWBxqgwATZBtxwss8Agi8ZAIE/BGwdgPP+OUvF7AcPAHqK3imWIRAjAD1RS5AwB8Ba/XljwSWw0YAgTdsEaU/rOAlB0wRQOA1FS6cNUbA2g08Aq+xBIu4u9RXxBOA7nslQH15xYvxiBOwVl8RDxfdT4MAAm8asDjUBgEmyDbihJd5BBB4yQQI+CNg7Qae8ctfLmA5eALUV/BMsQiBGAHqi1yAgD8C1urLHwksh40AAm/YIkp/WMFLDpgigMBrKlw4a4yAtRt4BF5jCRZxd6mviCcA3fdKgPryihfjESdgrb4iHi66nwYBBN40YHGoDQJMkG3ECS/zCCDwkgkQ8EfA2g0845e/XMBy8ASor+CZYhECMQLUF7kAAX8ErNWXPxJYDhsBBN6wRZT+sIKXHDBFAIHXVLhw1hgBazfwCLzGEizi7lJfEU8Auu+VAPXlFS/GI07AWn1FPFx0Pw0CCLxpwOJQGwSYINuIE17mEUDgJRMg4I+AtRt4xi9/uYDl4AlQX8EzxSIEYgSoL3IBAv4IWKsvfySwHDYCCLxhiyj9YQUvOWCKAAKvqXDhrDEC1m7gEXiNJVjE3aW+Ip4AdN8rAerLK16MR5yAtfqKeLjofhoEEHjTgMWhNggwQbYRJ7zMI4DASyZAwB8BazfwjF/+cgHLwROgvoJnikUIxAhQX+QCBPwRsFZf/khgOWwEEHjDFlH6wwpecsAUAQReU+HCWWMErN3AI/AaS7CIu0t9RTwB6L5XAtSXV7wYjzgBa/UV8XDR/TQIIPCmAYtDbRBggmwjTniZRwCBl0yAgD8C1m7gGb/85QKWgydAfQXPFIsQiBGgvsgFCPgjYK2+/JHActgIIPCGLaL0hxW85IApAgi8psKFs8YIWLuBR+A1lmARd5f6ingC0H2vBKgvr3gxHnEC1uor4uGi+2kQQOBNAxaH2iDABNlGnPAyjwACL5kAAX8ErN3AM375ywUsB0+A+gqeKRYhECNAfZELEPBHwFp9+SOB5bARQOANW0TpDyt4yQFTBBB4TYULZ40RsHYDj8BrLMEi7i71FfEEoPteCVBfXvFiPOIErNVXxMNF99MggMCbBiwOtUGACbKNOOFlHgEEXjIBAv4IWLuBZ/zylwtYDp4A9RU8UyxCIEaA+iIXIOCPgLX68kcCy2EjgMAbtojSH1bwkgOmCCDwmgoXzhojYO0GHoHXWIJF3F3qK+IJQPe9EqC+vOLFeMQJWKuviIeL7qdBAIE3DVgcaoMAE2QbccLLPAIIvGQCBPwRsHYDz/jlLxewHDwB6it4pliEQIwA9UUuQMAfAWv15Y8ElsNGAIE3bBGlP6zgJQdMEUDgNRUunDVGwNoNPAKvsQSLuLvUV8QTgO57JUB9ecWL8YgTsFZfEQ8X3U+DAAJvGrA41AYBJsg24oSXeQQQeMkECPgjYO0GnvHLXy5gOXgC1FfwTLEIgRgB6otcgIA/Atbqyx8JLIeNAAJv2CJKf1jBSw6YIoDAaypcOGuMgLUbeAReYwkWcXepr4gnAN33SoD68ooX4xEnYK2+Ih4uup8GAQTeNGBxqA0CTJBtxAkv8wgg8JIJEPBHwNoNPOOXv1zAcvAEqK/gmWIRAjEC1Be5AAF/BKzVlz8SWA4bAQTesEWU/rCClxwwRQCB11S4cNYYAWs38Ai8xhIs4u5SXxFPALrvlQD15RUvxiNOwFp9RTxcdD8NAgi8acDiUBsEmCDbiBNe5hFA4CUTIOCPgLUbeMYvf7mA5eAJUF/BM8UiBGIEqC9yAQL+CFirL38ksBw2Agi8YYso/WEFLzlgigACr6lw4awxAtZu4BF4jSVYxN2lviKeAHTfKwHqyytejEecgLX6ini46H4aBBB404DFoTYIMEG2ESe8zCOAwEsmQMAfAWs38Ixf/nIBy8EToL6CZ4pFCMQIUF/kAgT8EbBWX/5IYDlsBBB4wxZR+sMKXnLAFAEEXlPhwlljBKzdwCPwGkuwiLtLfUU8Aei+VwLUl1e8GI84AWv1FfFw0f00CCDwpgGLQ20QYIJsI054mUcAgZdMgIA/AtZu4Bm//OUCloMnQH0FzxSLEIgRoL7IBQj4I2CtvvyRwHLYCCDwhi2i9IcVvOSAKQIIvKbChbPGCFi7gUfgNZZgEXeX+op4AtB9rwSoL694MR5xAtbqK+LhovtpEEDgTQMWh9ogwATZRpzwMo8AAi+ZAAF/BKzdwDN++csFLAdPgPoKnikWIRAjQH2RCxDwR8BaffkjgeWwEUDgDVtE6Q8reMkBUwQQeE2FC2eNEbB2A4/AayzBIu4u9RXxBKD7XglQX17xYjziBKzVV8TDRffTIIDAmwYsDrVBgAmyjTjhZR4BBF4yAQL+CFi7gWf88pcLWA6eAPUVPFMsQiBGgPoiFyDgj4C1+vJHAsthI4DAG7aI0h9W8JIDpggg8JoKF84aI2DtBh6B11iCRdxd6iviCUD3vRKgvrzixXjECVirr4iHi+6nQQCBNw1YHGqDABNkG3HCyzwCCLxkAgT8EbB2A8/45S8XsBw8AeoreKZYhECMAPVFLkDAHwFr9eWPBJbDRgCBN2wRpT+s4CUHTBFA4DUVLpw1RsDaDTwCr7EEi7i71FfEE4DueyVAfXnFi/GIE7BWXxEPF91PgwACbxqwONQGASbINuKEl3kEEHjJBAj4I2DtBp7xy18uYDl4AtRX8EyxCIEYAeqLXICAPwLW6ssfCSyHjQACb9giSn9YwUsOmCKAwGsqXDhrjIC1G3gEXmMJFnF3qa+IJwDd90qA+vKKF+MRJ2CtviIeLrqfBgEE3jRgcWjqBKpWqyZrf/op9RMCPJIJcoAwMeWdAAKvd8RcIMIErN3AM35FOFkNdp36Mhg0XDZDgPoyEyocNUjAWn0ZRIzLWSKAwJsl8GG87K233yXduveQnXaqLuXKlZMNGzbIt99+Iw8/NErGPDQqY11mgpwx1FwoAAIIvAFAxAQEiiBg7Qae8YtUtkSA+rIULXy1RoD6shYx/LVEwFp9WWKLr9klgMCbXf6huPoWW2whEydPkaZNmxXZn7FjHpLrrr0qI/1lgpwRzFwkIAIIvAGBxAwEkhCwdgPP+EUaWyJAfVmKFr5aI0B9WYsY/loiYK2+LLHF1+wSQODNLv9QXP3+oSPk4EMOdX1Zv369THj+Wflw/jzp2KmL9Dv4EFEBWNuFF5znPvPdmCD7Joz9IAkg8AZJE1sQyE/A2g084xcZbIkA9WUpWvhqjQD1ZS1i+GuJgLX6ssQWX7NLAIE3u/xDcfUly1dJ+fLl3ZYMXTu1k1WrVsb71advPxk2fLT7eclni6VHt07e+8wE2TtiLhAgAQTeAGFiCgIFCFi7gWf8IoUtEaC+LEULX60RoL6sRQx/LRGwVl+W2OJrdgkg8GaXv/mr9x9wpNx97/2uHxOef04uvODcQn2aNXuO1KpV2/2+RbOG8tOPP3rtNxNkr3gxHjABBN6AgWIOAgkErN3AM36RvpYIUF+WooWv1ghQX9Yihr+WCFirL0ts8TW7BBB4s8vf/NUfHDFaDurTz/XjjNNOlqmvvlKoT7fdcbccfcxx7veXXXKRPPXk4177zQTZK16MB0wAgTdgoJiDAAIvOQCBjBCwNkHm/jAjacFFAiJAfQUEEjMQSELAWn0RRAikSgCBN1VSHJeUwHMTXpRWrdu4z+rusats3Lix0HGHHt5f7hsyzP1+yH13y1133OaVJjfwXvFiPGACCLwBA8UcBBB4yQEIZISAtQky94cZSQsuEhAB6isgkJiBAAIvORAhAgi8EQq2j66+8ebbsmfdvZzp2rvVSHqJzp27yiPjnnCfPfvMU3LxRRf4cCVukxt4r3gxHjABBN6AgWIOAgi85AAEMkIAASojmLlIRAlQXxENPN3OCAFr9ZURKFwkFAQQeEMRxux14oP5n8iOO+0kmzZtkjq1aiZ1pFnzFjJp8hT32VuzZspxxxwRP65G3RaBO7/6y09l3YknyuZKlQK3jUEIBE1AbzCqjn9cqu+2T9CmvdijvrxgxagnAlpf248bLzV2b+jpCsGapb6C5Yk1vwSoL798sR5tAtRXtONP7/0S8Flfq5fP9+s81iFQDAEEXtKjTAQ+XLBYqlat6rZm0C0akrVGjRrLy6++njmBd+UC+bNpU9m89dZl6hsnQyATBMr99Zds88mnUr1Wo0xcrszXWE19lZkhBjJHQOurwiefSI1ajTN30TJcifoqAzxOzTgB6ivjyLlghAhQXxEKNl3NOAGf9YXAm/FwcsEEAgi8pEOZCLz1zlzZffdasnnzZtlj952T2mrfoaOMf+IZ99mLkybK+eeeGT/OxwreMnWIkyEAAQhAAAIQgAAEIAABCEAAAhCAQJoEEHjTBMbhgRJA4A0UZ/SMvfjyVGnatJnreFF78PY7+BB5YNhId8zI4cNk8M03IPBGL1XoMQQgAAEIQAACEIAABCAAAQhAILQEEHhDG1oTHUPgNRGm3HVyzCPjpGu3Hs7BXt07y+LFiwo5e9kVV8l55w90v79u0NUy9uHRudshPIMABCAAAQhAAAIQgAAEIAABCEAAAhCAgCECCLyGgpWLrl586eVywcD/ONeGP/iA3DL4pkJuvjRlmjRu3MT9vm/vHrJgwce52BV8ggAEIAABCEAAAhCAAAQgAAEIQAACEICAOQIIvOZCllsOV65cWRYsXCrlypWTn378UVq2aCybNm2KO7nbbrvLrNlzZIsttnCft2hm403muUUZbyAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkJwAAi+ZUWYCEydPkebNWzg78+d9IFdcdrHbquGAdu1l2IOjpGq1au6zYUOHyG23DC7z9TAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI5BFA4CUTykygXv36Mmnyq1KxYsW4rc2bN7tVvbH21VdfSvcuHeSPP/4o8/UwAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDwkgMBEqhevYZMemmK1Ky5Sz6rKvS+P3eOHDng0HxbNwR4aUwZIrDjjjvJPfc94DwePXK4vPnmG4a8x1UIQAACEIBAagRGPTRWKlTYRqa++oo89ujY1E7iqDITuPzKq6Vx46aycuUXcs1Vl5fZHgbsENhyyy1lp52qy7fffmPHaU+e3jtkmOywww7y1qyZMmL4UE9XwSwEIAABCOQaAVbw5lpEjPtTqVIl6dylq+zdYB+Z8967MvvttxB2Pcf0hUkvi+51nNg2bd4k63/9VdatWydvvTVTHhx6f06snm7atJm8+PJU5ypbdnhODMyXmUDvg/rKTTff4uzccP018uKkiWW2WZyB3XevJdV22EHWr18vy5ctTXroyaeeLlddPch99tDoEWx74zUiGA+aQGJNqe3BN98gE55/tsjL7N2ggYx//Jn45xNfeF5uuvG6QNxq0GAfKV+hgqz+7jv57rtvA7GZaOSLL79zTzLpfdAxR/UP3H5UDE6bPlO2376q6+6XX66Sww7pU2zX35073y02+OWXX6RJw3rxY1X8a/TPC3+XLV0iv/32W1QQun6GdXzRd3zcNPhWOezwAaJzEG26uERr+qorLpPpr79W5jir/d698+fdZtksf//9t6xZvVqmvjrFiaiJ7yAp80XLaGDZiq9kq622koULP5XePbuW0Rqnp0JgxKiHpWXL1oUOfeed2fLv885KxQTHQAACECgzAQTeMiPEAASyS+CTRctEX3ZXXNObzkv+M1Cee/bprDqLwJtV/Fw8TQJnnnWuXH1tnph0639vlgeH3Z+mhfQOf+uduW4SrsJDw733THryxZdeLhcM/I/77Jmnn3R1TYOAFQKJNaU+//D99+7lrEW1Z5+fJK3btI1/rKvRjjvmiEC6GxNg9Smj/of1C8RmohEE3rIj7dqth4x5ZFw+Q927dpClS5YUabwogbdTpy7y6Pgn3Xn6Pgj9kjlKLazjS6xfGksVdlV0LV++fDy0Z595mrzy8uQyhfqZ5yZKm7b7FWtjw4YNcsnFA+WF558r07WCOhmBNyiSqduZMesdqVOn8L3b0iWfSfeuHVM3xJEQgAAEykAAgbcM8DgVArlAICbwqoirq6a1bb311rL99tvLHnX2FF3dELvxPfP0U9zjotlqCLzZIs91S0MgFwVeXaV01TV5K3hHjRguI0cMK03XOAcCWSFQUOBVJ84/98ykq+N33rmmqFiXuJ8/Am9Wwpa1iyYT1iZNfKHY1XAIvMnDlYrAa218SfzCc9HChXL0UYfLurVr5bQzzpJB193oQPz044/SolnDMuVwYh7qy6T/+usvqbDNNlKtWjX3BF3iffYpJx0vb0yfVqbrBXEyAm8QFNOzcexxJ8SfEtAzjz/hJGcAgTc9jhwNAQiUjQACb9n4cTYEsk4gJvDqY92NGtTN548KvS++NFUa7LOP+73emB568EFZ8xmBN2vouXApCOSiwFuKbnAKBHKGQDKB9+uvv5ID2rYs5OPI0WOk14H5xysE3pwJpXdHdEuFz5atFP3/mjWrRffwVyGtuCcc1CkE3uShSUXg9R7UgC/wytTp0rBhI2f14L4Hykcfzo9fYcnyVW4lr67q3WP3nct05USBV8ViFY1jTbeFeOrZF6RJk6buV7o1RNtWzct0vSBORuANgmLZbKz8arUzgMBbNo6cDQEIpEcAgTc9XhwNgZwjUJzAq87qDa7e6GpLJgIndmjAEUdJj5693B7K//rXv+SzxYvkzRlvlPiCGJ10nXDiydKqdVtp0KCB/N//bZLPP18ms2a+KU8+Md7dYGtLReA96eRTpVat2u74adOmyjuz38455jgUDQKlFXh79DzQ7UW+5551pVq1HaRipYpuP0gVKZ5/9ulCqxWrVqsm558/UI4+9njZdtttZePGjTL24dH5IL8w4TlZsOBj0VWNZ5x5tvvs8cfH5durV1eP1K27l6xatVIeGfuwHNCuvRx51LHSvHlz+deWW8ry5cvknrvuyDcJjkYk6WWuEEisKd0aoVXrNs61k44/RmbMmB53U0UTHdt0bJk75734Ng3FCbxt99tfdAzTfVb15ULffP21fPrpJ3LHbf+Vn3/+OW5br6n7aZ7+Tx19v2aN6N6+ie3uu253QqL6oasa27TdX3bZZRe3Yk/37V3/63o3xj0w5F53jWSNLRrKlnV6L3DjP3ugD33gPmnbdv8i8yXxSskE3v4DjpQ+fftJt+493aH6ZfcH78+Nn/bjjz8W2rJB753OPud8adm6tey1Vz35+6+/ZNmypS5Xku3Hrn9vu3XrIf/3f/8n/x2ct3q0SpUqouNB/fp7y+o1q+WhUSNk1113k1NPO8N9/uijY2XN6u/krHPOk3btOkit2rXl+++/l7ffmum2BYrdOyX2T++jevfp+0+e7yjbbbed/P7b7/LDD9+7+yXdeiJxL9ggxpd/X3CReyrshx9+KHarop69ekvbf7YyuPOOWwu9++HIo45xY+M++zR0dfTFihXO5/uH3FOqZHnt9Tel/t4N3Lnt92/t9miOtUVLVkjFihXdeFp3j11LZT92UnECrx6jf6cWL/3C3W8r+zq1arpTdQ/xI488xv176NAh+YThmO0De/eR1q3byK+//ir33nNn3M+y5klJAm+Xrt2lffsO7nqa1088nn8rlDIB42RHoDiBN937RLUXq8OS8H744Tz3N0r//sS29CrpnOefe6bIsaykc/kcAhDILQIIvLkVD7yBQNoEShJ43c3bPy9bKOpGV28CnnrmBdmnYfLH2Fas+FwGHHawm0AUbLo/4kNjHnM3Esma7od27NED3CS9JIH31tvvkmOOPd6Z+f3336Vnt075btjThsMJECgDgdIIvDrRW7Gq+Bc26eqfzh33j4tOKgw88VTx+/bFXkqoE+hRD411vbrh+mvl4dEj4z2cO+9jqV69hhOmFn76Sb69S2MHqWBw4w2D8p1XBkScCoG0CCTW1MknHicPj33MiSMrPl8unTseELc1+Jbb3eOtmq/61MnEF/O2Fkom8Or5D44YLSqUFDUGXXrJhfG9MW+74245+pjjivU7ts+r+qC+FNd0bBtw+MGFDkHgTSs1Ch08fcZbUnevei4HmjaqLwe06yD6EiNt774zW4464rCkF0gm8M58+z2pXXuPIh3S+5R6e/7vZbX7H9BORj/8qPvCLVlTgVhfnPfHH3/EP1bfYjnYet+mMvKhsdKixb75FCqcNAAAIABJREFUTq+9Ww055NDDZMgDw93v9UuN/fdvl2/P2NgJ+oVgu/1auT1lE9uHCxZL1ap5L51L1nQv2BOPP9q93E9bEOPL7Pc+cMK0tuL2QI7dj6oP9evWigvN+sXkE089K3vW3Supz7oX97HHDJDPFi9OK2muvuY6OfPsc905r02dIqefmvdIfOK95uJFi6RXj85p2S14cEkCr4tlwv6r+rdM/6ad/+8L5dLLr3TmdO9w/ftVsOmLklvs2zKfMKzHlDVPihN4+x18iNw/dITb/kbrS18A5vslsmUKgNGTixJ4S3OfqAiWf/G1e6KhpKZfOh7Uq5s0b7FvfOws6RxefF0SIT6HgB0CCLx2YoWnEEhKoCSBd5tttnErC7StXbtWmjfJW+2Q2GLCkP5O9xZbtGihbN60ya3k1RUQ2nQFlE6yEtu+LVvJhIkvxX+lwtKXq1bJtpW3dSsNYzci/7nw3+4Fb8UJvDfc9F85+ZTTnC3EXZI9FwiUVeDVetBJ+rp166TKdtvl2xP78+XLpEundq6b+ojp408951ZIxfYb1VpNbHfefouMe+wRSUXgTTxPv9RZ+9NPsn3Vqu6N2tp08q1vl08UJ3KBNz6En0BiTakoesqpp0ufvnniqL7oTFf16uRXH83XLYbefmuWXHbJRfL2u++7Y5IJvJNfeS3+eLTW3Ny578nan9a6VYKx7Yl0VZ0+Nq31eO55FzhRKCaS6WeJK3z1On0O7C66dUSiwKs1+cP3a2T9b79J9erV44KXHv/Yo2PlmqsuzxdABN7S57OuOv3w40XOQOLjzbHH7vXvmgqyiStVY1dLJvDqi9ra7neAW5Edu8/R+4xYW/vTj/G/x82at5BJk6fEP9O9XRcvXiTbV93erSKO3RNNeeUlOeuMU+PHJQq86l8yIaagwJtIKJaDiV+W69/8q6+8LB/ImMCrf8c1n3X18dZbbS171KkjFSpUcMeqKNyyeSP35EgQ48upp58p111/k7NdsN8x53RF6NhHx7sfE8VWreOPPvkszu3bb79xT5Fo7Fq2ai01auRtn6B9UWE8naYvJX1j5uz42KZftsx4Y7ro3rz6d0QZHdynlyxc+Gk6Zgsdm4rAmyiCN95nL7ciNyiBtzR5UpTAqytH9UvimLh73jlnyEuTXywTH05OTiAVgTfV+0S9gn6JsH2V7ZNeTP9mxtr0118T3Qu6zp51ZcILRbxgsFy5fF8UXXrxhfL0U08QSghAIAQEEHhDEES6EG0CJQm84x5/Wjp07OQgTXxhglxwft7j3bF2ymlnyPU33Ox+VNGp70E93QpAbXpjPmHSy9K4cRP3sz4mefut/42fO+eDj+I35wUnInrzeNXVg0QnBjpBL07gvfLqa92jkNr02rpy96uvvox2YOl91gmURuBVp3VV0dNPP1HoTe+VK1eWWbPnxm+q9bFRFQJiLZU9ElMVeFUs0LrTybg2FRumvTEr/obn6wZdXWgbiKwDx4HQEygo8K74/HN5f/4CJzaokHZgzy5y4UWXyEUXX+pYdGy/n/zfxo1FCry6YjK2qlPFnaOPPDxfTen2CvcOGepsqVisT5PEWkyAVVFZxeVkrV79+nLggX1k3LhH3BcliU2FQF19p0KSrkBs2aJxvs8ReEufzokrMwddc6XbckbbQ2Mele49erl/J/4+8Upl3YM3JtSpAKn5krhNlD6C/+Zb70rNmru4lY+6LUDsXiVR4FV/9AuBFye9IK+9OkX++PMPadBgH/dFQOLKTD1OX3x78UUXODFWW2JOJ/ti/ayzz5NFCz+VmTNnFAL85NPPi64+1hb7Yj2I8UVzXMV1/ZJQxWNdnVtw+4jYSlS9XuIq3/vuf1AOPexw58bdd94u9917Vz6/E7mVZlzSGn3plWmFVkHrCtp/n3e229pI4/XOnHnuunovqrzTaSUJvLrty3MT8kTSP//8U/beK2+bsSAF3nTzJJnA26lTF3lk3BNxcfecs06XV14uQgBMBxDHJiVQ3BYNpb1PTHYhffJRn4DUpgsK2rRs6hbrFNcS/5YW90QEoYUABOwRQOC1FzM8hkA+AjGBVwdzfQRM28477yx77rmXHHfCiXEBVicP7fdvVWil0vyPFkq1HXZwN+ttWjZzqygSm4pSH3+6pNDLTRInKcU9AqerUXRCoKsFk63g/c8ll8nACy92l0TcJblziUBpBd7i+nD5lVe7FYTaCj6yGZTAq3tt6wqighPwRHFY99u74rK8uqNBIFMECgq8KsqOf+IZad+ho3OhV/fO8uyEF0XHnfnz58mh/Xq7t9QXtYI3Jubp2KFPmCR+YRLr06zZc9y+7gXFslQE3pK4vPzq69KoUeNCj1freQi8JdEr+vP35y2QnapXd1z1i7DYSt3ER46XLV0i3brk7SGa2Moi8Cb+jbzn7jvk3rv/tydq7BodO3aWxx5/yv2YKDInCpUq5F579RVJ99BNvHfSfXYfHHZ/kX1I3M81FZoqdk6bPssd+tSTj7sv+WKtrOPL6IcfcfsJa9OxI3HPVl0Z/eni5U441H1wVfjWpsLw5yu/cb//8MP5ckjfvPMTmy4k0BX7emxpXqKo4+llV1wVf/olZvvsM0+Li5e6knHGzNnuI92K4Pxzz0wFZ/yY4gTe0844Sy6/4uq4wJy4mj8ogbc0eVJQ4FXh//Enn3Wc9d5A+cS+AE4LBgenTKC0L1kr7j6x4MV1hf5LU6a5uOrfi+5dO+Z7N0MyZzVnB12Xt0+4fjnZtnXzpGNnyh3lQAhAIKcIIPDmVDhwBgLpE4gJvMWdqXuxnXTCMYX2ctNzdL9QvTEoarKkxySuzNC3EevN4c3/vc29WE1bwRfkFOVLQYFXX1SjN+badILeo2tH91gsDQK5QKAsAq+u9DqoTz/3Yh/d6qTytpVlm4oV3SQwtg3DwAvOje8Lqv0t6wQ8ttVKUVux6DYNHy3I2+Nw+vRpcsqJxe9DmgsxwIdwEUgm8Nbeo47MfOvd+DgQe4y+b+8ebvVdcQJvTMTQx75HjngwKSzdBkIF3oJiWToCr/qoL8ZSgbFGjRqy7baVXS2rOBVr+vh9YkPgLV3uJoqUyfY31i+c9YtjvQ9p3nQfWVdgO5uyCLzX3zjYbRui7Y7bbpHf//jfNg6x3ugLaK+59nr3o75E9vJL/+P+nSjw6ku2km0focclCry6/YI+/VSwJQqKBfNKj9UxpEOHTtLvkEOlZctWUqXK9vHxJbY1hK74POO0vHu0IMaXxLgsX7ZUunZuH7etWyLEXuaUKHonbnehL93VcSdZu+LKa1w9rVz5hXRs1zblxEkUUF9+6UX5cP58ueqaQe58zY+B/z7HPbmW6Htp9hpNjIcultDY6vZn6nNi0/vXA9q2jP8qKIG3NHmSKPDqlw1PPTPBPcmjXM48/RS3cpzml0BJAm9p7hMTPdax8r33P3JfiGoreE+ZrHe6td7zL0x2f0N0C5POHfbniUm/aYB1CGScAAJvxpFzQQgES6AkgVf3AdOVTckmG7pyV1fwapv55gw54bijkjqnLwTRSYm23j27uv3Mnn1+UvwlTrH9xkrqWaLAq9tBxF64oauPO7XfT3SSToNArhAorcB73vkD3YtVYkJuUf3JtMCrfsQmHG+88bqcfMKxuYIaPyJCIJnAq12fOHmKNG/eIk4hcd/VogTe7bbbThYsXJoWucRtUVIRePXLz7GPPS76aHNJDYG3JEKpff7AsJGiL4HSpqtodU/VxHblVdfKfvvnvZBvxIND5b+D81aixVpZBF592aW+lCzV9uabb8iJxx2d50vCS9bKKvDqywe7de/p7BbMK12JOfbRx+P77Rbla9ACr15HV9JrPWrTPa2/+y7vhaKxFdcFt29I3Ls3FaZFfTmZ7FwV+XU/Yq3RRGE1cdsxFTN1O4ZVq1a6e1ZtBbeuSMWvRIE32fF6HRXqC67a9i3wFpcnMYFXV2jql7sx4V9fRKd7JNP8EyhO4C3tfWKi16++NiO+z3wqT2VpHrzz3rz4ftjkgv8c4AoQyAYBBN5sUOeaEAiQQEzg1ReGdPnnLeTlK1SQl6dMi78BWt/4rG8iL9iaNGkq+oIabcU9tqZ7O+keT9pOOPYot/fb62/Mkr3q5b10LdkKk2RdTBR4C36uewPrSgsaBHKFQGkE3sG33O5ezBRr+qWF7peobzXWFxA2bdY8/jkCb65EGj8yRaAogbfg2HDMUf1FnzzRVpTAm3iOfkn4ww/fF9sNFWE6HNAm/mVnKgKvvtSmTp0943aXfLZYFi9eLIsXLZSvv/5Szjz7PLdFQ7JxkBW8pcuqRUtWxAWIkix8v2aNtNo37x0BsVYWgXfa9JlSr/7ezlQqTxM9/9wzcuftt7rjgxR49SVYul1EwbzS340cPSb+5aF+gb/g449cPq5Y8bl8++23olspaPMh8J586ulyw42Dnf3YFhCa/7pVibaXJk+Sc88+Ix4Lfb+DCq7adIuU9et/LTaky5ctK3KhQcETdWsGfZRdm74bQt8REWuJL0fU3+lK8NZt2ha56rukPEsUePXv0p9//uH22l26dIlbNfzB+3MKbX+mNn0LvEXliV47JvAW7NszTz8pl/xnYEld5vMACBQl8JblPjHmVuK8rLht8hK7kTiejRw+TAbffEMAvcQEBCCQawQQeHMtIvgDgTQJFPWSNX0kbcrUN+Lf2j/7zFOFXiyhj5cu/TzvZWbFvWgmcZVAbNXGmEfHS9eu3d25+7VukdLq24KTeJ1A7brrbs6GTr51JUyyF4ekiYTDIRAIgdIIvLF6LGqPuwFHHCV33TPE+YfAG0iYMGKIQFECr3Zh+oy3pO5e9dzjou32axXvVVECb+L49cH7c+XwQ/umRSImwBZ17o477iQffPiJs6mPZR9+aJ9CL04sbgUdAm9a4XAHd+3WQ8Y8Mi6tExNf6KUnpiLwFhQEYxfUa6sP2lrv27TQOwmKcywTAq8+Zh9bvTzm4dFy/aA8gTOxxUQlHwKvPpWiL1vT2tNttRruvaeLV4yZfoGiq2Vj7cijjpE77rrX/VgU87SCnXBwIu+zzji10H6yOtbeefd9+Z6k0S9oenTLe+lwOq2kl6wVZStR4D315BPk9WlTCx0a2wKt4BYyqWzlkarAq+K6Psavq521DX/wAbll8E3pIODYUhAoSuAty32iuqEvLdSXF2rTL3natmoWfzl2UW7eP3SEHHzIoe7johb9lKKLnAIBCOQgAQTeHAwKLkEgHQJFCbxqI/GFIfrzf2++UUYMz3ujeKypwKs36/qGcN3PLlmLPZaXeAN6yWVXyL8vyHuBx+CbbpCRI4aV6HaiwBubVF93/U2ij/Fp0xfk6CT9ow/nl2iLAyDgm0C6Aq++qVvFBW26YvegXt0KuVicwBt7GVTiW7gLGkis6Ruuv1YeHj0yfkhJe/DqgWzR4DtrsF8cgeIEXq2fJk2bycJPP8m3J2Bxe/Dqy5kqVKjgJrm6VVA6Lbb/vO7zq/v9FmyJKwSL2rcTgTcd4iUfm7j104UXnOf2ZE3Wjjr6WDn6mLw9xCdNfEH+fd5Z8cOKEngTX4425L675a47bitkOvGlrzffdL2MKmJf52Q+ZULgXfjZ56L7buqK9fp1ayVlU5TAW9bxJXaxxH7qi7ruHzpcttpqK1nx+XLp/M9TZLFjde9rva62d9+ZLUcdkbfVVxAt8aVv99x1h9x7T+EX4qkQdu+QYXGRt2CupOpHaQXeM846J75fc8EX08Wu7Vvg1S+nDmi7r7Rq3daJ8bGto1K9b0+VEcflJ5C4hdCihQvlwJ552/yU9T5RvwSdOm2GW7yjc7I+B3Z32+YV1xJXtOs2KCoI698QGgQgEE4CCLzhjCu9ihCB4gRexTDwwotFJy2xVnDPpcQ9nM49+3R5afKL+ejpY22xvcsSV1bpRv0TJr7kjtXJdfMmDZK+hVUfz3vvndnuBqTgS9ZuuyXvUb/Eb5Z1D7cDe3Yt8S2wEQoxXc0SgXQF3gYN9pFXp81w3ia+STzR/cT9JQuu4H3hxVekRYt93eFF7WuNwJulZOCygRAoTuAt6gLFCbz69vDGjfMe0R8/7lG56opLk5rRJ0UO73+E3D/knvjnsa0AdI/Kli3ytllIbFddPUjOOuc896tkjzWr0Db19Tfje5KyB2/ZUkQFC/3CWVcZqijVpGG9Ig3q/qsfffKZE6tiK0ljBxcl8Cbm0bTXXpXTTjmxkP3E7Qb0XqR1y6aFXuIWO0m3K3h39tuyePEi96tMCLyxL+RV2Nl7r9qFXpx7YO8+zg9tBVfwlnV8ifW7zp51ZcbM2e5HZRR70eBll1zktm0o2HTFb+xlZMW9kFf3Pq5eo0a+F48Wl1GJ4mlRCxR2372WvD7jrXwvQytKDC7uWqUVeBO/VJj++mtyykl5W53Fmop1eh+t+exrBa/ee+u7M7T1H3Ck3H3v/fHr6/7E+nQfLXgCiduZJG6BV5b7RK2jOR98LNtvv71zuKgvDRJ7o3/TdCs+/buqi2i6d+3ovoyhQQAC4SWAwBve2NKziBAoSeBVDLpnW68D8/bg1QFev/GNTUoaNmwkr0zNe4mJ3mDq23p1s359xFxfdHLPfUPd6gxtRx95uLwz++04WX0Ta8tWrd3P+q3wRQPPl1kzZ7gbiUMP6y//HniRe3t57KUWRQm8ev6TTz8v+vIQbbH9hGMv8IhIKOlmjhFIFKN0D793382b1CZrWjs6cdRVgbEVMk8/9YSrpV9//UV69TrIvZ19x512ip9eUODVlUaHHd7ffa4r3C84/xz5+ed10r1HL1m2dInoSkME3hxLEtxJi0DQAq+KdrpCMPbosT56ev1118jHH33oXizUvXtP6d2nr3Tp0k3WrVvnvoiMtdnvfRDfIkhf1qV7eG6zTUU55NDDZdxjY6VVqzby6Pgn3eEqZI0a+aA8+fh4qbnLLnJQn35y7HEnxMUtPQaBN61UKHRwoiCSbEupgifEtvTQ35984nHyxvRp7pCiBF79LLZthv691n3/p746RfaoU0cOaNdBxjw0yp3/0JhH3d9cbbrKTf+uP/XU4+4pp1at20iXrt3kqKOOdX/Lr7z8Enl8/GPu2EwIvG+9M1dUtNSmua45Oe+DD6R7j55y9LHHx7/s0M8LCrxlHV8S+cdWA8d+V9xTJ4nbNOh95XPPPi1D7rtHVn6xwm3J0q1bD/flyz4NG8qMGdNFReBU2s4715R35syL176+uPf00052iwNUMD2s/xGiX9KoKKb1q18gxP5OaK3rlhGpttIKvImrOLXvuspYxb6GDRvKYYcPcFtbxO4XMiHwan/POfffcsVV17iuq0/6RUeyrSNSZcNxIvfc+4DMn/+BvPfeO/KvLf4lnbt0cwtrYnOn888908U91mJ/h/TndO4TE19G+vHHH8kN1+XFsWDT+8alS5a4bTnemTPf/d/9jXpwqEwt4gV7X3/1VUpb7RFvCEAg9wkg8OZ+jPAQAsUSSEXgVQOJLw9RAbXd/q3kpx9/dLb15uTwAUfEr6M3fdpiN57u/CQrXqpWqyZvv/O+e2SwuJaKwKvnJ64m1sl4x3Ztkr64gpSAQCYIJIpRqVxPH5m9+b+3iU5oU2kFBV4Vq3QCn1h3MTuxR8QReFMhyzG5SiBogVf7edbZ58mVV1+btG4SOeiXkIkCb8EXMSUeG9vXtaCQVRxXBN6yZV2iYKuP+pe0yuy0M86SQdfd6C4657135Yj+h7h/FyfwqmDfqVPeo9KJTQXAenvu7n6lgqD+Ha5evUaJHcq0wNuj54Hxl6iV5FxBgbes40vi9U486RS5aXDey+W0TXj+ObnwgnOLdGnsY4+7L1lKaukIvGrrhBNPdmNuYlOhNCbk6u9VpO/Tu7vsUnNXUT9in40eOVxuuvG6klxyn5dW4NVzU+17pgRe9SlxazS97pEDDnUvoqOVjkBRL7RTayrE9juoZz7Dui91uveJOt/68OO8pwVKauvXr5dGDepKOvewGv8Bhx9ckmk+hwAEDBBA4DUQJFyEQHEEYgJvSXsQbrPNNvLu3A/jj/YUfJHNMcce727YY984x66pK35vveXmIvei08nQvUOGSu+D+haaYOukSR9Lu/KKS52YnPj4Y7IVFLrCYubb78VXVRX0kUyAQCYJJAoIqVxXBYINGza4lVyxFfOJ533yyQJ56cVJ8Td/6wqyiS9MyGda95bUCWvssdfYh7HHSrt17ym676ebpA26WsY+PDp+/pwPPpIaNXYudj/t2P6MyR4XTaWPHAOBshBIrKn+h/VzL/csqSXuWTjzzRlywnFHFTpFVwKOGj3GrQgs2PQLS13dN2rkcLeiPrHddsfdojVX8EuVmMCoIt8TTz0re9Wrn+88FUV0O6NK21aKv2y0KIH37bdmybFHDyipm5H+XP/e6aP8Gofv16yRVvvmbbtRXNNzdA9mFez07+5edfJe2Bpbma0vlmraKH/cdEXlo+Ofim+FE7OvX3rvU79OvstdfOnlcvY55xf6W6wH6bYQM954XW68fpDEnjQaNnyU9OmbJ5DUqVXTPRGVrOmTUbpVj7aiHrFOXA1cMK/0C43Lrrgq/gLd2DXWrFktl1w0ML7qfMorL4m+fCyxlWV8SbST+LI1/X0qL9rVLydvv/MeqVq1aiEsep+pK5Jvu3Vw2kKjbkuhdnXVbmLTnFCbp596YnyhgG4DMf6JZ+Ii73333iV333l7SamW7wkzfVeFruZOtekCiMfGPxV/2i12nvqn47quvtYtzwoKvGXNk5joqPcd+tRewZa4XZT60qZVs/iij1T7xnF5BBK3IYkx0Xjqkwj6VKTOhQrWT7r3ifpEykcLFqeEPDYfTNzGpKQTg94ju6Tr8TkEIOCPAAKvP7ZYhoBJAvXq15eOnbrIlv/a0m23UNLm/Ymd1L3ZWrduI39v+Fs++vDDElfgmASE0xBIgYDu+dm1W3e3p+AXK1bI9OnTUp4U6uRZt07Zp2EjNzHVlw7q5J0GAQgUT0BrZ++9G7hH6XVS/cmCj912REWJbWpNv6Rs3mJfqV17D/nu229l7tz35I8//sh3oSZNmkr7Dp2cqLZs2VJ5beqUpHvOEx8bBFQsad26rWy77bbuRW4qBMaeXCrYAxUO9QVVupXD58uXy0cfzc+6EKZCdafOXdwY8e0337jtg/SR7FRatscXFeabNW/hXqj4/ZrV7l5x1aqVqbhe7DF677rffgdItWo7yKtTXo5vQ1ZmwwEZ0Pvjjh07SeXK27ntRPRFrLRwEIiNO3vU2VMqVCgvCxYsSOk9ImW5TwwHOXoBAQj4IIDA64MqNiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIZIAAAm8GIHMJCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAI+CCDw+qCKTQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACGSCAwJsByFwCAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPAgi8PqhiEwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBABggg8GYAMpeAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOCDAAKvD6rYhAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQAQIIvBmAzCUgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCPgggMDrgyo2IQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhkgAACbwYgcwkIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4IIPD6oIpNCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIZIIDAmwHIXAICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgA8CCLw+qGITAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEAGCCDwZgAyl4AABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg4IMAAq8PqtiEAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIJABAgi8GYDMJSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+CCAwOuDKjYhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCGSAAAJvBiBzCQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACPggg8Pqgik0IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhkggMCbAchcAgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEICADwIIvD6oYhMCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQAYIIPBmADKXgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDggwACrw+q2IQABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkAECCLwZgMwlIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQj4IIDA64MqNiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIZIAAAm8GIHMJCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAI+CCDw+qCKTQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACGSCAwJsByFwCAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPAgi8PqhiEwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBABggg8GYAMpeAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOCDAAKvD6rYhAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQAQIIvBmAzCUgAAEIQAACEIBA1AlsvfXWUq5cOfnrr7+ijoL+QwACEIAABCAAAQhAIFACCLyB4sQYBCAAAQhAAAIQgMAWW2whFwz8j7Ru01b2qFNHdtxxJ6lQoYIDs3HjRvntt9/kpx9/kFdeeUkeHHq//PLLL0CDAAQgAAEIQAACEIAABEpJAIG3lOA4DQIQgAAEIAABCECgMIHOnbvK/cO8ni/OAAAUI0lEQVRGyHbbbZcSns2bN8vSJZ/J3XfdIa+8PDmlczgIAhCAAAQgAAEIQAACEPgfAQResgECEIAABCAAAQhAoMwEttxyS3ls/FNyQLv2hWytX79e1qz+TrapWFEqV95Ott1220LHLF60SHr16FxmPzAAAQhAAAIQgAAEIACBqBFA4I1axOkvBCAAAQhAAAIQ8EBg6IMjpW+/Q+KWN2zYIDdcd4088fg4ty1DYqtSpYqcctoZcvzxJ8lO1au7jxB4PQQFkxCAAAQgAAEIQAACkSCAwBuJMNNJCEAAAhCAAAQg4I/Avi1byYSJL8UvsOLz5TLg8EPkhx++L/Gip55+plx19SBZvmxZyit49WVturVDWZvuFbxp06aymkn5/ExfL2XHOBACEIAABCAAAQhAwDQBBF7T4cN5CEAAAhCAAAQgkH0C8z9aKNV22ME58tdff0mThvXc/1Nt1avXkEaNm8gb06clPaVL1+4y8ML/yB571JHtq1YVFXh///13Wb36Oxk5fJg8Pv6xpOddfc11ckD7Du6z6669ShYt/FQG33KHtGnbVmrW3EVUcP3zzz/lixUr5IzTTpJVq1YmtaNbT2j/VAw+uE8vJy7X3aue9O17sOy3/wGybeXKbguK0045Md/5W2+9tdxy253uZXM771xTypcv72z89OOPsmjRQjn/vLNk3dq1qWLiOAhAAAIQgAAEIAABCCQlgMBLYkAAAhCAAAQgAAEIlJpA1249ZMwj4+LnD77pBhk5Ylip7SWeqALs/UOH59v6IZnhjz/+SI7sf4j88ccf+T5+/Y1Zsle9+u53s2a+KW3a7udE1mRNhdeTjj9GZs6cUejj5V98LbrHsLamjeq7l8h16tSl0HG1d6sR/52KumMeGS+VK1cukoVuY3HpxRfKhOefDYQXRiAAAQhAAAIQgAAEokkAgTeacafXEIAABCAAAQhAIBACl195tZx73gXO1m+//SYN994zELtq5KUp06Rx4yZxe2vWrJZlS5e6n/eqV0905W+svTR5kpx79hn5rp0o8BZ0SlcY6wpbXQ0ca7oiuE3LZoX8TxR49byiROKYwFtwywoVcnULim+++Upq1txV6tWvHxeMVVhu2aKxW9VLgwAEIAABCEAAAhCAQGkIIPCWhhrnQAACEIAABCAAAQg4AuOfeEbad+jo/r10yWfSvWvev8va+vTtJ8OGj3ZmVATVla7PPvNUPrNnnHWOXHPt9e53um1Cl07tRPf/jbWCAq9ux3Dv3XfKE0+Mi2+NUPDlcAMOP1jmznkv33USBd7YByo2f/zRhzJ/3jzZbrvtpM6ee8oZp53sPn537ny3BYS2Tz5ZIMce1V9+/vnnuE0Vpie/MlVq1NjZ/e6d2W/L0UceXlZknA8BCEAAAhCAAAQgEFECCLwRDTzdhgAEIAABCEAAAkEQmP3eB7Lrrrs5U69NnSKnn3pSEGZlwcKlTjjVds1Vl8tjj45NaveFF1+RFi32dZ+NeXi0XD/o6vhxiQLvu+/MlhOOO0r+/vvvQnYWfva5VKpUyf0+2RYTiQKv7v172SUXyouTJib1R18ad931N7nP1v70k+zbvFHSF7k1aLCPvDotbzsIXeG7V508hjQIQAACEIAABCAAAQikSwCBN11iHA8BCEAAAhCAAAQgECewaMkKqVixovtZX3g2+OYbktLRlbK77LJrkeTefnuW3Hn7re5zfSHZe+9/6P6tK19139ui2kknnyo33nyL+/jtt2bJsUcPiB+aKPAWJxI//8JkadmqtTvvmaeflEv+MzDf5RIF3sb77CW//vprkf5MmPiS6BYN2q4bdLWMfThvFXKy9vGnS6RKlSruo5LsknIQgAAEIAABCEAAAhAoigACL7kBAQhAAAIQgAAEIFBqAu/PWyA7Va/uzk+2D27M8GfLVkqFChWKvE7i9g79Dj5EHhg20h2r2zN8+eWqIs/brvJ2UrVaNff5qlUrpcMBbeLHpirwjn74EenR88Ai+5Ao8NbdY1fZuHFjkf7MnfdxfG/gb7/9JumK4djJtWrVju8BfNwxR8hbs2aWOg6cCAEIQAACEIAABCAQXQIIvNGNPT2HAAQgAAEIQAACZSaQuPp18aJF0qtH56Q20xF4rx10g5x+5tlp+/b9mjXSat//vZQtVYH33vuGymH981b+JhOp0xF4l634Srbaaqu0fR/473PkhQnPp30eJ0AAAhCAAAQgAAEIQACBlxyAwP+3d6+xVRZ2GMD/EAIJoRINRGdhgggtidy06KJ+0uElaiLoXIhOQhaj8zqVsUmYTu0IzmyixiuKUM3i9IOCzsTpCFESE2UplNbgrcVBxsU5IJMPhQaW9xBOQA54CmiXP7/3W9v3vOd9fs/59OTkLQECBAgQIEDgsAUa5zwYP7tuzz8X27p1a4w7va7itUaOGhU1NXueqbv3+MVNt8SFF11S+nHfb/DOe/SJmDzlytLvi+fTru1or+r+2traohhK9x49MfCuXbex/K3cjo726Nq5s6p7v+vO22PVyuaqznUSAQIECBAgQIAAgX0FDLw+DwQIECBAgAABAoctMHnKVTHv0cfLr58+7dpY+ve3q7re7+5rjOk/v/6AgfeGG2+OWbPvKf1+/fp1ce6P9jzTtrtHTwy8bWs+jwEDBpRuddq1U2PZsqXdvW3nEyBAgAABAgQIEOiWgIG3W1xOJkCAAAECBAgQ2Fdg0KDBsaJ5dflbq1u2bInxY+qrQjrYwFv8k7Lin5UVx44dO2LkqUOrut43T+qJgXfpsuUx4rSRpVs51D+dO6xAXkSAAAECBAgQIECggoCB18eCAAECBAgQIEDgiAQe+P3cuG7a9PI1lix+LW69+YZvvebBBt7evXtHxz83lF//QtPCmD3r14e8Xq9evUrPvi0G4b1HTwy8T89fEBdfcmnpFop7aZhwemzbtu2Q996vX7/o7Oz8Vi8nECBAgAABAgQIEKgkYOD1uSBAgAABAgQIEDhigX80t8agwYPL19m0aWNcM/Un8eknnxz02o889mRcMXlK6e/7PoO3+Pm555vix5MuKv1t9+7dcc/su6Np0fMVrzXpwovjDw/9Kd5552/xq7t+WT6nJwbe2tohsfz9D6MYqYujeA7v1VdeEZs3bzrg3gcOHBj3N86NSy+7PE4bPuSIO3ABAgQIECBAgACBY1PAwHts9i41AQIECBAgQOCoCowdOy6W/PWt8qMa9g6zGzduiI729mhd3RI7u3ZGbe3QOHXEiKivHx19+/Yt38M3B97iW60rV6+J/v37l8/ZsOFfsfy9d+Pjj9fEKacMiwlnnBnDhg0vP/P2lZdfihl33t6jA2/x5jNm/iZuve2O8n3s2rWrdN+trS3x9X+/joaJE6OufnScfHJtyasYsIcNPemo9uFiBAgQIECAAAECx46AgffY6VpSAgQIECBAgMB3KjBkyNB4av6CGDNmbLfep6urK158YVHc+9tZ+73unHPPi2eeXRg1NTVVXe//ZeAtbvbZBYui+GZxNYeBtxol5xAgQIAAAQIECBxMwMDrs0GAAAECBAgQIHBUBc6/YFI0zpkbJ554UvTp06fitYtvtXa0fx5NTQvjxaaFUYy8lY7iUQeNcx6Mq386tfSM3UrHv7/8Mt5884147JGH93sUwltvL4v60aNLL5k54474y0t/rvj6h/44r3T94lj82qtx2y037nfeZx3ry+89/Ic/iOLeqznGTzgjnnhqfhSPbah0FJlbVq2MBc89E68vWVzNJZ1DgAABAgQIECBA4AABA68PBQECBAgQIECAwHcmcPwJJ0RDw1kxbvz40nNpVzY3x4oVH8R/vvqq2+9ZPLO2YeLZMWpUXXTu6IzVLavio7bW2L59e7ev9X2+oHgMQ11dfUw86+yoqTku1q37IlpaWuKLtR3f5214LwIECBAgQIAAgaQCBt6kxYpFgAABAgQIECBAgAABAgQIECBAgEB+AQNv/o4lJECAAAECBAgQIECAAAECBAgQIEAgqYCBN2mxYhEgQIAAAQIECBAgQIAAAQIECBAgkF/AwJu/YwkJECBAgAABAgQIECBAgAABAgQIEEgqYOBNWqxYBAgQIECAAAECBAgQIECAAAECBAjkFzDw5u9YQgIECBAgQIAAAQIECBAgQIAAAQIEkgoYeJMWKxYBAgQIECBAgAABAgQIECBAgAABAvkFDLz5O5aQAAECBAgQIECAAAECBAgQIECAAIGkAgbepMWKRYAAAQIECBAgQIAAAQIECBAgQIBAfgEDb/6OJSRAgAABAgQIECBAgAABAgQIECBAIKmAgTdpsWIRIECAAAECBAgQIECAAAECBAgQIJBfwMCbv2MJCRAgQIAAAQIECBAgQIAAAQIECBBIKmDgTVqsWAQIECBAgAABAgQIECBAgAABAgQI5Bcw8ObvWEICBAgQIECAAAECBAgQIECAAAECBJIKGHiTFisWAQIECBAgQIAAAQIECBAgQIAAAQL5BQy8+TuWkAABAgQIECBAgAABAgQIECBAgACBpAIG3qTFikWAAAECBAgQIECAAAECBAgQIECAQH4BA2/+jiUkQIAAAQIECBAgQIAAAQIECBAgQCCpgIE3abFiESBAgAABAgQIECBAgAABAgQIECCQX8DAm79jCQkQIECAAAECBAgQIECAAAECBAgQSCpg4E1arFgECBAgQIAAAQIECBAgQIAAAQIECOQXMPDm71hCAgQIECBAgAABAgQIECBAgAABAgSSChh4kxYrFgECBAgQIECAAAECBAgQIECAAAEC+QUMvPk7lpAAAQIECBAgQIAAAQIECBAgQIAAgaQCBt6kxYpFgAABAgQIECBAgAABAgQIECBAgEB+AQNv/o4lJECAAAECBAgQIECAAAECBAgQIEAgqYCBN2mxYhEgQIAAAQIECBAgQIAAAQIECBAgkF/AwJu/YwkJECBAgAABAgQIECBAgAABAgQIEEgqYOBNWqxYBAgQIECAAAECBAgQIECAAAECBAjkFzDw5u9YQgIECBAgQIAAAQIECBAgQIAAAQIEkgoYeJMWKxYBAgQIECBAgAABAgQIECBAgAABAvkFDLz5O5aQAAECBAgQIECAAAECBAgQIECAAIGkAgbepMWKRYAAAQIECBAgQIAAAQIECBAgQIBAfgEDb/6OJSRAgAABAgQIECBAgAABAgQIECBAIKmAgTdpsWIRIECAAAECBAgQIECAAAECBAgQIJBfwMCbv2MJCRAgQIAAAQIECBAgQIAAAQIECBBIKmDgTVqsWAQIECBAgAABAgQIECBAgAABAgQI5Bcw8ObvWEICBAgQIECAAAECBAgQIECAAAECBJIKGHiTFisWAQIECBAgQIAAAQIECBAgQIAAAQL5BQy8+TuWkAABAgQIECBAgAABAgQIECBAgACBpAIG3qTFikWAAAECBAgQIECAAAECBAgQIECAQH4BA2/+jiUkQIAAAQIECBAgQIAAAQIECBAgQCCpgIE3abFiESBAgAABAgQIECBAgAABAgQIECCQX8DAm79jCQkQIECAAAECBAgQIECAAAECBAgQSCpg4E1arFgECBAgQIAAAQIECBAgQIAAAQIECOQXMPDm71hCAgQIECBAgAABAgQIECBAgAABAgSSChh4kxYrFgECBAgQIECAAAECBAgQIECAAAEC+QUMvPk7lpAAAQIECBAgQIAAAQIECBAgQIAAgaQCBt6kxYpFgAABAgQIECBAgAABAgQIECBAgEB+AQNv/o4lJECAAAECBAgQIECAAAECBAgQIEAgqYCBN2mxYhEgQIAAAQIECBAgQIAAAQIECBAgkF/AwJu/YwkJECBAgAABAgQIECBAgAABAgQIEEgqYOBNWqxYBAgQIECAAAECBAgQIECAAAECBAjkFzDw5u9YQgIECBAgQIAAAQIECBAgQIAAAQIEkgoYeJMWKxYBAgQIECBAgAABAgQIECBAgAABAvkFDLz5O5aQAAECBAgQIECAAAECBAgQIECAAIGkAgbepMWKRYAAAQIECBAgQIAAAQIECBAgQIBAfgEDb/6OJSRAgAABAgQIECBAgAABAgQIECBAIKmAgTdpsWIRIECAAAECBAgQIECAAAECBAgQIJBfwMCbv2MJCRAgQIAAAQIECBAgQIAAAQIECBBIKmDgTVqsWAQIECBAgAABAgQIECBAgAABAgQI5Bcw8ObvWEICBAgQIECAAAECBAgQIECAAAECBJIKGHiTFisWAQIECBAgQIAAAQIECBAgQIAAAQL5BQy8+TuWkAABAgQIECBAgAABAgQIECBAgACBpAIG3qTFikWAAAECBAgQIECAAAECBAgQIECAQH4BA2/+jiUkQIAAAQIECBAgQIAAAQIECBAgQCCpgIE3abFiESBAgAABAgQIECBAgAABAgQIECCQX8DAm79jCQkQIECAAAECBAgQIECAAAECBAgQSCpg4E1arFgECBAgQIAAAQIECBAgQIAAAQIECOQXMPDm71hCAgQIECBAgAABAgQIECBAgAABAgSSChh4kxYrFgECBAgQIECAAAECBAgQIECAAAEC+QUMvPk7lpAAAQIECBAgQIAAAQIECBAgQIAAgaQCBt6kxYpFgAABAgQIECBAgAABAgQIECBAgEB+AQNv/o4lJECAAAECBAgQIECAAAECBAgQIEAgqYCBN2mxYhEgQIAAAQIECBAgQIAAAQIECBAgkF/AwJu/YwkJECBAgAABAgQIECBAgAABAgQIEEgqYOBNWqxYBAgQIECAAAECBAgQIECAAAECBAjkFzDw5u9YQgIECBAgQIAAAQIECBAgQIAAAQIEkgoYeJMWKxYBAgQIECBAgAABAgQIECBAgAABAvkF/gfQbvNfrQXjFAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/markdown": [
+       "AI-generated follow-up questions:\n",
+       "\n",
+       "* What are the total sales for each genre?\n",
+       "* Who are the top 5 artists by total sales?\n",
+       "* What are the sales trends by year?\n",
+       "* How many albums are in the database?\n",
+       "* What is the total number of sales?\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Markdown object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vn.ask(\"What are the top 5 genres by total sales?\")"
    ]
   },
   {
    "attachments": {},
    "cell_type": "markdown",
    "metadata": {},
-   "source": []
+   "source": [
+    "# Now try your own question\n",
+    "\n",
+    "For reference, these are the tables in the database\n",
+    "\n",
+    "<img style=\"max-width:400px\" alt=\"\" src=\"\">"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Put your question here:\n",
+    "vn.ask()"
+   ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "base",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -119,10 +501,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.9"
-  },
-  "orig_nbformat": 4
+   "version": "3.11.2"
+  }
  },
  "nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
 }
diff --git a/notebooks/manual-train.ipynb b/notebooks/manual-train.ipynb
index 93afca44..d6d53afc 100644
--- a/notebooks/manual-train.ipynb
+++ b/notebooks/manual-train.ipynb
@@ -5,22 +5,380 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Manually Training Vanna"
+    "# Manually Training Vanna\n",
+    "This notebook shows how to manually train Vanna. If you prefer to automatically train Vanna, see [here](vn-train.html)\n",
+    "\n",
+    "# Install Vanna\n",
+    "First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.\n",
+    "Here, we'll also install the Snowflake connector. If you're using a different database, you'll need to install the appropriate connector."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%pip install vanna"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import vanna as vn"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Login\n",
+    "Creating a login and getting an API key is as easy as entering your email (after you run this cell) and entering the code we send to you. Check your Spam folder if you don't see the code."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "api_key = vn.get_api_key('my-email@example.com')\n",
+    "vn.set_api_key(api_key)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set your Model\n",
+    "You need to choose a globally unique model name. Try using your company name or another unique string. All data from models are isolated - there's no leakage."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.set_model('my-model') # Enter your model name here. This is a globally unique identifier for your model."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Train with DDL Statements\n",
+    "If you prefer to manually train, you do not need to connect to a database. You can use the train function with other parmaeters like ddl"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.train(ddl=\"\"\"\n",
+    "    CREATE TABLE IF NOT EXISTS my-table (\n",
+    "        id INT PRIMARY KEY,\n",
+    "        name VARCHAR(100),\n",
+    "        age INT\n",
+    "    )\n",
+    "\"\"\")"
    ]
   },
   {
    "attachments": {},
    "cell_type": "markdown",
    "metadata": {},
-   "source": []
+   "source": [
+    "# Train with Documentation\n",
+    "Sometimes you may want to add documentation about your business terminology or definitions."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.train(documentation=\"Our business defines OTIF score as the percentage of orders that are delivered on time and in full\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Train with SQL\n",
+    "You can also add SQL queries to your training data. This is useful if you have some queries already laying around. You can just copy and paste those from your editor to begin generating new SQL."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.train(sql=\"SELECT * FROM my-table WHERE name = 'John Doe'\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# View Training Data\n",
+    "At any time you can see what training data is in your model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>id</th>\n",
+       "      <th>training_data_type</th>\n",
+       "      <th>question</th>\n",
+       "      <th>content</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>15-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the PARTSUPP table.\\n\\nThe ...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>11-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the CUSTOMER table.\\n\\nThe ...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>14-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the ORDERS table.\\n\\nThe fo...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1244-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>What are the names of the top 10 customers?</td>\n",
+       "      <td>SELECT c.c_name as customer_name\\nFROM   snowf...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>1242-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>What are the top 5 customers in terms of total...</td>\n",
+       "      <td>SELECT c.c_name AS customer_name, SUM(l.l_quan...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>17-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the REGION table.\\n\\nThe fo...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>16-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the PART table.\\n\\nThe foll...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>1243-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>What are the top 10 customers with the highest...</td>\n",
+       "      <td>SELECT c.c_name as customer_name,\\n       sum(...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>1239-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>What are the top 100 customers based on their ...</td>\n",
+       "      <td>SELECT c.c_name as customer_name,\\n       sum(...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>13-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the SUPPLIER table.\\n\\nThe ...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>1241-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>What are the top 10 customers in terms of tota...</td>\n",
+       "      <td>SELECT c.c_name as customer_name,\\n       sum(...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>12-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the LINEITEM table.\\n\\nThe ...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>18-doc</td>\n",
+       "      <td>documentation</td>\n",
+       "      <td>None</td>\n",
+       "      <td>This is a table in the NATION table.\\n\\nThe fo...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>1248-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>How many customers are in each country?</td>\n",
+       "      <td>SELECT n.n_name as country,\\n       count(*) a...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>1240-sql</td>\n",
+       "      <td>sql</td>\n",
+       "      <td>What is the number of orders placed each week?</td>\n",
+       "      <td>SELECT date_trunc('week', o_orderdate) as week...</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "          id training_data_type  \\\n",
+       "0     15-doc      documentation   \n",
+       "1     11-doc      documentation   \n",
+       "2     14-doc      documentation   \n",
+       "3   1244-sql                sql   \n",
+       "4   1242-sql                sql   \n",
+       "5     17-doc      documentation   \n",
+       "6     16-doc      documentation   \n",
+       "7   1243-sql                sql   \n",
+       "8   1239-sql                sql   \n",
+       "9     13-doc      documentation   \n",
+       "10  1241-sql                sql   \n",
+       "11    12-doc      documentation   \n",
+       "12    18-doc      documentation   \n",
+       "13  1248-sql                sql   \n",
+       "14  1240-sql                sql   \n",
+       "\n",
+       "                                             question  \\\n",
+       "0                                                None   \n",
+       "1                                                None   \n",
+       "2                                                None   \n",
+       "3         What are the names of the top 10 customers?   \n",
+       "4   What are the top 5 customers in terms of total...   \n",
+       "5                                                None   \n",
+       "6                                                None   \n",
+       "7   What are the top 10 customers with the highest...   \n",
+       "8   What are the top 100 customers based on their ...   \n",
+       "9                                                None   \n",
+       "10  What are the top 10 customers in terms of tota...   \n",
+       "11                                               None   \n",
+       "12                                               None   \n",
+       "13            How many customers are in each country?   \n",
+       "14     What is the number of orders placed each week?   \n",
+       "\n",
+       "                                              content  \n",
+       "0   This is a table in the PARTSUPP table.\\n\\nThe ...  \n",
+       "1   This is a table in the CUSTOMER table.\\n\\nThe ...  \n",
+       "2   This is a table in the ORDERS table.\\n\\nThe fo...  \n",
+       "3   SELECT c.c_name as customer_name\\nFROM   snowf...  \n",
+       "4   SELECT c.c_name AS customer_name, SUM(l.l_quan...  \n",
+       "5   This is a table in the REGION table.\\n\\nThe fo...  \n",
+       "6   This is a table in the PART table.\\n\\nThe foll...  \n",
+       "7   SELECT c.c_name as customer_name,\\n       sum(...  \n",
+       "8   SELECT c.c_name as customer_name,\\n       sum(...  \n",
+       "9   This is a table in the SUPPLIER table.\\n\\nThe ...  \n",
+       "10  SELECT c.c_name as customer_name,\\n       sum(...  \n",
+       "11  This is a table in the LINEITEM table.\\n\\nThe ...  \n",
+       "12  This is a table in the NATION table.\\n\\nThe fo...  \n",
+       "13  SELECT n.n_name as country,\\n       count(*) a...  \n",
+       "14  SELECT date_trunc('week', o_orderdate) as week...  "
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "vn.get_training_data()"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Removing Training Data\n",
+    "If you added some training data by mistake, you can remove it. Model performance is directly linked to the quality of the training data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "vn.remove_training_data(id='my-training-data-id')"
+   ]
   }
  ],
  "metadata": {
-  "language_info": {
-   "name": "python"
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
   },
-  "orig_nbformat": 4
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.2"
+  }
  },
  "nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
 }
diff --git a/notebooks/vn-train.ipynb b/notebooks/vn-train.ipynb
index c455a8f7..56428bf9 100644
--- a/notebooks/vn-train.ipynb
+++ b/notebooks/vn-train.ipynb
@@ -5,13 +5,6 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "![Vanna AI](https://img.vanna.ai/vanna-train.svg)\n",
-    "\n",
-    "The following notebook goes through the process of training Vanna. \n",
-    "\n",
-    "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vanna-ai/vanna-py/blob/main/notebooks/vn-train.ipynb)\n",
-    "\n",
-    "[![Open in GitHub](https://img.vanna.ai/github.svg)](https://github.com/vanna-ai/vanna-py/blob/main/notebooks/vn-train.ipynb)\n",
     "\n",
     "# Install Vanna\n",
     "First we install Vanna from [PyPI](https://pypi.org/project/vanna/) and import it.\n",
@@ -145,66 +138,6 @@
     "vn.train(plan=training_plan)"
    ]
   },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Train with DDL Statements\n",
-    "If you prefer to manually train, you do not need to connect to a database. You can use the train function with other parmaeters like ddl"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "vn.train(ddl=\"\"\"\n",
-    "    CREATE TABLE IF NOT EXISTS my-table (\n",
-    "        id INT PRIMARY KEY,\n",
-    "        name VARCHAR(100),\n",
-    "        age INT\n",
-    "    )\n",
-    "\"\"\")"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Train with Documentation\n",
-    "Sometimes you may want to add documentation about your business terminology or definitions."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "vn.train(documentation=\"Our business defines OTIF score as the percentage of orders that are delivered on time and in full\")"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Train with SQL\n",
-    "You can also add SQL queries to your training data. This is useful if you have some queries already laying around. You can just copy and paste those from your editor to begin generating new SQL."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "vn.train(sql=\"SELECT * FROM my-table WHERE name = 'John Doe'\")"
-   ]
-  },
   {
    "attachments": {},
    "cell_type": "markdown",
diff --git a/src/vanna/__init__.py b/src/vanna/__init__.py
index 3800942e..3296ce13 100644
--- a/src/vanna/__init__.py
+++ b/src/vanna/__init__.py
@@ -95,6 +95,7 @@
 import warnings
 import traceback
 import os
+import sqlite3
 
 api_key: Union[str, None] = None  # API key for Vanna.AI
 
@@ -1423,6 +1424,37 @@ def get_training_data() -> pd.DataFrame:
 
     return df
 
+def connect_to_sqlite(url: str):
+    """
+    Connect to a SQLite database. This is just a helper function to set [`vn.run_sql`][vanna.run_sql]
+
+    Args:
+        url (str): The URL of the database to connect to.
+
+    Returns:
+        None
+    """
+
+    # URL of the database to download
+
+    # Path to save the downloaded database
+    path = "tempdb.sqlite"
+
+    # Download the database if it doesn't exist
+    if not os.path.exists(path):
+        response = requests.get(url)
+        response.raise_for_status()  # Check that the request was successful
+        with open(path, 'wb') as f:
+            f.write(response.content)
+
+    # Connect to the database
+    conn = sqlite3.connect(path)
+
+    def run_sql_sqlite(sql: str):
+        return pd.read_sql_query(sql, conn)
+
+    global run_sql
+    run_sql = run_sql_sqlite
 
 def connect_to_snowflake(account: str, username: str, password: str, database: str, role: Union[str, None] = None):
     """