-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
46 lines (35 loc) · 1.18 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import streamlit as st
import json
import requests
import matplotlib.pyplot as plt
import numpy as np
URI = 'http://127.0.0.1:5000'
st.title('NEURAL NETWORK VISUALIZER')
st.sidebar.markdown('## INPUT IMAGE')
if st.button('GET RANDOM PREDICTION'):
response = requests.post(URI, data={})
response = json.loads(response.text)
preds = response.get('prediction')
image = response.get('image')
image = np.reshape(image, (28, 28))
st.sidebar.image(image, width = 150)
for layer, p in enumerate(preds):
numbers = np.squeeze(np.array(p))
plt.figure(figsize = (32, 4))
if layer == 2:
row = 1
col = 10
else:
row = 2
col = 16
for i, number in enumerate(numbers):
plt.subplot(row, col, i+1)
plt.imshow(number * np.ones((8,8,3)).astype('float32'))
plt.xticks([])
plt.yticks([])
if layer == 2:
plt.xlabel(str(i), fontsize = 40)
plt.subplots_adjust(wspace=0.05, hspace=0.05)
plt.tight_layout()
st.text('Layer {}'.format(layer+1))
st.pyplot()